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Overview

Computer science and healthcare have long been intertwined. Students, professionals,

and academics have always sought practical avenues to apply their talents, and there

are few nobler professions to aid than healthcare. Unfortunately, it has not been easy

to propagate modern technology into modern healthcare. The healthcare industry is

large, complex, highly regulated and decentralized. In such a system, effecting change

is challenging, but it can be done.

Furthermore, particularly in healthcare, many important problems are unknown to

all but those that are deeply affected by them. Discovering and solving these problems

often has a tremendous impact on their stakeholders, making people’s lives easier, more

productive, and more enjoyable.

One such problem is the efficient execution of the practices surrounding utilization

management. Utilization management is a critical operation that every healthcare

provider in the country is required to perform. It involves ensuring that the pro-

cedures a doctor recommends are appropriate, cost-effective, and easily available for

patients. Each procedure is evaluated as a referral, which stores all the information the

recommending doctor deems relevant. Utilization management, through the evaluation

of these referrals, costs payers and providers billions of dollars and thousands of hours

each year. [1] Insurance companies dedicate large teams to this task, and healthcare

providers often retain teams of physicians and medical staff to interface with them.

The efforts of these teams have a very tangible impact on the quality of care that their

patients receive.

Today, the utilization management process is highly manual, and requires signifi-

cant investments of time, effort, and money. In recent years, rule-based systems have

been built to automate this task, but they are not widespread, and they do not address
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a sufficient proportion of the problem. More than 60% of the referrals a provider pro-

cesses in the utilization management process cannot be automated through rule-based

systems due to the complexity in enumerating these rules. As a result, the average

physician still spends almost 40% of their time working on utilization management re-

lated tasks. [1] Moreover, the process is slow, and patients are often unable to receive

their recommended treatment due to delays or associated issues.

In an attempt to improve the current UM process, we set a goal to use modern

machine learning techniques to learn from utilization management data and provide

a superior automation tool. We managed to improve performance significantly over

rule-based systems and were able to demonstrate the performance of our experimental

models in practice through a system that has been functional at a large healthcare

provider in the US for over a year.

The rest of this thesis has been split into four chapters. The first describes the

utilization management process in more detail, shares primary data and reveals the key

challenges. The second describes related work and the third describes our methods.

Finally, the fourth details our results, both on historical data and in practical use.
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1 Introduction to Utilization Management

1.1 Objectives

Healthcare services cost the world roughly 8 trillion USD in 2017, a figure which was

estimated to rise to over 10 trillion USD by 2022 [16], pre-coronavirus. The US gov-

ernment alone spent over 3.5 trillion USD in 2017, almost 20% of its GDP [29]. These

costs are projected to grow higher and higher as more and more of the world’s popu-

lation gains access to high-quality medical care.

For many medical providers, utilization management serves as a cost-containment

strategy [5]. As provider costs rise, almost all major providers have dedicated utiliza-

tion management teams that review procedures for appropriateness. According to the

Utilization Review Accreditation Commission (URAC), a Washington DC non-profit,

utilization management is “the evaluation of the medical necessity, appropriateness,

and efficiency of the use of health care services, procedures, and facilities under the

provisions of the applicable health benefits plan, sometimes called ‘utilization review’.”

[12] There are three main types of utilization management: prospective review, concur-

rent review, and retrospective review. [4]

Prospective review is conducted prior to a medical procedure being performed, con-

current review is conducted during the course of care, and retrospective review is con-

ducted after the procedure has been performed. All three review types share the goal

of measuring the appropriateness of suggested medical care.

When utilization management is done well, patients typically enjoy higher quality

of care and more appropriate medical procedures. Simultaneously, medical providers

avoid unnecessary procedures, and insurers avoid unnecessary costs. When UM is

conducted poorly, it can hurt patient outcomes, create financial risks and lead to

litigation [22].
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1.2 Existing Processes

Utilization management (UM) is typically conducted by utilization management re-

viewers, who are led by a UM team leader. Reviewers are trained to perform UM

duties, and may be solely devoted to performing UM duties, or be involved in other

administrative or medical duties. For example, UM teams commonly involve some

number of nurses who can provide additional input on referral appropriateness and

can offer medical knowledge. Similarly, there is a smaller number of doctors who are

called on to offer their input when needed. This triaged process is quite costly in both

time and resources.

The primary duty of a UM team is to evaluate a recommended procedure and decide

whether it should be approved or denied. We focus on the prospective review process,

where a procedure is typically a physician referral. Approval indicates that the patient

will undergo the procedure, while denial indicates that they will not receive medical

care in its currently recommended form. Denials do not disqualify patients from receiv-

ing care in the future and are uncommon – over 90% of referrals are typically approved.

In some cases, a referral may be cancelled, such as in the case of duplicate requests, or

insurance incompatibility. Referrals may also undergo a lengthy appeals process.

Referrals contain a lot of multidisciplinary data, bringing together patient demo-

graphic data, medical history, insurance data, and provider data into a single referral.

They also include referral-specific data and clinical notes. UM reviewers are responsi-

ble for reviewing this data and typically briefly study the clinical notes which can span

a single line or multiple pages.

Medical providers employing UM teams have typically employed entirely manual

review processes, which are lengthy and often delay patient care. In extreme cases,

a delayed referral that is ultimately denied would severely impact a patient’s outcomes.
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With the advancement of technology, many providers have begun to employ com-

puterized rule-based systems to automate the review process for simpler referrals. This

reduced referral turnaround time from days to mere seconds for common referrals that

could be easily approved or denied, greatly improving the speed and quality of the

average patient’s care. Today, some medical providers are able to review between 30-

40% of their prospective review referrals through such rules.

1.2.1 Referral Life Cycle

To walk through the complete life cycle of a referral today, imagine that your doctor

recommends that you undergo surgery to repair your broken foot. The doctor fills out

a referral request which is sent to the UM team. A first-level review is then conducted

either by a rule-based system, or by a member of the UM team, who is typically a

nurse-level professional. This nurse is supported in their decision-making process by a

team member typically at the physician level. [32]

The vast majority of referrals end their lives here - they are approved through man-

ually or through simple rules and the patient is notified about scheduling options for

the procedure. However, if a referral is denied, the patient or doctor typically appeals,

and explains why the procedure is necessary. Patients are entitled to both an internal

second-level review, and an external third-level review by an external organization. [32]

In practice, the doctor and patient are sometimes unable to pursue their first choice

treatment due to the UM process, instead compelled to choose an alternate one. [1]
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1.3 Challenges of Utilization Management

Utilization management in the United States today is expensive, labor-intensive, and

time-consuming. There are over 1.5 billion referrals processed each year, costing orga-

nizations between 22 and 30 billion USD each year. The average American physician

refers over 1600 patients per year [1], and the average cost to process a single referral

varies between $15-$20 depending on the size and efficiencies of the processor organi-

zation.

The challenges of utilization management do not end at costs. For healthcare

providers, utilization management often necessitates huge paper trails, logistical chal-

lenges, and delays in care provision. According to a survey of doctors by the American

Medical Association, physicians and staff spend almost two full business days per week

handling prospective referrals. [1]

Patients may have to wait days or even weeks to determine whether they can un-

dergo a treatment with a particular doctor. In some circumstances, a patient’s prior

procedure may be deemed “medically unnecessary”, [17] [2] leading to heavy finan-

cial burdens on patients. Physicians estimate that 75% of patients do not undergo

the recommended form of treatment due to delays or other issues with the referral

process. Costs, communication overhead, and delayed decision-making necessitate a

better framework for utilization management. [1]

Finally, the challenges listed above are for systems that already employ simple

rule-based computer algorithms for UM automation. Rule-based systems cannot be

practically extended to the breadth of healthcare specialties, as we will see in the related

work. That means that future systems need to seek new avenues for improvement,

because these traditional rule-based automation systems have reached their limits.
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1.4 Pros and Cons of an Algorithmic Solution / Decision-Making Guiding

Principles

An algorithmic solution naturally possesses both advantages and disadvantages. In this

section we discuss some of the most prominent of these. Our decisions on questions

such as which features to select or which algorithms to use were guided by our answers

to these questions.

A programmatic, non-rules-based solution to the challenge of UM offers the follow-

ing advantages:

• it would be faster, reducing referral turnaround time for the patient and medical

staff;

• it would be scalable and general-purpose, applicable to all healthcare specialties,

rather than focused on a single, narrow domain;

• it would be less costly for healthcare providers, lowering administrative costs;

• it would reduce the time investment required from doctors and nurses;

• and it would not be subject to overt bias, providing more consistent decision-

making to patients and medical staff.

