
Parallel index-based structural graph clustering and its
approximations

by

Tom Tseng

B.S., Carnegie Mellon University (2018)

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

© 2020 Massachusetts Institute of Technology. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2020

Certified by .
Julian Shun

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Parallel index-based structural graph clustering and its

approximations

by

Tom Tseng

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

Abstract
SCAN (structural clustering algorithm for networks) is a well-known approach for
graph clustering. Sequential versions of SCAN are prohibitively slow on large graphs,
however. Existing parallel versions of SCAN, on the other hand, can cluster graphs
relatively quickly on a particular setting of SCAN parameters, but do not effectively
share work among queries on different parameter settings. Because users of SCAN
need to test several parameter settings in order to find a good clustering, it can be
worthwhile to precompute an index to speed up later queries. To that end, this thesis
presents a parallelization of GS*-Index, an existing index-based SCAN algorithm.
The parallelized algorithm is work-efficient and achieves logarithmic span for both
constructing the index and running clustering queries.

We describe an implementation of our algorithm and test it on several real-world
large graphs, with the largest graph having 1.8 billion edges. On a machine with 48
cores and 2-way hyper-threading, our parallel index construction achieves 50–151×
speedup over the construction of GS*-Index. In fact, our index construction algo-
rithm is faster than GS*-Index even when running our algorithm sequentially. Our
parallel index query implementation achieves 5–32× speedup over queries on GS*-
Index across a range of SCAN parameter values, and our implementation is also faster
than ppSCAN, the fastest existing parallel SCAN algorithm, on all tested parameter
values.

We also explore how locality-sensitive hashing can speed up index construction by
approximating the similarity scores between vertices, the computation of which is the
most time-consuming aspect of SCAN. Our experiments show that this technique can
achieve meaningful speedups on denser graphs without large sacrifices in clustering
quality.

Thesis Supervisor: Julian Shun
Title: Assistant Professor

3

4

Acknowledgments
This thesis, like all of my work, is a collective effort. I would be unable to write this
thesis if it were not for the help, direct and indirect, of others.

I thank my advisor, Professor Julian Shun, for his generous support and patience
starting from before I even moved to campus. He provided a lot of direction in this
first research project of my graduate career.

I also thank my past mentors and close collaborators. My undergraduate thesis
advisor, Professor Guy Blelloch, introduced me to the area of parallel algorithms and
taught me much of what I needed to make my first contributions to the field. Before
that, Professor Anil Ada introduced me to theoretical computer science and advised
me when I first chose to pursue research. Laxman Dhulipala worked closely with
me throughout the research that led to my undergraduate thesis, and I continue to
collaborate with him to this day, including on the project covered by this thesis. His
encouragement and advice when I was considering applying to graduate school during
my undergraduate years benefited me as well.

I thank my many friends from my hometown, from college, from my time in
industry, and from graduate school. They are sources of inspiration, emotional relief,
intellectual growth, and joyful memories. Without my friends, my happiness and my
moral character would surely both be worse off.

Finally, I thank my parents for the tremendous sacrifices that they made for
my brothers and me. The greatest gift I have ever received is their endless and
compassionate support.

5

6

Contents

1 Introduction 9

2 Preliminaries 13

2.1 Set similarity . 13

2.1.1 Similarity measures . 13

2.1.2 Locality-sensitive hashing . 14

2.2 Graph clustering . 15

2.2.1 Graphs . 15

2.2.2 SCAN definitions . 16

2.2.3 Index-based SCAN: GS*-Index 18

2.2.4 Clustering quality measures 19

2.3 Parallelism . 20

2.3.1 Parallel programming model 20

2.3.2 Parallel primitives . 21

3 Algorithm 23

3.1 Basic description . 23

3.1.1 Index construction . 24

3.1.2 Querying for clusters . 26

3.1.3 Determining hubs and outliers 29

3.2 Approximating similarities . 29

3.3 Implementation . 33

3.3.1 Computing similarities . 33

7

3.3.2 Querying for clusters . 34

3.3.3 Approximate similarities . 35

4 Experiments 37

4.1 Benchmarking environment . 37

4.2 Results . 39

4.2.1 Index construction time comparison 39

4.2.2 Clustering time comparison 39

4.2.3 Approximate index construction time 45

4.2.4 Quality of approximate clusterings 47

5 Related Work 57

6 Conclusion 61

8

Chapter 1

Introduction

A crucial technique in understanding the structure of data is to organize it into

meaningful groupings. When the data takes the form of a graph, the problem usually

becomes a graph clustering problem in which the goal is to partition the vertices of

the graph into clusters so that “closely related” vertices fall in the same cluster. In

particular, a good graph clustering usually has many edges that fall within clusters

but relatively few edges that connect different clusters. Graph clustering is a popular

problem with a wide range of applications, including social and biological network

analysis [26], recommendation systems [3], image segmentation [58], natural language

processing [4], and load balancing in distributed systems [2].

One popular approach to graph clustering is structural clustering, which Xu et al.

first introduced via the Structural Clustering Algorithm for Networks (SCAN) [61].

In structural clustering, the similarity of adjacent vertices depends on the number of

shared neighbors between the vertices. The approach is simple, and it is unique in

that it also finds hub vertices that connect different clusters as well as outlier vertices

that do not have strong ties to any cluster. Researchers have used SCAN for finding

meaningful clusters in biological data [41, 40, 38, 21] and web data [44, 45, 46, 37,

50, 51].

SCAN as Xu et al. originally described it suffers, however, from two issues: (1) the

large computational cost of sequentially computing the similarities among all adjacent

vertices, and (2) the costliness of tuning the parameters of the algorithm to achieve

9

good clustering quality. Many researchers have developed variants of SCAN to address

these issues. To alleviate issue (1), there are variants that exploit parallelism [14, 65,

56, 66, 57, 13, 39], and there are variants that introduce algorithmic optimizations like

pruning away unnecessary similarity computations [52, 11, 13]. To alleviate issue (2),

there are variants that precompute an index from which computing the clusterings

resulting from a range of parameter values is fast [8, 30, 59]. To run structural

clustering effectively on large graphs, SCAN-based algorithms should address both

issues, which existing algorithms fail to do.

This thesis addresses the aforementioned issues by presenting a parallel index-

based SCAN algorithm based on the sequential GS*-Index SCAN algorithm [59].

Our algorithm achieves the same work bounds as GS*-Index in expectation, and it is

highly parallel in the sense that it achieves logarithmic span with high probability.1

We also describe and provide the code of an implementation of our algorithm that runs

quickly in practice. In our experiments on a machine with 48 cores and 2-way hyper-

threading against several large real-world graphs, our index construction algorithm

achieves 50–151× speedup over the construction of GS*-Index. In fact, our index

construction algorithm is faster than GS*-Index even when we run our algorithm

sequentially with a single thread. Our parallel index query implementation achieves

5–32× speedup over queries on GS*-Index across a range of SCAN parameter values.

Our implementation also achieves faster query times on all tested parameter values

compared to ppSCAN [13], the fastest existing parallel SCAN algorithm.

To further address issue (1), we also explore using locality-sensitive hashing to

speed up similarity computation by calculating approximate similarities. Our theo-

retical analysis and experiments show that on dense graphs, using locality-sensitive

hashing can speed up our index construction by considerable amounts without large

sacrifices in clustering quality.

In summary, the contributions of this thesis are as follows:

• We present a parallel index-based SCAN algorithm that is work-efficient in

1We use with high probability to describe events that occur with probability at least 1 − 1/𝑛𝑐

where 𝑛 is the input size and 𝑐 is some positive real number.

10

expectation and has logarithmic span with high probability.

• We introduce and theoretically analyze the idea of combining locality-sensitive

hashing with SCAN to achieve faster, approximate results on dense graphs.

• We present experiments that demonstrate that our implementation of our al-

gorithm outperforms other existing SCAN algorithms and that confirm that

locality-sensitive hashing can provide running time improvements on denser

graphs while still finding clusterings with good quality.

• We release the implementation of our algorithm. 2

2Code: https://github.com/ParAlg/gbbs/tree/ed48046f6a20c378ae2e54586d15722cea0a3d75/
benchmarks/SCAN/IndexBased

11

https://github.com/ParAlg/gbbs/tree/ed48046f6a20c378ae2e54586d15722cea0a3d75/benchmarks/SCAN/IndexBased
https://github.com/ParAlg/gbbs/tree/ed48046f6a20c378ae2e54586d15722cea0a3d75/benchmarks/SCAN/IndexBased

12

Chapter 2

Preliminaries

This chapter provides background definitions, concepts, and notation that subsequent

chapters use.

2.1 Set similarity

2.1.1 Similarity measures

Two common measures for the similarity of two finite sets 𝐴 and 𝐵 are Jaccard

similarity and cosine similarity:

JaccardSim(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

,

CosineSim(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
√|𝐴|√|𝐵|

.

The cosine similarity is really a similarity measure between non-zero vectors; given

vectors 𝑢 and 𝑣 with an angle of 𝜃 between the two vectors, the cosine similarity is

defined as

CosineSim(𝑢, 𝑣) = cos(𝜃) = 𝑢 ⋅ 𝑣
‖𝑢‖‖𝑣‖

.

Suppose that sets 𝐴 and 𝐵 have elements from the universe {1, 2, 3, … , 𝑑} for some

13

𝑑 ∈ N. Then the definition of the cosine similarity between two sets comes from

representing each set as a bit vector in R𝑑 and then computing the cosine similarity

between the two bit vectors. Furthermore, using a similar vector representation,

cosine similarity extends in a straightforward way to sets that assign a weight to

each of their elements. If sets 𝐴 and 𝐵 have weight functions 𝑤𝐴 and 𝑤𝐵 mapping

elements to real number weights, then

WeightedCosineSim(𝐴, 𝐵) =
∑𝑥∈𝐴∩𝐵 𝑤𝐴(𝑥)𝑤𝐵(𝑥)

√∑𝑥∈𝐴 𝑤𝐴(𝑥)2√∑𝑥∈𝐵 𝑤𝐵(𝑥)2
.

(There is also a weighted version of Jaccard similarity, but we do not consider it

further in this work.)

2.1.2 Locality-sensitive hashing

Suppose that there is a collection of large sets with elements in the universe 𝑈 =

{1, … , 𝑑} for some 𝑑 ∈ N. Computing pairwise similarities scores among these sets

may be expensive because each set is large. Locality-sensitive hashing is a technique

that can speed up this computation at the expense of accuracy. The idea is to devise a

hash function family that maps similar sets to similar, smaller hash values or sketches.

Then we can sketch each set and estimate similarities by operating on the sketches

instead of on the original sets.

A well-known locality-sensitive hash scheme for estimating Jaccard similarity, for

instance, is MinHash [10]. MinHash works by drawing a uniformly random permuta-

tion 𝜋 on 𝑈 and considering the sketch of a non-empty set 𝑆 to be min𝑥∈𝑆 𝜋(𝑥). For

any non-empty sets 𝐴 and 𝐵, the probability that the sketches of 𝐴 and 𝐵 are equal

is exactly JaccardSim(𝐴, 𝐵). To increase the precision, we fix some number of sam-

ples 𝑘 ∈ N and perform this process 𝑘 times independently to get 𝑘-length sketches.

Measuring the proportion of matching coordinates between two sketches gives an es-

timate of the Jaccard similarity between the two corresponding sets. Increasing the

number of samples 𝑘 reduces variance at the cost of increased computational effort.

14

There are variants of MinHash that strive to be more computationally efficient, such

as 𝑘-partition MinHash [35].

