Development of the Electronics Architecture for a Compact Lasercom Fine-Pointing System

by

Grant Gunnison

B.S. Electrical Engineering and Computer Science

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author ...

Department of Electrical Engineering and Computer Science

August 14th

Certified by ..

Kerri Cahoy

Associate Professor of Aeronautics and Astronautics

Thesis Supervisor

Accepted by ...

Katrina LaCurts

Chair, Master of Engineering Thesis Committee
This page is intentionally left blank.
Abstract
CubeSats have become increasingly popular over the past two decades. Since their inception through a collaboration between Cal Poly and Stanford in 1999, CubeSats have allowed researchers and educators worldwide to develop their expertise in the design, assembly, integration and testing of small satellites. Since then, applications for CubeSats have extended beyond the academic and research community into industry and the military. CubeSats bring an unprecedented opportunity for remote sensing due to their relatively low-cost platforms and quick development time. By using Commercial-Off-The-Shelf (COTS) parts and adjusting the scope of their sensing capabilities, CubeSats can be deployed for a small fraction of the cost of traditional satellites. This has led to the development of a large number of CubeSats for applications including: communication systems, weather sensing, Earth imaging and surveillance.

With space being more accessible than ever, the number of CubeSats in orbit has increased dramatically in recent years. With limited access to bandwidth and the growing demand for downlink capacity, engineering teams have looked for solutions beyond RF communication. An alternative communication architecture, laser communications (lasercom), is expected to improve performance, using advances in laser beam pointing and tracking technology. In this thesis we describe the electronics architecture for the Nanosatellite Optical Downlink Experiment (NODE) experiment. This architecture is built on the work of several graduate students and is expected to fly on CLICK-A in late 2020 or early 2021. We present the development of a viable integrated electronics implementation and subsystem laboratory verification for a 1.4U transmit-only CubeSat payload, NODE. NODE will be used to demonstrate downlink capability as part of the CubeSat Laser Infrared Crosslink Mission (CLICK)-A research project sponsored by the NASA Science Mission Directorate (NASA SMD).
This page is intentionally left blank.
Acknowledgments

I would like to express my deepest gratitude to my advisor, Kerri Cahoy for her un-ending support for all her students. Through the endless late nights, early mornings, and even many sleepless nights she has never failed to do everything in her power to support us and for that I will always be in awe and thankful.

I would like to thank NASA Ames for their financial support of me through both the NASA Ames CLICK Mission Award 80NSSC18K1579 and NASA STTR Phase 2 Award 80NSSC18C0211 the past two years to develop CLICK. I would like to thank my department, Anne Hunter and Katrina LaCurts for being understanding during difficult circumstances in my life that forced me to press pause on pursuing my degree and welcoming me back with open arms when I asked to come back.

I would like to thank my friends, close and far, for supporting me through some of the most challenging events I hope to ever need to deal with. If it were not for them, this thesis never would have been written. I would like to thank the CLICK team at MIT for being some of the most delightful and unbelievably smart people I’ve ever gotten to work with, teaching me more than I’d ever hoped to learn and for letting me take part in the adventure. I would like to thank my mom for being supportive of me taking a break from school to help with our difficult family circumstances, fighting for me in every way that she can and never failing to send the best care packages of all time. Finally, I’d like to my dad, I’d be nowhere near the person I am today without the love and support he always gave me.
This page is intentionally left blank.
Contents

1 Introduction .. 17
 1.1 Motivation for CubeSat Optical Communication 17
 1.2 Laser Communication Background 19
 1.3 NODE Project Overview 21
 1.3.1 NODE Background 22
 1.3.2 Concept of Operations 24
 1.3.3 Revision History 26
 1.4 Thesis Objectives and Roadmap 27

2 Approach & Requirements 31
 2.1 Revision-2 Testing ... 31
 2.2 REV-3 Design Specifications 34
 2.2.1 Bus selection, interface changes 35
 2.2.2 Board Requirements 35
 2.3 Key Design decisions .. 38
 2.3.1 Bus Communication Design Decision 38
 2.3.2 Power Distribution Design Decisions 39
 2.3.3 Photodiode board Design Decisions 40

3 Design & Implementation 43
 3.1 Bus Communication Interface 43
 3.1.1 Component Selection 45
 3.2 Power distribution ... 47
List of Figures

1-1 Radio and Optical Spectrum Carrier Frequency Comparison. The spectrum is shown in a logarithmic scale [9]. 20
1-2 Opacity of the Earth’s atmosphere to electromagnetic radiation [50] . 21
1-3 3D model of the NODE payload (REV-2, July 2018 [29] 22
1-4 CLICK A,B & C program demonstration objectives 24
1-5 Concept of CLICK-A operations [26] 25
1-6 NODE Revision-2 Avionics Subsystem Status [19] 27
1-7 CLICK-A Subsystem Requirement Breakdown 28

2-1 NODE Electronics Architecture. Control Signal (COS) 32
2-2 REV-2 Interface Architecture [29] 33
2-3 REV-3 Electronics Architecture 36
2-4 REV-3 Bus Communication Architecture 39
2-5 REV-2 multi-point grounding scheme 41
2-6 REV-3 Bus Communication Architecture 44
2-7 REV-3 Interface Design, February 2020 46
3-3 -5V Voltage Converter for NODE [48] 51
3-4 Low Noise 300mV Voltage Source, Current Sink 52
3-5 Soft Grounding Scheme for NODE 53
3-6 TIA Diagram including parasitic components 56
3-7 Maximum Achievable Bandwidth for prospective Op-Amps 57
3-8 DC output voltage from input bias current. Lower values are more desirable. ... 58
3-9 TIA REV-3.1 with 13 dB Tap .. 59
3-10 TIA REV-3.1 with 10 dB Tap 59
3-11 Bode Plot of TIA REV-3.1 with 10 dB Tap 60
3-12 DC2414A Development board for the LTC6268-10 Amplifier [39] 63
3-13 Lab Result from DC2414A Development board using the REV-3.2 design 64
3-14 Simulation result of the REV-3.2 design using the DC2414A development board. This is used to compare the result from the physical design on the DC2414A development board. .. 65
3-15 REV-3.2 Photodiode Board ... 66
3-16 REV-3.2 Single channel Transimpedance Amplifier Design Schematic 66

4-1 Output ripple of TPS6735 -5 V output prior to adding additional filtering. The blue signal shows the voltage ripple output with a 25 mV amplitude. The yellow signal is a voltage measured across a 8.86 Ω resistor in line with the bias current driver to calculate the current ripple. ... 69
4-2 Output ripple of TPS6735 -5 V output after additional filtering is added. The blue signal shows the voltage ripple output with a 5.5 mV amplitude. The yellow signal is a voltage measured across a 8.86 Ω resistor in line with the bias current driver to calculate the current ripple. ... 70
4-3 Detailed transmitter design block diagram with driver circuits outlined by the relevant board assignments. [45] 72
4-4 Abbreviated REV-3 TEC Control Circuit. The TEC_SETPOINT voltage is used to set the temperature of the TOSA cavity by adjusting the voltage across the TOSA thermistor labeled THERM2. 74
4-5 Wavelength as a function of cavity temperature, using a set current bias position. .. 75
4-6 Payload to Bus Interface Pinout .. 76
4-7 Resulting signal by modulating the TOSA wavelength off of the FBG filter. .. 77
4-8 Comparator output amplitude vs. comparator threshold-to-peak input signal difference ... 79
4-9 Single Channel Temperature Sensor Circuit ... 81
4-10 Temperature Sensor Readings using CLICK-A REV-3 Hardware. Temperature values were taken with a Fluke 287 Multimeter. 82
5-1 REV-3 model of CLICK-A [29]. ... 86
This page is intentionally left blank.
Acronyms

ACDS Attitude Determination and Control System. 25

BCT Blue Canyon Technologies. 27, 28, 35, 36, 38, 40, 49, 51, 52, 85, 86

BIST Built-In-Self-Test. 32, 34, 40, 79

BJT Bipoler Junction Transistor. 57

COS Control Signal. 9, 32

COTS Commercial-Off-The-Shelf. 3, 17, 43

CS Chip Select. 45

DAC Digital-to-Analog Converter. 73, 80, 81

DeMi Deformable Mirror Demonstration Mission. 40, 49

ESD Electrostatic Discharge. 32

FBG fiber Bragg grating. 11, 69, 71, 72, 75–78

FCC Federal Communication Commission. 19

FPGA Field Programable Gate Array. 32

FSM Fast Steering Mirror. 25, 33
FSO Free Space Optical. 22

GBW Gain Bandwidth Product. 41, 55, 56

ISS International Space Station. 24

ITU International Telecommunication Union. 19

KCL Kirchhoff’s Current Law. 55

lasercom laser communications. 3, 19

LEO Low Earth Orbit. 17

LLCD Lunar Laser Communication Demonstration. 22

MEMS micro-electromechanical system. 25, 40

MISO Master Input Slave Output. 45

mosi Master Output Slave Input. 45

NASA SMD NASA Science Mission Directorate. 3

NIR Near-Infrared. 19, 20

NODE Nanosatellite Optical Downlink Experiment. 3, 17, 21, 23

OPALS Optical PAyload for Lasercomm Science. 22

OSA Optical Spectrum Analyzer. 72, 74

PAT Pointing, Acquisition and Tracking. 22

PCB Printed Circuit Board. 31, 58, 65

PPM Pulse Position Modulation. 25, 79

REV-1 Revision-1. 26, 70
REV-2 Revision-2. 9, 26–28, 31, 33–35, 38–41, 43, 47, 52, 54, 67, 70, 75, 80, 84, 85

REV-3 Revision-3. 7, 9–11, 26, 28, 34–37, 39–41, 43–47, 52, 54, 58, 67, 70, 71, 74, 75, 80, 82, 84–86

RF Radio Frequency. 17, 21

RPi Raspberry Pi. 44, 45

RTD Resistance Temperature Detector. 33, 80, 81

SNR Signal-to-Noise Ratio. 18

STAR Space Telecommunication Astronomy Radiation. 17

SWaP Size, Weight, and Power. 18, 83

TEC Thermoelectric Cooler. 33, 34, 71–75

TI Texas Instruments. 50

TIA Transimpedance Amplifier. 8, 40, 41, 51, 54, 55, 58, 61, 75–79, 84

TOSA Transmitter Optical Sub-Assembly. 10, 26, 31–34, 40, 54, 62, 68, 69, 71–76, 78, 84

TRL Technology readiness level. 28

TVAC Thermal Vacuum. 26, 68
This page is intentionally left blank.
Chapter 1

Introduction

In the past two decades small satellite deployments have increased dramatically as ride-sharing opportunities have decreased launch costs. This has opened up opportunities for deployment into Low Earth Orbit (LEO) for a broader range of companies and researchers. Traditionally, small satellites have used Radio Frequency (RF) technology to communicate. While developments in RF technology have improved its capabilities, the RF spectrum is crowded, which constrains the performance of RF communications and extends project timelines due to licensing difficulties [1,2]. However, by leveraging Commercial-Off-The-Shelf (COTS) parts from terrestrial free space optical communication systems, space based laser communication systems can be developed and deployed at a reasonable cost with more attractive timelines and similar capabilities. The MIT Space Telecommunication Astronomy Radiation (STAR) Lab has set out to demonstrate this with the Nanosatellite Optical Downlink Experiment (NODE). This thesis focuses on the electronics architecture development, design and results for NODE.

1.1 Motivation for CubeSat Optical Communication

With space being more more accessible than ever, the development cycle for deployable space systems has shifted dramatically towards smaller and more quickly developed systems. This has allowed larger distributed systems or nets of satellites to be
deployed such as Planet’s Earth imaging project, SpaceX’s StarLink, and OneWeb’s constellation [3,4]. However, these systems have increasing needs for larger bandwidth which is challenging to achieve with RF communication systems. Additionally, these bandwidth constraints are still an issue even for smaller networks or single satellite operations. There is currently no solution that could dramatically relax this communications constraint. However, moving to an optical communication system such as NODE could alleviate the bandwidth constraints by operating in a portion of the spectrum that is unregulated.

