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Abstract

This thesis reports on the mechanical design of a micromachined acceleration sensor
(accelerometer), and on the prototype fabrication and testing of the sensor. The
intended applications include crash detection in automobiles for airbag deployment,
and sensing of automobile chassis motion to allow active control of the suspension
system. Fabrication of these sensors by micromachining has the advantage of very
low manufacturing cost, which is a requirement for the automotive market.

The accelerometer design consists of an inertial proof mass suspended by four
tethers. The tethers support the proof mass, but allow it to translate along the
sensitive axis of the accelerometer. Thus, for acceleration inputs along the seusitive
axis, the proof mass displaces some measurable distance. The input acceleration
is directly proportional to this displacement, which we measure by the change in
capacitance between the proof mass and a stationary electrode plate.

The micromachining process uses plasma etching to form the proof mass and the
tethers in a thin membrane of silicon, supported by oxide, on a standard silicon wafer
(‘handlc wafer’). The thin membrane having been formed by high temperature wafer
bonding and etch back to a boron etch stop. This process could be adapted to allow
for integration of electronics on the same wafer with the accelerometer.

A mechanical design is shown that solves a number of the problems associated
with thin film processing. One of these is the excessive gas damping caused by
the small air gap between the proof mass and the handle wafer. This is solved by
adding perforations to the proof mass, and we show that this is so effective that even a
critically damped dynamic response can be achieved. Sensitivity to mounting stresses
and temperature effects is another mechanical issue studied. The design shown here
reduces this sensitivity by a factor of 1000 compared to that of more conventional
designs. Yet another issue is the nonlinearity of the sensor’s response, and we show
how this can be reduced to practically zero.

The fabrication sequence for the protoiype accelerometers is discussed in detail,
and photographs of completed devices are shown. By applying & DC voltage between
the proof mass and the handle wafer of completed sensors, we were able to use elec-



trostatic force to simulate input accelerations. The electrostatic force pulls the proof
mass towards the handle wafer, and we measure the change in capacitance between
the proof mass and the handle wafer. This data shows that the proof mass is free to
move and that we can measure this change in position of the proof mass.

We also mounted the sensors on an electrodynamic shaker and tested them with
input vibrations up to 40 g’s at 43 Hz. The test data shows that the accelerometers
track the frequency of the input vibration, and the output increases with increasing
input acceleration.

Thesis Supervisor: Martin A. Schmidt
Title: Associate Professor, Electrical Engineering and Computer Science
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Chapter 1

introduction

1.1 Motivation - accelerometer markets

A completely new, and potentially enormous market for accelerometers is just now
developing. It requires something much different from accelerometers previously pro-
duced. The market is for automotive accelerometers, where the demand for high
volume and low cost cannot be met by any existing products. These new sensors will
be made in the same manner as integrated circuits, that is hundreds (or thousands)
at a time on batch fabricated silicon wafers. As these cheap sensors are being rapidly
developed for automobiles, we are also looking closely at accelerometers for traditional
applications and deciding whether those could be made less expensive, and maybe
more accurate, by the application of silicon technology. And finally, we anticipate the
opening of new markets, as solid state accelerometers become available and familiar
to equipment manufacturers.

The first use of accelerometers in cars will be for the detection of a collision, with
subsequent activation of the airbags. The accuracy requirement for this application
1s about 5%, at a price of under $10 (1]. Existing accelerometers cannot achieve
this price goal, and their performance far exceeds what js required for automobiles.
We can classify these existing accelerometers into three grades: instrument grade ,
inertial grade, and strategic grade. A rough comparison of price and performance

illustrates the unique requirements of the automobile industry:
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accuracy price

automotive grade 5% $10
instrument grade 1% $500
inertial grade .05% $1000

strategic grade .001%  $100,000

The new development path for accelerometers is clear; it has already been blazed
by pressure sensors during the last decade. Low cost pressure sensors are used in
virtually every new car to monitor manifold absolute pressure (MAP). About 20
million of these MAP sensors are produced annually, at $10 each (excluding packaging
and electronics). The key to success of this product is silicon micromachiaing. By
making the devices extremely small, we fabricate hundreds at a time on a batch
fabricated wafer. We use silicon because the facilities and technologies are already
available from the integrated circuits industry. Large manufacturers of semiconductor
devices (eg. Motorola, Honeywell) are the leaders in high volume, low cost production,
and as such, these are the manufacturers we look to for mass production of sensors.

It is interesting that the next automotive use for accelerometers will demand better
accuracy than those used for crash control. These accelerometers will monitor chassis
motion, and provide feedback into the suspension system controls to help make for a
smoother ride. These ac :lerometers will require 3% accuracy. Still another use is for
automobile navigation systems. The accuracy for these sensors would have to be close
to that of existing inertial grade accelerometers used for aircraft navigation and missile
guidance. Therefore, the automotive industry is going to push for higher accuracy,
beyond the 5% required for airbag deployment. It is safe to assume that the price
will still stay low even for these higher accuracy sensors; they have to be inexpensive
to compete in the automobile industry. So, how will this effect the traditional, higher
performance, accelerometer markets?

The effect should be one of considerable cost savings for users of accelerometers
outside of the automotive industry. If a high performance accelerometer design can

be fabricated by silicon micromachining, then ideally we could do the fabrication
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on a high volume wafer processing line much cheaper than by traditional machining
methods. The literature indicates that a number of organizations are developing high-
performance microaccelerometers [18, 19, 25, 29] . If this works, then the price of all
accelerometers will come down. The ifis important, because we are assuming that
high performance designs can be fabricated on high volume wafer processing lines
that would be designed primarily for low accuracy sensors. Also, we have totally
ignored the importance of packaging on the performance and on the final price.

The other effect of the the mass produced, solid state accelerometers, will be the
opening of new markets. Both the low cost and the small size of micromachined
sensors create new applications. We saw this happen with pressure sensors, where
the biomedical industry used the automotive MAP to make disposable blood pressure
monitors, which quickly became a $100 million product. But the primary motivation
at this time, is the automotive market. This is the most immediate, and the largest

potential user of solid state accelerometers.

1.2 Research and Development in Micromachined
Accelerometers

Roylance and Angell [2], in 1979, reported the first silicon micromachined accelerom-
eter. This sensor was unique in that the proof mass, supporting tethers, and sur-
rounding frame, were etched as an integral sensor in silicon. Their detection method
was by diffused piezoresistors.

We get a feel for the current status of research and development in this field by
reviewing the recently published literature. Figure 1-1 summarizes some of these
publications from the last four years. This review is not exhaustive, but it does
represent the technologies and design variations that are being pursued, and also
some of the names of organizations that are doing the work.

Some observations regarding the data in Figure 1-1:

Research Organizations. In addition to the sheer number, we also notice the diver-

sity among organizations pursuing ¢his research. This list includes integrated circuit
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Research Literature Detection  Electronics Mechanism Fabrication
Organization  Reference Method Design Design Technology
1992 Sympoeium 1al Integratsed BIMOS, Tranulating mass, Polysilicon,
Analog Deovices on VLSI Circults :)lff Itive eloctrostatic closed | four-tether support, 1 layer, 2um,
4] ¥ loop, self test. in-plane sensing. ints grated BIMOS
Pendulous mass,
Motorola 1992 Hilton Head Differential Bxternal, two-tether support :‘:‘."'“‘“"
51 o ! o coplanar with mass, yors.
¥ oop- out-of -plane sense.
1988, 1992 Pendulous mass, Bulk-stched mass,
Lucas NovaSensor |  Hilwon Heed Plezoresistive | Intvmal bridge. 2-tether support/mnee, | o fenbonded &
61 thermal solf-tost. self-test tother, 1 tothe
over-range protection -
1990 Hitton Hoad [8]) Internal bridge. Translating masce, hed
1C Sonsors ::g .l;.{BMS 9] (10} Plezoredstive purtial electrostatic | 4-tether support/sense, Bulk mase.
1988 H!li-m-‘u“l-l-nd“ (i self-test. out-of-plane sonse.
. 1bed Pendulous mass, Bulk-etched mass,
Endevco Corp. 1991 T d 12 M 1atl 8e. ono-tethor support <110> silicon,
Oct. 1991 Se: [[1311 plus two-tether sense, | si/sifsl stack bonded
in-planc senwing. with solder glass.
1991,1989 Transducers | .,y AS_IC: . Pendalous mass, Bulk-etched mass,
Hitachi [14,15) T off-center tethor, snodic bond of
§ capacitive Ise width modulated .
1991 S Sympl[16] zl“ loop. out-of-plane sense. slass/si/glass stack.
Dier. tal ASIC or Dual pendulous Electroformed
Siticon Designs 1991 Transducers [17) e tve integrated CMOS, mass, torsional metal mass, CMOS
F switchod capacitor, tather support. compatibility
- . - ASIC, Pondulous mass, Two-sided bufk otch
Sulsse d 1989 Transducere [18) Difr switched capacitor, | tWo-tether support of mass, slectro-
Electronique et de capaditive coplanar with muss,
chemical tether etch.
Microtechnique out-of -plane sense.
External, Transiating mass, Bulk-etched &
:':"l" technologlos | ;o0h iton Head [19]]|  Electroststic | e deltamod. | 4 tethers on top & wafer-bonded mase,
C Sensors fleld sensing. closed 1 4 on bott composite tethers,
loop. on om.
27 photo stepe.
Differontial ASIC, Transloting mase, Bulk-etched &
ESAT-MICAS Div. | 1991 Transducers [20]) o o itched capaci 4 tethers ontop & wafer-bonded mass,
apacitive Unique contacts. 4 on bottom. e-chem stop on epi
ASIC, Translating mass, Bulk-stched from
:"I“"‘” o 1989 Tranaducers [21]|  Differential switchod capacitor. | 4 tethers on tep & both eides, etch-
¥ 4 on bottom. stop on tethers
Resonant boam, Beched (by Statek)
Drapor Laboratories | Tranad 1991 [22]| 2 doublo-ended “;lh""“ clreult :’_"'l""d“’ oase, in plezcelectric
tuning forks. o ) plane sensing. quarts,
External, Dual pendulous mass, | Surfi hined
Drapor Laborstorics | 1989 Transducers [23){ Differontial 1 dc closed lonal tether boron-doped tethers
capacitive foop. support, out-of-plane | mass, sacrificial epi,
senaing. roetal-gate FET comp.
Trenslating mass, Bulk-astched mase,
NEC 1989 Transducors (24]| Plezoresistive | Internal bridge four-tother supp 4-e} de B-chem.
attached to central etch stop on tethers,
post. <110> Si
Resonant beam, Pendulous mass,
STC Technology,LTD | 1989 Sensors & ph fstive B 1 tathers on one sida, Bulk-etched mass.
Actuators [25] drive and sense. rosonator on other,
out-of-| senss.
Goneral Motors Trenslating mass, Bulk-etched mass,
Rescarch, and 1989 Transh 26]] R b External tethers on one side, boron-doped poly
UC Berkele rosonators on other, tath .
Y 2 in-plane sense aves. and ore
Integrated CMOS, Translating mase, Polysiticon, 2 layers,
UC Berksley 1992 Hilton Head [27) | Capacitive ;’l‘""""’ : "‘l. " o | forur-tather supp formed
ol ) folded tother design. after CMOS.
i Translsting mass, Bulk-etched mass,
Tohoku Uni versity 1991 Sensor Symp. chff v ! E i capaci 4 tethom ontop & CVD silicon-
28) apacitive meter. 4 on bottom. oxynitride tethers.

Figure 1-1: A summary of some recently published research on micromachined ac-
celerometers.
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manufacturers (Motorola), automakers (General Motors), traditional accelerometer
manufacturers (Endevco), and very small startup companies (Silicon Designs).

Detection Method. Differential capacitive sensing, using parallel plate capacitors,
seems to be the predominant detection method. There are @ number of good rea-
sons for this. First, it does not suffer from extreme temperature sensitivity as does
piezoresistive detection, which is typically -.2% change in sensitivity per °C change
in temperature. Second, it is easy to include electrostatic self test and closed-loop re-
balance. Tke self test capability is particularly important for the automotive market,
where safety is a primary issue.

A disadvantage of capacitive sensing is the requirement for more complex electron-
ics, and the need to control stray cepacitances. Piezoresistive detection, on the other
hand, is very simple. Usually, the sensor is designed as a four leg Wheatstone bridge,
and the user provides power, and voltage readout, either with or without additional
amplification.

Electronics Design. Four of the listed designs are attempting to integrate elec-
tronics and accelerometer on the same chip (Analog Devices, UC Berkeley, Silicon
Designs, and Draper Laboratories). This has a potential cost advantage, in that in-
tegration reduces the total number of components, eliminates interconnects between
sensor and electronics, and simplifies the final package. Reliability should be much
better also, since wirebonds are eliminated between sensor and electronics. The cost
and reliability advantages will be very important for the automotive market.

Mechanism Design. Of the ten translating mass designs listed, only one, the UC
Berkeley design, uses the pinwheel tether configuration that we discuss in this thesis.
Linearity, temperature sensitivity, and stability, can all be improved by the pinwheel
tether support, without any change to the fabrication process.

Two designs are using a dual pendulous design with torsional support. The ad-
vantage of this configuration is that it achieves differential capacitive detection with
a surface machining process.

Fabrication Technology. Five of the designs are surface machined, and include

the four with integrated electronics. The more common surface machining method
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is to form the proof mass and tethers in polysilicon over a sacrificial oxide layer.
However, Draper Laboratory is using a heavily doped boron layer for the structures,
over an epitaxial sacrificial layer. Still another, Silicon Designs, is using nickel with
an undisclosed sacrificial layer.

The bulk etched designs all use anisotropic etching through the bulk of the wafer,
and either boron doped etch stops or electrochemical etch stops, to form the thin
tether support structures. Wafer bonding is used by NovaSensor to achieve integral
overrange protection, and wafer bonding is used in the Triton and ESAT designs to
get 4-tether support on both sides of the proof mass.

Only 4 of the 18 listed, are in production, and can be bought as standard products.

The remaining are in various stages of development.

1.3 Thesis Overview

This thesis studies mechanical design issues relevant to the performance all thin film
microaccelerometers. By thin film, we mean that the accelerometer is formed in a
relatively thin layer, say less than 10 um, on one side only of a silicon wafer. The
significant point being that integrated circuit technology consists entirely of thin film
processes, so that integration of sensors and circuits can only be accomplished if the
sensors also rely only on thin film processes.

Throughout this research, we have had a specific design concept and associated
fabrication process in mind. We have applied our theoretical research to the develop-
ment and fabrication of this design, shown in Figure 1-2 along with the fabrication
sequence. The proof mass and the four tethers are plasma etched in a 5 um thick
silicon layer. The plasma etch leaves the proof mass suspended over the handle wafer
by the tethers, with a 1 to 2 um gap between the two. The accelerometer’s sensitive
axis is perpendicular to the wafer surface. We use the proof mass and the handle
wafer as electrodes for capacitive detection of the proof mass motion.

The 5 um membrane is formed by wafer bonding and etch back to a boron etch

stop. In this thesis, we fabricate the devices directly in the heavily doped boron etch
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Figure 1-2: Concept for prototype accelerometers (top), and method of fabrication
(bottom)
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stop, but we could have used an epitaxial layer instead, which is more desirable for
integrated circuits. After forming the 5 um membrane, the wafer could be introduced
into a standard IC processing line to add integrated circuits, after which we would
do the final trench etch to form the accelerometers. In the concluding chapter, we
present a design where we have made the accelerometer as small as possible to take
advantage of integrated circuitry.

With this overall picture in mind, we will now review this thesis in more detail. In
Chapter 2 we address the design of the tether supports and the proof mass. Whether
the sensor is to be operated in open-loop or closed-locp mode, affects the design of
the tethers. For open-loop designs, which is what we are interested in, the tether
stiffness (spring constant) along the sensitive direction determines the sensitivity and
the dynamic bandwidth of the sensor. This leads to a key design constraint. That
is, the useful dynamic bandwidth of the sensor is inversely proportional to the square
root of the sensitivity (Equation 2.8).

If we wanted to use this sensor in closed-loop operation, then we would take a
different approach to the tether design. The dynamic bandwidth constraint no longer
applies to the iethers, because now the closed-loop electronics support the proof mass.
Therefore, we are free to make the tethers as compliant as possible in the sensitive
direction. The bottom line is better isolation of the sensor from external instabilities,
such as packaging stresses and thermal stresses. This is in addition to the improved
linearity that we get with closed-loop operation.