SimHash [12] is a well-known locality-sensitive hash scheme for estimating the

angle between two vectors. Hence, it may also estimate the cosine similarity between

vectors, though this estimate is biased. The idea behind SimHash is to consider

drawing a vector 𝑣 in R𝑑 by drawing each coordinate independently from the standard

normal distribution. This vector 𝑣 has uniformly random direction. Take the sketch

of a vector 𝑢 to be sign(𝑢⋅𝑣). Consider any non-zero vectors 𝑎 and 𝑏, and let 𝜃 ∈ [0, 𝜋]

denote the angle between them in radians. The probability that the sketches of 𝑎 and

𝑏 differ is exactly 𝜃/𝜋; because 𝑣 has uniformly random direction, the orthogonal

hyperplane to 𝑣 separates 𝑎 and 𝑏 with probability 𝜃/𝜋, which exactly corresponds

to the event that sign(𝑎 ⋅ 𝑣) ≠ sign(𝑏 ⋅ 𝑣). Like with MinHash, for more precision,

we can fix 𝑘 ∈ N and repeat this process 𝑘 times to get 𝑘-length sketches. From the

𝑘-length sketches, we estimate 𝜃 by counting the number of differing entries between

the sketches of 𝑎 and 𝑏 and multiplying that number by 𝜋/𝑘. Having an estimate of

𝜃 then gives an estimate for cos(𝜃) = CosineSim(𝑢, 𝑣).

2.2 Graph clustering

2.2.1 Graphs

We denote an unweighted, undirected graph 𝐺 by 𝐺 = (𝑉 , 𝐸) where 𝑉 is the set

of graph vertices and 𝐸 ⊆ {{𝑢, 𝑣} ∶ 𝑢, 𝑣 ∈ 𝑉} is the set of graph edges. We denote

a weighted graph 𝐺 by 𝐺 = (𝑉 , 𝐸, 𝑤) where 𝑤 ∶ 𝐸 → R is a function that maps

edges to weight values. Following common convention, we often use 𝑛 to denote the

number of vertices |𝑉| and 𝑚 to denote the number of edges |𝐸|. The neighborhood

𝑁(𝑣) of a vertex 𝑣 is the set of all vertices 𝑢 connected to 𝑣 by an edge. The closed

neighborhood of 𝑣 is 𝑁(𝑣) = 𝑁(𝑣) ∪ {𝑣}. The degree of a vertex is size of the vertex’s

neighborhood, though when the exact value is important, we will write either |𝑁(𝑣)|

or ∣𝑁(𝑣)∣ to avoid ambiguity.

15

For directed graphs, the notation largely remains the same, though each element

in the set of edges 𝐸 becomes an ordered pair rather than an unordered pair. The

out-neighborhood of a vertex is the set of all vertices 𝑢 such that (𝑣, 𝑢) ∈ 𝐸.

The arboricity 𝛼 of a graph 𝐺 is the minimum number of spanning forests that

covers all edges of the graph. The arboricity is bounded below by ⌈𝑚/(𝑛 − 1)⌉ since

each spanning forest covers at most 𝑛 − 1 edges, and the arboricity is bounded above

by 𝑂(
√

𝑚 + 𝑛). A triangle is a triplet of edges {𝑢, 𝑣}, {𝑣, 𝑥}, {𝑥, 𝑢} between distinct

vertices 𝑢, 𝑣, 𝑥 in 𝑉. There are triangle counting algorithms that find all triangles in

a graph in 𝑂(𝛼𝑚) time [15].

The graph representation that this thesis assumes is the adjacency list, which

lists of the neighborhoods of each vertex in the represented graph. We only consider

simple graphs, which are graphs without multiple edges between any particular pair

of vertices and without self-loop edges. We index vertices using the integers in the

range [1, 𝑛].

2.2.2 SCAN definitions

SCAN [61] is a graph clustering algorithm. In this thesis, we assume that any graphs

to be clustered are undirected since SCAN is only intended to run on undirected

graphs.

The typical problem formulation for graph clustering is that the goal is to output a

partition (or clustering) of the vertices of the input graph such that each cluster in the

partition has many edges within the cluster and such that there are few edges between

clusters. How exactly to measure the quality of a clustering is unclear and depends

on the application domain. Section 2.2.4 lists a few clustering quality measures.

The output of SCAN diverges slightly from this description of clustering; SCAN

may leave some vertices unclustered. Unclustered vertices are further separated into

hubs and outliers. Hubs are vertices that neighbor several clusters but do not belong

to any, and outliers are unclustered vertices that neighbor at most one cluster.

For each pair of adjacent vertices {𝑢, 𝑣} ∈ 𝐸, SCAN computes a similarity score

𝜎(𝑢, 𝑣). The original paper assumes that edges are unweighted and defines the simi-

16

larity score to be the cosine similarity of the closed neighborhoods of the two vertices:

𝜎(𝑢, 𝑣) = CosineSim(𝑁(𝑢), 𝑁(𝑣)) =
∣𝑁(𝑢) ∩ 𝑁(𝑣)∣

√∣𝑁(𝑢)∣√∣𝑁(𝑣)∣
.

This definition of similarity score is arbitrary, however; other papers consider using

Jaccard similarity, Dice similarity, or weighted cosine similarity for the similarity

function [29, 30, 11, 39].

SCAN takes two parameters as input, an integer 𝜇 ≥ 2 and a similarity threshold

𝜀 ∈ [0, 1]. Call vertices 𝑢 and 𝑣 𝜀-similar if their similarity 𝜎(𝑢, 𝑣) is at least 𝜀. The

𝜀-neighborhood of a vertex 𝑣 is the set of its 𝜀-similar neighbors:

𝑁𝜀(𝑣) = {𝑢 ∈ 𝑁(𝑣) ∣ 𝜎(𝑢, 𝑣) ≥ 𝜀}.

The core vertices are the vertices whose 𝜀-neighborhood contains at least 𝜇 neighbors:

vertex 𝑣 is a core ⟺ |𝑁𝜀(𝑣)| ≥ 𝜇.

A vertex 𝑢 is structurally reachable from core vertex 𝑣 if there is a path of vertices

𝑣1, 𝑣2, … , 𝑣𝑘 for some 𝑘 ≥ 2 where 𝑣1 = 𝑣, where 𝑣𝑘 = 𝑢, and where 𝑣𝑖 is a core and

is 𝜀-similar to 𝑣𝑖+1 for each integer 𝑖 from 1 to 𝑘 − 1.

The two following properties define each cluster in the clustering that SCAN finds.

• The cluster is connected in the sense that for any two vertices 𝑢 and 𝑥 in the

cluster 𝐶, there is a vertex 𝑣 such that both 𝑢 and 𝑥 are structurally reachable

from 𝑣.

• The cluster is maximal in the sense that for every core vertex 𝑣 in the cluster,

all vertices that are structurally reachable from 𝑣 are also in the cluster.

Some non-core vertices may be unclustered and not belong to any cluster. These

vertices are further divided into hubs, which are unclustered vertices that neighbor at

least two different clusters, and outliers, which are all the remaining vertices.

17

An issue with the definition of SCAN clusters is that the border vertices, which are

the clustered non-core vertices, may belong to several distinct clusters according to

the definition. The original SCAN algorithm assigns these ambiguous border vertices

arbitrarily to any of its possible clusters.

Computing similarity scores takes 𝑂(𝛼𝑚) time if implemented carefully. To cal-

culate a similarity score 𝜎(𝑢, 𝑣), it suffices to count the number of shared neighbors in

𝑁(𝑢)∩𝑁(𝑣), which is precisely the number of triangles in which edge {𝑢, 𝑣} appears.

There are 𝑂(𝛼𝑚)-time triangle counting algorithms that can find these per-edge tri-

angle counts. After computing similarities, SCAN finds clusters by performing a

modified breadth-first search, which takes 𝑂(𝑛 + 𝑚) time.

2.2.3 Index-based SCAN: GS*-Index

GS*-Index [59] improves on SCAN by pre-computing an index from which finding

cores and 𝜀-similar neighbors is fast for any setting of 𝜇 and 𝜀. It takes 𝑂((𝛼+log𝑛)𝑚)

time to compute the index, and the index takes 𝑂(𝑚) space. After computing the

index, the time it takes to compute the clustering for arbitrary query parameters

(𝜇, 𝜀) depends on the size of the resulting clusters rather than on the size of the full

graph. Specifically, for a subset of vertices 𝐶 ⊆ 𝑉, define 𝐸𝐶,𝜀 to be the set of 𝜀-similar

edges in the subgraph induced by 𝐶. Then the time to compute the clustering 𝒞 for

parameters 𝜇 and 𝜀 is 𝑂(∑𝐶∈𝒞∣𝐸𝐶,𝜀∣). Determining whether unclustered vertices

are hubs or outliers is not considered in this time bound.

The index consists of two data structures, the neighbor order 𝒩𝒪 and the core

order 𝒞𝒪. To compute the index, we first compute the similarity scores between every

pair of adjacent of vertices. The neighbor order is simply the adjacency list of the

graph with each neighbor list sorted by descending similarity. The core order is an

array where the 𝜇-th entry, 𝒞𝒪[𝜇], for any 𝜇 is a list of vertices with degree (relative

each vertex’s closed neighborhood) at least 𝜇. These are the vertices 𝑣 for which

there is some threshold 𝜀threshold(𝜇, 𝑣) such that for all 𝜀 ≤ 𝜀threshold(𝜇, 𝑣), the vertex

is a core vertex under parameters 𝜇 and 𝜀. This value 𝜀threshold(𝜇, 𝑣) for a vertex 𝑣

is the 𝜇-th entry of 𝒩𝒪[𝑣]. Each list 𝒞𝒪[𝜇] is sorted by descending threshold values

18

𝜀threshold(𝜇, ⋅) = 𝒩𝒪[⋅][𝜇].

To find the clustering resulting from SCAN parameters 𝜇 and 𝜀, we perform a

breadth-first search on the core vertices, considering only 𝜀-similar edges in the graph

and not searching further from any non-core vertices. The core vertices and 𝜀-similar

edges are easy to find from the index since the core vertices are a prefix of 𝒞𝒪[𝜇]

and the 𝜀-similar edges are prefixes of 𝒩𝒪[⋅]. This breadth-first search reveals all the

SCAN clusters in the graph.

2.2.4 Clustering quality measures

One of the most popular graph clustering quality metrics that relies only the structure

of the graph is the modularity [43]. The modularity is the proportion of edges that fall

within clusters in the clustering minus the expected number of edges that would fall

within clusters in a random graph with the same degree distribution. More explicitly,

fix some clustering and let 𝛿𝑢,𝑣 for arbitrary vertices 𝑢 and 𝑣 be 1 if 𝑢 and 𝑣 are

assigned the same cluster and be 0 otherwise. The modularity of the clustering is

1
2𝑚

∑
𝑢,𝑣∈𝑉

(𝐴𝑢,𝑣 − |𝑁(𝑢)||𝑁(𝑣)|
2𝑚

)𝛿𝑢,𝑣.

The definition of modularity also easily extends to apply to weighted graphs [42].

Higher modularity scores suggest better clusterings.

Another way to measure the quality of a proposed clustering is to check how similar

it is against a known ground-truth clustering. One well-known metric for evaluating

this similarity is the adjusted Rand index (ARI) [31]. ARI counts the number of pairs

of vertices such that the two vertices are assigned to the same clusters or to different

clusters in both the proposed clustering and the ground-truth clustering. This count

is then adjusted for chance. To define the formula for ARI, let 𝒞 be the proposed

clustering on the set of 𝑛 vertices 𝑉 and let 𝒢 be the ground-truth clustering. For

integers 𝑖 in {1, 2, 3, … , |𝒞|} and 𝑗 in {1, 2, 3, … , |𝒢|}, let 𝑛𝑖,𝑗 be the number of vertices

in both cluster 𝑖 of 𝒞 and cluster 𝑗 of 𝒢. Let 𝑛𝑖,∗ = ∑|𝒢|
𝑗=1 𝑛𝑖,𝑗 and let 𝑛∗,𝑗 = ∑|𝒞|

𝑖=1 𝑛𝑖,𝑗.

19

Then the ARI between 𝒞 and 𝒢 is

∑|𝒞|
𝑖=1 ∑|𝒢|

𝑗=1 (𝑛𝑖,𝑗
2) − ∑|𝒞|

𝑖=1 (𝑛𝑖,∗
2) ∑|𝒢|

𝑗=1 (𝑛∗,𝑗
2)/(𝑛

2)

(∑|𝒞|
𝑖=1 (𝑛𝑖,∗

2) + ∑|𝒢|
𝑗=1 (𝑛∗,𝑗

2))/2 − ∑|𝒞|
𝑖=1 (𝑛𝑖,∗

2) ∑|𝒢|
𝑗=1 (𝑛∗,𝑗

2)/(𝑛
2)

.