To understand the Size, Weight, and Power (SWaP) challenge of small satellites, the Friis transmission equation is useful, as shown in Equation 1.1. Generally speaking, the more power available to transmit, the higher the data rate will be, as the link capacity depends on the channel bandwidth and Signal-to-Noise Ratio (SNR). However, since we cannot control the channel bandwidth we focus on the SNR, which is a direct derivative of the power received, P_{Rx}.

$$P_{Rx} \propto \frac{P_{Tx} A_{Tx} A_{Rx}}{\lambda^2 R^2}$$ (1.1)

As can be seen the Friis formula, P_{Rx}, the power received at the transmitter is proportional to the, P_{Tx} power transmitted, A_{Tx} transmitter aperture area, A_{Rx} receiver aperture, λ^2 wavelength, and R^2 the distance between the transmitter and receiver. There is little flexibility in the aperture size given the small volume of CubeSats (10-20 cm diameter) and limited budget for a large aperture ground station (2-5 m diameter). There is a fixed amount of transmit power on the CubeSat and the transmit distance is set by the orbit, which depends on the science goals and desire to stay in orbit for the duration of the mission. Therefore the only term that can be meaningfully changed is the λ^2, or the carrier frequency. Fortunately, there are roughly 5 orders of magnitude in gain that can be realized by moving into the optical regime and moving the carrier frequency from the S-band (2 to 4 GHz $\lambda = 15–7.5 cm$) into infrared spectrum (193 THz $\lambda = 1550 nm$), where NODE operates.

There are a few organizations that have developed X and Ka-band transceivers for
CubeSats such as Planet, which is flying X-band transmitters that have theoretical downlinks over 200 Mbps [2]. However, obtaining a license in this band of spectrum is very difficult, and is not practical for CubeSat projects with quick development timelines and limited budgets. In fact, obtaining a license from the Federal Communication Commission (FCC) and International Telecommunication Union (ITU) can sometimes take longer than it can take to design, build and test a CubeSat [5,6]. The CubeSat platform would benefit from a high bandwidth communications solution and lasercom can help to fill this gap.

1.2 Laser Communication Background

There are two key benefits to using a laser based communication system over a RF system: better SWaP utilization and available bandwidth. Better SWaP utilization can be seen through the directionality of lasers which is mathematically described in Equation 1.2 and is commonly referred to as the divergence.

$$\theta \approx \frac{\lambda}{D} \quad [7] \tag{1.2}$$

Due to the reduction in wavelength by moving into the Near-Infrared (NIR) band, the angle of divergence is significantly reduced over an RF system using an aperture of a similar size, D. This allows the energy density of the signal to increase dramatically, which is reflected in the Friis equation and is the main driver of gain over an RF system. Secondly, the reduction in wavelength allows for a reduction in the size of the aperture selected which is advantageous due to the stringent size constraints of CubeSats and can aid in adding additional design latitude.

Another product of moving to a shorter wavelength is the availability of bandwidth. As can be seen in Figure 1-1 the optical spectrum has carrier frequencies on the order of Terahertz, which makes available more bandwidth than the entirety of the RF spectrum in just a portion of infrared optical spectrum. Beyond the physical limitations due to the SWaP of CubeSats and the transmit channel, the availability of extensive amounts of bandwidth has an unprecedented ability to increase down-
link rates over comparable RF designs. Additionally there is the limited regulation

from the FCC and ITU in this part of the spectrum currently. They do not require licenses to operate in the NIR spectrum due to the directionality of lasers and low divergence of beams, but only regulate them for eye safety [17]. This reflects the low risk of interference, interception and jamming, a highly attractive feature for military applications [20].

However given all of these benefits, there are drawbacks to using an optical system over an RF system, including: atmospheric turbulence, atmospheric opacity and technical complexity. Atmospheric turbulence can lead to variations in signal intensity, phase and direction, meaning that transmission is not always effective through clear air [22]. Additionally, communication is almost never possible through clouds due to scattering. However, these effects can largely be mitigated by having a diverse, numerous set of ground stations. Riesing has shown that having 3 or more diverse locations can provide 90+\% downlink availability [23,24,25,27].

Additionally, while there is significant bandwidth available due to the higher carrier frequencies of lasers, only a portion of that is available for downlinks due to the high atmospheric opacity at infrared wavelengths. Figure 1-2 shows that the Earth’s atmosphere is complete opaque for the majority of the infrared spectrum, but can support transmission at NIR wavelengths, as the atmosphere is comparably transparent to the radio frequency window. Downlinks will be constrained to this portion of

Figure 1-1: Radio and Optical Spectrum Carrier Frequency Comparison. The spectrum is shown in a logarithmic scale [9].
the spectrum, where crosslinks will have the full infrared spectrum available to them.

Finally, typical spacecraft pointing abilities are insufficient to meet the pointing requirements of an optical system which requires a secondary, fine pointing, system to be developed [21]. This requires significant technical investment beyond what would be required of a RF system. However, even though it is a more challenging technology to master, the opportunity for an expansion in available bandwidth outstrips the drawbacks of using such a system.

![Figure 1-2: Opacity of the Earth’s atmosphere to electromagnetic radiation [50]](image)

1.3 NODE Project Overview

This section will introduce Nanosatellite Optical Downlink Experiment (NODE). It will describe the CubeSat Laser Infrared Crosslink Mission (CLICK) mission, its goals and how those goals will be met through its concept of operation. It will address the previous revisions of the project and the past efforts to develop the project, as well as describe the work that has been completed and will be outlined in this thesis.

1.3.1 NODE Background

NODE, shown in Figure 1-3, is a proof of concept technology demonstration to show that Free Space Optical (FSO) communications can be done with comparable performance to larger scale programs such as Optical PAyload for Lasercomm Science (OPALS) and Lunar Laser Communication Demonstration (LLCD), while in a 3U CubeSat. The work at MIT’s STARLab started with Ryan Kingsbury in 2012 and became his Doctoral thesis in 2015, outlining the system architecture and design. He completed subsystem validation using development boards [26]. Further work was completed by both Riesing and Nguyen in 2015 on the Pointing, Acquisition and Tracking (PAT) subsystem, including simulations of the link conditions and modeled hardware [27,41]. Cierny further developed the optical system required to meet the PAT system requirements in 2017 [42]. Grenfell developed the relative navigation system to appropriately localize the spacecraft in space on orbit in 2019 [43]. There are many other students that contributed including Christian Haughwout and Rodrigo Diez who made significant contributions to the integrated electronics, Joe Kusters who developed the software and packet architecture and is actively developing the
flight software, Will Kammerer and Derek Barnes who developed and detailed the thermal models and designed the structural payload, Myron Lee who developed the NODE optics and transmitter stabilization algorithm, Caleb Zeigler who developed the downlink channel coding scheme, and Raichelle Aniceto and Alexa Aguilar who evaluated hardware performance in a LEO radiation environment. These publications can be found by year in Table 1.1.

Table 1.1: NODE Contributor Publications

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Kingsbury</td>
<td>Optical communications for small satellites [26]</td>
<td>2015</td>
</tr>
<tr>
<td>K. Riesing</td>
<td>Development of a pointing, acquisition, and tracking system for a nanosatellite laser communications module [27]</td>
<td>2015</td>
</tr>
<tr>
<td>O Cierny</td>
<td>Precision Closed-Loop Laser Pointing System for the Nanosatellite Optical Downlink Experiment [42]</td>
<td>2017</td>
</tr>
<tr>
<td>J. Kusters</td>
<td>A Software-Defined Receiver for Laser Communications Using A GPU [16]</td>
<td>2018</td>
</tr>
</tbody>
</table>

In 2017, NODE became a part of the CLICK program due to a payload host change due to contract disagreements. The CLICK program is a two mission program A and B/C and therefore NODE will be referred to as CLICK-A through the remainder of this document. Figure 1-4 shows the relative objectives of CLICK-A and CLICK-B/C, where CLICK-A is to demonstrate downlink capabilities and provides a de-risking mission to the CLICK-B/C payloads, which will demonstrate both downlink and crosslink capability. Additionally, the relevant mission requirements used to develop the electronics system for the CLICK-A mission can be seen in Table 1.2.
1.3.2 Concept of Operations

CLICK-A has been selected for a deployment via the International Space Station (ISS) and its orbit will be at approximately 400 km as shown by the orbital parameters in Table 1.3.2. This will provide approximately a 10 minute transmission window from 20° above the horizon. Prior to reaching the horizon, the payload will wake up and start its boot up sequence, which lasts roughly 45 seconds. Once over the
horizon it will contact the ground station with a low-rate RF link and initiate the Attitude Determination and Control System (ADCS) on the spacecraft to locate the uplink beacon, as shown in in Figure 1-5. Once the uplink beacon is received, the spacecraft’s ADCS will be able to lower its pointing error to less than 2080 urad (1-sigma) at which time the fine-pointing system, using a MEMS FSM will activate to close the loop with an error less than 90 urad (1 sigma) [43]. Once the transmitter and receiver are locked, transmission can be completed.

<table>
<thead>
<tr>
<th>ISS Orbital Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Altitude</td>
<td>370-460 km</td>
</tr>
<tr>
<td>Orbital Inclination</td>
<td>51.6°</td>
</tr>
<tr>
<td>Orbital Velocity</td>
<td>7.6-7.7 km/s (around 27,500 km/h)</td>
</tr>
</tbody>
</table>

CLICK-A utilizes a Pulse Position Modulation (PPM) scheme [10]. PPM orders up to M=128 can be utilized in order to close the link, however it is important to note that the data rate proportionally declines as the PPM order is increased. Nominally, CLICK-A is planning to transmit using 5 ns pulses which could achieve data rates up to 200 Mbps, but depending on the aperture of the ground receiver, such as the planned 30 cm ground station, data rates are likely to be in the 10-50 Mbps range using PPM orders >4 to complete transmission [44]. CLICK-A will also send payload
telemetry data over its RF link to the KSat Lite antenna network at a maximum rate of 1 Mbps. This data will largely include on-board diagnostics, as CLICK-A will only be receiving ground station commands through this link.

1.3.3 Revision History

With the completion of Kingsbury’s PhD thesis in 2015, Revision-1 (REV-1) of NODE’s subsystems were complete. This work included evaluating the design drivers for the ground systems, link budget and payload hardware selections. Through this work a transmitter architecture trade study was completed, which resulted in the avionics system architecture being developed and implemented using development boards [26]. An over-the-air system test was completed in 2017 as well, verifying the functionality of the design. However, many implementation tasks remained after REV-1 was complete, including miniaturization, integration and packaging and designing the appropriate control interfaces.

This work would be followed up by several graduate students that addressed several aspects of NODE, their publications can be seen in Table 1.1. Specifically regarding the avionics, two graduate students Rodrigo Diez and Christian Haughwot took the system architecture developed by Kingsbury and used it to develop integrated electronics that would fit within the 1.5U payload volume. The result of this and several other graduate student’s work defines Revision-2 (REV-2) for the NODE payload which finished in June, 2018 [29]. As seen in Figure 1-6 REV-2’s avionics system was not completed with the culmination of their work, testing remained to be done on both the Daughter and Transmitter Optical Sub-Assembly (TOSA) boards and the Photodiode board had not begun testing.

With the work completed by several other graduate students, REV-2 was moved from several separate subsystems built out of development boards and benchtop systems, into a integrated payload as shown in Figure 1-3. This payload went through preliminary vibration and Thermal Vacuum (TVAC) testing, but was unable to complete functional testing as the avionics systems were not mature.

Moving forward this thesis will address Revision-3 (REV-3) which will address the
remaining work to complete the integrated electronic systems of REV-2 and is now known as CLICK-A. There is additional work that has been completed in structural, thermal, and optical design, which will be shown in diagrams, but not discussed in detail.

1.4 Thesis Objectives and Roadmap

The objective of this thesis is to address the challenges related to the embedded electronic systems of CLICK-A. The end goal of this research effort has been to ready CLICK-A for deployment. In order to get CLICK-A ready for deployment, numerous challenges needed to be overcome, which are the primary topics of this thesis. These include completing and verifying: board-level designs, inter-board integration, and bus compatibility. The full list of thesis objectives are:

- Test and document the electrical subsystems for REV-2 of CLICK-A.
- Update payload and board specific requirements to meet the functional requirements for the payload and to integrate with BCT’s bus.
• Design, implement and test new power systems and communication interface for CLICK.

• Simulate, design, implement, test, and characterize a new photodiode board.

• Test and characterize the remaining subsystems for REV-3 of CLICK-A.

We started by analyzing previous work to understand what the Technology readiness level (TRL) of the electronic system was in REV-2. We then imposed new board level specifications to properly integrate existing boards and redesign those that did not meet the new specifications. Finally, given a change in bus provider to Blue Canyon Technologies (BCT), new interface requirements were developed along with a new design that was implemented to be compatible with our bus. Using these revised requirements we addressed the short comings of the current design, and implemented these changes to become Revision-3 (REV-3). These designs were then tested and validated against the new requirements. Figure 1-7 reflects the areas of the payload that will addressed in this thesis, highlighted in light orange, the power and avionics subsystems and their integration into the payload. More specifically, the required redesign of the Photodiode board and bus interfaces will be addressed. Later the payload system integration, testing and validation results of payload’s system will evaluated against the imposed system specifications.

