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Abstract

Longitudinal health data provides a uniquely detailed view into the evolution of pa-
tient health over time. We develop pipelines to efficiently work with this kind of data
in its rawest form, enabling the development of new state-of-the-art end-to-end ma-
chine learning approaches. While healthcare providers are increasingly using learned
methods to predict and understand long-term patient outcomes in order to make
meaningful interventions, deep learning models often struggle to match performance
of shallow linear models in predicting these outcomes, making it difficult to leverage
such techniques in practice. Motivated by the task of clinical prediction from lon-
gitudinal health data, we present a new technique called reverse distillation which
pre-trains deep models by using high-performing linear models for initialization. We
make use of the longitudinal structure of our dataset to develop Self Attention with
Reverse Distillation, or SARD, an architecture that utilizes a combination of contex-
tual embedding, temporal embedding and self-attention mechanisms and most criti-
cally is trained via reverse distillation. SARD outperforms state-of-the-art methods
on multiple clinical prediction outcomes, with ablation studies revealing that reverse
distillation is the primary driver of these improvements.
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Chapter 1

Introduction

1.1 Problem and Motivation

Clinical prediction is critical in providing preventative, prophylactic and palliative

care. At a fundamental level, the process of medical decision-making is a question

of estimating risk probabilities in an uncertain setting [3]. Clinicians attempt to

discover a patient’s current state through examination and testing, and based on this

information decide what steps to take to mitigate the potential for adverse outcomes

in the future.

While traditionally the prediction of outcomes has followed from expert intuition

and experience, the advent of electronic health records (EHRs) and other digital stores

of structured medical data has allowed for a proliferation of data-driven approaches

to this task [7]. Several rule-based approaches to determining how a patient will fare

in the future are currently in wide use by physicians, albeit in a somewhat auxiliary

role in which the recommendations of rule-based models are combined heuristically

with clinical intuitions to make final decisions [8]. Doctors find many reasons to

mistrust such models – for example, rule-based models may not factor in a key fea-

ture that a clinician finds significant [8]. Despite this, medical research has found

that prediction models are often more accurate than clinicians. For example, prior

work has found that when predicting patient mortality, simple algorithmic predictors

outperform predictions inferred from the decisions of human experts. [4].
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Meta-analyses of clinical prediction strategies broadly split these tasks into three

categories:

∙ Diagnosis: determining a patient’s current state by estimating probabilities of

whether or not a condition affects a patient based on current observations and

patient history.

∙ Prescription: determining how to treat a patient to mitigate future risk, by

predicting a patient’s future health conditional on the administration of different

treatments and the patient’s current health.

∙ Prognosis: determining a patient’s future state, based solely on their present

and historical health statuses.

While diagnosis tasks are dominated by a combination of modelling and live clin-

ical intuition, and prescription tasks run the risk of drawing incorrect causal con-

clusions when run solely on retrospectively collected data, prognosis remains an ex-

tremely promising field for innovation. With access to sufficiently detailed medical

records, prognoses can be performed at regular intervals to detect potential risks well

in advance of their manifestation. If predictions are sufficiently accurate, appropriate

interventions can then be taken to mitigate these future risks.

Thus, in this thesis, we explore algorithmic solutions to the challenge of using

the longitudinal medical history of a patient to make predictions of the patient’s

future outcomes. Our novel deep learning approaches, combined with engineering

innovations in the pipeline used to extract information from standardized databases

of longitudinal medical data, allow us to significantly outperform the prior state-of-

the-art in clinical prediction. These increases in performance can then be translated

into more accurate and meaningful preventative interventions.

1.2 Thesis Roadmap

In this section, we outline the core components of the thesis, and indicate how these

components depend on each other to form a coherent system for learning to predict

14



clinical outcomes. In Chapter 2, we describe the general structure of the longitudinal

EHR data that our models ingest, and specifically discuss the layout of the Obser-

vational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [23],

which represents a standardized way to represent longitudinal health data. Chapter 3

discusses Prediction Library, an open-sourced pipeline we developed in order to set up

clinical prediction problems and to move the appropriate raw data from the OMOP

CDM databases described in Chapter 2 into data structures designed to make down-

stream modelling efficient. Next, in Chapter 4 we develop simple yet performant linear

models that use features derived from the data representations explained in Chapter

3. These models serve as baselines for our more advanced machine learning algorithm,

which we describe in Chapter 5. This algorithm, which we name SARD, uses a unique

combination of data embedding techniques and a self-attention mechanism to ingest

longitudinal EHR data. In addition, SARD is trained using reverse distillation, a pro-

cess we develop in Chapter 6 which allows us to use a high-performing linear model,

as constructed in Chapter 4, to initialize and regularize SARD. We finally evaluate

the performance of our algorithms on several examples of real clinical prediction tasks

with applications to preventative and palliative care in Chapter 7, and establish sig-

nificant performance gains versus prior results. In addition to confirming performance

increases, in Chapter 7 we further introspect into the SARD model, identifying that

reverse distillation is the main driver of gain and developing a method to achieve a

degree of patient-level interpretability of predictions.

15
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Chapter 2

A Summary of Longitudinal Health

Data

We discuss the form and structure of longitudinal health data in electronic health

records (EHRs). Our particular focus is on claims data, which are the records main-

tained by insurers of their members’ interactions with the healthcare system. Such

data provides an invaluable and detailed view of patient health over time, as well as

the decisions taken by clinicians regarding patient care.

2.1 The Structure of Longitudinal EHR data

2.1.1 Patients

We consider the data associated with a single patient. While the majority of EHR data

is longitudinal in nature, there are relatively fixed metadata that can be associated

with each individual in the system. Such information may include a person’s location

of residence over time, date of birth, gender and ethnicity. Additionally, in insurance

claims data, it is often the case that one can observe the type of insurance plan a

patient is on, which can then act as a proxy for socioeconomic variables.

These variables clearly can help contextualize the health of a patient, and as

such are useful from a modelling perspective. They also come into play during the

17



process of evaluating a predictions, as we would want to closely study differences in

the performance of any predictive algorithm across different demographic classes in

order to identify and potentially correct for any biases.

2.1.2 Visits

Longitudinal EHR datasets store patients’ medical history in an ordered and hier-

archical way. At the level of an individual patient, the primary top-level unit into

which data is grouped is the visit, which represents a single continuous interaction of

the patient with the healthcare system. A visit may represent an inpatient hospital

stay, outpatient treatment, a consultation with a physician, and other miscellaneous

interactions.

A set of metadata is associated with each visit, allowing it to be understood in

context. This data includes the type of visit (e.g. inpatient versus outpatient), the

start and end dates of the visit, the type of medical facility where the visit occurred,

the specific facility where the visit occurred, and the identity and medical specialty

of the physician who supervised the visit.

2.1.3 Codes

To represent the medical events that occur during a visit, a large fixed set of codes are

used, with each code representing a distinct and specific medical concept. These codes

can be drawn from a variety of rich clinical vocabularies including the 10th revision

of the International Statistical Classification of Diseases (ICD-10), the Healthcare

Common Procedure Coding System (HCPCS) and the Systematized Nomenclature

of Medicine (SNOMED).

Codes are designed to be as specific as possible, and it is therefore possible to define

a hierarchy over codes. By introducing higher-level codes to represent groupings of

medical concepts, we can identify specific concepts as subsets of more general medical

ideas. This kind of meaningful grouping allows for easier interpretation and ingestion

of the data encapsulated in the codes.

18



A variety of data are represented by codes, of which the following are of primary

importance:

∙ The diagnoses made by a clinician regarding a patient’s condition, and any

accompanying observations of symptoms.

∙ Medical procedures that were carried out on a patient.

∙ Medications prescribed to a patient, or used while care was being administered.

∙ Medical devices used on or assigned to a patient, such as catheters and stents.

∙ Laboratory tests conducted on patients, along with categorical indications of

their results

In addition to these types of data, different EHR systems may include additional

information based on availability, ease of data collection, and the ultimate use cases

for the data

Associated with each code is additional metadata, including the time when the

code was assigned and the physician who assigned the code. In cases where a code

represents a measurement or another concept associated with a numerical value, this

numerical value may also appear as a type of code-level metadata.

2.2 The OMOP CDM

In the previous section we describe at a high level the components of a longitudinal

EHR data store. It is quite clear that these specifications do not uniquely determine

a database structure. In addition, as different institutions have different uses for

clinical data, it is natural that over time a variety of EHR systems have emerged,

with varying levels of compatibility.

In order to make research and insights more transferable between institutions, the

Observational Medical Outcomes Partnership Common Data Model (OMOP CDM)

was designed to act as a way to define relational databases to contain all of the data

commonly found in EHRs in a consistent manner. As researchers generally hope
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that their work can be generalized across institutions, using the OMOP CDM is a

useful choice for the development of applications that ingest EHR data, and our work

likewise uses an OMOP-standard relational database as its starting point. In this

section, we discuss in detail the structure of the OMOP CDM.

2.2.1 Standardized Clinical Data Tables

Standardized Clinical Data Tables record information about patients, their visits,

and the interactions with the health system that occur during each visit. Figure 2-1

displays the structure of each of the standardized tables. Of particular importance

to our applications are:

∙ The person table, which contains an entry for each person in the data set, and

provides relevant demographic information such as age and gender.

∙ The visit_occurrence table, which lists when visits occur for each patient,

the type of visit, and the clinician in charge of the visit.

∙ The condition_occurrence, drug_exposure, device_exposure and procedure_occurrence

tables, which list when a condition is observed, a drug is administer, a medical

device used, or a procedure undertaken on a patient, respectively. These tables,

along with the other tables marked as descendants of the visit_occurrence

table in Figure 2-1, contain patient-level longitudinal records of what medical

events occurred during each visit.

In order to represent abstract medical concepts, such as the diagnosis of a specific

disease or a specific type of clinician specialty in the Standardized Clinical Data

Tables, the OMOP CDM relies of a robust, hierarchical vocabulary, which we describe

in the next section.

2.2.2 Standardized Vocabularies

The OMOP Standardized Vocabularies unify many medical vocabularies and their

respective codes into a single common format. The design of the Standardized Vo-
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Figure 2-1: OMOP Standardized Clinical Data Tables, sourced from the OMOP Wiki
[1]
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cabularies ensures that several desiderata are satisfied [1]:

∙ Only a single standardized vocabulary is used, allowing researches to learn only

one convention for the representation and manipulation of clinical concepts

∙ Every concept in the standardized vocabulary is unique, meaning that synony-

mous terms from different input vocabularies are merged to reflect their common

meaning. A critical example of the benefit of this design decision is the manner

in which algorithms running on EHR were affected by the shift between the

ICD-9 and ICD-10 vocabularies [25]. Systems that were reliant on ICD-9 codes

would suddenly find that no data was available as doctors began to use newer

coding practices, whereas using the OMOP CDM, one would find that new

ICD-10 concepts and equivalent ICD-9 concepts would be mapped to the same

code in the standardized vocabulary, allowing for a more seamless transition. To

facilitate this, the OMOP CDM maintains the concept_synonym table, which

connects the terms in various vocabularies to a common standardized concept.

∙ Coverage of medical concepts is comprehensive, and any event relevant to the

healthcare experience should be captured by an OMOP concept. Updates are

regularly delivered to reflect new types of events that may not have been relevant

in the past.

The standardized vocabulary is split into domains, several of which are of im-

mediate interest in terms of data collection for predictive modelling. Thus, we next

discuss the most important of these domains.

∙ The condition domain’s codes represent the reporting of a disease or symptom

for a patient. The set of diseases and symptoms is, as per the principles of the

standardized vocabularies, unique and exhaustive. It builds on the SNOMED

vocabulary [47], and is augmented with various other commonly used termi-

nologies. Furthermore, this domain is hierarchical, and it uses a combination

of SNOMED and MedDRA [9] to represent a wide range of granularities, from

closely related conditions to the set of all conditions affecting a specific organ
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Figure 2-2: OMOP Condition Domain Diagram, sourced from the OMOP Wiki [1]

system. We display the structure of the condition domain, and its constituent

vocabularies in Figure 2-2

To help clarify the hierarchical nature of OMOP codes, we display a part of the

hierarchical tree for the condition domain in Figure 2-3.

∙ The drug domain, whose codes represent the utilization of any biochemical

substance as part of patient care, and the closely related device domain, which

represents any instruments, implants, reagents that are used as part of care

but do not have an effect which is chemical in nature. The drug domain draws

from a large set of vocabularies, as seen in Figure 2-4, in order to identify and

relate unique pharmacological ingredients, the drugs derived from combinations

of these ingredients, and the brand-name products that may be used in medical

practice or prescribed to a patient.

∙ The procedure domain, which contains codes for any medical procedure carried

out by a clinician on a patient. This domain largely relies on the HCPCS vocab-

ulary and associated hierarchy of procedures [19], but also contains mappings

for codes from the ICD-10-PCS vocabulary as well [6].
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Figure 2-3: OMOP Condition Heirarchy Example, sourced from the OMOP Wiki [1]

Figure 2-4: OMOP Drug Domain Diagram, sourced from the OMOP Wiki [1]
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∙ The provider specialty domain, which contains codes corresponding to different

clinician specialties. These codes can be linked to each visit, identifying the type

of doctor who supervised care. Unlike other previously discussed domains, the

provider specialty domain is not hierarchical in nature and is simply represented

as a list of specialty types. Specialties are based on the SNOMED vocabulary

standard [47].

Concepts from the standard vocabulary are reflected in the concepts table of

the OMOP CDM. The set of domains discussed reflects the concepts used in our

downstream applications, but is by no means exhaustive. We refer the reader to

OMOP’s own documentation [1] for further details on other types of information

encapsulated into an OMOP CDM, such as administrative details of medical care,

demographic data, and records of qualitative and quantitative measurements taken

during the course of care.
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Chapter 3

Prediction Library Data Pipeline

In order to allow algorithms to efficiently operate on EHR data stored in an OMOP

CDM relational database, it is necessary to represent information in a manner that is

easy to computationally ingest. The primary challenge to accomplishing this goal is

the very large space of potential medical timelines that each patient can have. Indeed,

a patient can be assigned an arbitrary subset of codes on each day for which clinical

history is available.

In order to store and manipulate subsets of this data efficiently for the purpose of

predictive modelling, we developed Prediction Library, an open-sourced set of tools

in the Python language that allow for very general data collection and organization

on top of an OMOP CDM database. Prior work in this space has focused on similar

applications in the R language, with similar capacity for general definitions of pre-

diction tasks but less flexibility in terms of arbitrary manipulation of large amounts

of longitudinal health data [46].

3.1 Defining a Clinical Prediction Task

In order to build Prediction Library’s pipelines, we first formally define the compo-

nents of a clinical prediction task. A prediction task has four primary components:

∙ A Cohort of patients of interest, who are selected based on a combination of

medical and data-driven criteria. For example, we may only be interested in
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patients of a certain age group or gender, or only those patients for whom we

have sufficient claims data. More generally, the inclusion criteria for a cohort

can be expressed as a set of rules at a per-patient level.

∙ An Outcome, defined per-patient as a binary indicator of whether a specified

medical event occurs within a given window. We generically denote this time

frame by the interval [𝑇𝐵, 𝑇𝐶 ]. Note that 𝑇𝐵 can possibly be later than the time

of prediction 𝑇𝐴, indicating that there is a gap of length 𝑇𝐵 − 𝑇𝐴 between the

last data points available and the outcome determination window. This gap

is necessary since predicting an imminent medical event may not be useful in

certain use cases. For example, if the goal of a predictive model is to determine

which patients require clinical intervention, the prediction of an imminent med-

ical event may not be useful as it is too late to take meaningful preventative

actions.

∙ A Prediction Time, which we denote by 𝑇𝐴, representing when we make a

prediction. All data timestamped after 𝑇𝐴 must be censored from predictive

algorithms, with the singular exception of the measurement of the outcome

of interest, in order to serve as training and evaluation data for models. In

practice, the prediction time is only useful for defining prediction problems for

model building – when deployed in a clinical setting 𝑇𝐴 will be the time at which

the model is actually run and thus censoring of information is not relevant.