Higher ARI scores suggest a better match with the ground-truth clustering.

Neither the modularity nor the ARI can exceed 1, and they may be negative if

the clustering is somehow “worse than random.”

2.3 Parallelism

2.3.1 Parallel programming model

We design our algorithm to be run on a multicore shared-memory machine. Although

distributed systems may scale more effectively for extremely large inputs, readily

available modern shared-memory machines are already able to operate on graphs

with hundreds of billions of edges [18]. Shared-memory systems are fast due to low

communication costs and tend to be easier to program for than distributed systems

are.

We use a fork-join programming model with arbitrary forking; a process can “fork”

into an arbitrary number of parallel processes in unit time and can “join” to synchro-

nize among forked processes. Most notably, a fork and a join suffice to implement

a parallel for-loop. We further assume that processes can concurrently read, write,

atomically add, and compare-and-swap at memory locations. The compare-and-swap

is an atomic operation takes the form

CompareAndSwap(memory_address, expected_value, new_value)

which assigns new_value to the memory address if the memory address holds the value

expected_value and otherwise leaves the value at the memory address unchanged. We

assume that atomic additions and compare-and-swaps each take 𝑂(1) work.

We describe the time complexity of a program execution by its work, which is the

20

total number of instructions executed, and its span or depth, which is the length of

the longest sequential critical path of instructions in the execution [32]. Ideally, a

parallel algorithm should have much smaller span than work and should have work

close to the work of the best sequential algorithm for the same problem. A parallel

algorithm whose work asymptotically matches the work of the most efficient known

sequential algorithm is work-efficient.

2.3.2 Parallel primitives

This thesis makes use of many existing parallel algorithms, which we list below.

Hash tables Gil et al. present a hash table which supports inserting 𝑘 elements in

𝑂(𝑘) work and 𝑂(log∗ 𝑘) span with both bounds being with high probability.

Looking up an element takes 𝑂(1) work [25].

Various array operations The reduce operation computes the sum of all elements

in an array. (The sum operation is often the numerical addition operation but

more generally may be any associative binary operation. For instance, reducing

an array with the binary operation that takes the maximum of two elements

produces the maximum element in the array.) The filter operation returns

a subsequence of the original sequence consisting of all elements matching a

user-specified predicate. For an array of 𝑛 elements, both operations run in

𝑂(𝑛) work and 𝑂(log𝑛) span [32, 5]. The remove duplicates operation returns

an array that has the same set of elements as the original input array has but

without any duplicate elements. Using a parallel hash table, this operation runs

in 𝑂(𝑛) work and 𝑂(log∗ 𝑛) span with both bounds being with high probability.

Sorting Cole presents a parallel merge sort that sorts 𝑛 elements in 𝑂(𝑛 log𝑛) work

and 𝑂(log𝑛) span [16].

Graph connectivity Gazit describes a algorithm for computing graph connectivity

with 𝑂(𝑛 + 𝑚) expected work and 𝑂(log𝑛) span with high probability [24].

21

22

Chapter 3

Algorithm

3.1 Basic description

This section describes work-efficient, logarithmic-span parallel algorithms for con-

structing the same SCAN index that GS*-Index constructs and for retrieving clusters

from the index. Our algorithm is a mostly straightforward parallelization of the

original sequential GS*-Index algorithms.

For describing the algorithms in this section, we assume the existence of basic

utility functions as well as functions implementing the primitives discussed in sec-

tion 2.3.2. The AllocateArray(size) function allocates an array that holds size

elements. The ArrayLength(⋅) function returns the size of the input array. The

MakeHashMap(⋅) function makes a hash table with the input argument specifying

the key-value elements in the table. The MakeHashSet(⋅) function also makes a

hash table, but the table contains only keys rather than key-value pairs. The Sum(⋅)

function returns the sum of the elements in an array via the reduce operation. The

RemoveDuplicates(⋅) function returns an array that has the same set of elements

that the input array has but without any duplicate values.

23

3.1.1 Index construction

Computing similarities

To shorten exposition, this section will only focus on one similarity function 𝜎(⋅, ⋅):

cosine similarity for weighted graphs. Given a weighted undirected graph 𝐺 =

(𝑉 , 𝐸, 𝑤), the similarity score between two adjacent vertices {𝑢, 𝑣} in 𝐸 is

𝜎(𝑢, 𝑣) = WeightedCosineSim(𝑁(𝑢), 𝑁(𝑣))

=
∑𝑥∈𝑁(𝑢)∩𝑁(𝑣) 𝑤(𝑢, 𝑥)𝑤(𝑣, 𝑥)

√∑𝑥∈𝑁(𝑢) 𝑤(𝑢, 𝑥)2√∑𝑥∈𝑁(𝑣) 𝑤(𝑣, 𝑥)2

where we set 𝑤(𝑥, 𝑥) = 1 for each vertex 𝑥. This weighted cosine similarity measure is

the natural generalization to the cosine similarity measure for unweighted graphs that

the original SCAN and GS*-Index algorithms consider. Modifying the algorithm de-

scribed in this section to instead compute the unweighted cosine similarity or Jaccard

similarity is straightforward.

Algorithm 1 Helper function for computing cosine similarities in algorithm 2.
Output: An 𝑛-length array of √∑𝑢∈𝑁(𝑣) 𝑤(𝑢, 𝑣) for each vertex 𝑣.
1: procedure ComputeNorms(𝐺 = (𝑉 , 𝐸, 𝑤))
2: norms ← AllocateArray(𝑛)
3: for 𝑣 ∈ 𝑉 do in parallel
4: weights_squared ← AllocateArray(∣𝑁(𝑣)∣)
5: for 𝑖 ∈ {1, 2, 3, … , ∣𝑁(𝑣)∣} do in parallel
6: 𝑢 ← 𝑖-th element in 𝑁(𝑣)
7: weights_squared[𝑖] ← 𝑤(𝑢, 𝑣)2

8: norms[𝑣] ← √Sum(weights_squared)
9: return norms

Algorithm 2 gives pseudocode for computing similarities, and it calls algorithm 1

as a helper function. The logic is the same as that of a known hash-based parallel

algorithm for triangle counting [55]. The algorithm creates a hash set for each vertex’s

neighborhood (line 6). Then for each pair of adjacent vertices 𝑢 and 𝑣, looking

up the neighbors of 𝑢 in the hash set for 𝑣’s neighborhood (lines 10 to 12) gives

24

Algorithm 2Algorithm for computing the cosine similarity of each edge in a weighted
graph.
Output: An 𝑚-length array of the similarity score of each edge.
1: procedure ComputeSimilarities(𝐺 = (𝑉 , 𝐸, 𝑤))
2: norms ← ComputeNorms(𝐺)
3: similarities ← AllocateArray(𝑚)

▷ For clarity, we will index into similarities with elements from 𝐸.
4: neighbor_tables ← AllocateArray(𝑛)
5: for 𝑣 ∈ 𝑉 do in parallel
6: neighbor_tables[𝑣] ← MakeHashSet(𝑁(𝑣))
7: for {𝑢, 𝑣} ∈ 𝐸 do in parallel
8: (Without loss of generality, let ∣𝑁(𝑢)∣ ≤ ∣𝑁(𝑣)∣.)
9: shared_neighbor_weights ← AllocateArray(∣𝑁(𝑢)∣)
10: for 𝑖 ∈ {1, 2, 3, … , ∣𝑁(𝑢)∣} do in parallel
11: 𝑥 ← 𝑖-th element in 𝑁(𝑢)
12: shared_neighbor_weights[𝑖] ←

𝑤(𝑢, 𝑥) ⋅ 𝑤(𝑣, 𝑥) if 𝑥 ∈ neighbor_tables[𝑣] else 0
13: similarities[{𝑢, 𝑣}] ←

Sum(shared_neighbor_weights)/(norms[𝑢] ⋅ norms[𝑣])
14: return similarities

all the shared neighbors between 𝑢 and 𝑣, which allows the algorithm to compute

WeightedCosineSim(𝑁(𝑢), 𝑁(𝑣)) (line 13).

If the algorithm always searches for neighbors of the lower-degree vertex in the

hash set of the higher-degree vertex’s neighborhood, the work of the algorithm is

𝑂(∑{𝑢,𝑣}∈𝐸 min{∣𝑁(𝑢)∣, ∣𝑁(𝑣)∣}) in expectation. This value is bounded by 𝑂(𝛼𝑚) [15].

The span is 𝑂(log𝑛) with high probability.

Neighbor order and core order

After computing all similarity values, constructing the neighbor order and core order

simply becomes an act of sorting several arrays, as algorithm 3 shows. The logic

follows directly from the definition of the neighbor order and core order from sec-

tion 2.2.3.

With a work-efficient sorting algorithm, the work analysis is the same as the orig-

inal analysis for GS*-Index. This gives a work bound of 𝑂(𝑚 log𝑛) for constructing

the orders. The span is 𝑂(log𝑛).

25

Algorithm 3 Algorithms for computing the neighbor order and core order.
1: procedure ConstructNeighborOrder(𝐺 = (𝑉 , 𝐸, 𝑤), similarities)
2: 𝒩𝒪 ← AllocateArray(𝑛)
3: for 𝑣 ∈ 𝑉 do in parallel
4: 𝒩𝒪[𝑣] ← 𝑁(𝑣)
5: Sort 𝑢 in 𝒩𝒪[𝑣] by descending similarities[{𝑢, 𝑣}] value.
6: return 𝒩𝒪
1: procedure ConstructCoreOrder(𝐺 = (𝑉 , 𝐸, 𝑤), 𝒩𝒪)
2: Sort 𝑣 in 𝑉 by descending degree.
3: max_degree ← max𝑣∈𝑉∣𝑁(𝑣)∣
4: 𝒞𝒪 ← AllocateArray(𝑚𝑎𝑥_𝑑𝑒𝑔𝑟𝑒𝑒)
5: for 𝜇 = {2, 3, 4, … , max_degree} do in parallel
6: 𝒞𝒪[𝜇] ← {𝑣 ∈ 𝑉 ∣ ∣𝑁(𝑣)∣ ≥ 𝜇}

▷ Find {𝑣 ∈ 𝑉 ∣ ∣𝑁(𝑣)∣ ≥ 𝜇} by binary search on sorted 𝑉.
7: Sort 𝑣 in 𝒞𝒪[𝜇] by descending 𝒩𝒪[𝑣][𝜇] value.
8: return 𝒞𝒪[𝜇]

Summing those bounds with the work and span of computing similarities gives

the following theorem.

Theorem 3.1.1. Fix an undirected graph and let 𝛼 be the arboricity of the graph. The

parallel SCAN index construction algorithm using cosine similarity or Jaccard simi-

larity as the similarity measure runs in 𝑂((𝛼 + log𝑛)𝑚) expected work and 𝑂(log𝑛)

span with high probability on the graph.

Therefore, the parallel index construction algorithm is work-efficient in expecta-

tion relative to the original sequential algorithm for GS*-Index.

3.1.2 Querying for clusters

Algorithm 6 provides pseudocode for extracting a clustering with arbitrary parameters

from the index. Algorithm 4 and algorithm 5 are subroutines for algorithm 6.

To retrieve the clustering with parameters 𝜇 and 𝜀, the algorithm performs a

binary search on 𝒞𝒪[𝜇] to find all core vertices (algorithm 4 line 9) and then performs

binary searches on 𝒩𝒪[𝑣] for each core vertex 𝑣 to find all 𝜀-similar edges incident on

core vertices (algorithm 6 line 4). For each of these prefixes of 𝒩𝒪[𝑣], the algorithm

also creates a copy with all non-core neighbors filtered away (algorithm 6 line 5).

