
ML-Driven Clinical Documentation

by

Divya Gopinath

B.S. Computer Science and Engineering
Massachusetts Institute of Technology, 2019

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

June 30, 2020

Certified by. .
David Sontag

Associate Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

ML-Driven Clinical Documentation

by

Divya Gopinath

Submitted to the Department of Electrical Engineering and Computer Science
on June 30, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Electronic health records (EHRs) have irrevocably changed the practice of medicine
by systematizing the collection of patient-level data. However, clinicians currently
spend more time documenting information in EHRs than interacting directly with
patients, and have adapted to time-intensive note-writing by authoring free-text notes
overloaded with jargon and acronyms. Clinical notes are therefore difficult to parse
and largely unstructured. This negatively impacts the ability of EHR systems to con-
vey information between different clinicians and institutions, to communicate medical
findings to patients, and to allow for programmatic ingestion of data to derive fur-
ther automatically-learned insights. In this thesis, we present a new EHR system
that addresses these problems by using novel machine learning methods to stream-
line the processes by which clinicians enter in new information and surface relevant
details from past medical records. Our intelligent interface aids physicians as they
type, allowing for automatic suggestion and live-tagging of clinical concepts to alle-
viate documentation burden, while simultaneously enabling clinical decision support
and contextual information synthesis. Furthermore, as clinicians craft notes we auto-
matically structure and curate their free-text inputs, allowing for further data-driven
innovation and improvement. This EHR can reduce physician burnout, decrease di-
agnostic error, and improve patient outcomes, all while collecting a corpus of clean,
labelled clinical data. Our system is currently deployed live at the Beth Israel Dea-
coness Medical Center Emergency Department and is in use by doctors.

Thesis Supervisor: David Sontag
Title: Associate Professor

3

4

Acknowledgments

The body of work I present here would not have been possible without guidance and

support from so many. Chief among them is my advisor, Prof. David Sontag, who

has been instrumental in my growth as a researcher. David has taught me too many

things to include in this paragraph, but the most valuable of these will always be how

to formulate the right questions, and when to conclude they are the wrong ones.

This project was truly a group effort, and I am grateful for my team. Dr. Steven

Horng patiently offered his clinical expertise and persevered through hacky imple-

mentations of half-baked ideas, even in the midst of a pandemic. Luke Murray is the

design wizard behind this project, and I’ll miss the nights of frantic debugging and

brainstorming. David Karger gave me crucial advice on user-centric design.

Thank you to Monica Agrawal for endlessly discussing every one of my musings and

offering support and guidance with a smile (and a laugh). My MEng would not have

been as productive or as fun without you and the rest of the Clinical ML group.

Thank you to my past UROP mentors and professors who gave me the building blocks

and tools to become a researcher. Thank you to my family, for reminding me of the

bigger picture and supporting me even at my worst. Thank you to my amazing and

loyal friends, who have let me blabber on about random things and brought me more

joy than I thought possible.

And lastly, thank you to MIT. My first impression of this school was one of pure

wonder as I stepped onto Killian Court as a wide-eyed ten-year-old and saw buildings

emblazoned with names of the scientific greats. While I cannot say that I have be-

come the next Aristotle or Newton during my time at this institution, I am humbled

by the people I have met and the opportunities I have been given. This school has

changed my life, and for that, I am forever grateful.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 A New EHR . 16

1.3 Thesis Scope and Organization . 17

2 Background 19

2.1 The Clinical Workflow . 19

2.2 Related Work . 21

2.2.1 Data Entry: Related Work . 24

2.2.2 Contextual Information Retrieval: Related Work 26

2.3 Dataset Summary . 30

3 Rethinking Clinical Documentation 33

3.1 Data Entry and Contextual Autocomplete 35

3.2 The Sidebar . 40

4 Generating Rankings for Autocomplete 43

4.1 Developing a Clinical Language Model 43

4.1.1 Defining Clinical Concepts . 45

4.1.2 Autocomplete Scope and Ranking 45

4.2 Defining the Autocomplete Problem 47

4.2.1 Label Generation . 47

4.2.2 Featurizing Textual Data . 49

7

4.2.3 Alternate NER Approaches 50

4.3 Autocompletion Model by Concept Type 52

4.3.1 Autocompleting Conditions 53

4.3.2 Autocompleting Symptoms . 55

4.3.3 Autocompleting Labs and Medications 58

4.4 Contextual Autocomplete Results . 58

4.4.1 Performance and Usability . 59

4.4.2 Sensitivity Analysis . 64

4.4.3 Interpreting Autocompletion of Prior Conditions 66

4.5 Summary . 68

4.5.1 Future Direction: Dynamic Autocomplete Rankings 70

5 Triggering Autocomplete Scope 71

5.1 Rule-Based Triggers . 72

5.2 Learned Triggers: The Setup . 73

5.2.1 Defining Labels . 74

5.2.2 Featurizing Text . 74

5.2.3 Dataset Generation . 75

5.3 Learned Triggers: Modeling . 77

5.3.1 How much local structure do we need? 77

5.3.2 Binary Prediction of Autocomplete Scope 78

5.3.3 Autocomplete Scope and Type Prediction 83

5.4 Performance Results . 85

5.4.1 Scope and Type Detection . 85

5.4.2 Overall . 86

5.5 Summary . 88

5.5.1 Future Direction: Integrating Semantic Modifiers 88

6 Patient Record Summarization from Unstructured Text 95

6.1 Formalizing OMR Snippetization . 96

6.2 Dividing Notes into Snippets . 98

8

6.3 Measuring Snippet Relevance . 99

6.3.1 Advanced Keyword Search . 99

6.3.2 Latent Dirichlet Allocation and Topic Modelling 104

6.3.3 Anchor-and-Learn . 107

6.4 Deployment and Next Steps . 113

6.4.1 Implementation of Advanced Keyword Search 113

6.4.2 Future Work . 115

7 Information Synthesis and Visualization of Semi-Structured Data 117

7.1 Drug-Disease Indications . 117

7.2 Lab and Vital Trend Visualization . 118

7.3 Condition-Procedure Relations . 119

7.3.1 Constructing an Ontology of Procedures 121

7.3.2 Establishing Prior Mentions of Procedures 122

7.3.3 Mapping Conditions to Procedures via Semi-Supervised Affine

Transformations . 123

7.3.4 Mapping Conditions to Procedures via Logistic Regression . . 125

7.4 Differential Diagnosis . 127

7.4.1 Generalized Differential Diagnosis 128

7.4.2 Differential Diagnosis of Abdominal Pain 134

7.5 Future Work . 140

8 Implementation & Deployment 143

8.1 System Implementation . 143

8.1.1 Client-Side Inference . 145

8.1.2 Ontology Modifications . 145

8.1.3 Collaborative Documentation 146

8.2 System Feedback & User Metrics . 147

9 Discussion and Conclusion 151

9.1 Limitations . 151

9

9.2 Future Work . 153

A Appendix 157

A.1 NegEx Algorithm . 157

A.2 Examples of Clinical Notes . 157

A.3 OMR Annotation Tool . 160

10

List of Figures

2-1 High-level summary of dataset demographics 31

3-1 Consequences of semi-structuring clinical notes 35

3-2 Screenshots of contextual autocompletion tool 36

3-3 Markdown formatting supported in our tool as a part of the data entry

experience. 37

3-4 Slash commands for clinical concepts 38

3-5 Redundant entry is removed by including already tagged terms in early

sections of notes to later ones. 39

3-6 Screenshot of sidebar cards . 41

3-7 The end-to-end EHR system . 42

4-1 Data model for our ontology of conditions 47

4-2 Backup data capture strategies when autocomplete scope fails 59

4-3 Mean MRR for conditions using contextual and frequency-based auto-

completion . 67

4-4 Case Studies of Autocomplete Rankings over Conditions 69

5-1 Precision-Recall curve for best learned scope/type prediction models . 87

6-1 OMR Snippetization UI . 97

7-1 Screenshot of drug-disease indications in the system. 118

7-2 Box-and-whisker visualization of a lab trend. 119

7-3 Inserting aggregate lab/vital trends into the editor with autocomplete 120

11

7-4 Screenshot of condition-procedure relations in the system. 120

7-5 The effect of subsampling on diagnostic performance 134

7-6 Performance of multibranch-CNN to predict diagnosis for a chief com-

plaint of abdominal pain, broken down by note length. 139

8-1 System Infrastructure . 144

A-1 Pseudocode of the rule-based negation detection algorithm. 158

A-2 OMR Annotation Tool . 161

A-3 Candidate OMR Snippets . 162

12

List of Tables

2.1 Documentation workflow in the ED. 20

2.2 Sections of an ED physician note. 22

2.3 Data available in a patient’s medical history. 23

4.1 Comparing NER approaches on OMR notes 51

4.2 Retrospective Evaluation of MRR using Contextual Autocomplete . . 62

4.3 Retrospective Evaluation of Keystroke Burden and MAP using Con-

textual Autocompletion . 63

4.4 Live evaluation of contextual autocomplete ranking models 65

4.5 Keystrokes saved by contextual autocomplete by concept frequency . 65

4.6 Predictive features for contextual autocomplete condition ranking model

(selected concepts) . 66

5.1 Word2Vec embedding quality in learned autocomplete triggering . . . 76

5.2 Performance of binary autocomplete scope prediction models 82

5.3 Performance of autocomplete scope and type prediction models . . . 86

5.4 Autocomplete scope and type performance for the best-performing

CNN model, broken down by class. 87

6.1 Case Studies: Snippets surfaced with standard vs. advanced keyword

search for a sample of conditions and patients. 102

6.2 Case Studies: Snippets surfaced with standard vs. advanced keyword

search for a sample of conditions and patients. 103

6.3 Visualization of LDA topics for OMR Snippetization 106

13

6.4 Visualization of LLDA topics for OMR Snippetization 108

6.5 Coefficients for Anchor-and-Learn Model for OMR Snippetization . . 111

6.6 Case Studies: Snippets surfaced with advanced keyword search vs.

anchor-and-learn logistic regression for a sample condition. 112

7.1 Qualitative examples of closest procedures to conditions using affine

transformations. 126

7.2 Performance of diagnostic models for general differential diagnosis . . 132

7.3 Highly correlated tokens for a selection of filters in the generalized

differential diagnosis CNN model. 133

7.4 Diagnostic labels for chief complaint of abdominal pain or related. La-

bels are ordered by specificity, such that if a visit is assigned a ICD code

from two or more rows, it is labeled with the more specific diagnosis.

𝑁 represents the number of samples in the given class. 136

7.5 Performance of diagnostic models for a chief complaint related to abdominal

pain . 139

A.1 Hyperparameters for tuning deep models for differential diagnosis . . 161

14

Chapter 1

Introduction

The advent of electronic health records (EHRs) in recent years has transformed

medicine. In this thesis, we present a new EHR system that reduces cognitive load

on doctors by leveraging machine learning to decrease documentation burden and

provide clinical decision support. In this chapter, we outline the structure of this

thesis and argue why we must reform EHR systems.

1.1 Motivation

Clinicians currently spend more time documenting information in EHRs than com-

municating with patients, and the timesink in using inefficient EHRs is posited to be

a leading cause of physician stress and burnout [18, 39]. Doctors prefer using nat-

ural language and free-text for documentation over restrictive structured forms [58],

but clinicians have adapted to time-intensive note-writing by relying on overloaded

acronyms and jargon [110].

Consequently, medical documentation is often noisy, ambiguous, and incomplete. The

lack of structure in notes further hinders comprehensibility for patients, other physi-

cians, and machines, and makes patient handoffs cumbersome [6, 41, 59]. The infor-

mation within EHR notes remains largely untapped and, at present, cannot be easily

15

accessed for downstream medical care or for machine learning models that rely on

structured data. Recent advances in supervised machine learning were largely en-

abled by clean, labeled datasets containing millions of datapoints such as ImageNet

and CIFAR-10. The lack of sufficiently labeled data poses a challenge, and clini-

cal data cannot always be retrospectively annotated in a reliable way. In addition,

widespread variation in EHR documentation interferes with patient care by making

clinical notes unintelligible [27] or even leading to errors in prescribing medications

[60, 11].

There is a clear and present need for better EHR interfaces that aid physicians. While

new EHR software programs are regularly created and deployed, they continue to be a

cumbersome necessity for physicians and have yet to help improve patient outcomes.

1.2 A New EHR

In this thesis, we present a completely redesigned EHR system for Emergency De-

partment (ED) physicians. This EHR uses an ML-powered intelligent user interface

for physicians to employ in realistic clinical documentation settings. The goal of this

project is two-fold: first, to bring machine learning research closer to medicine by

surfacing intelligent suggestions that might aid a physician in making a diagnosis

or documenting a patient’s medical record; and second, to easily provide physicians

with the ability to create structured annotations and labels for clinical data. A core

part of our design is to reward users for creating meaningful annotations by enabling

downstream clinical decision support with tagged terms. In essence, creating clinical

labels is inherently useful to a doctor even at the point-of-care, which we demonstrate

with this tool.

Our EHR tool consists of two parts:

1. Intelligent data entry, wherein a physician can easily tag and insert clinical

concepts with an autocomplete functionality. We provide learned predictions

16

over clinical concepts using the medical context of the patient.

2. Contextual information retrieval, wherein the tagged concepts then immediately

enable clinical decision support. Physicians can easily explore disease history,

visualize laboratory trends, and peruse related data.

1.3 Thesis Scope and Organization

The long-term goal of this project is to completely redesign commercial EHRs, which

will in turn reduce physician burnout, facilitate more rapid processing of clinical

data, decrease diagnostic errors, and improve patient outcomes. It will also result in

a large corpus of high-quality, structured clinical data. This project is a collaboration

between MIT and Beth Israel Deaconess Medical Center (BIDMC) and builds on

an eight-year collaboration between my PI and advisor, Prof. David Sontag, and

the BIDMC Co-PI, Dr. Steven Horng. Dr. Horng is an attending physician within

the BIDMC ED. BIDMC already has a custom-built EHR that is used by all of its

staff, and we developed our EHR utility on top of this stack. This allowed for rapid

prototyping and quick iteration, as well as access to anonymized EHR data that

was used to train machine learning models for the live tool. Our system is currently

deployed live within the BIDMC ED, and is used by Dr. Horng and others for clinical

documentation.

This undertaking required significant expertise in both machine learning and human-

computer interaction (HCI). As such, we worked in conjunction with Luke Murray,

who is a PhD student within Prof. David Karger’s Haystack group. This thesis

touches upon the complete design of our tool but specifically focuses on the machine

learning aspects that drive it, and does not detail many of the specific UI choices that

are in the final interface.

Finally, this project and ongoing collaboration is funded in part by a grant from

MIT’s Abdul Latif Jameel Clinic for Machine Learning in Health (J-Clinic). In this

thesis, we outline the initial pilot of our tool, but note that it is constantly evolving.

17

Thesis Organization

We first describe the overall clinical workflow and necessary background informa-

tion in Chapter 2. Chapter 3 provides an overview on the design of the tool and its

constituent features. Chapters 4 and 5 detail the system’s intelligent data entry mech-

anisms via contextual autocomplete. Chapters 6 and 7 discuss contextual information

retrieval and clinical decision support for the tool, via unstructured retrieval of text

snippets (Chapter 6) and information synthesis and data visualization of structured

data (Chapter 7). In Chapter 8, we detail the implementation and deployment of the

tool from a systems perspective as well as our strategy to collect metrics and other

sources of feedback from the tool. Finally, in Chapter 9, we conclude with a reflection

of the overall tool as well as potential future work.

18

Chapter 2

Background

2.1 The Clinical Workflow

Once a patient enters the ED, there are several points of interaction with clinical staff.

These are summarized in Table 2.1. The patient first meets a triage nurse who records

patient vitals as well as a short description of why the patient decided to come to

the ED. This triage note is summarized in a succinct one- to two-word phrase known

as the Chief Complaint. After the patient is admitted to the ED, doctors and nurses

each maintain notes which are updated throughout the course of the visit and contain

information about the patient’s history, current presentation, pertinent labs and tests,

and a final diagnosis and treatment plan. Composing these unstructured notes is a

time-intensive process; our work focuses on decreasing documentation burden within

the doctor’s note. This note is eventually converted to an official discharge summary

that is filed in the patient’s record. It is thus a constantly evolving document, and

is edited before the doctor sees the patient (to document patient history), while

treating a patient (to document relevant symptoms and tests), and after the patient

is discharged (to document the final diagnosis).

The doctor’s note itself (and the subsequent discharge summary) are completely free-

text. However, modern versions of these notes in the BIDMC ED do have section

19

Emergency Department Documentation Workflow

Documentation
Type

Documentation Description Example

1 Triage Assessment Short note describing patient’s
status (free-text), vitals (blood
pressure, temp, pulse ox, heart
rate, respiratory rate)

patient complains
of chest pain s/p
fall. has trouble
breathing.

2 Chief Complaint One-phrase summary describ-
ing reason for visit (structured)

CHEST PAIN

3 Nurse notes RN comments describing pa-
tient and care throughout visit
(free-text)

36 y/o female
with CP, no prior
cardiac history

4 Doctor notes More thorough MD comments
about patient including history,
current status, diagnosis, and
treatment (free-text)

36 y/o F p/w CP
s/p fall, no prior
cardiac history,
family history of
...

5 Discharge summary Official note filed in medical
record that summarizes visit,
usually updated from MD com-
ments (free-text)

Patient is a
healthy 36 year-old
woman who came in
complaining of...

Table 2.1: Documentation workflow in the ED.

20

headers to delineate different parts of the patient’s demeanor. For the most part,

doctors edit sections sequentially, as the first few sections correspond to patient his-

tory that can be gathered prior to seeing the patient, while the later sections delve

into lab and test results that affect the patient’s current diagnosis. Each section and

its purpose are listed in Table 2.2.

Clinical staff can also access the patient’s medical history, which is a rich resource.

Elements of the online medical record (OMR) are listed in Table 2.3. The bulk of

the information in the OMR lies within older clinical notes in the patient’s file, and

these notes contain detailed descriptions about disease history and prior clinical care.

Unfortunately, the OMR is long and difficult to quickly parse– in our dataset, the

median number of OMR notes per person is 34 with a median note length of 301

words.

2.2 Related Work

Over 96% of reported hospitals in the U.S. used an EHR technology in 2015, yet

the ubiquity of EHRs has not helped physicians. EHRs pose a huge timesink and

cause physician stress and burnout which in turn limits patient interaction [31, 39].

Many EHR systems lack support for typical clinical tasks such as decision making and

review of a patient’s treatment chart, and don’t allow the clinician to easily retrieve

patient data [55]. Clinicians thus have to resort to writing notes in unstructured text

boxes, using overloaded jargon and ambiguous terminology to alleviate documentation

burden [110]. While this abbreviated clinical language may be understandable to the

note author, it can be unreadable to doctors in other specialties, making patient

handoffs tricky [37]. Moreover, these notes are hard to retrospectively annotate,

creating a dearth of labeled clinical text for use in the machine learning community.

The potential of EHRs to transform clinical documentation and the medical practice

has been acknowledged since their inception. Over twenty years ago, [114] proposed

an EHR workflow wherein disparate sources such as medical literature, knowledge

21

Sections of ED Physician’s Note

Section Description Example

1 History of
Present
Illness
(HPI)

Short summary of patient’s chief com-
plaint and core symptoms, with any rele-
vant prior conditions.

27 y/o M p/w
chest pain w/ h/o
congestive heart
failure...

2 Past Medi-
cal History
(PMH)

A list-based summarization of the pa-
tient’s full medical history, regardless of
whether it is directly relevant to the chief
complaint.

CHF, heart surgery
in 2004, toe
amputation, ...

3 Medications A list-based summarization of the pa-
tient’s current medications. This can
sometimes be pre-filled using structured
data.

Metoprolol,
metformin, coumadin
(for afib), ...

4 Family His-
tory

Explanation of any conditions that might
have a genetic component or predisposi-
tion, and which relative has it.

Diabetes in
mother, father
hypertensive. No
h/o cancer.

5 Social His-
tory

Short description of patient’s eating/-
drinking/drug habits.

No smoking or
drugs. Drinks
alcohol socially.

6 Review of
Systems
(ROS)

A question/answer form that maps pa-
tient symptoms to general organ systems
(neurological, pulmonary, constitutional,
etc.)

Constitutional:
nausea, fever.
Psych: auditory
hallucinations.

7 Physical
Exam (PE)

A form mapping areas of the body to any
noticeable signs/symptoms found during
a physical exam of the patient.

Abdomen: tender
in right upper
quadrant, Pupils:
dilated

7 Medical
Decision
Making
(MDM)

Explanation of how the physician made
the final diagnosis, including restatement
of symptoms and past conditions, tests
ordered, relevant lab values, and pro-
posed course of treatment.

39 y/o p/w arm
pain, ordered
x-ray, showed wrist
fracture...

8 Diagnosis
(Dx)

Short phrase with final diagnosis. Wrist fracture

Table 2.2: Sections of an ED physician note.

22

Online Medical Record (medical history)

Data Source Data Type Example

Medication history Structured Coumadin 2mg tablet
(prescribed 1/27/2006),
...

Lab test history Structured 2/4/2004: (HCT, 44),
(CREATININE, 1.2)

ICD Diagnosis Codes Structured 2/4/2004: 250.0, 530.81
Problem list Semi-structured [Hypertension, type 2

diabetes, afib...]
Surgical history Semi-structured [Appendectomy (6/5/2007),

coronary artery bypass
(8/19/2009), ...]

Medical notes Unstructured Patient visited the ED
on...

Table 2.3: Data available in a patient’s medical history.

bases, patient-specific information, and clinical algorithms could be joined. Clini-

cal cognition tools that use machine learning to encode medical expertise have been

around since the 1970s [86]. Yet, early research in medical informatics and patient

care management is almost divorced from practice [36]; modern EHR systems are

known to have a multitude of usability and interface design issues, which can even

lead to documentation mistakes [63]. In a Finnish study examining user satisfac-

tion for commercial EHRs, physicians feared that EHR systems were developed by

engineers and doctors in administrative positions rather than practicing clinicians,

and this resulted in tools that were not immediately helpful [76]. While study par-

ticipants acknowledged that EHRs offer electronic checklists, the ability to connect

medical records from multiple organizations, and faster ways of storing and loading

data, they also had a long litany of complaints. Clinicians wanted easy statistical

aggregates of quantitative information, as well as a dynamic system that “predicted

users’ movements.” They also asked for variable views of a patient with both high-

level summaries and the ability to drill-down to specific details, effective searching

through the patient’s prior notes and labs, and decision support. In addition, system

23

interfaces used “engineer-language” and seemed unintuitive, including multiple clicks

for simple tasks that actually increased documentation time. One participant voiced

a request for the better use of color and graphical icons to indicate components of

the system [42].

Clinicians also found existing EHR solutions unsuitable for the collaborative nature of

medical treatment [55]. Even at a single institution, users found it difficult to convey

information between doctors and other clinicians. The commercial EHR landscape is

also notoriously fragmented, indicating a need for better system interoperability with

other medical tools and software vendors [117] – the lack of consistency means that

EHRs do not support achieving continuity of care. Finally, clinicians in one study

noted that performing simple information retrieval or data exploration tasks often

required interrupting their documentation workflow [56]. The suggestions made by

physicians indicate that a successful EHR must be a live, collaborative document that

allows for repeated input, output, and iteration from multiple parties in a seamless

and understandable way. [36] summarizes this succinctly: EHRs should get “the right

information to the right place at the right time.”

2.2.1 Data Entry: Related Work

There have been attempts to mitigate the EHR information overload by creating

semi-structured representations of a patient’s medical history such as the problem

list, which catalogs a patient’s prior diseases and conditions. However, these lists

are poorly maintained, incomplete, and inconsistent amongst practitioners [100, 119].

[36] cites the lack of a standardized clinical vocabulary as a core challenge in medical

informatics. Efforts to structure free-text within clinical notes have been limited and

fail to utilize machine learning to understand the current medical context. One com-

mon technique is for providers to generate auto-populated templates with boilerplate

text and previously captured patient data [122]–for example, clinical notes usually be-

gin with information about patient demographics and the chief complaint, like "26

y/o M complains of dyspnea". Of course, this method only works for a few

24

small sections of notes, and it does not generalize well across practices or capture

subtleties of documentation such as physician preference. [118] proposes creating a

semi-structured clinical record by forcing doctors to document clinical concepts via

structured lists that then can be transformed to free-text using text generation algo-

rithms; they contend, however, that the notes created with the system are hard to

parse and that clinicians find it slow to enter information in this restrictive manner.

[54] creates semi-structured medical records using XML tags to denote sections of the

note, billing codes, and patient demographics, and suggest using natural language

processing (NLP) to retroactively detect clinical concepts once the note is written.

This post-hoc way of identifying concepts does not solve underlying issues with con-

cept disambiguation.

In addition, crafting ontologies of clinical concepts that doctors can easily use in a live

interface is difficult. The desiderata for clinical interface ontologies differ from those

of other healthcare ontologies used for data storage (e.g., SNOMED-CT), information

retrieval (e.g., MeSH), and classification (e.g. ICD codes) [101]. Interface ontologies

need to balance between pre- and post-coordination of clinical concepts, encode levels

of concept specificity, be easy to visually navigate, and contain domain-specific jargon.

To date, the most successful attempt to ease documentation burden in the ED with

machine learning is by Greenbaum et. al [47], who construct a model to predict can-

didate chief complaints from a set of around 200 standardized phrases. The model

– a multiclass SVM trained on triage information – is able to structure around 99%

of chief complaints in the authors’ ED. However, this work does not address greater

pain points in the documentation process such as surfacing relevant patient history

and noting down present symptoms. We innovate on the work in [47] to provide con-

textual autocomplete functionality for the entire clinical workflow by architecting a

model that incorporates both present information (triage text, vitals) and past med-

ical history (OMR), and by building an interface that supports the straightforward

documentation of multiple terms from a large space of possibilities.

Of course, there are successful elements from other clinical documentation utilities

25

that we incorporate into our tool. [106], for example, shows that easy navigation of

forms with fixed text-boxes for different categories of information can allow for the

collection of standardized data much faster than raw free-text can. In addition, [103]

creates a clinical documentation tool for ophthalmologists centered around end-user

programs, where physicians can paste customized templates automatically populated

with patient information into notes. We implement versions of both of these features,

dubbed tabbed forms and macros respectively, and detail them in the next chap-

ter. Previous implementations of customizable templating of clinical documents can

potentially hinder note shareability when templates differ between clinicians and in-

stitutions [120], but our system maps all clinical concepts to publicly available medical

ontologies, which combats this issue.

2.2.2 Contextual Information Retrieval: Related Work

While easy clinical documentation remains a relatively unsolved problem, there has

been a concerted effort to use machine learning to enable clinical decision support via

information retrieval and data visualization. An early example of this is the HAR-

VEST system, which is a patient record summarization tool developed by Columbia

University and New York-Presbyterian Hospital [34]. HARVEST is comprised of three

core features: (1) a timeline that lists past dates of admission as well as the result-

ing diagnosis from each visit; (2) a problem cloud that shows the most commonly

mentioned terms in a patient’s OMR by frequency; and (3) a notes panel that allows

doctors to view and search through past OMR notes using an exact string match. In

the subsequent HARVEST evaluation paper, the authors note that the tool is most

useful to abstract metrics from patients with long hospitalizations via the patient

timeline, and that the problem cloud, while a nice visual representation, was not im-

mediately useful to clinicians [90]. Moreover, the OMR search tool allowed doctors

to parse through individual notes, but did not point users to particular paragraphs

of interest based on the clinical context.

HARVEST and other contemporary EHR systems fundamentally provide data orga-

26

nization but little to no information synthesis [65]. In addition, chronically ill patients

tend to have denser clinical records, making patient summarization uniquely difficult

for critical patients. In one study, 37% of surveyed general practitioners reported

that they sometimes gave up searching for information in a patient’s medical record

because it was too time-consuming [24].

Patient Record Summarization

Intelligent patient summaries, if baked into a simple user interface, could be incredibly

useful to physicians by obviating the need to manually search through a large corpus

of notes for relevant information. While there have been a myriad of algorithms that

summarize text well in the general domain (e.g. for news and scientific articles),

clinical text summarization has yet to see this success [7]. This is largely because

of the inherent messiness of clinical text, including information redundancy, complex

temporality, missing data, salience detection, and barriers to deployment [91].

There are two dimensions along which to categorize summarization algorithms. The

first describes how much summaries rely on the original input text. An extractive

summary that borrows exact phrases or sentences from a corpus to form a synopsis

about the set of documents. On the other hand, an abstractive summary generates

new text to synthesize information in the input text [91]. Clinical text summarization

has focused mainly on the former, as the latter requires a well-formed model of clinical

natural language generation. All of the abstractive clinical summarization systems

reviewed in [91] rely on extensive rules and hand-crafted medical ontologies for very

specific clinical specialties [98, 77, 51]. None are deployed in live environments. Recent

efforts in extractive summarizations of clinical text have been more fruitful, but are

still limited to specific diseases [68], semi-structured note types [9], or to extracting

note-level topics and themes rather than sentences of interest [45, 111]. In the ED,

physicians must instead browse through a multitude of note-types and potential prior

conditions.

In addition, the way in which a summarization tool is intended to be used can affect

27

its categorization. An indicative summary points to and highlights portions of the

original text to the reader (e.g. relevant lab values), and are meant to be used in

conjunction with a patient’s full medical record. In contrast, an informative summary

is used as a standalone synthesis of patient information that is designed to completely

replace the original data [91]. Clinical text summarization is not yet in a place where

it can truly be used as an alternative to reading through a full medical record, so

we instead seek to create extractive and indicative summarizations of a patient’s

medical history by using salient snippets from a patient’s OMR. In doing so, we reduce

documentation burden by synthesizing and displaying information in one interface.

Information synthesis for ED physicians is also distinctive because it is not inherently

longitudinal. If a diabetic patient enters the ED, a doctor does not care about their

entire medication history but rather the current treatment regime and how the patient

feels at present. ED physicians are thus less concerned with building a picture of a

patient’s care over long timescales. Most clinical text summarization tools operate

on a per-note basis, but this is still too granular for an ED physician to utilize. We

instead wish to capture some notion of relevance in our extractive summarization by

finding key snippets that can succinctly capture the patient’s current state of care

while excluding out-of-date information.

Extractive summarization efforts have also focused on finding snippets of published

medical literature that relate to a patient’s current condition [32, 33]. Furthermore,

relevance cannot simply be measured by co-occurrence of terms. For example, a doc-

ument discussing unstable angina in male patients would not be relevant to a female

patient, despite a close similarity in thematic content [33]. As such, it is often neces-

sary to use a combination of manual and template-based labelling to determine the

context of different medical terms within a text, and to use these manual annotations

to more deterministically establish relevance. Finally, iterating on any summarization

tool using feedback from end-user clinicians is absolutely necessary, as the prioritiza-

tion between the succinctness of summaries, relevance to the specific patient at hand,

and ease of parsing the output summary text is nontrivial and dependent on different

28

clinical use-cases. In our work, we extract relevant information from previous clinical

notes associated with a patient, not generic journal articles. While we operate in

a patient-specific domain, we can still use several of these principles for detecting

relevance in potentially contextual documents.

Structured Information Synthesis and Visualization

There is also a wealth of structured information in medical records that can be equally

helpful to contextualize and diagnose a patient. This includes medication, lab, and

vital signs, as well as past procedures. In order for BIDMC clinicians to browse

through this data at present, they are forced to click out of the note that they are

drafting and comb through pages of raw data. We instead propose building a single

EHR interface that can easily synthesize and display historical data without breaking

the clinical workflow.

Unfortunately, data visualization in healthcare is severely behind other fields [16].