∙ Predictive Features are some subset of the available non-censored EHR data

that are used as inputs to a predictive algorithm. Similar to the definition

of the cohort, we seek to define the covariates available to such an algorithm

dynamically on a per-task basis.

We now detail the process of defining a specific predictive task. The first and

easiest step is to select a prediction time 𝑇𝐴. Next, from the set of all patients

𝒫 , we define a rule 𝜒 that maps each patient to a Boolean value indicating if the

patient is to be included in the cohort. By applying this rule, we can collect the
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cohort 𝜒(𝒫) = {𝑝 ∈ 𝒫|𝜒(𝑝)}. In tandem with 𝜒, we define the binary function

Ω : 𝒫 → {0, 1} defining an outcome for each patient. Ultimately, using these two

functions we can create list of patients in 𝜒(𝒫) along with their clinical outcomes.

With a cohort and outcomes defined, it remains to collect the relevant features

which will be used for prediction. These features are arbitrary transformations of the

data held in an OMOP CDM. In particular, we define a set of features generation

functions 𝑐1, 𝑐2, · · · 𝑐𝑛, with each function 𝑐𝑖 assigning each patient in 𝜒(𝒫) a time-

series of binary indicators indicating whether or not the feature represented by 𝑐𝑖 is

applicable to the patient at each possible timestep, as measured in days. Generalizing

the language of the OMOP CDM, we notate that feature generation function 𝑐𝑖 indi-

cates that its feature is relevant to patient 𝑝 on day 𝑡 as 𝑝 having code 𝑐𝑖 assigned at

𝑡, and as such we can represent the entire collected dataset as a list of tuples (𝑝, 𝑐, 𝑡)

corresponding to the statements that patient 𝑝 was assigned code 𝑐 at time 𝑡, with 𝑡

3.1.1 Representing Data Efficiently

As described in Section 3.1, we are able to collect a list of features of interest. Each

element of this list is a tuple of the form (𝑝, 𝑐, 𝑡) corresponding to the statement

that patient 𝑝 was assigned code 𝑐 at time 𝑡, with 𝑡 discretized to a daily level. We

discuss the types of operations we hope to be able to conduct on this data in Section

3.1.1.1, along with naive algorithms to implement these operations. These algorithms

have long runtimes, and as such we develop a different representation of the data

that allows for significantly faster operations at the cost of a larger memory footprint

in Section 3.1.1.2. Finally, we develop an intermediate representation that achieves

acceptably fast runtimes with a small memory footprint in Section 3.1.1.3, which we

implement in Prediction Library.

3.1.1.1 Data Representation Goals and Naive Implementation

In order to discuss the desired operations on the data, we first establish some notation.

We denote the entire set of such tuples by ℛ, and further denote the set of unique
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patients, codes and times in the dataset by 𝒫 , 𝒞, 𝒯 respectively. We further define the

quantity 𝐴 = max(|𝒫|, |𝒞|, |𝒯 |) to represent the size of the largest of the these three

sets. Note that asymptotically |ℛ| ∈ 𝑂(|𝒫||𝒞||𝒯 |) ∈ 𝑂(𝐴3), although in practice

this bound is quite weak since the vast majority of codes will not apply to the a

given patient at any given time. Our data is thus effectively stored as a long list

of tuples of the form (𝑝, 𝑐, 𝑡), which while efficient in terms of memory is not very

amenable to transformation in an efficient manner. There are various ways in which

one could manipulate these features for purposes such as further feature engineering.

To support these manipulations, we seek efficient implementations of the following

operations:

∙ Filter out any set of times, patients, or codes from the data based on arbitrary

rules. As an example, we may want to collect all data occurring in a certain

calendar year.

In the most general sense, a user should be able to define filtering criteria

as a tuple 𝑓 = (𝑓𝑝, 𝑓𝑐, 𝑓𝑡) of Boolean functions for patients, codes and times

respectively and we would return the set

𝑓(ℛ) = {(𝑝, 𝑐, 𝑡) ∈ ℛ|𝑓𝑝(𝑝) ∧ 𝑓𝑐(𝑐) ∧ 𝑓𝑡(𝑡)} . (3.1)

This kind of filtering would require iterating through each tuple and thus take

time 𝑂(|ℛ|) Returning to our example, we could define an interval 𝐼 equivalent

to the year in question, in which case we would set 𝑓𝑡(𝑡) = [[𝑡 ∈ 𝐼]] and 𝑓𝑝, 𝑓𝑐

to always be true.

∙ Aggregate data across an arbitrary dimension, which can either be the patient

dimension 𝒫 , code dimension 𝒞, or time dimension 𝒯 . We seek to optimize

the aggregation operation because it is a critical tool both for crafting features

and for introspecting into the properties of the available data. As a motivating

example, we can try to find the distribution of codes over time. Therefore, we

would want to sum up our data along the patient axis, leaving a two-dimensional
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tensor indexed by time and code.

In general, the aggregation is done using an arbitrary aggregation function

𝑔(𝑎, 𝑥), where 𝑎 represents the value to be incorporated into the aggregation and

𝑥 holds the aggregated value so far. The aggregation function is constrained to

be permutation invariant – that is, regardless of the order in which elements of

the dimension in question are fed into the aggregation, the end result will be

the same.

For example, consider the example of aggregating over patients. In performing a

single iteration of the aggregation, we would use a value 𝑝 ∈ 𝒫 to collect all data

tuples {(𝑝′, 𝑐, 𝑡) ∈ ℛ|𝑝′ = 𝑝} which pertain to patient 𝑝 and use these alongside

the aggregated value so far to update the aggregated value. To represent this,

we introduce the primed aggregation function 𝑔′ defined such that

𝑔(𝑝, 𝑥) = 𝑔′({(𝑝′, 𝑐, 𝑡) ∈ ℛ|𝑝′ = 𝑝}, 𝑥). (3.2)

Then, starting from an initial value 𝑥∅, we would recursively aggregate by

computing in a loop over each 𝑝 ∈ 𝒫 the function

𝑥𝑆∪{𝑝} = 𝑔 (𝑝, 𝑥𝑆) = 𝑔′ ({(𝑝′, 𝑐, 𝑡) ∈ ℛ|𝑝′ = 𝑝}, 𝑥𝑆) (3.3)

where 𝑆 represents the set of elements of 𝒫 that have already been aggregated

over. The final aggregation would be the value of 𝑥𝒫 , which would incorporate

all patients. The process for aggregating over times and codes follows naturally.

Then, naively, this manner of aggregating along an dimension would first require

finding every unique element of that dimension, iterating through each of these

unique elements, finding the set of tuples containing the unique element, and

finally actually performing the aggregation itself. Denoting the runtime of the

aggregation function by 𝑇𝑔, naive aggregation would cost an asymptotic runtime

of 𝑂(𝑇𝑔𝐴|ℛ|), making it infeasible in practice.

To make this logic more concrete, we now return to the use case in which we
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seek to measure the distributions of codes assigned at each time, which may be

useful for analyses such as the quantification of dataset shift. Then, we would

want to aggregate over individual patients using the matrix-valued aggregation

function 𝑔 : 𝒫 × N|𝒞|×|𝒯 | → N|𝒞|×|𝒯 | defined by

𝑔(𝑝, 𝑥) = 𝑔′({(𝑝′, 𝑐, 𝑡) ∈ ℛ|𝑝′ = 𝑝}, 𝑥) = 𝑥+𝑚(𝑝) (3.4)

where the elements of the |𝒞| × |𝒯 |-dimensional matrix 𝑚(𝑝) are given by

𝑚𝑐,𝑡(𝑝) =

⎧⎪⎨⎪⎩1 (𝑝, 𝑐, 𝑡) ∈ {(𝑝′, 𝑐, 𝑡) ∈ ℛ|𝑝′ = 𝑝}

0 otherwise
(3.5)

Starting from an initial value of the zero matrix 𝑥∅ = 0|𝒞|×|𝒯 |, this aggregation

would then result in a matrix 𝑥𝒫 whose row indices correspond to unique times,

with the vector formed by each row representing an un-normalized empirical

distributions of the codes that occurred at the time corresponding to the row.

3.1.1.2 Fast Implementation without Memory Constraints

We next develop significantly faster implementations of the filtering and aggregation

operations. To do so, we first consider the case where memory usage is neglected –

this leads to a data structure that can perform both operations very quickly, but has

a large memory footprint.

In the memory-unconstrained scenario, we could store the list of tuples ℛ in a

large tensor 𝑀(ℛ) ∈ {0, 1}|𝒫|×|𝒞|×|𝒯 | which we equip with three invertible functions

ℎ𝑝, ℎ𝑐, ℎ𝑡 which map from the integer ranges [|𝒫|], [|𝒞|], [|𝒯 |] to the sets 𝒫 , 𝒞, 𝒯 respec-

tively. Note that we denote the set of integers {1, 2, · · ·𝑁} as [𝑁 ]. These functions

and their inverses are each expressed as hash tables, allowing for 𝑂(1) conversion in

either direction between a numerical index in the matrix 𝑀(ℛ) and the corresponding

patient, code or time. Using these definitions, we can define the elements of 𝑀(ℛ)
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by

𝑀𝑖,𝑗,𝑘(ℛ) =

⎧⎪⎨⎪⎩1 (ℎ𝑝(𝑖), ℎ𝑐(𝑗), ℎ𝑡(𝑘)) ∈ ℛ

0 otherwise
(3.6)

Note that just as a matrix can be stored in row-major or column-major order, the

three-dimensional sparse tensor can be stored in any of 6 axis-wise orders, with each

order allowing for immediate slicing along one axis. If we store a copy of the tensor

in each of these order, we can slice out any two-dimensional tensor slice in constant

time.

Using this data structure, we can perform filtering according to the filtering criteria

tuple 𝑓 = (𝑓𝑝, 𝑓𝑐, 𝑓𝑡) by iterating through the unique patient, code, and time indices.

When iterating through the patient indices, at index 𝑖 ∈ [|𝒫|] we first find the patient

𝑝 = ℎ𝑝(𝑖) and then check whether this patient is to be included in the filter by

calculating 𝑓𝑝(ℎ𝑝(𝑖)). The process for checking inclusion of code and time indices

follows naturally. In this way, assuming that the calculation of 𝑓𝑝, 𝑓𝑐, 𝑓𝑡 can be done

in constant time, the appropriate tensor elements can be found in time 𝑂(|𝒫|+ |𝒞|+

|𝒯 |) ∈ 𝑂(𝐴).

We likewise see gains in terms of aggregation. To aggregate along a dimension, we

merely iterate through each index of that axis. As an example, consider aggregation

along the patient dimension – for each index 𝑖 ∈ [|𝒫|] the two-dimensional tensor

𝑀𝑖,·,· is immediately accessible, and this can then be fed into the aggregation function.

Given that the aggregation is permutation invariant, we can simply iterate through

[|𝒫|] instead of 𝒫 itself and still go through every patient. Thus, the runtime of

aggregation is decreased to 𝑂(𝑇𝑔𝐴), where we recall that 𝑇𝑔 is the runtime of the

aggregation function.

3.1.1.3 Addressing both Memory and Runtime Constraints with Sparse

Tensors

Unfortunately, it is often infeasible in terms of memory to store a single copy of

𝑀(ℛ), let alone 6 copies. Thus, we turn to an intermediate solution – sparse three
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dimensional tensors. We represent these tensors by a 3×|ℛ| matrix 𝐷(ℛ) of natural

numbers, with each column corresponding to a tuple in ℛ. More specifically, we

define an arbitrary ordering over ℛ such that for each 𝑖 ∈ [|ℛ|], we have a tuple

𝑟𝑖 = (𝑝𝑖, 𝑐𝑖, 𝑡𝑖) corresponding to a unique element of ℛ. We then set the columns of

𝐷(ℛ) to

𝐷𝑖,·(ℛ) =

⎡⎢⎢⎢⎣
ℎ−1
𝑝 (𝑝𝑖)

ℎ−1
𝑐 (𝑐𝑖)

ℎ−1
𝑡 (𝑡𝑖)

⎤⎥⎥⎥⎦ (3.7)

where the functions ℎ𝑝, ℎ𝑐, ℎ𝑡 are defined in the same way as in the case of a dense

tensor above.

Efficient filtering and aggregation algorithms on this data structure achieve inter-

mediate runtimes while conserving memory, and as such are useful practically:

∙ In order to filter according to the filtering criteria tuple 𝑓 = (𝑓𝑝, 𝑓𝑐, 𝑓𝑡), we

can first filter patients using 𝑓𝑝, then codes with 𝑓𝑐 and finally times with 𝑓𝑡.

For patients, we filter by iterating through each column, extracting the patient

index 𝑖 from the first element of the column, finding the corresponding patient

ℎ−1
𝑝 (𝑖) and including the column if 𝑓𝑝(ℎ−1

𝑝 (𝑖)) holds true. The procedure for

filtering in codes and times follows naturally. Similar to the naive case, this

incurs a 𝑂(|ℛ|) runtime, which is acceptable in general due to the sparsity of

the matrix.

∙ To aggregate, we can make use of the fact that 𝐷 is sorted. First, we re-sort the

columns of 𝐷 using the aggregation dimension as the key in time 𝑂(|ℛ| log |ℛ|).

Then, the relevant blocks of data of the form {(𝑝, 𝑐, 𝑡′) ∈ ℛ|𝑡′ = 𝑡}, {(𝑝, 𝑐′, 𝑡) ∈

ℛ|𝑐′ = 𝑐}, or {(𝑝′, 𝑐, 𝑡) ∈ ℛ|𝑝′ = 𝑝} will simply be contiguous blocks of the

matrix, resulting in a total runtime of 𝑂(|ℛ| log |ℛ| + 𝑇𝑔|ℛ|).

In this manner, we can achieve reasonable runtimes for both filtering and aggregation,

while maintaining a small memory footprint. Similar methods for manipulating sparse

data have historically been used in database applications [36]. In practical terms,

within Prediction Library’s code base we use the PyData-Sparse library [2], which
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Data Structure Filtering Runtime Aggregation Runtime Memory Footprint
List of Data 𝑂(|ℛ|) 𝑂(𝑇𝑔𝐴|ℛ|) 𝑂(|ℛ|)

3-d Dense Tensor 𝑂(𝐴) 𝑂(𝑇𝑔𝐴) 𝑂(𝐴3)
3-d Sparse Tensor 𝑂(|ℛ|) 𝑂(𝑇𝑔|ℛ| + |ℛ| log |ℛ|) 𝑂(|ℛ|)

Table 3.1: Memory and Runtime Tradeoffs when Storing Longitudinal Health Data

implements many of the sparse tensor operations we described above. We augment

this library’s sparse tensor logic with the mappings ℎ𝑝, ℎ𝑐, ℎ𝑡 and their inverses, to

allow for clinically meaningful filtering and aggregation. We summarize the tradeoff

between runtime and memory for the three different data structures discussed in Table

3.4.

3.2 Prediction Library Pipeline

Having discussed how a clinical prediction task is to be formally specified, and likewise

how we can efficiently represent data, we finally turn to the engineering question of

building an infrastructure to support these definition and data-collection processes.

Our primary strategy to do so is to allow users to define all functions discussed above

in terms of SQL scripts.

First, we consider cohort and outcome definitions. In defining the cohort, the

user specifies a SQL script which returns the set 𝜒(𝒫) expressed as a database table,

with rows corresponding to patients in the set. The two primary columns in turn

correspond to a universal key identifying patients 𝑝, and the outcomes Ω(𝑝) for each

patient. Finally, we augment this table with a third column filled in with the user-

defined prediction time 𝑇𝐴. The expected columns returned by a cohort script are

described in Table 3.2.