26

Algorithm 4 Helper function for finding core vertices under a particular setting of
SCAN parameters.
Output: An array of core vertices under SCAN parameters 𝜇 and 𝜀.
1: procedure GetCores(𝜇, 𝜀, 𝒩𝒪, 𝒞𝒪)
2: max_degree ← ArrayLength(𝒞𝒪)
3: if 𝜇 ≤ 1 then ▷ All vertices are cores.
4: num_vertices ← ArrayLength(𝒩𝒪)
5: return {1, 2, 3, … , num_vertices}
6: else if 𝜇 > max_degree then ▷ No vertices are cores.
7: return {}
8: else
9: return {𝑣 ∈ 𝒞𝒪[𝜇] ∣ 𝒩𝒪[𝑣][𝜇] ≥ 𝜀}

▷ Find cores {𝑣 ∈ 𝒞𝒪[𝜇] ∣ 𝒩𝒪[𝑣][𝜇] ≥ 𝜀} by binary search on 𝒞𝒪[𝜇].

Algorithm 5 Helper function for assigning border non-core vertices to clusters after
clustering all the core vertices.
1: procedure AssignNonCores(similar_edges, cores_set, core_clustering)
2: subgraph_vertices ← RemoveDuplicates(𝑣 ∣ {𝑢, 𝑣} ∈ similar_edges)
3: subgraph_non_cores ←

{𝑣 ∈ subgraph_vertices ∣ 𝑣 ∉ cores_set}
▷ Filter

4: non_cores_count ← ArrayLength(subgraph_non_cores)
5: non_core_assignments ← AllocateArray(non_cores_count)
6: non_core_indices ← MakeHashMap(subgraph_non_cores[𝑖] ↦ 𝑖)
7: for 𝑖 ∈ {1, 2, 3, … , non_cores_count} do in parallel
8: non_core_assignments[𝑖] = null
9: for {𝑢, 𝑣} ∈ similar_edges ∧ (𝑢 ∉ cores_set ∨ 𝑣 ∉ cores_set) do in parallel
10: (Without loss of generality, let 𝑣 ∉ cores_set. Then 𝑢 ∈ cores_set.)
11: address ← &(non_core_assignments[non_core_indices[𝑣]])
12: CompareAndSwap(address, null, 𝑢)
13: Assign each vertex 𝑣 in subgraph_non_cores to the cluster

that vertex non_core_assignments[non_core_indices[𝑣]] is
in and return the clustering. (Full details omitted for brevity.)

27

Algorithm 6 Algorithm for finding the SCAN clustering with parameters 𝜇 and 𝜀
from the index.
1: procedure Cluster(𝜇, 𝜀, 𝒩𝒪, 𝒞𝒪, similarities)
2: cores ← GetCores(𝜇, 𝜀, 𝒩𝒪, 𝒞𝒪)
3: cores_set ← MakeHashSet(cores)
4: similar_edges ← {{𝑢, 𝑣} ∣ 𝑢 ∈ cores_set ∧ similarities[{𝑢, 𝑣}] ≥ 𝜀}

▷ Get similar_edges by binary search on 𝒩𝒪[𝑢] for each 𝑢 in cores.
5: similar_core_edges ←

{{𝑢, 𝑣} ∈ similar_edges ∣ 𝑢 ∈ cores_set ∧ 𝑣 ∈ cores_set}
▷ Filter

6: core_clusters ←
Connected components of subgraph induced by similar_core_edges

7: return AssignNonCores(similar_edges, cores_set, core_clustering)

These filtered prefixes constitute an adjacency list for the subgraph induced by the

𝜀-similar edges on the core vertices. Running a parallel connectivity on this subgraph

assigns all core vertices to a cluster (algorithm 6 line 6). Finally, the algorithm

uses compare-and-swap to assign border non-core vertices to the same cluster as an

arbitrary 𝜀-similar core (algorithm 5).

To get the best running time bounds, each binary search should actually start

with a doubling search. For example, when using binary search on 𝒞𝒪[𝜇] to find all

core vertices, we first search for the minimum 𝑖 ∈ N such that entry 𝒞𝒪[𝜇][2𝑖] does

not satisfy the predicate that 𝒩𝒪[⋅][𝜇] ≥ 𝜀 and then perform a traditional binary

search on the first 2𝑖 entries of 𝒞𝒪[𝜇].

It is straightforward to derive the running time bounds in the following theorem.

Theorem 3.1.2. Suppose the clustering algorithm, algorithm 6, runs and returns a

collection of clusters 𝒞. For a cluster of vertices 𝐶 ∈ 𝒞, define 𝐸𝐶,𝜀 the same way

that section 2.2.3 defines it. Define

𝑍 = ∑
𝐶∈𝒞

∣𝐸𝐶,𝜀∣ ∈ 𝑂(𝑚).

Then the run of the clustering algorithm had 𝑂(𝑍) expected work and 𝑂(log𝑍) span

with high probability.

28

3.1.3 Determining hubs and outliers

After finding a clustering, it is easy to determine whether unclustered vertices are

hubs or outliers. First, we construct a hash table that maps clustered vertices to an

ID for their cluster. Then, for each unclustered vertex 𝑣, we map each neighbor in

𝑁(𝑣) to its cluster ID and reduce over the neighbors to determine whether the vertex

has neighbors belonging to distinct clusters. After constructing the hash table, it

takes 𝑂(|𝑁(𝑣)|) work and 𝑂(log|𝑁(𝑣)|) span to determine whether 𝑣 is a hub or

outlier.

3.2 Approximating similarities

After constructing the index, querying for a clustering is fast. Index construction

itself, though, may be expensive, particularly in computing all edge similarities (al-

gorithm 2). One unexplored technique for speeding up edge similarity computation

for SCAN is to use locality-sensitive hashing to approximate similarities.

For example, to use SimHash to approximate cosine similarities, we fix some

sample size 𝑘 ∈ N. Then, we draw 𝑘𝑛 random numbers from the standard normal

distribution, which is possible via the Box-Muller transform [9] given a source of

uniform random numbers. We then use these normally distributed random numbers

to construct a 𝑘-sample sketch of 𝑁(𝑣) for each vertex 𝑣. This sketching takes 𝑂(𝑘𝑚)

work and 𝑂(log𝑛) span by using the reduce operation to compute inner products.

Now we can compute the similarity between any pair of adjacent vertices 𝑢 and

𝑣 by comparing their sketches in 𝑂(𝑘) work and 𝑂(log 𝑘) span. Computing the

sketches and the similarities over all edges takes 𝑂(𝑘𝑚) work and 𝑂(log𝑛+log 𝑘) span.

The work bound is an asymptotic improvement over the work bound for computing

exact similarities if 𝑘 is asymptotically less than the arboricity 𝛼. Similarly, we

can use MinHash to approximate Jaccard similarities. Feeding these similarities into

algorithm 3 constructs a SCAN index with the following running time bounds.

Theorem 3.2.1. Fix an undirected graph. The parallel SCAN index construction

29

algorithm using 𝑘-sample MinHash or SimHash to compute approximate similarities

runs in 𝑂((𝑘 + log𝑛)𝑚) work and 𝑂(log𝑛 + log 𝑘) span on the graph.

We can also make some theoretical statements about what kind of clustering

results we get from using these approximate similarities. In particular, suppose we

fix some 𝜀 ∈ [0, 1] and 𝛿 ∈ (0, 1). Notice that the SCAN clustering with parameters

𝜀 and arbitrary 𝜇 only cares about whether similarities fall above or below 𝜀. If the

number of samples is sufficiently high, then with high probability, all edges with exact

similarities below 𝜀 − 𝛿 will have approximate similarities below 𝜀, and all edges with

exact similarities above 𝜀 + 𝛿 will have approximate similarities above 𝜀. In other

words, all edges outside the similarity range 𝜀 ± 𝛿 will be “correctly classified” as

above or below the threshold 𝜀 by the approximate similarities.

Theorem 3.2.2. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be an undirected graph with non-negative edge

weights, let 𝜀 ∈ [0, 1], and let 𝛿 ∈ (0, 1). Suppose

𝑘 ≥ 𝜋2 ln(𝑛𝑚)
2𝛿2 ,

and suppose we use SimHash with 𝑘 samples to compute approximate cosine similarity

scores for every edge in 𝐺 . Then with high probability, all edges with exact cosine

similarities outside the interval (𝜀 − 𝛿, 𝜀 +
√

1 − 𝜀2𝛿) will be correctly classified by the

approximate cosine similarities as above or below the threshold 𝜀.

Proof. Consider an arbitrary edge {𝑢, 𝑣} ∈ 𝐸 such that the exact cosine similarity

of the edge is outside the interval (𝜀 − 𝛿, 𝜀 +
√

1 − 𝜀2𝛿). It suffices to prove that the

edge is correctly classified by the approximate cosine similarity with probability at

least 1 − 1/(𝑛𝑚). Then applying a union bound over all 𝑚 edges gives that all edges

outside the similarity interval are classified correctly with high probability.

Let 𝜃 be the angle between the vectors corresponding to 𝑁(𝑢) and 𝑁(𝑣). Since

all edge weights are non-negative, this angle is in the range [0, 𝜋/2]. Recall from

section 2.1.2 that SimHash estimates the angle between two vectors by counting the

number of entries with differing signs in the sketches of the vectors and multiplying

30

0 𝜋
8

𝜋
4

3𝜋
8

𝜋
2

0

0.2

0.4

0.6

0.8

1

1.2
cos(𝑥)
𝑓.9(𝑥)
𝑔.9(𝑥)

Figure 3-1: Plot of the SimHash approximation lower and upper bound functions on
cosine for 𝜀 = 0.9.

that number by 𝜋/𝑘. Also recall that the cosine similarity estimate is the cosine

of this angle. The angle estimate is a random variable 𝑋 distributed according to

𝑋 ∼ Binomial(𝑘, 𝜃/𝜋) ⋅ 𝜋/𝑘.

Hoeffding’s inequality [28] implies that given arbitrary ℓ ∈ N, 𝑝 ∈ [0, 1], and

𝑡 > 0, for a binomial random variable 𝑌 ∼ Binomial(ℓ, 𝑝), the probability that

Pr[𝑌 /ℓ ≥ 𝑝 + 𝑡] and the probability that Pr[𝑌 /ℓ ≤ 𝑝 − 𝑡] are both bounded above by

exp(−2ℓ𝑡2).

Using this inequality on 𝑋 gives that that both Pr[𝑋 ≥ 𝜃 + 𝛿] and Pr[𝑋 ≤ 𝜃 − 𝛿]

are bounded above by

exp(−2𝑘𝛿2

𝜋2) ≤ 1
𝑛𝑚

.

Let 𝜙 = arccos(𝜀). Since the cosine function is monotonic on the range [0, 𝜋/2],

the probability bound implies that if 𝜃 ∉ (𝜙 − 𝛿, 𝜙 + 𝛿), then the edge is classified

correctly with probability at least 1−1/(𝑛𝑚). Therefore, if the exact cosine similarity

cos(𝜃) is outside the range (cos(𝜙+𝛿), cos(𝜙−𝛿)), the edge is classified correctly with

probability at least 1 − 1/(𝑛𝑚).

It remains to find a lower bound on cos(𝜙 + 𝛿) and an upper bound on cos(𝜙 − 𝛿).

For the lower bound, draw a straight line from the point (𝜙, 𝜀) to the point (𝜋/2, 0),

31

which gives the line

𝑓𝜀(𝑥) = 𝜀 − 𝜀
𝜋/2 − 𝜙

(𝑥 − 𝜙).

By concavity, cos(𝑥) ≥ 𝑓𝜀(𝑥) when 𝑥 ∈ [𝜙, 𝜋/2]. Now this gives cos(𝜙 + 𝛿) ≥

𝜀 − 𝜀
(𝜋/2−arccos(𝜀))𝛿. Plotting the multiplicative factor 𝜀

(𝜋/2−arccos(𝜀)) against varying 𝜀

shows that the factor falls in the range [2/𝜋, 1], which gives a looser but clearer bound

that cos(𝜙 + 𝛿) ≥ 𝜀 − 𝛿.

For the upper bound, linearize the cosine function at the input point 𝜙 to get the

line

𝑔𝜀(𝑥) = 𝜀 − sin(𝜙)(𝑥 − 𝜙).