Many older clinical visualization systems split information across multiple screens

and tables, making it difficult to parse [8]. In one study designed to test interactive

systems for a lung transplant home monitoring system, clinician readers preferred

graphical, interactive displays of data rather than in the standard tabular form, even

if the data was temporal and/or multivariate [89]. These tools also tend to support

either a high-level exploratory analysis task or a specific low-level query [121] – this

leaves a gap for a tool that can support intuitive hierarchical data exploration. As

an example, in response to a patient’s most recent lab value, a doctor might want to

know whether it is abnormal compared to the patient’s baseline, or perhaps explore

the historical lab trend in greater depth with a line chart. There also exists a tradeoff

between specificity and generalizability of visualization systems for different data

types. While limiting the number of visualization types to a few helps users familiarize

themselves with the system, finding a universal representation of data across differing

data types (lab values, medication dosages, vital signs) is impossible [97, 93]. There

is a need to construct a canonical process model of clinical data visualization – one

29

that incorporates hierarchical data visualizations with graphics rather than tables,

while standardizing the types of visualization techniques so as not to overwhelm the

user. [113] proposed a taxonomy to medical data visualization over two decades ago,

yet we still have not standardized how to present clinical information.

[70] also presents a broad manifesto of how artificial intelligence can transform clinical

documentation through voice-to-text note scribing, information synthesis, patient

risk stratification, and differential diagnosis support. We touch upon many of these

suggestions in subsequent chapters.

2.3 Dataset Summary

We use data from 273,000 de-identified visits to the BIDMC ED over the last decade,

representing around 140,000 unique patients. For each visit, we have access to patient

demographics, triage information (triage assessment, vital signs, and chief complaint),

clinical notes from both the doctor and nurse assigned to the patient, and currently

prescribed medications. The clinical notes do not represent the final discharge sum-

mary that is filed in the patient’s OMR, but rather a draft copy of the doctor’s notes

known as the MDComment. As such, the MDComments do not always have the section

headers that appear in final copies of notes as detailed in Table 2.2, nor are they nec-

essarily complete. The noisiness of these notes poses interesting challenges in terms

of how to frame any of our learning problems, which we discuss in future sections. A

high-level summary of patient demographics is shown in Figure 2-1.

In addition, we have all prior OMR notes for patients who had previously been in

the hospital system (74% of visits). We do not restrict our analyses to any particular

subset of these visits as we seek to build an all-encompassing system that serves

patients both with and without extensive medical histories on file.

30

45.4%

Male

54.6%

Female

(a) ED Notes by Sex

3.7%
0-20

30.6%

20-40

31.7%40-60

22.8%

60-80

11.2%

80-100

(b) ED Notes by Age

ab
d pa

in CP
SO

B fal
l

ba
ck

pa
in

M
VC

fev
er

Et
OH SI

he
ad

ac
he

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

14,711

10,103

6,6986,652

3,8813,814
3,079

2,6482,5712,363

Fr
eq

ue
nc

y

(c) Top Chief Complaints by Frequency

Figure 2-1: High-level summary of dataset demographics

31

32

Chapter 3

Rethinking Clinical Documentation

In this chapter, we outline the core parts of our ML-driven EHR utility, and discuss

high-level system design and implementation. In later chapters, we detail the ML

algorithms that are the backbone of the tool as well as specific system implementation

and deployment information.

Our system is comprised of two elements: (1) intelligent data entry, where we allow

a physician to tag and insert clinical concepts with an autocomplete functionality;

and (2) downstream contextual information retrieval and clinical decision support,

which uses tagged concepts to enable information synthesis and data exploration.

Our primary goal in building a new EHR is to facilitate rapid capture of structured

clinical concepts at the point-of-care via learned suggestions. The consequences of

doing so are threefold:

For doctors: When a doctor tags phrases in a note, these terms uniquely identify

clinical concepts and can be linked with relevant information from the medical record.

Moreover, these terms can facilitate widespread improvements in documentation and

reduce overall cognitive load on doctors. Once a term is tagged, it can be automat-

ically inserted in multiple locations within the clinical note to limit the amount of

redundant information a user types – for example, a tagged symptom in an earlier

part of a note can be automatically appended to the Review of Systems section that

33

appears later on. This mitigates the “death by a thousand clicks" phenomenon that

EHRs suffer from [107]. Live-tagging clinical concepts can also provide immediate

rewards to physicians in the form of decision support. The captured structured data

can then be used to build smarter EHR interfaces that enable contextual information

retrieval about disease history and lab trends, without ever leaving the note interface.

For algorithms: The efficacy of machine learning and NLP in particular has thus

far been limited in the clinical domain because of the lack of clean, structured training

data [112]. Tagging clinical concepts automatically imposes structure on previously

free-text notes. Prior research in clinical concept extraction tries to retrospectively re-

cover concepts from notes, but these methods often struggle to disambiguate between

similar concepts, and suffer due to a lack of labeled data [74]. Even for an expert

physician, it is difficult to reliably disambiguate between concepts when the clinical

intention is unclear. Building a tool that allows clinicians to document terms on the

fly not only decreases documentation burden, but also curates large-scale prospective

datasets of labeled clinical concepts (e.g. conditions, symptoms, labs, and medica-

tions) in notes. These labels can be used to design robust medical knowledge graphs,

develop better clinical entity extraction models, learn longitudinal patterns within

disease history, and even build contextual representations of concepts. Learning rela-

tionships between clinical concepts, for example, can inform and fill gaps in existing

medical ontologies [21].

For patients and downstream medical care: Tagging clinical concepts with

our system allows for the translation of acronyms and domain-specific language to

common names. By normalizing key clinical concepts from notes to a common

data model such as UMLS, notes become semi-structured and parseable. As an

example, consider a real clinical note from the ED: pt w/ h/o MS. While MS

might represent mitral stenosis to a cardiologist, it also can be used to denote

multiple sclerosis to other specialists. To a layperson, the clinical note may be

incomprehensible unless acronyms are expanded: patient with a history of

34

Patient has a history of m|itral stenosis
ultiple sclerosis
yasthenia gravis

Patient has a history of ms

Patient has a history of mitral stenosis

As a physician types, our system
suggests terms based on patient
history: mitral stenosis, multiple

sclerosis, ...

Autocompleted terms are inserted
as structured concepts, rapidly

creating clean clinical annotations.

Synonyms can expand to provide
automatic concept disambiguation
for patients and other specialists.

1 Facilitate fast, semi-structured, and understandable
clinical documentation.

2 Enable contextual information retrieval
and better clinical decision support.

… abnormal glucose
Tagged concepts can be augmented
with relevant information such as lab

trends, drug-disease indications,
snippets from prior medical records,

etc.
Last GLUCOSE result: 130

HPI: ... h/o dm, htn

PMH: dm, htn

Reduce redundancy in documentation
by pre-filling forms and other sections

with already-captured information
(e.g. information in History of Present
Illness sections can be added to Past

Medical History).

Figure 3-1: Consequences of semi-structuring clinical notes
Semi-structuring notes with tagged terms can enable extensive changes to both

documentation and clinical decision support.

multiple sclerosis. Tagging MS at the point-of-care removes disambiguation

while allowing for acronym and synonym translation.

We present intelligent data entry of structured concepts as the cornerstone of an new

EHR in Figure 3-1.

3.1 Data Entry and Contextual Autocomplete

The workhorse of the data entry system is contextual autocomplete. This allows a

user to tag clinical concepts of varying types via a deconstructed language model that

predicts terms to document from historical and contemporaneous clinical concepts.

Paradigmatic screenshots of the tool are shown in Figure 3-2. Prior medical records,

current triage information, and the words that the clinician types all factor into our

contextual autocomplete model, which we describe in detail in Chapters 4 and 5.

Tagged terms are normalized to UMLS and then are inserted as cards on the sidebar,

which houses all of the contextual information retrieval and auxiliary data associated

with a given concept. Clinicians can explore the tagged concept in further detail via

these cards. Concepts can also be tagged with a manual trigger that shows the au-

tocomplete dropdown when our predictive algorithms fail, as well as a postcorrection

mechanism that automatically tags terms that can be easily disambiguated after it is

entered, as described next in Chapter 4.

35

Figure 3-2: Screenshots of contextual autocompletion tool for each autocompletion
type. From left to right: (a) Conditions (b) Symptoms (c) Medications and (d) Labs.
Trigger words before the tagged term affect the scope and type of the autocomple-
tion. Clinical concepts with synonyms that match the typed text are listed with the
synonym in black text and the more general concept name in gray.

Of course, we seek to reward doctors for their annotations. While the sidebar is one

mechanism of doing so, we also provide a few other features to ease the data entry

experience: Markdown formatting, slash commands, removal of redundant data entry,

macros, and tabbed forms.

Markdown formatting: First, we support common HTML/Markdown formatting

to better organize information: unordered, ordered, and checkbox lists. These can be

triggered with intuitive characters: typing -, 1., and [] at the beginning of a line to

create a bulletted, numerical, and checkbox list respectively. A screenshot of this is

shown in Figure 3-3.We have found that doctors find the checklists especially useful to

keep track of tasks, such as ordering labs or asking for a consult from another service.

This follows from previous studies in the ICU indicating that the use of checklists can

improve patient outcomes [92].

Slash commands: We provide slash commands in the interface, which allows the

clinician to filter autocomplete results to only a single concept type. Doctors can also

use slash commands to insert rare clinical concept types, such as vital signs. Vital

signs are rarely recorded in clinical notes, and are hard to retrospectively detect–

consider the phrase fever (101), where 101 refers to the patient’s temperature;

this would require some domain knowledge to understand. Vitals are structured

information and are thus easy to pull from the patient’s record and document. A

36

Figure 3-3: Markdown formatting supported in our tool as a part of the data entry
experience.

screenshot of the slash command data capture for vitals is shown in Figure 3-4.

Removal of redundant data entry: Empirical studies of EHR notes entered by

clinicians as free text have revealed that much of the information content of a note can

be found in older documentation. Towards the end of a patient’s stay in a hospital,

around 70% of information in new text entries was found to have been copied from

other notes [123]. Redundancies decrease readability and encourage the propagation

of errors, and by automatically collecting and syncing redundant data we can mitigate

these issues while allowing clinicians to continue to enter information in a natural way.

Thus, we reduce redundant entry by automatically entering and updating information

that is tagged in previous sections of the notes for later sections in three ways:

∙ Redundant entry of medication data: Medications tagged in early sections of

the note are included in the MedRecon section later on. The medications are

formatted in a list.

∙ Redundant entry of past medical history: Conditions tagged in early sections

of the note are included in the PMH section later on. PMH is also stored in a

textual representation of a list.

37

Figure 3-4: Slash commands for clinical concepts (conditions, symptoms, diseases,
labs, and vitals) are shown here. Although vitals are not shown in the autocomplete
dropdown because they are not inserted into the note often, they can be pulled from
structured records and inserted into the note via slash commands. In the first image,
users trigger the slash commands with the / character. Then, a dropdown of vitals
is shown along with the timeframe the user wishes to aggregate information. Finally,
the desired text is inserted as a concept.

38

Figure 3-5: Redundant entry is removed by including already tagged terms in early
sections of notes to later ones.

∙ Redundant entry of symptoms: Symptoms tagged in early sections of the notes

are updated in the Review of Systems section later on. The ROS section is

essentially a form which list symptoms corresponding to different body systems.

Each symptom in our ontology was manually mapped to one of these body

symptoms and is inserted in the appropriate place.

A screenshot of the redundant data entry can be seen in Figure 3-5.

Macros: Research from the HCI literature suggests that doctors can use program-

matic note templates to reduce boilerplate text entry [103]. We adopt a similar form

of end-user programming via the introduction of macros. Macros are function decla-

rations (denoted by the @ symbol) that can automatically add user-defined plaintext

to the note. A macro like @alcoholworkup, for example, might insert a checklist

with tasks for the doctor to complete such as lab orders.

Tabbed Forms: Finally, while not officially supported yet, we have the infrastruc-

ture to support tabbed forms. As can be seen in the ROS section of Figure 3-5, a lot

39

of the clinical note consists of sequences of questions of the form FIELD : ANSWER.

Users can easily tab through these forms to enter information quickly. This is inspired

by early literature on clinical decision/support systems, which suggest improving how

doctors navigate text-based forms [106].

3.2 The Sidebar

The sidebar acts as a platform to facilitate data exploration and information retrieval.

As concepts are tagged in the main editor of the note, they are also added to the

sidebar via cards, which aggregate relevant information about the given concept and

surface potential connections that the doctor can explore. An example of these cards

are shown in Figure 3-6. Cards appear automatically as the user tags terms in the

tool, and can be added and removed at will.

There are five main sources of data exploration and information retrieval that are

currently supported by the sidebar at the time of writing:

∙ Related medications to a condition, using collected drug-disease indications.

∙ Visualizations of numerical data such as labs and vitals, using the windowed

box-and-whisker plots described in Section 7.2.

∙ Related labs and vitals to certain symptoms, using hard-coded relations pro-

vided by physicians. As an example, knowing CD4 and viral load lab values is

important for a patient who has a tagged history of HIV/AIDS.

∙ Related procedures to a condition, using the learned relations described in Sec-

tion 7.3.

∙ Related snippets to both conditions and medications, using procedures de-

scribed in Chapter 6.

The first three rely completely on structured data (labs, vitals, and medications).

The latter two, however, require pulling information from unstructured text data.

40

Figure 3-6: Sidebar cards house information related to given concepts. Chips within
these cards can be clicked on to explore auxiliary information such as related proce-
dures, labs, medications, vitals, and snippets of the OMR.

41

Close relationships between

conditions and procedures

are shown. Procedures can be

clicked on to surface relevant

snippets.

Snippets of the OMR related

to the given condition or

medication are surfaced and

can be clicked on to explore

further.

Prescribed medications that

treat a condition are shown.

Related labs and vitals to the

given condition can be clicked

on to visualize trends over

time.

Tagged terms are

inserted as chips in the

main note and appear as

exploration cards in the

sidebar. Chip colors

indicate concept type.

Cards can also be used to

exert fine-grained control

over the documented terms,

including adding and deleting

synonyms.

Redundant information

entered in early sections

of the note is copied over

to later ones.

Markdown formatting

(unordered/ordered lists,

checklists) is supported.

The contextual

autocomplete dropdown

allows a clinician to

unobtrusively tag clinical

concepts while typing.

Structured information

such as medications are

pulled from the records

to prepopulate sections.

Lab/vital trends can be

easily aggregated and

documented using

contextual autocomplete.

Figure 3-7: Annotated screenshot of the end-to-end EHR system, describing the
data entry experience on the left and the downstream clinical decision support and
information retrieval on the right.

A annotated screenshot of the complete end-to-end system is shown in Figure 3-7.

We now begin to deconstruct the tool into its constituent parts.

42

Chapter 4

Generating Rankings for

Autocomplete

In this chapter, we discuss the learned algorithms that are the backbone of our contex-

tual autocomplete functionality, which is the main data entry experience of the tool.

The contextual autocomplete tool allows clinicians to easily document and annotate

clinical concepts at the point-of-care – this is not only helpful to the note author, who

can spend less time documenting and searching through medical records, but also to

translate jargon for patients and other physicians, as well as to collect clean, labeled

clinical text data for machine learning purposes.

4.1 Developing a Clinical Language Model

Ultimately, we wish to suggest a list of clinical concepts to a physician during the

course of documentation. One way of doing so is to build a generative language model

for clinical text that suggests chunks of text as a user types, much like Gmail’s Smart

Compose system [20]. In a typical generative language model, one attempts to predict

the distribution 𝑝(𝑤𝑖|𝑐𝑖) of an unknown word 𝑤𝑖 using a context 𝑐𝑖 which captures the

semantic information necessary to make such a prediction. For a generative model,

43

𝑐𝑖 usually consists of a complex representation of 𝑤1:𝑖−1 (the words preceding 𝑤𝑖) and

is often parameterized by a deep neural network (such a a transformer architecture).

These representations are state-of-the-art for clinical language modelling [52, 124, 72].

In our framework, complex inference techniques are too slow to surface live generative

suggestions with low latency in a hospital setting. In addition, predicting the general

language a clinician types rather than solely clinical concepts would require note-

author data to capture physician preference. As a result, we only seek to predict

clinical concepts rather than the general language a clinician types.

With this constraint, we must first determine the mode by which users can browse

through suggested clinical concepts and add terms to the note. Ideally, we might

exploit the fact that while we are making predictions at a concept level, these concepts

(words) are comprised of sequences of characters (letters) that a doctor must type one-

by-one. We can use this character-level data to filter the suggested clinical concepts

to those that match the substring the user has already typed. This paradigm lends

itself well to an autocomplete model: We create a ranking over a fixed set of clinical

concepts of 𝐶, and as a user types, we propose terms that match the written text

via a dropdown. The user can then select any of the displayed suggestions. If our

suggestions are particularly good, users may be able to enter terms even after typing

only one or two characters of the desired concept.

There are then two components to our language model: (1) determining how to gener-

ate a ranking over 𝐶, which we refer to as autocomplete ranking ; and (2) determining

when the user is about to type a clinical concept so we can show the autocomplete

dropdown, which we refer to as the autocomplete scope. While we must do the former

without relying on the ED note text so as not to introduce system latency, scope

prediction is impossible without exploiting the local structure of the note. This can

be accomplished with a set of heuristics or with a sufficiently simple learned model,

as we discuss in depth below. This setup is effectively creating a deconstructed, noisy

language model for clinical text – by focusing on autocompleting solely clinical con-

cepts, we can abstract away much of the messiness of physician-specific narrative text,

44

and by breaking down our language model in terms of ranking and scope prediction,

we can exploit both historical and local contexts without introducing latency.

4.1.1 Defining Clinical Concepts

Each clinical concept 𝑐 ∈ 𝐶 is defined by a list of synonyms that represent the

same medical concept (e.g. dm and diabetes mellitus), one or more UMLS

Concept Unique Identifiers (CUIs) that uniquely identify and normalize the concept,

and finally, a concept type that gives a general sense of what the concept represents.

Here, we focus on autocompleting four concept types:

∙ Conditions, which include prior diseases (e.g. leukemia), recurring treatments

(e.g. dialysis), and prior procedures (e.g. cardiac surgery). Broadly, a

condition is anything that could be used to describe a patient’s medical history.

∙ Symptoms, which are indications of a patients current demeanor. Symptoms

are usually observable phenomena that prompt the patient to come to the ED,

such as nausea, hip pain, or dyspnea.

∙ Medications that a patient is on. BIDMC uses FirstDataBank’s Drug Database’s

General Sequence Number (GSN) identifiers to store labs. GSNs can be mapped

to UMLS CUIs, and drugs with the same active ingredient (e.g. coumadin and

warfarin) are mapped to the same GSN and are treated as synonyms.

∙ Labs and their values, which are imperative to medical decision-making. BIDMC

has its own ontology of acceptable labs, most of which have attached LOINC

codes. LOINC codes can be mapped to UMLS CUIs as well.

4.1.2 Autocomplete Scope and Ranking

Our framework is a deconstructured contextual language model that decouples the

questions of when and how to autocomplete. As the user is typing, we must use the

45

local structure of the note to determine whether a clinical concept is about to be

documented. The simplest way of doing this is to a use a rule-based approach– for

example, history of [· · ·] indicates that a clinical concept is about to be typed

next. However, notice that in the case of this toy example, we could also generate a

relatively confident estimate of the concept type – history of is likely to be pro-

ceeded by a chronic condition, rather than a symptom, medication, or lab. Similarly,

treated with [· · ·] will likely be followed with a medication, and complains

of [· · ·] by a symptom. This leads us to a key observation: We can capitalize on

the fact that we have to use local context to determine the autocomplete scope, and

simultaneously determine the type of the clinical concept we want to document.

Recall that it is too expensive to update our ranking over concepts while the user

is typing. In determining a ranking over concepts, all features we use as part of

our context 𝑐𝑖 must then be available before a patient and physician interact. We

can use this data to generate a ranking over all clinical concept types and suggest

terms to the doctor. This limits the data we can incorporate into our autocompletion

models to unstructured textual data from the OMR ℋ, which is our glimpse into the

patient’s medical history; and contemporaneous clinical information 𝑇 such as vitals,

chief complaint, and the triage assessment.

Thus, our final framework consists of two models. We first split our set of concepts

𝐶 into subsets {𝐶𝑡}𝑡∈Γ for each concept type 𝑡, where Γ represents the set of all

concept types. 𝐶𝑡 represents the set of concepts with type 𝑡. Our scope model

𝑆 : 𝑉 * → {0, 1} × Γ ingests an ordered list of arbitrary length of words 𝑤 ∈ 𝑉 *

a clinician has typed from a vocabulary 𝑉 , and makes the binary determination to

display the autocomplete dropdown, as well as the clinical concept type 𝑡 ∈ Γ that

the doctor wants to add. Then, our autocomplete ranking model 𝑅(𝑡, 𝜃,ℋ) uses the

clinical concept type 𝑡, triage information 𝑇 , and historical information ℋ in the

OMR to create a ranking over all concepts whose type is equal to 𝑡. In practice, 𝑆

and 𝑅 are both learned models. Forcing 𝑅 to provide a ranking over a single concept

types (rather than a sole ranking over all concepts 𝐶) also makes this framework

46

Disease/Condition Ontology Concepts

Type 2 Diabetes

Type 1 Diabetes

Gestational diabetes

…

Model Relevancy Buckets

Hypertension

Diabetes

…

UMLS CUIs

INSULIN-DEPENDENT DIABETES
Synonyms: type 1 dm, iddm, type i
dm, insulin-dependent dm…
UMLS CUI: C0011854

BRITTLE DIABETES
Synonyms: brittle dm, labile diabetes
UMLS CUI: C0011854

…

Clinical Note Text

Patient has a history of
untreated iddm and

hypertension but is trying to
diet…

Figure 4-1: Clinical notes are normalized to UMLS, and sets of UMLS IDs (CUIs)
are aggregated to create unique concepts in our ontology. Ontology entries are then
grouped together in coarser model relevancy buckets as defined in Section 4.2.1.

amenable to adding other clinical concept types without having to retrain the model

from scratch.

4.2 Defining the Autocomplete Problem

4.2.1 Label Generation

The goal of our contextual autocomplete is to predict terms that the doctor would type

into a note given a clinical context. In order to create positive labels for this task, we

must extract documented clinical concepts from medical notes through named entity

recognition (NER) on the text and group them into ontologies based on concept type–

we take an unsupervised NER approach to finding medical entities in the text 𝑇 by

normalizing it to UMLS, as we lack the labeled data for a supervised approach. An

example of this is shown in Figure 4-1.

First, we restrict ourselves to a subset of the UMLS ontology and exclude terms that

do not correspond to a concrete clinical concept (e.g. Health Care Activity).

The filtered terms are then inserted into a trie data structure, which we use to identify

all UMLS concepts in linear time in |𝑇 |. We also apply a NegEx-style negation

detection algorithm as in [19] to identify and mark which of these extracted terms

occurred within a negative context. After filtering out concepts that appear fewer

than 50 times, we extract 8,678 remaining UMLS concepts from visit notes. We then

group concepts into two categories: conditions that a patient might have a history

47

of, and symptoms that occur in the present medical context. We did not use our

UMLS-based NER approach to generate ontologies for medications and labs, as we

could source a list for both because they are structured in the BIDMC EHR system.

Ambiguous acronyms such as MS are resolved as follows: if the term is almost always

used to represent a singular concept within the ED, we default to that CUI, and

otherwise ignore it. Two clinicians then independently verified these lists.

Concept disambiguation is difficult for conditions. As an example, hyperlipidemia

and increased LDL are distinct UMLS concepts that encode similar semantic

meanings, whose differences are not clinically meaningful in the ED and may be

unknowable to the physician. To mitigate this, it was further necessary to force

similar conditions to share weights by introducing a manually-curated hierarchy of

UMLS terms and rolling terms up to an appropriate level of specificity such that ev-

ery combined term carried the same medical meaning. A subset of this ontology for

conditions is shown in Figure 4-1. The complete revised condition ontology consists

of 940 entries encompassing 8,451 unique UMLS CUIs. The symptom ontology did

not require this roll-up procedure and 253 entries, each representing a distinct CUI.

Condition concepts also represent varying levels of granularity, which is necessary

in clinical text [116]– a doctor could use depression, severe depression, or

chronic depression to describe a patient, but these are distinct entries in our

ontology. Choosing between similar terms during documentation is currently a sub-

jective practice that depends on the clinical scenario and user-specific preference. As

such, accurately suggesting one term over another would require a knowledge of note

authorship. We address this by further rolling up our ontology into a coarser set of

model relevancy buckets which group terms corresponding to similar underlying med-

ical concepts. We build our models to have predictive power at the level of relevance

buckets, and later rank individual terms within a model relevancy bucket to suggest

terms for a doctor to document. This injects a medical inductive bias that forces

parameter sharing between similar concepts, thereby allowing us to leverage closely

related groups of rare conditions to learn a common predictor. A subset of the 227

48

model relevancy buckets can be seen in Figure 4-1.

Using a trie-based extraction over a set of ontologies, we can find all unambiguous

clinical concepts in a text. If a concept (whether condition, symptom, lab, or medi-

cation) appears in an ED note, it is deemed relevant for our autocomplete task and

given a positive label during training of our autocomplete ranking model 𝑅. We also

can use mentions of concepts and their types as training data for our scope model 𝑆.

We note that while other ontologies of conditions/symptoms do exist, as in [102, 29],

these concepts are not normalized to UMLS. This is key in later chapters, where we

can take advantage of relationships between UMLS concepts to provide clinical deci-

sion support. In addition, this makes our framework more easily adaptable to other

practices with different vocabularies.

4.2.2 Featurizing Textual Data

Our greatest sources of knowledge about the patient prior to clinician interaction

lies in prior EHR notes and the triage assessment. To featurize prior EHR docu-

ments, we run the NER and hierarchical roll-up algorithms from Section 4.2.1. The

result of this is a mapping from a clinical text 𝑇 to a set of UMLS-mapped clini-

cal concepts mentioned in the text, as well as a coarser representation of the types

of conditions incorporated into the note via model relevancy buckets. To encode

triage assessments, we simply use a standard term frequency-inverse document fre-

quency (TF-IDF) encoder to capture a normalized bag-of-words representation of the

text. Although we experimented with other ways of representing textual data e.g.

via BERT-based contextual embeddings [30] or word2vec representations of concepts

[125], finding high-quality embeddings for infrequent medical concepts that appeared

in our ontologies was difficult.

49

4.2.3 Alternate NER Approaches

In order to confirm that our UMLS-mapped trie-based extraction of clinical concepts

was reasonably accurate and performant, we also consider a few alternate ways of

perform clinical NER on ED note text. We restrict our search to techniques that

normalize to UMLS, as this is a key benefit of our system that makes it extendable.

First, we attempted to extract concepts directly from the raw text, without nor-

malizing to an ontology. We did this by extracting common unigrams and bigrams

and removing common stopwords (and, to). We manually went through the 1,000

most common terms to confirm they were reflected in our UMLS-mapped ontology

of conditions, and added a handful of terms that were missing: hld as a synonym

for hyperlipidemia, hep c as a synonym for hepatitis C, pna for pneumonia, etc.

We note that ontologies are always a work in progress and that our current system

provides doctors with the ability to submit ontology modifications that can then be

reviewed.

We compare our trie-based extraction against three baselines:

∙ cTakes, or the Mayo clinical Text Analysis and Knowledge Extraction System,

which combines rule-based and simple machine learning techniques to extract

and normalize concepts to UMLS [105]. cTakes is an older system that often

misses clinical abbreviations [99]. We limit the cTakes vocabulary to UMLS

concepts in our ontology to provide a fair comparison.

∙ scispaCy, which is a Python biomedical text processing library built on top of

spaCy [84]. It contains neural entity extraction trained on biomedical corpora

using a bidirectional-LSTM with a conditional random field (CRF) layer as

proposed in Lample et. al [64]. scispaCy identifies clinical and biomedical

terms on the text first with the entity recognition model, and then retroactively

maps this to UMLS using a string match over synonyms.

∙ BERT-based clinical entity extraction models such as [5], which combine a trans-

50

System Latency (seconds) Comments

Trie-based 0.8 Ours, poor disambiguation for the few overloaded con-
cepts

cTakes 37 Provides virtually the same extraction as the trie-
based procedure, but with certainty/polarity scores

scispaCy 19.5 Bulk of the time spent on mapping extracted terms to
UMLS. Some acronyms were not disambiguated, e.g.
dm was extracted as both diabetes mellitus
and double miutes

DistilBERT 489 No extraction, just passing windowed snippets of the
text through a compact transformer

Table 4.1: Comparing NER approaches on OMR notes both by latency and by qual-
itative ability to extract concepts well. Latency is measured by time to process 100
randomly chosen OMR notes.

former architecture with CRFs and other layers that are good at entity identifi-

cation. These models are considered state-of-the-art in neural entity extraction,

but are fairly slow and cannot easily run on our servers, which we discuss below.

While we cannot easily compare to [5] due to the lack of labeled data to train

the deep model, we measure latency of running BERT on a sequence of clini-

cal notes as a proof of concept. We use DistilBERT as our base BERT model

because of its compactness [104], and train on a custom vocabulary which is

smaller than that of the original BERT model [30].

While it is difficult to quantitatively compare these methods because we lack gold-

standard entity labels for our dataset, we find that the trie-based method is signif-

icantly faster than our three other comparisons with little to no loss in recognition

quality.

Note that all of the learned models also preclude us from making easy changes to

our ontology – it is difficult to retrain these models without sufficient labeled data

of a given clinical concept, which may not exist. On the other hand, our trie-based

approach is reasonably fast and trivial to extend. We find that it is suitable for our

purposes.

51

4.3 Autocompletion Model by Concept Type

We frame contextual autocomplete as a hierarchical, human-in-the-loop language

model that suggests clinical concepts to document as a physician is typing. We

leverage four pieces of data to form our context 𝑐𝑖 = [𝑤1:𝑖−1, 𝑇,ℋ, 𝑉]; namely, the

text so far, the triage assessment, past OMR notes, and the patient’s triage vitals.

Our scope model not only uses 𝑤1:𝑖−1 to determine when to show our autocomplete

but also to determine the concept type of the incoming clinical concept – whether it is

a condition, symptom, medication, or lab. This is then then used in our autocomplete

ranking model 𝑅.

Calling an inference step of our model 𝑅 each time a word is written or removed is

prohibitive in terms of latency, so through this technique, we can exploit the local

structure of 𝑤1:𝑖−1 to reduce the number of clinical concepts we need to predict over,

while learning how to use the nuanced information in 𝑇,ℋ, 𝑉 to inform what concepts

might be important. Inference on 𝑅 thus only needs to be run once per patient, for

each concept type. This can happen as soon as triage information is entered for

the patient, so that the rankings are ready when a doctor starts to type his/her

clinical note. We generate four term-wise rankings for each concept type, and stack

the suggested rankings for each of the concept types to generate a total ranking. In

practice, we filter these rankings to entries with any synonyms that match the typed

query a doctor has entered. The doctor can either continue to type or select a term,

which is then inserted into the note as a tagged concept using the synonym that they

intended – as an example, typing ht might give hypertension as a suggestion

because of its synonym htn, and if a doctor chooses to autocomplete, we insert htn

to preserve intended note vocabulary.

We outline our concept-specific ranking models before delving into the details of each:

1. Conditions: We learn a mapping from the triage text and the clinical concepts

mined from the EHR to a ranked list of relevant prior conditions that the doctor

might want to document. This autocompletion model is primarily used to write

52

the History of Present Illness (HPI) sections of notes, where physicians docu-

ment past medical history that is relevant to the current patient presentation.

We find that vitals have little to no predictive power in this model.

2. Symptoms: We learn a mapping from the triage text, chief complaint, and vitals

to a ranked list of relevant symptoms that the patient currently presents with.

We do not include information from the patient’s past medical record in our

predictions because a patient’s current presentation is only loosely related to

prior visits.

3. Labs: We simply list labs by their recorded frequency in ℋ, rather than learning

a mapping. The space of labs is much smaller than the space of symptoms

or conditions, so we find that a frequency-based ranking is nearly optimal in

practice.

4. Medications: As with labs, we rank by frequency for the same reasons.

4.3.1 Autocompleting Conditions

Documenting relevant patient history is often an arduous task for physicians in the

ED. Doctors typically read a patient’s triage assessment and then search through a

patient’s OMR on an ad-hoc basis to try and contextualize the current visit with

the patient’s background. In our dataset, there is a median of 65 distinct conditions

mentioned in a patient’s EHR, but on average, only five of these concepts are then

documented in the ED clinical note. In addition, around a quarter of the patients in

our dataset do not have any prior records on file; in these cases, doctors can guess

relevant conditions to inquire about based on the triage text and chief complaint

alone.