Next, the feature generation scripts 𝑐1, 𝑐2, · · · 𝑐𝑛 are likewise defined by SQL scripts.

In these scripts, the user is expected to return tables with each row corresponding to

a single tuple (𝑝, 𝑐, 𝑡) indicating that patient 𝑝 was assigned code 𝑐 at time 𝑡, with

𝑡. Note that the term code refers to a generalization of OMOP codes – a user may

define any custom function of OMOP codes as a new code in Prediction Library, so
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Column Meaning
example_id A unique integer for each data point in the cohort that can be used

for downstream indexing.
person_id An integer identifying each unique patient in the cohort. This integer

should be the same person_id used in the OMOP CDM’s person
table to allow for cross-referencing and joining additional data

y Binary outcomes per example, represented as integers in {0, 1}.
end_date The date on which patient data collection is to cease and a prediction

is to be made. This is stored and used to eliminate any potential
leakage of censored information in downstream processes.

Table 3.2: Required Columns for Cohort Definition

Column Meaning
person_id An integer identifying the unique patient to whom the feature is

relevant to. This integer should be the same person_id used in
the OMOP CDM’s person table to allow for cross-referencing and
joining purposes.

date A date, represented by entries of SQL data type Date, representing
when this feature is applicable to a patient.

feature_name An arbitrary string that names the feature represented in each row,
ideally utilizing a simple and comprehensible nomenclature.

Table 3.3: Required Columns for Feature Definition

long as this transformation is expressible in the SQL language. Prediction Library

automatically adds a join to the user’s queries for each 𝑐𝑖 to enforce that only rows

(𝑝, 𝑐, 𝑡) where 𝑝 ∈ 𝜒(𝒫) are collected, ensuring that we do not waste runtime finding

data for patients who are not of interest to the task at hand. The layout of feature

tables is given in Table 3.3.

We create the sparse-tensor data matrix 𝐷 using the union of all tables generated

by the feature generation scripts. The final output to the user is then the cohort,

outcomes, sparse-tensor 𝐷 of data, and the three invertible mappings ℎ𝑝, ℎ𝑐, ℎ𝑡 from

the indices of the matrix 𝐷 to patients, codes, and times respectively.

3.2.1 Establishing Data Notation

Using the sparse-tensor representation of our dataset, we can easily access visits,

codes, and visit details. Here, we establish notation for each of these elements of the

data. We utilize the same notation to describe our modelling algorithms.
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We denote the set of visits made by a patient 𝑖 by 𝒱𝑖 – these are represented

by the columns of 𝐷 whose first index is ℎ−1
𝑝 (𝑖). We represent this patient’s 𝑗th

visit in chronological order, whose occurrence time we denote 𝑡𝑖𝑗, by 𝑉 𝑖
𝑗 . This visit is

represented by the columns of 𝐷 whose first index is ℎ−1
𝑝 (𝑖) and whose second index

is ℎ−1
𝑡 (𝑡𝑖𝑗). We further denote the set of codes assigned during visit 𝑉 𝑖

𝑗 with 𝐶𝑖
𝑗 ⊆ 𝒞,

where 𝒞 represents all codes present in our data. This set of codes is simply the

function ℎ𝑐 applied to the third index of all columns of 𝐷 whose first index is ℎ−1
𝑝 (𝑖)

and whose second index is ℎ−1
𝑡 (𝑡𝑖𝑗).

3.2.2 Likelihood of Hospitalization Task Setup with Predic-

tion Library

In this subsection we develop an end of Likelihood of Hospitalization task with Pre-

diction Library to further clarify its usage. This task is a prototypical problem in

clinical prediction, and successful early prediction of the need for in-patient treatment

can help inform interventions and preventative care. As this task is indeed a focus of

the modelling methods discussed in later chapters, we find it particularly informative

to clarify in detail the definitions of its constituent parts.

We describe the exact input a user of Prediction Library would need to provide

through annotated SQL scripts. In these scripts, we utilize subquery factoring to

improve performance as well as the clarity of the code. Prediction Library supports

the formatting of SQL scripts using standard python formatting, and as such terms

that appear in braces (such as {training_end_date}) can be filled in dynamically

just as data is to be collected. This significantly streamlines the process of generating

several similar prediction tasks with slight differences, such as varying prediction

dates to evaluate performance over time.

3.2.2.1 Defining a Cohort and Outcome

In this scenario, we seek to predict if patients will be admitted for inpatient care

between three and nine months after a given prediction date. Our cohort consists
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of all patients who have sufficient observed medical history to make a meaningful

prediction – we quantify this notion by enforcing that all patients are enrolled in

the insurance system for at least 95% of days in a user-specified period prior to the

prediction date. We measure outcomes by checking for an OMOP code corresponding

to an inpatient hospitalization during the outcome observation window – this window

begins a fixed user-defined amount of time {gap} after the prediction date, and lasts

for a user-defined interval {outcome_window}.

The actual cohort generation script is shown in Listing 3.1. We explain the func-

tionality of each block of code:

∙ Block A allows the user to name the cohort table for future reference, and pre-

pares a with statement which will allow us to construct subqueries in subsequent

steps.

∙ Block B defines an outcome at a per-patient level. To do so, we use the OMOP

CDM’s Visit Occurrence table, whose rows comprise all recorded visits made

by any patient – this table’s visit_concept_id column codifies what type

of visit a row refers to, with the code 9201 corresponding to inpatient care.

We can thus select all rows corresponding to inpatient visits by constraining

visit_concept_id to be 9201. We also constrain outcome measurements to lie

within the desired time window, which starts at time

{observation_threshold_date} + {gap}

and ends at time

{observation_threshold_date} + {gap} + {outcome_window}.

The result of this subquery is simply a list of patients for whom we would

have a positive outcome, and we later assume all other patients have a negative

outcome. Interestingly, we do not explicitly perform the outcome calculation

only on patients who meet our filtering criteria – this does not affect efficiency

in practice due to subquery factoring, which will optimize the entire query as a
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whole to eliminate redundant or unnecessary operations. Users can thus code

relatively simple functions to demarcate outcomes without any performance-

related disadvantages.

∙ Block C queries the Observation Period table of the OMOP CDM, which in

our dataset records when a patient’s healthcare history was being tracked as

part of their insurance plan. We retrieve one row for each contiguous inter-

val for which a patient’s history was tracked, and truncate these intervals to

lie between the prediction date set by the variable {prediction_date} and

{observation_threshold_date}. We next want to select patients whose med-

ical history is available for at least 95% of the days between a desired start date

{observation_threshold_date} and the prediction date. We check this con-

dition with a simple aggregation of intervals of observation periods by patients

∙ In Block D, we bring all subqueries together by selecting patients who satisfy

the cohort criteria, and augmenting their patient IDs with the outcomes calcu-

lated in Block B. Note that patients for whom an outcome is not defined are

given a negative label by default. We further add in an index column denoted

example_id for each patient specific to this task.

1 -- Block A

2 create table {schema_name }.{ cohort_table_name} as

3

4 with

5 -- Block B

6 outcomes as (

7 select

8 a.person_id ,

9 1 as outcome

10 from cdm.visit_occurrence a

11 where

12 visit_concept_id = 9201 -- 9201 is the OMOP code for an

Inpatient Visit

13 and
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14 a.visit_start_date between

15 date ’{prediction_date}’

16 + interval ’{gap}’

17 and

18 date ’{prediction_date}’

19 + interval ’{gap}’

20 + interval ’{outcome_window}’

21 group by

22 a.person_id

23

24 ),

25 -- Block C

26 count_of_enrolled_days as (

27 select

28 person_id ,

29 observation_period_start_date as start ,

30 observation_period_end_date as finish ,

31 greatest(

32 least (

33 observation_period_end_date ,

34 date ’{prediction_date}’

35 ) - greatest(

36 observation_period_start_date ,

37 date ’{observation_threshold_date}’

38 ), 0

39 ) as num_days

40 from cdm.observation_period

41 ),

42 eligible_people as (

43 select

44 person_id

45 from

46 count_of_enrolled_days

47 group by

48 person_id

49 having
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50 sum(num_days) >= 0.95 * (date ’{prediction_date}’ - date

’{observation_threshold_date}’)

51 ),

52 -- Block D

53 select

54 row_number () over (order by e.person_id) - 1 as example_id ,

55 e.person_id ,

56 date ’{prediction_date}’ as end_date ,

57 coalesce(o.outcome , 0)::int as y

58 from

59 eligible_people e

60 left join outcomes o

61 on o.person_id = e.person_id

62 ;

Listing 3.1: Cohort and Outcome Generation Script for a Likelihood of Hospitalization

Task

3.2.2.2 Collecting Features

In this example, for the purpose of simplicity we seek to collect a dataset consisting

only of the recorded conditions associated with each patient, along with the days on

which these conditions occurred. Note that the logic used to collect such data can

easily be modified to collect other OMOP concept types as well.

As described in Table 3.3, the feature generation script must minimally provide a

set of rows with columns corresponding to a patient, a feature name, and the date on

which the feature was assigned to the patient. As we make explicit in Listing 3.2, we

collect this data by simply querying the OMOP CDM’s condition_occurrence table,

but more complex transformations of the data in this table can also be represented

as features. We name features using the OMOP CDM concept table, which maps

numerical concept identification numbers to English names.

Note that we inner-join the data extracted from the condition_occurrence table

with the patients who are actually present in the cohort, as represented by the variable

{cohort_table}. This can easily be inserted automatically using the same name used
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Data Structure Filtering Runtime Aggregation Runtime Memory Footprint
List of Data 𝑂(|ℛ|) 𝑂(𝑇𝑔𝐴|ℛ|) 𝑂(|ℛ|)

3-d Dense Tensor 𝑂(𝐴) 𝑂(𝑇𝑔𝐴) 𝑂(𝐴3)
3-d Sparse Tensor 𝑂(|ℛ|) 𝑂(𝑇𝑔|ℛ| + |ℛ| log |ℛ|) 𝑂(|ℛ|)

Table 3.4: Memory and Runtime Tradeoffs when Storing Longitudinal Health Data

to generate the cohort for the task at hand, and up to this minor insertion of a table

name, the feature generation script is agnostic to the task and the cohort. Thus,

feature scripts that collect interesting and useful features can easily be reused and

shared between tasks.

1 select

2 a.person_id ,

3 a.condition_concept_id || ’ - condition - ’ || coalesce (

4 c.concept_name , ’no match’

5 ) as concept_name ,

6 a.condition_start_datetime as feature_start_date

7 from

8 cdm.condition_occurrence a

9 inner join

10 {cohort_table} b

11 on

12 a.person_id = b.person_id

13 left join

14 cdm.concept c

15 on

16 c.concept_id = a.condition_concept_id

Listing 3.2: Feature Generation Script for Condition History
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Chapter 4

Linear Models for Clinical Prediction

Linear models are often highly performant in clinical prediction tasks, especially when

input features are carefully chosen to reflect the nuances of medical data. These

models have the advantages of simplicity and interpretability, as well as the benefit of

being able to be trained and retrained without too high of a computational burden.

In this chapter, we discuss ways in which linear models for clinical prediction are

constructed, and outline the design of our own model in this class. Our linear model,

which is currently in production at IBC, already offers excellent performance on

baseline tasks and serves as a launching point for further advances.

4.1 A Basic Linear Model

In prior work, a useful linear baseline has been an encoding of a patient’s entire

medical history without temporal information [13]. To define this encoding, we recall

the data definitions established in Section 3.2.1 – we construct the set of all codes

ever assigned to patient 𝑖 by first encoding the codes assigned during each visit as

a multi-hot vector one-hot(𝐶𝑖
𝑗) ∈ {0, 1}|𝒞| with entries corresponding to each unique

code in the dataset. The element of this vector corresponding to the code 𝑐 ∈ 𝒞 is

defined to be

multi-hot(𝐶𝑖
𝑗)𝑐 =

⎧⎪⎨⎪⎩1 𝑐 ∈ 𝐶𝑖
𝑗

0 otherwise
. (4.1)
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We combine these multi-hot encodings of each visit with a simple summation, arriving

at a final multi-hot encoding multi-hot(𝐶𝑖
all) ∈ N|𝒞| of the entire patient history defined

by

multi-hot(𝐶𝑖
all) =

∑︁
𝑗

multi-hot(𝐶𝑖
𝑗). (4.2)

This vector represents counts of how many times each code was ever assigned to

patient 𝑖.

The basic linear model consists of training a 𝐿2-regularized logistic regression

model to predict patient outcomes using multi-hot(𝐶𝑖
all) as input. That is, for each

task of interest we learn a vector 𝑤 ∈ R|𝒞| that minimizes the loss function defined by

ℒBasic Linear =
∑︁
𝑖

ℓBasic Linear(𝑖) + 𝜆||𝑤||2 (4.3)

where the sum is taken over all patients 𝑖 and the per-patient loss ℓBasic Linear(𝑖) is

defined by

ℓBasic Linear(𝑖) = 𝑦𝑖 log
(︀
𝜎(𝑤 · multi-hot(𝐶𝑖

all)
)︀

+ (1 − 𝑦𝑖)
(︀
1 − 𝜎(𝑤 · multi-hot(𝐶𝑖

all)
)︀
.

(4.4)

In these equations, 𝑦𝑖 ∈ {0, 1} is the outcome of patient 𝑖, 𝜆 represents the

regularization strength which is yet to be determined, and 𝜎 the sigmoid function

𝜎(𝑥) = 𝑒𝑥/(𝑒𝑥 + 1).

4.2 Linear Models with Temporal Data

A clear flaw of the basic linear models is that they fail to account for the inherently

temporal nature of a patient’s medical history. A more nuanced approach would be

able to identify narratives over time. This would allow it, for example, to differenti-

ate between the worsening and the improvement of a specific disease by seeing how

diagnosis and treatment evolves over multiple visits. In addition, the spacing and

density of visits is also of medical importance – a patient with a few visits spaced

throughout time is probably more healthy than one who has the same number of
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visits tightly packed into a small interval in the recent past. Finally, incorporating

temporal information allows us to decay the relevance of very old medical events and

up-weight more recent ones, since these will often be more relevant to a patient’s

future condition.

To incorporate this kind of information into a linear model, we must build features

that have temporal dependencies. A natural way to do so that has been successful in

past work is to create windowed features [43]. In this setting, we construct features

by aggregating codes over different temporal windows, which are defined as intervals

of dates. This method has been used successfully in the past to predict long-term

outcomes such as the onset of Type II Diabetes [43] on data very similar to that used

in our work. As both the input data and predictive tasks under consideration are

similar, we can confidently ground our linear models in this prior work.

Consider the development of such features for patient 𝑖. Given a temporal interval

𝑊 = [𝑡𝑠, 𝑡𝑒], where 𝑡𝑠 represents a start date and 𝑡𝑒 an end date for the window, we

find the set of all codes assigned to patient 𝑖 during the interval 𝑊 . To do so we first

extract the subset of visits

𝒱𝑖(𝑊 ) = {𝑉 𝑖
𝑗 ∈ 𝒱𝑖|𝑡𝑖𝑗 ∈ 𝑊}. (4.5)

Note that this can be achieved using a filtering operation on our sparse-tensor repre-

sentation of longitudinal health data. We subsequently find the set of codes associated

with any of the visits in the window:

𝒞𝑖(𝑊 ) =
⋃︁

𝑉 𝑖
𝑗 ∈𝒱𝑖(𝑊 )

𝐶𝑖
𝑗. (4.6)

We represent the codes present in the window with the multi-hot vector multi-hot(𝐶𝑖(𝑊 )) ∈

{0, 1}|𝒞| to represent these sets, with the element corresponding to concept 𝑐 ∈ 𝒞 set

equal to 1 if 𝑐 ∈ 𝒞𝑖(𝑊 ) and 0 otherwise.

To capture the longitudinal nature of claims data, we use multiple windows si-

multaneously as features. In practice, this means that we concatenate the one-hot

45



representations corresponding to each window.