A programmatic solution will remove incentives to deny procedures purely based

on cost or profit, and focus on evaluating the medical appropriateness of care. Finally,

the use of these solutions will raise questions of fairness and discrimination when it

comes to approving or denying care - and such scrutiny can only raise standards across

the country.

However, there are significant challenges to the construction of such a system as

well:

• UM spans all areas of healthcare, from physical therapy, to ophthalmology, to

cancer treatment. How can a single, general-purpose model be developed?
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• UM aggregates a lot of data from medical providers, insurance providers and

patient demographics. Furthermore, some data is structured, and some is un-

structured. What are the right features to use, and what transformations are

necessary?

• UM deals with confidential protected health information (PHI). How can systems

balance privacy with performance?

• UM systems must gain and maintain the trust of patients, healthcare providers

and insurance providers. How can they be made interpretable? How will systems

balance interpretability with performance?

• UM automation systems, particularly data-driven ones will be learning from past

actions. How can they be made robust to biased data so that they do not learn

discriminatory processes?

It is critical to keep in mind both the advantages and disadvantages of innovative

systems in the context of utilization management in order to develop systems that can

be widely utilized. We have touched upon the major ones here, and will detail how

they have affected our choices in the rest of the thesis.
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2 Related Work

2.1 Machine Learning in Healthcare

Scientists and physicians have long worked together to bring the latest advances in

mathematics and computing to improve healthcare processes. As far back as the late

1980s, regression analyses were used to generate TRISS scores - used to evaluate trauma

care at hospitals around the country. [8] In the 2000s, scientists and physicians devel-

oped new statistical methods of mortality risk assessment for patients suffering from

colonic peritonitis [6]. Today, computer scientists are trying to help solve the next

generation of healthcare challenges using advanced machine learning techniques.

With the advancement of machine learning, the intersections between computer sci-

ence and healthcare have grown exponentially. Today, the research frontiers of machine

learning in healthcare include screening patients for breast cancer [27], identifying pa-

tients at risk of sepsis [3], and even ascertaining patient symptoms from doctor’s notes

and electronic medical records. [19]
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2.2 Computing in Utilization Management

Despite this progress, the last academic paper referencing the use of computerized sys-

tems for utilization management dates back to 1994. [23] In this article, Nelson et al.

designed, implemented and evaluated a tool for screening adult patients for inappropri-

ate days of care. The article described an approach towards retrospectively evaluating

medical care, and used a rule engine based on the Appropriateness Evaluation Protocol

(AEP).

Does the lack of directly related work indicate an absence of importance or interest

in the subject? On the contrary, as we see below, it reveals the challenges associated

with developing a general-purpose model, and the need for advances beyond rule-

engines.

For example, in 2005 Sun and Chang described a rule-engine approach to deter-

mining the medical appropriateness of prescribing antibiotics [31]. In 2010 Vartanians

et al. described the effects of employing the American College of Radiology’s rule-

based imaging (CT, MR, nuclear medicine exams) appropriateness criteria [33]. And

as recently as 2019, Quintens et al described the development of “Check of Medication

Appropriateness,” a rule-based screening procedure for medication appropriateness.

[26]

Every single one of these papers had the goal of verifying medical appropriateness,

which is exactly the goal utilization management is meant to fulfill. They all used

rule-based systems, and they were all focused on a single problem - antibiotic ap-

propriateness, radiological test appropriateness, or medication appropriateness. Given

that these works are still using rule-engines on small, focused areas, it is clear that it

is time to try something new and more sophisticated. Industry efforts are not much

farther along, and we detail these below.
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Carolinas HealthCare, a healthcare provider based in North Carolina, South Car-

olina and Georgia, uses a machine learning model to automatically approve referrals.

The model achieves 99% accuracy with its predictions, but is applicable on less than

10% of its total referrals. [24]

Optum, one of the largest healthcare organizations in the US, has developed a

product called Optum360, which they state uses AI to stratify referrals of differing

complexities. They also claim to use NLP to support their recommendations. They

do not provide any public metrics. [11]

EXL is a software consultancy that describes their use of rule engines for simple

referral approvals. They also describe the use of NLP for OCR-style field data extrac-

tions. They do not provide any metrics, and appear to be proposing older, simpler

rule-based systems. [28]

Public industry efforts are primarily rule-based or simplistic, non-machine learning

NLP systems. The machine learning systems that exist are narrow and do not extend

to a significant proportion of the data. There is a clear opportunity for improvement.

Having explored the state-of-the-art related work in academia and industry, we shall

now present the data available, discuss how we chose our features and algorithms, and

explain how we evaluate our performance.
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3 Methods

3.1 Utilization Management Problem Setting

The dataset we have constructed consists of prospective review physician referrals.

The different kinds of data available as part of a referral comprise two major types:

patient-specific data, and referral-specific data.

3.1.1 Data Types

Patient data comprises:

• Demographic data: The patient’s name, age, gender, race, ethnicity, spoken lan-

guages, etc.

• Insurance data: The insurance carrier, line of business, health plan, etc.

• Medical data: The patient’s PCP, medical history, etc.

Referral-specific data comprises:

• Provider data: doctor names, specialties, insurance statuses

• Diagnosis data: diagnosis codes, procedure codes, procedure quantities, clinical

notes

3.1.2 Sample Referral

A typical referral may look like the following example. Here, our patient has fractured

his leg so has gone to visit his primary care provider (PCP), a general practitioner,

who has referred him to a second doctor who specializes in orthopaedic surgery. Both

the referring doctor and the referred-to doctor could be the same person, although not

so in this example. Note also that while there is always at least one primary procedure

and diagnosis code, in about 30% of cases there are additional codes. Procedure codes
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are typically accompanied by a procedure quantity and a procedure modifier, each of

which convey a specific medical meaning to a UM reviewer.

• Patient Name, DOB, Gender: Amanda Smith, 05/07/1965, F

• Patient Insurance Carrier, Plan, Line of Business: Humana, Humana

Standard Plan, Seniors

• Referring Doctor’s Name and Practice Location: Dr. John Adams, 888

Commonwealth Ave, Boston MA

• Referring Doctor’s Specialty: General Practice

• Referring Doctor’s Insurance Status: Contracted

• Referred-to Doctor’s Name and Practice Location: Dr. Jolene Williams,

890 Commonwealth Ave, Boston MA

• Referred-to Doctor’s Specialty: Surgery-Ortho

• Referred-to Doctor’s Insurance Status: Contracted

• Diagnosis Codes (Primary in bold): R41.82

• Procedure Codes (Primary in bold): 95043

• Procedure Quantity: 1

• Referring doctor’s clinical notes

There is a wealth of information within this data. The majority of the data is

structured, categorical data, along with a few non-categorical structured fields, such

as the patient’s age or procedure quantity. The key source of unstructured data is the
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Figure 1: Splitting a year of data into training, validation and testing sets.

doctor’s clinical notes.

Our target variable is a referral status variable. This is also categorical, and takes

values in approved, denied, and cancelled. While approved referrals and denied referrals

typically look fairly different, cancelled referrals are far noisier in that there is no con-

sistent methodology for cancelling a referral that can be observed purely from a referral

itself. This is because a referral may be cancelled due to duplication, scheduling issues,

or a simple mistake during data entry. It is very challenging to attempt to identify

these referrals purely from the data we have.

3.1.3 Data Duration and Splits

We have 3 years of such data from a Los Angeles-based medical group, comprising

almost 3 million physician referrals and their approval status. The data is not all

drawn from the same distribution – it experiences dataset shift. [25] This is because

the protocols with which a medical provider’s UM team reviews referrals change over

time. As such, we are careful to test models on time periods with a consistent review

protocol, i.e., no dataset shift.

We split our data into training, validation and testing sets as seen in Figure 1. In

order to simulate how our models would be used in production, we hold out the final

month of data as our testing set, the penultimate month as our validation set, and all

previous data without dataset shift as our training set.
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3.2 Features

To determine which features to select, we returned to our decision-making criteria. We

selected all the features described in the sample referral, with the following modifica-

tions:

• we excluded clinical text due to the presence of PHI and the complexity associated

with accessing features in an anonymized fashion;

• we replaced date of birth (PHI) with the non-PHI age;

• we replaced PHI names with anonymized identifiers; and

• we excluded office addresses, patient name and ethnicity to avoid the presence of

PHI or overtly discriminatory features;

Our goal was to select as many features as possible to improve overall performance

and to build a single, general-purpose model. We avoided features that could bias

the model towards discriminatory outcomes or that would necessitate the use of PHI

or complex anonymization processes. Anonymization / de-identification processes or

algorithms are rarely perfect and even anonymized data is not secure - it is possible

to re-identify anonymized data. [14] With these constraints, we selected all possible

features.
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3.3 Algorithms

While considering which algorithms to train on our features, we evaluated using both

out-of-the-box models, such as in Python’s scikit-learn, as well as writing our own cus-

tom models from scratch. Our primary goal alongside performance was interpretability,

as these models will not be used in a vacuum, but rather as a piece of a system with

many parts. They will likely be called upon to explain why a particular decision was

made or evaluated to ensure PHI or overtly discriminatory criteria were not used to

make decisions.