By concavity, cos𝑥 ≤ 𝑔𝜀(𝑥) when 𝑥 ∈ [0, 𝜋/2]. Substituting the input value 𝜙 − 𝛿

gives that

cos(𝜙 − 𝛿) ≤ 𝜀 + sin(arccos(𝜀))𝛿 = 𝜀 +
√

1 − 𝜀2𝛿.

Figure 3-1 displays the lower and upper bound functions 𝑓𝜀 and 𝑔𝜀.

This argument shows that if the exact cosine similarity cos(𝜃) is outside the range

(𝜀 − 𝛿, 𝜀 +
√

1 − 𝜀2𝛿), the edge is classified correctly with probability at least 1 −

1/(𝑛𝑚).

Theorem 3.2.3. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, let 𝜀 ∈ [0, 1], and let

𝛿 ∈ (0, 1). Suppose

𝑘 ≥ ln(𝑛𝑚)
2𝛿2 ,

and suppose we use standard MinHash with 𝑘 samples to compute approximate Jaccard

similarity scores for every edge in 𝐺 . Then with high probability, all edges with exact

Jaccard similarities outside the interval (𝜀 − 𝛿, 𝜀 + 𝛿) will be correctly classified by the

approximate Jaccard similarities as above or below the threshold 𝜀.

Proof. The result follows from applying Hoeffding’s inequality like in the proof for

theorem 3.2.2.

These bounds are somewhat underwhelming — the number of samples 𝑘 needs to

32

be quite high to get reasonable accuracy bounds out of these theorems. However, these

are worst-case bounds, and it may still be possible to achieve reasonable clusterings

with lower values of 𝑘. Chapter 4 explores this further.

Regardless, this approximation strategy only helps for denser graphs with high

arboricity and many high-degree vertices. Since 𝑘 needs to be high to get good

accuracy, it will be faster to simply compute exact similarities for low arboricity

graphs.

3.3 Implementation

We implement the algorithms described in this chapter to determine whether they

perform well in practice. We write our code in C++ within the Graph Based Bench-

mark Suite (GBBS) framework [18, 20] and add the implementation to the GBBS

codebase at https://github.com/ParAlg/gbbs. GBBS provides libraries that make

it easier implement many classes of parallel graph algorithms. Our implementations

use the concurrent hash table implementation [54], parallel sorting algorithms, and

various graph processing helper functions that GBBS provides.

Though the algorithms as described in section 3.1 get good theoretical bounds, our

actual implementations make several changes for better performance. This section

details some of the more significant changes.

3.3.1 Computing similarities

We implement similarity computation for both cosine similarity and Jaccard similar-

ity.

Experiments by Shun and Tangwongsan [55] suggest that the hash-based approach

to triangle counting or computing similarities in section 3.1.1 incurs a lot of cache

misses and that a “merge-based” approach may be faster in comparison even though it

increases the asymptotic work bound from 𝑂(𝑚𝛼) to 𝑂(𝑚3/2). Our implementation

imitates the merge-based approach of Shun and Tangwongsan. This approach assumes

that each neighbor list in the adjacency list of the input graph is sorted by vertex

33

https://github.com/ParAlg/gbbs

number, which is true for graphs converted to GBBS’s graph file format. In order

to count each triangle only once and hence reduce work, we construct a directed

version of the input graph by filtering each neighbor list so as to direct each edge

towards its higher-degree vertex. Then, for each pair of adjacent vertices (𝑢, 𝑣), we

find triangles of the form {(𝑢, 𝑣), (𝑣, 𝑥), (𝑢, 𝑥)} for 𝑥 in 𝑁(𝑢) ∩ 𝑁(𝑣) by merging the

out-neighborhoods of 𝑢 and 𝑣 in the directed graph.

The merge logic between two neighbor lists follows the logic of the implementation

already in GBBS: if both neighbor lists are small, we iterate across the sorted neighbor

lists sequentially to find shared neighbors; if one neighbor list is small and the other

is large, then we search for each element of the small neighbor list in the larger list

via binary search; and finally, if both neighbor lists are large, then we split them into

smaller sub-lists and recursively merge the sub-lists in parallel.

To get similarity scores for each pair of adjacent vertices, the implementation

maintains an atomic counter for each edge and increments the counters for all three

edges of any triangle found.

3.3.2 Querying for clusters

Most work-efficient parallel connectivity algorithms are complicated and do not have

readily available implementations. Instead, in our implementation for querying the

index for clusters, we find the connected components on the core vertices by using

a concurrent union-find implementation recently added to the GBBS codebase [19].

Instead of getting a list of connected components, we populate an 𝑛-length array

where each entry is the cluster ID of the corresponding vertex. This format makes

more sense for union-find and simplifies the logic for AssignNonCores (algorithm 5)

by changing AssignNonCores to skip the preprocessing in lines 2–8 and instead

compare-and-swap directly into the cluster ID array.

34

3.3.3 Approximate similarities

We implement similarity approximation logic using both SimHash and MinHash. For

MinHash, we implement a variant called 𝑘-partition MinHash or one permutation

hashing [35]. It is noticeably more computationally efficient than the original version

of MinHash since computing a sketch of a vertex 𝑣 takes only 𝑂(𝑘+∣𝑁(𝑣)∣) work using

𝑘-partition MinHash rather than 𝑂(𝑘∣𝑁(𝑣)∣) work using standard MinHash. The

𝑘-partition variant still provides reasonable clustering results, though the accuracy

bound in theorem 3.2.3 no longer applies for this variant; 𝑘-partition MinHash is

unbiased and has lower variance than standard MinHash, but it is no longer clear

whether there is a convenient tail bound for 𝑘-partition MinHash like the Hoeffding

bound that the proof of theorem 3.2.3 uses.

When the number of samples 𝑘 for the locality-sensitive hashing approximation

scheme is high, it becomes more expensive to compute sketches and to process the

sketches to get the approximate similarities. For low-degree vertices, the merging

algorithm described in section 3.3.1 is cheap enough that it is better to compute

similarities exactly rather approximate them. As a simple example, consider the case

where two adjacent vertices have degree significantly less than 𝑘. It is faster to process

the original neighbor lists of the vertices than it is to process their 𝑘-length sketches.

To avoid sketching low-degree vertices, we add a heuristic to choose which vertices

to sketch and which similarities to approximate. The heuristic is to only approximate

similarities between pairs of vertices that both have sufficiently high degree and to

compute similarities exactly with triangle counting for all other pairs of vertices. We

determine whether a vertex is high degree by checking whether its degree exceeds

an arbitrarily set threshold value of 𝑘 for approximate cosine similarity and 3𝑘/2 for

approximate Jaccard similarity. No sketches are needed for vertices that either do

not have high degree or do not have any neighbors with high degree. (There is likely

room for improvement for this heuristic. For one, we did not choose the threshold

values particularly carefully. Secondly, computing the sketch for a high-degree vertex

𝑣 is really only worth the 𝑂(𝑘∣𝑁(𝑣)∣)-work cost if the vertex has a large number of

35

high-degree neighbors.)

36

Chapter 4

Experiments

4.1 Benchmarking environment

We run experiments on an Amazon Elastic Cloud Compute (EC2) c5.24xlarge in-

stance, which has 192 GiB of RAM and 48 CPU cores with two-way hyper-threading

for a maximum of 96 threads. We compare our parallel algorithm (which we refer

to as GBBS-IndexSCAN on the plots in this chapter) using all 96 threads to our

algorithm using only 1 thread, to the original sequential GS*-Index implementation,1

and to ppSCAN [13]2 using all 96 threads. Comparing against ppSCAN, a parallel

and well optimized SCAN variant, is valuable because experiments by the authors

of ppSCAN suggest that it outperforms several other SCAN variants. For fixed pa-

rameters 𝜇 and 𝜀, all of these algorithms return the same output except that any

ambiguous border vertices might have different assignments. All code is C++ code

compiled with GCC using the -O3 optimization flag. We run the parallel codes with

numactl --interleave=all, which interleaves memory allocations across CPUs and

gives better performance for this particular problem on the EC2 instance.

Table 4.1 summarizes the graphs we use in the experiments. “Orkut” and “Friend-

ster” are the com-Orkut and com-Friendster graphs respectively from the Stanford

Large Network Dataset Collection [34].3 Both are social network graphs in which
1GS*-Index code received via personal correspondence with the authors of the algorithm.
2ppSCAN code available at https://github.com/RapidsAtHKUST/ppSCAN.
3https://snap.stanford.edu/data/

37

https://github.com/RapidsAtHKUST/ppSCAN
https://snap.stanford.edu/data/

Name Number of vertices Number of edges Type
Orkut 3,072,441 117,185,083 unweighted
brain 784,262 267,844,669 unweighted
WebBase 118,142,155 854,809,761 unweighted
Friendster 65,608,366 1,806,067,135 unweighted
blood vessel 25,825 70,240,269 weighted
cochlea 25,825 282,977,319 weighted

Table 4.1: Summary of the graphs for the experiments. Each undirected edge is
counted only once rather than being counted as two directed edges.

the nodes are users and the edges represent friend relationships. “Brain” is the bn-

human-Jung2015-M87113878 dataset from NeuroData4 provided by Network Repos-

itory [48]5 that represents a mapping of human brain connections. “WebBase” is the

webbase-2001 graph from the Laboratory for Web Algorithmics [7, 6]6 representing

the links discovered by a web crawler. Although the WebBase original graph is a

directed graph, we remove self-loop edges and change the edges to be undirected so

that SCAN can operate on the graph. “Blood vessel” and “cochlea” are weighted

graphs from HumanBase [27].7 Nodes represent genes, edges represent pairs of genes

with evidence of a functional relationship in blood vessel tissues or cochlea tissues,

and edge weights represent the probability of there being a functional relationship.

For computational convenience, on the brain, WebBase, blood vessel, and cochlea

graphs, we compact vertex IDs so that all IDs are contiguous with no zero-degree

vertices.

Neither GS*-Index and ppSCAN run on weighted graphs, so we only run GBBS-

IndexSCAN on the blood vessel and cochlea graphs. Moreover, we only test cosine

similarity on the weighted graphs since our implementation of Jaccard similarity does

not handle weighted graphs. The main reason for including the two weighted graphs in

the experiments is that they serve as denser graphs on which similarity approximation

has potential to be useful.

4https://neurodata.io/
5http://networkrepository.com/bn-human-Jung2015-M87113878.php
6http://law.di.unimi.it/webdata/webbase-2001/
7https://hb.flatironinstitute.org/download under the “top edges” column

38

https://neurodata.io/
http://networkrepository.com/bn-human-Jung2015-M87113878.php
http://law.di.unimi.it/webdata/webbase-2001/
https://hb.flatironinstitute.org/download

4.2 Results

4.2.1 Index construction time comparison

The first experiment measures the running time to construct the SCAN index with

exact cosine similarities. The running time to compute the index using Jaccard simi-

larity as the similarity measure is about the same, so we do not measure it separately.

Each time measurement is the median of five trials. Figure 4-1 shows the time mea-

surements, and figure 4-2 translates the time measurements into the speedup factor

that GBBS-IndexSCAN achieves. GBBS-IndexSCAN achieves a parallel self-speedup

factor of 23–70× on index construction. Moreover, GBBS-IndexSCAN running se-

quentially is 1.4-2.2× faster than the original GS*-Index implementation, likely due

to the directed triangle counting optimization that section 3.3.1 describes, so the

speedup of GBBS-IndexSCAN running on 96 threads is 50–151× over GS*-Index.

4.2.2 Clustering time comparison

The second experiment is to measure the running time for querying for the clustering

for various settings of parameters (𝜇, 𝜀). This experiment again only considers exact

cosine similarity for the similarity measure since the patterns of query running times

do not differ in a particularly insightful way when the similarity measure differs.

Each time measurement is the median of five trials. Figure 4-3 measures the running

times with 𝜇 = 5 and 𝜀 ∈ {.1, .2, .3, … , .9}, figure 4-4 measures the running times

𝜀 = 0.6 and 𝜇 ∈ {2, 4, 8, 16, … ,min{16384, 2⌊log(max degree)⌋}}, and figure 4-5 plots the

speedup factor of GBBS-IndexSCAN on one particular parameter setting: (𝜇, 𝜀) =

(5, .6).