Section 2.4 presents the three sensor configurations that we considered in this
research (Figure 2-2). We found that the second two designs, where the tethers
are oriented in a pinwheel fashion around the proof mass (‘pinwheel design’), offer
enormous advantages over the design in which the tethers are all parallel to one other
(‘straight design’). The pinwheel designs typically offer 1000 time better attenuation
of packaging stresses and thermally induced stresses compared to the straight design
(Section 2.7). The advantage with respect to linearity is even greater. We show a
pinwheel design that has only .005% full scale nonlinearity. This is compared to 20%
full scale nonlinearity for the straight tether design (Section 2.6). In addition to these
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performance advantages, the pinwheel designs are also more compact, and therefore
cheaper to produce (more sensors per wafer) than the straight tether designs.

Squeeze film damping is addressed in Chapter 3. Excess damping can be a serious
problem with thin film accelerometers, because the thin film proof mass has a very
large surface area relative to its thickness, and the gap between the proof mass and
the handle wafer is small. As a result, the dynamic bandwidth of a typical design
is reduced from 2000 Hz to less than 1 Hz (Figure 3-2). We were able to solve
the problem and achieve a critically damped dynamic response, by perforating the
proof mass. The design of such a perforated mass is difficult, because closed form
equations for the damping force on a perforated plate do not exist. We used finite
element analysis to solve the problem, and Section 3.4 describes an especially efficient
way to use the finite element analysis to arrive at a critically damped design. Figure
3-8 shows our perforated proof mass modified for maximum bandwidth. We realize
in looking at this modification, that due to the extent of perforations on the plate,
the proof mass has grown to a fairly large dimension, 800x800 um. This is driven
by the need to maintain a minimum value on the sense capacitance, 1.5 pF in this
case, se that the output capacitance is large relative to stray capacitances. This
minimum capacitance requirement would be reduced, thereby reducing the size of the
proof mass, if the electronics were integrated on the same chip with the sensor so
that stray capacitances are reduced. A reasonable minimum capacitance, when using
integrated electronics, is about 0.2 pF. Using this value, we calculate the the total
sensor dimension would be only 200 um x 2060 um.

In Chapt-r- 4 Prototype Fabrication, we verify the feasibility of both the design
and the fabrication process. We describe a process sequence in detail, and show
SEM photographs of the completed structures (Section 4.4). Finally, in Chapter 5
we describe varioustests for measuring accelerometer performance. The first tests
measure static capacitance output and capacitance versus bias voltage, C-V. The C-V
test simulates applied accelerations because the electrostatic force of the bias voltage
actually pulls the proof mass in toward the handle wafer. Our C-V measurements on

completed devices show that they are sensitive to bias voltage,
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and it is clear that the proof mass pulls in to the handie wafer. For dynamic testing,
we have constructed a system with a 100 Ib; shaker and Bruel & Kjaer reference
accelerometer. The accelerometers have shown magnitude and frequency sensitivity

on this test stand.
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Chapter 2

Mechanical Design

2.1 Overview

All acceleration sensors have the basic mechanical components shown schematically
in Figure 2-1. The proof mass is constrained by springs, but when the sensor is
accelerated, the proof mass displaces by some finite amount and this displacement is
transduced to an electrical output that is our measure of the acceleratior.

The specific accelerometers that we have studied are shown in Figure 2-2. In all
three designs, the proof mass is a square plate, and the springs are the four tethers
supportl;ng the proof mass. The proof mass is suspended over the bottom wafer, and
moves relative to the bottoin wafer when accelerated. This produces a change in
capacitance between the proof mass (vne electrode) and the bottom wafer (the other
electrode) that is a measure of the applied acceleration.

The three tether configurations have different mechanical behavior that affect the
sensor performance. We discuss these differences in Section 2.4. Then, in Section
2.5, we present the detailed design equations and the finite element analysis for each
of the three designs.

Two important performance parameters, linearity and strain attenuation, are
studied in Sections 2.6 and 2.7.

Our design analysis assumes that the sensors will be operated ir open-loop mode.

We do not use electrostatic force to restore the position of the proof mass under
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$ Acceleration Being Measured

Figure 2-1: Generic accelerometer.

applied accelerations. This decision affects the tether design, as we discuss in Section
2.2, and it leads to the fundamental tradeoff between sensitivity and dynamic range
given in Secion 2.3.

Appendix A should be referenced for a discussion of the appropriate elastic con-

stants to use for silicon.
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Figure 2-2: Three accelerometer designs studied.
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2.2 Open-Loop, Closed-Loop Accelerometers

This distincticn between accelerometer designs is important in its effect on the me-
chanical design of the sensor. Both closed-loop and open-loop designs are represented
schematically by Figure 2-1, showing a mass-spring-damper system, where the dis-
placement of the mass relative to the case is proportional to the applied acceleration.
In a closed-loop accelerometer, the restoring force is provided substantially by an elec-
trical spring, either electrostatic or magnetic, instead of a mechanical spring. Also, in
a closed-loop design there is a feedback path from the output of the system, through
some signal processing elements, and back fo the electrical springs. In theory, the
mechanical spring behaves in the same manner, except that the feedback is inh=rent;
the force is always proportional to the output (displacement), and the feedback gain
is the spring constant K. The important point for this discussion is that closed-loop
designs use electrical springs and open-loop designs use mechanical springs.

This is a simple difference between the two, but it affects the design and ultimate
performance of the instrument. The spring K, whether it is electrical or mechanical, is
aload path between the proof mass and the instrument case. Any external forces other
than acceleration that would show up as errors on the output of the sensor, must act
through the spring. For example, the process of mounting a sensor will cause output
errors, because the screws, epoxy, or whatever is used for mounting, will deform the
package and stress the proof mass. These deformations are transmitted through the
mechanical spring to the proof mass, where the resulting forces are indistinguishable
from acceleration. As another example, temperature is an external influence that
might effect the electrical gain of a closed-loop accelerometer. Again, any drift in
electrical gain is indistinguishable from an acceleration signal at the sensor’s output.

For open-loop operation, the restoring force is purely through the support tethers.
These tethers must be stiff enough to put the resonant frequency of the sensor well
above the operating bandwidth, yet softer is better with respect to output sensitivity
znd error rejection. In contrast, support tethers for an accelerometer operating in

closed-loop mode should be soft along the input axis since a very stiff restoring force
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is provided by the electrical springs.

2.3 Accelerometer Scaling - sensitivity vs. dy-
namic range

A fundamental design tradeoff exists between the static sensitivity and the dynamic

range. \Ve define the sensitivity, S,

Rl

S (2.1)

as the proof mass displacement, §, for & given input acceleration, a. For frequencies
much less than the fundamental resonant frequency, S is approximately equal to the

static displacement of the proof mass, §,, in one 1g (gravity) of acceleration,

S~ — (2.2)

We also know that §,; is a function of the proof mass, M, and the spring constant of

the tethers, K,

Mg
bot = v (2.3)
Combining these gives,
' M

The dynamic range is limited by the resonant frequency, f, of the spring-mass system

o s

1

(ignoring damping for now):

Combining Equations 2.5 and 2.4 gives the relationship between the sensitivity
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and the undamped dynamic bandwidth,
Sw?=1 ‘ (2.7)

This tradeoff can also be written as,

Sy (28)

8, = static displacsment, in meters, for 1g input acceleration

f = fundamental resonance, in Hertz

Sensitivity improves as we design for larger § per inpat acceleration. Even if 6 is
amplified after being transduced to an electrical output, the sensitivity is still limited
by the primary output of the accelerometer, which is displacement. On the other
hand, for maximum bandwidth, we want the resonant frequency to be high, and so §
must be kept small.

The following example illustrates this design tradeoff. Say we want to measure
vibrations out to 1000 Hz. The useful bandwidth for a critically damped accelerometer

is about half of the resonant frequency, so we design for a 2000 Hz input axis resonance:

f = 2000 Hz
6“ = 2%7

= .06 uM per g of input

This is the static displacements per g that the transducer has available tc convert
to electrical output. To carry it one step further, let’s assume that we want lug
resolution. Then we must resolve .06 uM/g divided by one million, which is .06

picometers!

2.4 Tether Designs

We look for the following properties in a good tether support system. It should con-

strain the proof mass to one degree of freedom, that degree of freedom being the
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gensitive axis of the accelerometer. In this way, the accelerometer senses acceleration
along one axis only, and the output represents both magnitude and direction of ac-
celeration along that axis. The proof mass has a total of six degrees of freedom, so
while the tethers must be compliant along the sensitive axis, they must also constrain
the proof mass along the remaining five degrees of freedom.

The kinematic response of the tethers should be as linear as possible. That is,
the displacement of the proof mass must be linear with respect to the input accelera-
tion. Pendulous designs, for example, are not linear, because accelerations rotate the
pendulum, thereby changing the orientation of the sensitive axis. Thus the output is
nonlinear with respect to inpnt acceleration.

The tethers should isolate the proof mass from external stresses and strains that
might introduce acceleration errors into the sensor. Since the tethers are the mechan-
ical support between the proof mass and instrument case, they have the potential of
transmitting external forces to the proof mass. We want the tethers to support the
proof mass, but maintain stability of she proof mass down to picometer dimensions.

We have evaluated three tether configurations in this research. They are shown in
Figure 2-2. The first of these, which we will refer to as the ‘straight tether design’,
is found frequently in the microsensor literature [4, 8]. It is not particularly good
because of its poor strain attenuation, nonlinear response, poor support along the
hinge axis, and excessive use of die space.

The second configuration in Figure 2-2, the ‘pinwheel design’, has better linearity,
and less sensitivity to external strains than does the straight design. The pinwheel
tethers can bend in-plane and rotate with the proof mass to accommodate external
strains. ‘This will be shown in section 2.7, where we find that strain attenuation by
the pinwheel design is about 1000 times better than that of the straight tether design.
Also, in Section 2.6 we show that the linearity is two to three orders of magnitude
better than the straight tether design. Still another advantage of the pinwheel design
is that because the tethers run along the length of the proof mass, they can be made
quite long without consuming excessive die space. This is important, because if we

want to make a very sensitive accelerometer, then the tethers must be very long and
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thin.

The ‘folded pinwhecl’ design (Figure 2-2) is similar in performance to the pinwheel
design, but goes even further in allowing the design of effectively very long tethers,
without using a lot of die space. We can design sensitive accelerometers, using folded
tethers, where the tethers are the same thickness as the proof mass. What this means
is that the entire accelerometer structure, tethers and proof mass, can be fabricated

in a single thin filn layer, which is the process we describe in Chapter 4.

2.5 Tether Design Equations and Finite Element
Analysis

Our goal is to chcose tether dimensions to achieve a given sensitivity, strength, and
dynamic range. We want to understand the stiffness of the tethers, the mechani-
cal stresses, and the dynamic resonances for input accelerations along any axis of
the sensor. Appendix B contains the equations required for this analysis. These
equations give the proof mass deflections and the maximum tether stresses, for 1g ac-
celerations along either the input, pendulous, or hinge axes. Also, the equations give
the fundamental resonant frequencies of the accelerometer. The stress and deflection
equations assume quasi-static load conditions. That is they assume operation below
the fundamental resonant frequency.

In the subsections that follow, the analytical equations in Appendix B are verified
with finite element analysis (FEA), and the results are shown in Tables 2.1 through
2.3. This verification is reassuring, because derivation of the equations requires te-
dious algebra that is prone to error, particularly when we do not know beforehand
whether some forces or deflections are zero. This is where the finite element ansal-
ysis is useful. We check our analytical solutions against the computer solution of
the finite element prototype model. This guarantees the correctness of the equations
because the finite element solution is essentially exact, within the limits of analytical
mechanics.

Development of the analytical equations follows basic beam theory, requiring the
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simultaneous solution of the static force and moment balance equations, and the

integrated beam equations shown below:
Y F=Ma (2.9)

Ym=0 (2.10)

0(z) = % [ miz)- bz (2.11)
y(z) = f 8(z) - bz (2.12)
F = force

M = proof mass

m = bending moment
6(z) = beam rotation as a function of distance along beam
m(x) = bending moment as a function of distance along beam
¥y(x) = beam displacement as a function of distance along beam
E = modulus of elasticity
I = bending moment of inertia

Solution of Equations 2.9 through 2.12 gives the displacements, forces, and
moments along the tethers. After solving for the displacements, we then calculate
the resonant frequencies by equation 2.8.

It might seem that the rotational resonance about either the hinge or about the
pendulous axes could be lower than the translational rescnance along the input axis.
But we can prove that the rotational resonances are about /3 times higher than the
resonance along the input axis. Using the notation in Figure 2-3, the proof is as
follows.

The rotational resonant frequency about either of the cross axes is:

1 Ko

o=\

(2.13)
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and the resonant frequency along the input axis is:

f= %\/ % (2.14)
fo = resonant frequency about either the pendulous or hinge axis
Ko = rotational stiffness about either the pendulous or hinge axis
J = mass moment of inertia about either the pendulous or hinge axis
f = resonant frequency along the input axis
K = translational stiffness along the input axis
M = proof mass

So the ratio of the two frequencies is:

Ko M
%= Sl (2.15)

We can write Ky in terms of K because for rotation about the cross axes the pre-
dominant deflection of the tethers is the same s-bending deflection as we get along
the input axis. Therefore, the rotational stiffness can be written (with reasonable
accuracy) as Ky = KTL’ The rotational mass moment of inertia about a principal
axis, for a rectangular block of dimension LxLxT, is, J = £ (L? + L? + T?). For our
devices, T? « L?, and so J = MTL’. Making these substitutions into equation 2.15

we get:

fo _
- V3 (2.16)

Therefore, the two rotational resonances are always about /3 higher than the input
axis resonance. Finite element analysis verifies this conclusion.

The stress calculations take into consideration bending stresses, shear stresses, and
direct axial stresses; but only significant components are retained. For example, shear
stress is not included when calculating the input axis stresses, because the bending
stress is orders of magnitude larger.

We used Patran [30] to construct the finite element models and for results post-

processing; and Abaqus [31] for the solver. Each of these packages in themselves
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performed quite well. Mesh generation is fast and robust in Patran, and the dis-
play and post processing options are quite complete. Similarly, Abaqus proved to
be accurate and reliable. The element and solution options are numerous and well
documented, and Abaqus has extensive capability for nonlinear material and load
analysis. Integration of the two packeges, however, was a problem. Some Abaqus
options are either not supported by Patran, or the method of specifying the option
through Patran is not immediately obvious. In other words, there is an additional
level of learning involved. In addition to finite element theory, the user must learn two
software packages instead of one, plus learn how the interface works between the two.
This is not ideal, particularly since so many good integrated packages are available.

The finite element models were constructed with 4-node plate elements for the
tethers and for the proof mass. These are the proper elements to use because bend-
ing is the predominant deformation mode, as opposed to solid deformation. Beam
elements also model the tethers extremely well, but with beam elements it is more
difficult to accurately model the torsion; we have to explicitly calculate and input the
torsion coefficients, whereas this is automatically taken care of by the plate model.
Also, with beam elements, the deformations and stresses are not easy to grephically
display when we get to the post-processing phase, because the elements themselves
are only lines. So the plates are easier, and more visual than the beam elements. Of
course solid continuum elements could have been used instead of plate elements, but
then many more elements would have been required to model the bending properties
of the tethers, and the mcdels would get far too large ( >5000 elements) to easily

manage.

2.5.1 Straight Tethers

Figure 2-3 gives dimensions for the straight tether design and defines the axes.
Table 2.1 compares the analytic to the FEA results, and we see that the analytic
equations are quite accurate. Note that the frequencies, f, are the lowest undamped
natural resonances, which are the translaiional resonance along the input axis, and

the rotational resonances about the pendulous axis and about the hinge axis.

34



T t

F

Figure 2-3: Straight tether design.
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Axis [ 8 (uM/g) |« (MPa/g) | 7 (Ha)

Input Axis: —
FEA | 0.0760 0.976 1808

Analytic || 0.0767 1.036 1800
Pendulous Axis:
FEA || 2.76e-6 2.07e-3 3149

Analytic | 2.66e-6 2.03e-3 3118

Hinge Axis:
FEA || 8.37e-4 .080 4043
Analytic [ 7.67e-4 104 —

Table 2.1: Comparison of the analytical to FEA results for a straight tether design:
[ =170um, b =10um, ¢ =lum, L =600um, T =10um

For the accelerometer designs of interest here, the primary design constraint turns
out to be ile desired sensitivity along the input axis. Each tether bends in an ‘s-
bending shape’, with zero slope at the endpoints. The stiffness in this mode is Eb()°.
In general, we make the thickness as small as the manufacturing process allows, then
adjust the length and width to get the desired stiffness.

The cross axis stiffnesses are reasonably good - at least 100 times higher than
the stiffness along the input axis. Of course, the stiffness along the hinge direction
is not as high as that along the pendulous axis, which is one of the drawbacks of
this design. After determining the thickness and length of the tethers to achieve the
desired sensitivity, we can adjust the width to get the required cross axis stiffness,
without significantly effecting the sensitivity.