This leads to key model desiderata: first, we must be able to recover an intelligent

ranking over concepts even in the absence of prior medical notes using triage infor-

mation alone. Second, we seek to learn a single multilabel ranking over all possible

model relevancy buckets in order to produce a globally calibrated model. Our model

53

first learns a ranking over the coarse model relevancy buckets, and then recovers a

ranking over individual condition concepts to mention in the note.

We use a shallow, dual-branch neural network architecture to combine a context

𝑐𝑖 consisting of a TF-IDF representation of the triage text 𝑇 and a feature vector

indicating the binary presence 1[𝑏 ∈ ℋ] of each model relevancy bucket 𝑏 in prior

OMR notes ℋ. In more detail, the neural network takes in two inputs:

1. A Term Frequency-Inverse Document Frequency (TF-IDF) representation of

the triage text using unigrams and bigrams. Vocabulary size is close to 22,000.

2. The binary presence of different model relevancy buckets (as defined in Section

4.2.1) in the patient’s prior medical history. This is a length-227 binary vector.

These two inputs are both passed through two separate dense layers with ReLU acti-

vation, concatenated and passed through another dense layer, and then finally passed

through element-wise sigmoid activations to generate probabilities per class. We train

this model with stochastic gradient descent using a cross entropy loss function.

We recover a term-wise ranking by sorting each term First by whether it appears

in the OMR, then by the rank of its relevance bucket, and finally by its empirical

frequency of occurring in the data to resolve ties. In this way, we create a single

architecture that predicts 𝑃 (𝑏|𝑇,ℋ), or the probability of 𝑏 being relevant given the

triage information and prior history, for all 𝑏 simultaneously and thereby suggest

conditions to document for patients both with and without a prior medical history.

We also compare against three baselines:

1. One vs. Rest Logistic Regression on Triage Text : We build a model based solely

on 𝑇 . For each model relevancy bucket 𝑏, we estimate the 𝑃 (𝑏|𝑇) via a logistic

regression model trained on a TF-IDF representation of 𝑇 to predict if any term

in 𝑏 was mentioned in the corresponding clinical note. We randomly select notes

without any mention of 𝑏 to generate negative samples. To make a prediction

for a given patient, we then rank relevance buckets 𝑏 by 𝑃 (𝑏|𝑇). To recover

54

a term-wise ranking, we sort each term first by the rank of its corresponding

relevance bucket and by its empirical frequency in clinical notes.

2. One vs. Rest Logistic Regression on Triage Text, EHR: As above, we train a

logistic regression model on 𝑇 for each model relevancy bucket 𝑏. However,

when predicting 𝑃 (𝑏|𝑇), we restrict ourselves to train on samples where 𝑏 is

mentioned in ℋ. That is, our model predicts the probability 𝑃 (𝑏|𝑇, 1[𝑏 ∈ ℋ]).

We assume 𝑃 (𝑏|𝑇, 0) = 𝜖𝑏 for a small but nonzero 𝜖𝑏, or that if if a term does

not appear in a patient’s EHR, it is unlikely that it will be documented in

the present note. To recover 𝑃 (𝑏|𝑇), we multiply by an empirically computed

prior probability 𝑃 (1[𝑏 ∈ ℋ]) of each bucket being mentioned in the EHR. We

recover a term-wise ranking using the same key as the previous method. The

leak probability 𝜖𝑏 allows us to rank buckets that are not present in the EHR

by their empirical probabilities alone, giving us predictive power for patients

without any prior history.

3. Augmented One vs. Rest Logistic Regression on Triage Text, EHR: We exper-

iment with feature-engineering approaches to include signals from the EHR in

our model covariates. In particular, we augment the feature space with a repre-

sentation 𝐷 of how many days it has been since 𝑏 was mentioned in the EHR,

and compute 𝑃 (𝑏|𝑇,𝐷, 1[𝑏 ∈ ℋ]) via logistic regression. In order to force this

input variable to conform to a normal distribution, we transform the delay times

by assuming mentions follow a Poisson process and concluding that delay times

should be exponentially distributed. We follow the same empirical reweighting

and term-wise ranking procedure as in the previous model.

4.3.2 Autocompleting Symptoms

Based on discussions with clinicians as well as qualitative analyses within our slice

of ED data, we find that the symptoms that a doctor asks a patient about and

subsequently records are primarily rule-based. A chief complaint of dyspnea at triage-

55

time, for example, might prompt the doctor to inquire about dyspnea (reaffirming

that it is still a concern), chest pain, coughing, etc. Consequently, the models we

develop for symptom autocompletion use only the chief complaint and triage vitals as

covariates. We perform ablation tests with all of our models to confirm that adding

in a bag-of-words representation of the triage text did not increase performance, and

develop four schemes to map chief complaints and vitals to a ranking over symptoms:

1. Empirical Conditioning on Chief Complaint: For a given chief complaint 𝑐, we

empirically calculate 𝑃 (𝑠|𝑐) for each 𝑠 in the set of symptoms 𝑆, and rank each

symptom by this probability.

2. Empirical Conditioning on Chief Complaint, Vital: For a given chief complaint

𝑐 and a list of vitals 𝑉 , we calculate the single vital 𝑣 ∈ 𝑉 that is most abnormal.

Abnormality is defined as the percentile deviation from the population median of

the vital value. We then encode 𝑣 as a categorical variable 𝑏(𝑣) based on medical

guidelines about the given vital (for example, heart rate vitals are placed into

one of three buckets: LOW HR, NORMAL HR, and HIGH HR). Full details about

the bucketization procedure are given below. Finally, we empirically calculate

𝑃 (𝑠|𝑐, 𝑏(𝑣)) for each 𝑠 ∈ 𝑆, and rank each symptom by this probability.

3. One vs. Rest Logistic Regression: For each symptom 𝑠 ∈ 𝑆, we train a logistic

regression model mapping the chief complaint and vital values to whether 𝑠

appears in the ED note corresponding to that visit. Then, we rank the output

probabilities for each symptom.

4. One vs. Rest Naive Bayes: For each symptom 𝑠 ∈ 𝑆, we train a Naive Bayes

classifier mapping the chief complaint and vital values to whether 𝑠 appears in

the ED note corresponding to that visit. Then, we rank the output probabilities

for each symptom.

In practice, we find that the second scheme performs best and we use this for deploy-

ment. Comparative performance for these models is detailed in Section 4.4.

56

Bucketization of Vitals

As described above in Section 4.3.2, our best model for predicting a ranked list of

relevant symptoms to document relied on a categorical featurization of triage vitals.

The model simply uses the empiric frequencies of symptoms documented in a note,

conditioned on the chief complaint 𝑐 and a categorical representation 𝑏(𝑣) of the most

abnormal vital 𝑣. We used medical guidelines to determine cutoffs for each vital as

follows:

∙ Temperature: Temperatures above 100.4∘ are considered HIGH as they are

medical-grade fevers. Temperatures below 97∘ are considered LOW as they are

hypothermic. Otherwise, a temperature is considered NORMAL.

∙ Respiratory rate: A respiratory rate above 20 breaths per minute is considered

HIGH, as per [28]. A respiratory rate below 12 breaths per minute is considered

LOW. Otherwise, the respiratory rate is considered NORMAL.

∙ Blood oxygen level : A pulse oximeter reading below 95% is considered LOW as

per Mayo Clinic guidelines. Otherwise, the reading is considered NORMAL.

∙ Heart rate: A heart rate above 100 beats per minute (bpm) is considered

TACHYCARDIC. A heart rate below 60 is considered BRADYCARDIC. Other-

wise, it is considered NORMAL.

∙ Blood pressure: Based on guidelines set by the American Heart Association, a

systolic BP under 120 mmHg and a diastolic BP under 80 mmHg constitutes

a NORMAL BP. If the diastolic BP is under 80 mmHg but the systolic BP is

between 120-130 mmHg, it is considered ELEVATED blood pressure. If the

systolic BP is under 140 mmHg and the diastolic blood pressure is under 90

mmHg, this is characterized as STAGE 1 HYPERTENSION. Otherwise, if either

reading is higher, it is STAGE 2 HYPERTENSION.

∙ Age: Based on the age distribution of patients in the hospital, we bucketized pa-

tients into six groups: CHILD (i.e. below 18), 18-33, 34-48, 48-64, 64-77,

57

and 78+.

4.3.3 Autocompleting Labs and Medications

Autocompleting labs and medications is different from symptoms and conditions in a

few marked ways. A patient’s medical record contains structured information about

prior lab tests and values, as well as medications and their dosages prescribed in

the past. This is in contrast to symptoms and conditions which are almost always

referenced in unstructured notes or free text. Concept disambiguation is less pertinent

because there are structured representations of labs and medications, and there are

already semi-structured lists of labs and medications that exist in clinical records.

The primary value-add for physicians to tag a mention of a lab/medication in a note

is instead to enable immediate information retrieval. Tagging HCT, for example, can

prompt the visualization or insertion of a patient’s hematocrit trend. We thus add

lab and medication autocompletion to be thorough in our data collection, and use a

frequency-based autocompletion for both data types.

A next step would be to use the structured data collected with our tool to build a

learned model to predict over labs and medications, rather than using a frequency-

based approach.

4.4 Contextual Autocomplete Results

A physician uses contextual autocomplete by naturally typing a note and either auto-

matically or retroactively completing clinical phrases that are then rendered as tagged

concepts. We describe the user experience of the tool with a screenshot in Figure 3-2,

and examine how it reduces clinical documentation burden in practice.

In order to evaluate our ranking model 𝑅 independently, we set our scope detection

model 𝑆 to be rule-based at first. The heuristics we used are detailed in the next

chapter and are compared to the final learned model for 𝑆. At a high level, the

58

(a) Manual autocompletion trigger (b) Retroactive tagging

Figure 4-2: Screenshots of our backup data capture strategies in the case that the
autocompletion scope detection fails. (a) Users can insert a slash character (/), which
acts as a manual trigger to force autocompletion. (b) Users can retroactively accept
tags for candidate concepts that they typed but did not autocomplete.

rule-based approach simply looks for a list of pre-defined phrases that act as scope

triggers (such as complains of). Each trigger is mapped to the concept type that

is likely to follow it. We also support two fallback data capture methods for when

our algorithm fails. First, a user can start an autocomplete scope with a manual

trigger. In addition, if the user does not type the manual trigger, we use an Aho-

Corasick keyword detection algorithm to efficiently map exact string matches in the

text with clinical concepts to our ontology [3]. Any matches are displayed as potential

tags which doctors can manually confirm if desired. A screenshot depicting these

backup data capture strategies can be seen in Figure 4-2. We analyze how often

these mechanisms are exercised in practice below.

4.4.1 Performance and Usability

From an information retrieval perspective, we can analyze the quality of our ranked

list of suggested clinical concepts by using two standard metrics: the mean reciprocal

rank (MRR) and mean average precision (MAP). Consider an ordered ranking ℛ =

{𝑟1, 𝑟2, · · ·} of suggested terms and a ground truth set of terms that the clinician

wants to document denoted by 𝑇 = {𝑟𝜋(1), 𝑟𝜋(2), · · ·}. We define the MRR of these

suggestions as

𝑀𝑅𝑅 =
1

|𝑇 |
∑︁

{𝑟𝑖∈ℛ|𝑟𝑖∈𝑇}

(max(1, 𝑖− |𝑇 |))−1

In other words, this measures the average excess rank of the suggested terms that

actually occur in the ground-truth terms the clinician wants to document. An MRR

59

of 1 indicates that 𝑘 desired terms were in the top 𝑘 suggestions. The MAP score,

in contrast, measures the average proportion of ground-truth terms that occur in the

top 𝑘 suggested terms as 𝑘 varies:

𝑀𝐴𝑃 =
1

|𝑇 |

|𝑇 |∑︁
𝑘=1

𝐴𝑣𝑒𝑃 (𝑘)

where 𝐴𝑣𝑒𝑃 (𝑘) represents average precision of the top 𝑘 suggested terms. A MAP of

1 indicates perfect precision.

Because the primary goal of this tool is to improve documentation efficiency, we

also define the keystroke burden as the number of keystrokes the clinician needs to

type until he/she autocompletes and inserts a desired term. This usability metric

inherently encompasses the quality of our information retrieval in its calculation while

also incorporating real-world behavior – there may be a delay between a term being

suggested first and when a clinician actually autocompletes the term.

We compare the MRR, MAP, and keystroke burden of our contextual autocompletion

tool rankings against two naive baselines: spell-based autocompletion (ranking terms

alphabetically) and frequency-based autocompletion (ranking terms by frequency).

Retrospective Evaluation on Clinical Notes

Before deploying our autocompletion models in a live setting, we evaluated the quality

of our suggested rankings via retrospective annotation of the clinical notes we had on

file. In particular, we measured performance broken down by concept type, as well

as the efficacy of our autocompletion scope and type detection algorithms.

To generate our evaluation set, we extract medical concepts from 25,000 clinical notes

by the technique outlined in Section 4.2.1. Using the order in which concepts were

suggested, we first measure MRR, MAP, and keystroke burden assuming perfect scope

and type detection, broken down by the four concept types. Results are shown in

Table 4.2. We see the largest gain in using a contextual model for conditions, because

60

the space of terms is large and the richness of the OMR greatly influences documenta-

tion. Within the contextual models for predicting prior conditions, the dual-branched

neural network outperforms others primarily because it is predictive even for patients

with no medical history on file. On the other hand, when documenting symptoms, a

model that ranks symptoms by their empirical frequency (conditioning on the chief

complaint and the most abnormal vital) performs best.

To quantify the ease of documentation using our rule-based autocomplete scope algo-

rithm, we also measure MRR, MAP, and keystroke burden when typing HPI sections

of notes. On average, there are 6.8 documented clinical concepts per HPI section.

As HPI sections contain conditions, symptoms, and occasionally medications, we

evaluate our autocomplete type predictions (whether the concept type was guessed

correctly) on a realistic range of concept types. Of the extracted clinical concepts

in HPI sections, 46% of terms were autocompleted automatically without a manual

trigger, and in 77% of those cases, we guessed concept type correctly as well. As

a result, the MRR of automatically-detected autocompleted terms is 0.35. Even in

cases where the doctor is forced to insert a manual trigger to autocomplete a term,

we still greatly decrease the documentation burden on doctors as shown in Tables 4.2

and 4.3. These manually prompted scenarios can be mitigated as a doctor learns and

adapts to the triggers of the system, which we elaborate on later.

61

Model Type MRR ↑

Conditions
One vs. Rest Logistic Regression on 𝑇 0.09 ±0.02

OvR LR on 𝑇 , EHR 0.15 ±0.02

Augmented OvR LR on 𝑇 , EHR 0.17 ±0.01

Dual-branched neural network 0.28 ±0.01

Symptoms
Empirical Conditioning on Chief Complaint 0.39 ±0.01

Empirical Conditioning on Chief Complaint, Vital 0.42 ±0.01

One vs. Rest Logistic Regression 0.16 ±0.01

One vs. Rest Naive Bayes 0.27 ±0.02

(a) Comparison of MRR between contextual autocompletion
models

Model Type Autocomplete Type

Spell Frequency Contextual

Conditions 0.01 ±0.001 0.08 ±0.01 0.28 ±0.01

Symptoms 0.05 ±0.001 0.27 ±0.01 0.42 ±0.01

Labs 0.01 ±0.001 0.40 ±0.01 N/A

Medications 0.02 ±0.001 0.02 ±0.001 N/A

Overall 0.01 ±0.001 0.19 ±0.03 0.29 ±0.05

(b) Comparison of MRR across autocomplete types

Table 4.2: Retrospective Evaluation of MRR using Contextual Autocomplete. We
report average MRR (±95% confidence interval of the mean) for each of our learned
contextual autocomplete models, and compare our best models (dual-branched neu-
ral network for conditions, empirical conditioning on the chief complaint and most
abnormal vital for symptoms) to spell-based and frequency-based baselines, both for
specific concept types as well as overall using our scope and type prediction algo-
rithms. Calculated across 25,000 visits.

62

Model Type Keystroke
Burden ↓

MAP ↑

Conditions
Frequency-based baseline 3.44 ±0.09 0.08 ±0.01

One vs. Rest Logistic Regression on triage text 𝑇 3.02 ±0.09 0.08 ±0.02

OvR LR on 𝑇 , EHR 2.81 ±0.08 0.15 ±0.02

Augmented OvR LR on 𝑇 , EHR 2.71 ±0.08 0.16 ±0.01

Dual-branched neural network 2.57 ±0.07 0.27 ±0.02

Symptoms
Empirical Conditioning on Chief Complaint 2.19±0.04 0.41 ±0.01

Empirical Conditioning on Chief Complaint, Vital 2.09 ±0.03 0.44 ±0.01

One vs. Rest Logistic Regression 2.74±0.02 0.16 ±0.01

One vs. Rest Naive Bayes 2.51 ±0.03 0.30 ±0.01

Labs (ranked by frequency) 0.092 ±0.03 0.39 ±0.01

Medications (ranked by frequency) 3.28 ±0.04 0.03 ±0.01

Overall with autocomplete scope/type detection 3.13 ±0.05 0.27 ±0.06

Table 4.3: Retrospective Evaluation of Keystroke Burden and MAP using Contextual
Autocompletion. We report the mean keystroke burden/MAP for the contextual
autocomplete models we prototyped for each concept type, following the conventions
of Figure 4.2.

63

Documentation in the Wild: Live Evaluation

We compare keystroke burden between a contextual model and no autocomplete in

Table 4.4. In our live evaluation, a single physician wrote 40 notes using our system

over two shifts. In practice, an average of 8.38 terms are tagged per note, and we

reduce overall keystroke burden for these clinical concepts by approximately 67%, with

clear gains in using our model irrespective of note section or concept type. 53% of the

tagged clinical concepts were autocompleted without a retroactive label. Within these

concepts, the autocomplete scope algorithm was correct 77% of the time, indicating

that we were able to guess the concept type correctly.

4.4.2 Sensitivity Analysis

Concept frequency influences the efficacy of our contextual autocomplete model of

conditions. The biggest wins in the model occur with the group of conditions in the

middle of the frequency distribution – renal insufficiency, for example, is an

infrequent but not rare term that will almost certainly be documented in a note if

it appears in the patient’s history. The symptom contextual autocompletion model,

on the other hand, is generally agnostic to concept frequency because the space of

symptoms is much smaller and the distribution of symptoms is less skewed than that

of conditions.

In addition, the presence of prior medical history has significant impact on contex-

tual autocompletion performance for conditions– as shown in Table 4.5, we see greater

reduction in documentation burden if the patient has prior EHR. However, our con-

textual model and a frequency-based autocompletion model perform similarly for

concepts that are not mentioned in the EHR despite the person having some prior

medical history– this can largely be attributed to the inherent bias of our ranking

scheme, which preferentially orders terms mentioned in the EHR above those that

are not.

64

Subset Autocompletion Type

None Contextual

Overall 11.85 ±1.94 4.32 ±0.43

By Note Section
History of Present Illness 12.36 ±2.16 4.57 ±0.87

Past Medical History 11.41 ±2.09 2.94 ±0.68

Medical Decision Making 10.27 ±3.18 4.08 ±0.49

By Concept Type
Conditions 13.08 ±1.72 4.34 ±1.49

Symptoms 8.5 ±2.18 4.53 ±1.00

Labs 10.33 ±5.76 2.06 ±0.88

Medications 9.27 ±1.97 4.27 ±1.34

Table 4.4: Live Evaluation of Contextual Autocomplete Models. Mean keystroke
burden for autocompleted concepts (± 95% CI from mean), measured across 40 notes
written live by a single physician over two shifts. Performance is also broken down
by note section, as well as concept type.

Mean Keystrokes Saved per Condition Concept

Uncommon
Concepts

Median
Concepts

Common
Concepts

With no past EHR at hospital 0.63 ±0.42 0.81 ±0.50 0.47 ±0.20

With prior mention of concept in EHR 2.64 ±0.65 2.02 ±0.38 1.40 ±0.16

Table 4.5: Number of keystrokes saved by our contextual model compared to a
frequency-based baseline (±95% CI of the mean) for conditions. Performance was
stratified by concept frequency (by terciles) and by available medical history.

65

Concept Most Predictive Triage Tokens Most Predictive Model Relevancy
Buckets

Dementia dementia, abrasions, fell, home,
fall, neuro, son, ...

dementia, neurodegenerative diseases

Bronchitis pna, pneumonia, cough, sob,
hemoptysis, sputum, ...

pneumonia, chronic lung disease

Prostate cancer ca, mass, chemo, lymphoma,
melanoma, cll, tumor, ..

cancers, prostatectomy

CHF chf, chest, sob, cp, cough, syn-
cope, fall, ...

heart failure, heart attacks, hyperten-
sion, afib

Diabetes bs, fsbs, glucose, iddm, sugars, toe,
finger, ...

diabetes, hyperlipidemia, diabetic
neuropathies, gastroparesis

Table 4.6: Predictive features for selected condition concepts, using a linear approx-
imation to our contextual model for conditions. Inputs to the model are a TF-IDF
representation of the triage text as well as the presence of coarse-grained model rele-
vancy buckets in a patient’s prior medical record, as defined in Section 4.2.1.

4.4.3 Interpreting Autocompletion of Prior Conditions

Because our contextual model for conditions learns a ranking from a representation

of the triage text and medical history, it is naturally more sensitive to changes in

input than our contextual model for symptoms. Here, we dig further into what drives

model predictions.

Performance By Concept

Our multi-label model predicts the binary relevance of each model relevancy bucket.

To better interpret relevancy predictions on a per-bucket level, we approximate our

model for a specific relevancy bucket 𝑏 with a linear function of the inputs. This is

done by fitting a 𝐿1-regularized linear approximation between the features and the

logits generated by the model for bucket 𝑏 to surface highly-weighted features [49].

In Table 4.6, we provide examples of the top-weighted positive features in the linear

approximations to models for five selected concepts. Overall ranking performance by

MRR for these concepts is in Figure 4-3. Interestingly, while all of the chosen concepts

66

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
MRR

diabetes

chronic pain

congestive heart failure

chronic kidney disease

chronic lymphocytic leukemia

renal transplant

melanoma

peripheral arterial disease

Contextual
Frequency

Figure 4-3: Mean MRR for five conditions (± 95% CI from mean) using contextual
and frequency-based autocompletion. Concepts were chosen to get representative
samples of the data.

67

relied on medically meaningful tokens present in the triage text, the linear models for

diabetes and congestive heart failure both used the presence of many model relevancy

buckets, whereas the other three concepts only relied on a few. This is likely because

the model always relies on triage text but can give predictions even in the absence

of prior medical history, and as the linear approximation to our model encourages

sparsity, only highly predictive model relevancy buckets will be chosen as features. A

frequency-based baseline outperforms our learned model only for extremely common

conditions like hypertension and diabetes.

Qualitative Evaluation & Readability

We qualitatively evaluate rankings over conditions to better understand model deci-

sions. As can be seen in the selected examples in Figure 4-4, both the presence of

OMR notes as well as specific types of words mentioned in the triage note can have

great impact on the rankings, which are much more context-specific than frequency-

based rankings. Chronic conditions mentioned in a patient’s medical history are

highly ranked even if they are not directly related to the present medical context,

because they are likely to be documented regardless. For example, in Figure 4-4a,

two patients have identical triage text but different medical histories– consequently,

hysterectomy is highly ranked for one. Of course, the triage note still governs

the overall theme of the most highly ranked terms; in Figure 4-4b, two patients with

identical medical histories but differing chief complaints have vastly different context-

specific rankings.

4.5 Summary

The contextual autocomplete ranking models outlined here describe a way to auto-

matically tag clinical concepts in text while simultaneously reducing the documenta-

tion burden on physicians. The ablation tests we carried out show that using a few

features (primarily representations of medical histories) can result in performant pre-

68

Triage text:
Bumped heads with daughter and has pain behind R eye, pain in waves. No

loc, no vision change

Terms mentioned in
prior EHR notes:

None

Contextual Ranking

Eye pain
Migraines

Hypertension
Recurrent DVTs

Diabetes
...

Terms mentioned in prior EHR notes:
Hypertension, lung disease, aneurysms,

tachycardia, rhinitis, hemorrhages, pneumonia,
syncope, hysterectomy, arthroplasty, TB

Contextual Ranking

Migraines
Hysterectomy

Aneurysms
Eye pain

Hypertension
...

Frequency-based Ranking

Hypertension
Type 1 Diabetes
Type 2 Diabetes

Myocardial infarction
Depression

...

(a) Effect of patient history on contextual rankings.

Triage text:
Bumped heads with daughter and

has pain behind R eye, pain in waves

Contextual Ranking

Migraines
Hysterectomy

Aneurysms
Eye pain

Hypertension
...

Triage text:
pt has dyspnea since am and is

wheezing, low resp rate

Contextual Ranking

Hypertension
Asthma

Hypothyroidism
Chronic lung disease

Rhinitis
...

Terms mentioned in prior EHR notes:
Hypertension, lung disease, aneurysms, tachycardia, rhinitis, hemorrhages,

pneumonia, syncope, hysterectomy, arthroplasty, TB

(b) Effect of triage note on contextual rankings.

Figure 4-4: Case Studies of Autocomplete Rankings over Conditions

69

dictive models for documentation. This is a critical advantage of our system because

EHR data is often very sparse– patients can enter the ED with no prior medical

history, yet we can still glean information from the triage assessment to represent

a patient state. Our strategies also obviate the need for complex data imputation

schemes.

With this set-up, we use our ranking model 𝑅 to generate lists of relevant concepts

that are stratified by concept type. We evaluated the quality of 𝑅 using MRR, MAP,

and a keystroke burden usability metric. However, measuring the true benefit our

tool provides also requires evaluating our scope detection model 𝑆, which predicts

when to display the autocomplete dropdown and if so, which concept-type ranking.

In this chapter, we evaluated 𝑅 while setting 𝑆 to use the simplest rule-based heuristic

possible. In the next chapter, we compare this to a series of learned models.

4.5.1 Future Direction: Dynamic Autocomplete Rankings

A next iteration of contextual autocomplete should dynamically update suggested

terms to document using already-tagged terms in the note. Tagging afib, for exam-

ple, might indicate that there is a high likelihood of the doctor typing an anticoagulant

next. Using live data collected from the deployed tool, we can use early drafts of a

clinical note to influence the medical context for later autocompletion suggestions.

We can also clarify patterns of redundant data entry by examining where the same

underlying medical concept is repeated in the note, with the eventual goal of learning

and auto-inserting necessary repetitious documentation. These dynamic updates in-

troduce a significant latency on the client-side UI to perform online inference as words

are typed, so this may not be feasible for all systems and thus we did not consider it

for this thesis.

70

Chapter 5

Triggering Autocomplete Scope

The second part of developing our deconstructed language model for clinical concepts

it to determine when to show the autocomplete display, or its scope. In Chapter 4, we

remarked that given that we had to use the local structure of the note to determine

autocomplete scope, we could also use the same context to make a prediction as to

the autocomplete type– whether to show the ranked list of conditions, symptoms,

medications, or labs. We denote our autocomplete scope model by 𝑆, which makes

a binary prediction as to whether to display autocomplete, as well as the likelihood

of it being each concept type. 𝑆 must be run every time a user updates a live EHR

document to predict in real-time if the autocomplete display should be shown at the

user’s latest cursor position.

It isn’t obvious why 𝑆 is necessary at all, in that from a data collection perspective, the

best way is to always show the autocomplete dropdown and thus never miss a tagged

concept. However, based on preliminary user studies, doctors find the flashiness of the

autocomplete annoying when they are not documenting clinical concepts. Moreover,

we must use the local context to determine the autocomplete concept type regardless.

The biggest constraint on 𝑆 is its inference time. Because we make calls to 𝑆 every

time a user appends a word to the text, the model latency has to be faster than

the user’s typing rate. As an ideal upperbound, response times of of 16-17ms feel

71

smoothest, which matches the refresh rate of most screens (about 60 frames per

second) [85]. Note that this is the acceptable end-to-end latency for a system, which

includes text preprocessing, model inference, parsing model output, and rendering.

We now discuss two ways of parameterizing 𝑆– via fixed rules, as well as through a

learned model.

5.1 Rule-Based Triggers

Using manual triggers for autocompletion can establish consistent system behavior

for physicians, and create notes that are concise. We found that clinicians tended to

quickly adapt to common learn triggers such as complains of and history of.

As an example, one clinical note in our dataset began with the phrase patient has

a history of abdominal pain which seems recurrent, whereas our sys-

tem would autocomplete to patient has a history of chronic abdominal

pain. Of course, rule-based triggers are never all-encompassing and pose a learning

curve to physicians, which is why we ultimately opt for a learned model.

In our rule-based approach, we first define a default concept-type ranking per note

section. For example, in HPI, the majority of documented content pertains to his-

torical conditions and some current symptoms/medications, so the default ordering

is CONDITION, SYMPTOM, MEDICATION, LAB. In contrast, in a Physical Exam

section, clinicians document symptoms more than chronic conditions, so the default

ordering is SYMPTOM, CONDITION, MEDICATION, LAB. We then establish cer-

tain key phrases to act as autocomplete triggers if they are likely followed by a clin-

ical concept. We curate a list of common trigger phrases (e.g. presents with,

history of) and map them to the concept type that follows them– presents

with is mapped to SYMPTOM, and history of to CONDITION. Using these, we

create a NegEx-inspired algorithm to predict both autocomplete type and scope [19].

The algorithm greedily uses keywords that act as autocomplete triggers, and is run

and updated as a physician types a clinical note. First, we initialize the scope and

72

type of our autocomplete to be null. Then, for each word 𝑤 in the text, we update

the scope accordingly:

∙ If 𝑤 is part of a autocomplete trigger phrase such as presents with, we

turn the autocomplete scope on and suggest terms to the user. We set the

autocomplete type based on the trigger (presents with maps to SYMPTOM.)

∙ If 𝑤 is a continuation token such as and, or, or ,, we maintain the current

scope and autocompletion type.

∙ If 𝑤 is part of a tagged concept 𝑐, we turn the autocompletion scope on, and

set the autocompletion type to the concept type of 𝑐.

∙ Otherwise, 𝑤 is treated as a stopword, in which case the autocompletion scope

is turned off.

With this framework, the autocompletion scope and type is greedily set using a simple

parsing algorithm that is rerun as the user types a new word. The rule-based approach

establishes consistency and simplicity for the doctor– behavior is easy to predict, and

the autocomplete dropdown is not constantly displayed, which can be a nuisance to

doctors.

5.2 Learned Triggers: The Setup

𝑆 can also be a learned model, which can enable us to exploit local context in a more

intelligent way. For example, a user’s narration style can affect the autocomplete

scope, and learned models can capture these longer-term dependencies. In addition,

while the false positive rate of the rule-based algorithm was low, the false negative

rate is high. False negatives are more costly in our framework, as they result in

a missed opportunity to capture structured data. Essentially, we seek to maximize

precision subject to high recall.

73

A learned model of 𝑆 would output a soft probabilistic estimate 𝑝 of whether or not to

display the autocomplete dropdown. Determining when 𝑝 is sufficiently high gives us

a tunable parameter– we can specify a threshold on 𝑝 for a fixed recall 𝑘. In this way,

we can also compare learned models against each other by identifying the precision

achieved at a recall of 𝑘.

5.2.1 Defining Labels

We seek to build a model that can predict when to autocomplete, and if so, the clinical

concept type of what follows. Given a set Γ of clinical concept types, our model 𝑆

is predicting a distribution over |Γ| + 1 states: don’t autocomplete, or autocomplete

for each concept type in Γ. In our case, Γ = 4 and we predict over the following

classes: [NO AUTOCOMPLETE, AUTOCOMPLETE CONDITION, AUTOCOMPLETE

SYMPTOM, AUTOCOMPLETE MED, AUTOCOMPLETE LAB]. We can train this as

a standard multiclass classification task with a cross-entropy loss.

5.2.2 Featurizing Text

Text data is inherently sequential, but we can featurize it in a variety of ways.

We first tokenize the text by lowercasing it and splitting on whitespace. We also

treat any phrase in our ontology of clinical concepts as a single token in order

to easily encode compound phrases that carry a distinct meaning. Any numeri-

cal word is tokenized with a NUM token and split on. As an example, the text pt

p/w hypertension, coronary artery disease, on 20mg lasix is to-

kenized as [pt, p/w, hypertension, ’,’, coronary_artery_disease,

’,’, on, NUM, mg, lasix]. We also experimented with further condensing the

text to map any condition, symptom, medication, or lab to a single token represent-

ing each concept type, but this condensed tokenization scheme did not work better

in practice.