The three algorithms that we settled upon were Logistic Regression, Decision Trees

and Random Forests. These algorithms, with the exception of Random Forests, are

highly interpretable. Relative to the others, Random Forests trade-off some inter-

pretability for predictive power. We chose not to use Neural Networks for reasons of

interpretability - it quickly becomes far too difficult to evaluate the decision-making

process, making it unsuitable for our aims. Furthermore, given the relatively low di-

mensionality of our data, we doubted that the additional predictive power would be

utilized.

Now, we will briefly describe the algorithms, the parameters we chose to tune, and

our training procedure.

3.3.1 Logistic Regression

The Logistic Regression model is a binary classification model used to model the prob-

ability of an event occurring, for example, that the next insect you see is a bee, or that

the next referral your UM team sees is approved. It has a long history stretching back

to the 19th century [13], but is still extremely popular, and notable for a few distinctive

properties, which we describe below. See Figure 2 for an example.
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Figure 2: A Logistic Regression model depicting the probability of passing an exam versus
hours of studying [18]

The Logistic Regression model is a linear model, and this property is both a weak-

ness and a strength. While it indicates that the logistic regression model is only capable

of identifying linear relationships within data, at the same time this property makes

the model very easily interpretable. The higher a weight it assigns to a particular

variable, the higher that variable’s importance is to the model. Particularly in the

field of healthcare, where the explainability of a decision is of utmost importance, in-

terpretability is a critical quality.

We used the one-vs-all extension [7] to Logistic Regression as we have 3 classes

(approved, denied, cancelled). We optimized the Logistic Regression loss model using

stochastic gradient descent (SGD). [30] We tune the regularization penalty, the reg-

ularization type (L1 and L2) and class weights. [20] We encoded our input features

using a one-hot encoding.

3.3.2 Decision Trees

Decision trees [10] are another extremely popular classification model. They identify

relationships in a dataset using a decision tree, as seen in the example in Figure 3.
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Figure 3: A simple decision tree representing the likelihood of purchasing a car based on its
type, number of doors and tires. [15]

They use a statistical splitting algorithm to build the tree based on a specified metric

such as Gini impurity, information gain, or variance reduction. They typically use a

random subset of the features at each split.

Decision trees can fit to arbitrarily complex relationships in data by tuning their

depth parameter, and are usually very interpretable due to their transparent decision-

making process. Once a decision tree is constructed, it is straightforward for humans

to follow the decision-making process that led to a prediction. In theory this is the

best of both worlds, but increasing the depth to allow for more complex relationships

typically makes it harder to comprehend the rationale behind a prediction.

We used the CART algorithm [10] to build our trees using Gini impurity as our

purity metric. We tuned the maximum depth of the trees, varying their complexity,

and the number of features considered at each split, varying the randomness at each

split. We also varied the class weights.
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3.3.3 Random Forests

Random Forests [21] [9] extend the ideas of decision trees. Random forests have been

very successful in practice and typically outperform decision trees [34]. They involve

training multiple decision trees and choosing the majority prediction. Each decision

tree is trained from a random sample of the data, and typically use a random subset

of the features at each split.

There are two properties that make random forests superior to decision trees. [34]

First, by training many trees, each of which is trained on a different sample of the

data, individual trees are able to focus on smaller subsets of the data. This improves

the performance of the overall forest. Second, training many trees reduces the impact

any individual tree has on the final prediction. This prevents the overfitting of any in-

dividual tree from dominating the prediction, improving the performance of the overall

forest.

We used the CART algorithm to build our trees using Gini impurity as our purity

metric. We tuned the maximum depth of the trees, varying their complexity, the

number of trees trained, and the number of features considered at each split, varying

the randomness at each split. We also varied the class weights.

3.3.4 Training Procedure

As described in the section on Data Duration and Splits, we use the final two months

of data as the validation and testing sets, training our algorithms on all previous data.

We also explore two alternative training variants:

• training models on all 3 classes

• training models on just approval and denied referrals

We consider the second approach because of the noisy nature of cancelled referrals.

The idea was that ignoring the noisier data would allow the models to better hone in
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on the approval-denial decision boundary. We do not evaluate it using accuracy, as it

cannot even predict that a referral would be cancelled. We do, however, evaluate its

denial false positive rate, which we describe below.
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Approved Denied Cancelled

89% 6% 5%

Table 1: Table showing class percentages

3.4 Evaluation

We use multiple lines of thought to evaluate our performance. The baseline perfor-

mance metric we use is the majority class occurrence percentage from the data. The

most common class, an approved referral, occurs about 89% of the time. See Table 1

for details on the other classes. Accuracy above this baseline is good, and accuracy

below is very bad. We compute accuracy using a threshold of 0.5.

The second metric of interest is the denial false positive rate at different approval

thresholds. Here, we evaluate the following question: of the number of referrals that

our model would approve, how many actually ought to be denied? The more referrals

we can approve while remaining below a false positive rate of 1% the better.

We focus on the denial false positive rate for several reasons.

The first is due to the healthcare system. In the utilization management process,

when a referral is approved, it is rarely re-evaluated. On the other hand, if it is de-

nied, it goes through an appeals process. In our production system, for example, the

existing UM team would be called upon to manually evaluate denials, but not so

for approvals, which would go straight to scheduling. Thus, if we incorrectly say an

approval should be denied, it will be manually reviewed and approved, and the only

cost is the review cost. On the other hand if we say a denial should be approved,

it will not be re-evaluated and the patient may undergo an expensive, unneccessary

procedure. A referral that ought to be cancelled does not factor into our thinking, as

referrals are typically cancelled for administrative reasons such as incorrect data entry,

duplication, or scheduling challenges, which will always surface.
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The second reason is due to the expectations of healthcare providers for a certain

ceiling on false positive rate. There is little data available on how often utilization

management teams make incorrect decisions, as counterfactuals are rarely available

and there is wide variation. However, primary data and online materials such as those

put out by Carolinas Healthcare [24] indicate a general consensus estimate of at least

a 1% error rate. This becomes a reasonable false positive baseline for us. The more

referrals we can approve while remaining below this false positive rate the better.

Thus, it becomes important to explore the denial false positive rates at different

thresholds, as this explores the trade-off between acceptable error on the approvals, and

the proportion of the data that the model is able to handle at a particular precision.

These performance metrics should hint at the learning that our methods, while well

beyond state-of-the-art today, are not optimal solutions, and need improvements. It

is extremely unlikely that machine learning models will completely replace UM teams.

Instead, they will act as an evolution of rule-based systems today, taking on a larger

proportion of referrals than rule-based systems alone, and working in concert with

leaner, more efficient UM teams to handle the toughest decisions.
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Hyperparameters Values

Penalty type L1, L2

Regularization coefficient 0.1, 0.01, 0.001, 0.0001, 1e-5, 1e-6, 1e-7

Class weights Unweighted, Balanced

Table 2: Table showing logistic regression hyperparameters

4 Results

This section is divided into two parts: the first explores our experimental results on

historical data; the second evaluates how well our models do in practice. Our practical

results hold pretty closely to our experimental ones, which is promising; however, they

also bring additional implementation details which must be understood. Thus, we have

split this section into two parts.

4.1 Experimental Results

Accuracy for all models is computed using a decision threshold of 0.5.

4.1.1 Logistic Regression

The hyperparameters for our logistic regression are listed in Table 2. Considering

100% of the features at a split corresponds to choosing one of the optimal splits. The

unweighted class weighting corresponds to all samples having an equal weight of 1,

whereas the balanced class weighting corresponds to adjusting weights inversely pro-

portional to class frequencies. Thus the combined weight of each class is the same.

Table 3 lists the accuracies obtained by a model trained on all 3 classes with a

particular set of hyperparameters. Each set of hyperparameters was used to train 3

models, and we report both the mean and the standard deviation of the accuracies

here. We chose to train 3 models for computational ease.