With respect to stresses, these are highest for accelerations along the input axis,
but they are all still low when compared to the breaking stress of silicon, which is
between 100 and 1000 MPa [32]. For the best protection against shock environments,
the proof mass should be constrained by top and bottom plates to prevent breaking.

The analytical equations assume that the neutral axes of the tethers are coplanar
with that of the proof mass, just as shown in Figure 2-3. For some designs this
may not be true. However, we have made calculations that take into account offset

tethers, and found the effect to be negligible. For example, for the geometry given in
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Axis || § (uM/g) [ o (MPa/g) | 7 (Hz) |

Input Axis:

FEA | 0.305 1.50 888

Analytic | 0.307 1.64 899
Pend/Hinge Axis:

FEA || 9.18¢-6 4.13e-3 1256
Analytic || 8.42¢-6 4.51e-3 1557

Table 2.2: Comparison of the analytical to FEA results for a pinwheel tether design:
[ =270um, b =10um, ¢t =lum, L =750um, T' =10um, and the proof mass is perforated
by a 9x9 grid of 50x50um square holes.

Table 2.1, by moving the tethers 5 um offcenter, the only effect was to add another

resonance at about 300 KHz.

2.5.2 Pinwheel Tethers

Figure 2-4 gives the dimensions for the pinwheel tether design, and Table 2.2 com-
pares the finite element results to the analytical results. Also, Figure 2-5 shows
the FEA model used for verification of the analytical equations. The first deflection
plot in Figure 2-5 is for 1g input acceleration, and the second is for a 1g cross axis
input. In this example, the design includes perforations in the proof mass to reduce
gas damping effects, but even with these perforations, the closed form equations from
Appendix B are still quite accurate. The biggest error is in the calculation of the
resonance about the pendulous or hinge axis. This error results from the approxima-
tion of a uniforrn density proof mass in the derivation of equation 2.16, which is no
longer valid because of the perforations.

The design equations for the input axis are exactly the same as the straight tether
equations. In a linear analysis, the tethers deform in the same s-bending shape with
zero slope at the ends. We see in section 2.6 , however, that when the nonlinearity
associated with stretching of the tethers is accounted for, the pinwheel tether design

has a much more linear response than does the straight tether design.
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Figure 2-4: Pinwheel tether design.
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Figure 2-5: Finite element model of a pinwheel design: a) deflection plot for 1g input
acceleration, and b) deflection plot for 1g cross axis acceleration.
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Asis || 3 (uM/g) | = (MPa/g) | 7 (Ha) |
Input Axis:
FEA || 0.0627 0.729 1956
Analytic || 0.0701 0.729 1883
Pend/Hinge Axis:
FEA || 3.82e-4 0364 3022
Analytic || 3.66e-4 0414 3261

Table 2.3: Comparison of the analytical to FEA results for a folded pinwheel tether
design: | =105um, b =10um, ¢ =lum, s=50um, w=10um, L =750um, T' =10um, and
the proof mass is perforated by a 9x9 grid of 50x50um square holes.

2.5.3 Folded Pinwheel Tethers

The analysis is considerably more complex for the folded pinwheel. Figure 2-6 gives
the dimensions for the problem. As with the preceding two designs, the analytical
results are compared to an FEA model. The FEA model is shown in Figure 2-7, and
the results comparison is made in Table 2.3.

For the input axis deflection we have to include torsion as well as bending, in all
three segments of each tether. When the length of the connecting segment s is small,
then the folded tether acts much like two s-bending tethers acting in series. But when
s gets longer, we get more torsional deflection from each of the main tethers, plus
significant bending of the connecting tether.

A notable characteristic of this tether configuration, and one that is not immedi-
ately obvious, is that the three translational degrees of freedom are decoupled, just
as they were with the straight and the pinwheel designs. Knowledge of this, which
came by study of the FEA results, made the development of the closed form equations

much easier.
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Figure 2-6: Folded pinwheel design,
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Figure 2-7: Finite element model of a folded pinwheel design: a) deflection plot for
1g input acceleration, and b) deflection plot for 1g cross axis acceleration.
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Figure 2-8: Nonlinear shortening effect in a bending tether.
2.6 Linearity

An accelerometer’s output should be linear with respect to the input acceleration.
Otherwise, external linearization circuits or a nonlinear calibration equation is re-
quired to use the instrument. Even more serious, in dynamic environments, nonlin-
earities cause vibration rectification, which is a DC offset in the time-averaged AC
output. In this section, the impact of one known source of nonlinearity is investigated.
This is the shortening of the tethers as they bend in response to input accelerations.
As shown in Figure 2-8, s-bending of a tether in the y-direction, also results in short-
ening 6z along the x-direction. If the tether is not free tc displace in the x-direction,
then an axial load develops in the tether, and this load in turn increases the bending
stiffness of the tether.

What is the effect of tether shortening for the three designs in Figure 2-27 The
effect is most serious with the straight tether design because essentially it does not
accommodate 6z at all. Because of this, large axial loads develop and the tether
stiffness changes dramatically. The two pinwheel designs cen rotate to allow short-
ening, and so the axial loads and the nonlinearity are much smaller, although not
zero. We could completely eliminate the shortening problem by using the proof mass

and tether configuration shown in Figure 2-9. This is a slight modification to the
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Figure 2-9: A tether configuration with zero nonlinearity.

pinwheel design, where now the tethers are tangent to the circle that inscribes the
points where the tethers attach to the proof mass.

Analytical formulation of the shortening problem is easy for the straight tether
configuration, and we can even solve it with a hand calculator by iterating on the
nonlinear equations. The procedure for this is given in Appendix C. For the two
pinwheel desvigns, the problem formulation is much more difficult because the tether
end condition is neither fixed nor free. It is not completely fixed against shortening
as it is with the straight tether design, yet it is not completely free to shorten as the
design is in Figure 2-9. Since the end conditions depend upon the specific tether
configuration, an analytical mmodel would have to include flexible end conditions.

Even for the straight tether design the analytical formulation does not yield a
closed form solution. Instead, we have to iterate numerically to the solution. So, the
approach taken here is to use simple finite element models (< 200 elements), and to
let the FEA program do the iteration for us. Before doing this, we first checked that
the method in Appendix C gives the exact same result as the ABAQUS nonlinear
FEA solution.‘ Then we used the FEA to calculate the nonﬁneaﬁty for each of the

three tether configurations. The models and the results are summarized in Figure
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2-10.

We see in Figure 2-10 that the nonlinearity for the pinwheel design is only 4.05%,
compared to £20% deviation from linearity for the straight tether design. Also shown
is the extremely low nonlinearity that can be achieved with the design shown in Figure
2-9.

The three designs in Figure 2-10 all have the same sensitivity: about lum de-
flection for 20g input. The proof masses are 500x500x10um; and the tethers are each
150x5x1um. The finite element models used one hundred 4-node plate elements for the
proof mass, and four 3-node beam elements for each tether. Each model was first run
to determine the linear responses, using the STATIC,LINEAR option in ABAQUS.
Then, four more runs (5g,10g,15g,20g loads) using the STATIC,NLGEOM (nonlin-

ear geometry) option were made to determine the nonlinear response. The plotted

nonlinearity is then:

: ] 8i ar — Spontinzar
Gnonlinearity = 100 - == nonlinz

(2.17)

Sh'near
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Figure 2-10: Nonlinearity in the response of three different tether configurations vs.
input acceleration. All three configurations have the same linear sensitivity: .05um
displecement per g of input acceleration. Thus a + 20g input corresponds to a
displacement of one tether thickness. 46



2.7 Strain Attenuation

External stresses and strains are a real, and undesirable, part of any sensor’s oper-
ating environment. For instance, consider the effect of thermal strains. If the sensor
material is silicon, with thermal coefficient of expansion 2.6 ppm/°C; and the sen-
sor is mounted to an alumina IC package, with thermal coefficient of expansion 5.6
Ppm/°C; then the strain imparted to the sensor will be on the order of (5.6 - 2.6) = 3
ppm/°C. Therefore, a 10 °C change in temperature would deform a 2mm sensor by
.06 um. This causes large acceleration errors when the tethers transmit these strains
as forces onto the proof mass.

As another example, consider residual strains in the accelerometer material. Some
planar processes used in silicon micromachining leave significant residual stress in the
film. Boron doping to form etch stops results in 30 Mpa tensile stress [33]. Polysilicon
films are typically compressive as deposited, but may become tensile when annealed
[34]. The tether configuration must allow these stresses to relieve themselves, or the
stresses will change the scale factor of the senor, and may even buckle or fracture the
tethers in the extreme case.

Analytical evaluation of the errors requires some assumption about the external
strain acting on the sensor. The assumption used here is that the strain is a uniform
expansion (or contraction) of the surface upon which the sensor is bonded. We could
simulate this experimentally by mounting the sensor to a rigid surface in a stress
free manner, and then raising the temperature of the surface without changing the
temperature of the sensor.

Figure 2-11 shows this external strain acting on the straight tether design. There
is no attenuation of the strain; all of it is carried through the tethers as an axial force,
given by:

P=—.§ (2.18)
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Figure 2-11: Strain on straight tether design.
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P = axial force in the tether

b = tether width

t = tether thickness
E = modulus of elasticity

I = tether length

6§ = displacement caused by external strain

The axial force P in turn changes the sensitivity of the accelerometer because of
the stzees stiffening effect. Stress stiffening is the change in bending stiffness of a

beam due to axial loading of the beam. This change in bending stiffness is [35),

SK = (i.?)i (2.19)
The stiffness K of each tether is:
K= Eb(%)“ (2.20)

Therefore, the relative error, €, caused by an external strain displacement § on the

sensitivity of a straight tether design is:

l
€= (1'2)t_’6 (2.21)
As an example, let,
b = 5um
t = lum
l = 150um

then we calculate, using Equation 2.21, that an instability of only § = 2.8 A results
in a 5% change in the sensitivity. Again, using the example of mounting a 2 mm
silicon die to an alumina package, we can calculate the change in temperature, AT

that would generate a § of 2.8 4,

N
= .047°C
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Figure 2-12: Strain on pinwheel design

Now consider the effect of the same instability imposed on the pinwheel design. As
shown in Figure 2-12, the tethers bend in the plane of the proof mass to accommodate
4. The resulting axial force P depends upon the length of the tether [, and the ratio
of the tethez length to the proof mass length, % Using the notation shown in Figure

2-4, § creates an axial force in the tethers given by:

3 Iy2

1-4

P = —2Et (9) U=zl (2.22)
U Jat)y -4t +2

When we plot the last quotient in equation 2.22 as a function of 7';, we find that

within the range of 0 < < 2, the maximum value of the quotient is 0.7. Therefore,

using 0.7 as a limit on the quotient, we can simplify equation 2.22 to

3
P = _2Et ('E’) (0.7)-6 (2.23)
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This creates an error in the sensitivity of

=an(2)' o

Repeating the example celculation used for the straight tether design:

b = 5um
t = lum
! = 150um

then we calculate that it takes an instability of §=.25 um to cause 5% change in
the sensitivity of a pinwheel type accelerometer, which is about & 1000 times better

attenuation of strain by the pinwheel design as compared to the straight tether design.
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Chapter 3

Dynamic Response and Squeeze

Film Damping

3.1 Overview

In dynamic environments, the gas between the proof mass and the electrode plates
substantially influences the accelerometer’s dynamic response. Damping forces are
generated as the gas squeezes in and out between the plates; the so called squeeze
film damping effect. The damping forces in thin film accelerometers tend to be
extremely high, leading to sluggish dyna.m.ié response. Capacitive sensing designs are
particularly bothered by damping because of the large electrode surfaces and small
gap that are required to get good sensing capacitance.

This chapter explains how to calculate, and how to control the squeeze film damp-
ing. First, in Section 3.2, we calculate the damping coefficient and the dynamic
response for a typical design. It turns out for the example, which has a 2000 Hz
undamped resonance, that damping limits the useful bandwidth to only 1 Hz. Given
this poor dynamic response, we chose to perforate the proof mass in order to reduce
the damping. Section 3.3 explains why we picked this option over several others.
The perforations are compatible with thin film processing and add very little to the
manufacturing cost. Section 3.4 shows how to design a perforated proof mass, using

finite element analysis in a particularly efficient manner. Section 3.5 shows the design
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after modification to achieve critical damping.

3.2 Dynamic Response

We use the mechanical model in Figure 2-1 to predict the accelerometer’s dynamic
response. M is the proof mass, K is the tether stiffness, and B is the gas damping
coefficient. The acceleration input is periodic in time, a; = Ajsin(wt). A quasi-
static balance of forces on the proof mass yields the equation for the sensor’s output

displacement, z,.

Z,+ -%z', + %z, = a; (3.1)
z, = proof mass displacement
= X,sin(wt + @)
X, = maximum displacement
w = frequency
t = time
¢ = phase lag relative to input
a; = input acceleration |
= A;sin(wt)
A; = maximum input acceleration
M = proof mass
B = gas damping coefficient

K = tether stiffness

This is a second order, ordinary differential equation. The solution gives the

amplitude response, M (w), and the phase response, ¢(w) as a function of frequency
(36].
_ 1

- @7 +ecay

(3.2)

M) = 7

_&
A;
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2((w/ “’n)

¢$(w) = —arctan T’/wﬁ)

(3.3)

w, = undamped resonant frequency
= K/M
( = damping ratio

= B/M

2wn

For values of the damping ratio { < 715, there is some peaking in the amplitude
response, M(w) > 1. But for { > 715, the amplitude response never exceeds unity. We
achieve the widest dynamic range when { = 715, which is called the critical damping
ratio, (.. The phase response is actually better when the damping ratio is smaller
than (... For some applications, fast response of the accelerometer is more important
than the amplitude information. In this case, we would want a damping ratio much
less than critical.

As an example, let w,=2000 Hz, and consider three values for (: (= .1, .707, 2.
Table 3.1 compares the amplitude and phase response at w=1000 Hz for the three
different damping ratios. The amplitude is closest to unity when { = (.., but we get
better phase response with { < (.

Now consider the response of one possible accelerometer design, as shown in Fig-
ure 3-1. This shows a proof mass supported by four tethers, and a lower electrode
plate to provide the capacitive output. The 1 um gap is necessarily small to achieve
good sensitivity, and for the same reason, the proof mass dimension, L=500 um, is
relatively large. We can choose the tether dimensions to achieve any desired un-
damped resonance, w,, as explained in Section 2.3. Say that w, = 2000 Hz. All
that is needed now to completely describe the dynamic response is the damping ratio,

(= %%. To calculate B, we use Equation D.36, which is repeated here.

4

B = 0.4217 ,Li;:; (3.4)
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| [¢=1{¢{=¢x]C=2 |
M(w = 1000 Hz) | 1.32 | 0.97 | 0.47
$(w=1000 Hz) || -8 | —43° | 69|

Table 3.1: Example of amplitude and phase response, at 1000 Hz, for three accelerom-

eter designs with different damping ratios. The undamped resonance is 2000 Hz for
all three. '

. /"—sooum ——7’ _

e =
S A,
- m:';m - /f |
. 7

1 Atm Air

Figure 3-1: A possible paccelerometer design, demonstrating extreme overdamping
in the dynamic response.
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B = demping coefficient
g = viscosity of air

= 1.8.107°2} for air at 1 atm, 20 °C

Gt

e il
I

= proof mass side length

h = gap dimension
Substituting the dimensions from Figure 3-1 into Equation 3.4,
B = .4217(1.8.10-°23) Cootenmy
= 474422
And the proof mass M is celculated as,
M = (10um)(500um)(500um)(2.3 - 10-*¢ ke )
= 5.75.-10°kg

And the damping ratio is given by,

¢ = BM

2wp,
(-47442:2)/(5.75-10-%)
~2(2%.2000Hz)

= 3282

With this value for {, and w,=2000 Hz, we plot the amplitude response as the
solid line in Figure 3-2. This indicates a useful dynamic range from 0 Hz to 1 Hz.
The dashed line is the dynamic response if the sensor were critically damped, showing
a much larger dynamic range out to about 1000 Hz.

These calculations indicate that a significant change must be made to the basic
design in Figure 3-1. We would like to reduce the damping by ahout three orders of

magnitude. In the next section we review the design options to achieve this reduction.
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Figure 3-2: Amplitude response of the overdamped accelerometer of Figure 3-2 (solid
line), compared to the response if it were critically damped (dashed line).
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3.3 Options for Damping Reduction

A number of options exist to reduce the gas damping and thereby improve the dy-
namic response. In this section we present the advantages and disadvantages for some
of these options, and explain why we chose to perforate the proof mass with pressure

vent holes.