We regularize and tune this model to achieve good predictive performance. First,

we establish a list 𝒲𝐶 of candidate windows, each of which has an end time equal to

the prediction date and start times ranging from 15 to ∞ days before the prediction

date – in practice, we use the candidate windows displayed in Table 7.2.2. We select

the 𝑛𝑊 = 5 best windows from all
(︀|𝒲𝐶 |

𝑛𝑊

)︀
unique window choices by comparing vali-

dation performance across a subset of the data, and call this optimum window set 𝒲 .

In addition, given that this model will have numerous redundant features, we apply

heavy 𝐿1 regularization and tune the strength of this regularization.

In all, we train a logistic regression model on the concatenation of 𝑛𝑊 temporal

windows, which amounts to learning a vector 𝑤 ∈ R𝑛𝑊 ·|𝒞| that minimizes the objective

function given by

ℒWindowed Linear =
∑︁
𝑖

ℓWindowed Linear(𝑖) + 𝜆||𝑤||1 (4.7)

where the sum is taken over all patients 𝑖 and the per-patient loss ℓWindowed Linear(𝑖) is

defined by

ℓWindowed Linear(𝑖) = 𝑦𝑖 log
(︁
𝜎
(︁
𝑤 ·

⃦⃦
𝑊∈𝒲multi-hot(𝐶𝑖(𝑊 )))

)︁)︁
(4.8)

+ (1 − 𝑦𝑖)
(︁

1 − 𝜎
(︁
𝑤 ·

⃦⃦
𝑊∈𝒲multi-hot(𝐶𝑖(𝑊 ))

)︁)︁
. (4.9)

where we denote concatenation of vectors with the symbol
⃦⃦
, and as before 𝑦𝑖 ∈ {0, 1}

is the outcome of patient 𝑖, 𝜆 represents the regularization strength which is yet to

be determined, and 𝜎 the sigmoid function 𝜎(𝑥) = 𝑒𝑥/(𝑒𝑥 + 1).
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Chapter 5

Deep Models for Clinical Prediction

In this chapter, we introduce the principal deep-learning paradigms used in patient-

level clinical prediction tasks from prior medical information. These approaches take

varying approaches to converting raw medical data from a patient to predictions – at

their core however, all of these methods account for the uniquely defining properties

of longitudinal health data. We then discuss our novel advances in applying deep

learning to clinical prediction through the introduction of a novel architecture and

training method which when combined can achieve state of the art performance on

several medical prediction tasks with applications to improving care.

5.1 Prior Research

Deep learning techniques offer a path to improving predictive performance for clin-

ical prediction tasks by learning representations of longitudinal health records that

capture a patient’s medical status and potential future risks. State-of-the-art models

in the literature have largely focused on shorter-term prediction over horizons of days

or weeks, most notably during a single hospital visit [4, 49, 37, 44, 12], or in the im-

mediate aftermath of a visit [37, 44]. Approaches to longer-term prediction often rely

on manually feature-engineering longitudinal health data into patient state vectors

[43, 4, 5, 35], as opposed to training end-to-end from raw longitudinal EHR data. Due

to this heuristic approach, these methods cannot fully exploit the temporal nature
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of EHR data, nor the relationships between clinical concepts. We further find that

linear models with well-tuned features are quite competitive with existing end-to-end

deep models for long-term prediction, indicating that deep learning successes in other

domains have not yet been effectively translated to clinical prediction

Many recent works analyze how deep learning can be applied to clinical prediction

[11, 41, 10, 48, 13, 21, 20, 31, 52]. Several approaches use recurrent neural networks

(RNNs) to ingest medical records, and achieve excellent performance on tasks like

predicting in-patient mortality upon hospital admission [11]. Further refinements

add learned imputation to account for missingness [10], and improvements in featur-

izing time by using architectures like bi-directional RNNs [30] and two-level attention

mechanisms to find the influence of past visits on a prediction [13, 26]. Research

has also focused on using convolutional neural networks (CNNs) to develop better

embeddings of clinical concepts passed into a recurrent model [31], and graphically

representing the patient-clinician relationship to augment health record data [52].

Self-attention has also been used in a non-longitudinal manner, to develop relation-

ships between medical features that have already been collapsed over the temporal

dimension using recurrent methods [32].

When making predictions with horizons of months or years, the state-of-the-art

is still simple, often linear models with carefully chosen features [43, 4]. Recent

work exploring deep-learning based approaches to long-term clinical prediction train

neural networks directly on features constructed using hand-picked time windows

and summary statistics [5] or use denoising autoencoders to pre-process this type

of data [35], and do not necessarily beat linear baselines [41, Supplemental Table

1]. Critically, many of these models rely on manual feature-engineering to create

representations of the time-series data that forms a patient’s medical record rather

than learning this structure in tandem with the task at hand.

EHRs represent collections of longitudinal patient-level medical encounter data.

As discussed in 2 for each patient in an EHR system we receive a time series of

visits – single continuous interactions of a patient with the healthcare system – and

codes – the medical events occurring during each visit. As such, machine learning
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models operating on claims data must learn from their rich temporal and conceptual

structure to create a patient-level representations. The following key properties of

claims data inform the desiderata for model architecture in this domain:

∙ Sparsity of Features: Claims data is extremely sparse. The set of codes is

large, and the overwhelming majority of codes do not apply to a given patient

at a given time.

As an example, consider the naive expansion of our insurance claims dataset

into a large three-dimensional tensor whose axes correspond to time (measured

in days), codes, and patients respectively. If we set the element corresponding

to day 𝑑, code 𝑐 and patient 𝑝 to 1 if patient 𝑝 had code 𝑐 assigned to them

on day 𝑑, and set this element to zero otherwise, only 1 in 106 elements of the

tensor would be nonzero. Thus, it is completely infeasible from the perspective

of memory and computational constraints to operate on dense representations

of EHR data, and it is critical that architectures be able to efficiently process

sparse input data. In prior work, this has been achieved by manipulating sparse

binary multi-hot vectors representing active codes [11, 13], as these vectors can

effectively be represented as lists of indices of nonzero vector elements.

∙ Code-level Permutation Invariance: The unique symmetries and asymme-

tries of claims data must be preserved by an effective architecture. The set of

codes assigned during a visit is not ordered and thus any operation on groups of

codes must be invariant to permutations of its inputs. While brute-force tech-

niques like randomization of inputs can achieve this invariance in expectation,

a nuanced approach is needed to efficiently implement a transformation layer

that is intrinsically permutation-invariant.

We note that the characterization of codes as permutation-invariant fails to

account for the common clinical paradigm of a single code representing the main

theme of a visit, and other codes acting as supporting evidence and background

for this primary theme. However, this level of granularity in clinician decision

making is not captured in our EHR data and as such cannot be directly encoded.
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As such, allowing an architecture to learn how much importance to put on each

code and how to contextualize codes for a specific task is necessary.

∙ Visit-level Temporality: Visits are ordered and augmented with timestamps

corresponding to when care was provided. Models must be able to process a

highly irregularly-spaced time series of events, since care is often administered

in short bursts punctuated by long gaps. Indeed, the time between visits made

by a single patient can vary from years to days, based on their medical needs,

and both short-term and long-term dynamics can be important. Visits that

are close temporally can effectively represent the same overall medical event

being treated over multiple sessions, while two temporally distant visits may be

deeply connected as manifestations of a chronic disease or untreated underlying

condition. This has been previously approached by discretizing time to allow

for uniform time steps [42], bucketizing time [43] to create categorical represen-

tations of when events occurred in a timeline, and treating time as a continuous

covariate in models [26, 12].

5.2 Representing Longitudinal Health Data with Self-

Attention

We propose a novel architecture that addresses the challenges described in Section ??

by building upon self-attention architectures [49], which have seen success in natural

language processing [18] and time-series analysis [50, 27]. Self-attention mechanisms

allow each element of a sequence to extract context from, or attend to, other sequence

elements. What makes this paradigm particularly appealing is that any element can

directly attend to any other element regardless of their separation within the sequence,

which means that long-term dependencies are captured well.

This is in contrast to recurrent or convolutional methods, where information must

flow through many layers of computation to get from one sequence element to a

distant other. In asymptotic terms, in order to move contextual information from a
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Figure 5-1: SARD Architecture for Longitudinal Claims Data

patient’s 𝑖𝑡ℎ visit to the same patient’s 𝑗𝑡ℎ visit, a recurrent or convolutional model

would need to move this information through 𝑂(|𝑖− 𝑗|) edges of the neural network’s

computational graph. On the other hand, a self-attention based architecture would

only need to move the same information through 𝑂(1) edges of the neural network’s

computational graph. Our model, which we denote as Self Attention with Reverse

Distillation, or SARD, is able to cleanly and interpretably associate visits over a

variety of timescales.

We use a set encoding approach to address the challenge of sparsity and the need to

represent a set of data observed at each visit, and a self-attention based architecture

to allow any visit’s embedding to interact with another visit embedding, ensuring

that we can capture temporal information and dependencies. An overview of the

architecture is provided in Figure 5-1.

We denote the set of visits made by a patient 𝑖 by 𝒱𝑖, and represent this patient’s

𝑗th visit by 𝑉 𝑖
𝑗 . We further denote the time of visit 𝑉 𝑖

𝑗 by 𝑡𝑖𝑗 and the set of codes

assigned during visit 𝑉 𝑖
𝑗 with 𝐶𝑖

𝑗 ⊆ 𝒞, where 𝒞 represents all codes present in our

data. We use this general framework for our architecture so that it is extensible to a

variety of clinical settings and tasks, where specific types of information may not be

readily available.
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The architecture of SARD consits of the following components:

∙ Code Embedding: We adapt the method of Choi et al. [14] to generate an

initial concept embedding map 𝜑 : 𝒞 → R𝑑𝑒 which takes each code in our data

and maps it to a representative vector of real numbers. In order to generate

these embeddings, we use a skip-gram architecture [34]. In this embedding

paradigm, we present a model with a single concept 𝑐 and train it to predict

other concepts that contextualize 𝑐 – in the original use case of natural language

processing and word embeddings, the context of a word was chosen to be other

words occurring in the same sentence, and a natural extension of this idea to

the clinical domain is to make the context of concept 𝑐 the set of other codes

occurring during the same visit. However, prior research [14] has established

that this is not optimal, since information relevant to a code can occur in other

visits that are temporally nearby. As such, we define the context of code 𝑐 to

be any code that occurs within 90 days of 𝑐, and train a skip-gram model using

the Gensim Library [45]. Note that in practice, this embedding is learned only

using data in a training window to prevent label leakage.

∙ Visit Content Embedding The vector representation 𝜓(𝑉 𝑖
𝑗 ) ∈ R𝑑𝑒 of each

visit is calculated in a manner inspired by the Deep Set paradigm, which de-

velops a general approach to the problem of embedding a set of objects drawn

from a large space in an efficient manner [51]. Critically, sets are unordered

collections of objects and as such embeddings of a set must be invariant to per-

mutations of set elements. As established in [51], any embedding satisfying this

property can be written as a nonlinear function 𝑓 applied to the sum of another

nonlinear function 𝑔 applied to each set element 𝑠 of some set 𝑆. That is, the

embedding of 𝑆 can always be expressed as 𝑓(
∑︀

𝑠∈𝑆 𝑔(𝑠)).

In our case, we already apply a nonlinear transformation 𝜑 to each code in

order to embed it as a real-valued vector, and we can utilize the downstream

components of the SARD architecture to act as the nonlinearities encapsulated
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in the function 𝑓 . As such, we define

𝜓(𝑉 𝑖
𝑗 ) =

∑︁
𝑐∈𝐶𝑖

𝑗

𝜑(𝑐), (5.1)

and we note that this formulation has the desired property that the embeddings

𝜓 are invariant to re-orderings of the codes in 𝐶𝑖
𝑗.

∙ Temporal Embedding: We note that a self-attention mechanism does not

explicitly encode an order of events, and instead relies on the use of a temporal

embedding, which represents when an event occurs similarly to how a content

embedding encodes an event’s meaning. In the case of SARD, noting that visits

do not occur in regular intervals, our choice of time embeddings must be able

to capture different timescales effectively. We embed the time of each visit

as a real-valued vector in R𝑑𝑒 using a sinusoidal embedding, which has been

found in prior research to be an effective way to encode temporal information

in self-attention based architectures [49].

Using this framework, we create temporal embeddings

𝜏(𝑉 𝑖
𝑗 ) = sin(𝑡𝑖𝑗𝜔)|| cos(𝑡𝑖𝑗𝜔), (5.2)

where 𝑡𝑖𝑗 = min(365, 𝑇𝐴 − 𝑡𝑖𝑗) and 𝑇𝐴 represents the prediction date. This

allows us to measure time relative to the prediction date. Note that we denote

the concatenation of two vectors with ||, 𝜔 denotes a length 𝑑𝑒/2 vector of

frequencies in geometric progression from 10−5 to 1, and the functions sin and

cos are applied element-wise to their vector arguments.

The definition of the frequency vector 𝜔 as a geometric progression of frequen-

cies means that various timescales are inherently incorporated into the temporal

embedding. Indeed, given a sufficiently large number of frequencies (or equiv-

alently a large enough embedding dimension 𝑑𝑒), arbitrary functions of time

can effectively be learned and used by the model through the combination of
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different frequency-based functions into Fourier series.

∙ Self-Attention: Following the predominant practice established by prior re-

search into self-attention architectures [49], we add 𝜓(𝑉 𝑖
𝑗 ) and 𝜏(𝑉 𝑖

𝑗 ) to create

final real-vector-valued encodings that represent both the content and timing of

visits. The next step is to develop architectural elements that allow these visit

representations to contextualize each other in a patient’s overall history. To do

so, we utilize multi-headed self-attention [49] with 𝐿 = 2 self-attention blocks

and 𝐻 = 2 heads.

In each layer of each head of the self-attention mechanism, every visit attends

to every other visit. To do so, we first perform three affine transformations

on the input embeddings, which for the first layer are 𝜓(𝑉 𝑖
𝑗 ) + 𝜏(𝑉 𝑖

𝑗 ) for each

visit 𝑉 𝑖
𝑗 . These transformations produce vectors 𝑘𝑖𝑗, 𝑞𝑖𝑗 and 𝑣𝑖𝑗, which represent

a query, key and value associated with each visit. Loosely inspired by informa-

tion retrieval algorithms, we find the contextualized embedding of visit 𝑉 𝑖
𝑗 by

computing raw attention weights

𝑤𝑖
𝑗ℓ =

𝑞𝑖𝑗 · 𝑘𝑖ℓ√
𝑑𝑒

, (5.3)

which represents in a single real value how much context from visit 𝑉 𝑖
ℓ should

be incorporated into visit 𝑉 𝑖
𝑗 based on their query and key vectors respectively.

We next normalize these weights via softmax to get

𝑤̃𝑖
𝑗ℓ =

𝑒𝑤
𝑖
𝑗ℓ∑︀𝑛𝑣

ℓ′=1 𝑒
𝑤𝑖

𝑗ℓ′
. (5.4)

We next incorporate the value vectors for each visit. These vectors are trained

to represent the actual contextual information contained within a visit, and we

determine an overall contextualized representation for visit 𝑉 𝑖
𝑗 by taking the

weighted sum
𝑛𝑣∑︁
ℓ=1

𝑤̃𝑖
𝑗ℓ𝑣

𝑖
ℓ. (5.5)
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This process of determining how much context should be given to each visit

is then repeated at each layer using the contextualized embeddings generated

by the previous layer as inputs, recalling that in the first layer, we simply use

the summed outputs of the temporal and content embedders 𝜓(𝑉 𝑖
𝑗 ) + 𝜏(𝑉 𝑖

𝑗 ) as

the embedding for each visit 𝑉 𝑖
𝑗 Each head, in turn, performs the algorithm

described above in parallel, allowing for multiple different types of context to

be collected simultaneously.