Once the text has been tokenized, it must be encoded into input for our model.

74

Each token is featurized in two ways: a bag-of-words representation, or a word2vec

embedding. In the bag-of-words formulation, tokens are converted into a sparse rep-

resentation, but each feature vector’s length is the number of unique tokens, which

is over 200,000. Tokens can also be embedded via a word2vec representation, which

we can train in an unsupervised way on a corpus of ED notes using the methodol-

ogy in [80]. Word2vec representations of text, much like many embedding schemes,

can align closely related groups of concepts in the embedding space. We compare

bag-of-words representations of text against word2vec representations for some of our

simpler models below, and unsurprisingly find that word2vec embeddings work better

in practice. As a qualitative check, selected tokens and their nearest-neighbors in the

trained word2vec embedding space are listed in Table 5.1. Distance is measured using

cosine similarity. Formally, the cosine similarity between two nonzero vectors A,B is

defined as the cosine of the angle between them, or A ·B/(||A|| ||B||).

5.2.3 Dataset Generation

To generate our dataset to train 𝑆, we first identify all clinical concepts mentioned

in the ED note using a trie-based match as in Section 4.2.1. We limit this search to

the early HPI sections of ED notes on file, because our copy of the clinical notes are

early drafts, and so later sections are not guaranteed to be fully-written.

We do not distinguish between positive and negative clinical concepts, as the token

no can often be a powerful predictor of scope because it is often followed by a clinical

concept. For a clinical concept 𝑐 that appears at index 𝑖 of a list of tokens 𝑊 , we

create a datapoint (𝑋, 𝑦) = (𝑊 [: 𝑖], 𝑐𝑡𝑦𝑝𝑒). To generate negative samples, we select

tokens preceding a word that is not a clinical concept uniformly at random, but throw

away datapoints that aim to predict punctuation. As an example, if we were using

the tokens patient, has, diabetes in our prediction and the following token

was a comma, we would throw out this sample. In practice, we would never predict

whether the user is typing punctuation and would trigger a prediction on spaces

between tokens.

75

Hypertension Warfarin breast_cancer

Diabetes pradaxa lung_cancer
Hyperlipidemia coumadin melanoma

Congestive_heart_failure dabigatran melanoma
type_2_diabetes lovenox rcc

htn xarelto nsclc
hypercholesterolemia anticoagulant colon_cancer

hypothyroidism plavix prostate_cancer
diastolic_heart_failure rivaroxaban ovarian_cancer
chronic_kidney_disease anticoag renal_cell_carcinoma
mitral_valve_prolapse anticoagulation multiple_myeloma

history alcohol cough

hx vodka dry_cough
w/hx alcohol_use nonproductive_cough
pmhx drinking_alcohol non-productive_cough
h/o consumed non_productive_cough

diagnosis rum +cough
pmh etoh sputum

hisotry drugs sore_throat
w/history etoh_use night_sweats
histroy alcoholic nasal_congestion
w/pmh listerine rhinorrhea

Table 5.1: Word2Vec embedding quality in learned autocomplete triggering: shows
the top ten closest tokens to each phrase, measured using cosine similarity.

76

Our final dataset consists of around 14 million samples. 13% of these samples are

“positive” in that for a given datapoint (𝑋, 𝑦), 𝑦 ̸= NO AUTOCOMPLETE and the

autocomplete scope is on. Of the positive samples, 66% are symptoms, 22% are

diseases, 8% are medications, and 4% are labs.

5.3 Learned Triggers: Modeling

To satisfy an inference time of sub-100ms, model architectures have to be small. For

this reason, we limit our architecture search to simple linear model classes such as

logistic regression, as well as shallow neural networks that handle sequential data

such as recurrent neural networks (RNNs) and one-dimension convolutional neural

networks (CNNs). Because Γ = 4 and we only seek to predict a distribution over five

classes, we find that even with these architecture constraints, our model works well

in practice.

5.3.1 How much local structure do we need?

The inference time of our model is heavily dependent not only on its architecture but

on the size of the input feature space. This is determined not only by how we encode

words, but also by the amount of local structure we need to build a good predictor.

Put simply, if a user is editing a text at some position 𝑖, how much text before and

after 𝑖 do we use in our model?

First, note that we cannot reliably use information after 𝑖 just based on the nature of

our problem. A doctor will typically craft a note by appending tokens to those that

are also documented, which means there is nothing documented to the right of the

cursor. This means that our local context must be a look-back model– we can only

use words 𝑊 [: 𝑖]. We must then determine how far the lookback context extends, of

which there are two primary categories.

The first is to use a persistent lookback context. As the clinician types, they will

77

continue to append tokens to the text. We sequentially feed these tokens into a model

that calculates a persistent hidden state (such as an RNN cell), and make a prediction

about whether to autocomplete every time a new hidden state is calculated. While

this framework can capture long-term text dependencies well because it could feasibly

learn a representation of documentation style, it neglects the fact that a user can edit

text that appears in the middle of a sentence. Because this breaks the assumption

that documentation is append-only to the text, if a doctor were to edit a word at

position 𝑖 of the text, we would be forced to recompute the hidden state by feeding

in all 𝑤[: 𝑖], which is costly.

Alternatively, we could use a fixed-window lookback context. This means that if a

user is editing text at a position 𝑖, we compute the last 𝑚 tokens on-the-fly and

use 𝑤[𝑖 − 𝑚 : 𝑖] as the input into our model. Our model does not then save any

persistent hidden state and instead bases its predictions solely on the context provided

at inference time.

We compare both persistent and fixed-window lookback contexts in the models below,

but ultimately choose to use a fixed-window context because it saves computation

time. This is a tradeoff– the persistent context models do perform slightly better on

the prediction task, which we explore below.

5.3.2 Binary Prediction of Autocomplete Scope

In order to easily compare models, we first simplify our task to the binary prediction

problem of autocomplete scope alone. This means we do not attempt to predict the

concept type of the word that follows, and only output 𝑃 (Show Autocomplete).

This is a strictly easier problem than doing both autocomplete scope and type pre-

diction as we are simply condensing Γ of our Γ+1 classes into a single class. We train

two model types on this task: a logistic regression baseline, and RNNs using both a

fixed-window and persistent lookback context.

78

Logistic Regression

In our logistic regression model, we experiment with the following architectures and

featurization schemes:

1. Lookback context: Fixed lookback contexts with window sizes 𝑚 = 3 · · · 10.

Logistic regression models do not support a variable-length persistent context

because it doesn’t store any hidden state.

2. Text featurization:

∙ One-hot positional bag-of-words: For each token 𝑡 in the lookback context,

featurize with a a one-hot encoding of the vector. Concatenate these vec-

tors to form a vector of length 𝑚× |𝑉 | where 𝑚 is the windowsize of the

lookback context and 𝑉 is the vocabulary of ED notes.

∙ Positional word2vec: For each token 𝑡 in the lookback context, featurize 𝑡

with its length-𝐿 word2vec embedding as per Section 5.2.2. Concatenate

these vectors to form a vector of length 𝑚× 𝐿.

∙ Multihot bag-of-words: Tokenize all tokens in the lookback context with a

single multihot vector, or as a bag-of-words representation. This forms a

length-|𝑉 | vector but loses all positional information.

∙ One-hot positional bag-of-words with first character: Encode the context

as per the one-hot positional bag-of-words scheme, but append a one-hot

representation of the first character of the following word. We included

this featurization to test whether knowing any information about the word

the doctor is about to type (such as the first letter) can greatly improve

our predictions.

All bag-of-words models were trained with heavy 𝐿1 regularization, while models

with word2vec featurization were 𝐿2 regularized. Losses associated with positive

labels were upweighted to counteract class imbalance (inversely proportional to the

class frequencies in the input data).

79

Recurrent Neural Networks

Our RNN architecture uses a sequence of stacked RNN cells followed by a single

fully-connected layer with sigmoid activations. Unidirectional, single-layer RNNs for

the binary prediction task were trained using the following featurization schemes and

hyperparameters:

1. Lookback context: fixed lookback contexts with window sizes 𝑚 = 3 · · · 10,

as well as a persistent lookback context.

2. Text featurization: For each token 𝑡, we featurize it via a one-hot encoding as

well as a word2vec embedding. Word2vec embeddings were not trained end-to-

end in the binary prediction RNNs in order to fairly benchmark against logistic

regression models, but are trained end-to-end in the final model.

3. Hidden state: 16, 32, 64, 128, 256.

4. RNN cell type: Long Short-Term Memory (LSTM) [50], Gated Recurrent

Unit (GRU) [22], and SimpleRNN cells.

Knowledge Distillation

Large neural networks can have long inference times. However, these networks ob-

viously have a greater number of parameters and can thus model a richer space of

functions. One way to take advantage of this trade-off is to first train a large network

on a task and then to distill its knowledge into a smaller network.

We use the framework proposed by [49]. Consider a large teacher model and a smaller

student model. We first train the teacher model on our autocomplete scope task,

and then train the student model using a composite loss ℓ = 𝛼ℓ𝑑 + (1 − 𝛼)ℓ𝑠. The

first loss ℓ𝑑 represents the distillation loss, which is typically the Kullback-Leibler

(KL) divergence between the discrete distributions of predictions from the student

and teacher models. ℓ𝑠, or the student loss, is the actual cross-entropy loss between

80

the predictions of the student model and the true ground-truth hard labels. 𝛼 is a

hyperparameter to learn an appropriate weight to attach to the distillation loss.

In our binary autocomplete scope prediction, this lends itself to an elegant training

scheme. Let 𝑝 and 𝑞 be the estimated probabilities from the student and teacher

models respectively (on a single sample), with some true ground-truth label 𝑟. Then

ℓ simplifies to (𝛼𝑟+(1−𝛼)𝑞) log 𝑝+(1−(𝛼𝑟+(1−𝛼)𝑞)) log(1−𝑝)+𝐶 where 𝐶 is some

constant. In other words, we can create a new target probability 𝑝 = (𝛼𝑟 + (1−𝛼)𝑞)

and minimize the cross-entropy loss between 𝑝 and 𝑝.

We experiment with two ways of parameterizing the student model 𝑆: first with a

small RNN, and then with a simple linear model. In the latter, this amounts to

training a linear regression to predict the logits (pre-sigmoid) of the these target

probabilities. We then recover a classifier similar to logistic regression by applying

a sigmoid layer to the predicted logits (subject to some distributional assumptions).

We fix 𝑇 to be our best performing fixed-window RNN (hidden size of 128, lookback

window of 𝑚 = 8 tokens), which achieves an AUC of 0.9 and a precision of 43% at a

recall of 80%.

We find that the autocomplete scope problem is simple enough that our knowledge

distilled models do not strongly outperform small models that are trained directly. A

next step might be to try a more nuanced way of creating ℓ, e.g. via trust regulariza-

tion, which modifies 𝛼 over the course of training. We did not experiment with other

network compression techniques such as weight pruning of low-rank factorization of

weight matrices because even our “large“ teacher networks are fairly compact.

Performance

We compare our binary scope prediction models with two metrics: AUC, to gauge

threshold-independent performance that isn’t sensitive to class balance; and precision

at a fixed recall. We set recall to be 80% based on conversations with physicians and

our goal to capture at least 80% of documented clinical concepts, but note that this

81

Model AUC ↑ P @R=0.8 ↑

Rule-based N/A 0.07

Logistic Regression
One-hot positional BoW embeddings, 𝑚 = 5 0.851 0.15
Word2vec positional embeddings, 𝑚 = 7 0.865 0.27
Multihot BoW embeddings, 𝑚 = 3 0.745 0.10
One-hot positional BoW embeddings plus first char, 𝑚 = 5 0.860 0.12

RNN
LSTM, One-hot BoW embeddings, 𝑚 = 10, ℎ = 16 0.880 0.30
LSTM, Word2vec embeddings, 𝑚 = 7, ℎ = 16 0.883 0.35
LSTM, Word2vec embeddings, 𝑚 = 8, ℎ = 128 0.900 0.43
LSTM, Word2vec embeddings, 𝑚 = PERSISTENT, ℎ = 128 0.916 0.46

Knowledge Distillation
Linear model, Word2vec embeddings, 𝛼 = 0.1 0.85 0.33
GRU, Word2vec embeddings, 𝑚 = 8, 𝛼 = 0.6, ℎ = 16 0.911 0.42

Table 5.2: Performance of learned models for binary autocomplete scope prediction,
as measured by AUC and by precision at a recall of 80%. BoW = bag-of-words, 𝑚
represents the lookback context window size, ℎ is the hidden state size of the RNN
model

can be easily tuned with the decision threshold of the model. We also benchmark

against a rule-based approach: We rank common unigrams and bigrams that occur

before clinical concepts by frequency, and trigger autocomplete if the cursor is pro-

ceeded by one of the 2,000 most frequent unigram/bigram pairs. This achieves a

recall of roughly 80% but is overfits to the training text.

A selection of models and their performance as shown in Table 5.2. Word2vec embed-

dings outperform bag-of-word embeddings, as expected, because we can exploit closely

related terms in the embedding space. RNN models outperform logistic regression

models, likely because they are nonlinear and a more complex model class. While the

best-performing model is a LSTM trained with a persistent lookback context, we find

that the latency and infrastructural challenging of maintaining a persistent hidden

state removes the incremental performance gain, and instead opt for a fixed-window

model.

82

5.3.3 Autocomplete Scope and Type Prediction

In the case of simultaneously predicting autocomplete scope and type from local con-

text, given a set of clinical concept types Γ, our model outputs a discrete distribution

over |Γ| + 1 classes– no autocomplete, as well as autocomplete 𝑡 for each concept

type 𝑡. In our setting, Γ is [CONDITION, SYMPTOM, LAB, MED] and there

are thus five classes to predict over.

Developing a Loss Function

The standard way to measure loss in this framework is to use the cross-entropy across

all five classes. However, we make the following observations. First, our binary scope

prediction needs to be well calibrated because we threshold on 𝑃 (NO AUTOCOMPLETE)

to determine when to show the dropdown. On the other hand, the logits themselves

for classes 1 through 5 do not matter– we only use their relative ranks to determine

how to stack our rankings for each clinical concept type.

Second, in practice, training models with the cross-entropy objective yields peaky out-

put probability distributions. This makes it difficult to establish a tunable threshold

𝑃 (NO AUTOCOMPLETE) to achieve a particular precision/recall because the values

are concentrated around 0 or 1.

To mitigate this, we construct a new way of measuring loss. Given model output

probabilities p = 𝑝0, 𝑝1, · · · , 𝑝|Γ|+1 from 𝑆 and a ground-truth label 𝛾*,

ℓ = 𝛽 · xent(𝑝0, [[𝛾* = 0]]) + (1 − 𝛽) · [[𝛾* ̸= 0]]xent(p[1:], 𝛾
*), (5.1)

where the cross-entropy function xent(𝑝, 𝑦) is defined by xent(𝑝, 𝑦) = −
∑︀

𝑖 𝑦𝑖 log(𝑝𝑖).

Thus, we use a weighted combination of the binary cross entropy of our scope predic-

tion task as well as a four-class cross entropy to incorporate the autocomplete type

prediction task if applicable. Given our linear baselines did not rival performance

of our RNN architectures for the strictly simpler task of binary scope prediction, we

83

limit our architecture search to RNNs and CNNs as discussed in the next section.

Note that because we consider neural network models like RNNs and CNNs that

are optimized with stochastic gradient descent rather than a closed-form solution as

per logistic regression, we train our input Word2vec embeddings end-to-end with our

model. We experimented with different Word2vec embedding size (smaller embedding

sizes obviously indicate fewer model parameters) and report the best architectures

below.

Recurrent Neural Networks

Unidirectional, single-layer RNNs for the scope and type prediction task were trained

using the following featurization schemes and hyperparameters:

1. Lookback context: fixed lookback contexts with window sizes 𝑚 = 4, 6, 8.

2. Text featurization: For each token 𝑡, we featurize it via its length-ℎ Word2vec

embedding, which are trained end-to-end in the model.

3. Hidden state: 8, 16, 32, 64 (limit to smaller architectures).

4. RNN cell type: Long Short-Term Memory (LSTM), Gated Recurrent Unit

(GRU), and Simple RNN cells.

Convolutional Neural Networks

RNNs are inherently sequential as they calculate a hidden state that is then combined

with a new input to make predictions. In contrast, CNNs do not do this– they instead

perform efficient convolutions with learned filters on a single input matrix, which

means they can be parallelized and are faster than RNNs to both train and perform

inference with. We do not feed input tokens one-by-one into CNNs and instead feed

in a one-dimensional vector of tokens to make a prediction.

While originally designed to handle image data for computer vision tasks, CNNs do

have a semantic interpretation in our context. In the one-dimensional case, the learned

84

filters can identify “trigger words“ that act as strong indicators of the autocomplete

type. Filters of different sizes can equivalently learn “triger phrases“.

Our CNN architecture is as follows:

1. Embedding layer to convert input tokens into their learned word2vec embed-

dings of length 𝑑𝑒. The number of tokens is determined by the length 𝑚 of our

lookback window.

2. 1-D Convolution layer with a kernel size 𝑠 and a stride size of 1.

3. A fully connected layer which mean pools the output vectors from the previous

layer, using learned coefficients.

4. Rectified Linear Unit (ReLU) activation, defined element-wise by the function

ReLU(𝑥) = max(𝑥, 0).

5. A fully connected layer with |Γ|+ 1 outputs, with a softmax activation, defined

element-wise for a vector input 𝑧 by softmax(𝑧)𝑖 = 𝑒𝑧𝑖∑︀
𝑗 𝑒

𝑧𝑗 , to convert the real-

vector-valued output of the previous layer to a discrete probability distribution.

We optimize over hyperparameters 𝑑𝑒, 𝑘, 𝑠 as well as 𝛽 in our loss function.

5.4 Performance Results

5.4.1 Scope and Type Detection

Performance for our autocomplete scope and type prediction task is measured with

two metrics: precision at a recall of 80% for our binary prediction task, as well

as the mean reciprocal rank of our concept type rankings to gauge the efficacy of

our type prediction. Results for the best performing RNN and CNN are shown in

Table 5.3. While the RNN model has slightly higher precision at a fixed recall, the

incremental gains from this are offset by its costly inference time (3 × slower than

85

Model P @R=0.8 ↑ MRR ↑ MIL ↓

Rulebased 0.07 0.72 0.2 ms
RNN GRU 𝑚 = 4, 𝑑𝑒 = 16, ℎ = 64, 𝛽 = 0.9 0.45 0.89 54.9 ms
CNN 𝑚 = 6, 𝑑𝑒 = 16, 𝑠 = 4, 𝛽 = 0.9 0.43 0.90 17.1 ms

Table 5.3: Performance of learned models for autocomplete scope and concept type
prediction, measured by precision at a fixed recall, mean reciprocal rank (MRR), and
mean inference latency (MIL). In practice, the CNN model is deployed.

a CNN). Overall, the precision-recall curves of both the best-performing RNN and

CNN models are similar, as can be seen in Figure 5-1. Ultimately, we deploy a CNN

model. We further break down performance for the CNN model by concept type in

Table 5.4. Our model has high MRR when predicting when not to autocomplete, as

well as when to show the symptom autocomplete. This is due to both our training

procedure, which favors the scope prediction over type prediction, as well as the fact

that symptoms have common trigger words preceding them such as presents with

or complains of. In contrast, MRR for labs is the lowest by a wide margin.

In Table 5.3, we report the mean inference latency (MIL), which is the average infer-

ence latency for a model in milliseconds (preparing text for the model and a single

inference call). These times are measured on a single machine running Google Chrome

with WebGL-backed acceleration, and can be subject to change on different machines.

That said, their relative speeds does give a notion of comparative latencies. They are

not representative of the system end-to-end latency which includes finding the user’s

cursor position from the underlying editor framework, parsing model output, and

rendering the autocomplete dropdown itself. On our live-deployed system, the CNN

model listed below averages approximately 18-19ms latency, which is very close to

the refresh rate of the screen and is perceived as instantaneous to the user.

5.4.2 Overall

In an evaluation of our retrospective data, our CNN joint scope/type prediction has

a 92% accuracy of showing the autocomplete dropdown before a clinical concept,

86

Concept Type MRR ↑

No Autocomplete 0.91
Autocomplete Condition 0.76
Autocomplete Symptom 0.84
Autocomplete Medication 0.75

Autocomplete Lab 0.39

Table 5.4: Autocomplete scope and type performance for the best-performing CNN
model, broken down by class.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

CNN
RNN

Figure 5-1: Precision-Recall curve for best learned scope/type prediction models, as
in Table 5.3.

87

without the need for a manual trigger or a postcorrection. In 85% of cases, the

concept type of the desired concept was ranked first. Overall, we reduce keystroke

burden from 8.30 to 2.63 (a 68% decrease).

5.5 Summary

The contextual autocomplete ranking models we have outlined harnesses the power

of machine learning to encode information about medical contexts, and then uses this

to suggest terms to document to clinicians. Medical professionals who utilize this tool

can not only document terms more easily and save valuable time to interact directly

with patients, but also can create clean annotations of clinical text in a novel manner.

These annotations can be used to provide disambiguation between overloaded terms,

clarify associations between medical concepts, and generate large-scale EHR datasets

for future innovation. All of the medical ontologies built for this work map to UMLS,

making our contextual autocompletion tool translatable to other clinical centers with

minimal modification.

In this chapter, we focused on developing autocomplete scope models to predict when

to display the autocomplete dropdown, and whether we could use the local structure

within notes to guess clinical concept types.

5.5.1 Future Direction: Integrating Semantic Modifiers

The contextual autocomplete tool in this thesis relies on four concept types –conditions,

symptoms, medications, and laboratory tests– to create a thorough vocabulary of

UMLS-mapped clinical concepts. However, this is by no means an exhaustive repre-

sentation of clinical language. In particular, we need a better way of integrating key

semantic modifiers in our framework.

We define a semantic modifier to a clinical concept as any sequence of words that

directly alter the meaning or medical relevance of a concept. No is a semantic modifier

88

of fever in the phrase No fever because it changes whether the symptom was

indeed present in the patient. On the other hand, coumadin is not a semantic

modifier in afib (on coumadin) because while it directly relates to afib, it

does not impact the semantics of the concept.

There are four types of semantic modifiers that we seek to capture. We list them

below along with our current strategy of integrating each into our system.

Negations

Doctors often document the absence of concepts (e.g. no fever) to aid in a differ-

ential diagnosis. In the ED, this is usually limited to documenting “pertinent positive

(present) and negative (absent)” symptoms. We support the entry of negative symp-

toms of the form no <SYMPTOM>. In order to detect negative symptoms in a list

of concepts such as no fever, nausea, or chill, we currently use NegEx,

which is a rule-based approach [19]. Negated terms are displayed differently from

positive ones to distinguish them in the UI. A future direction to improve data entry

in the tool would be to incorporate a learned model for negation detection rather

than a rule-based one. This might be possible even with minimal training data by

using extending NegEx with kernel methods [109] or dependency parsing [79].

In addition, once negations are better structured and capture with the UI, this can

be used to improve our autocomplete ranking models to suggest negative symptoms

and conditions to document.

Adjectives

Clinical concepts are often modifier with adjectives that clarify their semantic mean-

ing. Adjectives can be used to specify spatial orientation (right-sided chest

pressure), clarify body systems (abdominal tenderness), indicate severity

(severe bleeding), describe a quantitative relationship (elevated cholesterol),

or even stipulate temporal relations (intermittent pain).

89

Deciding when and how to modify a clinical concept with a descriptive adjective is

purely subject to physician preference and training. In our pilot system, we do not

attempt to predict <modifier> <concept> pairs in our ranking algorithms 𝑅.

However, we do support the post-hoc attachment of modifiers to clinical concepts

during data entry. As an example, if a doctor types right-sided chest pain

and chest pain is tagged as a clinical concept, we greedily look for adjectives that

precede the concept to attach to it. In this way, as we develop a large corpus of

annotated clinical text, we can robustly learn allowable adjective modifiers to attach

to each clinical concept.

To develop our ontology of acceptable adjective modifiers, we looked for phrases that

appeared directly before clinical concepts in the ED notes on file, restricting to phrases

that were denoted as a Qualitative Concept, Temporal Concept, or Spatial Concept

in UMLS. There are 255 adjective modifiers in our current ontology.

Third-Party Attribution

Clinicians might also type a term that refers to someone other than the patient, such

as family history of diabetes in mother. This is an example of a third-

party attribution modifier to diabetes, because it indicates that the clinical concept

in question should not be assigned to the patient. In the ED, third-party attribution

modifiers tend to occur only within the Family History section of the note where the

doctor describes diseases and conditions associated with relatives. We examined two

different ways of capturing third-party attributions in Family History sections.

The first is to rethink how to capture data within Family History sections. All that

is being recorded is a bipartite matching between family members and conditions.

This can be captured in a table or a more structured input form as opposed to free-

text, which can then be programmatically parsed. BIDMC already has a rudimentary

version of this system and it is not used by most doctors because free-text is more

convenient.

90

The second is to use an algorithm (either rule-based or learned) to identify family

members and third parties present in the text, and then attempt to match clinical

concepts to those subjects. This can be abstracted as a NLP relation extraction

task– given a piece of text, first extract entities (family members, clinical concepts)

and then determine their relationship.

There is a dearth of literature that examines relation extraction in the context of

clinical text, let alone for family history detection. In the 2018 BioCreative/OHNLP

challenge, which asked participants to perform entity recognition and relation ex-

traction for the purpose of family history detection, many of the submissions used a

purely rule-based approach, and the best-performing model only achieved an F1 score

of 0.57 [14, 46, 66]. Performance is much too low to be deployed in a live hospital

setting. This is likely because the OHNLP challenge lacked sufficient labeled data to

learn relations robustly; in contrast, state-of-the-art relation extraction models in the

general domain are usually deep neural networks that ingest vast amounts of data

[126]. In recent years, there has been a focus on using self-attention for relation ex-

traction on top of common neural architectures such as convolution neural networks

and transformers [127, 71]. However, we do not have the data to train these models

to perform relation extraction in a supervised way.

To some extent, family history extraction is similar to coreference resolution in clas-

sical NLP wherein one tries to find all expressions that refer to the same entity in

text. There is some preliminary evidence that contextual language models like BERT

encode syntax through self-attention, and may be able to be used for coreference

resolution and subject-verb agreement [26, 43]. Still, there is contention in the field

whether self-attention weights can be reliably used, due to the overparameterization

of BERT [61] and redundancy of attention mechanisms [53].

Assuming that attention-based models do encode some semantic representation of

text, we can use the following semi-supervised algorithm to perform family history

extraction.

1. Train a BERT model on all OMR notes ℋ. This is unsupervised because BERT

91

uses masked-language modeling as its training task. In practice, we use the

same architecture as in [30] but define a custom vocabulary of clinical terms.

To generate a list of meaningful subwords and tokens, we use the SentencePiece

byte-pair encoding method [62].

2. Use a rule-based approach (RegExes with minor post-processing) to segment

Family History sections from discharge summaries on OMR notes. 67% of

patients in our dataset had such a section in their OMR notes.

3. Tokenize each Family History section into sentences. Extract conditions men-

tioned in the text using a trie of UMLS terms. Extract family members men-

tioned in the text with string matching on mother, grandfather, etc.

4. Generate BERT attention weights for each sentence. We chose to max pool

over the five best-performing attention heads (evaluated on a small manually

labeled validation set of 30-40 relations).

5. Match each condition to the (singular) family member that it attends most

to. If there is no family member present in the text, assign the condition as

“generally“ relevant.

In some cases, this algorithm works well: running it on History of acute leukemia

in older brother who has passes way, early breast cancer in sister,

smoking-associated lung cancer in another sister results in acute

leukemia being attributed to a brother and all other concepts to a sister.

However, if a condition should be attributed to multiple family members, it fails:

hypertension in her mother and sister attributes hypertension to sister but

not mother. More alarmingly, the inherent shorthand and messiness of clinical

text can sometimes result in erroneous pairings– running this algorithm on mother

with hypertension, diabetes in father results in both concepts being

attributed to mother and none to father.

Clearly, an unsupervised attention-based matching algorithm works on simple cases

and sentence structure but fails on insidious and difficult cases. However, with the

92

curation of larger-scale datasets for relation extraction in clinical text, it may be

possible to fine-tune this algorithm by training it in a supervised manner. This

is a proof of concept and an initial foray into automatically detecting third-party

attribution modifiers via self-attention.

Hedging

The last type of semantic modifier we note is hedging, which is when a physician might

indicate uncertainty about a claim, e.g. patient may have Lyme disease.

Out-of-the-box hedging detectors are usually rule-based or cater to specific note-types

such as radiology notes [87] or biomedical articles [1]. As such, we did not explore

hedging for the first iteration of the system.

93

94

Chapter 6

Patient Record Summarization from

Unstructured Text

Having discussed the data entry portion of the tool, we now move on to the con-

textual information retrieval that is enabled as a result of tagging clinical concepts.

In this chapter, we focus on retrieving unstructured textual data from a patient’s

prior medical record (OMR). In essence, we are attempting to build an extractive and

indicative summarization of a patient’s disease history from a patient’s OMR.

In order to gather a complete and thorough history prior to treating a patient, physi-

cians will first read through a patient’s OMR and manually search for sections of a

note that are relevant to the current presentation. As an example, given a patient

complaining of dyspnea, a prior history of chronic lung disease could greatly change

the course of treatment. Because the vast majority of a patient’s medical record lies

within unstructured clinical notes, doctors are forced to search through these medical

records without any guidance, which is tedious and time-consuming. By suggest-

ing snippets from the OMR, we can paint a disease-specific summary of a patient’s

history, which could then alleviate work for the clinician.

However, we do not want to completely replace this step. Relying solely on a learned

model to surface relevant snippets from a medical record can be dangerous, because

95

it injects algorithmic bias into critical clinical decisions. Instead, once a doctor tags

a concept using contextual autocomplete, we seek to surface snippets related to that

particular concept, which we then populate on the sidebar so the doctor can click

to further explore. A concrete example of this is shown below in Figure 6-1. This

summarization approach, in some senses, a generalization of electronic medical record

phenotyping– we are assigning snippets labels that indicate how relevant to each

concept they are. We first formalize the problem of OMR snippetization and then

discuss different machine learning methodologies to solve it, inspired by literature on

EHR phenotyping [48] and clinical summarization [91].

6.1 Formalizing OMR Snippetization

At the level of an individual patient, we split the full record of all OMR notes into a

set snippets 𝒮. Each 𝑆𝑖 ∈ 𝒮 consists of an ordered list of words, and our goal is to

determine the relevance of a snippet to a certain condition 𝑐 by learning a function

𝑟(𝑆𝑖, 𝑐) ∈ R that assigns a score to any snippet-condition pair. If we can learn such

a function that reflects a reasonable measure of relevance, then when a clinician

mentions a condition 𝑐, we can surface the most relevant snippet argmax𝑆𝑖∈𝒮𝑟(𝑆𝑖, 𝑐),

or several top-ranked snippets.

A clear baseline that is used in BIDMC’s current system is a direct keyword search.

That is, we assign a binary relevance score [[𝑐 ∈ 𝑆𝑖]] to a (snippet, condition) pair

(𝑆𝑖, 𝑐) reflecting if the condition 𝑐 is directly mentioned in the snippet text itself,

potentially ranking in reverse chronological order so newer snippets are surfaced first.

There are several clear augmentations to this method, such as checking if any known

synonym of 𝑐 occurs in 𝑆𝑖. However, this basic technique does not allow us to show

snippets that contain non-obvious related information, such as a relevant medica-

tion or procedure. Moreover, it snippetizes the OMR at a note-level rather than

a sentence-level, forcing doctors to read an entire note to find a sentence or two of

salient information. Thus, we seek to define more robust functions 𝑟(𝑆𝑖, 𝑐) that better

96

Card with snippets

Full note exploration

Figure 6-1: OMR Snippetization UI. Left: Snippets from the patient’s OMR that are
related to a particular condition are listed on the condition’s card. Right: Clicking
on any of these snippets then opens a pop-up screen that depicts the note in full,
with the original snippet highlighted.