The best classifier by accuracy was the unweighted logistic regression with 1e-5 L1
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Hyperparameters (penalty, coeff, weights) Mean Test Accuracy Standard Deviation

L1, 0.1, Unweighted 88.5% 0%

L1, 0.1, Balanced 88.5% 0%

L1, 0.01, Unweighted 88.5% 0%

L1, 0.01, Balanced 88.3% 0.1%

L1, 0.001, Unweighted 88.5% 0%

L1, 0.001, Balanced 85.7% 0.1%

L1, 0.0001, Unweighted 89.2% 0.05%

L1, 0.0001, Balanced 84.8% 0.2%

L1, 1e-5, Unweighted 89.5% 0.08%

L1, 1e-5, Balanced 84.1% 0.2%

L1, 1e-6, Unweighted 89.3% 0.04%

L1, 1e-6, Balanced 83.3% 0.1%

L1, 1e-7, Unweighted 88.5% 0.03%

L1, 1e-7, Balanced 81.4% 0.2%

L2, 0.1, Unweighted 88.5% 0%

L2, 0.1, Balanced 88.5% 0%

L2, 0.01, Unweighted 88.5% 0%

L2, 0.01, Balanced 88.2% 0.02%

L2, 0.001, Unweighted 88.6% 0%

L2, 0.001, Balanced 86.6% 0.03%

L2, 0.0001, Unweighted 89.2% 0.03%

L2, 0.0001, Balanced 85.9% 0.08%

L2, 1e-5, Unweighted 89.5% 0.06%

L2, 1e-5, Balanced 85.2% 0.7%

L2, 1e-6, Unweighted 89.2% 0.1%

L2, 1e-6, Balanced 82.3% 1.2%

L2, 1e-7, Unweighted 88.3% 0.3%

L2, 1e-7, Balanced 80.3% 1.4%

Table 3: Table showing logistic regression accuracy results
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Figure 4: Best logistic regression denial false positive curve trained on 3 classes. Approves
86% of the data with a denial rate below 1%.

penalty. Decreasing the regularization parameter helped until 1e-5, after which the

classifiers began to overfit.

The best denial false positive rate from classifiers trained on all 3 classes was cre-

ated by the balanced logistic regression using L1 penalty and a coefficient of 1e-5. The

denial false positive curve can be seen in Figure 4. The x-axis depicts the proportion of

data that would be approved by the model based on the chosen approval threshold, and

the y-axis depicts the denial false positive rate at this threshold. This best performing

model was able to approve 86% of the data with a denial rate below 1%.

The best denial false positive rate across all our logistic regressions came from a

logistic regression that was trained only on the approval and denial classes. It was

also a balanced logistic regression using a coefficient of 1e-5, but the penalty in this

case was L2. This logistic regression was able to handle 87% of the data with a de-

nial false positive rate below 1%. The denial false positive curve can be seen in Figure 5.

The remaining curves can be found in the appendix.
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Figure 5: Best logistic regression denial false positive curve trained on 2 classes. Approves
87% of the data with a denial rate below 1%.

Hyperparameters Values

Max Depth 5, 10, 20, 30

Percentage of features evaluated at splits 30%, 50%, 70%, 100%

Class weights Unweighted, Balanced

Table 4: Table showing decision tree hyperparameters

4.1.2 Decision Trees

The hyperparameters for our decision trees are listed in Table 4.

Table 5 lists the accuracies obtained by a model trained on all 3 classes with a

particular set of hyperparameters. Each set of hyperparameters was used to train 3

models, and we report both the mean and the standard deviation of the accuracies

here. We chose to train 3 models for computational ease.

Balancing the classes consistently led to worse accuracies. Increasing the depth

helped until a depth of 10, after which the unweighted trees began to overfit.

The best denial false positive rate from trees trained on all 3 classes was created

36



Hyperparameters (depth, pct, weights) Mean Test Accuracy Standard Deviation

5, 30%, Unweighted 88.6% 0.02%

5, 30%, Balanced 44% 6%

5, 50%, Unweighted 88.6% 0.04%

5, 50%, Balanced 40% 1.3%

5, 70%, Unweighted 88.6% 0.03%

5, 70%, Balanced 54% 1.4%

5, 100%, Unweighted 88.6% 0%

5, 100%, Balanced 53% 0%

10, 30%, Unweighted 88.8% 0.1%

10, 30%, Balanced 47.5% 4%

10, 50%, Unweighted 89.1% 0.1%

10, 50%, Balanced 54% 0.4%

10, 70%, Unweighted 89.2% 0.1%

10, 70%, Balanced 59% 1.9%

10, 100%, Unweighted 89.4% 0%

10, 100%, Balanced 59% 0%

20, 30%, Unweighted 88.2% 0.2%

20, 30%, Balanced 66% 0.3%

20, 50%, Unweighted 88.2% 0.2%

20, 50%, Balanced 67% 1%

20, 70%, Unweighted 88.2% 0.1%

20, 70%, Balanced 68% 0.02%

20, 100%, Unweighted 88.2% 0.1%

20, 100%, Balanced 67% 0.02%

30, 30%, Unweighted 85% 0.1%

30, 30%, Balanced 80% 0.5%

30, 50%, Unweighted 85.1% 0.07%

30, 50%, Balanced 80.2% 0.6%

30, 70%, Unweighted 85% 0.09%

30, 70%, Balanced 80.8% 0.4%

30, 100%, Unweighted 84.6% 0.03%

30, 100%, Balanced 80.8% 0.04%

Table 5: Table showing decision tree accuracy results
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Figure 6: Best decision tree denial false positive curve trained on 3 classes. Handles 77% of
the data with a denial false positive rate below 1%.

by the balanced decision tree with depth 10, looking at 100% of the available features.

This tree also shows the best mean accuracy in Table 5. The denial false positive curve

can be seen in Figure 6. This best performing model was able to handle 77% of the

data with a denial false positive rate below 1%.

But the best denial false positive rate across all our decision trees again came from

a tree that was trained only on the approval and denial classes. It was also the de-

cision tree with depth 10, looking at 100% of the available features, however it was

unweighted. Furthermore, this tree was able to handle 82% of the data with a denial

false positive rate below 1%. The denial false positive curve can be seen in Figure 7.

The remaining curves can be found in the appendix.

4.1.3 Random Forests

The hyperparameters for our random forests are listed in Table 6. Recall that consid-

ering 100% of the features at a split corresponds to choosing one of the optimal splits.

We do not report accuracies for balanced forests since our experiments with logistic
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Figure 7: Best decision tree denial false positive curve trained on 2 classes. Handles 82% of
the data with a denial false positive rate below 1%.

Hyperparameters Values

Max Depth 5, 10, 20, 30

Percentage of features evaluated at splits 30%, 50%, 70%, 100%

Number of trees 10, 100, 200

Class weights Unweighted, Balanced

Table 6: Table showing random forest hyperparameters

regression and decision trees have demonstrated that balancing classes does not lead

to better accuracies, but we do consider them while evaluating the best denial false

positive curves and these curves can be found in the appendix.

Table 7 lists the accuracies obtained by a model trained on all 3 classes with a

particular set of hyperparameters.

Hyperparameters (depth, pct, number of trees) Test Accuracy

5, 30%, 10 88.5%

5, 30%, 100 88.5%

5, 30%, 200 88.5%

5, 50%, 10 88.6%

5, 50%, 100 88.6%
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5, 50%, 200 88.6%

5, 70%, 10 88.6%

5, 70%, 100 88.6%

5, 70%, 200 88.6%

5, 100%, 10 88.6%

5, 100%, 100 88.6%

5, 100%, 200 88.6%

10, 30%, 10 88.8%

10, 30%, 100 88.8%

10, 30%, 200 88.8%

10, 50%, 10 89.2%

10, 50%, 100 89.2%

10, 50%, 200 89.2%

10, 70%, 10 89.4%

10, 70%, 100 89.4%

10, 70%, 200 89.4%

10, 100%, 10 89.6%

10, 100%, 100 89.6%

10, 100%, 200 89.6%

20, 30%, 10 89.8%

20, 30%, 100 89.9%

20, 30%, 200 89.9%

20, 50%, 10 90%

20, 50%, 100 90.1%

20, 50%, 200 90.2%

20, 70%, 10 90%

20, 70%, 100 90.2%

20, 70%, 200 90.3%

20, 100%, 10 89.9%

20, 100%, 100 90.1%

20, 100%, 200 90.2%

30, 30%, 10 89.2%

30, 30%, 100 89.8%

30, 30%, 200 89.8%

30, 50%, 10 89.3%

30, 50%, 100 89.8%

30, 50%, 200 90%

30, 70%, 10 89.4%

30, 70%, 100 89.8%
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30, 70%, 200 89.9%

30, 100%, 10 89.2%

30, 100%, 100 89.8%

30, 100%, 200 89.8%

Table 7: Table showing random forest accuracy results

Increasing the depth helped until a depth of 20, after which the unweighted forests

began to overfit. The forest with the best accuracy had 200 trees, depth 20 and was

trained on 70% of the available features.