![CLICK-A Subsystem Requirement Breakdown](image)

Figure 1-7: CLICK-A Subsystem Requirement Breakdown

This thesis consists of 5 chapters. Chapter 2 addresses the approach taken in completing the design and many of design decisions made for CLICK-A. Chapter
3 addresses the design changes in detail that were made to complete the necessary redesign work as well as the implementation of those changes. Chapter 4 describes testing results at a board and payload level. Finally, Chapter 5 discusses the specific contributions of this thesis and future work that will need to be completed for CLICK-A delivery.
Chapter 2

Approach & Requirements

As a student-led university project, there has been regular staff turnover on CLICK-A. Dozens of students have worked on various portions of the project since 2013, and there have been transitions every year of two. Due to this and hardware component availability over the years, putting together a cohesive and finished system has been a challenge. This chapter will outline the approach used to meet the remaining design requirements to complete CLICK-A in spite of these challenges.

This chapter is outlined in three sections. Section 2.1 outlines the remaining system testing that was completed to finish verification of the REV-2 design. Section 2.2 will outline the updated design specifications needed to integrate the system from an electrical perspective both within the payload and with the bus. Section 2.3 will discuss the key design decisions needed to meet the newly imposed specifications for each board as well as the payload as a whole.

2.1 Revision-2 Testing

The electronics architecture developed by Kingsbury in 2015 was built using development boards and implemented on Printed Circuit Board (PCB)’s by Diez and Haughwot, which can be seen in Figure 2-1 [26].

NODE’s electrical system is made up of 4 main PCB’s that can be seen in Figure 2-1 as well as a Transmitter Optical Sub-Assembly (TOSA) mounting board. In
terms of specific integrated boards, both the CPU and Field Programmable Gate Array (FPGA) boards were developed by Diez [29]. The CPU board is a shield for a Raspberry Pi Compute 3, the payload computer. The shield supports USB interfaces to the bus, beacon camera and the FPGA board. It also provides power conversion for the Raspberry Pi from the bus supply and Electrostatic Discharge (ESD) protection. One of the most important capabilities of the CPU board is to allow the bus to flash the Raspberry Pi on orbit if it gets corrupted. This requires the bus to switch communication from the Raspberry Pi and its peripherals to the bus for reprogramming. This need created a complicated scheme on this board, but Diez successfully implemented a system that worked, is shown in 2-2, and described further in Section 3.1.

The FPGA board is an interfacing board between the peripheral devices in the payload and the CPU board. Implemented using the same FPGA that Kingsbury used, the Spartan 6, the FPGA board handles the translation between USB commands from the CPU and SPI for the various drivers on the Daughter board [29]. It also has an RF interface to modulate the Transmitter Optical Sub-Assembly (TOSA), handles the Built-In-Self-Test (BIST) functionality outlined in Kingsbury’s thesis,
and maintains the memory map [13,19]. At the start of the author’s work, the author tested both boards and they have both been electrically validated, including the FPGA’s software defined SPI and UART interfaces.

The remaining three boards: the Daughter, Photodiode, and TOSA boards were developed by Haughwout. The Daughter board houses the electronics for the Thermoelectric Cooler (TEC) controller, Current Bias Controller, Fast Steering Mirror (FSM) high-voltage driver, calibration laser driver, Resistance Temperature Detector (RTD) circuitry and the interface to the Photodiode board. Functional testing of the Daughter board revealed that the Current Bias controller did not work and without it working, the TEC controller could not be validated. However, the rest of the designs performed appropriately.

The Photodiode board, which provides the circuitry to convert a portion of the TOSA laser output into an electrical signal in REV-2, did not work however. After investigation, the board was designed without enough bandwidth, 200MHz is required, and would not provide enough gain, >10,000 required, in this system. Unfortunately,
the Photodiode board is an integral part of the Built-In-Self-Test (BIST) system, which is used to validate that the transmitter is working properly. In Section 2.3, we discuss the design changes that needed to be made and the driving factors for the required Photodiode board redesign.

The TOSA board is a simple board that acts as a mounting board for the TOSA itself. This is necessary due to the physical constraints in the payload that would not allow for proper heat sinking if the TOSA was mounted to one of the other boards. The TOSA board connects to the Daughterboard for the TEC and Current bias drivers, as well as the FPGA board to receive the modulation signal. Specific attention during layout is needed on this board to keep the modulation signal clean.

In going through the REV-2 designs, testing procedures and results were documented for each board. Each board was functionally tested and validated according to the REV-2 implementation, but was not validated to the required features needed for a fully functional payload as these requirements were detailed in a later process. The final specifications and features needed to finish the payload are listed in Section 2.2.

2.2 REV-3 Design Specifications

After functionally testing the REV-2 designs and having the interface design specifications change due to a change in bus provider, a new set of specifications needed to be developed for the payload. The team consistently worked with our bus provider to communicate any specifications that needed to be changed or updated, even if they were a current best estimate. In Table 2.2 the REV-3 specifications can be seen as well as how they compare to the REV-2 specifications. Table 2.2 does not capture all of the requirements for the payload, but highlights the necessary and notable high level changes.
Table 2.1: Updated Payload Specifications. Values in red are driven by the payload. Values in blue are driven from the bus provider.

<table>
<thead>
<tr>
<th>Specification</th>
<th>REV-2</th>
<th>REV-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Comm. Protocol</td>
<td>USB</td>
<td>UART, SPI Slave</td>
</tr>
<tr>
<td>Supplied Power Rails</td>
<td>+5V,+3V3</td>
<td>+7-17V</td>
</tr>
<tr>
<td>Peak Power Consumption</td>
<td>10W</td>
<td>17W</td>
</tr>
<tr>
<td>Maximum Volume</td>
<td>1U</td>
<td>1.4U</td>
</tr>
<tr>
<td>Maximum Mass</td>
<td>0.6 kg</td>
<td>1.5 kg</td>
</tr>
<tr>
<td>Min Operational Temp</td>
<td>None</td>
<td>0°C</td>
</tr>
<tr>
<td>Max Operational Temp</td>
<td>None</td>
<td>60°C</td>
</tr>
</tbody>
</table>

2.2.1 Bus selection, interface changes

With a change in prospective bus providers from Planet to BCT and from REV-2 to REV-3, there were several integration challenges that needed to be overcome. Through collaboration with BCT came a slew of different payload requirements including power distribution, communication protocols, thermal bounds, and updated mass and volume specifications.

While there are several changes that can be seen in Table 2.2 the two most impactful changes from a payload electronics perspective were the power distribution and communication protocol requirement changes. The thermal requirements did inform part selection, but did not drive significant changes in hardware design. Figure 2-3 shows the updated communication protocols as well as updated voltage rail requirements to individual boards. The power and communication protocol requirement changes were relatively straightforward; however, due to the in-place architecture of the payload, significant changes needed to be made to meet these requirements. Chapter 3 explains the specifics of the designs that were chosen to make the payload compliant with the new bus.

2.2.2 Board Requirements

The requirements shown in Figure 2.2 offer a higher fidelity break down of the functional requirements for each board of REV-3. Figure 2.2 does not detail the specifics of the functional requirements, which are detailed in Chapter 3, but rather details
the input and output specifications that each board must meet. The TOSA board is not listed in Figure 2.2 because it has no active systems on it and is an interfacing board between the TOSA module and the other boards in this system.

As can be seen in Table 2.2 the list of top level requirements for each board is a significant extension over the higher level requirements in Table 2.2; however, this list is not exhaustive and does not detail power consumption, physical layout or EMI requirements.

One of the requirements that was pushed back up to the bus level after going through the requirement analysis and a redesign of the current hardware was the need for current protection. CLICK-A does monitor current for some of its subsystems, but not at the aggregate level; however, it does have the ability to slow start its power systems, which ensures that it will not overload the bus power supply at startup. The decision to put current level protection at the bus level involved two parts. First, the needed protection from the payload and BCT’s power system were already capable of providing this functionality. Second, while it was desirable to put additional monitoring into the payload, the project schedule demanded that we push this requirement to the bus and forego additional power system development on the
<table>
<thead>
<tr>
<th>Board</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Board</td>
<td>• Input Voltage +7-17V</td>
</tr>
<tr>
<td></td>
<td>• Differential SPI slave interface to bus</td>
</tr>
<tr>
<td></td>
<td>• Differential UART interface to bus</td>
</tr>
<tr>
<td></td>
<td>• USB interface to FPGA board</td>
</tr>
<tr>
<td></td>
<td>• Selectable USB interface to Camera</td>
</tr>
<tr>
<td></td>
<td>• Can be reprogrammed & restarted from bus</td>
</tr>
<tr>
<td>FPGA Board</td>
<td>• Input Voltage +7-17V</td>
</tr>
<tr>
<td></td>
<td>• Provide +5 & +3V3 powerto Daughter board</td>
</tr>
<tr>
<td></td>
<td>• USB interface to CPU board</td>
</tr>
<tr>
<td></td>
<td>• Modulation interface to TOSA</td>
</tr>
<tr>
<td></td>
<td>• Heater controller & monitor</td>
</tr>
<tr>
<td></td>
<td>• Support interfaces to Daughter Board</td>
</tr>
<tr>
<td>Photodiode Board</td>
<td>• Input voltage +5V or +3V3</td>
</tr>
<tr>
<td></td>
<td>• Input up to 10% of TOSA Power</td>
</tr>
<tr>
<td></td>
<td>• LVTTL Output</td>
</tr>
<tr>
<td></td>
<td>• Input pulse width 5ns</td>
</tr>
<tr>
<td></td>
<td>• 3 Output Channels</td>
</tr>
<tr>
<td></td>
<td>• SPI commanded threshold voltages</td>
</tr>
<tr>
<td>Daughter Board</td>
<td>• Input voltage +5V and +3V3</td>
</tr>
<tr>
<td></td>
<td>• Provide -5V for current bias driver up to 150mA</td>
</tr>
<tr>
<td></td>
<td>• TEC controller with selectable temperature</td>
</tr>
<tr>
<td></td>
<td>• 4x channel 200V FSM Driver</td>
</tr>
<tr>
<td></td>
<td>• 6x RTD channels with -20°C - 80°C Range</td>
</tr>
<tr>
<td></td>
<td>• Calibration laser driver</td>
</tr>
<tr>
<td></td>
<td>• E DFA UART interface and mount</td>
</tr>
<tr>
<td></td>
<td>• Photodiode board interface</td>
</tr>
<tr>
<td>All Boards</td>
<td>• Can operate between 0° - 70°C</td>
</tr>
</tbody>
</table>
2.3 Key Design decisions

After developing more detailed requirements for the payload on a board by board basis, the REV-2 designs were evaluated to identify where the designs did not meet the requirements. After evaluating the boards, there were three major areas that needed to be addressed: the bus communication design, the power distribution design and the Photodiode board design. In this section, we discuss the approach taken to these key design decisions.

2.3.1 Bus Communication Design Decision

The most significant change required to the payload, due to a change in bus provider from Planet to BCT, is the change to the communication protocol. The original bus from Planet utilized USB to communicate with the payload. This USB would have provided a single high speed bus to communicate over, but unfortunately BCT’s bus could not support a USB interface. Figure 2-4 provides a high level look at the modified bus interface that met the new requirements as shown in Table 2.2.

Fortunately, the payload Raspberry Pi offers several different communication ports natively: USB, SPI, I2C, and UART. Given that BCT supports both UART and SPI, it made sense for us to use them both, SPI for high-speed telemetry, and commanding and UART for reprogramming. However, reprogramming the Raspberry Pi must be done over USB. The Raspberry Pi protocol utilizes USB as it is turned into a mass storage device, so that a new image can be written to it. Reflashing the Raspberry Pi does not need to be a fast operation, we allocated the UART port for this task and would need to provide a converter on the CPU board to turn the UART communication lines into USB lines to connect to the Raspberry Pi. The SPI interface would normally be straightforward, directly connecting from the bus to the payload SPI port; however, both the Raspberry Pi and the bus only have SPI masters, which means that we need to put a Slave-to-Slave converter in between the two interfaces so...
that they can communicate properly. In Chapter 3, we will outline specifically what the interfaces look like and the design trades we made to arrive at the final design.