97

align with clinical intuition and needs.

Ideally, we can learn 𝑟 by using a labeled dataset that can serve as a proxy of relevance.

As an example, click-through data showing what OMR notes a physician browses for

each patient might give us a lens into what is relevant. For this pilot, we did not

have access to any data source like this. Instead, we only have access to drafts of

the clinical ED note, as well as finalized, full-length OMR notes. Thus, we rely on a

variety of un- and semi-supervised techniques and external knowledge bases to guide

our decision of relevance. We hope that our current tool can help collect more direct

measures of snippet relevance. We also build an OMR relevance annotation tool to

curate a large-scale dataset of relevance, should the need arise. The annotation tool

is described in Appendix A.3.

6.2 Dividing Notes into Snippets

We do not want to force a clinician to read through an entire note in order to find

a single section that is relevant. Instead, we look for short phrases that are relevant

in the current medical context and act as summaries of the desired information– this

requires segmenting a note into its constituent snippets. One way of doing this is

to use natural breakpoints in the text, such as splitting by note section. However,

because OMR notes can potentially date back decades and contain a variety of note

types and clinical specialties, there is no consensus on note structure. Segmenting a

note by section is thus infeasible without many hand-crafted rules.

Doctors can always expand the segment of the note they read beyond the provided

snippets, so we instead take a heuristic approach to segmentation. We first divide the

note into coarse paragraphs by splitting on double newline characters. We then further

split each paragraph into sentences. Finally, we generate our candidate snippets by

taking rolling windows over groups of 2-3 sentences, enforcing that snippets are around

50-150 words. Shorter snippets are coalesced into larger ones to have enough text to

be predictive, and long snippets (over 150 words) are split to ensure that snippets

98

were uniform and did not cover too much ground. An example of candidate snippets

generated for a note is shown in Figure A-3 of the Appendix.

Future iterations of the snippetization algorithm can make use of section headers to

ensure that snippets do not span multiple sections or to exclude certain sections like

Family History.

6.3 Measuring Snippet Relevance

We now explore multiple ways of measuring snippet relevance. In practice, we use

a data-driven heuristic that extends keyword search to closely-related concepts of

the query, as described next in Section 6.3.1. This is an extendable and interpretable

model. We also experimented with two learned schemes for performing snippetization

(topic modelling, and anchor-and-learn phenotyping) which we touch upon as well.

6.3.1 Advanced Keyword Search

The exact-string-match keyword search baseline is easy to justify because it is con-

sistent: it returns notes in reverse chronological order so doctors understand when

information is out of date, and the behavior is deterministic. Its primary drawback

is that it is inherently restrictive– searching diabetes should also pick up on notes

using acronyms (dm), related medications (insulin) and other salient information.

In the advanced keyword search paradigm, we seek to fix this by expanding the set

of acceptable keywords that trigger a match for a particular concept. Thus, instead

of using the relevance score [[𝑐 ∈ 𝑆𝑖]] for a concept 𝑐 and a snippet 𝑆𝑖, we define a set

of acceptable keywords 𝐾𝑐 and set 𝑟(𝑆𝑖, 𝑐) = [[|𝐾𝑐 ∩𝑆𝑖| > 0]], or that there is at least

one keyword within 𝐾𝑐 that also occurs in 𝑆𝑖.

We posit that keywords for a term will always be a clinical concept that falls into one

of the following categories:

∙ Conditions: any chronic disease or diagnosis. These form the bulk of our

99

keywords– as an example, snippets that are relevant to AIDS might contain the

keywords AIDS and acquired immunodeficiency syndrome but also

common coinfections like hepatitis and pneuomnia.

∙ Medications: any drug that would treat the condition. Lamivudine, for ex-

ample, is a common antiretroviral therapy that treats AIDS.

∙ Procedures: any recurring treatment or prior surgery that is relevant in the

context of the disease. In the case of AIDS, any surgical history is likely relevant,

but appendectomy might be an acceptable keyword only if the query concept

is related to abdominal pain. We assume access to an ontology of procedures

in this chapter, but describe the data curation process in the next.

We note that this list does not include symptoms and labs. While labs are crucial to

understanding disease prognosis, they also exist as structured data and can be visu-

alized in our system without having to extract from unstructured text, as elaborated

on in Section 7.2. On the other hand, acute symptoms can occur due to a variety

of conditions and are hard to directly attribute to a clear source. Thus, we exclude

symptoms from our keywords. Ideally, we can rely on structured knowledge bases to

generate 𝐾𝑐 for each condition 𝑐. This is especially easy for related medications to a

condition. We use existing UMLS-mapped drug-disease indications from [108]. Any

name (generic and brandname) of a drug that treats 𝑐 is added to 𝐾𝑐. We discuss

these drug-disease indications in further detail in Section 7.1.

While knowledge graphs have been widely used in healthcare to learn relationships

between clinical concepts and to aid predictive modeling [102, 23, 75], they are often

disease-specific or too coarse-grained to use for our purposes. Indeed, we do not care

about all related conditions/procedures to diabetes, but rather a specific and small

subset that directly affect the disease prognosis like diabetic retinopathy,

hyperlipidemia, etc.

We make use of an external sources of knowledge to seed our condition/procedure

keywords, and then manually pare them down to what is relevant with clinical consul-

100

tation. We use pretrained low-dimensional embeddings for UMLS CUIs corresponding

to conditions and procedures in our ontologies [13], and for a concept 𝑐, seed its con-

dition/procedure keywords with its nearest neighbors using cosine similarity with a

manually tuned threshold of 0.7. We then the warm-start keywords to what is actually

and directly clinically relevant.

In order to fill in the gaps with this method due to limitations with our ontologies as

well as to corroborate our keywords with what physicians are actually documenting,

we complement it with a more data-driven method. We extract clinical conditions in

patients’ ED notes, find snippets of corresponding OMR notes that mention the same

condition, and then run a UMLS-based extraction to find mentioned UMLS concepts

in these OMR notes, not limiting to concepts that are in our ontologies. Co-occurring

conditions for a condition 𝑐 were then ranked by the fraction of time they co-occur with

𝑐 compared to the number of overall mentions– this downweights common concepts

like hypertension that co-occur with almost every disease. With clinical consul-

tation, we add any missed keywords for each concept. As an example, for the type

2 diabetes concept, we add diabetic retinopathy and cerebrovascular

accidents as keywords, but exclude medications that are already captured with

drug-disease indications like insulin, as well as common comorbidities or noise like

orthostatic hypotension and eye exam.

In short, we instantiate a keyword set 𝐾𝑐 for a condition 𝑐 first with any synonyms

of 𝑐, then with any drug that treats 𝑐, and finally any synonym of a condition/pro-

cedure UMLS concept caught by the two-pronged manual curation described above.

Examples of these keyword sets for select concepts are shown in Table 6.1.

While it is difficult to conduct a quantitative evaluation of this advanced keyword

search without ground-truth labels of relevance, we show case studies of our method

compared to standard keyword search below in Table 6.2.

101

Condition: Type 2 Diabetes

Direct synonyms adult onset diabetes, t2dm, type 2
diabetes mellitus, niddm, ...

Medication Keywords insulin, metformin, glucotrol,
metaglip, novolin, ...

Embedding Neighbor Keywords hyperlipidemia,
hypercholesterolemia, prediabetes,
impaired glucose tolerance, brittle
diabetes, insulin-dependent diabetes

OMR Co-occurrence Keywords diabetic retinopathy,
cerebrovascular accidents

Condition: Asthma

Direct synonyms asthma, childhood asthma,
exercise-induced asthma, bronchial
asthma, allergic asthma, ...

Medication Keywords albuterol, pseudoephedrine,
salmeterol, fluticasone,
beclomethasone, ...

Embedding Neighbor Keywords rhinitis, allergic rhinitis, hay
fever, rhinorrhea, chronic rhinitis,
lung disease, tracheobronchomalacia,
pneuomnectomy, tracheostomy,
pneumothorax, pneumonia

OMR Co-occurrence Keywords nebulizers

Condition: Migraines

Direct synonyms migraines, migraine headaches,
complex migraine, complicated
migraines, migraine syndrome

Medication Keywords naratriptan, sumatriptan,
zolmitriptan, eletriptan

Embedding Neighbor Keywords hemiparesis, TIAs, CVAs, stroke,
seizures, aphasia, epilepsy, ...

OMR Co-occurrence Keywords photophobia, phonophobia

Table 6.1: Case Studies: Snippets surfaced with standard vs. advanced keyword
search for a sample of conditions and patients.

102

Standard Keyword Search Advanced Keyword Search

Condition: Anxiety

September 10, 2013: His past medical his-
tory include pituitary tumor. He also has IBS
and anxiety.

May 13, 2014: on Prescription Cabergoline
(0.5 mg tablet), Librax with Clidinum (5mg
capsule).

January 8, 2013: Librium 5 mg twice a day
for quite a few years to control anxiety. Also
takes omeprazolae 10mg daily.

September 10, 2013: His past medical his-
tory include pituitary tumor. He also has IBS
and anxiety.
January 8, 2013: Librium 5 mg twice a day
for quite a few years to control anxiety. Also
takes omeprazolae 10mg daily.
December 26, 2008: Complains of insomnia
and occasional panic attacks at night. Start-
ing on low-dose chlordiazepoxide to treat.

Condition: Osteoporosis

July 12, 2006: Trazadone 50 mg q h.s., and
Miacalcin spray for osteoporosis.

January 30, 2007: She has switched to Are-
dia by IV infusion from previous Miacalcin
spray. Die had an MI in Florida in 2004 and
underwent emergency catherization.

May 1, 2006: Current medications include
lipitaor, coumadin, lasix, levoxyl, protonix,
KCL, Diovan, Trazodone, and Miacalcin
spray for osteoporosis. Allergic to penicillin,
erythromycin, biaxin, and zithromax.

January 10, 2007: Miacalcin spray for osteo-
porosis, but history of multiple allergic reac-
tions to medications including (most impor-
tantly) several reactions to beta blockers with
increasing asthma.
July 12, 2006: Trazadone 50 mg q h.s., and
Miacalcin spray for osteoporosis.
May 1, 2006: Current medications include
lipitaor, coumadin, lasix, levoxyl, protonix,
KCL, Diovan, Trazodone, and Miacalcin
spray for osteoporosis. Allergic to penicillin,
erythromycin, biaxin, and zithromax.

Table 6.2: Case Studies: Snippets surfaced with standard vs. advanced keyword
search for a sample of conditions and patients.

103

6.3.2 Latent Dirichlet Allocation and Topic Modelling

We now explore two learned mechanisms to find relevant snippets given a condition,

and discuss why they are not used in practice. The first of these is topic modelling.

The classical paradigm to assign genres or labels to natural language is known as topic

modelling. Topic models are statistical models that discover underlying topics to a

collection of documents and are commonly used to identify latent semantic structure

in a text corpus. In the case of finding relevant portions of OMR given a medical

context, we can use topic models to classify snippets as representative of a given

condition or disease. As an example, if one wanted to look for snippets related to

the condition diabetes, we might assign topics to all of our candidate snippets and

return those that are highly weighted towards diabetes. We explore variants of the

latent Dirichlet allocation (LDA) topic model to determine the relevance of a snippet

to a particular concept. While topics were too coarse and uninterpretable for actual

deployment in the tool, these act as valuable snippetization baselines.

Traditional LDA

The prototypical topic model is Latent Dirichlet Allocation (LDA), which has been

widely used and extended [15]. It is a probabilistic graphical model that (in the

case of text data), given a set of documents that are comprised of words, posits

that each document is a mixture of a small number of topics and that the words in

a document are drawn from distributions parameterized by these topics. Note that

documents can exhibit multiple topics. We fix the number of topics in advance and use

a generative process to describe how documents are created– first, we randomly choose

a distribution over topics, and then for each word in the document, we randomly

choose both a topic from the document’s distribution over topics as well as a word

from the corresponding topic. Words are generated independently of other words,

and as such, a traditional LDA treats a document as a unigram bag-of-words.

Formally, consider a set of 𝐷 documents 𝑑1, 𝑑2, · · · 𝑑𝐷 that each are defined by some

104

mixture of 𝐾 topics. Each document is made up from an unordered sequence of

words chosen from a total vocabulary of size 𝑉 . We notate the number of words in

document 𝑑𝑖 by 𝑁𝑖. Let the set of vectors 𝛽1, 𝛽2 · · · 𝛽𝐾 represent prior distributions

over words associated with each topic, with the vector 𝛽𝑘 the prior distribution for

topic 𝑘. Likewise, let the vector 𝛼 represent the prior for the weight of each topic in

any document, with the scalar value 𝛼𝑘 representing the prior weight of topic 𝑘.

We define a generative process as follows. First, for each document 𝑑 we draw topic

proportions 𝜃𝑑 ∼ 𝑝(𝜃𝑑;𝛼) = Dir(𝛼), and for each topic 𝑘 we draw a distribution

𝜑𝑘 ∼ 𝑝(𝜑𝑘; 𝛽𝑘) = Dir(𝛽𝑘) over words for the topic. We draw a topic for each word of

each document 𝑧𝑑,𝑛 ∼ 𝑝(𝑧𝑑,𝑛|𝜃𝑑) = Categorical(𝜃𝑑), where 𝑧𝑑,𝑛 is the topic assignment

for the 𝑛th word of document 𝑑. Finally, we draw the 𝑛th word of document 𝑑 as

𝑤𝑑,𝑛 ∼ 𝑝(𝑤𝑑,𝑛|𝑧𝑑,𝑛, 𝜑1:𝐾) = Categorical(𝜑𝑧𝑑,𝑛). Under this generative model, we can

write the joint distribution of all variables (both hidden and observed) as follows:

𝑝(𝛽1:𝐾 , 𝜃1:𝐷, 𝑧1:𝐷, 𝑤1:𝐷) =
𝐾∏︁
𝑘=1

𝑝(𝜑𝑘; 𝛽𝑘)
𝐷∏︁

𝑑=1

𝑝(𝜃𝑑;𝛼)

𝑁𝑑∏︁
𝑛=1

𝑝(𝑧𝑑,𝑛|𝜃𝑑)𝑝(𝑤𝑑,𝑛|𝑧𝑑,𝑛, 𝜑1:𝐾)

(6.1)

While the original paper [15] approximates this quantity via variational inference, one

can also do so via Markov Chain Monte Carlo techniques, which we opt for. We use

the Gibbs sampler provided by the MALLET software package [78]. We train a 100-

topic LDA model on a random sample of OMR note snippets, using space-delimited

tokens as words in our vocabulary.

Examples of the words generated by these topics are shown in Table 6.3. While

we have prior knowledge about token similarity from domain expertise (afib and

aflutter are relevant in almost identical medical contexts), we do not make use

of this in our completely unsupervised LDA setup. In particular, the LDA algorithm

proposed in [15] assumes a uniform prior over topics for each word in the vocabulary,

whereas we might strive to seed each topic with correlated words. Nevertheless, from

the perspective of snippetization we must map from LDA topics to clinical concepts.

We do so directly by establishing a one-to-one correspondence between topics and

105

Topic Name Topic Words

Skin rash skin lesions face cream allergic back reaction apply topical neck
scalp benadryl areas chest area dermatology itchy allergy examination

Cancer cancer mass breast lesion biopsy radiation treatment disease lymph
showed carcinoma scan tumor lung metastatic cell noted therapy lobe
prostate

Hand hand finger wrist fracture arm elbow injury splint distal shoulder thumb
motion radial intact swelling joint forearm ulnar range fingers

Breast breast exam pap cancer masses negative discharge smear lesions health
exercise discussed sexual family mammogram screening year check age
annual

OBGYN pregnancy vaginal bleeding pelvic weeks obgyn fetal cyst lmp gyn preg-
nant ovarian urine ultrasound uterus blood prenatal discussed negative
cervix

Cardiac aortic artery cardiac stenosis valve procedure mild carotid surgery vas-
cular mitral stent ventricular findings prior cad vein systolic lad femoral

? physician chart visit note deaconess final attending social created initial
systems reviewed department constitutional diagnosis procedures emer-
gency entered version real

? today fracture physical plan examination document needed weeks
surgery prescription medication present illness post followup visit as-
sessment incision status hip

Table 6.3: Sample Topics generated with traditional LDA on snippets of the OMR.
Trained on 𝐾 = 100 topics. Manually-chosen topic names are shown for medically-
meaningful groupings.

concepts in the next section.

Labeled LDA

Traditional LDA is completely unsupervised in that each document’s distribution of

topics is unknown. We instead want to force each topic to represent a condition in

our ontology. We also want to be able to automatically seed a given snippet with

multiple conditions/topics– a phrase like diabetes and hypertension might

be equally relevant to two different topics. In short, we want to generate LDA topics

from multi-labeled corpora– a paradigm coined labeled LDA (LLDA) in [94].

106

Like traditional Latent Dirichlet Allocation, LLDA models each document as a mix-

ture of underlying topics, generating each word from one topic. However, LLDA is

supervised in that it constrains the topic model to use only topics that correspond to

a document’s observed label set. Formally, we label each document 𝑑 with a set of

topics expressed as a multi-hot vector 𝜁𝑑. We modify the generative process by first

deterministically computing the vector 𝛼𝑑 = 𝛼⊙𝜁𝑑
|𝛼⊙𝜁𝑑|1

, where ⊙ represents element-wise

multiplication. In this way, for each document 𝑑, we modify the prior over topics to

be restricted only to the labeled topics, then normalize the prior distribution. The

new generative process draws 𝜃𝑑 ∼ 𝑝labeled(𝜃𝑑;𝛼, 𝜁𝑑) = Dir(𝛼𝑑), and then proceeds

identically to the case of traditional LDA.

To translate LLDA into our paradigm, we first define that each topic will correspond

to a model relevance bucket as defined in Section 4.2.1. We use these coarser buckets

instead of individual clinical concepts simply as a first-pass grouping. Each OMR

snippet is then assigned a label corresponding to topic 𝑘 if any concept in model

relevance bucket 𝑘 is mentioned in the snippet. While topics generated from training

LLDA on snippets of the OMR are ostensibly more meaningful than their LDA coun-

terparts, they are relatively coarse-grained and often capture unwanted comorbidities.

As an example, the LLDA topic corresponding to the diabetes model relevance

bucket places high mass on the word lisinopril, which is an antihypertensive

medication. This is because patients are often diagnosed with both hypertension and

diabetes, even though their disease histories are separate. Overall, the topics look

reasonable but also noisy, as shown in Table 6.4– considering we are labelling at the

coarse model relevancy bucket-level, LLDA would be difficult to cleanly extend to

individual concepts.

6.3.3 Anchor-and-Learn

Instead of taking a generative approach to snippet relevance, we can instead use a

discriminative one. For a given snippet 𝑆𝑖 and condition 𝑐, we can estimate 𝑟(𝑆𝑖, 𝑐)

as the probability 𝑆𝑖 is relevant to 𝑐 and rank by this soft quantity. Our choice is then

107

Topic Name Topic Words

Hypertension status intact bilaterally home activity gait functional head sit
impaired htn sleep balance noted minutes unable rehab strength
mobility motor

Diabetes diabetes insulin needed times release units otc metformin medi-
cation capsules aspirin capsule lisinopril list pressure active pre-
scription dose sugar weight

Arteriopathic diseases artery impaired stenosis bypass carotid femoral grossly vascu-
lar graft stent claudication iliac common total shoulder lower
angioplasty voice plavix pvd

Cardiomyopathies cardiac cad disease artery coronary mild aortic cabg heart valve
prior aspirin bid lad ventricular edema htn mitral cardiology
catheterization

Depression/suicide depression psychiatric reports abuse assessment include suicidal
axis mood admission suicide states treatment ago ideation amp
substance thought thoughts anxiety

Asthma asthma albuterol needed cough inhaler hfa breath puffs sulfate
shortness wheezing prednisone mcg aerosol exacerbation hours
call advair regular doctor

Chest pain chart test final deaconess emergency physician department ekg
heart diagnosis rhythm neuro constitutional created systems
stress ecg rate attending presenting

Hyperlipidemias pressure hypertension heart cholesterol weight disease edema
review aspirin rate exercise hyperlipidemia dear rhythm clear
regular recent test months coronary

Table 6.4: Sample topics generated with LLDA on snippets of the OMR. Each topic
corresponds to a model relevance bucket as defined in Section 4.2.1.

108

how to parameterize 𝑟– a straightforward framework is logistic regression.

However, we also need to define our notion of relevance in this setting. Inspired

by literature on unsupervised clinical phenotyping, we turn to the anchor-and-learn

paradigm proposed by [48]. Consider a set of documents 𝐷 = 𝑑1, 𝑑2, · · ·. For each

clinical concept of interest 𝑐, we establish certain textual anchors 𝐴𝑐 that act as

certain indicators that some document 𝑑 has 𝑐 as a phenotype– for example, 𝐴𝑐 =

{atrial fibrillation,afib,af,a fib} for the concept “atrial fibrillation“.

Then, we extend the markers that correspond to concept 𝑐 as follows: for each 𝑑, we

create a new document 𝑑′ that masks out any anchor of 𝑐 from the text. We learn

a mapping (typically a logistic regression model) to predict [[|𝐴𝑐 ∩ 𝑑′| > 0]], or the

presence of any anchor in the masked document 𝑑′. Ideally, we pick up on predictive

features of our phenotype; for atrial fibrillation, we might find that coumadin and

other blood thinners are highly-weighted features.

We treat each of our concepts as distinct phenotypes and snippetize sections of OMR

notes into individual documents. For a concept 𝑐, we set its anchors 𝐴𝑐 as any accept-

able synonym of the concept and train a logistic regression anchor-and-learn model

to predict the presence of an anchor in masked document. To encourage the model

to use related clinical concepts as predictive features, we preprocess the text to coa-

lesce tokens that correspond to the same clinical concept. Like [48], we also detect

concepts that occur within a negated scope using the NegEx algorithm from Section

4.2.1, and prepend them with no_ to capture negative concepts. As a concrete ex-

ample, the phrase patient has a history of diabetes mellitus, but

no fever or chills would be preprocessed as patient has a history of

diabetes_mellitus but no_fever or no_chills. We then tokenize the

text with a binary multi-hot bag-of-words representation, and train a highly-𝐿1 reg-

ularized logistic regression model to encourage feature sparsity. A bag-of-words rep-

resentation is natural for this application because it mimics how humans might de-

termine the relevance of a snippet– by looking for words or phrases that match the

desired query. Using this procedure, there are 126,714 unique tokens in our dataset.

109

Note that atrial fibrillation will not be a predictive feature for the atrial

fibrillation concept because it is masked out of documents in our training set. To

rectify this, we must modify our inference procedure. For a given condition concept

𝑐, let 𝑓𝑐 be its corresponding anchor-and-learn logistic regression model. We first

generate a set of candidate snippets 𝒮. For each 𝑆𝑖 ∈ 𝒮, we first find whether any

anchors of 𝑐 are present in 𝑆𝑖, as well as the probability of the snippet being relevant

if the text were masked. Thus, our relevance measure is

𝑟(𝑆𝑖, 𝑐) = [[|𝐴𝑐 ∩ 𝑆 ′
𝑖| > 0]] + 𝑓𝑐(𝑆𝑖)

In this way, any snippet where an anchor for concept 𝑐 is mentioned is automatically

ranked above a snippet without the anchor present. The non-anchor tokens in the text

determine its ordering, such that the presence of highly predictive tokens upweight

the snippet’s relevance. Top-weighted coefficients for a sample of models (each cor-

responding to a single condition concept) are shown in Table 6.5. On average, there

are 607 nonzero coefficients per model (a sparsity of 0.4%).

We see that while these features seem more robust compared to those generated from

LLDA, we still see many of the same problems– disease comorbidities for two relatively

unrelated conditions (e.g. diabetes and hypertension) and meaningless words

that are predictive (e.g. pmh). These problems are hard to mitigate without some

amount of manual curation.

Although we can calculate the performance of our logistic regression model for each

concept with a standard metric like AUC, this does not indicate the quality of our

relevant snippets. We thus conduct a qualitative evaluation of snippets generated

with an anchor-and-learn approach against an advanced keyword approach below in

Table 6.6. The case study exposes a more fundamental limitation of the anchor-

and-learn model– we do not incorporate any measure of recency into our model.

Older, outdated snippets can be ranked higher than more recent ones if they contain

highly predictive tokens, which can give a dangerously inaccurate view of the patient’s

disease history. Even if snippets generated using our anchor-and-learn relevancy

110

Concepts Coefficients

hypertension portal, hyperlipidemia, hld,
hypercholesterolemia, hl, dyslipidemia,
pulmonary, pmh, dm, high_cholesterol, hctz,
pmhx, nci, diabetes, controlled, amlodipine,
hydrochlorothiazide, atenolol, lisinopril,
obesity

anxiety depression, klonopin, panic_attacks, buspar,
nos, panic, generalized, seroquel, situational,
buspirone, valium, tremor, citalopram,
psychotherapy

asthma nebulizer, bronchitis, flare, pmhx, ventolin,
prednisone, spirometry, action, pfts

renal transplant kidney_disease, quadrant, end_stage_renal_disease,
iga_nephropathy, iddm, pancreas, renal_failure,
graft, blindness

c-section pmhx, ob, labor, pregnancy, pshx, fetal,
cholecystectomy, surgical, child

Table 6.5: Top-weighted Coefficients for Anchor-and-Learn Model for OMR Snippe-
tization.

ranker do seem sensible at a surface level, we do not strike a practical balance between

chronology and relevancy. We can attempt to remedy this via a number of ways,

such as discretizing the relevancy of snippets and sorting snippets by date within

these discrete chunks, or by systematically downweighting older snippets, but this

is difficult to accomplish in a data-driven manner. Given this limitation, as well as

inherent problems with disease comorbidities, we do not opt for this approach.

We note that anchor-and-learn logistic regression is simply one way to formalize

binary snippet relevance– many other techniques exist for text classification, such as

performing logistic regression on BERT-like contextual embeddings of the text [30],

or using a nonlinear model for the learned classifier [69, 40]. However, these more

complex methods lack clear interpretability to the physician, and as such, we did not

consider them seriously for our initial pilot.

111

Standard Keyword Search Anchor-and-Learn Logistic Regression

Condition: Hyperlipidemia

October 18, 2011: Past history of a breast
reduction, tummy tuck, bladder prolapse
surgery. Right hand arthritis/tendinitis in
wrist and along base of thumb. Borderline
fatty liver hyperlipidemia (not well-controlled
with diet or exercise).

January 1, 2010: Mild hyperlipidemia with
elevated cholesterol, but will recheck labs to-
day. Reviewed diet

exercise and weight loss with her.
January 17, 2011: Osteopenia in spine. Also
has borderline fatty liver, hyperlipidemia–
diet is moderate in fat and cholesterol is high
compared to baseline. Check lipids and LFTs
today.

February 2, 2010: 51 y/o F with chronic
medical issues: breast mass, hx +HPV on
previous pap, no menses 4 years, mild hyper-
lipidemia, high cholesterol. Low Vitamin D
on recent lab.

February 2, 2010: 51 y/o F with chronic
medical issues: breast mass, hx +HPV on
previous pap, no menses 4 years, mild hyper-
lipidemia, high cholesterol. Low Vitamin D
on recent lab.

January 17, 2011: Osteopenia in spine. Also
has borderline fatty liver, hyperlipidemia–
diet is moderate in fat and cholesterol is high
compared to baseline. Check lipids and LFTs
today.

Table 6.6: Case Studies: Snippets surfaced with advanced keyword search vs. anchor-
and-learn logistic regression for a sample condition.

112

6.4 Deployment and Next Steps

In order to efficiently implement our advanced keyword search and service requests

quickly, we must carefully consider our design choices. We now discuss how we deploy

our keyword search algorithm and room for future work.

6.4.1 Implementation of Advanced Keyword Search

Servicing Snippet Requests: Advanced keyword search can be implemented in

a naive manner that does not prioritize efficiency.

Consider a patient whose OMR is split into an chronologically-ordered list 𝑆 of snip-

pets using the algorithm outlined in Section 6.2. We assume each snippet contains at

most 𝑛 words, each of which has at most 𝑚 characters – then, for each snippet 𝑠 ∈ 𝑆

we precompute the set 𝐾𝑠 of keywords present in the snippet in total time 𝑂(𝑛𝑚|𝑆|)

using a trie-based extraction algorithm. We maintain 𝐾𝑠 as a hash table to allow for

constant-time lookup.

Snippet requests are made automatically as a user enters text into the interface.

From this text, a set 𝐶 of concepts is extracted. We maintain a hash map from each

concept 𝑐 to a set 𝐾𝑐 of keywords relevant to 𝑐, allowing us to compute 𝐾𝑐, which

we maintain as a hash table, for each 𝑐 ∈ 𝐶 in 𝑂(|𝐶|) time. To find snippets of the

patient’s medical history relevant to the concepts in 𝐶, we iterate through each 𝑐 ∈ 𝐶

and each 𝑠 ∈ 𝑆. For each 𝑐, 𝑠 pair we determine that snippet 𝑠 is relevant to concept

𝑐 if the intersection 𝐾𝑐 ∩𝐾𝑠 is nonempty – this can be checked by searching for each

element in 𝐾𝑐 within 𝐾𝑠, or vice versa.

The runtime of this algorithm will depend on the sizes of the sets 𝐾𝑐 and 𝐾𝑠,

so we bound max𝑐 |𝐾𝑐| ≤ 𝑁𝑐 and max𝑠 |𝐾𝑠| ≤ 𝑁𝑠, and arrive at a runtime of

𝑂(|𝐶||𝑆|min(𝑁𝑠, 𝑁𝑐)), noting that we will only need to iterate over the smaller of

𝐾𝑐 and 𝐾𝑠 for each 𝑐, 𝑠 pair.

In practice, this system leads to latency for users. Indeed, we find that re-iterating

113

through all snippets to service a request is sub-optimal. To ameliorate this issue and

speed up the algorithm, we reformulate advanced keyword search as a sparse matrix

multiplication problem, which allows us to find all snippets relevant to all conditions

in a given request using an aggregated computation.

We reformulate the sets of keywords 𝐾𝑠 in each snippet 𝑠 ∈ 𝑆 as a binary matrix

𝐴𝑆 ∈ {0, 1}|𝑆|×𝜅, where 𝜅 represents the total number of keywords in our clinical

vocabulary. We set 𝐴𝑆
𝑠𝑘 = 1 if 𝑘 ∈ 𝐾𝑠 and 0 otherwise. We note that this matrix will

be extremely sparse in practice, and therefore can efficiently store it in compressed

sparse column format.

To find which snippets are relevant to a single concept 𝑐, we construct the sparse

vector 𝑣𝑐 ∈ {0, 1}𝜅, then set 𝑣𝑐𝑘 = 1 if 𝑘 ∈ 𝐾𝑐 and 0 otherwise. The product 𝐴𝑆𝑣𝑐

will then be a vector of length |𝑆| whose nonzero entries correspond to relevant

snippets. To extend this logic to a set of search concepts 𝐶, we construct a matrix

𝑉 𝐶 ∈ {0, 1}𝜅×|𝐶| whose rows correspond to vectors 𝑣𝑐 for each 𝑐 ∈ 𝐶, and compute a

matrix of snippet-concept relevance by taking the sparse matrix product 𝐴𝑆𝑉 𝐶 and

examining its nonzero elements. Noting that 𝐴𝑆𝑉 𝐶 will have dimension |𝑆| × |𝐶|, a

nonzero element at indices 𝑠, 𝑐 indicates that snippet 𝑠 is relevant to concept 𝑐.

The runtime of the sparse matrix multiplication can be bounded as follows: for each

of the |𝐶| columns of 𝑉 𝐶 , we must iterate through the at most 𝑁𝑠 columns of 𝐴𝑆

which contain a nonzero term in the position corresponding to that column. Then,

we must sum up the at most 𝑁𝑠 terms resulting from the product of each column of

𝑉 𝐶 with 𝐴𝑆. This implies a total runtime of 𝑂(|𝐶|𝑁𝑠𝑁𝑐) – in practice, we search

across many snippets (i.e. |𝑆| is large) and the sizes of the sets 𝐾𝑐 and 𝐾𝑠 are quite

small, and thus the sparse-matrix multiplication is significantly faster than the naive

alternative.