Residual connections are used between layers of the self-attention mechanism

to improve performance. The outputs of each head are concatenated to create

final, contextualized visit representations 𝜓(𝑉 𝑖
𝑗 ). The For efficiency, we truncate

to the 𝑛𝑣 = 512 most recent visits, and add padding for patients with less than

𝑛𝑣 visits – pad visits are represented by a learned vector 𝜑𝑃𝐴𝐷 ∈ R𝑑𝑒 . We apply

dropout with probability 𝜌𝑡𝑑 = 0.3 after each self-attention block to prevent

overfitting. This approach allows any visit to attend to any other, so longer-

range dependencies of clinical interest can be learned.

∙ Prediction Head: The prediction head is the final stage of the architecture,

and it returns an estimated probability of the target event using the outputs

of the self-attention mechanism. The final visit representations 𝜓(𝑉 𝑖
𝑗 ) each

represent contextualized views of patient health at a certain point in time. In

previous applications of self-attention to classification in the natural language

domain [18], an extra dummy token is added the the end of a sequence to be

classified, and this token learns to attend to and aggregate whatever data is

necessary for prediction.

We instead opt for a new approach in which we use a learned output of all

contextualized visits instead of a single specialized summary visit. This allows

us to have a shallower transformer architecture, and to have more redundancy

in the model. The final visit representations 𝜓(𝑉 𝑖
𝑗 ) are combined through an

aggregation of 𝑛𝑚 = 10 separate learned linear combinations of visits.

For any patient 𝑖, this calculation proceeds as follows: we denote the 𝑘th of
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𝑛𝑚 weights for the visit 𝑉 𝑖
𝑗 by the learnable real number 𝑎𝑘𝑗 ∈ R. Then, we

calculate a final representation of patient state by finding

⃦⃦⃦⃦𝑛𝑚

𝑘=1

𝑛𝑣∑︁
𝑗=1

𝑎𝑘𝑗𝜓(𝑉 𝑖
𝑗 ), (5.6)

where
⃦⃦

denotes the concatenation of vectors. Then, dropout is applied with

probability 𝜌ℎ𝑑 = 0.05 and a ReLU non-linearity is applied element-wise. Finally,

a densely connected layer maps the resulting vector to a single real value, to

which the sigmoid function is applied to obtain an estimated probability 𝑝(𝑖)

that patient 𝑖’s outcome is positive.

5.2.1 Interpreting the Predictions of a SARD Model

As the predictions made by our deep model may be used for clinical decision making,

it is critical that the model’s decisions can be interpreted. There are two primary

components that must be understood to make sense of a prediction made by SARD

– the self-attention mechanism and the prediction head.

In the self-attention mechanism, we can explicitly trace the flow of information

from one visit to another, thereby identifying how different clinical encounters con-

textualize each other. Understanding the action of the prediction head requires the

use of state-of-the-art interpretability techniques, but is tractable since the prediction

head is simply a feed-forward neural network.

In interpreting the prediction head, we seek to determine which contextualized

visits output by the self-attention layers of SARD are most influential to the final

prediction. To do so we use the DeepExplainer function from the SHAP package

[29]. The inputs to the prediction head are contextualized visits, represented as a

𝑑𝑒-dimensional vectors; for a given patient, SHAP assigns a positive or negative score

to each component of each visit vector, indicating whether that component added to

or subtracted from the predicted probability of death. We represent a visit’s overall

importance to the prediction by computing the sum over all vector components of

the absolute value of SHAP scores for each visit.
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We can then observe which un-contextualized visits from the input to the self-

attention layers were strongly attended to by these influential contextualized visits to

determine how SARD merges information across timescales. This gives us a qualita-

tive yet thorough method to find the key drivers of SARD’s predictions. We demon-

strate this technique in practice in Section 7.3.4, as a confirmation of our experimental

results.
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Chapter 6

Learning with Reverse Distillation

In this chapter, we discuss reverse distillation, a novel model initialization technique.

We use reverse distillation to initialize a deep model for binary classification, or

equivalently binary prediction, to mimic a simpler proxy. Reverse distillation offers

several potential advantages in terms of model performance. First, by learning a

robust way to replicate a proxy model, a deep model can learn robust and redundant

ways to represent features of the proxy model, thereby improving generalization.

Next, assuming that we can successfully train a complex deep model to generalize

in the same way as the proxy model, we can effectively initialize the deep model to

a point in the parameter space which is potentially closer to the optimum, or in a

region of the landscape of the objective function where optimization is easier – this

is similar to pre-training approaches that lead to improved model performance [18].

In addition, if the proxy model is well-regularized, it effectively performs feature-

selection, and the deep model may be able to learn this feature selection in a soft

manner, allowing it to generalize better as well. Finally, reverse distillation can act

as a form of regularization, by keeping the weights of the deep model close to the set

of points in the parameter space which make the deep model generalize similarly to

the proxy model.
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6.1 Reverse Distillation Training Procedure

We formally define the reverse distillation training algorithm. We seek to train a

binary prediction model 𝑓𝜃 : 𝒳 → [0, 1] parametrized by 𝜃 which maps from a domain

𝒳 of data to a probability value. We also are given a linear proxy model 𝑔𝑤 : 𝒳 →

[0, 1] defined by 𝑔𝑤(𝑥) = 𝜎(𝑤𝑇 𝜉(𝑥)), where 𝜎 is the sigmoid function and 𝜉 is a fixed

feature engineering transformation 𝜉 : 𝒳 → R𝑑 based on heuristic domain knowledge.

In the clinical domain, for example, 𝜉 may represent the calculation of various risk

scores from raw patient data 𝑥 ∈ 𝒳 , or the process of generating windowed features

as in our windowed linear models in Section 4.2.

Even though 𝑓𝜃 may be a large, highly-parametrized model, 𝑔𝑤 may perform

better on prediction tasks when compared to 𝑓𝜃 trained in the traditional manner of

optimizing 𝜃 to minimize a cross-entropy loss between predicted and true outcomes on

a training set. This can be the result of the proxy model’s ability to select features and

avoid overfitting through regularization of 𝑤, and the quality of the transformation

𝜉 which may represent complex insights and domain knowledge. As such, we seek to

initialize 𝑓𝜃 to mimic the outputs of 𝑔𝑤 in order to benefit from the structure and

performance of the linear model while allowing for further data-driven improvements.

We interpret predictions 𝑓𝜃(𝑥) (resp 𝑔𝑤(𝑥)) as indicating that the distribution

of the label for data point 𝑥 is B(𝑓𝜃(𝑥)) (resp B(𝑔𝑤(𝑥))), where B(𝑝) indicates a

Bernoulli distribution with success parameter 𝑝. We perform reverse distillation by

training our deep model by optimizing over 𝜃 a loss function defined by

ℓRD(𝑥) = 𝐷KL (B(𝑔𝑤(𝑥))||B(𝑓𝜃(𝑥))) . (6.1)

This algorithm is inspired by the standard knowledge distillation paradigm [22], in

which a simpler model is trained to mimic a complex model. A notable high-level

difference between these two methods is that while knowledge distillation is often most

useful in cases where a model must be made smaller and more efficient for deployability

reasons and can therefore be treated as a post-processing method, reverse distillation

is instead an integral part of the training process for the model 𝑓𝜃 and serves as a

60



pre-processing method.

To fine-tune 𝑓𝜃, we make use of both the true label 𝑦(𝑥) ∈ {0, 1} and the predic-

tion 𝑔𝑤(𝑥), combining a cross-entropy loss versus the true label and the discrepancy

between 𝑔𝑤 and 𝑓𝜃 with a hyperparameter 𝛼 to get a loss function

ℓtune(𝑥) = − (𝑦(𝑥) log 𝑓𝜃(𝑥) + (1 − 𝑦(𝑥)) log(1 − 𝑓𝜃(𝑥))) (6.2)

−𝛼 (𝑔𝑤(𝑥) log 𝑓𝜃(𝑥) + (1 − 𝑔𝑤(𝑥)) log(1 − 𝑓𝜃(𝑥))) . (6.3)

Note that the second term in ℓtune is equal to the KL divergence between 𝑔𝑤(𝑥) and

𝑓𝜃(𝑥) up to an additive constant, which we remove to allow 𝛼 to solely represent the

weight placed on differences between 𝑔𝑤(𝑥) and 𝑓𝜃(𝑥).

6.2 Synthetic Data Experiments for Reverse Distil-

lation

To help further empirically justify when and how reverse distillation works, we turn to

experiments with synthetic data designed to mimic the distinct properties of the kind

of data found in domains such as clinical prediction using electronic health records.

In particular, we are interested in data where:

∙ The data is high-dimensional but only a small fraction of these features are

useful for any specific downstream task.

∙ The data is not fully separable, even in the limit of infinite data.

With these two properties in mind, synthetic data for a binary classification problem

is generated as follows:

∙ First, two centers 𝑐0, 𝑐1 are chosen in R𝑑, with a separation of ||𝑐0 − 𝑐1|| = 𝛾.

We shift the clusters so that the origin is exactly between the two centers.

∙ Next, for each of N training points:
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– We draw a label 𝑦 for the point from a Bernoulli distribution with param-

eter 𝜌.

– We associate 𝐾 features with the point. The first 𝛽𝐾 are drawn as iid

Gaussian RVs with mean 𝑐𝑦 and unit variance. The remainder are unin-

formative features drawn as iid Gaussians with mean 0 and unit variance.

We can manipulate the fraction of useful features and the separability of the

classes by varying 𝛽 and 𝛾 respectively. Our experiments are designed to find when

reverse distillation is successful in excess of a simple feature selection procedure – the

hypothesis is that reverse distillation would put weight on features similar to those

chosen by the underlying linear model, but in a ‘soft’ and more robust way. As such,

the baseline we choose to compare to is a deep model trained only on the features

that are not zeroed out by a 𝐿1-regularized linear model.

We note that other, more complex feature selection baselines are possibilities.

However, feature-selection in general is straightforward to implement in this synthetic

model – one can simply slice out the features chosen by a procedure. With longitudinal

medical data, we are not just selecting features temporal contexts as well, and it is

not possible to iterate over all such selections. As such, reverse lets us do a ‘soft’

feature selection over a very complex space of time-series features.

Concretely, we define four procedures whose performance we compare:

∙ Reverse Distill: We first train an 𝐿1-regularized logistic regression on a syn-

thetic binary classification dataset, tuning the regularization with a validation

set to maximize AUC. We collect the predictions 𝑝𝐿𝑅(𝑥) made by the linear

model at each training point 𝑥. Next, a multi-layer perceptron (MLP) with two

densely connected layers with ReLU activation, followed by a sum and sigmoid

activation to return a probability is initialized randomly and trained until con-

vergence to minimize the KL-divergence between its predictions MLP(𝑥) and
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𝑝𝐿𝑅(𝑥). Finally, this MLP is fine-tuned by minimizing the loss

ℓtune(𝑥) = − (𝑦(𝑥) log 𝑓𝜃(𝑥) + (1 − 𝑦(𝑥)) log(1 − 𝑓𝜃(𝑥))) (6.4)

−𝛼 (𝑔𝑤(𝑥) log 𝑓𝜃(𝑥) + (1 − 𝑔𝑤(𝑥)) log(1 − 𝑓𝜃(𝑥))) . (6.5)

where 𝛼 is a hyperparameter tuned on a validation set.

∙ Standard Neural Network: We create a multi-layer perceptron, whose action

we again denote by MLP(·) using the same architecture as Reverse Distill, and

train it until convergence to minimize the loss

ℓNN(𝑥, 𝑦) = xent(MLP(𝑥), 𝑦) (6.6)

= − (𝑦(𝑥) log MLP(𝑥) + (1 − 𝑦(𝑥)) log(1 − MLP(𝑥))) (6.7)

∙ Feature Selection by 𝐿1 regression: We first train an 𝐿1-regularized logistic

regression as in Reverse Distill. Denote the weights of this model by 𝑤𝑖 –

we define a feature selection function 𝑓𝑅(𝑥) = ⟨𝑥𝑖⟩{𝑖|𝑤𝑖 ̸=0} which takes a feature

vector 𝑥 and creates a new vector whose components correspond to the elements

of 𝑥 which would not be zeroes out by the regularized logistic regression. We

create an MLP using the same architecture as Reverse Distill, and train it until

convergence to minimize the loss

ℓ𝐿1 selection(𝑥, 𝑦) = xent(MLP(𝑓𝑅(𝑥)), 𝑦) (6.8)

∙ Feature Selection by Oracle: We define a feature selection function 𝑓𝑂(𝑥) =

⟨𝑥𝑖⟩{𝑖|feature i is relevant} which takes a feature vector 𝑥 and creates a new vec-

tor whose components correspond to the 𝛽𝐾 elements of 𝑥 which are actually

relevant for prediction. We create an MLP using the same architecture as Re-

verse Distill, and train it until convergence to minimize the loss

ℓoracle selection(𝑥, 𝑦) = xent(MLP(𝑓𝑂(𝑥)), 𝑦). (6.9)
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This model reflects an optimal feature selection procedure only possible with

full knowledge of the generative process for the data, and should beat all other

baselines.

We compare the differences in median AUCs on out-of-sample data between Reverse

Distill and the other three models to investigate when reverse distillation is useful.

Unless explicitly varied, we hold the data generation parameters at 𝐾 = 200, 𝛾 =

0.5, 𝜌 = 0.05, 𝛽 = 0.02:

∙ We first investigate how the separability of the data affects the performance

gains of reverse distillation by varying 𝛾. We expect that at extremely low

separability, no model will be able to do well, and at high separability all models

will do equally well. Between these two extremes, we expect reverse distillation

to outperform baselines. This is confirmed by our experimental results, as

visualized in Figure 6-1
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Figure 6-1: Reverse Distillation performance gains as a function of class separability
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∙ We next investigate how the sparsity of useful features affects the performance

gains of reverse distillation by varying 𝛼. We expect that as 𝛼 decreases and

we see less useful features, that reverse distillation will be more useful since

it can make nuanced soft feature selections that can greatly help downstream

performance. This is confirmed by our experimental results, as visualized in

Figure 6-2
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Figure 6-2: Reverse Distillation performance gains as a function of sparsity of useful
features

∙ We finally find that reverse distillation benefits from having more training data,

which agrees with the intuition that a deeper, more nonlinear model will have

a worse sample complexity. That being said, when an abundance of data is

available reverse distillation is able to increase its edge over a baseline feature

selection method. This is verified by our experimental results shown in Figure

6-3
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Figure 6-3: Reverse Distillation performance gains as a function of amount of training
data

6.3 Training SARD with Reverse Distillation

We seek to utilize reverse distillation as the primary training method for the SARD

deep architectures for clinical prediction described in Chapter 5. Since the windowed

linear models described in Section 4.2. are highly performant, we use these regressions

as proxy models 𝑔𝑤(𝑥). As such, in this case we define 𝒳 as the set of all possible

patient EHR data, 𝑥 ∈ 𝒳 as an individual patient’s EHR data, and the function 𝜉

as the process of collecting codes assigned to a patient from the data 𝑥 over different

temporal windows and gathering them into a vector representation, as described in

detail in Section 4.2.

Ideally, reverse distillation would train a SARD model 𝑓𝜃 to generalize in the same

way as the windowed linear proxy model 𝑔𝑤. Adopting the notation of Chapter 5, we

find that it is possible to construct a set of weights that allow SARD and a windowed

linear model to make identical prediction for all possible inputs:
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Lemma 6.3.1. In the limit 𝑑𝑒 → ∞ and for an appropriate choice of 𝜔, SARD can

identically replicate a windowed linear model.

Proof. The crux of the argument is that we can express a filter of the form [[𝑡𝑖𝑗 < 𝑇 ]]

for any 𝑇 as a linear combination of the elements 𝜏(𝑉 𝑖
𝑗 ) = 𝑠𝑖𝑛

(︀
𝑡𝑖𝑗𝜔

)︀
||𝑐𝑜𝑠

(︀
𝑡𝑖𝑗𝜔

)︀
, with

weights determined as Fourier series coefficients. This allows SARD to replicate the

windowed feature vectors of the linear model.