2.3.2 Power Distribution Design Decisions

Some key decisions that need to be addressed for the payload power systems include: payload voltage conversion, bus protection, and grounding. The bus voltage requirement is clear, the payload must be able to handle voltages in the range 7V-17V which creates a straightforward change to the payload. There is concern however, about where to put converters, and how the variable current requirements could impact the payload from a layout perspective. At peak power, 17 W, the payload could require between 1 A to 2.42 A and must be designed to handle the higher current requirement with contingency. In order to manage these concerns, we opted to split the power conversion between both the FPGA and CPU boards and leave the same architecture that existed in the REV-2 design, in place. The CPU board would only provide power
to itself and the camera, where the FPGA board would provide power to itself and
the remaining boards and peripherals in the payload as seen in Figure 2-3. In chapter
3 we discuss design specifics, the components we selected, and the trades considered.

The payload-bus power interface was updated after lessons learned during the
MIT Deformable Mirror Demonstration Mission (DeMi) payload integration with
BCT. DeMi’s objective is to demonstrate deformable mirror operation in space to
provide wavefront control using a MEMS deformable mirror on a 6U CubeSat. DeMi
had a startup concern that would affect the bus power systems due to too much
loading capacitance and as CLICK-A is using the same bus, had similar concerns.
Fortunately, the converters that were selected for the REV-3 payload provided a
slow-start function that could control inrush current to the payload, but did not
provide over-current protection, nor did it provide protection to the inrush current
created by the bulk capacitance that is placed before the converters. Analysis will
follow in Chapter 3 that evaluates the efficacy of moving the current protection to
the bus.

Another consideration in integrating with the bus was how to properly ground the
payload. At the bus level, BCT implemented a multi single-point reference grounding
scheme in compliance with NASA’s Electrical Ground Architecture for Unmanned
Spacecraft [46]. REV-2 elected to follow the same grounding scheme on the payload
which can be seen in Figure 2-5. However, this architecture did not provide isolation
between the power and chassis ground raising concerns about ground loops between
boards and the bus. This will be discussed more in chapter 3, but necessitated a
design change in REV-3 to a single-point ground return with an isolated power to
chassis ground reference.

2.3.3 Photodiode board Design Decisions

As discussed in Section 2.1, the Photodiode board is part of the BIST system that
stabilizes the TOSA and validates that the transmitter is working properly. The
board houses three parallel Transimpedance Amplifier (TIA) circuits that convert a
small amount of optical power from the TOSA into a voltage. While testing the
REV-2 TIA we found that the design did not achieve the necessary performance. This required us to define the appropriate specifications for the board, which are listed in Section 2.3 and redesign the board. These specifications define the amount of input power that is provided to the board, the shape of the input and the required output of the circuit. Given the amount of power being provided from the TOSA, +4-6 dBm, the TIA needs to provide a gain of +75-84 dB to meet the desired output signal. This is a tall order, especially at 200 MHz, to achieve with a TIA. As seen in Equation 2.1, there are three parameters that the designer can control when designing a TIA; however, R_f is typically defined by the needs of application and both C_{IN} and the Gain Bandwidth Product (GBW) are artifacts of the chosen components in the circuit.

$$f_{-3db} = \sqrt{\frac{GBW}{2\pi \times R_f \times (C_{IN})}}$$

(2.1)

The REV-2 design utilized the OPA657 Op Amp, which provided 46.8 MHz of bandwidth with the desired gain of 20,000. Given our system requirements this performance was insufficient. The part itself has a GBW of 1.6 GHz and a C_{IN} of 5.2 pF and in Section 3.3, we discuss the impact of these parameters on the performance of the circuit. We also discuss the design trades and analysis for completing the REV-3 design as well as the considerations taken into account during the layout process to minimize the effect of parasitic capacitance on Photodiode board.
Table 2.3: Summary of Photodiode Board Requirements

<table>
<thead>
<tr>
<th>Photodiode Board Design Constraints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOSA Output Power</td>
<td>+4-6dbm</td>
</tr>
<tr>
<td>Optical Splitter</td>
<td>Up to 10%</td>
</tr>
<tr>
<td>EPM605 Photodiode</td>
<td>0.85A/W</td>
</tr>
<tr>
<td>Input Pulse</td>
<td>5ns Square</td>
</tr>
<tr>
<td>TIA Gain @ 200MHz bandwidth</td>
<td>Max 20K</td>
</tr>
<tr>
<td>Desired Output</td>
<td>3V Pk-Pk</td>
</tr>
</tbody>
</table>
Chapter 3

Design & Implementation

In this chapter, we will discuss the specific design of the electrical subsystem for CLICK-A to meet the requirements for REV-3 in Table 2.2. Specific design trades will be discussed, from the subsystem architecture to the component level. Simulation results will be presented to support the design decisions made as well as layout designs as they are relevant.

3.1 Bus Communication Interface

In designing the new bus interface the goal was to preserve the internal payload architecture as much as possible, to reduce development time. In Chapter 2 we discussed the REV-2 design as shown in Figure 2-2 which depicts the interface architecture. It shows a single USB interface and a series of internal switches to allow for the proper data routing. The operational regimes that this architecture supports: regular operation with the CPU communicating to the bus over its SPI interface, communicating with the internal payload peripherals over USB, and a reprogramming regime where the bus would talk directly to the CPU USB interface to load a new image onto the CPU in case of corruption. The reprogramming regime is necessary due to the payload’s use of COTS components in a design with no redundancy for single point failures. Given the operational risk, we opted to include the functionality to reprogram the CPU given its sensitivity to radiation.
The REV-3 design needed to maintain the reprogramming functionality without the use of a USB interface due to BCT’s bus not supporting the protocol. Given that the payload internally utilized the SPI interface on the Raspberry Pi (RPi), it made sense to directly interface to the bus with a SPI interface. Additionally, since the RPi was required to be reprogrammed through its USB interface, we had to convert that into another protocol that the bus could process. We had our choice between SPI, I2C, and UART and ultimately went with UART due to ease of implementation, low speed requirements, and the breadth of devices capable of providing the protocol exchange.

Figure 3-1 shows the updated block diagram for the REV-3 payload interface. This includes a new block that was not discussed in Section 2.3.1, which is the SPI slave buffer. Both the bus and RPi boards provide a SPI Master interface which required us to provide a bidirectional SPI Slave in-between those devices to make the devices compatible. Additionally, as a deeper understanding of how to reprogram the RPi took shape, the UART to USB block could no longer just be a UART to USB
converter and instead needed to be able to provide custom logic on top of the protocol conversion to successfully reprogram the RPi. This was because we were not able to write the custom logic required on the bus side and therefore had to create a middle man on the payload in between the bus and RPi.

3.1.1 Component Selection

To provide the functionality required for the interfaces, we needed to find components that could support the differential to single ended conversions, a SPI Slave bi-directional buffer, and the UART to USB conversion. The differential to single ended requirement requires 4 receiver lines 3 for SPI for Master Output Slave Input (MOSI), CLK and Chip Select (CS) and a one for the UART RX line. It also required 2 driver lines for the Master Input Slave Output (MISO) and UART TX lines. Texas Instruments makes a family of parts, the SN65LVDsXX line, specifically for this purpose, separated by drivers and receivers. We chose the SN65LVDS33 as a 4-channel receiver and the SN65LVDS9638 a 2 channel driver [32, 33]. These parts can both be seen in the REV-3 implementation in Figure 3-2.

To support the SPI bi-directional Slave buffer we needed, there are exactly zero dedicated chips available on the market because SPI is built to support a single master and multiple slaves on the protocol. We therefore decided to find a MCU with two SPI Slave interfaces that we could write custom firmware for which would also support the UART to USB conversion. The Vinculum-II, from FTDI, provides a solution to both the SPI buffer as well as the UART to USB controller. It also supports custom firmware to be loaded on it for our specific application of converting UART to USB with a custom protocol for reprogramming the RPi.

With the final components selected, SN65LVDS9638, SN65LVDS33, and Vinculum-II, the REV-3 interface was implemented and can be seen in the schematic in Figure 3-2. Next, custom drivers needed to be written for both the SPI interface as well as the USB to UART reprogramming interface. The implementation of these drivers is not within of the scope of this thesis.
Figure 3-2: REV-3 Interface Design, February 2020
3.2 Power distribution

When redesigning the power system from REV-2 to REV-3 there were 2 major considerations that needed to be evaluated: 1) component selection for power conversion, 2) the grounding scheme and architecturally how to manage current. In order to reduce schedule impact, we opted to keep the same front end interfacing architecture that NODE had previously used, having main power to connect to both the CPU and FPGA boards. This allowed us to reduce current loops between boards and utilize the excess board area for the additional converters needed to meet the board voltage specifications shown in Table 3.1. Given a peak power input of 17 W and limited space to mount these converters, board area became a significant constraint on the design.

3.2.1 Component Selection & Converter Design

We first defined the voltage rails each board needed to produce along with a conservative estimate of the amount of current each line would need to provide. Figure 3.1 shows the outcome of this analysis. If the total power were to be added up, it would be significantly higher than our notated 17 W peak power. This is because the 5V converter on the FPGA board is specified such that both the heaters and the EDFA could be running continuously; however, operationally, this would never happen as the payload will not have to actively heat itself during a transmission. However, if they were activated, the converter should not go down due to over current draw. Additionally, the 1.8V, -5V and 300 mV rails are taken into consideration in the remaining rails on the CPU and FPGA boards and should be taken out of the total budget. Finally, from the values that were calculated a 25% margin was added on top and without that margin the total consumption is just under 17 W. This analysis is shown in Table 3.2.

We next identified roughly how much space was available on each of the boards and decided that fully integrated switched converters for the high power converters would be necessary on both the CPU and FPGA boards as there was little room
for additional magnetics and additional passive components. However for the low power converters, linear regulators and op-amps are used for simplicity. With these specifications set, the next step was to identify converters.

However, before comparing parts online, we consulted the team working on the integrated electronics for CLICK B/C to see if any of the converters that were being used on those boards would also work for CLICK-A. As CLICK B/C is the follow on mission to CLICK-A, it made sense to first validate as many of the components used in CLICK B/C as possible in CLICK-A to help reduce risk. The high power converter, the LTM4622, being used on the flight computer for CLICK B/C was also a good solution for CLICK-A [34]. The LTM4622 provides output and input voltage ranges that match those of CLICK-A, 2 channels per device and comes in a compatible package. This means that CLICK-A only needs 1 converter on the CPU board and
2 on the FPGA board to support all of the high power rails. Further details of the LTM4622 can be seen in Table 3.3.

<table>
<thead>
<tr>
<th>Input Voltage Range</th>
<th>3.6 - 20V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Range</td>
<td>600mV - 5.5V</td>
</tr>
<tr>
<td>Output Current</td>
<td>2.5A/Channel</td>
</tr>
<tr>
<td>Current Mode Control</td>
<td>Yes</td>
</tr>
<tr>
<td>Soft-Start</td>
<td>400 μs</td>
</tr>
<tr>
<td>Board Area</td>
<td>40 mm2</td>
</tr>
</tbody>
</table>

The LTM4622 met all the requirements for the CLICK-A power converters application and has some additional useful features. Later, in discussions with BCT there were concerns around inrush current as another project in STAR Lab, DeMi, was correcting issues at startup due to over-current draw as a result of too much loading capacitance [35,36]. The LTM4622 converters provide slow-start functionality that mitigate this risk for all of the components downstream of the converters. However, CLICK-A does have approximately 60 uF of bulk capacitance in front of the converters and the bus would need to be able to handle the inrush current created by this capacitance without shutting the payload down by reaching the agreed upon 3.7 A current limit. BCT was able to later verify through simulation that the 3.7 A current limit would not be reached, as the inrush current to CLICK-A would not exceed 700 mA due to this exposed bulk capacitance. We next moved on to component selection for the low power converters.