The best denial false positive rate from forests trained on all 3 classes was created

by the unweighted random forest with 200 trees, depth 20 and looking at 30% of the

available features. The denial false positive curve can be seen in Figure 8. This best

performing model was able to handle 84% of the data with a denial false positive rate

below 1%.

The best denial false positive rate across all our random forests actually came once

again from a forest that was trained only on the approval and denial classes. It was

the unweighted random forest with 200 trees, depth 20, looking at 70% of the available

features. This forest was able to handle 88% of the data with a denial false positive

rate below 1%. The denial false positive curve can be seen in Figure 9.

The remaining curves can be found in the appendix.

4.2 Results from Industry

We used our models as part of a production machine learning service that made ap-

proval predictions on new referrals as they were entered into the system. We used the

Flask web framework behind a Windows IIS server to expose our models through APIs.

The models were exposed to our industry partner HealthFortis Associates’ utilization
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Figure 8: Best random forest denial false positive curve trained on 3 classes. Handles 84% of
the data with a denial false positive rate below 1%.

Figure 9: Best random forest denial false positive curve trained on 2 classes. Handles 88% of
the data with a denial false positive rate below 1%.
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management web portal.

Below, we detail our models’ performance over a period of 14 months, from May of

2019 to July of 2020. The models were used as part of the UM process for a southern

Californian healthcare provider. Models and thresholds were varied over time as we

re-trained our models each month. We processed over 1.2 million referrals, approving

close to 250,000 referrals.

Our model was rolled out in a phased manner. Initially, the threshold was set high

such that the model would be more conservative in its predictions. The goal was that

the model’s false positive rate would remain below 1%. Later as the provider gained

more confidence in the model, the threshold was lowered, allowing our model to make

approval recommendations on a larger proportion of the data.

Thus, the model began by approving just 15% of referrals, with the threshold later

lowered such that the model was approving approximately 25% of referrals. In prac-

tice, about 20% of referrals contained some attribute that was new to the model, i.e.,

a new feature value. As such, the model was really approving 25% of about 80% of

the data, bringing its approval percentage closer to 20%. See Figure 10 for details.

The A/B Test column corresponds to the referrals the model approved, the Pending

column corresponds to the referrals the model denied (sent to the UM team), and the

No Prediction column corresponds to referrals containing a new feature value.

Referrals that the model approved were put through an A/B test at random to

allow us to collect data on the accuracy of the models predictions. Figure 11 shows

that the denial rate indicated by this A/B test was 0.82%.

43



Figure 10: Overall statistics from the ML service dashboard. Credit: HealthFortis Associates

Figure 11: Denial rates from the ML service dashboard. Credit: HealthFortis Associates
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Conclusion

Our goal in this thesis project was threefold:

• to understand the utilization management process,

• develop experimental machine learning models based on historical data, and

• evaluate them on historical data and as part of a real-time system.

Through background research and primary data on the utilization management pro-

cess, we learned that approvals were rarely re-evaluated, denials were often appealed,

and that cancels were noisy data. This allowed us to focus on the false positive denial

rate - the number of referrals the model predicted should be approved, but actually

ought to be denied. Our goal became to lower the approval threshold as far as possible

while maintaining a ceiling on the false positive denial rate. The ceiling we chose was

1%.

To accomplish this, we experimented with three different learning algorithms: lo-

gistic regressions, decision trees, and random forests. We tuned the hyperparameters

of these algorithms, experimented with class balancing, and explored the efficacy of

filtering noisy data (cancelled referrals). The very best model we trained was able to

approve 88% of the data with a false positive rate of less than 1%. It was an un-

weighted random forest trained on only the approval and denial classes and had 200

trees, each of which had a maximum depth of 20. It considered a randomly selected

70% of available features at each possible split.

To evaluate our models on real-time data, we used our best logistic regression

model, which demonstrated slightly worse performance, but was significantly more in-

terpretable and faster at making evaluations. This model was able to approve 87% of

the data with a false positive rate of less than 1%. It was trained on just the approval

and denial classes and the model was balanced. It also employed an L2 penalty with
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a regularization parameter of 1e-5.

In practical use, our models never exceeded the 1% denial rate threshold and

were used at an approval threshold where they automated approximately 20% of the

provider’s UM team workload. They were effective across all specialties and far ex-

ceeded the capabilities of rule-based systems.
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Figure 12: Curve for 3 class unweighted
logistic regression with 0.1 l1 penalty

Figure 13: Curve for 3 class balanced lo-
gistic regression with 0.1 l1 penalty

Figure 14: Curve for 3 class unweighted
logistic regression with 0.01 l1 penalty

Figure 15: Curve for 3 class balanced lo-
gistic regression with 0.01 l1 penalty

Appendices

A Denial False Positive Curves

A.1 Logistic Regression

See Figures 12-39 for the denial false positive curves trained on 3 classes. See Figures 40-67

for the denial false positive curves trained on 2 classes. As a reminder, the x-axis depicts

the proportion of data that would be evaluated by the model based on the chosen approval

threshold, and the y-axis depicts the denial false positive rate at this threshold.

A.2 Decision Trees

See Figures 68-99 for the denial false positive curves trained on 3 classes. See Figures 100-131

for the denial false positive curves trained on 2 classes. As a reminder, the x-axis depicts

the proportion of data that would be evaluated by the model based on the chosen approval

threshold, and the y-axis depicts the denial false positive rate at this threshold.
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Figure 16: Curve for 3 class unweighted
logistic regression with 0.001 l1 penalty

Figure 17: Curve for 3 class balanced lo-
gistic regression with 0.001 l1 penalty

Figure 18: Curve for 3 class unweighted
logistic regression with 0.0001 l1 penalty

Figure 19: Curve for 3 class balanced lo-
gistic regression with 0.0001 l1 penalty

Figure 20: Curve for 3 class unweighted
logistic regression with 1e-05 l1 penalty

Figure 21: Curve for 3 class balanced lo-
gistic regression with 1e-05 l1 penalty

Figure 22: Curve for 3 class unweighted
logistic regression with 1e-06 l1 penalty

Figure 23: Curve for 3 class balanced lo-
gistic regression with 1e-06 l1 penalty
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Figure 24: Curve for 3 class unweighted
logistic regression with 1e-07 l1 penalty

Figure 25: Curve for 3 class balanced lo-
gistic regression with 1e-07 l1 penalty

Figure 26: Curve for 3 class unweighted
logistic regression with 0.1 l2 penalty

Figure 27: Curve for 3 class balanced lo-
gistic regression with 0.1 l2 penalty

Figure 28: Curve for 3 class unweighted
logistic regression with 0.01 l2 penalty

Figure 29: Curve for 3 class balanced lo-
gistic regression with 0.01 l2 penalty

Figure 30: Curve for 3 class unweighted
logistic regression with 0.001 l2 penalty

Figure 31: Curve for 3 class balanced lo-
gistic regression with 0.001 l2 penalty
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Figure 32: Curve for 3 class unweighted
logistic regression with 0.0001 l2 penalty

Figure 33: Curve for 3 class balanced lo-
gistic regression with 0.0001 l2 penalty

Figure 34: Curve for 3 class unweighted
logistic regression with 1e-05 l2 penalty

Figure 35: Curve for 3 class balanced lo-
gistic regression with 1e-05 l2 penalty

Figure 36: Curve for 3 class unweighted
logistic regression with 1e-06 l2 penalty

Figure 37: Curve for 3 class balanced lo-
gistic regression with 1e-06 l2 penalty

Figure 38: Curve for 3 class unweighted
logistic regression with 1e-07 l2 penalty

Figure 39: Curve for 3 class balanced lo-
gistic regression with 1e-07 l2 penalty
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Figure 40: Curve for 2 class unweighted
logistic regression with 0.1 l1 penalty

Figure 41: Curve for 2 class balanced lo-
gistic regression with 0.1 l1 penalty

Figure 42: Curve for 2 class unweighted
logistic regression with 0.01 l1 penalty

Figure 43: Curve for 2 class balanced lo-
gistic regression with 0.01 l1 penalty

Figure 44: Curve for 2 class unweighted
logistic regression with 0.001 l1 penalty

Figure 45: Curve for 2 class balanced lo-
gistic regression with 0.001 l1 penalty

Figure 46: Curve for 2 class unweighted
logistic regression with 0.0001 l1 penalty

Figure 47: Curve for 2 class balanced lo-
gistic regression with 0.0001 l1 penalty
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Figure 48: Curve for 2 class unweighted
logistic regression with 1e-05 l1 penalty

Figure 49: Curve for 2 class balanced lo-
gistic regression with 1e-05 l1 penalty

Figure 50: Curve for 2 class unweighted
logistic regression with 1e-06 l1 penalty