More precisely, we show that a single self-attention head can generate the vector

multi-hot(𝐶𝑖(𝑊 )) for a given window 𝑊 = [𝑇𝐴 − 𝑇, 𝑇𝐴], thus implying that several

self-attention heads’ concatenated output can generate the concatenation of several

multi-hot(𝐶𝑖(𝑊 )) vectors.

Set the embedding function 𝜑(𝑐) to simply return a one-hot encoding of the code

𝑐, concatenated with 𝑑𝑒 zeros. We further set 𝑔 to be an identity function. Then for

all 𝑖, 𝑗, 𝜓(𝑉 𝑖
𝑗 ) will be a multi-hot binary vector whose nonzero elements correspond

to the codes in 𝐶𝑖
𝑗.

We note that our time embedding per visit will be 𝜏
(︀
𝑉 𝑖
𝑗

)︀
= 𝑠𝑖𝑛

(︀
𝑡𝑖𝑗𝜔

)︀
||𝑐𝑜𝑠

(︀
𝑡𝑖𝑗𝜔

)︀
.

We set the first |𝒞| elements of 𝜔 to zero, so that visit embedding 𝜓(𝑉 𝑖
𝑗 ) + 𝜏

(︀
𝑉 𝑖
𝑗

)︀
will be fully separable component-wise into a multi-hot vector of codes and a time

embedding.

The self-attention mechanism will use a linear map from 𝜓(𝑉 𝑖
𝑗 ) + 𝜏

(︀
𝑉 𝑖
𝑗

)︀
to three

vectors 𝑘𝑖𝑗, 𝑞𝑖𝑗, 𝑣𝑖𝑗 called the key, query and value vectors respectively, and create the

contextual embedding
∑︀𝑛𝑣

𝑗′=1

(︀
𝑞𝑖𝑗 · 𝑘𝑖𝑗′

)︀
𝑣𝑖𝑗′ for visit 𝑉 𝑖

𝑗 . We allow 𝑣𝑖𝑗 to simply be the

multi-hot encoding 𝜓(𝑉 𝑖
𝑗 ). Note that since 𝜓(𝑉 𝑖

𝑗 ) and 𝜏(𝑉 𝑖
𝑗 ) have different nonzero

components that this can be achieved by a simple matrix multiplication from 𝜓(𝑉 𝑖
𝑗 )+

𝜏
(︀
𝑉 𝑖
𝑗

)︀
.

Next, we create appropriate length-1 key and query vectors. We define 𝑘𝑖𝑗 = 𝑞𝑖𝑗 =

[[𝑡𝑖𝑗 < 𝑇 ]], and under this definition the contextual embedding of every visit 𝑉 𝑖
𝑗 where

𝑡𝑖𝑗 < 𝑇 will become
∑︀𝑛𝑣

𝑗′=1[[𝑡
𝑖
𝑗′ < 𝑇 ]]𝑣𝑖𝑗′ , which is a multi-hot vector whose nonzero

entities correspond to all codes seen in the window of the past 𝑇 days.

It remains to show how we would construct 𝑘𝑖𝑗 = 𝑞𝑖𝑗 = [[𝑡𝑖𝑗 < 𝑇 ]] as a linear

transformation of 𝜓(𝑉 𝑖
𝑗 ) + 𝜏

(︀
𝑉 𝑖
𝑗

)︀
. We do so by invoking a Fourier analysis argument.
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Let 𝑃 be the length of the interval from the first event in the dataset to 𝑇𝐴. Then,

[[𝑡𝑖𝑗 < 𝑇 ]] can simply be represented as a function of period 𝑃 with value 1 in [0, 𝑇 ]

and 0 in [𝑇, 𝑃 ], which in turn can be represented as a Fourier series with coefficient
2
𝑛𝜋

sin2(𝑛𝜋𝑇
𝑃

) corresponding to sin(2𝑛𝜋𝑡
𝑃

) and coefficient 1
𝑛𝜋

sin(𝑛𝜋𝑇
𝑃

) corresponding to

cos(2𝑛𝜋𝑡
𝑃

), Thus, for appropriately chosen 𝜔 that includes values of the form 2𝑛𝜋/𝑃 ,

we can recover an arbitrarily good approximation of [[𝑡𝑖𝑗 < 𝑇 ]], thus allowing us to

use a single self-attention head to mimic a single windowed feature vector as passed

into the linear model.

Using multiple self-attention heads, we can obtain the concatenation of several

windowed feature vectors, and passing these through the prediction head allows us

to fully replicate the functionality of the linear model using the deep model. We

additionally note that this lemma holds even with a single self-attention layer.

This result increases our confidence in our choice of architecture and its ability

to generalize and improve beyond a linear model. For example, windows of the form

[[𝑡𝑖𝑗 < 𝑇 ]] implied by the linear model might be inferior to a more complex filter in the

time domain. These complex features, however, can be learned by a SARD model.

We further verify that SARD does indeed successfully generalize in the same way

as the linear proxy model after reverse distillation in our experimental analyses in

Chapter 7.
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Chapter 7

Experimental Analyses

In this chapter we discuss the methods by which we evaluated our modelling processes

for clinical prediction using longitudinal health data. We first develop and precisely

define several experimental tasks which we use for evaluation, then explain in detail

how our linear and deep models were trained to produce predictions for each task.

Our collected performance data allows us to make nuanced comparisons of different

algorithms and to evaluate their relative efficacies.

7.1 Designing Experimental Tasks

We set up example clinical prediction tasks using the Prediction Library framework

outlined in Chapter 3. As explained in that chapter, to define a task we require a

cohort, and an outcome for each member of the cohort. Our choice of task was inspired

by our collaboration with Independence Blue Cross (IBC) – their primary goal was to

develop models for longer-term clinical prediction in order to decide which patients

could benefit from meaningful interventions to prevent or ameliorate the effects of a

potential future issue.

Three tasks were set up following the guiding philosophy of making predictions

that could lead to medical intervention:

∙ The End of Life (EoL) prediction task, where we estimate patient mortality

over a six-month window starting three months after the prediction date. Such
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predictions are critical for providing adequate palliative care.

∙ The Surgical Procedure (Surgery) prediction task, where we predict if a pa-

tient will require any surgical procedure over a six-month window starting three

months after the prediction date. In this task, we utilize the hierarchy of OMOP

concepts as described in 2. By finding all descendants of the high-level proce-

dure concept of surgery, we can find all codes which correspond to surgical

procedures and thereby mark as positive the patients with any such code as-

signed to them during the target six-month period. By making predictions of

the need for a surgical intervention well in advance of the intervention itself,

clinicians can try to intervene in a potentially less invasive and safer manner

immediately, leading to better outcomes for patients.

∙ The Likelihood of Hospitalization (LoH) prediction task, where we predict if a

patient will require inpatient hospitalization over a six-month window starting

three months after the prediction date. We are again able to define outcomes

for this task using OMOP concepts, in particular we can simply check if the

visit-type concept associated with any visit made by a patient during the target

window is the concept inpatient visit, and if so label this patient as positive

for the Likelihood of Hospitalization task. Successful predictions of hospitaliza-

tion allow for early interventions that could mitigate the need for potentially

invasive, uncomfortable or costly inpatient care.

For all three tasks, we focus on Medicare patients. In addition, in order to ensure

that patients in our dataset had sufficient medical records to learn from, we created a

cohort of patients whose medical history was sufficiently detailed for us to feel confi-

dent in making a data-driven prediction. Our inclusion criterion was that patients are

enrolled in a Medicare insurance plan for all of the days in the one-year period lead-

ing up to the prediction date, which can be done by utilizing the payer_plan_period

table of an OMOP CDM.

We receive varying amounts of data per patient, and note that the amount of data

a patient has is in itself an interesting indicator of health; for example, a patient with
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Figure 7-1: Histogram of the number of visits per patient. We clip the histogram
at 800 visits, though a small subset of patients (0.4%) have more visits. Histogram
buckets have a width of 10 visits.

a long medical history with very few visits may be inferred to be in better health, as

they require less medical attention. We next quantify the distributions characterizing

the amount of information we have per patient. As shown in Figure 7-1, the length of

a patient’s history, as measured from the time of their enrollment into an insurance

plan tracked by our dataset to prediction time, ranges from 1 to 11 years, with a

mean of 7.4 years – the minimum of one year results from the explicit exclusion of

patients who entered a tracked insurance plan within one year of the prediction date.

Additionally, as shown in Figure 7-2, the number of visits, or unique days during

which an interaction with the healthcare system took place, ranges from 1 to 1, 616

per patient with a mean of 175.

As we developed models, we treated End of Life as a prototypical task for model

development. Once a model architecture was decided upon up to the selection of
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Figure 7-2: Histogram of recorded medical history length per patient.
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hyper-parameters and training of weights, we further evaluated the model on the

Surgical Procedure and Likelihood of Hospitalization prediction tasks in order to

confirm that our techniques generalized to a broader breadth of problems. Ultimately,

we seek to be confident in the ability of our model pipelines to be useful for any clinical

prediction task, which thanks to Prediction Library can easily be set up in terms of

an arbitrary cohort and outcome definition.

7.1.1 AUC as an Evaluation Metric

We use the area under the receiver operating characteristic curve, or AUC-ROC (and

herein referred to as just AUC). Formally, the AUC is defined as the area under the

curve formed by plotting the true positive rate of a classifier as a function of its false

positive rate.

7.2 Evaluation of Linear Models

In this section we focus on the evaluation of the two linear models described in 4.

For our highly performant windowed linear model, in addition to performance, we are

also interested in introspecting into the features prioritized by these linear models –

as they are relatively simple, we are able to directly evaluate what is important to

making predictions, and thereby get a qualitative sense of the relationships one would

draw between clinical concepts and outcomes

7.2.1 Basic Linear Model

The basic linear model has the primary role of serving as a baseline for comparison.

There is but a single parameter value to be chosen, the regularization strength 𝜆.

Following the example of prior work, we choose a single value for 𝜆 = 10 that gives

good performance. Note that in this case, we do not tune 𝜆 as part of the model

training, instead holding it at a fixed predetermined value.

The basic linear model used a prediction date of Jan 1, 2017, and patients were
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Hyperparameter Possible Values
𝜆 {0.05, 0.5, 5, 50}
𝒲𝑐 [𝑇𝐴 − 𝑡′, 𝑇𝐴] for all 𝑡′ ∈ {15, 30, 60, 90, 180, 360, 540, 720,∞} days
𝛼 {0, 0.05, 0.1, 0.15}

Table 7.1: Hyperparameters for Linear and Deep Models

split into training, validation, and test sets of size 97274, 5000, and 19319 respectively.

The logistic regression model was fit using the SAGA solver as implemented in Scikit-

Learn [16, 40]. The reported AUC was evaluated on the test set.

While simplistic, the basic linear model does have some predictive power, as shown

in the row entitled Basic Linear Baseline in Table 7.3.1.

7.2.2 Windowed Linear Model

We tested the windowed linear model as described in Section 4.2 on our example

prediction tasks, and found an optimal window set consisting of the intervals starting

30, 180, 365, 730 and ∞ days before the prediction date respectively, and all ending

on the prediction date itself.

In all experiments, the windowed linear models used a prediction date of Jan 1,

2017, and as with the basic linear model, patients were split into training, validation,

and test sets of size 97274, 5000, and 19319 respectively. The logistic regression model

was fit using the SAGA solver as implemented in Scikit-Learn [16, 40], and we tuned

the hyperparameter 𝜆 to select the best value in the hyper-parameter search space of

{0.05, 0.5, 5, 50}, as in Table 7.2.2 that maximized validation set AUC. The reported

AUC, precision and recall were evaluated on the test set, and both precision and

recall were evaluated at a threshold of 0.5.

7.2.2.1 Windowed Linear Models run on Subsets of Codes

We first consider several versions of the windowed linear model for End of Life, in

which we restricted the codes to certain subsets defined via the hierarchy of the

OMOP CDM. We find that many of these subsets of codes are quite predictive even

in isolation, which indicates some degree of redundancy in the data. Indeed, a code
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for a very specific medicine (for example, Metformin) will almost certainly imply that

the patient is also coded for the relevant disease (in this example, Type II Diabetes

Mellitus). We display the results of the windowed model run on all categories of

data in Table 7.2. We further list the top features from each of these models – note

that we remove the window of length ∞ in these cases in order to better understand

the time dependencies of different codes.

A closer look at the last two columns of Table 7.2, which represent highly weighted

positive and negative features, reveals that several top-weighted features across dif-

ferent classes of codes are effectively redundant. For example, the presence of a Other

screening mammogram is highly correlated with gender (which, as per the OMOP

convention, is set to 1 if the patient is female), and both codes act as highly-weighted

features with negative weight. Another less subtle example is the high positive weight

given to the condition code for Antineoplastic Chemotherapy and the clearly re-

lated procedure code for Chemotherapy Administration, both of which refer to the

same treatment option for severe cancers. From this analysis, we chose to exclude

demographic information due to redundancy, as well as not including medical device

usage as these features were not at all predictive. Device codes also were excluded as

they were very noisy, and mostly reflected the large amounts of generic medical ap-

paratus needed during many hospital visits – that these features are not immediately

useful is shown by the fact that they have no predictive power at all when used alone.

7.2.2.2 Windowed Linear Model Performance

Using the insights from tuning the windowed linear model on the End of Life task,

we constructed and ran equivalent models for the Likelihood of Hospitalization and

Surgical Procedure predictive tasks as well. Note that the hyper-parameters were

chosen using a validation set of patients. We present these results in Table 7.3.1.

Notably, we find that performance is uniformly and significantly better than that

of the basic linear model. In addition to showing the strength of this model, this

fact also shows that the basic linear model, despite its use in the literature, may not
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Table 7.2: Windowed linear models trained on subsets of codes for the EoL task

Feature Type Num.

Features

AUC Precision Recall Top Features (+) Top Features (-)

Demographics 2 0.723 0.0346 0.6975 age, 0.0869 gender, -0.1821

Conditions 58475 0.811 0.0659 0.6614

30 days - Encounter for an-

tineoplastic chemotherapy,

1.064

720 days - Antineoplastic

chemotherapy, 0.5418

720 days - Alzheimer’s dis-

ease, 0.5169

720 days - Other screening

mammogram, -0.6411

720 days - Impotence of or-

ganic origin, -0.5571

720 days - Screening for

malignant neoplasms of

prostate, -0.376

720 days - Encounter for

screening mammogram

for malignant neoplasm of

breast, -0.3108

Drugs 18378 0.720 0.0475 0.5282

720 days - Furosemide 40

MG Oral Tablet, 0.826

720 days - Dexamethasone

phosphate 10 MG/ML In-

jectable Solution, 0.7435

720 days - 1.7 ML deno-

sumab 70 MG/ML Injec-

tion [Xgeva], 0.647

720 days - Ibuprofen 800

MG Oral Tablet, -0.6323

720 days - Ibuprofen 600

MG Oral Tablet, -0.4342

180 days - Losartan Potas-

sium 100 MG Oral Tablet,

-0.3683

Devices 1704 0.498 0.0221 0.0564

720 days - ACCU-

CHEK SAFE-T-PRO

23G LANCT, 1.899

30 days - PEN NEEDLES

8MM 31G, 1.6345

30 days - TRUEPLUS SYR

0.5ML 29GX1/2", 1.579

device 24 - ACCU-CHEK

SMARTVIEW STRIP, -

1.4952

device 6 - CONTOUR ME-

TER, -1.3677

device 24 - FREESTYLE

28G LANCETS, -1.1793

Procedures 29083 0.7974 0.0594 0.6569

180 days - Chemother-

apy administration, in-

travenous infusion tech-

nique; up to 1 hour, single

or initial substance/drug,

0.6028

720 days - Positron emis-

sion tomography (PET)

with concurrently acquired

computed tomography

(CT) for attenuation

correction and anatomical

localization imaging; skull

base to mid-thigh, 0.4224

procedure 24 - Screening

mammography, bilat-

eral (2-view study of

each breast), including

computer-aided detection

(CAD) when performed,

-0.4903

procedure 24 - Anesthe-

sia for lower intestinal en-

doscopic procedures, endo-

scope introduced distal to

duodenum, -0.4045

Specialty 398 0.7773 0.0489 0.6455
30 days - Medical Oncol-

ogy, 0.5831

180 days - Hematolo-

gy/Oncology, 0.5688

specialty 12 - Chiroprac-

tic, -0.7822

specialty 24 - Obstetric-

s/Gynecology, -0.7777

specialty 24 - Certified

Clinical Nurse Specialist, -

0.3089
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always be a good choice for comparison. Indeed, we find that it is not necessary to

use a deep model to outperform this baseline.