There are 3 low power converters that we selected for CLICK-A, the 1.8 V converter for the CPU, the -5 V converter for the Daughterboard, and the 300 mV converter for the photodiode board. The 1.8 V converter was chosen to be a linear regulator due to its low power requirements and simple application. The LM1117 was considered, as it only required 2 external components, an input and output stabilization capacitor. However, one potential concern with this part was that it could burn up too much unnecessary power, as linear regulators are inefficient. Equation 3.1 shows the efficiency for this device, where I_{IN} can be assumed to match I_{OUT} because $I_{OUT} \gg I_{CC}$, where I_{CC} is the current consumed by the device, which in
this case is 5 mA or 2% of the maximum specified current draw.

\[
\text{Efficiency} = \frac{V_{\text{OUT}} \cdot I_{\text{OUT}}}{V_{\text{IN}} \cdot I_{\text{IN}}} \quad (3.1)
\]

This leaves the LM1117 with an efficiency of 55%, which is not great, but acceptable for this application given its low power consumption. To make sure the device did not require any additional heat sinking while running at maximum load, the junction-to-ambient thermal resistance is calculated in Equation 3.2. The junction to ambient thermal resistance needs to be \(\geq 136^\circ/\text{W} \) to forgo additional heat sinking. The value calculated, using the maximum ambient temperature of 60\(^\circ\)C, as the upper operational temperature bound, comes out to 173.3\(^\circ\)/W confirming there is no need for an additional heat sink.

\[
\theta_{ja} = \frac{(T_J(\text{max}) - T_A(\text{max}))}{P_D} \quad (3.2)
\]

\[
P_D = (V_{\text{IN}} - V_{\text{OUT}}) \cdot I_{\text{OUT}} \quad (3.3)
\]

The next power converter, for the -5 V rail, needs to provide about 750 mW of peak power, which requires a switching converter, given the inverted rail voltage and the amount of power being delivered. There were several choices given the different converter topologies that can provide a negative voltage, such as a switched capacitor, inverted buck-boost or a Cuk converter. However, given that the Cuk topology requires 2 inductors instead of 1 for the inverted buck-boost, that topology was eliminated due to board space constraints. Taking a look at a couple of the chips available for the other topologies yielded potential solutions such as Texas Instruments (TI)’s LM2662, TPS6735 and Maxim’s MAX735. The LM2662 would have been a fine choice, but requires a 20 kHz or 150 kHz oscillator, which tend to be bulky due to their low frequency. So the LM2662 was eliminated. The remaining two converters utilized the same inverted buck-boost topology and as such are almost indistinguishable as they have the same efficiency, input voltage range, peak current drive, and operational temperature range [37, 38]. In fact, these devices are even pin for pin com-
patible and can be swapped out for each other. The TPS6735 was selected because it is about 60% of the cost of the MAX735, but either chip would work just fine. The topology of the converter can be seen in Figure 3-3.

The final converter to be specified was the 300 mV converter used on the Photodiode board to create a higher virtual ground in the TIA circuit as explained in Section 3.3. This converter needed to be a low noise, current-sinking device. Unfortunately, linear regulators are not built to sink current. As a switching converter would be overkill for this application, we opted to build a reference ourselves using an op-amp that could sink the sufficient current. It was not necessary for this voltage to be highly accurate, but it was important for it to be as stable and low-noise as possible. Fortunately, there are a number of low-noise op-amps available that could be used for this design. Figure 3-4 shows the layout designed for this voltage reference, using a low-noise op-amp, the LTC6258, in a voltage-follower configuration. The LTC6258 is settable by two in-series resistors with ±2% accuracy using 1% resistors. It is stable over the 60°C operational temperature range to 0.6%, which is largely driven by the 25ppm/K temperature coefficient for the resistors in the voltage divider and has less than 0.1%V_{p-p} noise.

With each of these designs completed and simulated for performance, the designs were moved into the board layout phase and the work turned towards making sure the design was compliant with the grounding scheme used by BCT at the bus level.
3.2.2 Grounding Scheme

As noted in Section 2.3.2, there were concerns about the grounding scheme of CLICK-A that needed to be taken into consideration. BCT’s bus implemented a multi single-point grounding system which provides a chassis ground reference to several devices within the system as the single-point ground reference. With this architecture, it is possible for current loops to be created if there is insufficient isolation between the power and chassis ground. When REV-2 of CLICK-A was designed, isolation was not provided between boards nor was it provided between chassis and power ground. This lack of isolation allows for potential power return paths through the chassis connections. While having current return through the chassis is unlikely to directly cause issues at DC, the potential for high frequency noise to be coupled through ground loops can be reason for concern. Each of the ground loops has the potential to both generate and receive electromagnetic energy. To try to stay compliant with NASA’s standard for grounding unmanned spacecraft our team redesigned the grounding plan for REV-3 of CLICK-A [20].

Given how CLICK-A is planned to be physically integrated into the bus, by directly bolting its chassis to the bus, there were two options for properly grounding the payload’s electronics. One option is to provide isolation through a physical resistance
in the electronics that would separate CLICK’s power ground from the chassis ground. This approach is “called soft grounding”. An implementation of soft grounding can be seen in Figure 3-5 where the standard recommendation for isolation on a power bus is a modest $2 \, \text{k} \Omega$ impedance between the chassis and power ground with no more than $0.1 \, \mu\text{F}$ of capacitance across the payload. As can be seen in Figure 3-5 this requires a resistor to be placed at the chassis ground on the electronics. Since CLICK-A has 5 boards in its system, none are connected to chassis directly, and all are connected to the same power ground, only a single resistor is needed to create this isolation. The configuration shown in Figure 3-5 limits the number of extra components needed to achieve isolation and provides the desired isolation between the chassis and power ground.

The second option is to disconnect the power ground from the chassis ground and have no chassis connection to the electronics on CLICK-A. This provides perfect isolation between the payload and the chassis ground, eliminating the possible chassis power return and high frequency ground loop issues that could have arisen. However, this does introduce a concern that the body of the spacecraft could be at a significantly different potential than the electronics and could introduce an unintended failure mode by having something accidentally connect the power ground of a board to the body of the payload. This could be a single path failure mode for the mission and is generally avoided due to its potential downsides. Additionally, it has potential to introduce common mode noise to the board systems, which is concerning for CLICK-A’s analog systems.
After exploring each option with BCT, the first option was chosen to help eliminate the risk of the potential failure mode and the risk of additional common mode voltages on NODE’s electronics.

3.3 Photodiode Board

When redesigning the Photodiode board from REV-2 to REV-3, care had to be taken with regard to the constraints laid out in Section 2.3.3. Given that there were two degrees of freedom, optical tap percentage and transimpedance gain, we considered how much room there was to operate within these constraints and which parameters would be able to produce valid designs. We evaluated the optical splitters shown in Table 3.4. Given that the TOSA has a tunable output power, it was important to assume that the TOSA is operating at its maximum power so that the TIA could be designed not to saturate, and so that there would be sufficient power further down the optical chain. The analysis is done using a +6 dBm output from the TOSA, assuming that any losses due to misalignment in splices would result in a decreased output voltage swing or reduce any bandwidth margin available. Given our desire for high output voltage swing, 3 V Pk-PK, we analyzed three possible splitters based on their possible tap values, how much power each would deliver to the photodiode, and in turn what the maximum possible output voltage swing would be. A maximum gain parameter was chosen after evaluating a few different TIA amplifiers and finding 20 K to be a practical value based on the 200 MHz of bandwidth required as shown in Table 2.3, but would need to revisited during simulations. As can be seen in Figure 3.4, the 20 dB splitter provided insufficient optical power to achieve the desired output swing of 3 V.

3.3.1 Transimpedance Amplifier Op-Amp Selection

To meet the functional requirements for the TIA as shown in Table 2.3, an initial component search identified 4 potential amplifiers that would be suitable to this application. Amplifiers were evaluated based on parameters shown in Table 3.5,
Table 3.4: Summary of Board Level Requirements

<table>
<thead>
<tr>
<th>Optical Splitter Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOSA Output Power</td>
</tr>
<tr>
<td>Optical Tap</td>
</tr>
<tr>
<td>Photodiode Input</td>
</tr>
<tr>
<td>Photodiode Responsivity</td>
</tr>
<tr>
<td>Photodiode Output Current</td>
</tr>
<tr>
<td>Maximum Gain</td>
</tr>
<tr>
<td>Peak Output</td>
</tr>
</tbody>
</table>

Table 3.5: Amplifier Design Parameters

<table>
<thead>
<tr>
<th>TIA Amplifier Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
</tr>
<tr>
<td>Gain Bandwidth (GHz)</td>
</tr>
<tr>
<td>Slew Rate (V/µs)</td>
</tr>
<tr>
<td>Input Capacitance</td>
</tr>
<tr>
<td>Output Swing</td>
</tr>
</tbody>
</table>

GBW, slew rate, input capacitance and output swing.

The first amplifier parameter evaluated was the slew rate of the amplifiers using Equation 3.4, making sure that the slowest of them, the LTC6268-10, was capable of providing its full voltage swing, given a 5 ns pulse. All of the amplifiers were able reach their maximum swing voltage within half of the pulse time with healthy margin.

\[
Slew_rate \cdot 2.5 \text{ ns} > 3V \tag{3.4}
\]

The second parameter evaluated was the maximum achievable bandwidth which incorporates several different parameters. In order to calculate this value, the transfer equation needed to be derived for the TIA circuit with all of the parasitic capacitances. The TIA circuit can be seen in Figure 3-6, and by using Kirchhoff’s Current Law (KCL) the transfer equation can be derived. With some manipulation, the transfer function can be put into the form seen in Equation 3.5. This form is useful because by modeling the response of the TIA as a Butterworth response, a maximally flat response filter, the maximum available \(f_{-3dB} \) bandwidth can be found by setting the value of \(Q = \sqrt{2} \) [47]. The equation for \(Q \), the damping component of the response,
Figure 3-6: TIA Diagram including parasitic components

can be found in Equation 3.6, where \(\omega_A \) is the maximum achievable bandwidth.

\[
\frac{V_O}{I_D} = R_F \cdot \frac{A_{ol}}{A_{ol} + 1} \cdot \frac{\omega_0^2}{s^2 + s \cdot \frac{\omega_0}{Q} + \omega_0^2} \quad (3.5)
\]

\[
Q = \frac{\sqrt{(A_{ol}+1)\omega_A}}{R_F(C_S+C_F)} \cdot \frac{1}{(1 + A_{ol} \cdot \frac{C_F}{C_S+C_F}) + \frac{1}{R_F(C_S+C_F)}} \quad (3.6)
\]

Fortunately, by applying an approximation, such as \(C_S >> C_F \) and noting that \(GBW = \omega_A \cdot A_{ol} \), a simpler formula can be used to calculate the the maximum available \(f_{-3dB} \) bandwidth. This is possible because we can say that \(F_o \) is the same point as \(Q \) when \(Q = \sqrt{2} \) using a Butterworth model of the maximum available \(f_{-3dB} \) bandwidth of the response.

\[
GBW = 2\pi \cdot F_{O-3dB}^2 \cdot R_FC_S \quad (3.7)
\]

Using Equation 3.7, we can plot the maximum \(f_{-3dB} \) bandwidth possible for each of the op-amps across a range of transimpedance gains, which is shown in Figure
3-7. While it is possible that the op-amps can be operated past their f_{-3dB} points, Figure 3-7 provides insight to which of these op-amps meet our design requirements. This analysis allows us to remove the LHM6629 from consideration as it is limits the transimpedance gain to no more than 5 kΩ.

![Maximum Achievable Bandwidth for selected Op Amps](image)

Figure 3-7: Maximum Achievable Bandwidth for prospective Op-Amps

The next aspect of performance evaluated for each of these op-amps was their operation at DC. Given the high transimpedance gain, there is a concern about the input bias current and whether or not that would adversely affect the output when there was little or no input current from the photodiode. This is especially a consideration for the OPA855, since it utilized Bipolar Junction Transistor (BJT)s on the inputs, which tend to require more input bias current due to the BJTs are constructed. By looking at Figure 3-8 it is clear that the OPA855 does in fact, require a significant input bias current, which would create a DC output voltage that exceeds 50 mV across the entire spectrum of gains, topping out at 250 mV at a transimpedance gain of 20 kΩ. The other amplifiers’ DC offset does not exceed 10 nV across the same spectrum, making them much more attractive options.

With only two amplifiers remaining, the OPA858 and the LTC6268-10, the only distinguishable feature remaining to distinguish the two amplifiers was their output voltage swings, as their voltage and current noise performance were almost identical.
The OPA858’s output voltage swing was less than half of the LTC6268-10’s at 1.3V. With our desire to have a larger output swing, we opted for the LTC6268-10. The next step is to simulate a TIA using the LTC6268-10 to evaluate its performance within the design constraints of our application.