Figure 51: Curve for 2 class balanced lo-
gistic regression with 1e-06 l1 penalty

Figure 52: Curve for 2 class unweighted
logistic regression with 1e-07 l1 penalty

Figure 53: Curve for 2 class balanced lo-
gistic regression with 1e-07 l1 penalty

Figure 54: Curve for 2 class unweighted
logistic regression with 0.1 l2 penalty

Figure 55: Curve for 2 class balanced lo-
gistic regression with 0.1 l2 penalty
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Figure 56: Curve for 2 class unweighted
logistic regression with 0.01 l2 penalty

Figure 57: Curve for 2 class balanced lo-
gistic regression with 0.01 l2 penalty

Figure 58: Curve for 2 class unweighted
logistic regression with 0.001 l2 penalty

Figure 59: Curve for 2 class balanced lo-
gistic regression with 0.001 l2 penalty

Figure 60: Curve for 2 class unweighted
logistic regression with 0.0001 l2 penalty

Figure 61: Curve for 2 class balanced lo-
gistic regression with 0.0001 l2 penalty

Figure 62: Curve for 2 class unweighted
logistic regression with 1e-05 l2 penalty

Figure 63: Curve for 2 class balanced lo-
gistic regression with 1e-05 l2 penalty
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Figure 64: Curve for 2 class unweighted
logistic regression with 1e-06 l2 penalty

Figure 65: Curve for 2 class balanced lo-
gistic regression with 1e-06 l2 penalty

Figure 66: Curve for 2 class unweighted
logistic regression with 1e-07 l2 penalty

Figure 67: Curve for 2 class balanced lo-
gistic regression with 1e-07 l2 penalty

Figure 68: Curve for 3 class unweighted
decision tree with depth 5 and 30% fea-
tures

Figure 69: Curve for 3 class balanced de-
cision tree with depth 5 and 30% features

Figure 70: Curve for 3 class unweighted
decision tree with depth 5 and 50% fea-
tures

Figure 71: Curve for 3 class balanced de-
cision tree with depth 5 and 50% features
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Figure 72: Curve for 3 class unweighted
decision tree with depth 5 and 70% fea-
tures

Figure 73: Curve for 3 class balanced de-
cision tree with depth 5 and 70% features

Figure 74: Curve for 3 class unweighted
decision tree with depth 5 and 100% fea-
tures

Figure 75: Curve for 3 class balanced de-
cision tree with depth 5 and 100% features

Figure 76: Curve for 3 class unweighted
decision tree with depth 10 and 30% fea-
tures

Figure 77: Curve for 3 class balanced de-
cision tree with depth 10 and 30% features

Figure 78: Curve for 3 class unweighted
decision tree with depth 10 and 50% fea-
tures

Figure 79: Curve for 3 class balanced de-
cision tree with depth 10 and 50% features
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Figure 80: Curve for 3 class unweighted
decision tree with depth 10 and 70% fea-
tures

Figure 81: Curve for 3 class balanced de-
cision tree with depth 10 and 70% features

Figure 82: Curve for 3 class unweighted
decision tree with depth 10 and 100% fea-
tures

Figure 83: Curve for 3 class balanced deci-
sion tree with depth 10 and 100% features

Figure 84: Curve for 3 class unweighted
decision tree with depth 20 and 30% fea-
tures

Figure 85: Curve for 3 class balanced de-
cision tree with depth 20 and 30% features

Figure 86: Curve for 3 class unweighted
decision tree with depth 20 and 50% fea-
tures

Figure 87: Curve for 3 class balanced de-
cision tree with depth 20 and 50% features
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Figure 88: Curve for 3 class unweighted
decision tree with depth 20 and 70% fea-
tures

Figure 89: Curve for 3 class balanced de-
cision tree with depth 20 and 70% features

Figure 90: Curve for 3 class unweighted
decision tree with depth 20 and 100% fea-
tures

Figure 91: Curve for 3 class balanced deci-
sion tree with depth 20 and 100% features

Figure 92: Curve for 3 class unweighted
decision tree with depth 30 and 30% fea-
tures

Figure 93: Curve for 3 class balanced de-
cision tree with depth 30 and 30% features

Figure 94: Curve for 3 class unweighted
decision tree with depth 30 and 50% fea-
tures

Figure 95: Curve for 3 class balanced de-
cision tree with depth 30 and 50% features
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Figure 96: Curve for 3 class unweighted
decision tree with depth 30 and 70% fea-
tures

Figure 97: Curve for 3 class balanced de-
cision tree with depth 30 and 70% features

Figure 98: Curve for 3 class unweighted
decision tree with depth 30 and 100% fea-
tures

Figure 99: Curve for 3 class balanced deci-
sion tree with depth 30 and 100% features

Figure 100: Curve for 2 class unweighted
decision tree with depth 5 and 30% fea-
tures

Figure 101: Curve for 2 class balanced de-
cision tree with depth 5 and 30% features

Figure 102: Curve for 2 class unweighted
decision tree with depth 5 and 50% fea-
tures

Figure 103: Curve for 2 class balanced de-
cision tree with depth 5 and 50% features
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Figure 104: Curve for 2 class unweighted
decision tree with depth 5 and 70% fea-
tures

Figure 105: Curve for 2 class balanced de-
cision tree with depth 5 and 70% features

Figure 106: Curve for 2 class unweighted
decision tree with depth 5 and 100% fea-
tures

Figure 107: Curve for 2 class balanced de-
cision tree with depth 5 and 100% features

Figure 108: Curve for 2 class unweighted
decision tree with depth 10 and 30% fea-
tures

Figure 109: Curve for 2 class balanced de-
cision tree with depth 10 and 30% features

Figure 110: Curve for 2 class unweighted
decision tree with depth 10 and 50% fea-
tures

Figure 111: Curve for 2 class balanced de-
cision tree with depth 10 and 50% features
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Figure 112: Curve for 2 class unweighted
decision tree with depth 10 and 70% fea-
tures

Figure 113: Curve for 2 class balanced de-
cision tree with depth 10 and 70% features

Figure 114: Curve for 2 class unweighted
decision tree with depth 10 and 100% fea-
tures

Figure 115: Curve for 2 class balanced de-
cision tree with depth 10 and 100% fea-
tures

Figure 116: Curve for 2 class unweighted
decision tree with depth 20 and 30% fea-
tures

Figure 117: Curve for 2 class balanced de-
cision tree with depth 20 and 30% features

Figure 118: Curve for 2 class unweighted
decision tree with depth 20 and 50% fea-
tures

Figure 119: Curve for 2 class balanced de-
cision tree with depth 20 and 50% features
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Figure 120: Curve for 2 class unweighted
decision tree with depth 20 and 70% fea-
tures

Figure 121: Curve for 2 class balanced de-
cision tree with depth 20 and 70% features

Figure 122: Curve for 2 class unweighted
decision tree with depth 20 and 100% fea-
tures

Figure 123: Curve for 2 class balanced de-
cision tree with depth 20 and 100% fea-
tures

Figure 124: Curve for 2 class unweighted
decision tree with depth 30 and 30% fea-
tures

Figure 125: Curve for 2 class balanced de-
cision tree with depth 30 and 30% features

Figure 126: Curve for 2 class unweighted
decision tree with depth 30 and 50% fea-
tures

Figure 127: Curve for 2 class balanced de-
cision tree with depth 30 and 50% features
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Figure 128: Curve for 2 class unweighted
decision tree with depth 30 and 70% fea-
tures

Figure 129: Curve for 2 class balanced de-
cision tree with depth 30 and 70% features

Figure 130: Curve for 2 class unweighted
decision tree with depth 30 and 100% fea-
tures

Figure 131: Curve for 2 class balanced de-
cision tree with depth 30 and 100% fea-
tures

A.3 Random Forest

See Figures 132-227 for the denial false positive curves trained on 3 classes. See Figures

228-323 for the denial false positive curves trained on 2 classes. As a reminder, the x-axis

depicts the proportion of data that would be evaluated by the model based on the chosen

approval threshold, and the y-axis depicts the denial false positive rate at this threshold.