This algorithmic speedup makes it possible to surface relevant snippets with mini-

mal delay. In our implementation of this algorithm, we lazily compute 𝐴𝑆 for each

patient’s OMR as we load snippets 𝑆 into memory, and then compute and store the

nonzero elements of the product 𝐴𝑆𝑉 𝐶 , where the set 𝐶 is defined to be the set of all

114

concepts in our condition ontology. Thus, we can lazily compute all snippet-concept

relevance terms in time 𝑂(|𝐶|𝑁𝑠𝑁𝑐), and having done so can surface a list of snippets

relevant to a given concept immediately by accessing the cached results.

Rendering Snippets in the UI: It is very unlikely that a user wants to or has the

time to read through all snippets related to a particular condition, especially in the

case of denser OMRs. It is thus unnecessary to send the full text for all relevant snip-

pets at once. We instead send the minimum amount of information to identify each

snippet– the index of the note it originated from, and its integer character spans. As

a result, we respond to snippet requests with a list of integer tuples– (note_index,

char_start_index, char_end_index). We provide a separate API endpoint

that returns the full text of a note given a note index. This allows us to virtualize our

rendering of snippets in the UI– upon receiving a list of relevant snippets, the UI re-

quests the full-length note text for the first few notes. The remaining notes (and their

relevant snippets) are then only requested and displayed if/when the user explicitly

asks to see them. This decreases the size of request/response payloads between the

server and the client, and increases UI responsivity because we render exactly the

data that is being used and no more. On average, across a variety of patients, the

wall time of snippet requesting and rendering is around 3-5 seconds.

6.4.2 Future Work

The best way of knowing what snippets are relevant in a medical context is to get a

direct reading of this, which we can do in our tool. By examining user metrics related

to what snippets are explored further, we can ascertain exactly what notes, and more

specifically note snippets, are important to the doctor. As an intermediate step, we

can also use click-through audit data already available at BIDMC. This data is at

a note- rather than snippet-level, but gives a high-level sense of the order of notes

that a doctor clicks on. This would give us a better gauge of the relevancy/recency

tradeoff as well as general note types that are helpful to the clinician.

115

Finally, we acknowledge that we have studied relevant OMR snippets for a particular

condition, but doctors often browse through the OMR without a particular query in

mind. It may be helpful to show OMR snippets from certain note types, subspecial-

ties, or even section– as an example, we might surface all History of Present Illness

sections for a doctor to get a quick overview of a patient’s disease history.

116

Chapter 7

Information Synthesis and

Visualization of Semi-Structured

Data

In this chapter, we describe the contextual information retrieval and visualization

utilities that we developed for the tool.

7.1 Drug-Disease Indications

While a doctor can ascertain all of the medications a patient is currently prescribed

from structured data, it is difficult to automatically map each drug to the underlying

condition it is treating. First, the doctor must aggregate a list of conditions that the

patient has. Then, they use medical expertise to match drugs with conditions– this

domain knowledge is a set of drug-disease indications. As an example, metformin

treats diabetes.

Drug-disease indication datasets do exist, primarily because doctors cannot remember

every drug on the market and must occasionally consult these datasets to confirm a

mapping. However, they are stored in disparate sources that often cannot be easily

117

Figure 7-1: Screenshot of drug-disease indications in the system.

joined. The National Drug Formulary Reference Terminology (NDF-RT) database,

for example, is mapped to UMLS CUIs, but FirstDataBank’s DrugBank ontology

uses a different identifier. Many other such datasets exist, including the Chemicals

of Biological Interest from the European Bioinformatics Institute, the World Health

Organization’s Drug Dictionary, and the Prescriber’s Digital Reference.

We use an aggregation of all of these sources as curated in [108]. This list of drug-

disease indications is normalized to UMLS and contains over 192,000 unique drug-

indication pairs for 30,000+ concepts. These indications are used in the tool to

automatically match prescribed medications to tagged conditions without the doctor

having to search through the medical record– in Figure 7-1, tagging hypertension,

for example, surfaces metoprolol tartrate as a relevant medication. Clicking

on metoprolol tartrate can then enable other contextual information retrieval

such as dosage information and OMR notes with prescriber information.

7.2 Lab and Vital Trend Visualization

Clinicians often want to visualize quantitative lab and vital trends to establish a

patient’s baseline, compare it to reference values, and use this as a diagnostic tool.

While historical lab and vital data is available, BIDMC’s current EHR does not

provide any in-build data aggregation or visualization.

We provide the user with multiple views of the data by relying on time-varying aggre-

gation windows. Clinicians can visualize trends across the current visit, the last six

118

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/index.html
https://www.fdbhealth.com/
https://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/chebi/
https://www.who-umc.org/whodrug/whodrug-portfolio/whodrug-global/
https://www.pdr.net/

Figure 7-2: Box-and-whisker visualization of a lab trend.

months, the last one year, and all available data. Tagging a lab or vital in the note

will automatically add a box-and-whisker plot of the data to the sidebar as shown

in Figure 7-2. The graph marks quartiles of the data distribution, as well as the in-

dividual lab/vital recordings for a given window. Comparing box-and-whisker plots

over varying time windows gives a longitudinal view of how the trend has shifted.

In the low-data regime where a user has fewer than five vital/lab readings across all

time, we instead opt for a standard tabular representation of the data instead of a

graphical visualization, similar to what is proposed in [8].

When clinicians are mentioning a lab/vital trend in the note itself, we provide ways

of aggregating lab trends over time into concise plaintext representations. Users

can record the maximum, minimum, and mean lab/vital value (as well as standard

deviation to get a measure of variance) using a multi-tiered autocomplete dropdown.

An example of this is captured in Figure 7-3.

7.3 Condition-Procedure Relations

Medical conditions can be treated with drugs. However, chronic conditions often

require surgeries or recurring treatments. If a patient presents with chest pain, any

prior cardiac surgery is useful to know about. Similarly, if a patient has chronic

119

(a) Aggregate trends across time (b) Drill down into individual measures

Figure 7-3: Inserting aggregate lab/vital trends into the editor with autocomplete. (a)
The user can use the first level of the autocomplete to select a timeframe to aggregate
over. Pressing tab inserts text that encapsulates the range of values, the average,
and the standard deviation. (b) The user can drill-down further to record individual
measurements or summary statistics within a timeframe. In this screenshot, the most
recent lab value within the last six months is recorded, along with its date.

Figure 7-4: Screenshot of condition-procedure relations in the system.

kidney disease, clinicians care about whether or not they are on dialysis.

We thus wish to surface relevant procedures that are related to a condition in a

structured manner. We define a procedure as a clinical concept that refers to a

recurring treatment (chemotherapy, renal dialysis, not a drug), or a surgery (a distinct

medical intervention that likely required an operation, e.g. liver transplant). An

example of this in action is depicted in Figure 7-4, where we show that a patient

has had a hysterectomy when the doctor mentions that the patient has a history of

vaginal bleeding.

120

We first outline how to construct an ontology of procedures, and then describe various

methods of learning a relationship between procedures and conditions. We ultimately

adopt a machine translation approach in our live system, which converts representa-

tions of conditions into procedures and looks for neighbors in a latent space.

7.3.1 Constructing an Ontology of Procedures

To construct our ontology of procedures, we bootstrap from our condition ontology

and fill in missingness by using UMLS concept types.

There are already many procedures embedded into our ontology of diseases/condi-

tions, e.g. cholecystectomy, tonsillectomy, chemotherapy. We can find

procedures in our condition ontology by checking whether its UMLS concept type

includes “Therapeutic or Preventative Procedure.” We then add all of these concepts

to our procedure ontology unless:

∙ The term is too general (immobilization) or was incorrectly classified as a

procedure by UMLS (diabetic on diet only).

∙ The term is too specific/rare and occurs fewer than 50 times across ≈270,000

of the ED notes we have in our retrospective dataset of clinical notes.

We then find any remaining procedures by running a trie-based capture of UMLS CUIs

that met the following characteristics: (1) it was designated as a “Therapeutic or Pre-

ventative Procedure” UMLS concept; (2) it appeared as a procedure in SNOMED CT,

which filters out nonsensical UMLS synonyms such as water for hydrotherapy;

(3) its UMLS CUI appeared at least 50 times in our dataset of clinical notes. Finally,

we manually group equivalent concepts and removed extraneous synonyms to tailor

the ontology for the ED. As an example, IVF appears often in our dataset to represent

IV fluids, whereas UMLS lists it as a synonym for in-vitro fertilization.

Similarly, left hip replacement and right hip replacement are distinct

UMLS CUIs but are condensed into a single concept in our ontology because they are

121

relevant in the same contexts. The final ontology consists of 112 concepts from 144

distinct UMLS CUIs. This represents 406 unique synonyms for procedural concepts.

7.3.2 Establishing Prior Mentions of Procedures

The simplest way of determining past procedures for a patient is to look for a string

match of any procedure in the patient’s OMR. However, this is a poor way of establish-

ing a ground-truth because of hedging and uncertainty. Many notes will recommend

surgeries and treatments, e.g. “the patient will likely need X surgery.” The notes in

our retrospective slice of data often do not have note titles or templated formats, so

it can be difficult to find Procedural Notes (e.g. post-op surgery).

One way of detecting certain mentions of prior procedures is to use a rule-based

approach with the following two heuristics.

1. If a term occurs in a sentence of the form X: ... for X in [PMH, PMHx,

HPI, hx of, PSH, Surgical History, Past Surgeries], it is cer-

tain.

2. If a term is immediately preceded by a local keyword such as s/p, status

post, status/post, complications with, underwent, had, previous

since (allowing for modifiers such as right, left, partial to be at-

tached to the term), it is certain.

This works well in practice, especially given that even if a patient has one narrative

note where a procedure is missed with our heuristics, it is highly likely that the pro-

cedure is mentioned in another note which we do capture. Procedures are mentioned

in approximately 15% of ED notes in our system, and 56% of these mentions are clas-

sified as certain using this algorithm. Over 50% of ED notes with a certain procedure

mentioned had at least one certain mention of the procedure in a prior OMR note.

To learn this more generally, we might pose the problem differently: consider some

medical context (triage text, ED note) 𝐶. For a particular procedure 𝑃 , we find all

122

sentences 𝑆 in the OMR where 𝑃 is mentioned. Then, we learn a mapping from

(𝑆,𝐶) → {0, 1} to determine whether the patient truly had the procedure. We can

generate positive labels for the task if 𝑃 was mentioned in a corresponding ED note,

and with our rules. However, generating negative labels is more nuanced because

presence of 𝑃 within an ED note does not represent the ground truth. In many

cases, doctors choose to omit medically-relevant information because they are pressed

for time, or because they neglect to find it in the OMR. In addition, the dataset

of ED notes we have represents early draft versions of clinical notes, potentially

before relevant prior procedures are added. Given that in future iterations of the

tool we might receive structured procedure data in the form of Current Procedural

Terminology (CPT) codes, we find that the rule-based approach works well as a

stopgap to extract procedures from a patient’s OMR.

7.3.3 Mapping Conditions to Procedures via Semi-Supervised

Affine Transformations

A core problem we face is that while a mention of a procedure in an ED note indicates

that it was relevant, it is difficult to ascertain which condition(s) made it so. In addi-

tion, the absence of a procedure in our dataset doesn’t indicate that it was irrelevant

to the clinical context– it’s possible that the doctor wanted to write a concise note,

or did not notice the procedure had happened.

However, procedures usually relate to a condition usually when the procedure affects

a body part or organ system that the condition affects. Prior cardiac surgery, for

example, is automatically relevant for any condition related to the heart.

One way to incorporate medical knowledge in our model while simultaneously ignoring

the bias of procedures mentioned in ED notes is to use embeddings of concepts trained

on external corpora. In a simple baseline, we can take a condition concept 𝑐 and look

for its nearest neighbors among procedures in some latent space. We use embeddings

from [13], who train Word2Vec-style embeddings for UMLS CUIs using a selection of

123

medical claims data, clinical notes, and biomedical journal articles.

Note that the naive approach of looking for nearest neighbors to a concept does not

exploit any of the labeled data we have. For example, we know that if a procedure was

mentioned in an ED note as well as in a patient’s OMR, the procedure was specifically

relevant within the context of other clinical concepts mentioned in the ED note. That

said, if a procedure is not mentioned in the ED note, it is only a weak indication that

it isn’t relevant. Essentially, mentions of procedures in ED notes are an incomplete

subset of the ground-truth relationships between conditions and procedures.

Inspired by older work in semi-supervised machine translation such as [4], we for-

mulate condition-procedure relations as a noisy machine translation task. We utilize

concurrent mentions of procedures and conditions in ED notes to learn an affine

transformation from conditions in an embedded space to procedures in an embedded

space. Then, we find relevant procedures to a particular condition by transforming

the condition into our procedure space and looking for its nearest neighbors.

Formally, consider an clinical note with a set of documented conditions 𝐶 and pro-

cedures 𝑃 . We define 𝐾 affine transformations of the form 𝑓𝑖 : 𝑣 → 𝐴𝑖𝑣 + 𝑏𝑖

for 𝑖 ∈ {1, · · · , 𝐾}. We first transform each of our conditions 𝑐 ∈ 𝐶 into our

procedure space with each of our 𝐾 transformations, creating a new set of points

𝐶 ′ = ∪𝑖∈{0,···,𝐾}{𝑓𝑖(𝑐)|𝑐 ∈ 𝐶}. The translated conditions should be close to related

procedures 𝑃 in our embedded space, so we define our loss function as

ℓ =
∑︁
𝑝∈𝑃

min
𝑐′∈𝐶′

𝑑(𝑝, 𝑐′)

for some appropriately chosen distance function 𝑑. We minimize this objective using

stochastic gradient descent to learn 𝐴𝑖 and 𝑏𝑖 for each of the 𝐾 transformations, and

use Euclidean distance for 𝑑. Defining multiple transformations allows us to have

different modes of converting conditions to procedures.

We also examine results when forcing each 𝐴𝑖 = I (i.e. converting conditions solely by

adding a bias vector) as well as adding a regularization term ||𝐴𝑖−I|| into ℓ to prevent

124

each 𝐴𝑖 from deviating from the identity, using a Frobenius norm. In practice, we

only use procedures that are mentioned in the ED as well as in the OMR to remove

any uncertain mentions of procedures.

We compare relationships learned from this method against the naive nearest-neighbors

approach below in Figure 7.1, and find that the affine transformations correct for is-

sues in the embeddings provided by [13] and give medically-meaningful results. Note

that training the affine transformations solely on mentions of concepts within OMR

notes (and not including ED notes) does not make a qualitative difference in our

model, which we tested. In practice, we deploy the learned affine transformation

method setting 𝐾 = 2, and only display a procedure as relevant to a condition if (1)

the patient had a certain mention of the procedure in the OMR, and (2) that the

procedure is within the top ten closest neighbors to the transformed condition.

7.3.4 Mapping Conditions to Procedures via Logistic Regres-

sion

Instead of creating a ranking over procedures that lie close to a condition in some

embedded space, we might attempt to learn the binary relevance of a procedure p to

a set of conditions C directly, e.g. a function 𝑓 : (𝐶, 𝑝) → {0, 1}. We can generate

training data for this task as follows: For patient 𝑖, we detect all past procedures 𝑃𝑖

a patient has had by looking for certain mentions of procedures in prior OMR notes

(using our rule-based approach to detect certainty). We also find all conditions 𝐶𝑖

mentioned in a corresponding ED note. Then for each 𝑝𝑖 ∈ 𝑃𝑖, we featurize (𝐶𝑖, 𝑝𝑖) in

some way and attempt to predict whether 𝑝𝑖 appears in a corresponding ED note. If

𝑝𝑖 does appear, it is clearly a positive label as the procedure was relevant in the given

medical context. However, if it does not appear, we can either treat it as a negative

label or as an unknown label.

Note that |𝐶𝑖|, or the number of concepts present in an ED note, can vary. In order to

featurize (𝐶𝑖, 𝑝𝑖) to feed into a model like logistic regression, we must featurize 𝐶𝑖 with

125

Naive NN Learned Bias Learned Affine

Diabetes mellitus

cadaveric renal transplant dialysis procedure coronary artery bypass
antiretroviral therapy subtotal pancreatectomy cardiac surgery procedures

dialysis procedure bilateral total nephrectomy perc. coronary intervention
pancreas transplantation pancreas transplantation coronary angioplasty

parathyroidectomy gastric bypass repair of aneurysm
cervical arthrodesis cadaveric renal transplant dialysis procedure

bilateral mastectomy peritoneal dialysis valvuloplasty of aorta
subtotal pancreatectomy roux-en-y gastrojejunostomy pancreas transplantation

Deep Vein Thrombosis (DVT)

carotid endarterectomy thrombectomy repair of aneurysm
thrombectomy repair of aneurysm thrombectomy

percut coronary intervention carotid endarterectomy carotid endarterectomy
pancreas transplantation bypass graft bypass graft

coronary angioplasty placement of stent angioplasty
cadaveric renal transplant angioplasty transplantation of liver

dialysis procedure perc. coronary intervention perc coronary intervention
bypass graft coronary angioplasty placement of stent

transplantation of liver blood transfusion dialysis procedure

Gastritis

subtotal pancreatectomy roux-en-y gastrojejunostomy total colectomy
distal pancreatectomy proctocolectomy proctocolectomy

roux-en-y gastrojejunostomy total colectomy roux-en-y gastrojejunostomy
proctocolectomy resection of polyp resection of polyp

pancreas transplantation subtotal pancreatectomy subtotal pancreatectomy
total colectomy distal pancreatectomy distal pancreatectomy
loop ileostomy loop ileostomy small intestine excision

cholecystostomy pancreatectomy pancreatectomy

Table 7.1: Qualitative examples of closest procedures to conditions using affine trans-
formations. The naive nearest-neighbors baseline looks for nearest procedures to the
given condition using Euclidean distance between word2vec embeddings. The Learned
Additive Bias and Learned Affine Transformation methods learn 𝐾 bias vectors or
a linear transformations to transform conditions respectively, and then finds nearest
procedures to the transformed condition using Euclidean distance between word2vec
embeddings. We show results for 𝐾 = 2.

126

a fixed-length vector that is agnostic to |𝐶𝑖|. We experiment with different pooling

strategies, including mean- and max- pooling concept vectors for each concept in 𝐶𝑖.

We then concatenate this pooled vector with an embedding of 𝑝𝑖 and feed this as

input into our classifier. We experiment with treating lack of mentions of a procedure

in a note as both a negative label and unknown label. In the latter paradigm, we

use the framework of [35], which shows that the conditional probabilities produced

by a model trained on both labeled and unlabeled examples differ by only a constant

factor from the conditional probabilities produced by a model trained on fully labeled

positive and negative samples.

However, using these methods, we find that classifiers trained using this methodology

have poor qualitative results, especially compared with our semi-supervised affine

transformation approach, and thus did not pursue this avenue.

7.4 Differential Diagnosis

The ambitious vision of how machine learning can transform EHRs outlined in [70]

identifies differential diagnosis as a core part of clinical decision support. Differential

diagnosis is the process of proposing and ruling out different conditions that cause

the patient’s symptoms. Expert diagnostic support systems have been extensively

researched, but are unsurprisingly hard to extend [10]. Learned models, on the other

hand, can encode complex patterns from large datasets and have gained traction

in recent years. However, these models often struggle to incorporate expert advice

[96, 12, 95] or generalize beyond specific chief complaints or disease types [73].

Structured data that is created as the doctor types a note can be used to build better

differential diagnosis models. While we do not currently support differential diagnosis

in the tool, we outline initial prototypes of two diagnostic models: a general model

designed to predict a patient’s primary ICD code; and a chief complaint-specific model

that predicts a clinically-derived diagnosis given a chief complaint of abdominal pain.

The former ideally aids in general brainstorming for possible diagnoses in case a

127

clinician misses an important clue, while the latter helps narrow and prioritize the

correct diagnosis given a specific use case. We also build a tool that allows a doctor

to visualize these predictions as they compose a note as a preliminary demonstration

of the utility of differential diagnosis support.

For this initial analysis, we focus on discriminative approaches to predicting diag-

noses, rather than building a generative causal model to map underlying conditions

to present and absent symptoms. This allows us to rapidly iterate on models. Ulti-

mately, we see three potential mechanisms to integrate machine learned differential

diagnosis in the tool: (1) predicting likely diseases given a set of presenting symptoms,

and then finding snippets related to those diseases in the sidebar; (2) updating the

autocomplete based on already documented symptoms; and (3) prepopulating the

Diagnosis section of the note with suggestions.

7.4.1 Generalized Differential Diagnosis

We first seek to develop a single unified model for differential diagnosis. This model

operates at the level of ICD billing codes, and has the objective of predicting what

the primary diagnosis code will be using information collected in the EHR. Due to

its universality, this model obviates the need for excessive manual data processing,

and allows us to immediately provide meaningful suggestions for the overwhelming

majority of patients.

Creating a Dataset

In a patient’s discharge summary, there are two clues into the final diagnosis. The

first is the structured International Classification of Diseases-9 (ICD9) billing codes

which are assigned per visit. All of the visits in our dataset are assigned an ordered

sequence of codes, but not all codes are relevant to or representative of the underlying

condition– as an example, a diabetic patient who enters the ED complaining of arm

pain may be billed for diabetes if their treatment related to the disease, even if it

128

was not the original reason for coming in. ICD codes are also assigned to each visit

by a panel of medical billing experts; these codes do not necessarily align with the

diagnostic mental model that doctors use during the course of treatment. However,

because these codes are structured, we can leverage already-existing ontologies and

hierarchies in our models.

The second, more direct clue into the diagnosis is the Diagnosis: section of

the clinical note, which often contains a few phrases that encapsulate the diagnosis.

Clinical notes in our retrospective dataset do not always contain this section, though.

After extracting any symptom/condition concepts from our ontology that appeared

following mentions of Dx: or Diagnosis: from raw ED notes, only 68 con-

cepts were mentioned more than 100 times. In contrast, there are 373 ICD9 codes

that appear more than 100 times in our dataset.

Due to difficulties in extracting diagnoses from the raw ED note text itself, we use

primary ICD9 codes as our labels. ICD codes are ordered per visit, and while the sec-

ondary codes usually correspond to chronic conditions such as diabetes or hyperten-

sion that are crucial to the given visit, the first, primary code is usually representative

of the true diagnosis. While the tail of ICD9 codes is long (there are around 3500

ICD codes in total in the dataset), these 373 labels represent 87% of the distribution

of primary codes.

We seek to aid the doctor by providing differential diagnosis support at each stage

of medical decision making. Our model should provide helpful diagnostic suggestions

based on the triage note even when the doctor has not yet seen the patient, as well

as certainty about the correct diagnosis once it is documented. We simulate this by

creating an augmented dataset comprised of the following types of text input:

∙ Entire notes (triage notes concatenated with MDcomments): the use case here

is that a clinician is largely finished documenting their findings, and wishes to

enter a final diagnosis.

∙ Triage notes alone: this allows us to learn how to predict a (possibly vague)

129

diagnosis based solely on preliminary findings. Qualitatively, the triage note

often contains enough information to make a good diagnosis in simpler cases,

and we want to be able to capture that in our model.

∙ Triage notes concatenated with a random prefix of the clinical note, chosen

uniformly between 10 words into the note to full length. This type of training

data lets us account for the use case of a doctor wanting diagnostic suggestions

while in the midst of writing a note.

A future direction of research might be to use audit data to find reasonable “check-

points” in the note to predict from, rather than random subsamples.

Modeling & Results

We experiment with a mix of linear models and nonlinear neural networks to perform

our diagnostic prediction.

Linear Models: We first train logistic regression models to make a multiclass pre-

diction over our each of our primary ICD code classes, using various tokenizations

and featurizations of the text:

1. A binary vector of all symptoms and conditions indicating whether they were

positively mentioned in the note (negative mentions are treated the same as an

absence of a mention).

2. A multihot representation of each symptom and condition indicating whether

it was positively mentioned, negatively mentioned, or absent. Each concept is

essentially treated as a ternary variable.

3. A TF-IDF vectorization of a bag-of-words representation of the text. Within

this, we explore two tokenization strategies: “standard” tokens that are space-

delimited, and “condensed” tokens where concepts and their negations are treated

as single concepts (e.g. chest_pain, no_chest_pain).

130

Multi-Branch 1-D CNNs: We also explore convolutional neural networks to test

how nonlinear models would fare. Intuitively, the success of a bag-of-words featuriza-

tion for linear models hints at the fact that certain words or combinations of words

are indicative of final diagnoses. One way to generalize this beyond bag-of-words is to

train a one-dimensional CNN on an embeddings of the triage and clinical note texts.

State-of-the-art for ICD code prediction from text use a 1-D CNN, augmented either

with an attention layer for interpretability [83] or with residual network to capture

longer-term dependencies [67].

Inspired by these architectures, we choose a one-dimensional multi-branch CNN model.

First, we map each token in our vocabulary to a 𝑑-dimensional vector embedding.

Then we, choose 𝑛𝑘 filter sizes 𝑘1, 𝑘2, · · · , 𝑘𝑛𝑘
(hyperparameter tuned). For each filter

size, we create 𝑛𝑓 filters of the given length such that filters corresponding to a length

of 𝑘𝑖 are represented by a 𝑘𝑖 × 𝑑 matrix of trainable real numbers. Each filter is

convolved with a stacked embedding of each word in the combined triage and clinical

note text. A max-pooling is used per filter of size 𝑘𝑖 to pick the single highest cross-

correlation between any contiguous 𝑘𝑖 words in the filter matrix. These max-pooled

outputs are then concatenate into a vector of length 𝑛𝑓 × 𝑛𝑘, which is then passed

through a ReLU activation and a fully connected layer. This maps the input to a

vector whose length is equal to the number of possible diagnoses (classes). A softmax

is finally applied to get estimates of the probabilities of each class.

There are two modes in which this model can improve over the bag-of-words baselines.

First, longer filters can learn multi-token phrases of relevance. Second, these filters

can act as “soft” keywords, allowing for a broader group of ideas that coexist in the

same region of the embedded space to share weights and be used in a similar manner

for prediction, thereby improving generalization.

The model is trained end-to-end with a weighted cross-entropy loss due to class im-

balance. Embeddings are initially seeded using a word2vec model trained on OMR

notes, but are trained in tandem with the CNN. A full list of tunable hyperparameters

that we searched over when training models are shown in Table A.1. Because this ar-

131

Model MRR ↑ Accuracy ↑

Rank by frequency (deterministic) 0.14 1%
Logistic Regression (binary representation of symptoms/conditions) 0.35 19%
Logistic Regression (ternary representation of symptoms/condi-
tions)

0.33 21%

Logistic Regression (BoW of text alone, standard tokenization) 0.43 28%
Logistic Regression (BoW of text alone, condensed tokenization) 0.48 31%
Multi-branch CNN (word2vec embeddings of each token in text;
600 length-1 filters)

0.52 36%

Table 7.2: Performance of diagnostic models for general differential diagnosis. Mea-
sured by mean reciprocal rank (MRR) and accuracy across the entire dataset, which
contains each triage note as well as a random subsample of the clinical note.

chitecture requires a fixed-length input, we truncate input text to a constant number

of tokens and pad the text with whitespace if necessary. We find that an input length

of 512 tokens achieves the best performance for our generalized differential diagnosis

model, and truncates only 0.12% of the dataset.

Results: We use two performance metrics to evaluate our model: the mean recip-

rocal rank (MRR) as defined in Section 4.4.1, and overall accuracy. The MRR allows

us to measure the quality of our rankings from an informational retrieval perspective,

while accuracy is a harsher gauge of our model performance. Results as measured on

a held-out test set of visits are shown in Table 7.2. Sampling random prefixes of the

MDcomments to simulate diagnosis over the course of a visit also helps performance

compared to only using full note texts. This is particularly apparent in the best

performing multi-branch CNN, as shown in Figure 7-5. This model, which learns 600

length-one filters, is effectively a learned keyword search. The input tokens into the

model already capture multi-word clinical concepts and negated terms, which is likely

why the model did not need to learn longer filters. To more precisely establish what

words this model is capturing, we measure the cross-correlation between all of our

word embeddings and each filter matrix to find salient patterns. Note that we define

132

Correlated Tokens per Filter

hearing_voices headache neb no_fevers
telling ha nasal no_fever

disorganized myalgias benadryl no_fc
paranoid migraine combivent no_fevers/chills
manic photophobia epi f/c/s

auditory_hallucinations frontal_headache nebs no_fever/chills
paranoia sore_throat solumedrol septic
delusional neck_stiffness nebulizer fevers

sane sinusitis hives pyelo
disorder feel albuterol no_abscess

Table 7.3: Highly correlated tokens for a selection of filters in the generalized differ-
ential diagnosis CNN model.

the cross-correlation for two real-valued, length-𝑘 vectors u,v as

xcorr(u,v) =
𝑘∑︁

𝑚=0

u[𝑚]v[𝑚− 𝑘]

Many filters clearly encapsulate closely-related medical concepts, and we can delve

further into what drives model predictions by examining highly correlated word em-

beddings for each filter, as listed in Table 7.3.

While the MRR of this model is relatively high, indicating that the correct diagnosis

is, on average, the first or second suggestion, our set of ICD codes is restrictive– we

only predict from a set 373 relatively common codes. One way to mitigate this within

our current framework is to build a hierarchical model and roll up rarer ICD codes to

a coarser level of the coding hierarchy. Alternatively, given sufficient data, we could

simply expand our set of labels to include infrequent codes.

In practice, we also obscure the fact that we are predicting at a code level. Our goal

in building a new EHR is not to automate billing, but to provide diagnostic support

to physicians– while we use ICD codes as a proxy for the true diagnosis, they do not

always represent the ground-truth. Moreover, doctors do not diagnose patients in line

with ICD codes. As such, we also manually curate a mapping from each ICD code to

natural language, and display these human-readable names instead. As an example,

133

Triage Note Only Triage + Partial Note Triage + Full Note
0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
ea

n
Re

cip
ro

ca
l R

an
k

MRR as a Function of Note Completion

CNN Model (Trained on Subsampled notes)
CNN Model (No Subsampling)

Figure 7-5: MRR as a function of note length for best-performing multi-branch CNN
models trained on full length versus subsampled notes.

the ICD9 code 592.0 (CALCULUS OF KIDNEY) is mapped to the more colloquial

kidney stone.

Future work into this tool can use interpretability methods for CNN text classification

to identify snippets of the note that prompt the model to make a given prediction,

and incorporate structured data like lab tests. Separately, we might frame this as a

continuous problem, where instead of predicting a single relevant ICD code, we predict

a relevant point in a vector space of ICD codes and look for nearest neighbors.

7.4.2 Differential Diagnosis of Abdominal Pain

To complement our general differential diagnosis approach, we also develop models to

predict clinically-driven diagnoses from a given chief complaint. This is more in line

with classical differential diagnosis literature. In these expert-mediated processes, the

chief complaint governs the sequence of rules and tests that are used to determine the

final diagnosis [38, 115]. To mimic this set-up, we carefully derive diagnostic labels

for visits with a particular chief complaint using a combination of ICD codes and

EHR data, and predict these labels from the triage text and clinical note.

134

For the purposes of an initial prototype, we focus on a chief complaint of abdominal

pain and its derivatives (ruq pain, epigastric pain), which is the case for

around 25, 000 visits. Based on our dataset as well as literature on differential diag-

nosis of abdominal pain in the ED [81, 57], we settle on eighteen possible diagnoses.

Deriving Ground-Truth Diagnostic Labels

In order to aid in differential diagnoses, we must label each visit whose chief complaint

was abdominal pain with one of our eighteen final diagnoses. We do so by making

use of ICD codes.

First, we pre-process our potential diagnoses to express them in terms of ICD codes.

We establish which ICD codes correspond to each of the eighteen diagnoses. Note

that due to the high specificity of ICD codes, many codes often roll up into a single

diagnosis. Next, we sort the potential diagnoses by specificity, which we are able

to perform manually based on medical literature – as an example, we would rank

the generic term “abdominal pain” after the very specific condition “diverticulitis”. A

natural next step here would be to learn this specificity order in a data-driven way;

however, due to the low number of potential diagnoses and the easy availability of

relevant medical literature, we opted for a manual approach.