3.3.2 Simulation of a TIA using a LTC6268-10 amplifier

Due to the sensitivity of TIAs to parasitic capacitance, the circuit could not be mocked up first on a protoboard, but rather had to be simulated and put on a PCB to control the parasitic capacitance. Figures 3-9 and 3-10 show the first designs and simulations that were used to validate the design for REV-3. These first couple of simulations quickly showed that the LTC6268-10 would work well for our application. We then used these simulations to evaluate the two remaining splitter values in consideration from Table 3.4 to decide which would be best. After simulating the two different cases using the input current values calculated with the parameters in Figure 3.4 it was clear that a higher input power would be best, allowing for a decrease in transimpedance gain. This was important because the maximum amount of bandwidth the TIA can provide is proportional to $\frac{1}{\sqrt{R_F}}$. The input parameters for these simulations and the

Figure 3-8: DC output voltage from input bias current. Lower values are more desirable.
resulting output voltage swing can be seen in Table 3.6.

Table 3.6: Amplifier Design Parameters

<table>
<thead>
<tr>
<th>TIA Amplifier Choices</th>
<th>13 dB Tap</th>
<th>10 dB Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitter Size</td>
<td>13 dB Tap</td>
<td>10 dB Tap</td>
</tr>
<tr>
<td>Input Current</td>
<td>170 μA</td>
<td>338 μA</td>
</tr>
<tr>
<td>Transimpedance Gain</td>
<td>18 kΩ</td>
<td>6 kΩ</td>
</tr>
<tr>
<td>Output Swing</td>
<td>3 V</td>
<td>3 V</td>
</tr>
</tbody>
</table>

Figure 3-9: TIA REV-3.1 with 13 dB Tap

Figure 3-10: TIA REV-3.1 with 10 dB Tap

After choosing a splitter, a board was sent out for fabrication, REV-3.1, to start
testing. Unfortunately, REV-3.1 did not work for three reasons: the amplifier does not have a true rail-to-rail output, the input capacitance was not modeled properly and the parasitic capacitance on the board was too large. Even though the analysis had been done to evaluate the output voltage swing, the lower bound of the output voltage was not considered when designing this board, which kept it from operating properly. The V_{ol} of the LTC6268-10 is at minimum 80 mV and is nominally 130 mV, which meant that our virtual ground at the inverting input of the op-amp could not match the positive input, which was tied to ground. This kept the device from operating properly and if the Bode plot had been analyzed more closely before this board was sent out for fabrication, it would have been clear that it would not have worked properly. As seen in Figure 3-11, the phase margin is negative at 200 MHz, which meant the amplifier is operating in an unstable regime and would have likely helped us catch the error prior to sending the board out for fabrication.

Fortunately, it was easy to white-wire REV 3.1 and fix this; however, the board still did not work as anticipated. The second issue was that the input capacitance of the photodiode was not as low as expected. Our design had included an EPM-605 Photodiode, but we had installed a EPM-635 into the board, which introduced an
additional 6.5 pF of input capacitance. In simulation, the extra capacitance dropped the F_{-3dB} bandwidth from roughly 325 MHz to about 175 MHz, missing our mark of 200 MHz. Swapping out the photodiode was an easy fix, but unfortunately, once this was done, the layout of the board became a problem. Even though we had attempted to limit the board’s parasitic capacitance, once the previous issues were fixed, the output of the TIA oscillated, rendering it useless. This drove home how important the layout was and pushed us to identify how much parasitic capacitance we could have on the board, and to design around that.

The maximum requirement for parasitic capacitance is easy to derive because the gain at high frequency is a ratio of the input and feedback capacitance, as shown in Equation 3.8. Since the LTC6268-10 is only stable for gains greater than 10, the high frequency gain must be greater than 10. Equation 3.8 shows that C_S has to be at least 9 times C_F for the LTC6268-10 to remain stable. Given that $C_S = C_D + C_{CM} + C_{DIFF}$, as shown in Figure 3-6, includes all known values, we can compute $C_S = 1.5$ pF, which limits $C_F < 166$ fF. The minimum value can be derived from the damping factor Q, as discussed in Section 3.3.1 and the equation for this is shown in Equation 3.9. An interesting point to note is that the feedback impedance provides damping for the circuit, and as the transimpedance gain increases, the minimum value of C_F drops as function of $\sqrt{\frac{1}{R_F}}$.

$$A_{CL} = \frac{C_F + C_S}{C_F} \quad (3.8)$$

$$C_F > \sqrt{\frac{C_S}{\pi \cdot GBW \cdot R_F}} \quad (3.9)$$

Plugging in the values for our design simulation, using a R_F of 6 kΩ, the value of $C_F > 141fF$. Given an upper limit of 166 fF that only left a 25 fF range for C_F to operate in, which is not practical to design to as no trimming capacitors would be accurate enough to provide that amount of accuracy. In practice, the value of C_F can go below the minimum part of this range because the transimpedance gain can be adjusted to increase or decrease the damping factor as needed, which is much
more controllable in some cases than the board capacitance. In the worst case, the amplifier would be subject to some peaking around the pole if there is not enough C_F, but as long as the transimpedance gain is reasonably tuned, this peaking can be limited to no more than 3 dB which is sufficient to keep the amplifier stable. Reducing the transimpedance gain to reduce peaking may sacrifice some output voltage swing, but this a reasonable trade to pay to keep the amplifier stable.

Using what we learned from the analysis of REV-3.1, an improved simulation was created to evaluate our design and verify it would work prior to completing another round of board layout and fabrication. The design was stress tested against various levels of input power and parasitic capacitance to evaluate under what conditions the design would properly operate and are shown in Figure 3.7. Additionally, after further analyzing the FPGA board, the input pulse to the TOSA is better modeled as a sine wave and not a square wave, this was adjusted in the analysis as well. Figure 3.7 shows the minimum and maximum values for all the qualities of the amplifier.

<table>
<thead>
<tr>
<th>Table 3.7: Amplifier Design Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIA Amplifier Ranges</td>
</tr>
<tr>
<td>Feedback Capacitance Range</td>
</tr>
<tr>
<td>Input Power Range</td>
</tr>
<tr>
<td>Transimpedance Gain Range</td>
</tr>
<tr>
<td>Output Swing Range</td>
</tr>
</tbody>
</table>

The performance of the design almost exclusively hinges on the ability to control the feedback capacitance on the board, with the optimal value being around 100 fF, which provides enough flexibility in the bandwidth to keep the output voltage swing above 1 V regardless of the input power. It is critical that our design does a good job of controlling the output capacitance and Section 3.3.3 will discuss the implementation that was used for this REV-3.2 to do just that.

3.3.3 Implementation of Photodiode Board REV-3.2

After the REV-3.1 design failed due to an excessive amount of parasitic capacitance, it was clear that not only was more analysis necessary to better understand how to
design the circuit but also that the layout of the circuit itself would need much closer attention than it was given in the REV-3.1 design. In Section 3.3.2 we covered the additional analysis needed to better understand how to design the circuit; however before a board was laid out, a development board was used to evaluate the REV-3.2 design of the board and to make sure that the simulation results matched the results on the development board that had a controlled amount of capacitance. Figure 3-14 shows the development board that was used to evaluate the REV-3.2 design. As seen in Figure 3-14, there are 3 separate channels available on the development board, each with different measured feedback capacitance. [48]

![Figure 3-12: DC2414A Development board for the LTC6268-10 Amplifier](image)

The first channel on the development board in Figure 3-14 is designed to have 7 fF of capacitance and is specifically for high values of transimpedance gain around 300 kΩ or greater. The layout is extreme as it has cutouts in the fiberglass around parts, specialized ground planes designed internally, and optimally spaced parts on different sides of the board to minimize capacitance. The second channel is a middle ground channel that is designed to have approximately 33 fF of capacitance and uses a grounding plane to reduce capacitance as well as utilizes both sides of the board to mount components. The third channel in Figure 3-14 is meant for low transimpedance gain in the 2 kΩ - 20 kΩ gain range and is high speed, keeping all the components on the same side, reducing trace length. This design achieves approximately 100 fF of capacitance and offers a secondary 0402 footprint to add additional capacitance as needed.
Given that the third channel offered a capacitance inside of the acceptable range of our design, we decided to design our board using this layout. This board was then mocked up in lab and simulated using the lowest input power, -9 dBm, to stress the design as much as possible. Figure 3-14 shows the output of the photodiode board given a 200MHz, $1.5 \, V_{rms}$ sine input from a signal generator with a 0.75 V offset put through a 12 kΩ resistor.

Figure 3-13: Lab Result from DC2414A Development board using the REV-3.2 design

Noting that the input to the oscilloscope is the output of the photodiode board output, divided by two given the 50Ω input, the development board set up is within 15% of the simulation results. We did not strictly investigate the differences between the simulation and the development board results. However, some sources of error could have been from the introduction of inductance due to our current injection from the signal generator and long power rail leads. Additionally, there was certainly some
Figure 3-14: Simulation result of the REV-3.2 design using the DC2414A development board. This is used to compare the result from the physical design on the DC2414A development board.

...stack up error from using 1% accurate resistors on the current input, transimpedance gain, and output resistance. Achieving a result within 15% of our simulation is considered good enough for our application to move forward with laying out our own board.

Utilizing the DC2414A development board PCB files provided by Linear Technology, we used an identical image of the layout of the circuit to design REV-3.2 to match the parasitic capacitance as much as possible. In the area surrounding the photodiode mounts and LTC6268-10s, there is no copper in the board, and the edges of the area are surrounded by grounding via to reduce signal interference as much as possible. Figure 3-15 shows the photodiode board built using the DC2414A board layout and Figure 3-16 shows the REV-3.2 schematic used to design this board. The schematic includes an optional signal extender circuit that was added as there were concerns over the ability of the Spartan-6 to be able to catch the output signal of the photodiode board.
Figure 3-15: REV-3.2 Photodiode Board

Figure 3-16: REV-3.2 Single channel Transimpedance Amplifier Design Schematic
Chapter 4

Results

The main work of this thesis is addressing the remaining hardware design work from the REV-2 design to complete CLICK-A and to prepare it for delivery. This includes changing the bus interface design, power systems, and redesigning the photodiode board for CLICK-A, as described in Chapter 3. Additionally, this work involved testing and verification of many aspects of the electronics system that were not verified in the REV-2 design. This chapter will focus on the results of the design changes addressed in Chapter 3 and highlight several of the key results from the testing and verification work done in completing the CLICK-A electronics hardware.

4.1 Power Systems

The REV-3 CLICK-A power systems were changed significantly from the REV-2 design. While the power system architecture was maintained as much as possible, new converters were chosen across the payload to better serve the subsystems and a new grounding scheme was implemented to provide isolation for the chassis and power grounds. This section will outline the results of these changes and go through the operational power consumption modes to verify compliance with the requirements in Table 2.2.
4.1.1 Power Converter Validation

To test the power systems, each subsystem was tested in isolation to the best of our ability and each converter was evaluated for their line regulation, voltage ripple, and case temperatures across the operational modes shown in Figure 4.2. These aspects of the converters are evaluated to understand the stress they are put under by the system and provide insight into any problems that may arise due to their performance under different operational modes. Each of the converters is put into its highest operational stress modes to understand how it would perform. One caveat is that both the FPGA and CPU power loads will likely increase as the flight software is finished. While we could not simulate an exact equivalent load as the software is not yet finished, we used best estimates to them.

Table 4.1 outlines the performance parameters for each of these converters. There are a few notable points in Table 4.1, the first being that under stress, each of these converters maintain a case temperature of under 35 °C in an ambient environment. We will have to again test these in TVAC, but the performance is as desired at a 24°C ambient temperature. A second point from Table 4.1 is that the line regulation is very good, with the FPGA 5 V line being the only outlier; however, the data for this converter line was taken with a 13W load, produced by running the EDFA, both heaters, and a full transmit procedure. This load is about 50% larger than the payload will see operationally and was stressed as much as the system could provide. The line regulation for this converter drops to 2.4% with a maximum operational load on it.

The third point from Table 4.1 is that the voltage ripple is excellent across all of the converters, and the noise density seen on the oscilloscope exceeded the ripple in most cases. However, when we first conducted this test, the voltage ripple on the TPS6735 -5 V line, was approximately 25 mV. While that would be acceptable for most applications, the circuit that uses this voltage line is the current bias controller and, as explained in Section 4.2.2, the TOSA laser output is very sensitive to changes in bias current. Figure 4-1 shows the ripple before additional filtering was added to the circuit.
The approximately 25 mV present on the -5 V voltage supply induces a 76.5 picometer (pm) oscillation in the wavelength of the TOSA. While that looks negligible upon first glance, the fiber Bragg grating (FBG) reflective band bandwidth is only 40 pm. Given that this oscillation is nearly twice the width of the FBG reflective band, it had to be addressed. By adding an additional LC filter on the output of the converter, we were about to reduce the output ripple to 5.5 mV, reducing the wavelength oscillation to 17 pm or roughly 30% of the FBG reflective bandwidth. Figure 4-2 shows the resulting voltage ripple after adding the additional filter.