GBBS-IndexSCAN is faster than ppSCAN and GS*-Index on all tested parameter

settings, though of course this is not quite a fair comparison against ppSCAN since

GBBS-IndexSCAN takes a considerable amount of time precomputing an index. This

extra cost that GBBS-IndexSCAN incurs is preferable over ppSCAN only when the

user wants to query many different parameter settings. Notably, though, it might

39

Orkut

brain

W
ebBase

Friendster

blood
vessel

cochlea

101

102

103

104

2.77

19.83 19.87

56.08
32.23

619.05

142.7

1,054.26

457.62

3,920.18

1,622.29

30,892.1

215

1,527
1,003

8,484

In
de
x
co
ns
tr
uc
tio

n
tim

e
(s
ec
on

ds
)

GBBS-IndexSCAN (96 threads)
GBBS-IndexSCAN (one thread)

GS*-Index (one thread)

Figure 4-1: Index construction times with exact cosine similarity as the similarity
measure.

40

Orkut

brain

W
ebBase

Friendster

blood
vessel

cochlea

0

20

40

60

80

100

120

140

160

1 1 1 1 1 1

51.6 53.2

23

69.9

50.3 49.9

77.7 77

50.5

151.3

In
de
x
co
ns
tr
uc
tio

n
sp
ee
du

p
fa
ct
or

GBBS-IndexSCAN (96 threads)
GBBS-IndexSCAN (one thread)

GS*-Index (one thread)

Figure 4-2: Speedup factor on index construction that GBBS-IndexSCAN (96
threads) achieves relative to GBBS-IndexSCAN running sequentially and relative to
the original GS*-Index implementation.

41

10−4

10−2

100

Q
ue
ry

tim
e
(s
ec
on

ds
)

Orkut

10−3

10−1

101

brain

10−1

100

101

102

Q
ue
ry

tim
e
(s
ec
on

ds
)

WebBase

10−2

100

102

Friendster

0.2 0.4 0.6 0.8

10−2

100

𝜀

Q
ue
ry

tim
e
(s
ec
on

ds
)

blood vessel

0.2 0.4 0.6 0.8
10−2

10−1

100

101

𝜀

cochlea

GBBS-IndexSCAN (96 threads)
GBBS-IndexSCAN (one thread)

GS*-Index (one thread)
ppSCAN (96 threads)

Figure 4-3: Clustering time with 𝜇 = 5 and varying 𝜀 using exact cosine similarity as
the similarity measure.

42

10−4

10−2

100

Q
ue
ry

tim
e
(s
ec
on

ds
)

Orkut

10−4

10−2

100

brain

10−2

100

Q
ue
ry

tim
e
(s
ec
on

ds
)

WebBase

10−2

10−1

100

101

Friendster

22 25 28 211 214

10−5

10−3

10−1

𝜇

Q
ue
ry

tim
e
(s
ec
on

ds
)

blood vessel

22 25 28 211 214

100

101

𝜇

cochlea

GBBS-IndexSCAN (96 threads)
GBBS-IndexSCAN (one thread)

GS*-Index (one thread)
ppSCAN (96 threads)

Figure 4-4: Clustering time with 𝜀 = 0.6 and varying 𝜇 using exact cosine similarity
as the similarity measure.

43

Orkut

brain

W
ebBase

Friendster

blood
vessel

cochlea

0

5

10

15

20

25

30

35

40

45

1 1 1 1 1 1

18.6

40.4 39.3

19.9

16.3

42.1

15.4
17.2

14
16.6

1,088.6

26.3

3.8

1,314.6
In
de
x
co
ns
tr
uc
tio

n
sp
ee
du

p
fa
ct
r

GBBS-IndexSCAN (96 threads)
GBBS-IndexSCAN (one thread)

GS*-Index (one thread)
ppSCAN (96 threads)

Figure 4-5: Speedup factor that GBBS-IndexSCAN (96 threads) achieves relative
to other SCAN implementations on querying for clusters with the parameter setting
(𝜇, 𝜀) = (5, .6).

44

not take many queries for GBBS-IndexSCAN to become preferable over ppSCAN.

For example, on the Orkut and Friendster graphs, the sum of the time measurements

for ppSCAN on the nine parameter settings in figure 4-3 exceeds the sum of the

corresponding time measurements for GBBS-IndexSCAN plus the time for GBBS-

IndexSCAN to construct its index.

GBBS-IndexSCAN running sequentially tends to be slower at querying for clusters

than GS*-Index. The worse sequential performance is due to the adjustments made

in GBBS-IndexSCAN to make it more friendly to parallelism, namely its use of union-

find instead of sequential breadth-first search as well as how it iterates over all edges

an additional time to assign non-core vertices (algorithm 5). It is up to 4.5× slower

than GS*-Index on the tested parameter settings and graphs. GBBS-IndexSCAN

running on 96 threads, however, is faster than the other implementations on all tested

parameter settings; it is faster than GS*-Index by 5–32× and faster than ppSCAN

by 1.26–12,070×.

4.2.3 Approximate index construction time

The third experiment measures the running time of constructing GBBS-IndexSCAN

with 96 threads using the approximate cosine and approximate Jaccard similarity

measures with varying numbers of samples. For the weighted graphs, we only test

the approximate cosine similarity measure since the 𝑘-partition MinHash variant that

we implement does not handle weighted graphs. Each time measurement is again a

median of five trials. Each trial uses a different pseudorandom seed for the randomness

in the approximation schemes. Figure 4-6 displays the results. As anticipated, the

best speedups are on the denser graphs like the cochlea graph, whereas approximation

is unhelpful on the Friendster graph even with modest sample sizes. The approximate

Jaccard similarity implementation is consistently faster than the approximate Cosine

similarity implementation because of the better efficiency of constructing sketches for

𝑘-partition MinHash compared to for SimHash. The times plateau or even decrease at

large sample sizes for some of the graphs due to the heuristic discussed in section 3.3.3

for avoiding computing sketches for low-degree vertices.

45

0

2

4

In
de
x
co
ns
tr
uc
tio

n
tim

e
(s
ec
on

ds
)

Orkut

0

10

20

brain

0

10

20

In
de
x
co
ns
tr
uc
tio

n
tim

e
(s
ec
on

ds
)

WebBase

0

20

40

60

Friendster

26 28 210 212 214
0

10

20

30

40

Number of samples

In
de
x
co
ns
tr
uc
tio

n
tim

e
(s
ec
on

ds
)

blood vessel

26 28 210 212 214
0

200

400

600

Number of samples

cochlea

Approximate cosine similarity
Approximate Jaccard similarity

Exact cosine similarity

Figure 4-6: Index construction times for GBBS-IndexSCAN (96 threads) using ap-
proximate similarity measures with varying sample sizes.

46

4.2.4 Quality of approximate clusterings

The fourth experiment measures the quality of the clusterings achieved with the ap-

proximate similarity measures compared to the clusterings achieved with the exact

similarity measures. Although the AssignNonCores (algorithm 5) portion of the

clustering algorithm assigns each border non-core vertex to the same cluster as an

arbitrary 𝜀-similar core vertex, in order to get consistent measurements for this ex-

periment, we remove this source of non-determinism by assigning each border vertex

to the same cluster as the most similar neighboring core vertex, breaking ties in favor

of lower vertex IDs.

First, we need to find SCAN parameters that give a good clustering. Let Σ be

the set of (𝜇, 𝜀) parameter settings

Σ = {2, 4, 8, 16, … , 218} × {.01, .02, .03, … , .99}.

We use the modularity as a heuristic measurement for clustering quality, treating

unclustered vertices as each being in their own cluster. We find the parameters

(𝜇exact-cos, 𝜀exact-cos) ∈ Σ giving the clustering with the best modularity under exact

cosine similarity. Then, for a fixed sample size, we similarly find the best clustering

from Σ under approximate cosine similarity, and we also look at the clustering under

(𝜇exact-cos, 𝜀exact-cos) with approximate cosine similarity. We repeat this process with

Jaccard similarity. With varying sample sizes, we plot the resulting modularities in

figures 4-7 and 4-8. Each modularity score with the approximate similarity measures

is the mean of five trials with different pseudorandom seeds. Figures 4-9 and 4-10 plots

the adjusted Rand index (ARI) of the clustering under approximate cosine similar-

ity at (𝜇exact-cos, 𝜀exact-cos) (or (𝜇exact-Jaccard, 𝜀exact-Jaccard)) versus the “ground-truth”

clustering under exact cosine similarity (and likewise for Jaccard similarity). The

best parameter settings in Σ often have high 𝜇 values, which is somewhat surprising

considering that past SCAN work rarely considers 𝜇 values above 20.

The improved approximation accuracy in these plots as the sample size increases

is not only attributable to better accuracy in locality-sensitive hashing with higher

47

0

0.1

0.2

M
od

ul
ar
ity

Orkut

Cosine sim., (𝜇, 𝜀) = (256, .06) (best parameters in Σ)
Approximate cosine sim., (𝜇, 𝜀) = (256, .06)

Approximate cosine sim. at best parameters in Σ
Jaccard sim., (𝜇, 𝜀) = (128, .05) (best parameters in Σ)

Approximate Jaccard sim., (𝜇, 𝜀) = (128, .05)
Approximate Jaccard sim. at best parameters in Σ

0

0.1

0.2

0.3

M
od

ul
ar
ity

brain

Cosine sim., (𝜇, 𝜀) = (1024, .37) (best parameters in Σ)
Approximate cosine sim., (𝜇, 𝜀) = (1024, .37)

Approximate cosine sim. at best parameters in Σ
Jaccard sim., (𝜇, 𝜀) = (1024, .20) (best parameters in Σ)

Approximate Jaccard sim., (𝜇, 𝜀) = (1024, .20)
Approximate Jaccard sim. at best parameters in Σ

26 28 210 212 214
0

0.2

0.4

0.6

0.8

Number of samples

M
od

ul
ar
ity

WebBase

Cosine sim., (𝜇, 𝜀) = (16, .13) (best parameters in Σ)
Approximate cosine sim. at (𝜇, 𝜀) = (16, .13)

Approximate cosine sim. at best parameters in Σ
Jaccard sim., (𝜇, 𝜀) = (8, .08) (best parameters in Σ)

Approximate Jaccard sim., (𝜇, 𝜀) = (8, .08)
Approximate Jaccard sim. at best parameters in Σ

Figure 4-7: Modularity scores achieved by approximate similarity measures.
We choose SCAN parameters (𝜇, 𝜀) out of the set Σ = {2, 4, 8, 16, … , 218} ×
{0.01, 0.02, 0.03, … , 0.99}.

48

0

0.05

0.1

M
od

ul
ar
ity

Friendster

Cosine sim., (𝜇, 𝜀) = (256, .05) (best parameters in Σ)
Approximate cosine sim., (𝜇, 𝜀) = (256, .05)

Approximate cosine sim. at best parameters in Σ
Jaccard sim., (𝜇, 𝜀) = (256, .02) (best parameters in Σ)

Approximate Jaccard sim., (𝜇, 𝜀) = (256, .02)
Approximate Jaccard sim. at best parameters in Σ

0

0.02

0.04

0.06

M
od

ul
ar
ity

blood vessel

Cosine sim., (𝜇, 𝜀) = (512, .56) (best parameters in Σ)
Approximate cosine sim., (𝜇, 𝜀) = (512, .56)

Approximate cosine sim. at best parameters in Σ

26 28 210 212 214
−0.01

0

0.01

0.02

0.03

Number of samples

M
od

ul
ar
ity

cochlea

Cosine sim., (𝜇, 𝜀) = (2048, .88) (best parameters in Σ)
Approximate cosine sim., (𝜇, 𝜀) = (2048, .88)

Approximate cosine sim. at best parameters in Σ

Figure 4-8: Continuation of figure 4-7.