We label patient visits by iterating through the codes associated with the visit, and

checking if each code belongs to any of the groups of ICD codes corresponding to

a diagnosis. In the case of multiple matches, we select the diagnosis which is the

most specific. This reflects the clinical intuition that if a patient exhibits a precisely

defined disease, then diagnosing them with this disease is more informative than using

a more general term. As a second line to get more informative labels in cases where

the diagnosis codes are incomplete or nonspecific, we look for explicit mentions of

string templates corresponding to diagnosis, such as Diagnosis: GERD in the

text – if no such mentions are found, we finally fall back to the generic diagnosis of

“nonspecific abdominal pain”. We show each of our diagnostic labels, the ICD codes

associated with each one, and the class size in Table 7.4.

135

Diagnosis ICD9 Codes N

Uterolithiasis 592.0 (CALCULUS OF KIDNEY), 594.1 (BLADDER
CALCULUS NEC), 592.1 (CALCULUS OF URETER)

1277

Pancreatitis 577.0-2 (ACUTE/CHRONIC PANCREATITIS) 1215
Urinary Tract Infections 590.80 (PYELONEPHRITIS NOS), 599.0 (URIN TRACT

INFECTION NOS), 590.10 (AC PYELONEPHRITIS NOS)
845

Diverticulitis 562.00-11 (DIVERTICULITIS S INTEST NO HEM) 617
Appendicitis 541-542 (APPENDICITIS NOS), 540.9 (ACUTE

APPENDICITIS NOS)
607

Cholangitis 576.1 (CHOLANGITIS) 100
Cholelithiasis 574.XX (CHOLELITHIASIS) 583
Cholecystitis 575.XX (CHOLECYSTITIS) 257
Gastroesophageal
Reflux Disease (GERD)

530.11 (REFLUX ESOPHAGITIS), 530.10
(ESOPHAGITIS UNSPECIFIED), 530.12 (ACUTE
ESOPHAGITIS), 530.81 (ESOPHAGEAL REFLUX)

68

Gastroparesis 536.3 (GASTROPARESIS) 121
Gastritis 535.30 (ALCOHOL GASTRITIS-NO HEMORRHAGE),

535.70 (EOSINOPHILIC GASTRITIS,
WITHOUT MENTION OF HEMORRHAGE), 535.50
(GASTRITIS/GASTRODUODEN-NO HEM), 535.40
(GASTRITIS NEC-NO HEMORRHAGE)

101

Gastroenteritis 555.9 (REGIONAL ENTERITIS NOS), 789.06
(ABDOMINAL PAIN EPIGASTRIC), 558.9 (NONINF
GASTROENTERIT NEC)

2211

Bowel obstructions 576.2 (OBSTRUCTION OF BILE DUCT), 552.1
(UMBILICAL HERNIA W OBSTR), 560.XX (INTESTINAL
OBSTRUCT)

751

Ovarian cysts 617.XX (ENDOMETRIOSIS), 620.2 (OVARIAN CYST
NEC/NOS)

253

Inflammatory/Irritable
Bowel Diseases

556.5-9 (ULCERATIVE COLITIS), 564.1 (IRRITABLE
COLON)

77

Gastrointestinal bleeds 578.9 (GASTROINTEST HEMORR NOS) 126
Female pelvic inflamma-
tory diseases

614.0-9 (CHRONIC PELVIC INFLAMMATORY DISEASE),
131.01 (TRICHOMONAL VAGINITIS), 218.9 (UTERINE
LEIOMYOMA NOS), 625.8 (FEM GENITAL SYMPTOMS
NEC), 615.0 (AC UTERINE INFLAMMATION), 625.9
(FEM GENITAL SYMPTOMS NOS), 112.1 (CANDIDAL
VULVOVAGINITIS), 616.10 (VAGINITIS NOS)

281

Unspecified abdominal
pain

789.00-09 (ABDOMINAL PAIN NOS) 12864

Table 7.4: Diagnostic labels for chief complaint of abdominal pain or related. Labels
are ordered by specificity, such that if a visit is assigned a ICD code from two or
more rows, it is labeled with the more specific diagnosis. 𝑁 represents the number of
samples in the given class.

136

Modeling & Results

We seek the same goal of predicting an abdominal pain-specific diagnosis at var-

ious stages of medical decision making, and featurize our model with the triage text

as well a randomly subsampled prefix of the clinical note. We develop a mix of linear

and nonlinear models as before.

We first train logistic regression models to make a multiclass prediction over our

eighteen classes, using the same tokenization and featurization strategies outlined in

our generalized differential diagnosis tool above. We also add a fourth linear baseline:

a TF-IDF vectorization of a bag-of-words representation of the text, concatenated

with a binary vector of which concepts were mentioned in the patient’s OMR. This is

an initial exploration into how the medical record can be used to improve differential

diagnosis by factoring in prior diseases.

We also conduct an architecture search over multi-branched one-dimensional CNNs

as described in Section 7.4.1. These models implicitly train embeddings of each

token that are seeded from word2vec embeddings trained on OMR notes. These are

small but nonlinear models. As a deterministic baseline, we rank diagnoses by their

frequency of occurrence.

We again measure performance using MRR and accuracy. Results are shown in

Table 7.5. Performance of the best model (the multibranch CNN) as a function

of note length is shown in Figure 7-6. We note that the high accuracy/MRR of

the deterministic baseline is due to of the heavy class imbalance in our dataset,

and posit that many cases where unspecified abdominal pain is listed as the

only diagnosis rather than a more specific condition is likely a coding error– thus,

our labelling strategy may not always be capturing the true underlying cause of the

patient’s presentation.

The CNN model that we develop also lends itself well to local introspection. While any

logistic regression model can capture obvious relationships between the text and the

diagnosis (e.g. rlq pain and appy indicating a diagnosis of appendicitis), the CNN

137

can capture sequences of tokens. Our convolutional architecture effectively featurizes

sequences of text that match up with learned filters as real scalar values, which are

then fed into a single dense layer for prediction. This means that we can immediately

identify what CNN outputs are relevant to the prediction of a certain diagnosis by

finding the outputs with highest weights in the final linear layer. Furthermore, since

each of the CNN outputs is the result of a max-pooling operation, it can uniquely be

identified as the consequence of the presence of a substring in the input text. As a

demonstrative case study, consider the following note text for an ED visit:

TRIAGE: Pt ate pork for dinner. Developed pain about

3 hours ago. +nausea, normal bowel movements.

CLINICAL NOTE: 30F with abdominal pain and nausea.

Nausea started one hour after eating pork chop dinner.

Abd pain started 3 hours ago. PTA to ED.

Multiple family members ate pork without similar symptoms.

Patient should not be eating spicy foods, but ate

spicy food tonight. Nausea but no vomiting.

BM nml consistency and without blood.

Epigastrium TTP generalized upper abdominal pain.

While the diagnosis is nonobvious from this information, our model correctly predicts

cholecystitis. Using the above introspection technique, we identified the top

phrases that drove this prediction: one hour after eating, after eating

pork chop, generalized upper abd pain. This matches clinical evidence

indicating that cholecystitis signs often occur after large or fatty meals.

138

Model MRR ↑ Accuracy ↑

Rank by frequency (deterministic) 0.42 56%
Logistic Regression (binary representation of symptoms/conditions) 0.51 30%
Logistic Regression (ternary representation of symptoms/condi-
tions)

0.44 17%

Logistic Regression (BoW of text alone) 0.63 38%
Logistic Regression (BoW of text, binary representation of condi-
tions in OMR)

0.57 24%

Multibranch CNN (word2vec embeddings of each token in text;
kernel sizes 1, 2, 3, 4; 100 kernels per branch)

0.73 56%

Table 7.5: Performance of diagnostic models for a chief complaint related to
abdominal pain. Measured by mean reciprocal rank (MRR) and accuracy across
the entire dataset, which contains each triage note as well as a random subsample of
the clinical note.

Triage Note Only Triage + Partial Note Triage + Full Note

0.66

0.68

0.70

0.72

0.74

0.76

0.78

M
ea

n
Re

cip
ro

ca
l R

an
k

MRR as a Function of Note Completion
CNN Model (Trained on Subsampled notes)

Figure 7-6: Performance of multibranch-CNN to predict diagnosis for a chief com-
plaint of abdominal pain, broken down by note length.

139

7.5 Future Work

There are many other ways to provide clinical decision support for doctors that are

not currently supported in our pilot version of the tool. Here, we briefly mention

other avenues to improve clinical decision support within the tool.

∙ Instead of hard-coding important disease-lab and symptom-lab relationships,

learn these directly.

∙ Add the ability to order sets of labs or treatments, directly from the tool. Notify

the clinician when the order is ready.

∙ Use data collected with the tool regarding the utility of OMR snippets to train

a fully-supervised text classifier to find relevant OMR snippets.

∙ Provide easy access to common educational resources that a doctor might want

to use, including links to relevant topics on UpToDate. This is especially useful

at BIDMC, which is a teaching hospital.

∙ Display a patient health bar with colors to indicate risk for common patient

outcomes. There is a wealth of literature on risk stratification to borrow from

here– both for specific conditions as well as for general outcomes like hospital

admission and mortality [25, 88, 2].

∙ As a doctor is documenting the treatment plan for the patient, highlight parts

of the medical history that might affect the outcome of the proposed treat-

ments. This is a more involved version of OMR snippetization. This can also

be abstracted to building patient treatment timelines– given a disease, what

therapies has the patient tried?

∙ Inspired by Nigam Shah’s “Green Button“ metaphor [44], find similar patients

to the one the doctor is currently treating, driven by a distance function that

uses both structured and unstructured data in a patient’s medical record. This

can inform treatment guidelines and cohort construction.

140

∙ Meta-planning about hospital administration– using ward-level information about

what beds each patient is assigned to, identify clusters of infectious patients that

should be quarantined.

141

142

Chapter 8

Implementation & Deployment

8.1 System Implementation

The overall system, which is detailed in Figure 8-1, is comprised of three components:

1. Client UI : The frontend client is a React/Node.js app that houses the UI for

the project. It can send and receive requests to/from the clinical server. The UI

is rendered as an HTML iFrame within BIDMC’s custom EHR interface. For

security purposes, the client can only connect to the clinical server and does not

directly communicate with the ML server. We use Facebook’s Draft.js as our

underlying editor framework, which is a rich text editor written for React.

2. Clinical Server : The clinical server is the only component with direct access

to the BIDMC’s clinical database. It can communicate both with the client UI

but also with the ML server. In order for the frontend to communicate with the

ML server, it sends indirect requests to the clinical server via a tunnel endpoint,

which is then rerouted directly to the ML server. Responses are forwarded back

to the client UI. Tunnel requests are one-way and can only be initiated from

the client UI. The ML server has no ability to send requests and can only serve

them.

143

Figure 8-1: System Infrastructure

3. ML Backend Server : The backend server is a Dockerized Python/Flask app

that houses the backend for the project. It sits on BIDMC’s research server. All

model weights, and any information derived from clinical data (e.g. population

statistics) is stored here. It also supports both temporary and disk-persistent

and temporary storage of data via Redis and MySQL respectively. It runs

Python 2.7 on Ubuntu 16.04.

In order to persist and cache data for performance reasons, we have two additional

storage mechanisms. We use Redis as an open-source, in-memory data structure store

to cache data. The Redis store exists as a Docker container and can only be accessed

via the Docker network running on the ML Backend Server– it keeps JSON serialized

data that are keyed by strings, and caches patient information for use by the ML

server, responses to frequent requests, and copies of data for the Client UI to access.

We also use MySQL to store persistently. The data within MySQL is saved to disk as

a docker volume and only houses two tables: user metrics, and saved copies of notes.

API documentation and internal datatypes and schemas used to send and store data

are located here.

144

https://clinicalml.github.io/bidmc-jclinic/

8.1.1 Client-Side Inference

In general, our backend server is used to persistently cache/store content and also

to perform a Python environment to invoke machine learning models. In the case of

autocomplete scope/type detection for contextual autocomplete, however, we must

call our model as soon as a user appends words to the text. This forces us to run the

model client-side in JavaScript.

On page load, the client sends a request to the ML server backend for the model

configuration parameters and weights. The embeddings must be requested in batches

because it is too large of a JSON payload to send at once. The client then loads model

weights into a Tensorflow.js-based neural network, which takes approximately

5-6 seconds. We force Tensorflow.js to use a WebGL backend for inference in

order to save time at the expense of CPU processing power, and also to disable type

and correctness checks in favor of performance.

Our average end-to-end inference time is approximately 60-70ms to display the auto-

complete dropdown once a user adds a token to the text. This is close to the refresh

rate of a screen, so the responsivity is perceived as instantaneous.

8.1.2 Ontology Modifications

We develop several ontologies throughout the course of the development of our system

for conditions, symptoms, etc.– these ontologies represent groupings of highly-specific

UMLS concepts into categories representing more interpretable medical terminologies.

While in the ideal case these ontologies are based on firm clinical knowledge and

should remain largely unchanged across use-cases, there are several modes by which

a clinician or organization may benefit from a more dynamic ontology structure. For

example, an individual doctor may find it more useful to categorize concepts in a way

that aligns with their personal medical decision-making process, or at a more global

level clinicians may agree that a certain categorization is incorrect or needs to be

updated to reflect new clinical knowledge.

145

To handle such changes, we allow users of our tool to directly request ontology mod-

ifications from the client UI. These front-end requests naturally record the proposed

change, but also collect the context in which the change was requested. This contex-

tual information includes the section of the note the doctor was working on when the

request was made, the clinician making the request, and the patient whom the note

was about.

From the back-end, we first immediately modify ontologies at a local level, allowing

clinicians to customize the system for themselves to their liking. At a global level, we

collect all requested modifications, and surface them at weekly intervals to experts

who can curate the changes that would be beneficial if implemented globally. By

using the context in which modifications were requested, we can identify parts of

clinical notes that may require different levels of granularity or different types of

categorization. We can further determine what kinds of patients our system does not

categorize well, and improve the ontology accordingly. Thus, while the ontology is

mostly invariant, user preferences can quickly be incorporated through local changes.

At a global level, the ontology can evolve dynamically to mitigate potential flaws and

improve the user experience using human-in-the-loop curated modification.

8.1.3 Collaborative Documentation

EHR notes are often written by multiple clinicians. Doctors sometimes use scribes on

certain shifts to note-take while they talk to patients. BIDMC is a teaching hospital,

so medical students and ED residents often check in on patients before an attending

does. All parties can contribute to the final note.

We create a collaborative editor at the note-level. The clinical server maintains a

single lock per user, which the client UI can then acquire and release at will in

order to write a patient’s note. Users do not need to possess a lock to read notes.

This is useful for patient handoff, because doctors can look through pinned notes,

tagged chips, and explore any structured information inserted in the note in order

146

to understand the patient’s history and presentation. Links to the patient’s medical

record can contextualize medical decision making and treatment course.

While we don’t need to support multiple authors simultaneously editing the same

words or sentence of the note, as this rarely occurs in the ED, our current locking

scheme is coarse. Future might work might instead allow a user to edit a single section

of the note at a time, and lock at this level instead.

To maintain backwards compatibility, any note in our system can be exported to a

plaintext representation that removes any sidebar content. This version of the note

can be automatically formulated as a discharge summary and filed in a patient’s

OMR using BIDMC’s current note export system. The workflow is thus minimally

interrupted from what is presently used.

8.2 System Feedback & User Metrics

A clinician can use our tool to improve documentation and clinical decision making.

However, another goal was to use the data collected with our tool in downstream

machine learning applications. Ultimately, we want to create a feedback cycle between

our learned models and our interface– documented notes should inform our machine

learning models, which in turn improve documentation. To this end, we outline

metrics collected with our tool for analysis.

Data Entry: Data entry metrics primarily consist of inserted chips. We use Draft.js

as our underlying editor framework, which saves each newline-delimited span of text

as a block. Thus, metrics for each chip are first aggregated at a block (line) level and

then further grouped by section. Each chip is specified by the following:

∙ Its section and block, which give positional information.

∙ An entity key which is a private identifier used to differentiate between two

otherwise identical chips.

147

∙ The insertion type– whether the chip added from the autocomplete dropdown,

automatically post-recognized after typing, selected from a post-recognition

dropdown due to ambiguity in the term, and automatically added as default

text in a section.

∙ The added text of the chip, which is the plaintext contained in the chip. For a

chip about hypertension, this might be htn.

∙ The initial text of the chip, which is the plaintext that we typed in order to tag

the chip. If the chip was inserted using the autocomplete dropdown, this is the

string that was typed before the term was added. If the chip was inserted using

a post recognition or default text mechanism, this is the text of the chip that

was recognized to trigger a post-correction.

∙ The concept type of the inserted chip, which can be a CONDITION, SYMPTOM,

MEDICATION, LAB, VITAL, PROCEDURE, or MACRO. In the future, we hope

to add concept types for any part of a medical record that can be inserted into

the note, including OMR notes. Snippets of prior notes can thus be cited and

referenced in the editor as a chip.

∙ The unique identifier of the clinical concept, including its synonym, parent con-

cept identifier, and any aggregates. Conditions are are normalized to UMLS,

so, this might look like HYPERTENSION - C0020538 - htn. For a lab/vi-

tal value that is aggregated over time, this would be normalized to LOINC

include information about the aggregation window and the summary statistic,

e.g. HEMATOCRIT - 20570-8 - HCT - LAST 6 MONTHS - MEAN.

∙ The username of the clinician who added the chip to the document, as well as

the timestamp it was added. This is used to paint a picture of the note over

time, and allows to see which users add what types of chips, and when they are

added.

∙ User interactions with the chips, including timestamps of any clicks. We do not

148

currently collect hover data for each chip because we view that as too noisy to

be a good signal of chip relevance.

∙ Whether the chip required any ontology modification, e.g. the addition/deletion

of a clinical concept or its synonyms.

Chip metrics can be used to quantify documentation burden, such as how much

redundancy is removed and how many keystrokes are saved by using our tool. It

can also be used for clinical named entity recognition and understanding how to

aggregate quantitative data to convey information. By taking documented conditions

and symptoms, we can also build differential diagnosis tools that predict patient

outcomes from clinical concepts.

Sidebar: We also collect metrics from the sidebar. Sidebar metrics include times-

tamped addition of cards, removal of cards, and click-through data for any relationship

shown on the card that is further explored (lab trend visualizations, OMR snippets,

etc.). We also capture proxies of card relevance, including what cards are pinned and

by whom, and whether OMR note snippets are explored in a new tab and how long

the window is in focus. All metrics are augmented with the username of the person

who is responsible for generating the metric, as well a timestamp of when the met-

ric was added. These metrics can also be used for downstream ML tasks including

supervised approaches to patient record summarization, learning representations of

a problem-oriented medical record as in [82], and even better understanding patient

handoff by analyzing the utility of sidebar cards in contextualizing medical decision

making.

Usability & Learnability: Finally, an important component of our tool is adop-

tion. We hope to use these metrics to quantitatively understand the usability and

learnability of the tool. By analyzing documentation patterns from both novice and

expert users, we can ascertain how often “superuser” features like macros, slash com-

mands, and lab aggregations are used. We can also visualize how often different

149

features are accessed by a given user over time to understand the learning curve of

the tool. By being systematic in what features we explicitly introduce to users when

they are first acquainted with the tool, we can also gauge the discoverability of the

tool and how new features are surfaced and interacted with. We hope to report high-

level statistics about tool use including the average time it takes to write a note with

our system against a simpler one.

We acknowledge that the learnability of the tool is partially governed by how users

are onboarded. Inspired by [17], which discusses how to best onboard medical prac-

titioners in collaborative human-ML tools, we seek to make the user conscious of the

benefits, limitations, and optimized objectives of our learned algorithms. As such, for

any feature with a machine learning component, we discuss what data it has access

to, how conservative its predictions are, and any adoption considerations we had in

building the tool. Our onboarding procedure is also task-oriented– users are presented

with a series of tasks that are posed as questions (e.g. how can I visualize a

patient’s lab trend?) and are provided with written explanations and video

screencaptures of the feature in question. Onboarding material can be found here.

150

https://clinicalml.github.io/bidmc-jclinic/

Chapter 9

Discussion and Conclusion

EHRs have introduced significant burden on physicians, and to adapt, doctors have

resorted to using overloaded jargon that then renders clinical notes unusable for down-

stream clinical care. The lack of clean labels for unstructured text also inhibits how we

can utilize machine learning techniques to transform healthcare. There is a real need

to modernize and exploit the information hidden within notes without interrupting

the clinical workflow. In this thesis, we outline a novel EHR system with an intelligent

user interface. This EHR system fundamentally transforms clinical documentation

through the unobtrusive live-tagging of clinical concepts. Tagged concepts enable

the synthesis and visualization of prior notes, lab trends, past procedures, related

medications, and more. We draw and innovate on on existing literature from clinical

summarization, named entity recognition, information retrieval, HCI and beyond to

do so.

9.1 Limitations

Our EHR implementation significantly reduces documentation burden on clinicians

and allows for improved information retrieval. However, our iteration on this tool

was driven by the feedback of BIDMC emergency department physicians, and this

151

presents the two main practical limitations of our work in terms of deployment.

First, EHRs must be adapted to other clinical specialities. There are several non-

trivial distinctions between these specialties – for example, the emergency department

is unique in that clinicians face a wide breadth of conditions, but rarely have to

consider the deeply longitudinal challenges presented by chronic diseases. While our

EHR is generalize and adaptable enough to be translated to other environments in

which different kinds of data may be more relevant, this has yet to be realized and

as such our system’s proven usefulness is limited to the ED. The biggest difference

between specialties is the language and vocabulary that is used– we would have to

modify our autocomplete ontologies. Missingness and poor concept disambiguation

in ontologies can be debilitating for doctors, and while we try to get as much coverage

possible, we do support on-the-fly modification of ontologies in our tool. Doctors can

suggest ontology edits (adding/editing/deleting a concept or a synonym) while writing

a note, which is reflected in their own UI. We plan to regularly update ontologies

during initial stages of system use.

Ideally, a robust EHR system would provide a unified but adaptable framework across

all departments of a medical institution, and allow for the sharing of information in

an intuitive way. In order to provide proper continuity of care, we would also like our

system to be able to adapt to the needs of different institutions while still allowing

information to flow as well. Our work is potentially limited in this regard as well, as

it has only been tested within a single institution. Given the success of this EHR in

our limited setting, we hope to ameliorate these limitations through future extensions

of our work. The quick iteration on our tool was enabled by BIDMC’s custom EHR

portal, which is unique to the hospital.

In addition, design choices of our system were driven by limitations with both our

dataset and our scope. As an example, the lack any proxy for snippet relevance

(such as click-through data) forced us to use a simpler model over something learned

end-to-end. This also raises questions of how to formulate mental models of OMR

relevance– for note retrieval to be useful, doctors need to save time. Parsing the output

152

of a learned model is inherently time-consuming because the behavior may not be

deterministic or even consistent. Even if we surface snippets that are exactly relevant

to the patient’s presentation, this does not imply that we are directly benefitting

doctors with our current setup.

Finally, while our tool facilitates data collection and annotation at the point-of-care,

we hope to be more rigorous about the ways in which we incentivize high quality data

collection. Adding modifier capture to our data entry is one step towards doing this.

By taking a data-driven approach to analyzing gaps in current clinical data, we can

make sure the methods and interactions we use to capture data fix these shortcomings

as much as possible.

9.2 Future Work

There are several directions in which our EHR system could be improved, and these

changes broadly fall into two categories– algorithmic advancements and further de-

velopment of the user experience for clinicians.

From the algorithmic perspective, we hope to improve relevant metrics throughout

our entire data entry and data retrieval pipelines:

∙ We featurize textual data in our EHR system using a trie-based extraction

algorithm for named entity recognition – the data collected by this algorithm is

the key driver of all of our downstream models, and improvements in its quality

may have significant effects for the overall system. As we note in Table 4.1,

more complex NER and text-featurization strategies that have seen success in

the broader literature are limited in this application due to issues of latency.

However, leveraging more efficient modifications of such algorithms could allow

for more thorough data collection. This idea extends to the learning of modifiers,

which in our current system is driven by the relatively simple NegEx algorithm

for negation detection. Using a more complex model, we could potentially

153

integrate measures of certainty, negation, polarity and other modifiers of clinical

interest as described in Chapter 5.5.1.

∙ We model the process of data entry, or autocompletion, as a human-augmented

natural language model – our choices of model are limited both by data and by

computational constraints. As such, we chose to factor our model in such a way

that minimizes the need to dynamically use data that is actively being entered

by the user. Allowing our autocomplete rankings to be fully dynamic presents a

large computational challenges, but the successes of generative language models

for autocompletion in other domains [20] indicates that this may nevertheless

be a fruitful area for further exploration.

∙ We hope to further expand the functionality of the sidebar in future work. In

particular, risk stratification and differential diagnosis tools could prove invalu-

able to physicians by providing nuanced learned insights.

We also seek to make the user experience more seamless and integrated. As an exam-

ple, there may be utility in providing different visualizations for different labs or vital

sign measurements, in contrast to the box-and-whiskers plots used for all such numer-

ical values at present, in order to better present information. We further see room for

improvement in terms of the high-level goal of building a truly live document, and

in future iterations of this tool we hope to include functionality to better incorporate

common template-like paradigms of medical actions. For instance, doctors might be

able to define macros which would automatically expand and template out fields for

information we now know will be collected in the future – if the macro @hct orders a

hematocrit lab for the patient, for example, we would create a empty box in the text

that is filled in automatically when the lab result is ready. We finally seek to give

clinicians and other parties of interest a better high-level view of the overall health of

all patients, or a specific group of patients. While we have developed tools to convey

a precise sense of a particular patient’s health, a more comparative or summarative

perspective is useful as well.

154

Lastly, our EHR builds a system from the ground up, relying on careful retroactive

featurization of data collected using legacy note-taking utilities. As clinicians use

our system, it will automatically curate and aggregate large amounts of labeled EHR

data. This can then be used to further improve existing machine-learning algorithms

used to collect and surface data, and to inspire new applications as sufficient high-

quality data becomes available. It is key that future implementations of this tool

incorporate a feedback loop in which the data collected by the tool drives algorithmic

improvements, which can also be used to identify longitudinal data drift.

The methods outlined in this thesis, in tandem with the ideas presented for future

work, can truly revolutionize clinical documentation for doctors, patients, and algo-

rithms. By integrating machine learning methodologies into documentation practices,

we can usher in a new era of EHRs that assist rather than impede physicians.

155

156

Appendix A

Appendix

A.1 NegEx Algorithm

We use a version of the NegEx algorithm [19] in order to perform a rule-based negation

detection on clinical text. The algorithm greedily iterates through words in a piece

of text and assigns them to a negated context if they are preceded by predefined

keyword triggers.

Pseudocode for the algorithm is shown below in Figure A-1.

A.2 Examples of Clinical Notes

Here, we show examples of a triage note, chief complaint, patient vitals, and a clinician

note. To preserve patient privacy, these examples are fake, but mimic the formatting

and style of real data.

Triage Note

pt with ruq abd pain and nonproductive cough

Chief Complaint

157

1 fullstops = [’.’, ’-’, ’;’]
2 midstops = [’+’, ’but’, ’and’, ’pt’, ’.’, ’;’, ’except’, ’reports’, ’

alert’, ’complains’, ’has’, ’states’, ’secondary’, ’per’, ’did’, ’
other’, ’p/w’, ’presents’, ’presenting’, ’presented’, ’:’]

3 negwords = [’no’, ’not’, ’denies’, ’without’, ’non’, ’lack’]
4

5 def negation_detection(words):
6 flag = 0
7 res = []
8 for i, w in enumerate(words):
9 neg_start_condition = (flag == 1)

10 neg_stop_condition = (w in fullstops + midstops + negwords) or
(i > 0 and words[i-1][-1] in (fullstops + [’\n’]))

11 neg_end_of_list = (i==(len(words)-1))
12 if neg_start_condition and neg_stop_condition:
13 flag = 0
14 res += [(start_index, i-1)]
15 elif neg_start_condition and neg_end_of_list:
16 flag = 0
17 res += [(start_index, i)]
18 if w in negwords:
19 flag = 1
20 start_index = i
21 return res

Figure A-1: Pseudocode of the rule-based negation detection algorithm.

ruq abd pain

Vitals

Blood Pressure: 140/90 mmHg

Heart Rate: 109 BPM

Pain: 8 (out of 10)

Sex: F

Age: 66

Respiratory Rate: 92%

Temperature: 99 (deg. Fahrenheit)

Pulse Oxygen (Oxygen Saturation): 96

Clinical Note

HPI: 66 y/o F p/w ruq abd pain and nonproductive cough.

158

No fever, nausea, or chills.

History of chronic abdominal pain over last 4-5 years,

as well as htn and dmii.

PMH: htn, dmii, chronic abdominal pain, hysterectomy in 2004

MEDICATIONS: metoprolol tartrate, metformin

FAMILY HISTORY: Diabetes in mother,

father (deceased) hypertensive

SOCIAL HISTORY: no smoking, drinks socially

REVIEW OF SYSTEMS:

Constitutional - no fever, chills, nausea

Head / Eyes - no diplopia

ENT - no earache

Resp - nonproductive cough, mild

Cards - no chest pain

Abd - ruq abd pain

Flank - no dysuria

Skin - no rash

Ext - no back pain

Neuro - no headache

Psych - no depression

PHYSICAL EXAM: Ruq abd pain, tender to touch,

with some bloating.

MDM:

159

66 y/o F p/w ruq abd pain and mild cough. She reports

she had a cold last week, so cough

is likely symptom of that.

Epigastric pain with mild bloating and minor

heartburn. Gave an antacid to relieve pain.

Glucose levels are elevated compared to baseline

(140 6 hours ago, 120 averaged over last six months).

Says she will work on controlling diet more.

DIAGNOSIS: epigastric pain/heartburn

A.3 OMR Annotation Tool

The OMR annotation tool alluded to in Chapter 6 is a prototype of a data collection

tool for clinicians to highlight and annotate relevant snippets of the OMR. This could

be used to eventually curate a large-scale dataset of pieces of the medical record that

are important in treating and diagnosing a patient, which would be an invaluable

resource for the clinical informatics community.

The tool is shown below in Figure A-2. It is a Flask/JavaScript application. On the

lefthand panel, the chief complaint, triage assessment, list of medications, and early

sections of the clinical note are displayed. The middle pane contains a view of various

OMR notes in chronological order, which can be panned through with the blue arrows,

or by using the exact stringmatch keyword search in the righthand panel. Sections of

the OMR note that are relevant can be annotated simply by highlighting the section

with the cursor and hitting enter. Then, the character spans of each annotation are

saved with the annotations are submitted.

160

Figure A-2: OMR Annotation Tool, which allows the user to read through, search,
and highlight OMR data in the context of a particular ED visit.

Hyperparameter Values Tested

Input sequence length 128, 256, 512
Kernel sizes [1, 1, 1], [2, 2, 2], [1, 2, 3, 5,

7], [2, 4, 6], [1, 3, 5, 7], [5, 5,
5], [1, 2, 3, 4]

Number of filters per kernel size 25, 50, 100, 200
Embedding sizes 64, 128, 256

Table A.1: Hyperparameters for tuning deep models for differential diagnosis. Model
class is a multi-branch one-dimension CNN trained to make a multiclass prediction;
see Section 7.4.1 for architectural details.

161

[This patient is a 68 year old male who complains of a swallowed half denture. The denture was broken, and while
the patient was eating lunch, it broke off and he swallowed it. The patient reports no discomfort or pain. He is

handling secretions well.]

[Timing: Sudden
Onset:
Quality: swallowed denture
Duration: few hours
Location: GI tract, stomach, esophagus

Signs/symptoms: handline secretions well. No pain.]

[PAST MEDICAL HISTORY
PMH includes a CABG 5 years ago. DM as well.

[Medications: Coumadin, Crestor, metoprolol succinate, metformin, lisinopril. Allergies and Reactions: NKDA.]
Social History: +alcohol, +smoking]

[REVIEW OF SYSTEMS-- All other systems reviewed and negative.]