7.3 Evaluation of Deep Models

As in the case of the linear model, we train deep models using a prediction date

of Jan 1, 2017. Patients were again split into training, validation, and test sets of

size 97274, 5000, and 19319. By choosing splits identical to those used in training

the linear models, direct patient-by-patient comparison is made possible, allowing

for case studies to determine how and why our best-performing deep models can

make superior predictions. We train the SARD architectures described in Chapter

5. In addition, we train RETAIN [13, 26], a deep learning model that previously

achieved state-of-the-art performance on similar tasks. This model was chosen as a

baseline as it was developed for a longitudinal EHR dataset similar to ours, achieves

good performance on long-term tasks, and offers an alternative way to use attention

mechanisms to ingest longitudinal health data.

Notably, we train SARD using the reverse distillation method outlined in Chapter

6, except for cases in which we intentionally train SARD to simply minimize a cross-

entropy loss for comparative purposes. In this formulation, we use the windowed

linear model with tuned hyper-parameters as the base model to which we fit SARD,

allowing us to effectively initialize SARD to mimic an already performant, somewhat

longitudinal model.

We train using a single NVIDIA k80 GPU. Our algorithms are implemented in

Python 3.6 and use the PyTorch autograd library [39]. We train our deep models

using an ADAM optimizer [24] with the hyperparameter settings of 𝛽1 = 0.9, 𝛽2 =

0.98, 𝜖 = 10−9 and a learning rate of 𝜂 = 2 × 10−4. A batch size of 500 patients

was used for ADAM updates. Note that a batch size of 500 did not actually fit into

our GPU memory – as such, we used the largest batch size we could for each model,

and simply accumulated gradients until 500 patients had their outcomes predicted,

at which point we would invoke the ADAM algorithm to update the network weights.
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Model
Task Name EoL Surgery LoH

Basic Linear Baseline [13] 76.3 69.9 65.4
RETAIN Recurrent Baseline [13] 82.3 80.5 72.3
Windowed Linear Baseline [43] 81.9 79.3 73.3
SARD (without RD) 81.8 81.2 70.8
SARD + RD 85.4 82.8 74.2

Table 7.3: AUC-ROC Scores on Test Set. + RD indicates that reverse distillation is
used to train models in the indicated row.

Hyperparameters of the SARD model were chosen from the options outlined in Table

7.2.2.

7.3.1 Performance of SARD on Selected Prediction Tasks

We first present our main results, which quantify how well SARD performs on the

three tasks developed in Section 7.1. As seen in Table 7.3.1, our best SARD model

outperforms all baselines for each of the example tasks. Increases in AUC-ROC are

significant versus the closest baseline in all cases, as measured by a paired 𝑧-test

at a significance level of 𝑝 = 0.005 [17]. In Section 7.3.4, we further explore the

nuances of how SARD extracts clinical narratives, and qualitatively find that SARD

is able to use a patient’s entire medical history to contextualize visits, whereas the

high-performing linear models seem less able to make these connections.

7.3.2 Ablation Studies of the SARD Model

We empirically test the design decisions made in Chapter 5 via ablation studies, in

which we subsititute or remove different components of the architecture and evaluate

performance. Each of the three primary components of the SARD architecture –

the visit embedding, temporal embedding, and the self-attention mechanism – were

ablated. Our time embedding is shown to be as good as if not better than alterna-

tives such as learning embeddings for each unique visit timestamp and allowing the

vector 𝜔 of frequencies to be a learned parameter of the model, and we find that

carefully constructing visit representations allows us to overcome computational bar-
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riers to achieving better performance. Our ablation studies also show that reverse

distillation is the key driver in SARD’s performance gains. Indeed, the smallest differ-

ence in ablated performance was observed when SARD’s self-attention architecture

was replaced with a recurrent equivalent, but reverse distillation was still used for

pretraining, indicating at reverse distillation’s universal applicability.

7.3.2.1 Temporal Embedding

We utilized a fixed vector of frequencies to generate our sinusoidal time embeddings,

in line with past work [49] in self-attention, which found that learned time embed-

dings were not significantly more performant. We confirm this by swapping out the

fixed-frequency time embedding for several alternative options and confirming that

performance does not increase. We define these alternatives as follows:

∙ Learned Sinusoidal Embeddings: we set

𝜏
(︀
𝑉 𝑖
𝑗

)︀
= a⊙ 𝑠𝑖𝑛

(︀
𝑡𝑖𝑗𝜔 + 𝜌

)︀
|| a⊙ 𝑐𝑜𝑠

(︀
𝑡𝑖𝑗𝜔 + 𝜌

)︀
, (7.1)

where a is a learned vector of amplitudes, 𝜔 a learned vector of frequencies

and 𝜌 a learned vector of phases. Note that the operator ⊙ denotes element-

wise multiplication. We find that this flexibility is not necessary to improve

performance when compared to an embedding using a fixed choice of frequencies,

unit amplitudes and zero phases.

∙ Learned Embeddings: We treat each unique value of 𝑡𝑖𝑗 as an independent token,

and embed this token using a trained embedding matrix.

∙ No Time Embeddings: We set 𝜏
(︀
𝑉 𝑖
𝑗

)︀
= 0. The fact that performance does not

completely degrade here indicates that a combination of non-temporal features

and the relative ordering of visits is enough to achieve decent performance, but

not as performant as fully incorporating temporal data.

Note that reverse distillation is used in all cases of temporal embedding ablation.
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7.3.2.2 Concept Embedding

The most distinctive feature of our concept embedding is the explicit aggregation

of codes into visits. While this type of aggregation is standard [11, 13], it is not

necessarily justified. Indeed, if a visit, or a group of codes occurring at the same time,

was an important structure, that structure could be learned. We note in particular

that a self-attention-based approach has merit here since we can give multiple codes

identical temporal embeddings, allowing the importance of a visit to be learned.

As such, we perform an ablation study in which we feed in each code as its own

separate visit into SARD. We note that the runtime of self-attention scales quadrati-

cally with the length of the input used, since every pair of input elements must attend

to each other. As such, for computational reasons we must maintain a constraint that

only a fixed number of visits (or, in the case of the ablated model, codes) can be in-

puts to the model. To accomplish this, we limit ourselves to the past one year of

data, and limit each patient to 512 codes, which captures all codes over the past year

for over 94% of patients. The performance of this model is found in the rows labelled

Code Level Self-Attention + RD (when trained with reverse distillation) and Code

Level Self-Attention (without RD) (when trained without reverse distillation) in

table 7.3.2.3.

To perform a fair ablation study, we retrain SARD while using only one year’s

worth of data. Results from this limited model are presented in the row SARD with

1 year’s data + RD in table 7.3.2.3 – we also present results of a visit-level self-

attention model trained from without reverse distillation in row SARD with 1 year’s

data (without RD). Our study reveals that the most performant model varies by

task. However, both models fail to beat SARD trained on all available data. As such,

we find a computational impetus to aggregate over visits in order to use more data

in an efficient way.
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7.3.2.3 Self-attention

A novel aspect of our work is its use of a self-attention architecture as a tool to

ingest time-series of embedded clinical data. In the past, RNN-based approaches

[11, 13, 30] have been the state-of-the-art, and as such we developed an ablation

study in which we replace our architecture with a recurrent GRU-cell network, leaving

the rest of the network unchanged. In table 7.3.2.3, the row RNN (without RD)

corresponds to this ablated model trained from a random initialization, and RNN +

RD to the ablated model trained using the same reverse distillation procedure used in

SARD + RD. To ensure that our ablation fairly compared recurrent and self-attention

based approaches, we preserved all other architectural elements including the visit-

level input embeddings, use of temporal embeddings (fixed-frequency sinusoidal time

embeddings led to the best performance), and the prediction head to aggregate the

final visit representations, which here operates on the hidden states of each element

of the last layer of the RNN. We found the prediction head’s aggregation to be more

performant and serve as a more apt comparison than the standard recurrent technique

of simply predicting from the hidden state of the last element of the last layer of the

RNN. This design choice helps mitigate the fact that older visits may be ‘forgotten’

by the RNN, by allowing these visits to directly influence the inputs of the prediction

head. We find that the self-attention architecture is competitive with the RNN, so

long as the RNN is also trained with reverse distillation. An important finding is that

reverse distillation can also be used to successfully train highly-performant recurrent

models, further validating the usefulness of this method and indicating that it can be

used more generally.

7.3.3 Analysis of Generalization with Reverse Distillation

We empirically validate that the SARD model for the End of Life task after reverse

distillation (but before fine-tuning) generalizes in the same way as a linear model by

analyzing the predictions made by both models on a held-out validation set. As seen

in Figure 7-3, we find a Spearman correlation of 0.86 between the logit outputs of
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Design Choice
Task Name EoL Surgery LoH

SARD + RD 85.4 82.8 74.2
Learned Sinusoidal Embeddings 84.3 82.8 74.1
Learned Embeddings 85.0 82.3 73.7
No Time Embeddings 83.5 82.3 73.2
RNN + RD 85.5 83.0 74.0
RNN (without RD) 84.3 81.3 72.1
SARD with 1 year’s data + RD 82.1 79.1 73.4
SARD with 1 year’s data (without RD) 81.3 76.9 72.5
Code Level Self-Attention + RD 83.3 74.9 73.2
Code Level Self-Attention (without RD) 81.7 74.0 69.7

Table 7.4: Ablation Study Results. + RD indicates that reverse distillation is used
for pretraining

the two models on held-out data, where the logit corresponding to a probability 𝑝 is

the natural logarithm of the odds ratio log (𝑝/(1 − 𝑝)). This indicates that even for

unseen patients, the models make similar predictions. Thus, the reverse-distilled deep

model does indeed mimic the linear model, not just memorize its outputs at certain

points.

7.3.4 Using SARD’s Interpretability Technique for Case Stud-

ies

In this section we utilize the algorithm outlined in Section 5.2.1 to break down and

understand the prediction made by the SARD model for the End of Life task on a

specific patient of interest.

We seek to analyze a case where SARD is able to make a correct prediction but

our best linear model is not. In order to convert the soft predictions of SARD and

our windowed linear model to binarized predictions of outcomes, we chose decision

thresholds for both models to ensure a false positive rate of 0.25 on the validation

set – this resulted in a threshold of 0.493 and 0.334 for SARD and the linear model

respectively. In practice, the selection of a threshold or the use of the output scores

as rankings would be driven by varied downstream applications.
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Figure 7-3: Comparison of Predictions on Held-out Data by Reverse Distilled and
Linear Models

Note that in all subsequent discussion of specific cases, we reveal only years when

discussing events related to individual patients, so as to censor protected health in-

formation (PHI). Our models and analyses, however, utilize the exact days on which

events occur.

We consider a female patient who died in 2017 – at the time of her death she

was at least 90 years old. At the thresholds determined earlier in this section, this

event was correctly predicted by SARD (probability of 54.5%) but not by our linear

baseline (probability of 5.4%). The patient had an extensive medical history, with

over 700 recorded medical visits. To better understand why SARD accurately predicts

her death while logistic regression does not, we introspect on which visits are most

influential in the prediction head of the model, and how those visits were benefited

by the self-attention architecture.

The specific visit that maximizes the summed SHAP score for visit importance

outlined in Section 5.2.1, which we denote as the top visit, occurred in 2011, more than
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six years prior to her death. During this visit, she experienced an acute myocardial

infarction, atrial fibrillation, chronic pulmonary heart disease,

acute subendocardial infarction, congestive heart failure,

acute on chronic systolic heart failure, and acquired hypothyroidism,

among other conditions. She further underwent a coronary angiography, in which

a catheter is placed in coronary arteries to search for blood clots. See Table 7.5 for

further details of this visit.

While these conditions and procedures may sound alarming, they are not highly

weighted by the linear model. Aligning with medical intuition that the long-term sur-

vival rate of patients who suffer a myocardial infarction is highly dependent upon other

risk factors [33], the linear model’s top weighted negative features are Insertion and

placement of flow directed catheter (Swan-Ganz), a procedure used diagnos-

tically to determine and eliminate risks after a myocardial infarction, and carvedilol,

a drug known to reduce risk of death after myocardial infarction, both over length-∞

windows.

The SARD model, by contrast, is able to leverage important contextual informa-

tion from throughout the patient’s history thanks to its self-attention mechanism.

Though the top visit occurred in 2011, SARD connects that visit with continued, al-

beit more minor, cardiovascular issues closer to the patient’s death and understands

that the patient was still at high cardiovascular risk at the time of prediction. For ex-

ample, in the first layer of the first self-attention head, the three visits most strongly

attended to by the top visit occur in 2016, close to the time of prediction, as visualized

in Figure 7-4. During these 2016 visits, the patient is administered clopidogrel, a

blood thinner used to prevent heart attacks and strokes in people with peripheral

vascular disease, and is treated for ankle ulcers due to atherosclerosis. The

next most strongly attended visit occurs in 2013 and includes treatment for an ankle

ulcer and chronic peripheral venous hypertension. Similarly, in the first layer

of the second self-attention head, the 2011 visit attends most highly to visits from

2011-2013 in which drugs for vascular diseases were administered. Importantly, when

we inspect the visits least attended to by the top visit, we see very little cardiovascu-
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Table 7.5: The 4 most predictive visits for the case study patient, by SHAP score
(continued in Table 7.6)

SHAP Cumulative Score Year of Visit Content of Visit

0.723 2011

138384 - condition - Acquired hypothyroidism
199075 - condition - Neurogenic bladder
200174 - condition - Disorder of skin and/or subcutaneous tissue
2514405 - procedure - Initial hospital care, per day, for the evaluation and management of a patient,
which requires these 3 key components: A comprehensive history; A comprehensive examination;
and Medical decision making of moderate complexity...
2514421 - procedure - Inpatient consultation for a new or established patient, which requires
these 3 key components: An expanded problem focused history; An expanded problem focused
examination; and Straightforward medical decision making...
2514441 - procedure - Critical care, evaluation and management of the critically ill or critically
injured patient; first 30-74 minutes
312327 - condition - Acute myocardial infarction
313217 - condition - Atrial fibrillation
313324 - condition - Cheyne-Stokes respiration
314054 - condition - Aortic valve disorder
315831 - condition - Chronic pulmonary heart disease
318800 - condition - Gastroesophageal reflux disease
319835 - condition - Congestive heart failure
320128 - condition - Essential hypertension
40480602 - condition - Acute on chronic systolic heart failure
40756944 - procedure - Catheter placement in coronary artery(s) for coronary angiography, includ-
ing intraprocedural injection(s) for coronary angiography, imaging supervision and interpretation;
with right and left heart catheterization including intraprocedural injection(s)
4148375 - procedure - Catheterization of both left and right heart
4171675 - procedure - Coronary arteriography using two catheters
432867 - condition - Hyperlipidemia
444406 - condition - Acute subendocardial infarction
77670 - condition - Chest pain
80502 - condition - Osteoporosis
81902 - condition - Urinary tract infectious disease

0.586 2011

2001449 - procedure - Open and other replacement of aortic valve with tissue graft
2100873 - procedure - Anesthesia for direct coronary artery bypass grafting; with pump oxygenator
2107121 - procedure - Replacement, aortic valve, open, with cardiopulmonary bypass; with pros-
thetic valve other than homograft or stentless valve
2108261 - procedure - Arterial catheterization or cannulation for sampling, monitoring or trans-
fusion (separate procedure); percutaneous
2211359 - procedure - Radiologic examination, chest; single view, frontal
2213283 - procedure - Level IV - Surgical pathology, gross and microscopic examination Abortion
- spontaneous/missed Artery, biopsy Bone marrow, biopsy Bone exostosis Brain/meninges, other
than for tumor resection Breast, biopsy, not requiring microscopic evaluation
2213286 - procedure - Decalcification procedure (List separately in addition to code for surgical
pathology examination)
2313886 - procedure - Insertion and placement of flow directed catheter (eg, Swan-Ganz) for
monitoring purposes
2414365 - procedure - Anesthesia for patient of extreme age, younger than 1 year and older than
70 (List separately in addition to code for primary anesthesia procedure)
313217 - condition - Atrial fibrillation
314054 - condition - Aortic valve disorder
320128 - condition - Essential hypertension
40481919 - condition - Coronary atherosclerosis
4057277 - procedure - Operative external blood circulation
4125928 - procedure - Packed blood cell transfusion
4230911 - procedure - Echocardiography
77670 - condition - Chest pain

lar activity. See Tables 7.7 and 7.8 for the full contents of the visits given the most

and least attention by the top visit. These persistent and recent manifestations of

the patient’s underlying cardiovascular disease provide context for the 2011 visit and

augment its relevance at prediction time.
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Figure 7-4: Attention weights for the case study patient’s ‘top visit.’ While the top
visit occurred in 2011, it pulls context from visits throughout the patient’s history.
Each panel contains a row for each of the patient’s 512 visits, colored by how much
attention it is given by the top visit. Notably, when we examined the visits most highly
attended to in the first layer of the first self-attention head (top left panel), we noticed
that they contain more recent manifestations of the same underlying atherosclerotic
vascular disease present in the top visit.
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Table 7.6: The 4 most predictive visits for the case study patient, by SHAP score
(continued from Table 7.5).