4.1.2 Operational Mode Power Consumption

To be able to verify that the mission power requirements are met, we tested the payload across its operational modes to make sure that it complies with the peak power requirement of 17 W, shown in Table 2.2. Table 4.2 provides a granular look into the power consumption across various boards and components within the payload.
Figure 4-2: Output ripple of TPS6735 -5 V output after additional filtering is added. The blue signal shows the voltage ripple output with a 5.5 mV amplitude. The yellow signal is a voltage measured across a 8.86 Ω resistor in line with the bias current driver to calculate the current ripple.

As shown in Table 4.2, all of the operation modes are well below the 17 W peak power requirement. However, there are three parameters that are estimated, two due to the impact that software will have on those boards’ power consumption (the RPi and FPGA boards) and a third, the daughterboard, because it can not be explicitly measured as it provides drivers for several components and traces that feed power to others. That said, CLICK-A is expected to be well within the power requirements.

4.2 Transmitter Hardware Characterization

In Figure 4-3, a block diagram is shown of the transmitter design of CLICK-A. In the REV-1 design, these blocks were assembled or prototyped using development boards with already built and tested hardware. In REV-2, the designs were implemented on integrated boards; however, many of them were not tested and characterized. This section will go through those blocks in Figure 4-3 that were not previously tested and provide testing results of the integrated hardware designed for REV-3. Several
Table 4.1: Converter Testing Data. Data taken with an ambient temperature of 23.9°C. FPGA 5V line data was taken with a 13 W load.

<table>
<thead>
<tr>
<th>Converter Line</th>
<th>Line regulation</th>
<th>Voltage Ripple</th>
<th>Case Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA LTM4622 (5V)</td>
<td>3.1%</td>
<td><10 mV</td>
<td>33.7</td>
</tr>
<tr>
<td>FPGA LTM4622 (3.3V)</td>
<td><1%</td>
<td><10 mV</td>
<td>34.1</td>
</tr>
<tr>
<td>FPGA LTM4622 (1.2V)</td>
<td><1%</td>
<td><10 mV</td>
<td>34.1</td>
</tr>
<tr>
<td>CPU LTM4622 (5V)</td>
<td><1%</td>
<td><10 mV</td>
<td>31.2</td>
</tr>
<tr>
<td>CPU LTM4622 (3.3V)</td>
<td><1%</td>
<td><10 mV</td>
<td>31.2</td>
</tr>
<tr>
<td>CPU LTM4622 (1.8V)</td>
<td>2.2%</td>
<td><10 mV</td>
<td>33.2</td>
</tr>
<tr>
<td>TPS6735 -5V</td>
<td><1%</td>
<td>5.5 mV</td>
<td>30.9</td>
</tr>
<tr>
<td>LTC6258 300mV</td>
<td>< 1%</td>
<td>N/A</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Table 4.2: Power Consumption by subsystem. Some values are conservatively estimated due to the impact of processor load. These will be updated when the flight software is finished.

<table>
<thead>
<tr>
<th>Estimated Value Measured Value</th>
<th>Power Consumption (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daughter Board</td>
<td>EDFA</td>
</tr>
<tr>
<td>Start Up (10 minutes)</td>
<td>0.4</td>
</tr>
<tr>
<td>Transmit (15 minutes)</td>
<td>1</td>
</tr>
<tr>
<td>Power Down (5 Minutes)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

of these components have already been tested however, including the FSM driver and several of the fiber components and these will not be further discussed here [42,13].

CLICK-A’s transmitter works by utilizing an FM to AM conversion by shifting the TOSA’s wavelength on and off of the reflective band of a FBG. This is done to increase the extinction ratio of the laser output from the payload. The FM to AM conversion scheme requires highly accurate control of the TOSA’s wavelength using the two drive circuits: the TEC controller which sets and maintains the diode cavity temperature and the laser diode current bias controller which sets and maintains the current of the TOSA. The results from the REV-3 hardware tests will be shown for these drive circuits in the Sections 4.2.1 & 4.2.2. Additionally, results from testing and calibration for the temperature sensor circuits on the daughter board and testing results for the photodiode board will follow in Sections 4.2.3 & 4.2.4.
4.2.1 TEC Controller

In 2017, Myron Lee completed an algorithm to align the TOSA to the center frequency of the FBG. He used development boards to control the TOSA and characterized their performance in controlling wavelength over temperature and current bias in order to write the algorithm [13]. Given that CLICK-A uses different hardware, we completed the same tests Lee did to show the TOSA’s wavelength dependence on temperature and current.

To characterize the TOSA’s wavelength dependence on the cavity temperature we measured the output of the TOSA module using an Optical Spectrum Analyzer (OSA) that collects and logs the output power across a set range of spectrum. To test the TEC controller, we first set the bias current and then varied the diode cavity temperature in approximately 0.4°C steps and logged the output wavelength. The output of this process is shown in Figure 4-6.

However, given that there is no way to directly measure the cavity temperature with it being inside of the TOSA package, we had to solve for it. Using parameters found in the TOSA datasheet, we approximated the thermistor resistance for the
TEC controller using the formula shown in Equation 4.1. \(R(T_O) \) is given in the TOSA datasheet as being between 5.2 kΩ - 5.5 kΩ at 40°C, the \(\beta \) value is given as a value between 3800 K - 4000 K, and Kelvin are used for \(T \) and \(T_O \).

\[
R(T) = R(T_O) \cdot e^{\beta(\frac{1}{T} - \frac{1}{T_O})}
\]

(4.1)

Using the average values of 5.35 kΩ and 3900 K for \(R(T_O) \) and \(\beta \), respectively, we can calculate the resistance of the thermistor for the temperature of the cavity anywhere between 35° - 45°C. However, to calculate and set the cavity temperature using our hardware, a look at the TEC driver is necessary; a diagram of the TEC driver is shown in Figure 4-4. This circuit has been abbreviated to specifically show the part relevant to setting and calculating the temperature of the TEC cavity. The circuit works by allowing the TEC_SETPOINT signal to set the voltage of a resistor divider where VSET is the top of the divider (2.5 V), and a 10 kΩ resistor is the top resistor of the divider with the thermistor. This allows us to set the resistance of the thermistor by changing the voltage on the TEC_SETPOINT line according to Equation 4.2.

\[
R_{THERM} = \frac{SETPOINT \cdot 10\text{kΩ}}{2.5 - SETPOINT} \quad (4.2)
\]

\[
T = \left(\ln\left(\frac{SETPOINT \cdot 10\text{kΩ}}{\frac{R_{THERM}}{R_{T_O}}} \right) + \frac{1}{T_O} \right)^{-1} \quad (4.3)
\]

By plugging in Equation 4.2 to Equation 4.1, the cavity temperature can be set using Equation 4.3. On close inspection of Equation 4.3, only a small range of set voltages is available to set the temperature within the acceptable range of operational temperatures for the TOSA. This range can be seen in Table 4.3 along with the DAC Codes needed to achieve those set temperatures. These values are listed using a 12-bit DAC with a 2.5V range. Unfortunately, due to the upper limit on the thermistor current, 100 \(\mu \)A, the set voltage range cannot be expanded without potentially damaging the TOSA. However, using a 12 bit DAC, the temperature of
Figure 4-4: Abbreviated REV-3 TEC Control Circuit. The TEC_SETPOINT voltage is used to set the temperature of the TOSA cavity by adjusting the voltage across the TOSA thermistor labeled THERM2.

the TOSA can be set to an accuracy of 0.05°C, which is more than sufficient for our purposes.

<table>
<thead>
<tr>
<th>DAC Code</th>
<th>Set Voltage (V)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1636</td>
<td>0.9984</td>
<td>35.03</td>
</tr>
<tr>
<td>1427</td>
<td>0.8708</td>
<td>40.02</td>
</tr>
<tr>
<td>1245</td>
<td>0.7604</td>
<td>44.98</td>
</tr>
</tbody>
</table>

Once we were able to appropriately set the temperatures of the TOSA, we connected it to an OSA and logged data across several different temperature ranges to find the $\Delta \lambda / \Delta T$ parameter. This parameter is shown in Figure 4-5 and is 0.0886 nm/°C, which is what Lee found in his thesis as well, but differs from the data sheet which quotes 0.13 $\Delta \lambda / \Delta C$ [13].

4.2.2 Laser Diode Bias Controller

Just as the TEC controller is critical to maintaining the wavelength of the TOSA, so is the bias current controller, which requires us to characterize $\Delta \lambda / \Delta i_{DC}$ for the TOSA as well. Fortunately, we are able to measure the bias current directly by placing a
Figure 4-5: Wavelength as a function of cavity temperature, using a set current bias position.

As shown in Figure 4-6, we completed tests at 4 different temperatures, and found a consistently linear dependence on current, with the average \(\frac{\Delta \lambda}{\Delta i_{DC}} = 0.00283 \) nm/mA. There is up to a 5% deviation from the average reading, which is not clearly shown, but is likely a result of the TEC controller not being able to keep the cavity at a perfectly constant temperature as the current is changed. However, the result is accurate enough for us to control the TOSA wavelength.

4.2.3 Photodiode board

Section 3.3 details the changes made to the photodiode board from the REV-2 to the REV-3 design as well as several of the challenges associated with creating a working design that resulted in a second revision REV-3.2. This section will discuss the results of the tests done on the photodiode board after the solutions discussed in Section 3.3 were implemented.

We first look at the DC characteristics of the TIA circuit on the photodiode board. Using the TOSA as a laser source, we test both the DC voltage range and DC stability of the TIA. We evaluate the channel connected to the output of the FBG as shown in
Figure 4-3, by keeping the laser in the pass band of the FBG, allowing us to see the maximum voltage output of the channel. Next, we align the center wavelength of the TOSA with the center wavelength of the FBG, putting it in the reflective band. This provides power to two of the three TIA channels. However, by matching the laser with the FBG, the maximum output voltage range of the second channel can be evaluated. In both situations the TIA is stable using a 100 fF feedback capacitor and the voltage ranges were tuned to not saturate by adjusting the transimpedance of each channel. The voltage ranges and transimpedance gains can be found in Table 4.5.

An interesting point in looking at the DC stability of the amplifier is that it led us to find the unacceptable amount of ripple on the -5 V DC converter as the wavelength of the TOSA moved enough as a result of it to create substantial ripple on the output of the TIA without modulation from the FPGA. Given the steep attenuation provided by the FBG, a minor movement in wavelength provides a significant change in the output of the TIA.

We next evaluated the bandwidth of the TIA to make sure it would provide enough gain for our input signal and thus enough of a voltage swing. To do this, we first aligned the TOSA with the FBG and then used the FPGA driver, to modulate off of
Table 4.4: Photodiode board characteristics. Photodiodes are described relative to the optical components they are connected to in Figure 4-3.

<table>
<thead>
<tr>
<th>Photodiode</th>
<th>Transimpedance Gain</th>
<th>Max Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under FBG</td>
<td>10 kΩ</td>
<td>2.7 V</td>
</tr>
<tr>
<td>After FBG</td>
<td>18 kΩ</td>
<td>3.24 V</td>
</tr>
<tr>
<td>After EDFA</td>
<td>18 kΩ</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

the filter reflective band. It is important to note that this is the opposite of how the transmitter system will work in CLICK, as this setup results in the default state of the output laser of the payload to be on, instead of off. However, there is additional work to be completed in the FPGA software to finish the transmitter system, and the flight configuration could not be used to make this measurement. Thus, the resulting figures are inverted from what would be shown with a finished transmitter.

Figure 4-7: Resulting signal by modulating the TOSA wavelength off of the FBG filter.