[PHYSICAL EXAMINATION
Constitutional: Comfortable
HEENT: Normocephalic, atraumatic
Chest: Clear to auscultation

[Cardiovascular: Regular Rate and Rhythm, Normal first and

second heart sounds]
Abdominal: Soft, Nontender, Nondistended, obese
Neuro: Speech fluent

Psych: Normal mood, Normal mentation]

[RADIOLOGY

Note(s): Soft tissue films of the neck-no foreign body identified
chest x-ray-no foreign body identified

abdominal film-the partial denture is visualized in the small bowel]

[MEDICAL DECISION MAKING

Prior to my seeing him the patient had been ordered for soft tissue films of the neck. There is no foreign body

visualized on these. Patient had a chest x-ray and a KUB to identify the location of his denture. [The denture has

already passed through the stomach and is in the small bowel.] We spoke to surgery who reviewed the patient’s
films and felt that he should not have any problems passing the denture. The patient has no pain. He has been
discharged
home with expectant management.

Service Consulted at 00:20 Surgery Final ED Diagnosis 1: Small bowel foreign body]

[This uploaded version of the chart may not be the final one;
some addenda and test results may not be entered into this

OMR note.]

Figure A-3: Candidate OMR snippets created with heuristics described in Section
6.2. Colored [] characters denote each (possibly overlapping) snippet span.

162

Bibliography

[1] Shashank Agarwal and Hong Yu. Detecting hedge cues and their scope in
biomedical text with conditional random fields. Journal of Biomedical Infor-
matics, 43(6):953–961, December 2010.

[2] Muhammad Ahmad, Carly Eckert, Greg McKelvey, Kiyana Zolfagar, Anam
Zahid, and Ankur Teredesai. Death vs. Data Science: Predicting end of life.
2018.

[3] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An Aid to
Bibliographic Search. Commun. ACM, 18(6):333–340, June 1975.

[4] Hanan Aldarmaki, Mahesh Mohan, and Mona Diab. Unsupervised word map-
ping using structural similarities in monolingual embeddings. Transactions of
the Association for Computational Linguistics, 6:185–196, 2018.

[5] Ilseyar Alimova and Elena Tutubalina. Multiple features for clinical relation
extraction: a machine learning approach. Journal of Biomedical Informatics,
103:103382, 02 2020.

[6] Duaa Aljabri, Adrian Dumitrascu, Caroline Burton, Launia White, Mahmud
Khan, Sudha Xirasagar, Ronnie Horner, and James Naessens. Patient portal
adoption and use by hospitalized cancer patients: a retrospective study of its
impact on adverse events, utilization, and patient satisfaction. BMC Medical
Informatics and Decision Making, 18(1):70, 2018.

[7] Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saeid Safaei, Eliza-
beth D. Trippe, Juan B. Gutierrez, and Krys Kochut. Text summarization
techniques: A brief survey. CoRR, abs/1707.02268, 2017.

[8] Diane Alonso, Anne Rose, Catherine Plaisant, and Kent Norman. Viewing
personal history records: A comparison of tabular format and graphical presen-
tation using LifeLines. Behaviour and Information Technology, 17, 12 1998.

[9] Emily Alsentzer and Anne Kim. Extractive Summarization of EHR discharge
notes. CoRR, abs/1810.12085, 2018.

[10] Chrissanthi Angeli. Diagnostic expert systems: From expert’s knowledge to
real-time systems. 2010.

163

[11] Joan Ash, Marc Berg, and Enrico Coiera. Some unintended consequences of
information technology in health care: The nature of patient care information
system-related errors. Journal of the American Medical Informatics Association,
11:104–12, 03 2004.

[12] G. Octo Barnett, James J. Cimino, John A. Hupp, and E. P. Hoffer. DXplain.
An evolving diagnostic decision-support system. Journal of the American Med-
ical Informatics Association, 258(1):67–74, Jul 1987.

[13] Andrew L. Beam, Benjamin Kompa, Inbar Fried, Nathan P. Palmer, Xu Shi,
Tianxi Cai, and Isaac S. Kohane. Clinical Concept Embeddings Learned from
Massive Sources of Medical Data. CoRR, abs/1804.01486, 2018.

[14] Robert Bill, Serguei Pakhomov, Elizabeth S. Chen, Tamara J. Winden, Eliz-
abeth W. Carter, and Genevieve B. Melton. Automated extraction of family
history information from clinical notes. AMIA Annual Symposium Proceedings,
2014:1709–1717, 2014.

[15] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-
tion. Journal of Machine Learning Research, 3(null):993–1022, March 2003.

[16] Andrew D. Boyd, Christine D. Young, Margret Amatayakul, Michael G. Dieter,
and Lawrence M. Pawola. Developing Visual Thinking in the Electronic Health
Record. Studies in Health Technology and Informatics, 245:308–312, 2017.

[17] Carrie J. Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael
Terry. “Hello AI”: Uncovering the Onboarding Needs of Medical Practition-
ers for Human-AI Collaborative Decision-Making. Proc. ACM Hum.-Comput.
Interact., 3(CSCW), November 2019.

[18] Pascale Carayon, Tosha Wetterneck, Bashar Alyousef, Roger Brown, Randi
Cartmill, Kerry McGuire, Petter Hoonakker, Jason Slagle, Kara Roy, James
Walker, Matthew Weinger, Anping Xie, and Kenneth Wood. Impact of elec-
tronic health record technology on the work and workflow of physicians in the
intensive care unit. International Journal of Medical Informatics, 84, 04 2015.

[19] Wendy W. Chapman, Will Bridewell, Paul Hanbury, Gregory F. Cooper, and
Bruce G. Buchanan. A simple algorithm for identifying negated findings and
diseases in discharge summaries. Journal of Biomedical Informatics, 34(5):301–
310, Oct 2001.

[20] Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang,
Justin Lu, Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy
Sohn, and Yonghui Wu. Gmail Smart Compose: Real-Time Assisted Writing. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, KDD ’19, page 2287–2295, New York, NY, USA, 2019.
Association for Computing Machinery.

164

[21] Yan Chen, Huanying Gu, Yehoshua Perl, and James Geller. Structural group-
based auditing of missing hierarchical relationships in UMLS. Journal of
biomedical informatics, 42:452–67, 09 2008.

[22] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Associa-
tion for Computational Linguistics.

[23] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, and
Jimeng Sun. Gram: Graph-based attention model for healthcare representation
learning. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’17, page 787–795, New York,
NY, USA, 2017. Association for Computing Machinery.

[24] Tom Christensen and Anders Grimsmo. Instant availability of patient records,
but diminished availability of information: a multi-method study of gps use of
electronic patient records. BMC medical informatics and decision making, 8:12,
02 2008.

[25] Imke Christiaans, Klaartje van Engelen, Irene M. van Langen, Erwin Birnie,
Gouke J. Bonsel, Perry M. Elliott, and Arthur A.M. Wilde. Risk stratification
for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of
clinical risk markers. EP Europace, 12(3):313–321, 01 2010.

[26] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Man-
ning. What does BERT look at? An Analysis of BERT’s Attention. CoRR,
abs/1906.04341, 2019.

[27] Genna Cohen, Charles Friedman, Andrew Ryan, Caroline Richardson, and Julia
Adler-Milstein. Variation in Physicians’ Electronic Health Record: Documen-
tation and Potential Patient Harm from That Variation. Journal of General
Internal Medicine, 34:1–13, 06 2019.

[28] Michelle A. Cretikos, Rinaldo Bellomo, Ken Hillman, Jack Chen, Simon Finfer,
and Arthas Flabouris. Respiratory rate: the neglected vital sign. Med. J. Aust.,
188(11):657–659, Jun 2008.

[29] Jiangbo Dang, Amir Hedayati, Ken Hampel, and Candemir Toklu. An ontolog-
ical knowledge framework for adaptive medical workflow. Journal of Biomedical
Informatics, 41(5):829–836, October 2008.

[30] James Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In

165

Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics.

[31] N.L. Downing, David W. Bates, and Christopher A. Longhurst. Physician
Burnout in the Electronic Health Record Era: Are We Ignoring the Real Cause?
Annals of Internal Medicine, 169(1):50–51, 07 2018.

[32] Noémie Elhadad, Min-Yen Kan, Judith L. Klavans, and Kathleen McKeown.
Customization in a unified framework for summarizing medical literature. Ar-
tificial Intelligence in Medicine, 33 2:179–98, 2005.

[33] Noémie Elhadad, Kathleen McKeown, David R. Kaufman, and Desmond A.
Jordan. Facilitating physicians’ access to information via tailored text summa-
rization. AMIA Annual Symposium Proceedings, pages 226–30, 2005.

[34] Noémie Elhadad, Sharon Lipsky Gorman, Jamie S. Hirsch, Connie Liu,
David K. Vawdrey, and Marc Sturm. Harvest, a holistic patient record summa-
rizer at the point of care. In AMIA, 2014.

[35] Charles Elkan and Keith Noto. Learning classifiers from only positive and unla-
beled data. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, page 213–220, New York,
NY, USA, 2008. Association for Computing Machinery.

[36] J. Michael Fitzmaurice, Karen Adams, and John M. Eisenberg. Medical infor-
matics support at the agency for healthcare research and quality. Journal of
the American Medical Informatics Association : JAMIA, 9 2:144–60, 2002.

[37] Mindy E Flanagan, Emily S Patterson, Richard M Frankel, and Bradley N
Doebbeling. Evaluation of a physician informatics tool to improve patient hand-
offs. Journal of the American Medical Informatics Association, 16(4):509–515,
2009.

[38] Nigel Jie Ming Fong. Algorithms in Differential Diagnosis: How to Approach
Common Presenting Complaints in Adult Patients, for Medical Students and
Junior Doctors. World Scientific, 2018.

[39] Rebekah L. Gardner, Emily Cooper, Jacqueline Haskell, Daniel A. Harris, Sara
Poplau, Philip J. Kroth, and Mark Linzer. Physician stress and burnout: the
impact of health information technology. Journal of American Medical Infor-
matics Association, 26(2):106–114, Feb 2019.

[40] Sebastian Gehrmann, Franck Dernoncourt, Yeran Li, Eric T. Carlson, Joy T.
Wu, Jonathan Welt, John Foote, Edward T. Moseley, David W. Grant,
Patrick D. Tyler, and Leo Anthony Celi. Comparing deep learning and con-
cept extraction based methods for patient phenotyping from clinical narratives.
PLoS ONE, 13, 2018.

166

[41] Macda Gerard, Hannah Chimowitz, Alan Fossa, Fabienne Bourgeois, Leonor
Fernandez, and Sigall K. Bell. The importance of visit notes on patient portals
for engaging less educated or nonwhite patients: Survey study. J Med Internet
Res, 20(5):e191, May 2018.

[42] Debora Goetz Goldberg, Anton J. Kuzel, Lisa Bo Feng, Jonathan P. DeShazo,
and Linda E Love. EHRs in primary care practices: benefits, challenges, and
successful strategies. The American Journal of Managed Care, 18 2:e48–54,
2012.

[43] Yoav Goldberg. Assessing BERT’s syntactic abilities. CoRR, abs/1901.05287,
2019.

[44] Bruce Goldman. Green Button: The promise of personalizing medical practice
guidelines in real time, 2015.

[45] Jen J. Gong and John V. Guttag. Learning to summarize Electronic Health
Records using Cross-Modality Correspondences. In Proceedings of the 3rd Ma-
chine Learning for Healthcare Conference, volume 85 of Proceedings of Ma-
chine Learning Research, pages 551–570, Palo Alto, California, 17–18 Aug 2018.
PMLR.

[46] Sergey Goryachev, Hyeoneui Kim, and Qing Zeng-Treitler. Identification and
extraction of family history information from clinical reports. AMIA Annual
Symposium Proceedings, pages 247–251, Nov 2008.

[47] Nathaniel R. Greenbaum, Yacine Jernite, Yoni Halpern, Shelley Calder,
Larry A. Nathanson, David Sontag, and Steven Horng. Contextual autocom-
plete: A novel user interface using machine learning to improve ontology usage
and structured data capture for presenting problems in the emergency depart-
ment. bioRxiv, 2017.

[48] Yoni Halpern, Steven Horng, Youngduck Choi, and David Sontag. Electronic
medical record phenotyping using the anchor and learn framework. Journal of
the American Medical Informatics Association, 23(4):731–740, 04 2016.

[49] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a
neural network. In NIPS Deep Learning and Representation Learning Workshop,
2015.

[50] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[51] William Hsu, Ricky Taira, Suzie El-Saden, Hooshang Kangarloo, and Alex Bui.
Context-based electronic health record: Toward patient specific healthcare.
IEEE transactions on information technology in biomedicine : a publication
of the IEEE Engineering in Medicine and Biology Society, 16:228–34, 03 2012.

167

[52] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. ClinicalBERT: Modeling
Clinical Notes and Predicting Hospital Readmission. CoRR, abs/1904.05342,
2019.

[53] Sarthak Jain and Byron C. Wallace. Attention is not explanation. CoRR,
abs/1902.10186, 2019.

[54] Stephen B Johnson, Suzanne Bakken, Daniel Dine, Sookyung Hyun, Eneida
Mendonça, Frances Morrison, Tiffani Bright, Tielman Van Vleck, Jesse Wrenn,
and Peter Stetson. An Electronic Health Record based on structured narrative.
Journal of the American Medical Informatics Association, 15(1):54–64, 2008.

[55] Johanna Kaipio, Hannele Hyppönen, Tinja Lääveri, Jukka Vänskä, Jarmo Re-
ponen, and Ilkka Winblad. National questionnaire study on clinical ict systems
proofs: Physicians suffer from poor usability. International journal of medical
informatics, 80:708–25, 07 2011.

[56] Johanna Kaipio, Tinja Lääveri, Hannele Hyppönen, Suvi Vainiomäki, Jarmo
Reponen, André Kushniruk, Elizabeth M. Borycki, and Jukka Vänskä. Usability
problems do not heal by themselves: National survey on physicians’ experiences
with EHRs in Finland. International Journal of Medical Informatics, 97:266–
281, 2017.

[57] Richard Kamin, Thomas Nowicki, David Courtney, and Robert Powers. Pearls
and Pitfalls in the Emergency Department Evaluation of Abdominal Pain.
Emergency medicine clinics of North America, 21:61–72, vi, 03 2003.

[58] Alok A. Khorana. Physician as typist. Journal of Clinical Oncology,
28(24):3899–3900, 2010. PMID: 20547988.

[59] Susan Koch-Weser, William Dejong, and Rima E. Rudd. Medical word use
in clinical encounters. Health expectations : an international journal of pub-
lic participation in health care and health policy, 12(4):371–382, Dec 2009.
HEX555[PII].

[60] Ross Koppel, Joshua P. Metlay, Abigail Cohen, Brian Abaluck, A. Russell Lo-
calio, Stephen E. Kimmel, and Brian L. Strom. Role of Computerized Physician
Order Entry Systems in Facilitating Medication Errors. Journal of the Ameri-
can Medical Informatics Association, 293(10):1197–1203, 03 2005.

[61] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Reveal-
ing the dark secrets of BERT, 2019.

[62] Taku Kudo and John Richardson. SentencePiece: A simple and language in-
dependent subword tokenizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 66–71, Brussels, Belgium, November
2018. Association for Computational Linguistics.

168

[63] Andre Kushniruk, Marc M. Triola, Elizabeth M. Borycki, Ben P. Stein, and
Joseph L. Kannry. Technology induced error and usability: The relationship
between usability problems and prescription errors when using a handheld ap-
plication. International journal of Medical Informatics, 74 7-8:519–26, 2005.

[64] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recogni-
tion. In Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
pages 260–270, San Diego, California, June 2016. Association for Computational
Linguistics.

[65] Archana Laxmisan, Allison McCoy, Adam Wright, and Dean Sittig. Clinical
summarization capabilities of commercially-available and internally-developed
electronic health records. Applied clinical informatics, 3:80–93, 02 2012.

[66] Neal Lewis, Daniel Gruhl, and Hui Yang. Extracting family history diagnosis
from clinical texts. In BICoB, 2011.

[67] Fei Li and Hong Yu. ICD Coding from Clinical Text using Multi-Filter Resid-
ual Convolutional Neural Network. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.

[68] Jennifer Liang, Ching-Huei Tsou, and Ananya Poddar. A novel system for
extractive clinical note summarization using EHR data. In Proceedings of the
2nd Clinical Natural Language Processing Workshop, pages 46–54, Minneapolis,
Minnesota, USA, June 2019. Association for Computational Linguistics.

[69] Katherine Liao, Tianxi Cai, Guergana Savova, Shawn Murphy, Elizabeth Karl-
son, Ashwin Ananthakrishnan, Vivian Gainer, Stanley Shaw, Zongqi Xia, Peter
Szolovits, Susanne Churchill, and Isaac Kohane. Development of phenotype al-
gorithms using electronic medical records and incorporating natural language
processing. BMJ, 350:h1885–h1885, 04 2015.

[70] Steven Y. Lin, Tait D. Shanafelt, and Steven M. Asch. Reimagining Clinical
Documentation with Artificial Intelligence. Mayo Clinic Proceedings, 93(5):563–
565, May 2018.

[71] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Neural
relation extraction with selective attention over instances. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 2124–2133, Berlin, Germany, August 2016. Association
for Computational Linguistics.

[72] Peter J. Liu. Learning to write notes in electronic health records. CoRR,
abs/1808.02622, 2018.

169

[73] Yuan Liu, Ayush Jain, Clara Eng, David H. Way, Kang Young Lee, Peggy
Bui, Kimberly Kanada, Guilherme de Oliveira Marinho, Jessica Castro Galle-
gos, Sara Gabriele, Vishakha Gupta, Nalini Singh, Vivek S. Natarajan, Rainer
Hofmann-Wellenhof, Greg S Corrado, Lily H. Peng, Dale W. Webster, Dennis
Ai, Susan J. Huang, Yun Liu, R C Dunn, and David Coz. A deep learning sys-
tem for differential diagnosis of skin diseases. Nature Medicine, 26:900 – 908,
2020.

[74] Yen-Fu Luo, Weiyi Sun, and Anna Rumshisky. MCN: A comprehensive cor-
pus for medical concept normalization. Journal of Biomedical Informatics,
92:103132, 02 2019.

[75] Fenglong Ma, Quanzeng You, Houping Xiao, Radha Chitta, Jing Zhou, and
Jing Gao. Kame: Knowledge-based attention model for diagnosis prediction
in healthcare. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM ’18, page 743–752, New York,
NY, USA, 2018. Association for Computing Machinery.

[76] Susanna Martikainen, Johanna Viitanen, Mikko Korpela, and Tinja Lääveri.
Physicians’ experiences of participation in healthcare IT development in Fin-
land: Willing but not able. International Journal of Medical Informatics, 81
2:98–113, 2012.

[77] Susana Martins, Yuval Shahar, Maya Galperin, Herbert Kaizer, Dina
Goren Bar, Deborah McNaughton, Lawrence Basso, and Mary Goldstein. Eval-
uation of KNAVE-II: A tool for intelligent query and exploration of patient
data. Studies in Health Technology and Informatics, 107:648–52, 02 2004.

[78] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[79] Saeed Mehrabi, Anand Krishnan, Sunghwan Sohn, Alexandra Roch, Heidi
Schmidt, Joe Kesterson, Chris Beesley, Paul Dexter, C. Schmidt, Hongfang
Liu, and Mathew Palakal. Deepen: A negation detection system for clinical
text incorporating dependency relation into negex. Journal of Biomedical In-
formatics, 54, 03 2015.

[80] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Yoshua Bengio and Yann LeCun,
editors, 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

[81] Randolph A Miller, Harry E Pople Jr, and Jack D Myers. Internist-I, an ex-
perimental computer-based diagnostic consultant for general internal medicine.
New England Journal of Medicine, 307(8):468–476, 1982.

170

[82] James Mullenbach, Jordan Swartz, T. Greg McKelvey, Hui Dai, and David
Sontag. Knowledge base completion for constructing problem-oriented medical
records. ArXiv, abs/2004.12905, 2020.

[83] James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisen-
stein. Explainable Prediction of Medical Codes from Clinical Text. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 1101–1111, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics.

[84] Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. ScispaCy:
Fast and robust models for biomedical natural language processing. CoRR,
abs/1902.07669, 2019.

[85] Jakob Nielsen. Usability engineering. Morgan Kaufmann an imprint of Aca-
demic Press, a Harcourt Science and Technology Company, 1993.

[86] Stephen G. Pauker, G. Anthony Gorry, Jerome P. Kassirer, and William B.
Schwartz. Towards the simulation of clinical cognition: Taking a present illness
by computer. The American Journal of Medicine, 60 7:981–96, 1976.

[87] Yifan Peng, Xiaosong Wang, Le Lu, Mohammadhadi Bagheri, Ronald M. Sum-
mers, and Zhiyong Lu. Negbio: a high-performance tool for negation and un-
certainty detection in radiology reports. CoRR, abs/1712.05898, 2017.

[88] Roy Perlis. A clinical risk stratification tool for predicting treatment resistance
in major depressive disorder. Biological psychiatry, 74, 02 2013.

[89] David Pieczkiewicz, Stanley Finkelstein, and Marshall Hertz. Design and eval-
uation of a web-based interactive visualization system for lung transplant home
monitoring data. AMIA Annual Symposium Proceedings, 2007:598–602, 02
2007.

[90] R. Pivovarov, Y. J. Coppleson, S. L. Gorman, D. K. Vawdrey, and N. Elhadad.
Can Patient Record Summarization Support Quality Metric Abstraction? In
AMIA, volume 2016, pages 1020–1029, 2016.

[91] Rimma Pivovarov and Noémie Elhadad. Automated methods for the summa-
rization of electronic health records. Journal of the American Medical Infor-
matics Association : JAMIA, 22, 04 2015.

[92] Peter J. Pronovost, Sean M. Berenholtz, Todd Dorman, Pam A Lipsett, Terri
Simmonds, and Carol Haraden. Improving communication in the ICU using
daily goals. Journal of Critical Care, 18 2:71–5, 2003.

[93] Yair G. Rajwan and George R. Kim. Medical information visualization concep-
tual model for patient-physician health communication. In Proceedings of the

171

1st ACM International Health Informatics Symposium, IHI ’10, page 512–516,
New York, NY, USA, 2010. Association for Computing Machinery.

[94] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning.
Labeled lda: A supervised topic model for credit attribution in multi-labeled
corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 248–256, Singapore, August 2009. Association for
Computational Linguistics.

[95] Padmanabhan Ramnarayan, Amanda Tomlinson, Gautam Kulkarni, Anupama
Rao, and Joseph Britto. A novel diagnostic aid (ISABEL): development and
preliminary evaluation of clinical performance. Studies in Health Technolology
and Informatics, 107(Pt 2):1091–1095, 2004.

[96] Murali Ravuri, Anitha Kannan, Geoffrey J. Tso, and Xavier Amatriain. Learn-
ing from the experts: From expert systems to machine learned diagnosis models.
CoRR, abs/1804.08033, 2018.

[97] Alexander Rind, Taowei D. Wang, Wolfgang Aigner, Silvia Miksch, Krist Wong-
suphasawat, Catherine Plaisant, and Ben Shneiderman. Interactive Information
Visualization to Explore and Query Electronic Health Records. 2013.

[98] J. Rogers, C. Puleston, and A. Rector. The clef chronicle: Patient histories
derived from electronic health records. In 22nd International Conference on
Data Engineering Workshops (ICDEW’06), pages x109–x109, 2006.

[99] Ruth Reátegui Rojas and Sylvie Ratté. Comparison of metamap and ctakes
for entity extraction in clinical notes. BMC Medical Informatics and Decision
Making, 18, 2018.

[100] S. Rosenbloom, Edward Shultz, and Adam Wright. Managing the flood of
codes: maintaining patient problem lists in the era of meaningful use and icd10.
AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Sympo-
sium, 2012:8–10, 11 2012.

[101] S Trent Rosenbloom, Randolph A Miller, Kevin B Johnson, Peter L Elkin, and
Steven H Brown. Interface terminologies: facilitating direct entry of clinical
data into electronic health record systems. Journal of the American Medical
Informatics Association, 13(3):277–288, 2006.

[102] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David
Sontag. Learning a health knowledge graph from electronic medical records.
Scientific Reports, 7(1):5994, 2017.

[103] Adam Rule, Isaac H. Goldstein, Michael F. Chiang, and Michelle R. Hribar.
Clinical documentation as end-user programming. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–13,
New York, NY, USA, 2020. Association for Computing Machinery.

172

[104] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108, 2019.

[105] Guergana K. Savova, James J. Masanz, Philip V. Ogren, Jiaping Zheng, Sungh-
wan Sohn, Karin Kipper Schuler, and Christopher G. Chute. Mayo clinical Text
Analysis and Knowledge Extraction System (cTAKES): architecture, compo-
nent evaluation and applications. Journal of the American Medical Informatics
Association : JAMIA, 17 5:507–13, 2010.

[106] Jeffrey Schnipper, Jeffrey Linder, Matvey Palchuk, Jonathan Einbinder, Qi Li,
Anatoly Postilnik, and Blackford Middleton. Smart Forms in an Electronic
Medical Record: Documentation-based clinical decision support to improve dis-
ease management. Journal of the American Medical Informatics Association :
JAMIA, 15:513–23, 04 2008.

[107] Fred Schulte and Erika Fry. Death by 1,000 clicks: Where electronic health
records went wrong. Kaiser Health News, Jun 2019.

[108] Mark Sharp. Toward a comprehensive drug ontology: Extraction of drug-
indication relations from diverse information sources. Journal of Biomedical
Semantics, 8, 12 2017.

[109] Chaitanya Shivade, Marie-Catherine de Marneffe, Eric Fosler-Lussier, and Al-
bert M. Lai. Extending negex with kernel methods for negation detection in
clinical text. In Proceedings of the Second Workshop on Extra-Propositional
Aspects of Meaning in Computational Semantics (ExProM 2015), pages 41–46,
Denver, Colorado, June 2015. Association for Computational Linguistics.

[110] Catherine Smith, Scott Hetzel, Prudence Dalrymple, and Alla Keselman. Be-
yond readability: Investigating coherence of clinical text for consumers. Journal
of medical Internet research, 13:e104, 10 2011.

[111] Illés Solt, Domonkos Tikk, Viktor Gál, and Zsolt Kardkovács. Semantic clas-
sification of diseases in discharge summaries using a context-aware rule-based
classifier. Journal of the American Medical Informatics Association : JAMIA,
16:580–4, 05 2009.

[112] Irena Spasic and Goran Nenadic. Clinical text data in machine learning: Sys-
tematic review. JMIR Medical Informatics, 8(3):e17984, Mar 2020.

[113] Justin Starren and Stephen B. Johnson. An Object-oriented Taxonomy of Med-
ical Data Presentations. Journal of the American Medical Informatics Associ-
ation, 7(1):1–20, 01 2000.

[114] William W. Stead, Randolph A. Miller, Mark A. Musen, and William R. Hersh.
Integration and Beyond: Linking Information from Disparate Sources and into
Workflow. Journal of the American Medical Informatics Association, 7(2):135–
145, 03 2000.

173

[115] Andrew B Symons and Robert H Seller. Differential Diagnosis of Common
Complaints. Elsevier Health Sciences, 2017.

[116] H. J. Tange, A. Hasman, P. F. de Vries Robbe, and H. C. Schouten. Medi-
cal narratives in electronic medical records. International Journal of Medical
Informatics, 46(1):7–29, Aug 1997.

[117] Michael Tutty, Lindsey Carlasare, Stacy Lloyd, and Christine Sinsky. The com-
plex case of EHRs: examining the factors impacting the EHR user experience.
Journal of the American Medical Informatics Association, 26:673–677, 07 2019.

[118] Erik M van Mulligen, H Stam, and Astrid M van Ginneken. Clinical data entry.
In Proceedings of the AMIA Symposium, page 81. American Medical Informatics
Association, 1998.

[119] Tielman T. Van Vleck, Adam Wilcox, Peter D. Stetson, Stephen B. Johnson,
and Noémie Elhadad. Content and structure of clinical problem lists: a corpus
analysis. AMIA Annual Symposium Proceedings, pages 753–757, Nov 2008.

[120] David Vawdrey. Assessing usage patterns of electronic clinical documentation
templates. Journal of the American Medical Informatics Association : JAMIA,
2008:758–62, 02 2008.

[121] Taowei David Wang, Krist Wongsuphasawat, Catherine Plaisant, and Ben
Shneiderman. Visual Information Seeking in Multiple Electronic Health
Records: Design recommendations and a process model. In Proceedings of
the 1st ACM International Health Informatics Symposium, IHI ’10, page 46–55,
New York, NY, USA, 2010. Association for Computing Machinery.

[122] J.M. Weis and P.C. Levy. Copy, paste, and cloned notes in electronic health
records. Chest, 145(3):632–638, 2014.

[123] Jesse O Wrenn, Daniel M Stein, Suzanne Bakken, and Peter D Stetson. Quan-
tifying clinical narrative redundancy in an electronic health record. Journal of
the American Medical Informatics Association, 17(1):49–53, 2010.

[124] Stephen Wu, Kirk Roberts, Surabhi Datta, Jingcheng Du, Zongcheng Ji, Yuqi
Si, Sarvesh Soni, Qiong Wang, Qiang Wei, Yang Xiang, Bo Zhao, and Hua
Xu. Deep learning in clinical natural language processing: a methodical review.
Journal of American Medical Informatics Association, 27(3):457–470, Mar 2020.

[125] Zhang Yijia, Qingyu Chen, Zhihao Yang, Hongfei Lin, and Zhiyong lu. Bioword-
vec, improving biomedical word embeddings with subword information and
mesh. Scientific Data, 6, 12 2019.

[126] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision for
relation extraction via piecewise convolutional neural networks. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing,

174

pages 1753–1762, Lisbon, Portugal, September 2015. Association for Computa-
tional Linguistics.

[127] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation
classification via convolutional deep neural network. In Proceedings of COL-
ING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers, pages 2335–2344, Dublin, Ireland, August 2014. Dublin City
University and Association for Computational Linguistics.

175

	Introduction
	Motivation
	A New EHR
	Thesis Scope and Organization

	Background
	The Clinical Workflow
	Related Work
	Data Entry: Related Work
	Contextual Information Retrieval: Related Work

	Dataset Summary

	Rethinking Clinical Documentation
	Data Entry and Contextual Autocomplete
	The Sidebar

	Generating Rankings for Autocomplete
	Developing a Clinical Language Model
	Defining Clinical Concepts
	Autocomplete Scope and Ranking

	Defining the Autocomplete Problem
	Label Generation
	Featurizing Textual Data
	Alternate NER Approaches

	Autocompletion Model by Concept Type
	Autocompleting Conditions
	Autocompleting Symptoms
	Autocompleting Labs and Medications

	Contextual Autocomplete Results
	Performance and Usability
	Sensitivity Analysis
	Interpreting Autocompletion of Prior Conditions

	Summary
	Future Direction: Dynamic Autocomplete Rankings

	Triggering Autocomplete Scope
	Rule-Based Triggers
	Learned Triggers: The Setup
	Defining Labels
	Featurizing Text
	Dataset Generation

	Learned Triggers: Modeling
	How much local structure do we need?
	Binary Prediction of Autocomplete Scope
	Autocomplete Scope and Type Prediction

	Performance Results
	Scope and Type Detection
	Overall

	Summary
	Future Direction: Integrating Semantic Modifiers

	Patient Record Summarization from Unstructured Text
	Formalizing OMR Snippetization
	Dividing Notes into Snippets
	Measuring Snippet Relevance
	Advanced Keyword Search
	Latent Dirichlet Allocation and Topic Modelling
	Anchor-and-Learn

	Deployment and Next Steps
	Implementation of Advanced Keyword Search
	Future Work

	Information Synthesis and Visualization of Semi-Structured Data
	Drug-Disease Indications
	Lab and Vital Trend Visualization
	Condition-Procedure Relations
	Constructing an Ontology of Procedures
	Establishing Prior Mentions of Procedures
	Mapping Conditions to Procedures via Semi-Supervised Affine Transformations
	Mapping Conditions to Procedures via Logistic Regression

	Differential Diagnosis
	Generalized Differential Diagnosis
	Differential Diagnosis of Abdominal Pain

	Future Work

	Implementation & Deployment
	System Implementation
	Client-Side Inference
	Ontology Modifications
	Collaborative Documentation

	System Feedback & User Metrics

	Discussion and Conclusion
	Limitations
	Future Work

	Appendix
	NegEx Algorithm
	Examples of Clinical Notes
	OMR Annotation Tool