3.3.1 Vacuum Package

Packaging the sensor in vacuum is one way to reduce damping. An advantage here
is simplicity. Either the 3-wafer stack could be bonded together in a vacuum, or the
entire final assembly could be vacuum packaged. A disadvantage is controlling the
process to achieve a particular damping ratio. Vacuum packeging will easily achieve
a very low damping ratio, but to get critical damping exactly, requires precise control
over the final pressure. Additionally, temperature and external pressure will effect
the internal pressure and thus the sensor’s dynamic response. And finally, we would

expect vacuum packaging tc substantially increase manufacturing costs.

3.3.2 Large Damping Gap, and/or Thick Proof Mass

The damping ratio decreases as we increase the gap dimension, or as we increase the
proof mass thickness. However, the resulting sensor dimensions are incompatible with
thin film processes. To see this, consider the capacitance and damping equations for

a square plate. First, the capacitance is given by,

L2

C =e— .
e (3.5)

C = capacitance

€ = permittivity

L = proof mass side length

h = gap dimension
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For the damping ratio, from the definition of { in Equation 3.3,

c= 3™ (3.6)

2wn

It is ¢ that we want to reduce, but this is done by reducing B/M, since w, is fixed
(Section 2.3). Therefore, write B/M, using Equation D.36 for B, and M is just the

proof mass volume times the density,

_ (4217

B
M~ LT

(47 L
T~ d T

(3.7)

d = mass density

T = proof mass thickness

In Equations 3.5 and 3.7, we see that L has th-e same effect on the capacitance as
it does on the damping ratio. Reducing L, quadratically reduces both the damping
ratio and the capacitance. So if the capacitance is to stay fixed, we cannot use L
to reduce the damping ratio. We can, however, use T', the proof mass thickness, to
reduce the damping ratio without any lose in capacitance. This is helpful, but the
dependencé is only linear. The gap dimension, k, has the strongest effect on the
damping ratio. However, as we increase the gap, we must also increase the plate area
to compensate for the loss in capacitance. |

To experiment with these dimensional changes, we will modify the design in Figure
3-1 to achieve critical damping. We keep the capacitance constant at C = 1.5 pF,
but decrease the damping ratio from { = 3282 to .707. We vary only the proof mass
length and thickness, and the gap dimension. Some values are tabulated in Table
3.2. Notice that this table somewhat bounds the extreme values for the proof mass
thickness and the gap dimension.

All three of the tabulated designs preclude the use of thin film processes. For ex-

ample, the second design. The proof mass thickness is nearly the full wafer thickness,
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proof mass | proof mass
gap dimension | length thickness

h (um) L(um) T (um)

1 500 46,421

10 1581 464
50 3536 19

Table 3.2: Alternative dimensions for Figure 3-2 to achieve critical damping. Capac-
itance is kept constant at 1.5 pF.

and the gap dimension of 10 um is quite large for thin films.

3.3.3 Perforated Proof Mass

Perforating the proof mass reduces damping pressure without sacrificing capacitance.
To show this, we approximate a pe:forated proof mass as a collection of square damp-
ing surfaces acting independently of one another, as shown ix Figure 3-3. Starting
with Equations 3.5 and 3.7, and using the same notation, except that now L is the
side length of each little square, and NV is the total number of squares making up the
proof mass, then,

2

C = Neo- (3.8)

_ N(anTpfy

B
M~ T NdI’T

(4217)p L*
d Th3

(3.9)

We see that B/M does not depend on the total number of damping surfaces, N.
instead, B/M, and therefore also the damping ratio (, is determined by the damping
ratio of each individual square. If we can design an individual square with the right
B/M ratio, then we simply combine enough of these together to form a proof mass
with the desired capacitance. Essentially, this gives us another parameter, N, by
which to set the capacitance without effecting the damping.

Again, we now try to modify the design in Figure 3-1 to achieve critical damping,
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Z 4, Ind{vidunl dampers

Fixed surface (electrode plate)

Figure 3-3: Approximation of a perforated proof mass as a collection of independent
damping surfaces.

while keeping the capacitance constant at 1.5 pF. Table 3.3 indicates some reasonable
designs with this approach. We can stay with thin filmi processes because the gap
dimension is small, 1-2 um, and the proof mass remains thin, 10-20 um. The perfo-
ration patterns are reasonable, 7 to 30 um squares separated by the same size holes.
The proof mass dimension has increased considerably. However, in these calculations
we have assumed that the holes are the same size as the damping squares. A more
compact design would use holes as small as possible to separate the damping surfaces.
In summary, we want very small holes, closely spaced, to reduce the damping and
still maintain a small die size. Of course, fabrication processes will determine the

minimum hole size possible.
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proof mass length of total number | total proof
gap dimension | thickness | individual square | of squares | mass length
h (um) T (um) L (um) N 2v/NL (um)

1.0 10 7 4642 954

1.5 10 13 2219 1225

2.0 10 21 1134 1414

1.0 20 10 2500 1000

1.5 20 19 1039 1225

2.0 20 30 556 1415

Table 3.3: Alternative dimensions for Figure 3-2 to achieve critical damping using a
perforated proof mass. Capacitance is held constant at 1.5 p¥F.

3.4 Design of the Perforated Proof Mass by Fi-
nite Element Analysis

To design the perforated proof mass, we require some method to accurately calculate
the damping. The simple model in Figure 3-3 is useful for feasibility studies, but
not for detailed design calculations. Reynolds’ equation still applies, Equation D.19.
The difficulty is how to solve this equation on a perforated plate. The solution is
difficult even for a solid square plate. For the perforated plate, we rely on finite

element methods to find the damping coefficients.

3.4.1 FEA Procedure and Verification

Our finite element program, ABAQUS, does not have an element formulated specif-
ically for gas damping. However, the 2-dimensional heat transfer elements can be
used since they are based on Poisson’s equation (35, 37]. The heat transfer elements
solve the heat conduction equation for temperature, T'.

T 8T
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T = temperature
Q = heat source per unit volume

z,y = cartesian coordinates

This is analogous to Reynolds’ equation for the squeeze film damping pressure, P,

(Equation D.19),

§2P + 822  —12pV
éz2 by A3

(3.11)

The following procedure was used with ABAQUS to find the damping ratio of a

perforated proof mass:

1.

Construct the finite element mesh of the plate. Use the ABAQUS element for
2-dimensional heat transfer, element type DC2D4. These are one degree of
freedom per node elements, with temperature (or pressure in this case) as the

unknown. Use elements of equal size to simplify step 6.

Apply the boundary conditions. Set the pressure to zero at all nodes around

the plate edges, and at all nodes around the holes.

Specify the material properties. The only property of importance is the thermal
conductivity. Set this equal to 1.

Apply the ‘loads’. Enter the loads as if they were sources of heat generation
per unit volume. On each element, enter Q = (—12uV)/h®. The velocity term
is arbitrary, since we divide it out in the calculation of the damping coefficient,

B=F/V.

Run the analysis to solve for the pressure distribution.

. Integra.té the pressure over the plate area to get the damping force. Many

FEA programs will do this for you, but ABAQUS will not. So, write the nodal
pressures to an ASCII file, and use MatLab to sum the pressures. Multiply
this summation by the area of each element (which is why we used equal-sized

elements for the mesh construction) to get the force, F.
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7. Calculate the damping coefficient, B = F/V

8. Calculate the damping ratio, ¢ = B/M, where M is the mass of the plate.

Figure 3-4 shows an FEA model that we used to verify this procedure. This

is a square plate, 500x500 um. The mesh is 50x50 elements, so each element js
10 um squa.fe. The gap dimension is lum,
p=18. 10"“#_'“—‘:. The appropriate velocity to use depends on ¢

frequency of the input vibration. For example,

and the gas is air, with viscosity of

he magnitude and
if the input vibration displaces the

Proof mass a maximum of .05 um at 2000 Hz, then the maximum velocity would be,

V = (.05um)(20005 z) = 628um/s

We used 1000 um/s in this analysis. Therefore, we enter the source term as,

o lwmv _-12 (18- 10-11 kg ) (1000:7";) kg

k3 T (lum)3 = —.00216ums - gec?

Figure 3-4 shows the resulting pressure contours. The maximum Pressure is 3.98

KPa at the center of the Plate. Note that this maximum chan

4% of ambient atmospheric pressure. Integration of the press
MatLab, gives,

ge in pressure is abont

ure over the area, using

F=47.10*N
and the damping coeficient is,

. ~4
B=py 202N _ ke

1. 10‘3% sec

We want to compare this to the closed form solution, Equation 3.4,

- k 4
_ Lt (1.8-10 o) (500 um) ke
B = (4217) = (4217 T oss — =ant

So the finite element analysis gives the exact same answer as the closed-form

solution. With this reassurance, we now use the FEA to design a perforated proof
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Figure 3-4: Damping pressure contours. The damping coeflicient calculated from
this finite element analysis agrees exactly with that from the closed-form analytical
solution.

3.4.2 Using Symmetry to Simplify Models

We need a substantial number of perforations to achieve critical damping. For exam-
ple, adding 9 holes to Figure 3-4 has the effect shown in Figure 3-5. The maximum
damping pressure is lower, but only by about a factor of 10. We want to get a 1000
times reduction. Here lies a problem with the finite ¢<lement analysis, because the
models get quite difficult to build when they have, say, 100 holes. The number of
elements goes up rapidly also; at least 10,000 elements would be needed for a 100-hole

65



proof mass.

But the solution has a strong repetitive pattern. The box in Figure 3-5 highlights
this pattern. This repetition supports the assumption that we made in Figure 3-3,
where we modeled the perforated proof mass as a collection of identical damping
surfaces, acting independently of one another, We exploit this repetition to build
much smaller FEA models. Figure 3-6 shows a perforated proof mass with 25 holes.
Expanded next to this, is a single hole plus its surrounding web material. The proof
mass consists of 25 of these ‘cells’. The part that we model with finite elements is
Jjust one quarter of one cell, which is the area shown meshed in the figure.

The number of elements in the model decreases from many thousands, if a full
model were used, to just a few hundred by taking advantage of the symmetry,

The boundary conditions change as indicated in Figure 3-6. Instead of being
fixed to zero, the symmetrical boundaries are zero-flux boundaries. To achieve this
with ABAQUS, simply do not specify any boundary condition at these nodes.

Recalling the analysis of Section 3.3.3, the damping ratio for the entire proof
mass is equal to that of a single quadrant of one cell. 5o the design procedure is
this: First, pick a minimum hole siie. Most likely this will be determined by the
process. With the hole size set, only the web thickness between holes needs to be
determined. We build a model as shown at the top of Figure 3-7 and run it to find
the damping ratio. Then we decrease the web thickness until the desired damping
ratio is achieved. Finally, we adjust the total proof mass and the total capacitance,
by ‘connecting’ together as many cells as necessary. This last step will not change

the damping ratio.
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Figure 3-5: A small number of holes does not sufficiently reduce the damping. Also,

note the repetitive pattern in the solution.
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Perforated Proof Mass

Figure 3-6: The entire perforated proof mass does not need to be modeled; only one
quarter of one cell.
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Figure 3-7: Damping pressure on a perforated proof mass. Only the symmetric
portion is modeled.
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800 um

2783 % 53 gridof holes

;HQ '

proof mass thickness = 10 um,
tether thickness = 3 um

Figure 3-8: A citically damped accelerometer with perforated proof mass.

3.5 A Critically Damped Accelerometer with Per-
forated Proof Mass

By applying the above design procedure, we lowered the damping ratio of our initial
design (Figure 3-1) from about 3282, down to the critical damping ratio, .707. This
new design is shown in Figure 3-8. In this design, we used 10 um holes, separated
by 5 um webs, and increased the gap dimension from 1 um to 1.5 um. The total
proof mass and sense capacitance are the same as they were in Figure 3-1. This
capacitance is at least 1.5 pF, and it may be even higher if we were to account for

fringing. There are (53) - (53) = 2809 perforations.
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3.6 Validity of Reynold’s Equation

Now that we have solved Reynold’s equation, we can check whether the assumptions
made in the derivation (Appendix D) were valid for our particular structure. This is
especially important because of the unusual dimensions associated with microsensors.

From the contour plot in Figure 3-7, we find that the maximum pressure rise in
the gap is AP = .419 KPa, or .419 % of the ambient atmospheric pressure in the
sensor. This .low value is consistent with our assumption of incompressable gas.

We also need to check that the Reynold’s number and the Strouhal number are
small, so that fluid inertia effects can be ignored. Reynold’s number is given by
Equation D.4,

pVL

Re = ——
B

with the following values,

= 1.2.10"!® kg/um?
= 1000 um/sec
= 1..5um

= 1.8-.10"!" kg/um/s

T N <
|

this gives,
Re = .0001

And for the Strouhal number, from Equation D.3,

.5'1‘:E

L

where T is the characteristic time. We obtained V by taking the maximum velocity
assuming that the proof mass were vibrating at 2000 Hz with .05 um maximum

displacement, so we will use 1/2000=.0005 s as the characteristic time. This gives,

Sr=.3
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Re '
S = .0003

Since both the Re << 1 and Re/Sr < 1, we are justified in ignoring inertia effects.
At small gap dimensions, the boundary condition for the gas velocity at the damp-
ing plate surfaces is no longer exactly zero. When the Knudsen number, which is the
mean free path of the gas relative to the characteristic gap dimension, exceeds .01,
we enter a fluid flow regime where the no-slip condition at solid interfaces is no longer

valid. Our gap dimension is 1.5 um, therefore, the Knudsen number is,

Flows with Knudsen number between .01 and .1 can be modeled by the Navier-Stokes
equations, but the no-slip condition at the plate surfaces must be replaced by a slip
velocity proportional to the wall shear stress [38]. The results of such a model show
a reduction in damping pressure due to the low Knudsen number. The effect can
be considered as a reduction in the effective viscosity of the fluid due to slip at the

boundary. In our case, this is beneficial, in that it reduces the effective damping ratio.
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Chapter 4

Prototype Fabrication

4.1 Overview

A significant conclusion from the previous two design chapters, is that thin film pro-
cesses can be used to produce good accelerometer designs. High sensitivity, stability,
linearity, and broad bandwidth, can all be achieved. This chapter describes one
method of fabricating such thin film accelerometers. These are made by a single
plasma etch through a 5 um thick membrane. The membrane having been formed by
wafer bonding and etch back to a boron etch stop. Therefore, the plasma etch defines
the tethers and the proof mass at the same time, and they are all 5 um thick. This
is shown in Figure 4-1.

Figure 4-2 shows the fabrication sequence, which is fully described in the next
section. The mask design is discussed in Section 4.3. Scanning electron micrographs

of completed structures are shown in the last seciion, 4.4.
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Figure 4-1: Concept for prototype accelerometers. Proof mass and tethers are plasma
etched in a 5 um membrane made by wafer bonding and etchback.
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a) Device Wafer

b) Handle Wafer

¢) Wafer bonding and
etchback

d) Trench etch

e) HF release

O A T2 OO R P T T T I JR N XA DUTOOCRO A KOOV C SOV

n-type or p-type silicon
boron doped etch stop

thermal oxide

Cr/Pt metal

Figure 4-2: Fabrication sequence.
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Figure 4-3: Boron concentration versus depth in device wafer. Data taken by spread-
ing resistance technique.

4.2 Fabrication Sequence

4.2.1 Device Wafer

Referring to Figure 4-2 (a), on the device wafer we form a heavily doped boron
etch-stop layer. This is done by an 8 hour, solid source boron diffusion, at 1125
°C. After the diffusion, we remove the depcsited boron-nitride glass using BOE.
The resulting sheet resistivity is about .8 ohms/square. Figure 4-3 is a plot of the
boron concentration versus depth, as measured by the spreading resistance method.
Since anisotropic etchants (eg. KOH, CsOH) are stopped by boron concentrations
greater than about 5-10'® atoms/cm® [39], we would expect, from Figure 4-3, a firal

membrane thickness of about 6 um.

4.2.2 Handle Wafer

On the other wafer, the handie wafer, we grow 1.5 um of thermal oxide, and then
etch openings in the oxide where we want accelerometers. This oxide sets the gap
distance, h, between the proof mass and the handle wafer. It also electrically isolates
the handle wafer from the tether attachment points. Notice in Figure 4-2 (b), that

i
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after etching through the oxide, we continue to overetch into the silicon to form silicon
stubs. These stubs have two functions. One is to support the proof mass, to assure
that it survives further processing. The second function is to prevent stiction between
the proof mass and the handle wafer during the HF release step, by reducing contact
surface area between the two.