Figure 132: Curve for unweighted 3 class
random forest with depth 5 and 30% fea-
tures

Figure 133: Curve for unweighted 3 class
random forest with depth 5 and 30% fea-
tures
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Figure 134: Curve for unweighted 3 class
random forest with depth 5 and 30% fea-
tures

Figure 135: Curve for unweighted 3 class
random forest with depth 5 and 50% fea-
tures

Figure 136: Curve for unweighted 3 class
random forest with depth 5 and 50% fea-
tures

Figure 137: Curve for unweighted 3 class
random forest with depth 5 and 50% fea-
tures

Figure 138: Curve for unweighted 3 class
random forest with depth 5 and 70% fea-
tures

Figure 139: Curve for unweighted 3 class
random forest with depth 5 and 70% fea-
tures

Figure 140: Curve for unweighted 3 class
random forest with depth 5 and 70% fea-
tures

Figure 141: Curve for unweighted 3 class
random forest with depth 5 and 100% fea-
tures
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Figure 142: Curve for unweighted 3 class
random forest with depth 5 and 100% fea-
tures

Figure 143: Curve for unweighted 3 class
random forest with depth 5 and 100% fea-
tures

Figure 144: Curve for unweighted 3 class
random forest with depth 10 and 30% fea-
tures

Figure 145: Curve for unweighted 3 class
random forest with depth 10 and 30% fea-
tures

Figure 146: Curve for unweighted 3 class
random forest with depth 10 and 30% fea-
tures

Figure 147: Curve for unweighted 3 class
random forest with depth 10 and 50% fea-
tures

Figure 148: Curve for unweighted 3 class
random forest with depth 10 and 50% fea-
tures

Figure 149: Curve for unweighted 3 class
random forest with depth 10 and 50% fea-
tures
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Figure 150: Curve for unweighted 3 class
random forest with depth 10 and 70% fea-
tures

Figure 151: Curve for unweighted 3 class
random forest with depth 10 and 70% fea-
tures

Figure 152: Curve for unweighted 3 class
random forest with depth 10 and 70% fea-
tures

Figure 153: Curve for unweighted 3 class
random forest with depth 10 and 100%
features

Figure 154: Curve for unweighted 3 class
random forest with depth 10 and 100%
features

Figure 155: Curve for unweighted 3 class
random forest with depth 10 and 100%
features

Figure 156: Curve for unweighted 3 class
random forest with depth 20 and 30% fea-
tures

Figure 157: Curve for unweighted 3 class
random forest with depth 20 and 30% fea-
tures
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Figure 158: Curve for unweighted 3 class
random forest with depth 20 and 30% fea-
tures

Figure 159: Curve for unweighted 3 class
random forest with depth 20 and 50% fea-
tures

Figure 160: Curve for unweighted 3 class
random forest with depth 20 and 50% fea-
tures

Figure 161: Curve for unweighted 3 class
random forest with depth 20 and 50% fea-
tures

Figure 162: Curve for unweighted 3 class
random forest with depth 20 and 70% fea-
tures

Figure 163: Curve for unweighted 3 class
random forest with depth 20 and 70% fea-
tures

Figure 164: Curve for unweighted 3 class
random forest with depth 20 and 70% fea-
tures

Figure 165: Curve for unweighted 3 class
random forest with depth 20 and 100%
features
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Figure 166: Curve for unweighted 3 class
random forest with depth 20 and 100%
features

Figure 167: Curve for unweighted 3 class
random forest with depth 20 and 100%
features

Figure 168: Curve for unweighted 3 class
random forest with depth 30 and 30% fea-
tures

Figure 169: Curve for unweighted 3 class
random forest with depth 30 and 30% fea-
tures

Figure 170: Curve for unweighted 3 class
random forest with depth 30 and 30% fea-
tures

Figure 171: Curve for unweighted 3 class
random forest with depth 30 and 50% fea-
tures

Figure 172: Curve for unweighted 3 class
random forest with depth 30 and 50% fea-
tures

Figure 173: Curve for unweighted 3 class
random forest with depth 30 and 50% fea-
tures
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Figure 174: Curve for unweighted 3 class
random forest with depth 30 and 70% fea-
tures

Figure 175: Curve for unweighted 3 class
random forest with depth 30 and 70% fea-
tures

Figure 176: Curve for unweighted 3 class
random forest with depth 30 and 70% fea-
tures

Figure 177: Curve for unweighted 3 class
random forest with depth 30 and 100%
features

Figure 178: Curve for unweighted 3 class
random forest with depth 30 and 100%
features

Figure 179: Curve for unweighted 3 class
random forest with depth 30 and 100%
features

Figure 180: Curve for balanced 3 class
random forest with depth 5 and 30% fea-
tures

Figure 181: Curve for balanced 3 class
random forest with depth 5 and 30% fea-
tures
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Figure 182: Curve for balanced 3 class
random forest with depth 5 and 30% fea-
tures

Figure 183: Curve for balanced 3 class
random forest with depth 5 and 50% fea-
tures

Figure 184: Curve for balanced 3 class
random forest with depth 5 and 50% fea-
tures

Figure 185: Curve for balanced 3 class
random forest with depth 5 and 50% fea-
tures

Figure 186: Curve for balanced 3 class
random forest with depth 5 and 70% fea-
tures

Figure 187: Curve for balanced 3 class
random forest with depth 5 and 70% fea-
tures

Figure 188: Curve for balanced 3 class
random forest with depth 5 and 70% fea-
tures

Figure 189: Curve for balanced 3 class
random forest with depth 5 and 100% fea-
tures
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Figure 190: Curve for balanced 3 class
random forest with depth 5 and 100% fea-
tures

Figure 191: Curve for balanced 3 class
random forest with depth 5 and 100% fea-
tures

Figure 192: Curve for balanced 3 class
random forest with depth 10 and 30% fea-
tures

Figure 193: Curve for balanced 3 class
random forest with depth 10 and 30% fea-
tures

Figure 194: Curve for balanced 3 class
random forest with depth 10 and 30% fea-
tures

Figure 195: Curve for balanced 3 class
random forest with depth 10 and 50% fea-
tures

Figure 196: Curve for balanced 3 class
random forest with depth 10 and 50% fea-
tures

Figure 197: Curve for balanced 3 class
random forest with depth 10 and 50% fea-
tures
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Figure 198: Curve for balanced 3 class
random forest with depth 10 and 70% fea-
tures

Figure 199: Curve for balanced 3 class
random forest with depth 10 and 70% fea-
tures

Figure 200: Curve for balanced 3 class
random forest with depth 10 and 70% fea-
tures

Figure 201: Curve for balanced 3 class
random forest with depth 10 and 100%
features

Figure 202: Curve for balanced 3 class
random forest with depth 10 and 100%
features

Figure 203: Curve for balanced 3 class
random forest with depth 10 and 100%
features

Figure 204: Curve for balanced 3 class
random forest with depth 20 and 30% fea-
tures

Figure 205: Curve for balanced 3 class
random forest with depth 20 and 30% fea-
tures
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Figure 206: Curve for balanced 3 class
random forest with depth 20 and 30% fea-
tures

Figure 207: Curve for balanced 3 class
random forest with depth 20 and 50% fea-
tures

Figure 208: Curve for balanced 3 class
random forest with depth 20 and 50% fea-
tures

Figure 209: Curve for balanced 3 class
random forest with depth 20 and 50% fea-
tures

Figure 210: Curve for balanced 3 class
random forest with depth 20 and 70% fea-
tures

Figure 211: Curve for balanced 3 class
random forest with depth 20 and 70% fea-
tures

Figure 212: Curve for balanced 3 class
random forest with depth 20 and 70% fea-
tures

Figure 213: Curve for balanced 3 class
random forest with depth 20 and 100%
features
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Figure 214: Curve for balanced 3 class
random forest with depth 20 and 100%
features

Figure 215: Curve for balanced 3 class
random forest with depth 20 and 100%
features

Figure 216: Curve for balanced 3 class
random forest with depth 30 and 30% fea-
tures

Figure 217: Curve for balanced 3 class
random forest with depth 30 and 30% fea-
tures

Figure 218: Curve for balanced 3 class
random forest with depth 30 and 30% fea-
tures

Figure 219: Curve for balanced 3 class
random forest with depth 30 and 50% fea-
tures

Figure 220: Curve for balanced 3 class
random forest with depth 30 and 50% fea-
tures

Figure 221: Curve for balanced 3 class
random forest with depth 30 and 50% fea-
tures
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Figure 222: Curve for balanced 3 class
random forest with depth 30 and 70% fea-
tures

Figure 223: Curve for balanced 3 class
random forest with depth 30 and 70% fea-
tures

Figure 224: Curve for balanced 3 class
random forest with depth 30 and 70% fea-
tures

Figure 225: Curve for balanced 3 class
random forest with depth 30 and 100%
features

Figure 226: Curve for balanced 3 class
random forest with depth 30 and 100%
features

Figure 227: Curve for balanced 3 class
random forest with depth 30 and 100%
features

Figure 228: Curve for unweighted 2 class
random forest with depth 5 and 30% fea-
tures

Figure 229: Curve for unweighted 2 class
random forest with depth 5 and 30% fea-
tures
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Figure 230: Curve for unweighted 2 class
random forest with depth 5 and 30% fea-
tures