Figure 4-7 shows the result of modulating off of the reflective band of the FBG. It shows an amplitude change for the TIA channel that corresponds to the photodiode
under the FBG in the optical train, as shown in Figure 4-3. The output amplitude change is 770 mV, where the base output of the TIA is at 490 mV. To measure the bandwidth of the TIA, we first measured the input power to the photodiode in both the on and off filter state. This allowed us to understand the signal being provided to each photodiode during each phase of the modulation and the used these measurements to find the gain that occurs by providing that same power in a 200 MHz signal instead of at DC. Table 4.5 shows the parameters we used to calculate this and found that the attenuation was -0.858 dB for the first channel, using Equation 4.4. Given the circuit has a 20 dB/decade attenuation for frequencies above the first pole, the f_{-3dB} point can be calculated by using Equation 4.5. Using this process, all 3 channels of the photodiode board were evaluated. The results of this analysis are also shown in Table 4.5.

$$\text{Attenuation} = 20 \cdot \log_{10}\left(\frac{200 \text{ MHz Voltage}}{\text{DC Voltage}}\right)$$ \hspace{1cm} (4.4)

$$f_{-3dB} = 200\text{MHz} + (\text{attenuation} - (-3 \text{ dB})) \cdot 50\text{MHz}$$ \hspace{1cm} (4.5)

Table 4.5: TIA Bandwidth calculation for each TIA channel. These measurements are not taken with a specific operational output power of the TOSA.

<table>
<thead>
<tr>
<th></th>
<th>Under FBG</th>
<th>After FBG</th>
<th>After EDFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Power (dBm)</td>
<td>-16.38</td>
<td>-50.4</td>
<td>-94.6</td>
</tr>
<tr>
<td>Modulated Power (dBm)</td>
<td>-9.1</td>
<td>-7.4</td>
<td>-11.4</td>
</tr>
<tr>
<td>DC Voltage Difference</td>
<td>850 mV</td>
<td>2.78 V</td>
<td>1.11 V</td>
</tr>
<tr>
<td>200 MHz Voltage Difference</td>
<td>770 mV</td>
<td>1.97 V</td>
<td>920 mV</td>
</tr>
<tr>
<td>Attenuation (dB)</td>
<td>-0.858</td>
<td>-2.99</td>
<td>-1.62</td>
</tr>
<tr>
<td>Circuit Bandwidth</td>
<td>307.1 MHz MHz</td>
<td>200.5 MHz</td>
<td>268.5 MHz</td>
</tr>
</tbody>
</table>

The last piece of analysis required for the photodiode board is to understand how close the threshold of the comparator could be to the peak of the output pulse of the TIA. This is important because the output of the TIA is not square. If the comparator threshold is set too close to the top of the output pulse, the comparator’s propagation delay threshold of 2.9 ns will be violated and it will not produce an useful signal. However, if the threshold is set too low, the reading will provide incorrect timing.
to the FPGA. This timing is critical to the BIST system, as it is used to calculate the timing for the center of the PPM slot, which is used to calculate the slot-error-rate [26]. Therefore, we analyzed the output amplitude change of the comparator with thresholds of varying distance from the peak of the TIA output. Figure 4-8 shows this analysis.

![Comparator Threshold Analysis](image)

Figure 4-8: Comparator output amplitude vs. comparator threshold-to-peak input signal difference

This analysis is important because the output signal of the comparator must also respect the V_{IL} and V_{IH} levels for the FPGA, the Spartan-6, which are 0.8 V and 2.0 V respectively. Figure 4-8 shows that the threshold for a rising input signal must be no closer than 10 mV. However, for a falling input signal, the threshold can be no closer than 235 mV. While these values are significantly different, as long as these values are respected, the FPGA will be able to interpret the signals from the comparator and the system will work as designed.

4.2.4 Temperature sensors

Many of CLICK’s systems are temperature dependent and even need to be actively compensated depending on the temperature of their surroundings. To monitor the
temperature onboard CLICK-A, there are 6 temperature sensor channels that are available. These channels each utilize a Resistance Temperature Detector (RTD) that can be placed on a specific component of the payload to monitor a localized temperature on the payload. The REV-2 temperature sensor circuitry did not go through final testing and to be complete, we document in this section the performance and changes made during the REV-3 testing of the temperature sensor circuitry.

To test the temperature sensor circuit, we first defined the transfer equation between the temperature of the RTD and the voltage read-out on the Digital-to-Analog Converter (DAC), which can be seen in Equation 4.6. Equation 4.6 is dependent on the choice of RTD, the required temperature range, and the voltage range of the the DAC. Therefore, it is written in general form and not specifically to the design in Figure 4-9. However, the resistor references in Equation 4.6 correspond to the resistors in the schematic where $R(T)$ would be placed in-between the P1 and P2 terminals in the circuit.

$$V_{DAC} = G_{AMP} \left(\frac{V_{cc}}{2} - V_{cc} \cdot \frac{R_1}{R(T) + R_1} \right) \cdot \frac{2^{DAC_bit_width}}{DAC_voltage_range} \tag{4.6}$$

Figure 4-9 shows the final design of a single channel of the temperature circuit used on REV-3 of CLICK-A. The desired temperature range for this circuit was set to -20°C to 80°C, the maximum dynamic temperature range CLICK-A could experience. The lower bound was set by making the R_1 resistor equal to the resistance of the RTD at -20°C and by setting the opposite input terminal of the amplifier to $V_{CC}/2$. Then, by adjusting the gain of the amplifier, MCP6N11, the upper bound temperature can be set to the maximum voltage read by the DAC, MAX1240.

During testing it became clear that this circuit was highly sensitive to any variation in the set resistances from the designed values. For example, using 1% accurate resistors, the voltage read by the DAC could vary up to 10% due to the 8.5× gain used in this circuit. While this could be calibrated out, we opted to increase the accuracy of the circuit by replacing the resistors with 0.1% accurate resistors, which reduced the output variance to about 1%. Additionally, given the dynamic range of
100°C that CLICK-A may operate over, the resistance of the components will vary
and while it is likely their resistance will shift in similar directions, in the worst case
the circuit accuracy will vary by 1.5%. However, to test this circuit we did not vary
the component temperatures and instead only varied the temperature of the RTD
itself. The results of these tests are shown in Figure 4-10. Temperatures were not
taken using an automated process, and some error is likely caused by taking voltage
and DAC readings by hand; however, the average reading error from the voltages
generated by Equation 4.6 are 3.3%, and while they are not the 1% claimed possible
above, they are accurate enough for CLICK-A’s purposes.
Figure 4-10: Temperature Sensor Readings using CLICK-A REV-3 Hardware. Temperature values were taken with a Fluke 287 Multimeter.
Chapter 5

Conclusion

In this chapter we conclude this thesis by reviewing the main contributions, their implications, and the future work needed to bring CLICK-A to delivery. We start by reviewing the main topics of each chapter. We then identify the specific contributions of this thesis to the CLICK-A project. Last, we present the future work necessary prior to CLICK-A delivery.

5.1 Summary

With space being more accessible than ever, the number of CubeSats in orbit has increased dramatically in recent years. With limited access to bandwidth and the growing demand for downlink capacity, engineering teams have looked for solutions beyond RF communication. Lasercom has the potential to significantly increase available bandwidth for small satellites by turning to a portion of the spectrum that is currently unregulated. However, beyond access to more available bandwidth, lasercom also has the potential to decrease aperture sizes, reduce power requirements for communications systems, and shorten project timelines. This thesis focuses on addressing the electronics architecture challenges that are faced when building a lasercom system such as CLICK-A.

In Chapter 1, we introduce the motivation for lasercom and its advantages for CubeSats in access to bandwidth, reduction in aperture size, and SWaP requirements.
An overview to the precursor to CLICK-A, NODE, is provided along with more context of the project history, including specific reference to the multiple revisions the project has gone through and the graduate students that have contributed to each revision. The concept of operations for NODE are described as well.

In Chapter 2, we outline the state of the REV-2 electrical subsystems of CLICK-A. We provide updated design specifications for REV-3 of CLICK-A at both the board and payload level. Key design decisions for CLICK-A are discussed with regard to specific functionality and integration with the bus. Focus topics are the power systems, bus interface architecture, and the photodiode board.

In Chapter 3, the design and implementation details for each of the key topics of Chapter 2 are discussed in detail. The new bus communication interface design for REV-3 is detailed to the schematic level with design trades documented to the component level. The power system design for REV-3 is discussed with a specific focus on the power converters chosen for the specific supplies needed across the payload. Finally, the photodiode board for REV-3 is discussed at length including the design analysis, debugging efforts and final REV-3.2 design of the board.

In Chapter 4, the results from the design modifications discussed in Chapter 3 are presented as well as the results from the testing of subsystems not tested previously in the REV-2 design. The power converters are shown to have voltage ripple below 10 mV with the remaining parameters shown in Table 4.1. The characterization of the TOSA drivers show the TEC driver capable of changing the wavelength at a 0.0886 nm/°C rate and the current bias driver at a 0.00283 nm/mA rate. The temperature sensor circuit is tested and its accuracy is shown to be deviate no further than 3.3% from the calculated value, at ambient temperature. Finally the results from testing the photodiode board are presented, showing the bandwidth for each channel of the TIA circuits to exceed 200 MHz.
5.2 Thesis Contributions

This thesis addresses the improvements and testing necessary for REV-3 of CLICK-A, which completes the remaining work for the integrated electronic systems of CLICK-A at the bench top level. The specific contributions of this thesis are:

• Tested and documented the electrical subsystems for REV-2 of CLICK-A.

• Updated payload and board specific requirements to meet the functional requirements for the payload and to integrate with BCT’s bus.

• Designed, implemented and tested new power systems and a communication interface for CLICK.

• Simulated, designed, implemented, tested, and characterized a new photodiode board.

• Tested and characterized the remaining subsystems for REV-3 of CLICK-A.

5.3 Future work for CLICK-A

While our team has made substantial progress in getting CLICK-A to delivery there are several significant benchmarks that must be reached over the coming months. In the midst of the global pandemic, we have received our final hardware, consistent with the models in Figure 5-1, which includes electronic boards, optics bench, and raceway. Once we have regular access to our lab facilities, we will need to complete functional over-the-air testing, subsystem environmental testing, and finish the software for the bus interface with a bus simulator provided to us by Blue Canyon Technologies (BCT). Upon receiving the simulator from BCT, final bench top tests will be able to be completed, and we will complete final payload assembly and integration and payload environmental testing at MIT.

While the payload is going through environmental testing, the final flight software will need to be completed. The telemetry packet architecture is in place, and many
of the payload commands have been written, but process handlers, packetizer and depacketizer processes, and a master payload controller must be developed. Once environmental testing is complete and the software has been completed and tested, the team will travel to Boulder, CO to integrate with the bus at BCT. At BCT we will complete functional and environmental testing with the integrated spacecraft and then deliver CLICK-A to NanoRacks for launch integration.

Figure 5-1: REV-3 model of CLICK-A [29].

6. T. Gergely and A. Clegg, “Cubesat issues: Where are we?,” in CubeSat High Speed Downlink Communications meeting, held during the 9th Annual CubeSat Developers Workshop, (San Luis Obispo, California), 2012.

7. Letter B: Beam Divergence, RP Photonics Encyclopedia, 2020

8. ISS: International Space Station https://www.esa.int/ScienceExploration/HumanAndRoboticEnvironment/InternationalSpaceStation/ISS, ESA, 2020

16. J. Matthew Kusters, A Software-Defined Receiver for Laser Communications Using A GPU, 2018

19. STARLab CLICK-A SmallSat Presentation, SSC20-WKIII-03 Cierny et al Presentation, 2020

29. C. Payne Integration and Testing of Nanosatellite Optical Downlink Experiment, Small Satellite Conference, SSC18-XII-05, 2018

32. Texas Instruments HIGH-SPEED DIFFERENTIAL RECEIVERS, SN65LVDS33, November, 2004

33. Texas Instruments SNx5LVDSxx High-Speed Differential Line Drivers, SN65LVDS9638, December, 2014

34. Analog Devices LTM4622 Dual Ultrathin 2.5A or Single 5A Step-Down DC/DC µModule Regulator Rev. H 2015-2020

38. Texas Instruments TPS6735 Fixed Negative 5-V 200-mA Inverting DC/DC Converter July 1996

39. Linear Technology DC2414A DEMO Manual - LTC6268 and LTC6268-10 3-Channel SOT-23 Transimpedance Amplifier, 2004

40. Cyoptics 1610/11-Series MSA-compatible 2.5 Gb/s Cooled DFB TOSAs Datasheet April 2012

43. Peter Grenfell GNSS-Based Relative Navigation for LEO Nanosatellite Laser Communications, M.S. thesis Massachusetts Institute of Technology, 2020

47. Transimpedance Considerations for High-Speed Operation Amplifiers, Texas Instruments Incorporated, 2009

48. DC2414A - Design Files, Analog Devices, 2016

49. TPS6735 Fixed Negative 5-V 200-mA Inverting DC/DC Converter, Texas Instruments, 1997

50. NASA, “IR Atmospheric Windows.”