We used CF, plasma for the oxide etch, and SFg for the overetch into the sili-
con. The relative etch selectivity of thermal oxide to photoresist, in the CF, plasma
(MTL recipe #20, etcher 2) was between 1.6:1 and 2.4:1. Endpoint detection works
extremely well for the oxide etch, because we etch clear through the oxide to the
silicon substrate. When processing a small number of wafers, an effective method is
to watch the endpoint detector (channel #13 on etcher 2) until it takes a sharp drop
down to about 75% of its initial value, allow 10 seconds additional time, then activate
the manual endpoint to stop the etch. The SFg plasma (MTL recipe #12, etcher 1)
etches silicon at a rate of 6590 A/min. We etch 9 sec to get a 1000 A silicon stub.
There is no endpoint detection possible for this etch, it is necessarily a timed etch.
Since the time is very short, the amount of resist consumed is not of any real concern.

There are also two steps required before growing the handle wafer oxide. First, we
have an outside vendor polish the backside of the wafer. This facilitates subsequent
alignment steps where we use backside infrared illumination. Second, the wafer is
doped with phosphorus to about 5.7 ohms/square. This allows for good ohmic contact
when we do the metallization. The doping takes place on both sides of the wafer.

4.2.3 Wafer Bonding

We use high temperature wafer bonding to fuse the device wafer to the handle wafer.
To do the bonding, we simply RCA clean both wafers, place them in contact in the
same carrier in which they were cleaned, then firmly squeeze the pair together with
teflon tweezers. This is followed by one hour in the furnace, at 10060 °C, with nitrogen.

We were able to obtain nearly void-free bonds, as determined by optical infrared
inspection, when the wafers did bond. However, we had difficulty getting the boron
doped device wafers to bond to the handle wafers. This problem has been previously
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observed by our group [40]. To date, we have not conclusively determined what
causes this lack of bonding. One theory is that boron doping causes the wafer to
warp, which in turn inhibits bonding. Another is that the weak Van der Waal force
that provides the initial bond between the wafers, is somehow diminished by the high
boron doping at the surface. A third is that the high boron concentration causes a
microscale roughness on the wafer surface that prevents bonding,.

This research does not attempt to determine why the bonding with heavily doped
boron wafers is inconsistent. However, some empirical observations are worth men-
tioning. We doped three sets of device wafers, using an 8 hour, 1125 °C), solid source
diffusion. Of the three, all wafers from the first group bonded without difficulty, but
none would bond from the second or from the third group. All three groups used the
same diffusion recipe, and after each diffusion we stripped the glass with BOE and
verified that the wafers de-weted. The surfaces were inspected under a microscope,
using Nomarski interference to highlight surface imperfections. Wafers from all three
runs looked similar under the Nomarski; they all exhibited a cross-hatched, ‘linen’,
pattern. The boron-nitride solid sources were replaced after the second run, so the
third run was with new sources. The sheet resistivities after doping were .80, .90, .70
ohms/square for the first, second, and third runs.

In attempting to bond the wafers, the difference between those that bonded and
those that did not, was dramatic and obvious. When they did not bond, it was
immediately noticed during the initial contact step. These wafers could easily be
separated both before and after the high temperature anneal. On the other hand,
boron doped wafers that did bond, appeared to do so with the same ease as blank
wafers will normally bond. Also, boror doped wafers that would not bond with
patterned handle wafers, also would not bond with un-patterned handle wafers, nor
would they bond with blank wafers. All of the bonding runs contained control pairs
(blank wafers) that bonded without difficulty.
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4.2.4 Wafer Thinniﬁg

After bonding, we bulk-thin the wafers in KOH (potassium hydroxide) to remove
most of the device wafer, and then do the final thinning, down to the boron etch
stop, in CsOH (cesium hydroxide). Figure 4-2 (c) shows the wafers at this stage.
The KOH solution is 20% by weight KOH, 80% by weight DI water, at 60 °C. This
has a reported etch rate of 26.7 um/hr [39]. We do a timed etch, 17 hours, to end up
with about 40 um of remaining device wafer.

The CsOH solution is 60% by weight CsOH, and 40% by weight water, at 60 °C.
We let the CsCOH etch until it stops on the boron, as indicated by the lack of reaction
bubbles forming at the surface. The CsOH etch rate is about 8 um/hr, but it slows
considerably as the etch stop is approached.

The handle wafer is protected from etching by the 1.5 um thermal oxide covering
the backside and the edge. However, because the wafer edges are beveled, they do
not bond together, and as a result, they are attacked by the etchants. This is shown
in the photograph in Figure 4-4. When the edges get attacked, so do the patterned
areas near the edge of the handle wafer, creating the holes shown in the photograph.
To avoid these holes, which tend to weaken the wafer, it is a good idea not to extend

the oxide pattern clear to the edge of the wafer.

4.2.5 Metal Liftoff

At this point we have 5 um membranes bonded over cavities on the handle wafer. Now
we want to deposit metal contacts onto where the ends of the tethers will eventually
be, as shown in Figure 4-2 (d). We use platinum over chromium because this holds
up through our last process step, the HF release etch. We can not apply the metal at
a later step, because after the devices are trench-etched, the surface features prevent
good photolithography. We use a liftoff process to avoid having to do selective etch
removal of the Cr/Pt metal, which is difficult. Also, using the liftoff process makes
our pliotolithography mask clear field, in turn making alignment much easier than if

the mask were a darkfield. This is especially important since we use backside infrared
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Figure 4-4: Boron etch stop layer after ('sOH etch.

illumination for the alignment, which tends to blur the alignment features.

The liftoff process works extremely well. however, one difficulty is mentioned here.
Since our contact areas are small, the amount of metal and resist lifted oft is quite
large. When the actual liftoff is done in acetone, it is hard to prevent small pieces
of metal and resist from settling back onto the wafer, which are then very difficult
to remove. To avoid this problem. we fill two beakers each with 500 ml of acetone.
and a third beaker with 500 ml of methanol. With the wafer held in a single-wafer
carrier. we immerse it for 10 seconds in the first beaker of acetone. This removes
most of the resist and metal, and if the wafer surface is facing the bottom of the
heaker. then most of the material will float to the bottom of the heaker instead of
back onto the wafer. After 10 seconds, we then quickly transfer the wafer into the
second acetone beaker. After all of the resist has floated oft (about 10 minutes). we
then quickly transfer the wafer into the methanol. letting it soak here for about 10
minutes. Finally. we remove the wafer and let it air dry.

It was not necessary to use ultrasonics with the acetone to get good hftofl. In
fact. ultrasonic agitation destroyed most of our membranes when we did try it. An

occasional membrane also broke out due to the vacuum in the electron beam chamber.
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This is because the membranes are sealed at one atmosphere, so the differential
pressure tends to blow them off of the handle wafer. The only structure that this
happened to was a 1200x1200 um membrane, where the total area of the oxide stubs
was only 1% of the membrane area. Membranes did not blow out that were 800x800

um squares.

4.2.6 Plasma Trench Etch

This step etches entirely through the membranes, completely forming the proof mass
and the tethers. Figure 4-2 (d) shows the proof mass after the trench etch, it is still
supported by the oxide stubs. (The tethers are not shown in the figure.)

We use an SF¢ plasma etch, masked with photoresist for the trench etch. The
selectivity of silicon to resist with the SFq is 3.9:1 (MTL recipe #15, etcher 1). This
number represents the slowest silicon etch rate (which occurs at the center of the
wafer), relative to the fastest resist etch rate (at the edge of the wafer). Therefore,
the thickness of resist needed to etch the membranes, assuming worst case that they
are 6 um thick, is,

tpr = —— =15um

3.9
We use a 1.6 um resist mask for this trench etch.
The silicon etch rate depends on the total exposed silicon area. With our particular
mask, the silicon etch rate is 2.5 um/min at the wafer edge, and 1.7 um/min at the

center of the wafer.

4.2.7 Sensor Release

This final step releases the proof mass by etching out the oxide stubs, as shown in
Figure 4-2 (e). But before doing this, we complete the metal contacts by coating
the back of the wafer with Cr/Pt, then annealing the entire wafer at 500 °C for 30
minutes. Also, we scribe the wafer into individual die before doing the release step.
To release the proof masses, we do a 3 minute etch in 1:1 HF:DI water, followed

by 10 minutes of dilution with DI, then 10 minutes dilution with methanol, finishing
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with an'air dry (no forced air). There is no quick way to determine whether this
process is successful or not. Because of the overetch step into the silicon, there are
raised stubs that look like oxide stubs, making it very difficult to determine when the
oxide has been removed. Even under the SEM, without destroying the devices, we

cannot say for sure that they are released.

4.3 Mask Design

This fabrication process requires only three photolithography masks, as shown in
Figures 4-5 through 4-7. On each 1 cm die, we place ten different design variations,
plus some film stress diagnostics. The die layout is shown in Figure 4-8. Each wafer
has almost 60 die sites.

The first mask, Figure 4-5, defines the oxide pattern on the handle wafer. The
dark areas are oxide. The oxide stubs on this mask cover about 10% of the proof
mass surface area; on c..er devices, this number is 1%. Notice that there are also
oxide stubs supporting the tethers.

The second mask defines the Cr/Pt contacts (Figure 4-6). Note that alignment
of this mask would be quite difficult if it weve uot a clear-field mask as shown.

The third mask is for the trench etch. This particular accelerometer shown has
an 800 um x 800 um proof mass, perforated by 10 um holes with 10 um webs. It is
supported by long, folded tethers, giving it a sensitivity of 1 um displacement for 20g
input acceleration.

Referring to Figure 4-8 for the die layout, we have three rows and four columns of
accelerometers. These are arranged with some reason regarding the design variations.
Accelerometers in the top row have the following features in common: 800x800x5 um
proof mass, perforated by a 53x53 grid of 10x10 um holes with 5 um webs; and the
proof mass is supported by oxide stubs covering 1% of the total proof mass area. The
designs in the first row are each distinct in that the first from the left does not have
any tethers (this is used to indicate success or failure of the proof mass release), the

second uses straight tethers and has a 2200 Hz fundamental resonance (20g for 1 um
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displacement), the third has an 1100 Hz resonance (5g for 1 um displacemment), and
the last accelerometer uses folded tethers and has a 2200 Hz resonance.

In the second row, all of the proof masses are again 800x800x5 um. However, these
proof masses are perforated by a 40x40 grid of 10x10 um square holes, separated by
5 um webs. Also, 10% of the proof mass is supported by oxide stubs. The difference
between each accelerometer in row 2 is the same as in row 1; the first from the left
has no tethers, the second is 2200 Hz, the third is 1100 Hz, and the last is 2200 Hz.

The sense capacitance for all of the devices in rows 1 and 2, is 1.5 pF between
the proof and each electrode plate. This is assuming a 1.5 um gap dimension. The
two accelerometers in row 3 have four times that capacitance, 6 pF for each electrode
plate. These proof masses are 1200x1200 um, perforated with an 80x80 grid of 10 um
square holes, separated by 10 um webs. Tke first accelerometer from the left in row
3 has a resonant frequency of 2200 Hz, and the second is 1100 Hz.

There are also two sets of structures for indicating residual stress in the boron
doped membrane. At the center of the third row, are five beams of increasing lengths.
These will buckle at film strains between 50 and 250 ppm compressive.

For tensile strains, we have designed the diagnostic structure shown in Figure 4-
9. Assuming that the stiff frame shown is under tensile strain, then upon release, it
will put the center beam, into compression. We make the stiff frame about 10 times
greater in ‘width than the center beam. These structures are located at the bottom
left on the die. There are five of these, designed to buckle when the film strain is
between 50 and 250 ppm tensile.
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Figure 4-6: Mask # 2: metal contacts.
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Figure 4-7: Mask # 3: trench etch.

4.4 SEM Photographs

The first four SEM photographs are of the accelerometer from row 2, column 1, of
Figure 4-8. They were taken after the trench etch, but before the HF release.

The first two, Figures 4-10 and 4-11, clearly show the folded pinwheel tethers,
the perforated proof mass, and the oxide stubs that are still supporting the proof
mass.

The third photo, Figure 4-12, shows a tether and its attachment to the field oxide.
The Cr/Pt contact is the light material on top of the tether.

The last photo, Figure 4-13, clearly shows an oxide stub supporting the folded
tether. Under the oxide stub is the overetch step into the silicon. We can measure
some dimensions from this photo, since we know it was taken at an angle of 60 degrees.

and magnification of 4000.
e 1.5 um oxide thickness
o 5.2 um tether thickness

e 11.8 um tether width at bottom
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Figure 4-8: Die layout.
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Bonded area (enclosed by dashed line) Stiff frame

Buckling beam

Figure 4-9: Diagnostic structure for indication of thin film tensile stress.
e 9.0 um tether width at top

Dektak measurements showed 1.43 um for the oxide thickness, and 5.03 um for the
tether thickness. The tether design thickness was 5 um. The width measurements
on the tethers, verify the anisotropic nature of the SFg etch; we undercut the tethers
by 11.8 — 9.0 = 2.8 um, for a 5.2 um deep etch. (We estimate the accuracy of

measurements from photos at about +.05 um).
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Figure 4-10: Top view of accelerometer structure. This shows the perforated proof
mass supported by folded pinwheel tethers.
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Figure 4-11: A closer view of the proof mass with perforations. Oxide support stubs
visible under proof mass.
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Figure 4-12: A tether and its attachment to the field oxide. The lighter area is
Cr/Pt contact.

Figure 4-13: The corner of a folded tether. It is still supported by an oxide stub.
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Chapter 5

Accelerometer Tests

Approximately eight of the accelerometers were packaged, wirebonded, and tested.
All of these devices could be moved by probe tips, and exhibited remarkable strength
in that the proof masses could be lifted at least 50 um without breaking the tethers
or breaking the bond to the handle wafer. One device, #3, gave reasonable results
when tested on our dynamic shaker, and #3 also showed pull-in behavior when a DC
bias voltage was applied across the electrode plates. This section reports on these

results and compares them to our theoretical predictions.

5.1 Packaging and Interconnects

The test samples that we worked with were the 1 cm x 1 cm die as shown in Figure 4-8.
Each die has eight different accelerometers, plus the film stress diagnostic structures.
We mounted these with epoxy into 1 in x 1 in ceramic packages. Probes were used to
verify electrical isolation between the proof mass bonding pads and the handle wafer.
If the devices passed the probe test, then we wirebonded them with .001 in. diameter
aluminum wire in a wedgebonder. One wirebond was made from each device to a
package lead, and another bond was made from the handle wafer to a package lead.
The wire lengths were about 1 cm.

The accelerometers that we tested had a slightly different process sequence than

that described in Section 4.2. The final release step with HF acid also removed the
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Cr/Pt metal contacts. This happened because the 500 A Cr layer was too thick, so
that the HF was able to get under the Pt and quickly etch away the Cr. To salvage
these devices, we removed all of the metal with aqua regia before doing the HF
release. After the HF release, we evaporated 100 A of aluminum over the entire die,
and then sintered the aluminum at 470 °C. The aluminum coating was not enough
to electrically short the devices to the handle wafer, but it was enough to allow ohmic
contact to be made to the handle wafer. We had tried to make ohmic contact without
the aluminum coat, directly to the silicon; and as expected, ohmic contact was made
to the P+ doped devices, but not to the N+ doped handle wafer.

In addition to verifying electrical isolation, we used the probes to check that the
proof masses were detached from the underlying oxide stubs. We could bring a probe
down into contact with a proof mass, and then push the proof mess laterally about
20 um without breaking it. Also, we could work probes underneath the proof mass,
and then pull the proof mass away from the handle wafer. In most cases this was a
necessity in order to separate the proof mass from the handle wafer, since they were
usually stuck together.

Wirebonding to the tether pads was difficult, but not impossible. One of these
bonds is shown in the photograph in Figure 5-1. The difficult part is centering the
bond on the pad, so that the bond does not extend over the pad and short the device
to the handle wafer. The bonding pads are 80x80 um, which is intentionally small
to minimize stray capacitance. Breaking of the tethers due to the bonding force was
not a problem. We also tried using a ball bonder with .001 in gold wire, but the ball

was too large for the pads.

5.2 Capacitance Measurements

5.2.1 Procedure

We verified that the sensing capacitance, which is the capacitance between the proof

mass and the handle wafer, is close to our design value. To make the measurements,
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Figure 5-1: Photograph of aluminum wirebond to 80x80 um tether pad.

we used an HP 4280A capacitance meter. The HP 4280A uses a 1 MHz, 30 mV test
signal, to measure capacitance with resolution down to 1 {fF, and absolute accuracy
of .1% of full scale range. The most sensitive range setting is 10 pF full scale. It can
apply a bias voltage to make capacitance vs. voltage (C-V) measurements, and it can
take capacitance vs. time (C-t) measurements at sampling speeds as fast as 10 ms
per sample.