Figure 231: Curve for unweighted 2 class
random forest with depth 5 and 50% fea-
tures

Figure 232: Curve for unweighted 2 class
random forest with depth 5 and 50% fea-
tures

Figure 233: Curve for unweighted 2 class
random forest with depth 5 and 50% fea-
tures

Figure 234: Curve for unweighted 2 class
random forest with depth 5 and 70% fea-
tures

Figure 235: Curve for unweighted 2 class
random forest with depth 5 and 70% fea-
tures

Figure 236: Curve for unweighted 2 class
random forest with depth 5 and 70% fea-
tures

Figure 237: Curve for unweighted 2 class
random forest with depth 5 and 100% fea-
tures

75



Figure 238: Curve for unweighted 2 class
random forest with depth 5 and 100% fea-
tures

Figure 239: Curve for unweighted 2 class
random forest with depth 5 and 100% fea-
tures

Figure 240: Curve for unweighted 2 class
random forest with depth 10 and 30% fea-
tures

Figure 241: Curve for unweighted 2 class
random forest with depth 10 and 30% fea-
tures

Figure 242: Curve for unweighted 2 class
random forest with depth 10 and 30% fea-
tures

Figure 243: Curve for unweighted 2 class
random forest with depth 10 and 50% fea-
tures

Figure 244: Curve for unweighted 2 class
random forest with depth 10 and 50% fea-
tures

Figure 245: Curve for unweighted 2 class
random forest with depth 10 and 50% fea-
tures
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Figure 246: Curve for unweighted 2 class
random forest with depth 10 and 70% fea-
tures

Figure 247: Curve for unweighted 2 class
random forest with depth 10 and 70% fea-
tures

Figure 248: Curve for unweighted 2 class
random forest with depth 10 and 70% fea-
tures

Figure 249: Curve for unweighted 2 class
random forest with depth 10 and 100%
features

Figure 250: Curve for unweighted 2 class
random forest with depth 10 and 100%
features

Figure 251: Curve for unweighted 2 class
random forest with depth 10 and 100%
features

Figure 252: Curve for unweighted 2 class
random forest with depth 20 and 30% fea-
tures

Figure 253: Curve for unweighted 2 class
random forest with depth 20 and 30% fea-
tures
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Figure 254: Curve for unweighted 2 class
random forest with depth 20 and 30% fea-
tures

Figure 255: Curve for unweighted 2 class
random forest with depth 20 and 50% fea-
tures

Figure 256: Curve for unweighted 2 class
random forest with depth 20 and 50% fea-
tures

Figure 257: Curve for unweighted 2 class
random forest with depth 20 and 50% fea-
tures

Figure 258: Curve for unweighted 2 class
random forest with depth 20 and 70% fea-
tures

Figure 259: Curve for unweighted 2 class
random forest with depth 20 and 70% fea-
tures

Figure 260: Curve for unweighted 2 class
random forest with depth 20 and 70% fea-
tures

Figure 261: Curve for unweighted 2 class
random forest with depth 20 and 100%
features
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Figure 262: Curve for unweighted 2 class
random forest with depth 20 and 100%
features

Figure 263: Curve for unweighted 2 class
random forest with depth 20 and 100%
features

Figure 264: Curve for unweighted 2 class
random forest with depth 30 and 30% fea-
tures

Figure 265: Curve for unweighted 2 class
random forest with depth 30 and 30% fea-
tures

Figure 266: Curve for unweighted 2 class
random forest with depth 30 and 30% fea-
tures

Figure 267: Curve for unweighted 2 class
random forest with depth 30 and 50% fea-
tures

Figure 268: Curve for unweighted 2 class
random forest with depth 30 and 50% fea-
tures

Figure 269: Curve for unweighted 2 class
random forest with depth 30 and 50% fea-
tures
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Figure 270: Curve for unweighted 2 class
random forest with depth 30 and 70% fea-
tures

Figure 271: Curve for unweighted 2 class
random forest with depth 30 and 70% fea-
tures

Figure 272: Curve for unweighted 2 class
random forest with depth 30 and 70% fea-
tures

Figure 273: Curve for unweighted 2 class
random forest with depth 30 and 100%
features

Figure 274: Curve for unweighted 2 class
random forest with depth 30 and 100%
features

Figure 275: Curve for unweighted 2 class
random forest with depth 30 and 100%
features

Figure 276: Curve for balanced 2 class
random forest with depth 5 and 30% fea-
tures

Figure 277: Curve for balanced 2 class
random forest with depth 5 and 30% fea-
tures
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Figure 278: Curve for balanced 2 class
random forest with depth 5 and 30% fea-
tures

Figure 279: Curve for balanced 2 class
random forest with depth 5 and 50% fea-
tures

Figure 280: Curve for balanced 2 class
random forest with depth 5 and 50% fea-
tures

Figure 281: Curve for balanced 2 class
random forest with depth 5 and 50% fea-
tures

Figure 282: Curve for balanced 2 class
random forest with depth 5 and 70% fea-
tures

Figure 283: Curve for balanced 2 class
random forest with depth 5 and 70% fea-
tures

Figure 284: Curve for balanced 2 class
random forest with depth 5 and 70% fea-
tures

Figure 285: Curve for balanced 2 class
random forest with depth 5 and 100% fea-
tures
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Figure 286: Curve for balanced 2 class
random forest with depth 5 and 100% fea-
tures

Figure 287: Curve for balanced 2 class
random forest with depth 5 and 100% fea-
tures

Figure 288: Curve for balanced 2 class
random forest with depth 10 and 30% fea-
tures

Figure 289: Curve for balanced 2 class
random forest with depth 10 and 30% fea-
tures

Figure 290: Curve for balanced 2 class
random forest with depth 10 and 30% fea-
tures

Figure 291: Curve for balanced 2 class
random forest with depth 10 and 50% fea-
tures

Figure 292: Curve for balanced 2 class
random forest with depth 10 and 50% fea-
tures

Figure 293: Curve for balanced 2 class
random forest with depth 10 and 50% fea-
tures
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Figure 294: Curve for balanced 2 class
random forest with depth 10 and 70% fea-
tures

Figure 295: Curve for balanced 2 class
random forest with depth 10 and 70% fea-
tures

Figure 296: Curve for balanced 2 class
random forest with depth 10 and 70% fea-
tures

Figure 297: Curve for balanced 2 class
random forest with depth 10 and 100%
features

Figure 298: Curve for balanced 2 class
random forest with depth 10 and 100%
features

Figure 299: Curve for balanced 2 class
random forest with depth 10 and 100%
features

Figure 300: Curve for balanced 2 class
random forest with depth 20 and 30% fea-
tures

Figure 301: Curve for balanced 2 class
random forest with depth 20 and 30% fea-
tures
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Figure 302: Curve for balanced 2 class
random forest with depth 20 and 30% fea-
tures

Figure 303: Curve for balanced 2 class
random forest with depth 20 and 50% fea-
tures

Figure 304: Curve for balanced 2 class
random forest with depth 20 and 50% fea-
tures

Figure 305: Curve for balanced 2 class
random forest with depth 20 and 50% fea-
tures

Figure 306: Curve for balanced 2 class
random forest with depth 20 and 70% fea-
tures

Figure 307: Curve for balanced 2 class
random forest with depth 20 and 70% fea-
tures

Figure 308: Curve for balanced 2 class
random forest with depth 20 and 70% fea-
tures

Figure 309: Curve for balanced 2 class
random forest with depth 20 and 100%
features
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Figure 310: Curve for balanced 2 class
random forest with depth 20 and 100%
features

Figure 311: Curve for balanced 2 class
random forest with depth 20 and 100%
features

Figure 312: Curve for balanced 2 class
random forest with depth 30 and 30% fea-
tures

Figure 313: Curve for balanced 2 class
random forest with depth 30 and 30% fea-
tures

Figure 314: Curve for balanced 2 class
random forest with depth 30 and 30% fea-
tures

Figure 315: Curve for balanced 2 class
random forest with depth 30 and 50% fea-
tures

Figure 316: Curve for balanced 2 class
random forest with depth 30 and 50% fea-
tures

Figure 317: Curve for balanced 2 class
random forest with depth 30 and 50% fea-
tures
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Figure 318: Curve for balanced 2 class
random forest with depth 30 and 70% fea-
tures

Figure 319: Curve for balanced 2 class
random forest with depth 30 and 70% fea-
tures

Figure 320: Curve for balanced 2 class
random forest with depth 30 and 70% fea-
tures

Figure 321: Curve for balanced 2 class
random forest with depth 30 and 100%
features

Figure 322: Curve for balanced 2 class
random forest with depth 30 and 100%
features

Figure 323: Curve for balanced 2 class
random forest with depth 30 and 100%
features
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