49

0

0.5

1

A
dj
us
te
d
R
an

d
in
de
x

Orkut

Approximate cosine similarity, (𝜇, 𝜀) = (256, .06)
Approximate Jaccard similarity, (𝜇, 𝜀) = (128, .05)

0

0.5

1

A
dj
us
te
d
R
an

d
in
de
x

brain

Approximate cosine similarity, (𝜇, 𝜀) = (1024, .37)
Approximate Jaccard similarity, (𝜇, 𝜀) = (1024, .20)

26 28 210 212 214

0

0.5

1

Number of samples

A
dj
us
te
d
R
an

d
in
de
x

WebBase

Approximate cosine similarity, (𝜇, 𝜀) = (16, .13)
Approximate Jaccard similarity, (𝜇, 𝜀) = (8, .08)

Figure 4-9: Accuracy of clusters using approximate similarity measures against a
ground truth of the clusters given by the corresponding exact similarity measures.
Parameters are the best SCAN parameters in Σ for the exact similarity measure.

50

0

0.5

1

A
dj
us
te
d
R
an

d
in
de
x

Friendster

Approximate cosine similarity, (𝜇, 𝜀) = (256, .05)
Approximate Jaccard similarity, (𝜇, 𝜀) = (256, .02)

0

0.5

1

A
dj
us
te
d
R
an

d
in
de
x

blood vessel

Approximate cosine similarity, (𝜇, 𝜀) = (512, .56)

26 28 210 212 214

0

0.5

1

Number of samples

A
dj
us
te
d
R
an

d
in
de
x

cochlea

Approximate cosine similarity, (𝜇, 𝜀) = (2048, 0.88)

Figure 4-10: Continuation of figure 4-9.

51

numbers of samples but also to the heuristic described in section 3.3.3 that reverts to

computing exact similarity for vertices that have low degree relative to the number

of samples.

The approximate Jaccard clusterings approach the clustering quality of the cor-

responding exact similarity clustering at lower sample sizes than approximate cosine

clusterings do, which is perhaps expected due to the better sampling efficiency that

MinHash variants tend to have over SimHash [53]. The accuracy bound in theo-

rem 3.2.3 compared to the bound in theorem 3.2.2 also suggests that MinHash might

give closer approximations than SimHash does assuming that the bounds are tight.

(Though we use modularity as a measurement of quality, if a clustering practi-

tioner’s goal is solely to find a clustering that maximizes modularity, then it is likely

be better to use a clustering algorithm tailored for maximizing modularity. For in-

stance, our experiments show SCAN getting a peak modularity of less than .1 on

the Friendster graph across parameters in Σ, whereas LaSalle and Karypis report

that their modularity-maximizing clustering tool Nerstrand finds a clustering with

modularity around .6 [33]. The low peak modularity of .028 that SCAN finds for the

cochlea graph, however, is perhaps more indicative of the cochlea graph not contain-

ing good clusters — Nerstrand only achieves a modularity of .06927 on the cochlea

graph, and community-el [47], another modularity-maximizing clustering algorithm,

achieves a modularity of .007, which is even lower than what SCAN finds.)

Figure 4-11 takes the modularity scores from figures 4-7 and 4-8 and plots them

against the corresponding approximate index construction times from figure 4-6 on

the horizontal axis rather than the number of samples. Likewise, figure 4-12 crosses

ARI scores from figures 4-9 and 4-10 on the vertical axis against the approximate

index construction times from figure 4-6 on the horizontal axis. These two plots,

figure 4-11 and figure 4-12, are trade-off curves between the time to construct the

SCAN index versus the quality of the clusterings resulting from that index. Points

to the top and to the left represent sample sizes that give good quality as well as low

index construction times. The plots also include the times to construct the index with

the exact similarity measures from figure 4-1 with the assumption that the times for

52

exact Jaccard similarity are the same as those measured for exact cosine similarity.

The ARI scores indicate that the clusterings found from using approximate simi-

larity measures at a particular parameter setting sometimes do not match well with

the clusters found from the corresponding exact similarity measures unless the num-

ber of samples is quite high. The modularity scores, on the other hand, suggest

that by searching over a range of parameter values, it is possible to vastly speed up

index construction by approximating similarities while still finding a good quality

clustering.

All in all, the timing experiments show that GBBS-IndexSCAN achieves high

parallelism and performs competitively against ppSCAN, and the approximation ex-

periments suggest that locality-sensitive hashing can speed up index construction

significantly on dense graphs without sacrificing clustering quality.

53

0 1 2 3 4 5
0

0.1

0.2

M
od

ul
ar
ity

Orkut

0 5 10 15 20 25
0

0.1

0.2

0.3

brain

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8

M
od

ul
ar
ity

WebBase

0 20 40 60
0

0.05

0.1
Friendster

0 10 20 30 40
0

0.02

0.04

0.06

Index construction time (seconds)

M
od

ul
ar
ity

blood vessel

0 200 400 600
0

0.01

0.02

0.03

Index construction time (seconds)

cochlea

Exact cosine similarity
Approximate cosine similarity

Exact Jaccard similarity
Approximate Jaccard similarity

Figure 4-11: Comparison of GBBS-IndexSCAN (96 threads) approximate index
construction times with varying numbers of samples versus the best modularity score
found using any parameters in Σ. These plots use the running times from figure 4-6
on the horizontal axis and the modularities from figures 4-7 and 4-8 on the vertical
axis.

54

0 1 2 3 4 5
0

0.5

1

A
dj
us
te
d
R
an

d
in
de
x Orkut

0 5 10 15 20 25
0

0.5

1

brain

0 5 10 15 20 25
0

0.5

1

A
dj
us
te
d
R
an

d
in
de
x WebBase

0 20 40 60
0

0.5

1

Friendster

0 10 20 30 40
0

0.5

1

Index construction time (seconds)

A
dj
us
te
d
R
an

d
in
de
x blood vessel

0 200 400 600
0

0.5

1

Index construction time (seconds)

cochlea

Exact similarity measure
Approximate cosine similarity
Approximate Jaccard similarity

Figure 4-12: Comparison of GBBS-IndexSCAN (96 threads) approximate index
construction times versus the accuracy of clusterings against a ground truth of the
clustering given by exact similarity measures. The parameters used are the best SCAN
parameters in Σ for the exact similarity measure. These plots use the running times
from figure 4-6 on the horizontal axis and the adjusted Rand scores from figures 4-9
and 4-10 on the vertical axis.

55

56

Chapter 5

Related Work

Xu et al. introduced the original SCAN algorithm [61], using ideas from the popu-

lar point clustering algorithm DBSCAN [22]. There is much research in developing

variants of SCAN that make it more usable and more efficient.

One of the inconvenient aspects of SCAN is that it is difficult to find good values

for its two user-selected parameters, 𝜇 and 𝜀. GS*-Index alleviates this issue by

creating an index upon which future SCAN queries with arbitrary parameters are

quick [59]. SCOT [8] and gSkeletonClu [30] also essentially compute indices for SCAN

for a fixed 𝜇 value. SCOT outputs an ordering of vertices, similar to what the OPTICS

algorithm [1] outputs for DBSCAN, such that vertices that tend to be in the same

cluster appear together in the ordering. gSkeletonClu computes a spanning tree upon

potential core vertices. Though we chose in this paper to focus attention on GS*-

Index, more work is needed to compare these different indices in terms of computation

time and space usage. gSkeletonClu in particular seems like it could give even faster

clustering query times than GS*-Index, though gSkeletonClu is less flexible in the

sense that it requires the user to operate on a fixed 𝜇 value.

SHRINK [29], DHSCAN [62], and AHSCAN [63] all borrow ideas from SCAN

but avoid the parameter selection issue by being parameter-free algorithms that use

a quality function like the modularity to guide the clustering process. DPSCAN [60]

is another parameter-free SCAN-based algorithm that uses a density metric to select

clusters. These algorithms are easier to use due to their lack of parameters, though

57

on some level having some tunable parameters can be helpful if they allow the user

to explore other reasonable clusterings on a graph.

Other work building on SCAN focuses on making SCAN scale to large graphs.

LinkSCAN* [36] reduces computation time at the cost of accuracy by operating on a

sampled subgraph of the original graph. We present a different approximation idea

using locality-sensitive hashing in this thesis, but it would be worthwhile in the future

to compare the efficiency and clustering quality of these two different approximation

approaches. Zhao et al. [64] and Mai et al. [39] describe anytime algorithms for SCAN,

with Mai et al.’s algorithm being parallel. Users may pause queries and examine

intermediate clustering results, making it useful for large graphs on which finishing a

query may take a long time. Our work, on the other hand, strives to make finishing

a query as quick as possible so that this anytime functionality is unnecessary.

SCAN++ [52], pSCAN [11], and ppSCAN [13], for a fixed setting of SCAN param-

eters, speed up SCAN by pruning many unnecessary similarity score computations

between pairs of vertices. Che et al.’s ppSCAN is parallel and uses vectorized instruc-

tions as well for additional performance. Because there are fewer similarity score

computations to prune when building an index applicable to queries on arbitrary

SCAN parameters and because it keeps the algorithm design simpler, we do not con-

sider pruning similarity computations for our algorithm and instead achieve speed

through precomputing an index.

For distributed systems, Chen et al. [14] and Zhao et al. [65] present MapRe-

duce [17] parallelizations of SCAN, and SparkSCAN [66] is a Spark parallelization of

SCAN. In contrast, we use a shared-memory, single multicore machine programming

model in this thesis, which is faster and tends to be easier to program in. Though

massive graphs may necessitate using distributed systems, there exist commodity

multi-core machines with enough RAM to process fairly large graphs. GPUSCAN [56]

explores using GPUs to speed up SCAN, whereas we focus on CPU-based algorithms

in this thesis. SCAN-XP [57] is a parallel SCAN algorithm for multicore machines,

but we do not compare our algorithm against SCAN-XP since ppSCAN is faster

according to Che et al.’s experiments.

58

There are many other graph clustering algorithms besides SCAN and its variants.

We will not attempt to list those other algorithms here, but interested readers may

wish to refer to existing surveys written by others: [49, 23]. A practitioner interested in

graph clustering should, of course, make a careful choice about what graph clustering

algorithm is appropriate for their needs based on each algorithm’s computational

performance and on what kind of clusters each algorithm produces.

59

60

Chapter 6

Conclusion

This thesis presented a index-based SCAN algorithm that achieves significant parallel

speed-up and allows a user to query efficiently for SCAN clusterings at arbitrary

parameter settings. The algorithm is work-efficient in expectation relative to the

sequential algorithm that it is based on, GS*-Index, and has logarithmic span with

high probability. We also present a highly optimized, multicore implementation of the

algorithm that runs well in practice. Moreover, we demonstrate that locality-sensitive

hashing is a viable approximation scheme to speed up the computationally expensive

component of index construction on dense graphs.

There are many potential future avenues of research and exploration based on the

work in this thesis. For instance,

• GS*-Index can handle dynamic edge insertions and deletions to the graph. Is

it possible to parallelize this dynamic component as well and efficiently process

batches of edge updates at once?

• gSkeletonClu is another index-based SCAN algorithm that may be paralleliz-

able. What ideas can we take from gSkeletonClu to get an even faster parallel

SCAN algorithm? It seems like gSkeletonClu may be able to achieve lower

clustering query times than GS*-Index does.

• In order to reduce the cost of running SCAN, LinkSCAN* samples edges from

its input graph and runs SCAN on the sampled graph. How does this ap-

61

proximation scheme compare to locality-sensitive hashing in running time and

clustering quality?

• Despite there being a significant amount of prior work in performance opti-

mizations for SCAN, it is still unclear in what situations, if any, a practitioner

would prefer SCAN over other graph clustering algorithms. How do various

graph clustering algorithms compare? What qualities do practitioners prior-

itize most in graph clustering? Based on the answers to these questions, is

SCAN still relevant or is it obsolete?

62

Bibliography

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. SIGMOD Record, 28(2):49–60, 1999.

[2] K. Aydin, M. Bateni, and V. Mirrokni. Distributed balanced partitioning via
linear embedding. In Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining, page 387–396. Association for Computing
Machinery, 2016.

[3] A. Bellogín and J. Parapar. Using graph partitioning techniques for neighbour
selection in user-based collaborative filtering. In Proceedings of the Sixth ACM
Conference on Recommender Systems, page 213–216. Association for Computing
Machinery, 2012.