A schematic of the test setup is shown in Figure 5-2. The ceramic package
containing the test die is taped to a 4 in x 2 in piece of circuit breadboard. Wires are
soldered between the ceramic package and banana jacks installed in the breadboard.
From the banana jacks we convert to BNC connectors and use about 3 ft. of shielded
connector over to the HP 4280A.

We calibrated the device to remove stray capacitance from the shielded cables
back into the HP 4280A. Therefore, our capacitance measurements represent the
combined capacitance of the devices under test, the leads on the ceramic package,

and the wirebonds from the ceramic package to the die.
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5.2.2 Results

Device #3 had the following measured and design capacitance:

measured capacitance : 3.5 pF

design capacitance : 1.9 pF

5.2.3 Discussion

Two non-ideal factors are affecting the capacitance value that could explain why the
measured value does not agree with the design value. The first of these is the stray
capacitance. This is the capacitance between the leads on the ceramic package, and
between the aluminum wires from the leads to the die. The stray capacitances are in
parallel with the sense capacitance, thus they increase the measured value.

The second factor is any warping of the proof mass. This could be caused by
nonuniform stresses through the thickness of the proof mass, as might be caused
by the thin aluminum coating used for contacts, or by nonuniform boron doping.
Warping can lead to either increased or decreased sense capacitance, depending on

the direction of the bend.

5.3 Capacitance versus Bias Voltage

5.3.1 Procedure

By applying a DC bias voltage between the proof mass and the handle wafer, we
can move the proof mass to simulate an input acceleration. The electrostatic force
created by the bias voltage is reacted by the tethers, resulting in an equilibrium dis-
placement. At some voltage, called the pull-in voltage, the electromechanical system
becomes uﬁstaBle; the electrostatic force overcomes the tether force, and the proof
mass deflects until it contacts the handle wafer [41]. The test setup is the same as
for the capacitance measurements, since the HP 42804 is capable of applying a DC

bias voltage.
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variable capacitance
between proof mass and handle wafer

HP 4280A
capacitance
O meter
shielded cables
grounded at HP 4280A

BNC connectors

Figure 5-2: Schematic of test setup for capacitance measurements.

5.3.2 Results

Figure 5-3 shows the C-V data for accelerometer #3. The pull in voltage is apparent
at about 11 V.

5.3.3 Discussion

The effect is symmetrical for either positive or negative voltages, as expected. How-
ever, 11 V for pull-in is substantially higher than the theoretical value. To calculate
the theoretical pull-in voltage, we use the results from [41]. The pull-in voltage, V;,

for two parallel capacitor plates, is given by,

/ 8 h3k

where the variables are,
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Figure 5-3: Capacitance vs. bias voltage. Indicating movement of the proof mass.
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V, = pullin voltage between the proof mass and the handle wafer
— tether spring constant
— gap between proof mass and handle wafer

€& = permittivity of air

A = capacitor plate area

The design values for accelerometer #3 are:

h = 15-10°M

k = 1.05N/M

A = .48.10"°M?
@ = 885-1072F/M

Using these values in Equation 5.1,
Vp = .50V

Figure 5-3 shows ﬁu]l—in at about 11 volts We suspect that the gap thickness must be
substantially larger than 1.5 um to explain the difference between the measured and
theoretical V,. Also, we know that K is less than 1.05 N/M because of the lateral
etching of the tethers. From Section 4.4 we know that the average tether width,
because of lateral etching, is (9+11.8) /2=10.4 um instead of 11.8 um. This reduces
the tether stiffness, k from 1.05 to,

k= (1.05N/M)¥i)'—: — 93N/M

Using the measured value of 11 volts for the pull-in, and k=.93 N/M, we calculate
(by rearanging Equation 5.1 the apparent gap spacing to be,

P

27 €0 A1Y/?
_ y2/s ___2_]
h=V, [8 k

h = 12um
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5.4 Vibration Test

5.4.1 Procedure

We constructed a vibration test system (Figure 5-4) using a Ling Dynamics shaker,
capable of 100 1b maximum vibrating force, at frequencies from DC to 7500 Hz. The
maximum acceleration is 117g. The test accelerometer’s output is calibrated against a
Bruel and Kjaer 4383 reference accelerometer, also mounted on the vibrator. The 4383
has a calibration accuracy of +2%, transverse sensitivity of .6%, and the amplitude
response deviates no more than 10% over the range from .1 Hz to 4 KHz.

We measured the change in capacitance of the test accelerometer using the HP
4280A C-V meter. By running this in C-t mode, we captured dynamic capacitance
éhanges at a lbO Hz rate. Then, using fourier transform of a 256 point sample, we
calculated the test accelerometer’s magnitude response when excited by the shaker.
Because of the high sampling rate in C-t mode, the HP 4280A can resolve only .05
pF changes when in C-t mode. This limits the minimum acceleration level detectable

by our vibration test.

5.4.2 Results

We verified that stray capacitance was not a problem, even with the shaker turned
on. This was determined by tests made on a device that had the proof mass stuck
down to the handle wafer. Because the proof mass was stuck, the sensor contributed
no changes to the capacitance, so any output could only be due to changes in stray
capacitance or other test system noise. We found that the maximum capacitance
change on the stuck accelerometer was less than the .05 pF minimum deiectable
capacitance.

Two examples of the FF'T results are shown in Figure 5-5 and 5-6. On the y-axis
is plotted the change in capacitance, and the x-axis is the FFT frequency. We see
that in both cases the frequency of the accelerometer response matches the frequency

of the input acceleration, which is 33 Hz in Figure 5-5, and 43 Hz in Figure 5-6.
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Figure 5-4: Vibration test system.
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By taking the 256 point FFT at a number of different input acceleration magnitudes,
while holding the frequency constant; and then plotting the peak magnitude from
the FFT’s, we obtained the results shown in Figure 5-7. This shows the change
in capacitance of the accelerometer under test, as taken from the FFT, versus the
reference input acceleration as indicated by the B&K reference accelerometer mounted
on the shaker. We performed this test at two frequencies as shown; one at 33 Hz and

another at 43 Hz.

5.4.3 Discussion

We can compare the measured sensitivity shown in Figure 5-7 to the theoretical
sensitivity. The theoretical sensitivity is derived as follows.

From Equation 2.3, we know that

6 = %a (5.2)

where,

§ = proof mass displacement
M = proof mass
k= tether stiffness

a = input acceleration

If the gap dimension is h; when @ = 0, and h, for a # 0, then
6 = hl - hg (5.3)
and if the sense capacitance is C; when ¢ = 0, and C; for a # 0, then
hy

C: =iy (5.4)

Combining these last three equations to solve for the change in capacitance, AC =
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Figure 5-5: Response of the accelerometer to 33 Hz vibration input.
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Figure 5-6: Response of the accelerometer to 43 Hz vibration input.
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Figure 5-7: Accelerometer sensitivity. Measured and theoretical.
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C, — C,, for a given input acceleration, gives

—#s ! (5.5)

From the C-V data in Section 5.3 we estimated that

hy = 12um

and

k= .931V/M

We also know that M is less than the design value, because of the lateral etching. We
calculate this loss in mass as the total exposed perimeter of the proof mass (including
damping holes), times the depth of the etch, 5 um, times one half of the lateral etch,
1.4 um, times the density. This gives

AM = .5.10"kg

which we subtract from the design value of 5.5 - 10~%kg, to get

M =5.10"%kg

With these values, and g = 9.81 M/s?, and C; = 1.92 pF, we plot the dashed line
shown in Figure 5-7. This shows reasonably close agreement with the measured data.

Measurements made on an optical microscope also indicated that the spacing
between the proof mass and the handle wafer may be greater than 1.5 um. Using
a z-axis micrometer we measured the position of the proof mass corners (top side)
relative to the handle wafer. The results were: .0001, .0001 , .0002, and .0005 inches.
Also, inspection of optical interference fringes on the proof mass indicated that it was
not warped. Therefore, it is quite likely that the proof mass is tilted relative to the

handle wafer.
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Chapter 6

Conclusions

6.1 Design

A significant conclusion of our mechanical design work is that sensitive accelerometers
can be made using thin film process, where the tethers and the proof mass are made
in the same film. This is not obvious, because from Equation 2.4 we know that for
high sensitivity we need a large proof mass relative to the tether stiffness. This would
indicate that we want the proof mass to be thick relative to the tether thickness,
which is not typically what we get from thin film processing. Nevertheless, using
the pinwheel or folded pinwheel designs shown in this thesis, we can achieve good
sensitivity, and without using excessive die space.

Additionally, we have found that the mechanical design is important with respect
to the performance of the accelerometer. Errors due to mounting stresses, or from
thermally induced stresses, are largely eliminated by designing the tethers to iso-
late the proof mass from these external stresses. Errors due to nonlinearity in the
mechanical response of the sensor can also be eliminated by the tether design.

The issue of gas damping must be addressed for thin film designs. The combi-
nation of small gap between the proof mass and the support wafer, and the large
proof mass area, leads to an exceptionally high damping ratio, which severely limits
the dynamic bandwidth of the sensor. To avoid this, the sensor could be packaged

in vacuum, but this adds to the cost and reduces the reliability. We have shown
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that perforating the proof mass is an effective solution to the problem. By using
peforations, the damping ratio can be designed to the ideal critical damping ratio,
which gives maximum dynamic bandwidth. The tradeoff is that the sensor size must
increase to makeup for the lost sense capacitance. However, the acceptable minimum
sense capacitance is substantially lower when conditioning electronics are integrated
on the same chip with the sensor. In this research, we required 1.5 pF capacitance,
assuming off-chip circuitry. With on-chip circuitry, this requirement would reduce to
about .2 pF. Using this new value, we scale the design shown in Figure 3-8, and find
that the size of the sensor could be reduced to about 200 um x 200 um.

Some conclusions can be made regarding the use of finite element analysis for
the design of these accelerometers. One use is for the verification of derived me-
chanical equations. When the finite element results agree with analytical closed-form
equations, as we have shown them to do here, this gives the final assurance that no
mistakes were made and that nothing was overlooked in the derivations. For other
analyses, the FEA is practically essential. For example, calculating the damping pres-
sure on the perforated proof mass, or nonlinear analysis of the proof mass response,

or using the full anisotropic material properties of silicon.

6.2 Fabrication

The fabrication results are significant in that the process is quite simple (only three
mask steps), yet it yielded working structures. The boron doped membrane, however,
is not ideal for producing mechanical or electrical structures. The next step in the
development of this process might be the use of an epitaxial layer instead of the boron
doped layer. If this is successful, then circuits could be fabricated on the epitaxial

layer and eventually integrated with the accelerometer.
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6.3 Testing

We were able to show sensitivity to input accelerations using the electrodynamic
shaker. This data shows sensitivity of the accelerometers out to 40 g peak sine input.
Below 10 g we could not measure the output as it was below the .05 pF sensitivity of
the capacitance meter when used for C-t measurements.

The sensitivity of the sensors was less than the design value. Both the shaker test
and the capacitance versus bias voltage, show low sensitivity. We have suggested that
this may be due to a larger than expected gap between the proof mass and the handle
wafer. If we assume this, then the shaker data and the bias voltage data are shown
to agree reasonably well. Also, optical measurements on the proof mass indicate that
it is not parallel to the handle wafer, but that one end is raised substantially above
the handle wafer.
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Appendix A

Elastic Material Constants for

Silicon

In silicon, the elastic constants relating stress to strain depend on the orientation of
the stress and strain within the material. This anisotropic behavior is due directly
to the differences in atomic spacing between the three different crystallographic di-
rections [42]. Since silicon has a cubic crystal structure, the elastic constants are
the same between two orthogonal directions, which helps to reduce the difficulty that
anisotropy adds to mechanical calculations.

Two sets of elastic constants are presented and explained here. The first is the
full elastic tensor per the theory of solid continuum mechanics. In practice, this
is useful for input into finite element programs. A finite element program can use
numerical integration during element formulation to fully account for the anisotropic
material behavior. However, a simpler method can be used when the stresses act
entirely along a single direction in the silicon. Then we can calculate a Young’s
modulus and a Poisson’s ratio for that direction, and use these engineering constants
for calculations with the structural beam, plate, or rod equations.

In solid continuum mechanics theory, the elastic tensor (C) relates the stresses to
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Figure A-1: Stresses on a differential solid element.

the strains in a linear manner according to Hook’s law:

(oo \ (&)
o, €,
=(C) (A.1)
Tey Y=y
Tyz Yyz
\ T2z ) \ Vzz }

where the stresses are shown in Figure A-1.

For an isotropic material there are only two independent constants in (C'), they
are Young’s modulus E, and Poisson’s ratio v. In addition, for an isotropic material,
(C) does not change when it is transformed to other directions.

For silicon, a cubic crystal structure, there are three independent constants, and
the tensor will change when transformed to other directions, although it remains the
same for orthogonol rotations [43].

For an isotropic material:
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[0z ) fcn €z a2 0 0 0 /e )
oy €12 €3 ¢2 0 0 O €y
o, c12 €2 ¢11 0 0 0 €,
= (A.2)
Tzy 0 0 0 c 0 O Yoy
Tyz 0 0 G 0 cq44 O Yyz
e / Lo 0 0 0 0 e \r)
Or, in terms of E and v, for an isotropic material:
(0= (l—u v v 0 0 0\{'6‘,\
oy v 1—-v v 0 ¢ 0 €y
o, E v 7 1—v 0 0 0 €,
| @FA-V)| o 0 0 &= o 0 Yoy
Ty 0 0 0 0 S o0 Yyz
\ 7/ \o o 0o 0o o ‘-:"J e
(A.3)

For a cubic crystal material, with the reference axis oriented along a primary crystal

axis:

V()

(o= \ ¢, & ¢, 0 0 0
oy ez ¢, &, 0 0 0 €y
o N S 0 0 0 €: (A4)
Tay 0 0 0 2 0 o Yey
Tyz 0 0 0 o0 § o Tyz
\7.. / \0 0 0 0 0 J \ Yz

which is exactly tke same as Equation A.2 for an isotropic material, except that now
there are three independent constants. (The superscripts indicate the order in which

these constants are input into the ABAQUS finite element program.) For silicon, the

constants are [44]:

011 = 1.6564 .1011 Pa
Ciz = .6394 -10' Pa
044 = .7951 '1011 Pa
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Figure A-2: Young’s modulus as a function of direction in the (100) plane.

If the stresses act entirely in one direction, then the elastic constants can be
reduced to a Young’s modulus and a Poisson’s ratio for that direction. If the direction

of siress is ¢, then Young’s modulus is defined as the stress over strain,

E;

o; : -

and Poisson’s ratio relates the strain in another direction j, relative to the strain in
the ¢ direction,
: €5

(A.6)

The transformation of equation A.4 to angles other than the primary crystallographic
angles, and the determination of E and » has been done [45]. A plot of the results
for E is shown in Figure A-2 for the (100) silicon plane.
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Appendix B

Equations for Tether Mechanical

Design

B.1 Equations for Straight Tether Designs

See Figure 2-3 for the definition of variables. Also note that the accuracy of these

equations is verified by the comparison to finite element results, presented in Tables

2.1 through 2.3.
Input Axis:

Pendulous Axis:

3
5= Mg |

4 Ebt3
1
f= g

“2xV§
_Mglitl2

4 22bt3

111

(B.1)
(B.2)

(B.3)

(B.4)
(B.5)

(B.6)



Hinge Axis:
_ Mg ©

4 Etb3

- 5%,;\/% (B.8)

Mglbl2
=33 (B.9)

(B.7)

on
Il

displacement for 1g acceleration along the
input axis, pendulous axis, or hinge axis
= undamped resonant frequency

proof mass

= gravitational acceleration constant

— | =
Il

= tether length
tether thickness

,..
i

modulus of elasticit y

= tether width

o =
i

maximum stress

9
Il

B.2 Equations for Pinwheel Tether Designs

Refer to Figure 2-4 for definition of the variables.

Input Axis: .
- #Elbt" (B.10)
f= -21;\/% (B.11)
Pendulous Axis and Hinge Axis:
K, = 2 (B.13)
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K, = Et(%)"' (B.14)

6= 2.r(11l-4+921{2 (B.15)
f= %\/% (B.16)
o=16 (K,%gt% + Klbl—t) (B.17)
K, = axial spring constant of a single tether
K, = in-plane bending spring constant of a single tether
§ = displacement for 1g acceleration along the
input axis, pendulous axis, or hinge axis
f = undamped resonant frequency
M = proof mass
g = gravitational acceleration constant
1 = tether length
t = tether thickness
E = modulus of elasticity
b = tether width
o = maximum stress

B.3 Equations for the Folded Pinwheel Designs

Refer to Figure 2-6 for definition of the variables.