SHAP Cumulative Score Year of Visit Content of Visit

0.539 2011

138384 - condition - Acquired hypothyroidism
199075 - condition - Neurogenic bladder
201069 - condition - Peptic ulcer without hemorrhage, without perforation AND without obstruc-
tion
2211359 - procedure - Radiologic examination, chest; single view, frontal
2514406 - procedure - Initial hospital care, per day, for the evaluation and management of a patient,
which requires these 3 key components: A comprehensive history; A comprehensive examination;
and Medical decision making of high complexity...
2514424 - procedure - Inpatient consultation for a new or established patient, which requires these
3 key components: A comprehensive history; A comprehensive examination; and Medical decision
making of high complexity. Counseling and/or coordination of care with other physician
2514437 - procedure - Emergency department visit for the evaluation and management of a patient,
which requires these 3 key components within the constraints imposed by the urgency of the
patient’s clinical condition and/or mental status: : A detailed history; A detailed examination;
and Medical decision making of moderate complexity
312437 - condition - Dyspnea
313217 - condition - Atrial fibrillation
314054 - condition - Aortic valve disorder
316822 - condition - Heart murmur
317002 - condition - Low blood pressure
319034 - condition - Hypertensive heart disease without congestive heart failure
40481919 - condition - Coronary atherosclerosis
40483287 - condition - Disorder of kidney and/or ureter
4171556 - condition - Ankle ulcer
42872402 - condition - Coronary arteriosclerosis in native artery
433316 - condition - Dizziness and giddiness
434376 - condition - Acute myocardial infarction of anterior wall
438398 - condition - Leukocytosis
444070 - condition - Tachycardia
77670 - condition - Chest pain
80502 - condition - Osteoporosis

0.538 2016

197304 - condition - Ulcer of lower extremity
2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s)
2314303 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s)
38004447 - specialty - General Surgery
4177703 - condition - Ulcer
43020432 - condition - Atherosclerosis of native arteries of the extremities
46270348 - condition - Ulcer of ankle due to atherosclerosis of native artery of limb
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Table 7.7: 10 visits most highly attended by the top visit (2011); first layer, first
self-attention head

Attention from Top Visit Year of Visit Content of Visit

0.039 2016 19075601 - drug - clopidogrel 75 MG Oral Tablet
40166135 - drug - 24 HR Oxybutynin chloride 5 MG Extended Release Oral Tablet

0.038 2016

197304 - condition - Ulcer of lower extremity
2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
38004447 - specialty - General Surgery
4177703 - condition - Ulcer
43020432 - condition - Atherosclerosis of native arteries of the extremities
46270348 - condition - Ulcer of ankle due to atherosclerosis of native artery of limb

0.030 2016

197304 - condition - Ulcer of lower extremity
2101925 - procedure - Debridement, subcutaneous tissue (includes epidermis and dermis, if per-
formed); first 20 sq cm or less
2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
38004447 - specialty - General Surgery
4177703 - condition - Ulcer
43020432 - condition - Atherosclerosis of native arteries of the extremities
46270348 - condition - Ulcer of ankle due to atherosclerosis of native artery of limb

0.029 2013

193326 - condition - Urge incontinence of urine
2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
2414398 - procedure - Office or other outpatient visit for the evaluation and management of an
established patient, which requires at least 2 of these 3 key components: A detailed history; A
detailed examination; Medical decision making of moderate complexity. Counseling and/o
4171556 - condition - Ankle ulcer
4313767 - condition - Chronic peripheral venous hypertension

0.023 2016

197304 - condition - Ulcer of lower extremity
2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
2314303 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
4177703 - condition - Ulcer
43020432 - condition - Atherosclerosis of native arteries of the extremities
46270348 - condition - Ulcer of ankle due to atherosclerosis of native artery of limb

0.023 2016

2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
2314303 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
321596 - condition - Peripheral venous insufficiency
38004447 - specialty - General Surgery

0.022 2016

2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
321596 - condition - Peripheral venous insufficiency
38004447 - specialty - General Surgery

0.022 2016

197304 - condition - Ulcer of lower extremity
2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
2314303 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
38004447 - specialty - General Surgery
4177703 - condition - Ulcer
43020432 - condition - Atherosclerosis of native arteries of the extremities
46270348 - condition - Ulcer of ankle due to atherosclerosis of native artery of limb

0.021 2013

2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
4171556 - condition - Ankle ulcer
4313767 - condition - Chronic peripheral venous hypertension

0.021 2012

2314302 - procedure - Debridement (eg, high pressure waterjet with/without suction, sharp selec-
tive debridement with scissors, scalpel and forceps), open wound, (eg, fibrin, devitalized epidermis
and/or dermis, exudate, debris, biofilm), including topical application(s), wound
4171556 - condition - Ankle ulcer
4313767 - condition - Chronic peripheral venous hypertension
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Table 7.8: 10 visits least attended by the top visit (2011); first layer, first self-attention
head

Attention from Top Visit Year of Visit Content of Visit
4.62E-08 2013 19128020 - drug - {6 (Azithromycin 250 MG Oral Tablet) } Pack

5.08E-08 2014

138384 - condition - Acquired hypothyroidism
194133 - condition - Low back pain
2211970 - procedure - Bone and/or joint imaging; whole body
2314213 - procedure - Therapeutic, prophylactic, or diagnostic injection (specify substance or
drug); subcutaneous or intramuscular
2314216 - procedure - Therapeutic, prophylactic, or diagnostic injection (specify substance or
drug); each additional sequential intravenous push of a new substance/drug (List separately in
addition to code for primary procedure)
2314217 - procedure - Therapeutic, prophylactic, or diagnostic injection (specify substance or
drug); each additional sequential intravenous push of the same substance/drug provided in a
facility (List separately in addition to code for primary procedure)
2314262 - procedure - Physical therapy evaluation
2314264 - procedure - Occupational therapy evaluation
2314287 - procedure - Therapeutic procedure, 1 or more areas, each 15 minutes; gait training
(includes stair climbing)
2414392 - procedure - Office or other outpatient visit for the evaluation and management of a
new patient, which requires these 3 key components: A detailed history; A detailed examination;
Medical decision making of low complexity. Counseling and/or coordination of care with
2414398 - procedure - Office or other outpatient visit for the evaluation and management of an
established patient, which requires at least 2 of these 3 key components: A detailed history; A
detailed examination; Medical decision making of moderate complexity. Counseling and/o
2514412 - procedure - Observation or inpatient hospital care, for the evaluation and management
of a patient including admission and discharge on the same date, which requires these 3 key
components: A comprehensive history; A comprehensive examination; and Medical decision ma
312648 - condition - Benign essential hypertension
313217 - condition - Atrial fibrillation
317898 - condition - Malignant essential hypertension
40757101 - procedure - Subsequent observation care, per day, for the evaluation and management
of a patient, which requires at least 2 of these 3 key components: An expanded problem focused
interval history; An expanded problem focused examination; Medical decision making of mo
80816 - condition - Degeneration of intervertebral disc
81390 - condition - Idiopathic osteoporosis

7.84E-08 2014

138384 - condition - Acquired hypothyroidism
194133 - condition - Low back pain
194526 - condition - Injury of trunk
2211397 - procedure - Radiologic examination, spine, lumbosacral; 2 or 3 views
2211414 - procedure - Magnetic resonance (eg, proton) imaging, spinal canal and contents, lumbar;
without contrast material
2314215 - procedure - Therapeutic, prophylactic, or diagnostic injection (specify substance or
drug); intravenous push, single or initial substance/drug
2514436 - procedure - Emergency department visit for the evaluation and management of a patient,
which requires these 3 key components: A detailed history; A detailed examination; and Medical
decision making of moderate complexity. Counseling and/or coordination of care with o
2514437 - procedure - Emergency department visit for the evaluation and management of a patient,
which requires these 3 key components within the constraints imposed by the urgency of the
patient’s clinical condition and/or mental status: A comprehensive history; A comprehensi
2617452 - procedure - Hospital observation service, per hour
313217 - condition - Atrial fibrillation
320128 - condition - Essential hypertension
4171556 - condition - Ankle ulcer
437176 - condition - Late effect of accidental fall

1.22E-07 2013

2414397 - procedure - Office or other outpatient visit for the evaluation and management of an
established patient, which requires at least 2 of these 3 key components: An expanded prob-
lem focused history; An expanded problem focused examination; Medical decision making of low
complexity.
312648 - condition - Benign essential hypertension
313217 - condition - Atrial fibrillation
38004456 - specialty - Internal Medicine
40162494 - drug - Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Oral Tablet
433316 - condition - Dizziness and giddiness

1.24E-07 2014 40231925 - drug - Acetaminophen 325 MG / Oxycodone Hydrochloride 5 MG Oral Tablet

1.84E-07 2011
1539407 - drug - Simvastatin 40 MG Oral Tablet
19075380 - drug - Ciprofloxacin 500 MG Oral Tablet
40162494 - drug - Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Oral Tablet

1.95E-07 2011

132466 - condition - Lumbar sprain
2414398 - procedure - Office or other outpatient visit for the evaluation and management of an
established patient, which requires at least 2 of these 3 key components: A detailed history; A
detailed examination; Medical decision making of moderate complexity. Counseling and/o
434123 - condition - Primary localized osteoarthrosis of pelvic region
81390 - condition - Idiopathic osteoporosis

1.99E-07 2010

134736 - condition - Backache
2211393 - procedure - Radiologic examination, spine; thoracic, 3 views
2211398 - procedure - Radiologic examination, spine, lumbosacral; minimum of 4 views
316535 - condition - Closed fracture of thoracic vertebra without spinal cord injury

2.26E-07 2014 40162515 - drug - Acetaminophen 325 MG / Hydrocodone Bitartrate 5 MG Oral Tablet
40231925 - drug - Acetaminophen 325 MG / Oxycodone Hydrochloride 5 MG Oral Table

2.45E-07 2012 40162494 - drug - Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Oral Tablet
2.45E-07 2012 40162494 - drug - Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Oral Tablet
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Chapter 8

Conclusions and Future Work

Fundamental advances in deep learning allow for large performance increases in many

domains, but in healthcare, state-of-the-art models still often rely on rule-based

heuristics and feature-engineering. We present a deep learning solution to the prob-

lem of making predictions using longitudinal health data: SARD, a self-attention

based architecture that extracts contextual information across timelines of medical

events. Significant performance gains using this model are underpinned by the use

of reverse distillation, our novel pre-training procedure which demonstrably allows a

deep model to be initialized to mimic a simpler but performant baseline. Using these

innovations, we are able to exceed state-of-the-art performance for several medical

prediction tasks. To our knowledge, SARD is the first successful adaptation of the

self-attention paradigm to structured longitudinal health data. In order to run SARD

on standardized OMOP CDM data, we also develop Prediction Library, a software

pipeline to efficiently manipulate longitudinal health data for deep learning.

8.1 Broader Impact

Machine learning as applied to healthcare has the potential to greatly improve out-

comes for patients. Our work in particular has the primary application of being used

to determine which patients would benefit from interventions, which could obviate

the need for more intensive and invasive treatments in the future. If implemented
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successfully, our model would have several positive impacts in healthcare. Our results

also have the potential to impact the machine learning community:

∙ Improved interventions for patients. If we are able to correctly predict when

patients will suffer adverse outcomes sufficiently far into the future, clinicians

will be able to intervene to help prevent or ameliorate the impact of these

potential issues.

∙ The extension of self-attention to clinical machine learning, which we

believe is of great interest due to the potential for performance gains and in-

creased interpretability. SARD’s success shows that such models can indeed

work in practice, and can serve as a starting point for further research.

∙ Combining expert domain knowledge and deep learning through reverse

distillation. Our new training method is a novel way to adapt and improve upon

high-performing algorithms that rely on heuristics and data-engineering. This

has the potential to inspire performance gains in healthcare, where such models

are prevalent, but in other domains as well.

When work like ours is deployed in the field, it is critical to regularly determine

how well the algorithms perform in general, how fairly they allocate resources, and

how their predictions actually affect patient outcomes. The following considerations

summarize some of the risks that must be mitigated when using SARD in a live

clinical setting:

∙ Equity of access is a key goal in healthcare. Like many deep-learning paradigms,

SARD performs better on some cases than others. For example, we find that it

performs better on patients for whom more data is available. Such properties

put groups of people for whom less data is available, or are otherwise disadvan-

taged in terms of model performance, at risk of less accurate predictions, and

therefore less effective interventions [38]. Our future work will certainly focus

on analyzing SARD and its predictions as well as downstream pipelines that

ingest these predictions from the perspective of algorithmic fairness. This will

help to ensure that SARD can indeed be used to help improve outcomes for all.
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∙ Clinical usage of predictions from SARD must be used in a way that actually

improves patient outcomes. Even when predictions are accurate and fair, they

also should be used appropriately to improve care. Medical researchers have

already set forth ethical and clinical guidelines governing how one should use

predictions of sensitive events such as end of life [15], and in order for SARD’s

performance to indeed translate to improved patient outcomes it is necessary

that such principles are properly followed.

8.2 Future Directions of Research

Reverse distillation is just one successful method by which self-attention based predic-

tive models can be initialized – in natural language processing, similar architectures

have been found to substantially benefit from unsupervised learning with tasks such

as imputing words or predicting sentence order [14]. Now that we have demonstrated

that these architectures perform competitively on longitudinal clinical data, it opens

the door to similarly designing unsupervised learning tasks to improve performance

even further. Furthermore, while we are able to introspect and interpret predictions

made by SARD at an individual level, future work may find more global ways to

interpret how visits attend to each other through the lens of medical logic, similar to

how self-attention as applied to natural language has been found to replicate nuanced

grammatical and linguistic phenomena [28].
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