[4] C. Biemann. Chinese whispers: An efficient graph clustering algorithm and its
application to natural language processing problems. In Proceedings of the First
Workshop on Graph-based Methods for Natural Language Processing, page 73–80.
Association for Computational Linguistics, 2006.

[5] G. E. Blelloch and B. M. Maggs. Parallel algorithms. In M. J. Atallah and
M. Blanton, editors, Algorithms and Theory of Computation Handbook: Spe-
cial Topics and Techniques, volume 2, chapter 25. Chapman & Hall/CRC, 2nd
edition, 2010.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A mul-
tiresolution coordinate-free ordering for compressing social networks. In Proceed-
ings of the 20th International Conference on World Wide Web, page 587–596.
Association for Computing Machinery, 2011.

[7] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques.
In Proceedings of the 13th International Conference on World Wide Web, page
595–602. Association for Computing Machinery, 2004.

[8] D. Bortner and J. Han. Progressive clustering of networks using structure-
connected order of traversal. In IEEE 26th International Conference on Data
Engineering, pages 653–656. IEEE, 2010.

[9] G. E. P. Box and M. E. Muller. A note on the generation of random normal
deviates. The Annals of Mathematical Statistics, 29(2):610–611, 1958.

63

[10] A. Z. Broder. On the resemblance and containment of documents. In Proceedings
of the Compression and Complexity of SEQUENCES, pages 21–29. IEEE, 1997.

[11] L. Chang, W. Li, L. Qin, W. Zhang, and S. Yang. pSCAN: Fast and exact struc-
tural graph clustering. IEEE Transactions on Knowledge and Data Engineering,
29(2):387–401, 2017.

[12] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pages 380–388. Association for Computing Machinery, 2002.

[13] Y. Che, S. Sun, and Q. Luo. Parallelizing pruning-based graph structural cluster-
ing. In Proceedings of the 47th International Conference on Parallel Processing.
Association for Computing Machinery, 2018.

[14] J.-J. Chen, J.-M. Chen, J. Liu, and V.-L. Huang. PSCAN: A parallel struc-
tural clustering algorithm for networks. In International Conference on Machine
Learning and Cybernetics, volume 2, pages 839–844. IEEE, 2013.

[15] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on computing, 14(1):210–223, 1985.

[16] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. In Proceedings of the 30th ACM Symposium
on Parallelism in Algorithms and Architectures, page 393–404. Association for
Computing Machinery, 2018.

[19] L. Dhulipala, C. Hong, and J. Shun. ConnectIt: A framework for static and incre-
mental parallel graph connectivity algorithms. arXiv preprint arXiv:2008.03909,
2020.

[20] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun. The graph based
benchmark suite (GBBS). In Proceedings of the 3rd Joint International Workshop
on Graph Data Management Experiences & Systems and Network Data Analytics.
Association for Computing Machinery, 2020.

[21] Y. Ding, M. Chen, Z. Liu, D. Ding, Y. Ye, M. Zhang, R. Kelly, L. Guo, Z. Su,
S. C. Harris, F. Qian, W. Ge, H. Fang, X. Xu, and W. Tong. atBioNet–an
integrated network analysis tool for genomics and biomarker discovery. BMC
Genomics, 13, 2012.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, page
226–231. AAAI Press, 1996.

64

[23] S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174,
2010.

[24] H. Gazit. An optimal randomized parallel algorithm for finding connected com-
ponents in a graph. SIAM Journal on Computing, 20(6):1046–1067, 1991.

[25] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time par-
allel algorithms. In Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science, page 698–710. IEEE Computer Society, 1991.

[26] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[27] C. S. Greene, A. Krishnan, A. K. Wong, E. Ricciotti, R. A. Zelaya, D. S. Him-
melstein, R. Zhang, B. M. Hartmann, E. Zaslavsky, S. C. Sealfon, D. I. Chasman,
G. A. FitzGerald, K. Dolinski, T. Grosser, and T. O. G. Understanding multicel-
lular function and disease with human tissue-specific networks. Nature Genetics,
47:569–576, 2015.

[28] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[29] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y. Liu. SHRINK: A struc-
tural clustering algorithm for detecting hierarchical communities in networks.
In Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, pages 219–228. Association for Computing Machinery,
2010.

[30] J. Huang, H. Sun, Q. Song, H. Deng, and J. Han. Revealing density-based clus-
tering structure from the core-connected tree of a network. IEEE Transactions
on Knowledge and Data Engineering, 25(8):1876–1889, 2013.

[31] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification,
2:193–218, 1985.

[32] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[33] D. LaSalle and G. Karypis. Multi-threaded modularity based graph clustering
using the multilevel paradigm. Journal of Parallel and Distributed Computing,
76:66–80, 2015.

[34] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, 2014.

[35] P. Li, A. Owen, and C.-H. Zhang. One permutation hashing. In Advances in
Neural Information Processing Systems 25, pages 3113–3121. Curran Associates,
Inc., 2012.

65

http://snap.stanford.edu/data

[36] S. Lim, S. Ryu, S. Kwon, K. Jung, and J.-G. Lee. LinkSCAN*: Overlapping
community detection using the link-space transformation. In IEEE 30th Inter-
national Conference on Data Engineering, pages 292–303. IEEE, 2014.

[37] C. X. Lin, Y. Yu, J. Han, and B. Liu. Hierarchical web-page clustering via in-page
and cross-page link structures. In Proceedings of the 14th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining, page 222–229. Springer,
2010.

[38] Z. Liu, Q. Shi, D. Ding, R. Kelly, H. Fang, and W. Tong. Translating clini-
cal findings into knowledge in drug safety evaluation-drug induced liver injury
prediction system (DILIps). PLOS Computational Biology, 7(12), 2011.

[39] S. T. Mai, S. Amer-Yahia, I. Assent, M. S. Birk, M. S. Dieu, J. Jacob-
sen, and J. M. Kristensen. Scalable interactive dynamic graph clustering on
multicore CPUs. IEEE Transactions on Knowledge and Data Engineering,
31(7):1239–1252, 2019.

[40] V.-S. Martha, Z. Liu, L. Guo, Z. Su, Y. Ye, H. Fang, D. Ding, W. Tong, and
X. Xu. Constructing a robust protein-protein interaction network by integrating
multiple public databases. In BMC Bioinformatics, volume 12. Springer, 2011.

[41] M. Mete, F. Tang, X. Xu, and N. Yuruk. A structural approach for finding func-
tional modules from large biological networks. In BMC Bioinformatics, volume 9.
Springer, 2008.

[42] M. E. J. Newman. Analysis of weighted networks. Physical Review E, 70:056131,
2004.

[43] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69:026113, 2004.

[44] S. Papadopoulos, Y. Kompatsiaris, and A. Vakali. Leveraging collective intelli-
gence through community detection in tag networks. In Proceedings of Workshop
on Collective Knowledge Capturing and Representation. Citeseer, 2009.

[45] S. Papadopoulos, Y. Kompatsiaris, and A. Vakali. A graph-based clustering
scheme for identifying related tags in folksonomies. In Data Warehousing and
Knowledge Discovery, pages 65–76. Springer-Verlag, 2010.

[46] S. Papadopoulos, C. Zigkolis, G. Tolias, Y. Kalantidis, P. Mylonas, Y. Kompat-
siaris, and A. Vakali. Image clustering through community detection on hybrid
image similarity graphs. In IEEE International Conference on Image Processing,
pages 2353–2356. IEEE, 2010.

[47] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader. Parallel community
detection for massive graphs. In Parallel Processing and Applied Mathematics,
pages 286–296. Springer, 2011.

66

[48] R. A. Rossi and N. K. Ahmed. The network data repository with interactive
graph analytics and visualization. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, page 4292–4293. AAAI Press, 2015.

[49] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[50] M. Schinas, S. Papadopoulos, Y. Kompatsiaris, and P. A. Mitkas. Visual event
summarization on social media using topic modelling and graph-based ranking
algorithms. In Proceedings of the 5th ACM International Conference on Multi-
media Retrieval, pages 203–210. Association for Computing Machinery, 2015.

[51] M. Schinas, S. Papadopoulos, G. Petkos, Y. Kompatsiaris, and P. A. Mitkas.
Multimodal graph-based event detection and summarization in social media
streams. In Proceedings of the 23rd ACM International Conference on Multi-
media, page 189–192. Association for Computing Machinery, 2015.

[52] H. Shiokawa, Y. Fujiwara, and M. Onizuka. SCAN++: Efficient algorithm for
finding clusters, hubs and outliers on large-scale graphs. Proceedings of the VLDB
Endowment, 8(11):1178–1189, 2015.

[53] A. Shrivastava and P. Li. In defense of MinHash over SimHash. In Proceedings of
the Seventeenth International Conference on Artificial Intelligence and Statistics,
pages 886–894, 2014.

[54] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism. In
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, page 96–107. Association for Computing Machinery, 2014.

[55] J. Shun and K. Tangwongsan. Multicore triangle computations without tuning.
In IEEE 31st International Conference on Data Engineering, pages 149–160.
IEEE, 2015.

[56] T. R. Stovall, S. Kockara, and R. Avci. GPUSCAN: GPU-based parallel struc-
tural clustering algorithm for networks. IEEE Transactions on Parallel and
Distributed Systems, 26(12):3381–3393, 2015.

[57] T. Takahashi, H. Shiokawa, and H. Kitagawa. SCAN-XP: Parallel structural
graph clustering algorithm on Intel Xeon Phi coprocessors. In Proceedings of
the 2nd International Workshop on Network Data Analytics. Association for
Computing Machinery, 2017.

[58] D. A. Tolliver and G. L. Miller. Graph partitioning by spectral rounding: Ap-
plications in image segmentation and clustering. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 1, page 1053–1060. IEEE Computer Society, 2006.

[59] D. Wen, L. Qin, Y. Zhang, L. Chang, and X. Lin. Efficient structural graph
clustering: An index-based approach. Proceedings of the VLDB Endowment,
11(3):243–255, 2017.

67

[60] C. Wu, Y. Gu, and G. Yu. DPSCAN: Structural graph clustering based on
density peaks. In Database Systems for Advanced Applications, pages 626–641.
Springer, 2019.

[61] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: A structural clustering
algorithm for networks. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 824–833. Associa-
tion for Computing Machinery, 2007.

[62] N. Yuruk, M. Mete, X. Xu, and T. A. J. Schweiger. A divisive hierarchical
structural clustering algorithm for networks. In Proceedings of the Seventh IEEE
International Conference on Data Mining Workshops, pages 441–448. IEEE Com-
puter Society, 2007.

[63] N. Yuruk, M. Mete, X. Xu, and T. A. J. Schweiger. AHSCAN: Agglomerative
hierarchical structural clustering algorithm for networks. In Proceedings of the
International Conference on Advances in Social Network Analysis and Mining,
page 72–77. IEEE Computer Society, 2009.

[64] W. Zhao, G. Chen, and X. Xu. AnySCAN: an efficient anytime framework
with active learning for large-scale network clustering. In IEEE International
Conference on Data Mining, pages 665–674. IEEE Computer Society, 2017.

[65] W. Zhao, V. Martha, and X. Xu. PSCAN: A parallel structural clustering algo-
rithm for big networks in MapReduce. In Proceedings of the IEEE 27th Interna-
tional Conference on Advanced Information Networking and Applications, pages
862–869. IEEE Computer Society, 2013.

[66] Q. Zhou and J. Wang. SparkSCAN: A structure similarity clustering algorithm
on Spark. In Big Data Technology and Applications, pages 163–177. Springer,
2016.

68

	Introduction
	Preliminaries
	Set similarity
	Similarity measures
	Locality-sensitive hashing

	Graph clustering
	Graphs
	SCAN definitions
	Index-based SCAN: GS*-Index
	Clustering quality measures

	Parallelism
	Parallel programming model
	Parallel primitives

	Algorithm
	Basic description
	Index construction
	Querying for clusters
	Determining hubs and outliers

	Approximating similarities
	Implementation
	Computing similarities
	Querying for clusters
	Approximate similarities

	Experiments
	Benchmarking environment
	Results
	Index construction time comparison
	Clustering time comparison
	Approximate index construction time
	Quality of approximate clusterings

	Related Work
	Conclusion