Input Axis:
EI] 3
R=——- .
GJ, 1 (B-18)
Mg B 6
b == 13ET, 4237 (B-19)
Mg s%
62 = TZG—JI (B20)
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Mg s°

3 = ——

2 24EI,

§=06+68+63

Pendulous Axis and Hinge Axis:

I 3
I 1
}3’4‘5

G =mEr |2

|~

83 ls?
- +

C2

21

= 2EL, T 3ET
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(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)



6 = displacement for 1g acceleration along the

input axis, pendulous axis, or hinge axis.

M = proof mass
g = gravitational acceleration constant
s = connecting tether length
[ = main tether length
t = tether thickness (main and connecting tethers)
E = modulus of elasticity
G = shear modulus
b = main tether width
w = connecting tether width
0 = maximum stress
L = %
L =%
h = pibt?
B1 = torsion factor, main tether
A, = bt
I, =
Lo- o
J: = powtd
B2 = torsion factor, connecting tether
Ay, = wt

B.4 Derivation of Equations for Straight Tether
Designs

In general, we will use the following derivation procedure:

1. Draw the free body diagram of the static forces and moments.
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2. Write the equations of force and moment equilibrium.

3. Write the beam equations for the shear force , bending moment, angle of beam

rotation, and displacement, as a function of position along the tether length.

4. Solve 2 and 3 to find the displacement.

Note that once we solve for the deflection per g, 8, it can be converted into an

equivalent spring constant, k, acting at the center of mass,

- My

. (B.30)

Displacement for input azis accelerations (Equation B.1):
The deflected shape, and the free body diagram are drawn in Figure B-1. In this
figure, the circles with arrow heads represent bending moments, and the straight
arrows represent forces. Static force equilibrium in the y-direction gives the value of

the shear force, v(z), acting on each tether,
o(z) = ? (B.31)

The bending moment along the beam length is,

m(z) = - [v(z)- b=
= _5_:13 +C
By symmetry, we know that m(z = 0) = —m(z = l), therefore,
Mg
m(z) = % (% - z) (B.32)

Integrating the moment to get the angle of rotation,

0(z) = g /m(z)-bz



and C' = 0 because §(z = 0) = 0. Finally, integrate the angle to get the displacement,

y(z) = [O(z)- b=z
= HMe(g1-%)+cC
and C = 0 because y(z = 0) = 0. Assuming that the tethers have rectangular cross-
sections with thickness ¢ and width b, we substitute I = bt3/12 for the area moment
of inertia. Then the deflection at z = [ gives Equation B.l,
Mg B

Ye=l)= "5 (B.33)

Mazimum stress for input azis accelerations (Equation B.3) :
The maximum bending stress occurs at the two attachment points of the tethers,
where the moment m(z) is maximum. Using equation Equation B.32 for the moment

along the beam,
Mgl

m(z =0) = 13

(B.34)

The maximum stress is the maximum moment times the distance from the beam
neutral axis to the outermost beam fiber, which is one half the tether thickness;
divided by the area moment of inertia, I = bt3/12. Therefore,
Mglti2
o = g

=71 2208 (B.35)

This bending stress is the only significant stress component; shear stress is negligible.

Displacement and stress for pendulous azis accelerations (Equations B.4, B.6):
The free body diagram for this displacement is shown in Figure B-2. Acceleration
along the pendulous axis loads the four tethers in pure axial tension and compression.

Summation of forces in the x-direction gives the value of the axial force, p,
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The stress is the force divided by the area of the tethers,

Mg 1
o= 2z (B.37)

From the definition of Young’s modulus, the strain is the stress divided by the Young’s
modulus, and the total displacement, §, of the tethers in the x-direction, is the strain
times the tether length. Therefore,

s Mg !

=1 WE (B.38)

Displacement and stress for hinge azis accelerations (Equations B.7, B.9):
The tether deflections and the free body diagram are shown in Figure B-3. All four
tethers bend with the same zero-rotation end condition as they do for input axis
accelerations, except that now the deflection is in the plane of the proof mass instead
of perpendicular to the plane as it is for input axis accelerations. Because of this,
the derivations and the final equations are the same as for input accelerations, except

that we replace tether thickness, ¢, with the width, b, and vice-versa.

B.5 Derivation of Equations for Pinwheel Tether

Designs

Displacement and stress for input azis accelerations (Equations B.10, B.12):

At leest for linear analysis, the input axis deflection and stress for the pinwheel design
are the same as for the straight tether design. All four tethers will deflect as beams
with no rotation at the ends, and the maximum stress occurs at the attachment points.
When nonlinearities are considered, however, we find that the straight tethers have a
significant stress stiffening effect, which is covered in Section 2.6.

Displacement for hinge azis or pendulous azis accelerations (Equation B.15) :

For this derivation, we only need to draw the free body diagram and write the force

equilibrium equations. Then we use the results from the previous derivations instead
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of solving the beam equations again. Figure B-4 shows the deflected shape and
the free body forces and moments. Notice that two of the tethers are in pure axial
tension and compression, and the other two bend with no rotation at the ends. We
already know the spring constants for both of these beams. For the the axial ten-
sion/compression tethers, we find the spring constant by substituting Equation B.4
into Equation B.30. We alsc have to divide by four since these equations assumed

four tethers, and we want the spring constant for just one tether. Repeating Equation

B.4,

and Equation B.30,

K = — (B.39)

We do the same procedure for the bending tethers. We use Equation B.7,

Mg P
4 Etb?

and substitute four times this into equation B.30 to get,
b
With these equivalent spring constants, we can do a force balance in the y-direction,
Mg = 62K, + 2K,)

and so this gives equation B.15, repeated here,

Mg

6= 2K, + 2K,

(B.41)
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Mazimum stress for hinge or pendulous azis accelerations (Equations B.17) :
Again, we will use our previous results for this analysis. The maximum stress in
the bending tethers occurs at the attachment points. It is equal to the maximum
moment, m, times the maximum distance from the neutral axis of the tether to the
outermost fiber, which in this case is half the tether width, b/2; divided by the area

moment of inertia, ] = tb*/12,

n|o-
(=2

ms m

= —— = —

tb?

In Section B.4 we already showed that for bending with zero rotation at the ends,

the maximum moment is the shear force, v, times half of the tether length (Equation

B.34),
!

m=17v

The shear force is given by the spring constant K, times the displacement,
v = K. 2" )

Combining these last three equations gives the maximum bending stress,

lb12

We also must consider the stress in the two tethers loaded in tension and compression.

The axial force on these is given by the displacement, §, time the axial spring constant,
p=46-K,

and the stress is the axial force divided by the tether area,
o= 6Kie (B.43)

bt
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The maximum stress is the larger of these two. Or, to be conservative, simply add the
two together and use the sum as the maximum stress, as we have done in Equation

B.17.

B.6 Derivation of Equations for Folded Pinwheel
Tether Designs

These derivations become difficult because now each tether is made up of three
straight beam segments, and the boundary conditions between the beam segments are
not known beforehand. The fastest way to solve this problem is to set up the finite
element equations in matrix form, and solve the matrix with a computer math pro-
gram. This is better than using a finite element program because the design variables
(eg. tether length, thickness, etc.) are parameters in the program, whereas a finite
element model would have to be remeshed in order to change the design parameters.
But here we do the derivation to arrive at the closed-form solutions.

Displacement for input azis accelerations (Equations B.19 through B.22):
Following the same procedure as before, we draw the free body forces acting on the
tethers. A single folded tether, deflected along the input axis, is shown in Figure B-5.
We do not show all four folded tethers in the figure, because it is just too difficult to
draw. However, we know that each tether will deform in the same maaner. We refer
to the middle segment of the folded tether as the ‘connecting tether’, and the other
two segments as ‘main tethers’.

Figure B-5 shows the total displacement as being the sum of 6; -+ 62+ 8. The first
displacement, &, is the bending deflection of the main tethers. This bending mode
does not quite have zero-rotation end conditions, because torsion of the connecting
tether allows for some rotation. The second displacement, §,, is due to the torsion
of the main tether multiplied by the length of the connecting tether. The third
displacement, &3 is the bending of the' connecting tether. Notice that torsion in both
the main and in the connecting tethers, effects the total displacement.

Figure B-5 shows the free body forces and moments. Double arrow notation is
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used to indicate moments, as opposed to the circles used in the previous free body
diagrams. Also, we use symmetry and only draw one half of the tether in the free body
diagram. At the symmetric boundary, the bending moment and the beam rotation
are zero (although there is still a rigid body rotation of the connecting tether that
creates §;). '

After drawing the free body diagram, the next step is to use the force and moment

equilibrium 'equa.tions. Summation of forces in the y-direction (out of the page) gives,

oMy (B.44)
4
Summation of the bending moments on the connecting tether gives,
s Mgs
my = ‘05 = TE (B45)
And summation of the bending moments on the main tether gives,
mg =vl —my = ﬂl —m, (B.46)

4

These last three equations allow us to solve directly for m; and for v, and then for é,
and é3. But to find m, and m3 we will also have to use the beam equations. Before
doing that, we will find §, and 63. The é; deflection is just bending with zero rotation
at the ends, éo we can use Equation B.l1 with s as the length instead of I, and w as
the width instead of b,

_ Mg s

b = Fupr

and substitute I, = wt3/12,
Mg s°
s = —=

4 12EI,

(B.47)

Next, we find §,. Deflection §; is just the angle of twist due to the torque m, on the

main tether, multiplied by the length of the connecting tether,

62 = s



This gives us the expression for §,,

Now we return to Equation B.46 to find §,. We introduce the beam equation in order
to get another equation in m, and m;. We write the beam equation in terms of x, the
distance along the main tether, with z = 0 at the support, where the displacement
and the rotation are both zero.
9z) = gpSm(z)-bz

= ﬁf(ma—ﬂa:)-&c

= EI; (maa:——ﬂ’ ) +C
and C = 0 because §(z = 0) = 0. Substitute Equation B.46 into the above to write

it in terms of m, instead of m,. This gives,

1 |[Mg z?

At this point we can eliminate m,, because we know that where the main tether
attaches to the connecting tether, the bending rotation in the main tether equals the

twist (rotation due to torque) in the connecting tether,

_ 2 3
b(z=1)= G2
Solving for m, we get,
Mg |

where R is defined in Section B.3. Then the beam equation for 4 becomes,

Mg z2\ Mg |
b(z) = EII[ (l"?)_THR

Integrate this one more time to get the deflection y(z),



Evaluating this at 2 — | » and multiplying by two (because there are two main tethers)

gives the deflection 4, that we want,

Mg B 6

The factor 2 is important because it is the ratio of the main tether’s bending stiffness

to the connecting tether’s torsional stiffness. As R goes to zero, the connecting tether

does not allow the main tether to bend at the attachment point, and so Equation

B.50 approaches that for a beam with zero rotations at theends. As R goes to infinity,

the main tether is allowed to deflect and becomes more like a fixed-free beam.
Mazimum stress for input azis accelerations (Equations B.24) :

The maximum stress occurs in the main tether where it attaches to ground. The

moment here is mz. From Equations B.46 and B.49 we get,

Then the stress is just the moment times the distance from the neutral axis to the
outermost beam fiber, which in this case is t/2; divided by the area moment of inertia,
I,. Therefore,

(- 5ka)
O'—TI l—m Il (B.51)

Displacement for pendulous o hinge azis accelerations (Equation B.27) :
For pendulous or hinge axis accelerations, the tethers do not all deflect in the same
manner. Refering to Figure B-6, two of the tethers have a ‘soft’ deflection mode,
with equivalent Spring constant of K;. The other two tethers deform in their ‘hard’
direction, with an equivalent spring constant of K,. We will find these two spring
constants for the folded tether. Actually we will calculate the spring compliances,

which are the inverse of the spring constants,
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1
G=%

Once we have the spring constants, we will add them together as springs in parallel,
so that the total proof mass deflection is given by Equation B.27,
Mg

6= 4—7
ata

This reduces the problem to that of finding C; and C;. We will start with C,, which
is the compliance in the soft direction. Figure B-7 is the free body diagram of the
forces and moments. The force, F, that the proof mass exerts on the tether, is an
unknown, as well as the two moments, m; and m,. The displacement unknowns are
y1, which is the displacement at the applied force; y2, which is the y-displacment of
the point where beam 1 attaches to beam 2; and #;, which is the rotation at the same
attachment point. The unknown that we are primarily interested in is y;. The three
segments are also numbered in the figure (the numbers in the box). We will refer to
these numbers in the derivation.

From a balance of moments on beam 1 we get,
my—mp=F-l (B.52)

The beam equations for beam 1 give,

o=) = 51 (F-?z - m,,z) (B.53)

1 3 2
y(z) = EL (F— - mlm_') + (B.54)

The equations for beam 2 are,
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mly) = —[v-by
= my
= Fl-m
0(y) = 2nSmy)-dy
= gp(Fly—my)+c

Using the symmetry condition that 8(y = s/2) = 0, gives the value for c, thercfore,

b(w) = - (FL-ma) (v - 3) (B.55)

By using the two 6 equations above, Equations B.53 and B.55, we get two
expressions for §; in F' and m,. We combine these to eliminate 6;, z2sulting in, an

expression for m,,

Sht

Next, write the beam equations for beam 3,

Fl 1
m; = > (1 + ?rl——l) (B.56)

m(z) = —[v-bz
= —Fz+m
0z) = gpfm(z) b=z
~ (P2 i)
yz) = [0(z)- 6
y(z) = ELL (——F‘%3 - m1%2) (B.57)
The two equations for y, Equations B.57 and B.54, can both be evaluated at z = I to
give an expression for y,, in terms of y; and m,. We equate these two expressions to
eliminate y,. This assumes that the axial cornpression or extension of the connecting
tether is neglible, which we have shown to be true in that the axial displacements are
about 1000 times less than the bending displacements. When we equate these two

expressions for y;, and substitute in Equation B.56 to eliminate m,, the result is,

_Fe (3
= 12E1, thy1

126



This gives the compliance C,, which is the displacment divided by the applied force,

3 3
C, = I_Z_E-E (2 + %}IT%) (B58)

Now, using the same procedure, we will find Cs. The free body diagram is shown in
Figure B-8 on the left. There are three force/moment unknowns. The displacements
are indicated on the right hand side of the figure. Any displacements not shown are
zero. There are seven unknown displacements/rotations. We want to express the
displacement z; in terms of the applied force, F', so we will need nine equations to
de this. Our goal will be to set up the nine equations. The solution is obtained by
performing elimination on the nine equations to express z, in terms of F. This is a
fairly tedious, but straightforward, algebraic procednre.

A moment balance on beam 2 gives the first equation.
my +mg = F.s (B.59)

Writing the beam equations to beam 1,
m(z) = —[fv-bz
= my

b(z) = m(z) - §=

L

EL
- Er
Applying the last equation at z = [ gives the second equation,
1

02 = Emll (B.GO)

Continuing with beam 1, integrate the rotation to get the displacement,

y(z) = [O(z) 6=

’
EI] ml 2

Applying this at £ = [ gives the third equation,

1 12
Y2 = E_Ilml-i- (B.61)
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The fourth equation comes from beam 1 by taking the difference between z; and =z,

as the axial compression developed in beam 1,

Fl

T3 — 21 = EA_I (B.62)
Writing the beam equations for beam 2,
m(y) = —Jv-by

= Fy—ml-
0(y) = grim(y)-dy
= E%(F;—any)-{-ez

Applying this equation at y = s gives equation number five,

o, = L (r% o B.63
3_E_Iz ?_mls + 0, (B.63)

Continuing to integrate on beam 2 gives,
o(y) = —[0(y) -y
= -3 (F',: —mllza) — b2y + z2

Applying this at y = s gives the sixth equation,

Ty = —E-];I;- (F-‘:s—3 - ml%z) — 058 + Toz3 = —mlizi - F%a + x4 (B.64)
Writing the beam equations for beam 3,
m(z) = —[v-bz
= my
0(z) = -;-Tlfm(z:) éz
= ELIlmzz

Applying the last equation at z = [ gives equation number seven,

1
03 = E—Ilmzl (B.65)

Continuing with beam 3, integrate the rotation to get the displacement,
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yz) = [O(z) b=
= Elh-ng;-

Applying this at £ = [ gives equation number eight,

) O
Ys = E—Il'mzi (B.66)

And finally, we get the last equation, number nine, by considering the axial tension

developed in beam 3 by displacement zs,

Fl
T3 = E-;{; (B.67)
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Figure B-1: Deflected shape and free body diagram of straight tether design subjected
to input axis acceleration.
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Figure B-2: Deflected shape and free body diagram of straight tether design subjected
to pendulous axis acceleration.
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Figure B-3: Deflected shape and free body diagram of straight tether design subjected
to hinge axis acceleration.
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Figure B-4: Deflected shape and free body diagram of pinwheei tether design sub-
jected to pendulous axis or hinge axis acceleration.
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l Input axis acceleration applied
1 to a folded tether.
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Figure B-5: Deflected shape and free Lody diagram of folded tether subjected to
input axis acceleration.
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Figure B-6: Equivalent spring model of folded pinwheel design subjected to pendulous
or hinge axis acceleration.
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Figure B-7: Forces and moments acting on a folded tether subjected to pendulous or
hinge axis acceleration.
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Figure B-8: Forces and moments acting on a folded tether subjected to pendulous or
hinge axis acceleration.
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Appendix C

Nonlinear Tether Mechanics

Here is the solution to the nonlinear response of the straight tether design. It is
given as an iterative algorithm using Newton’s Method. This solution gives the same
answers as the finite element solution in Figure 2-10 for the straight tether design.

The mechanical model is shown in Figure C-1. We want to calculate Y, the
total deflection, for a given force F'. The nonlinear aspect of this problem is that the
stifiness of the tether, and therefore the deflection ¥, depends on the deflection Y.
Therefore,

. Y - K_f;’j
Where K is the Y-dependent s-bending stiffness of the tether.
. We need to know what the tether length S is for a given Y. First, from calculus,

S = / ;o,ll + (:—:)2412 (C.2)

And from beam berding theory, ignoring axial loads, the shape (slope) of the

(C.1)

we have:

tether is given by:

dy 6z z
e Yl_z(l - 7) (C.3)
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Figure C-1: Beam model for nonlinear analysis.

Combining these gives:

S(Y) = f :=o\/ 1+ [Y%- (1 _ ;)]2@; (C.4)

We also need to know the tether’s s-bending stiffness with an axial load P(Y').
This is given by [43]:

12EI 36 P(Y)
B +ﬁ_l (C.5)

K(Y) =

And P(Y) is given by:

P(Y) = Z215(v) - 1) (C6)

The solution algorithm is as follows:
. Initialize: Y =0, AF=F, and calculate K from equation C.5 with P=0.
. AY = &4F
Y=Y +AY
. Calculate S(Y) from equation C.4
. Calculate Al =S5 —1

N B W N
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6. Calculate P(Y) from equation C.6

7. Calculate K(Y) from equation C.5

8. Calculate AF=F-K.Y

9. Test if AF is less than some tolerance.

10. Loop to step 2, or exit if tolerance is met.



Appendix D

Reynolds’ Equation for Gas
Damping

D.1 Overview

Reynolds’ equation provides a manageable formulation of the mechanics behind squeeze
film gas damping. Section D.2 derives Reynolds’ equation in cartesian coordinates,
and Section D.3 derives it for cylindrical coordinates. Each of the derivation sections
concludes with a summary of the assumptions that were made and the final differen-
tial equation. Solving Reynolds’ equation gives the pressure distribution across the
damping plates. Integrating the pressure over the entire plate area gives the damping
force. And finally, the demping coeflicient, B, is the total force divided by the relative
velocity between the plates. Solutions for circular plates, and square plates, are given

in Sections D.4 and D.5.

D.2 Derivation in Cartesian Ccordinates

Figure D-1 and the following variable list, represent the squeeze film damping prob-

lem.
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u(x,y,z)

000D

Figure D-1: Squeeze film damping.

z,y,2 = cartesian coordinates
P = gas damping pressure
u,v,w = gas velocity in z,y, z directions
U = vector notation for u,v,w
M = viscosity
h = gap dimension between plates
V= relative velocity between plates, in z direction
F = gas damping force

p = gas density
We start with a fairly general form of the Navier-Stokes equations, and then

simplify these to the ‘creeping flow’ form. This part follows exactly the derivation in
(46].

Assuming Newtonian fluid, with constant viscosity, the Navier-Stokes equations
are,

p— +pU - VU = —VP + pV2l (D.1)
Assuming incompressible flow, the continuity equation is,

—

V.-U=0 (D.2)

The two terms on the left-hand side of Equation D.1 are the total time derivative

of the velocity. The first term represents changes in the velocity with respect to time.
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The second term is velocity changes with respect to spatial location. Both of these
are inertia terms.

We get the creeping flow form of the Navier-Stokes equation by eliminating the
inertia terms. This leaves only the viscous terms and the pressure. To justify this,

we introduce the Strouhal number, Sr, and the Reynolds’ number, Re.

VT
S1‘ = —L— (D.3)
Re=2YL (D.4)
Ij.
V = characteristic velocity
T = characteristic time
L = characteristic length
Eliminating the % term is justified when,
Re
= <1 (D.5)
And the U . VU is elminated when,
Rexk 1 (D.6)

With these assumptions, the creeping flow equations and the continuity equation

reduce to,.
s ) ®
(a2 "
Lo(gen) o
0— g_:_ g_: + ';_1: (D.10)



Starting with the creeping flow equations, Reynolds then made additional assump-
tions about the velocity field in squeeze film dampers. This results in considerable
simplification. We go from a set of partial differential equations, to a single partial
differential equation with pressure as the unknown. Reynolds assumed w to be a
linear function of z only, and independent of = and y. Also, he assumed that the
variations of u and v are insignificant in the z and y directions, in comparison to the

variations in the z direction. With these assumptions, Equations D.7 through D.10

become,
6P u
rraaler (D-11)
8P _ fz—v (D.12)
Sy Hoz2 '
sP
== 0 (D.13)
bu bv dw
0=E+E+$ (D.14)

For boundary conditions, we have « = 0 and v = 0 at the plate surfaces. This is
the ‘no-slip’ boundary condition.Also, w=—V at z=h,and w=0at z=0. At the
edges of the plates, P equals the external pressure, which we will take as zero.

Because of the assumption that w is a linear function of z only, we get Equation
D.13, which says that the pressure is constant through the thickness of the film.
Therefore, since the pressure is not a function of z, we can directly integrate Equations
D.11 and D.12, from z = 0 to z = h, and use the no-slip boundary conditions, to

determine the velocities u and v.

U= '2—;3;2(3 - h) (D.15)
18P
V= -27;3.;2(2 - h) (D16)



Next, substituting the derivative of Equation D.15 with respect to z, and the

derivative of Equation D.16 with respect to y, into the continuity equation, D.14,

dz =~ 2u “\62z T oy

Integrating both sides from z = 0 to &,

_y=_L(B_¥)(&P &P
T 2u\3 2 bz by?

This reduces to Reynolds’ equation for gas damping,

£P 8P _ 12V
§z2 © g2 B

with the following assumptions,

Constant viscosity.

Re
=<1

Rex 1

¢ Mach Number < 1 (incompressible flow).

Newtonian fluid (fluid shear force o viscosity times the velocity).

(D.17)

(D.18)

(D.19)

The above get us through to the creeping flow form of the Navier-Stokes equations.

To this we add, -

o w, the fluid velocity in the z direction, is a linear function of z only, and inde-

pendent of z and y. (Note that this is the same as assuming constant pressure

across the film thickness.)

¢ u and v velocity variations are only significant in the z direction, and can be

ignored in the z and y directions.

e P =0 at the plate edge boundaries.
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® u=v =0 at the plate surface boundaries.
® w = —V at the moving plate surface boundary.

¢ w =0 at the stationary plate surface boundary.

D.3 Derivation in Cylindrical Coordinates

The derivation in cylindrical coordinates is nearly the same as for cartesian coordi-

nates. Figure D-2 show squeeze film damping between two circular plates.

r = radial coordinate
z = axial coordinate
0 = angle coordinate
P = gas damping pressure
%, v,w = gas velocity in r, z, 0 directions
= vector notation for u,v,w
= viscosity
gap dimension between plates

= relative velocity between plates, in z direction

MmN s
]

= gas damping force

p = gas density
We make the same assumptions as in Section D. 2to arrive at the creeping flow

equations. Expressed in cylindrical coordinates, these are,

6P é 18%u 26w 6%
e [ ( ral )) T gt r] (D.20)

6P 16, év 1 v §%y

bz [1’ 51'( 5r rzm + 6—zz] (D.21)
oP § (14 18w 26u &
86~ [51' (r 61'( )) t r2 §02 + 260 + 32—3] (D.22)

145



Figure D-2: Squeeze film damping between two circular plates.

16 v 1léw

Next, we make the assumptions regarding the flow field. Assuming axial symme-

% terms equal zero. We also

try, then the angular flow velocity, w, is zero, and all
assume that the z-directed velocity, v, is a linear function of z only, just as we did for
the cartesian derivation. This last assumption implies that the pressure is constant

through the film thickness. With these assumptions, Equations D.20 through D.23

become,
5_’: ~0 (D.25)
0= %5_{-(1‘”) + j—: (D.26)
For boundary conditions, we have u = 0 at both of the plate surfaces, w = —V at

the moving plate surface, and w = 0 at the stationary plate surface. At the edges of
the plates, P equals the external pressure, which we take to be zero.

Now integrate Equation .24 with respect to z, realizing that P is not a function
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of z. This gives the u velocity profile.

1 dP
u= -27?(2 —h)z (D.27)
We assumed that v is a function of z only, with boundary conditions of v = —V

at z=h,and v =0atz=0. Therefore,

v = -—h—Vz (D.28)

Substituting Equation D.27, and the derivative of Equation D.28 with respect

to z, into the continuity equation, D.26,

1d|rdP |4
Integrating from z = 0 to h,
—h*1d [ dP
This gives Reynolds’ equation for squeeze film damping, in cylindrical coordinates,
1d ( dP —-12uV
v (.T) = (D-31)

with the following assumptions,

o Newtonian fluid (fluid shear force o viscosity times the velocity).
o Constant viscosity.
Re
[ ] 3.7 << 1
e Rex'1

e Mach Number < 1 (incompressible flow).

The above get us through to the creeping flow form of the Navier-Stokes equations.

To this we add,

147



e Axial symmetry, so that the angular flow velocity, w, is zero, and all 3% terms

equal zero.

v, the fluid velocity in the z direction, is a linear function of z only, and inde-

pendent of r and 4.

P =0 at the plate edge boundaries.

u = 0 at the plate surface boundaries.

v = —V at the moving plate surface boundary.

v = 0 at the stationary plate surface boundary.

D.4 Solution for Circular Plates

Equation D.31 is an ordinary linear differential equation. We get the solution for
the pressure by separating variables and integrating twice, and then applying the

boundary condition that P =0 at r = R.

o) - 25

dP  —12uV r?

e L
f dP = 12“"( +ﬁ) dr
2 T

—12pV

P(r) = —!

(4 +01].n1'+02)

We know that C; must be zero because the pressure is defined at r=0, but Inr
is not. By using the boundary condition, P = 0 at r = R, we find that C; = —R?.

Therefore, the pressure solution is,
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P(r) = 3"V - (B2 - ) (D.32)

Next, integrate the pressure over the plate area to find the total damping force,
F,.

R 3V 2
/.. P(r)dA = / e (R =) 2mrdr (D.33)
3ruV R
Fy= TE) (D.34)
Finally, the damping coefficient, B, is defined as the damping force over the ve-
locity.
_ Fd _ :.’ﬂl'}tR4
B = V= o (D.35)
D.5 Solution for Square Plates
This solution is taken from [47].
—uLt 192 "2 tanh"" pL*
B=t [ -E X, = b (D.36)

= plate length
h = gap dimension

i = gas viscosity
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Appendix E

Process Traveler

PROCESS TRAVELER Revision 2
6/4/92
3/24/92 new
uACCELEROMETER FAB PROCESS

LOT #

LOT OWNER: Mitch Novack

STEP # STEP DESCRIPTION STATUS

HANDLE WAFER:

Starting Material: n—type <100> .5—2 ohm—cm double—side polish

(Icr)

1 RCA Number wafers
Opset start
Opset finish ___

150
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Phosphorous dep/drive—in
dphos8.set
(925 degC POCL3 87 min)

Wet etch phosphorous gl_m
BOE

Mgg.qurg Sheet Rho
(5.7 ohms/sq)

Thermal Oxide 1.4 um
(rca, recipe 245, 9hrs:38min)

Nanospec Oxide Thickness

Pattern Oxide
1.36 um pos. resist rcp:
spin wash
200 degC, 45 min dehydrate
3.5 sec deMt at 10 rpm
2.0 sec spread at 10 rpm
45 sec spin at 3000 rpm
90 degC, 30 min prebake
2.7 sec exposure
40 sec develop
120 degC hardbake

Dryl'Etch Oxide

etcher—2 rcp#20 to manual endpoint
etcher—1 rep#12 17 sec, no overetch

151

Number wafers
Opset start
Opset finish

Number wafers

Opset start

Opset finish 80
Number wafers

Opset start

Opset finish ____

Number wafers
Opset start
Opset finish

Number wafers 40
Opset start
Opset finish

Number wafers
Gpset start
Opset finish

Number wafers
Opset start
Opset finish



9 Strip resist
3:1 H2504:H202

10 Inspect for resist under

mercury lamp

DEVICE WAFER:

starting material: p—prime, 10—20 ochm—cm, <100>

11 RCA

12 Solid source boron dope
Recipe #380, tube B3
(8 hrs, 1125 degC)

13 Strip boron glass in BOE
verify de—wetts

14 Measure sheet resistivity

less than 1 ohm/square

DEVICE WAFER and HANDLE WAFER:

[TRL)
15 Bond Wafer Pairs
rca, contact,
anneal 1100degC, 70min, N2

152

Number wafers
Opset start
Opset finish

Number wafers _____

Opset start

Opset finish

Number wafers

Opset start

Opset finish

Number wafers

Opset start

Opset finish

Number wafers

Opset start

Opset finish

Number wafers -

Opset start

Opset finish _____

Number wafers

Opset start

Opset finish

70



[RGL]

16 Bulk Etch Device Wafer
20% KOH,60 degC,18hrs
(27 um/hr etch rate)

17 Finish (stop) Etch
60% CsOH, €0degC
(8 um/hr etch rate)

Number wafers
Opset start

Opset finish 100

Number wafers
Opset start
Opset finish

18 BOE strip oxide Number wafers
10 min Opset start
Opset finish
110
[RGL/TRL]
19 Post KOH Clean Number wafers

Opset start
Opszt finish _

(6th floor):
Rinse vigorour® in DI Water. 10min.
N2-Blow dry.
120
(TRL) Acid—hood:
Piranha etch (3:1 H2S04:H202). 5 minutes.
Rinse 3 times in Dump—to—Resistivity tank.

(TRL) Acid—hood:
"~-Dip in 50:1HF for 10 seconds.
(make sure wafers dewet; this removes 50A of contaminated
oxide).
‘—Rinse 3 times in Dump—to—Resistivity tank.
—Photo—wet stn: Spin—Dry cycle. Monitor resistivity to 130

better than 9.0M—Ohm—cm. °
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[icL)

20

[TRL]

21

22

23

24

(TRL) RCA station:
—RCA clean
—monitor resistivity at the spin—dry cycle

with a 160sec. rinse.

Measure sheet resistivity Number wafers 140
should be <lohm/square Opset start
Opset finish
Pattern for liftoff press (device side) Number wafers
HMDS Opset start

1.4 um AZ5214E (4KRPM, 30 sec) Opset finish

90 degC prebake, 30min

3 sec exposure, 11 mwatts/cm2 150
120 degC, 90 sec, directly on hot plate

90 sec flood exposure

80 sec develop, AZ422MIF

E—beam dep Number wafers

100 A Cr Opset start

5000: A Pt Opset finish

Wet strip (liftoff) : Number wafers ______
10 sec in 5600 ml acetone Opset start _ 160
10 min in 500 ml acetone Opset finish __

10 min in 500 ml methanol

Spin Resist and Pattern Trench Etch Number wafers
1.6um thick: Opset start
- 200 degC, 30 min dehydrate Opset finish _

6 sec deposit at 70 rpm
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[Icr)
25

26

[TRL)

27

28

29

30

4 sec spread at 200 rpm
40 sec spin at 2000 rpm
4.6 sec exposure

60 sec develop

Plasma Etch Sum P+ layer
etcher—1 rcp#156, 3minutes
Si:PR selectivity = 3.9 minimum

= 5.0 average

Ash resist

E—beam dep backside of wafer
100 A Cr
5000 A Pt

Sinter metal

500 degC, 30 min, N2

Scribe wafer into die

HF release devices

Number wafers

Opset start

Opset finish

Number wafers

Opset start

Opset finish

Number wafers

Opset start

Opset finish

Number wafers

Opset start

Opset finish

Number wafers __

Opset start

Opset finish

Number wafers ___

Opset start

Opset finish

170

180

190

200
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