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Abstract

This thesis presents an Autonomous Underwater Glider (AUG) architecture that is intended
for basin-scale unattended survey of Arctic sea-ice. The distinguishing challenge for AUG
operations in the Arctic environment is the presence of year-round sea-ice cover which
prevents vehicle surfacing for localization updates and shore-side communication. Due to
the high cost of operating support vessels in the Arctic, the proposed AUG architecture
minimizes external infrastructure requirements to brief and infrequent satellite updates on
the order of once per day. This is possible by employing onboard acoustic sensing for sea-ice
observation and navigation, along with intelligent management of onboard resources.

To enable unattended survey of Arctic sea-ice with an AUG, this thesis proposes a hier-
archical acoustics-based sea-ice characterization scheme to perform science data collection
and assess environment risk, a multi-factor terrain-aided navigation method that leverages
bathymetric features and active ocean current sensing to limit localization error, and a set
of energy-optimal propulsive and hotel policies that react to evolving environmental condi-
tions to improve AUG endurance. These methods are evaluated with respect to laboratory
experiments and preliminary field data, and future Arctic sea-ice survey mission concepts
are discussed.
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Title: Associate Scientist with Tenure
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Chapter 1

Introduction

1.1 Motivation for Studying Arctic Sea-ice

The Arctic is the most rapidly warming region on Earth and over the past several decades

these rising temperatures have had a substantial impact on the region’s seasonal sea-ice

cover and volume [Serreze and Barry, 2011, Stammerjohn et al., 2012]. Changing conditions

in the Arctic have broad ramifications for the global Earth system, including rising global

temperatures, as well as biological, chemical, physical, and societal impacts [Francis and

Skific, 2015, Cohen et al., 2018, Arrigo et al., 2014, Barnhart et al., 2014, Jakobsson et al.,

2014, Christiansen et al., 2014]. Diminished sea-ice volume results in diminished latent

heat thermal buffering capacity, which accelerates warming of the Earth’s oceans [Kwok

and Cunningham, 2015, Jeffries et al., 2013, Jackson et al., 2012]. Thus it is critical to

accurately understand Arctic sea-ice inventory. In addition to rising temperatures, positive

feedback mechanisms of albedo and momentum transfer are causing the decline of Arctic

sea-ice to accelerate. Sea-ice, and particularly the snow settling on top of sea-ice, has a

characteristic albedo that is among the highest of all natural materials found on Earth’s

surface, causing sea-ice and snow to reflect the majority of incoming solar radiation back

into the atmosphere. When sea-ice melts and exposes the ocean below, the low-albedo

seawater absorbs the majority of the solar radiation causing the sea-surface temperature

to rise, which provokes more sea-ice melting [Nicolaus et al., 2012]. Additionally, as sea-

ice cover declines, the ice pack is less able to dampen sea surface kinetics, amplifying the

mechanical break-up of sea-ice, which leads to further lateral melting [Zhang et al., 2015].

To better understand the global sea-ice latent heat budget and the processes that govern
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sea-ice dynamics, it is essential to improve our understanding of Arctic sea-ice volume as well

as the transfer of heat and momentum at the sea-ice boundary. This requires overcoming

the intrinsic challenges of sea-ice survey operations.

The Arctic Ocean has remained as one of the most forbidding environments for humans

since prehistoric people first ventured out onto the ice floes of Eurasia. Historical records

recount numerous expeditions during 19th and 20th centuries that met tragic ends, such as

the Franklin expedition of 1845 [Beattie and Geiger, 2017], Greely expedition of 1882 [Todd,

2017], and Amundsen’s 1928 failed rescue attempt of the Italia expedition [Hovdenak, 1935].

Sea-ice cover in the Arctic Ocean is such a barrier for humans that the North Pole was indis-

putably reached only after humans reached the South pole; the first ship to reach the North

Pole was a nuclear powered submarine on its second attempt [Griffin, 2013], less than 10

years before humans landed on the moon. Despite the advance of modern technologies, the

Arctic Ocean’s challenges and dangers persist as barriers for scientific observation, imposing

significant limitations on observing systems. Major operational constraints include the fact

that relevant areas of sea-ice study are spatially remote, often many hundreds of kilometers

away from nearest land contact or operating base. In terms of physical dangers, weather,

wildlife, and sea-ice are persistent threats to observational hardware. For example, pressure

ridges formed from the collision of ice floes can exceed 30 m in draft height, sometimes

impinging upon the seafloor, making under-ice technologies particularly vulnerable.

1.2 Review of Arctic Sea-ice Survey Technologies

Conventional Arctic sea-ice observing systems include remote aerial and satellite systems,

as well as in-situ sea surface and subsea systems. Remote aerial and satellite observation is

able to acquire surface data with the greatest spatial extent while maintaining kilometer-

to-meter spatial resolution and day-to-week temporal resolution [Markus et al., 2017, Kwok

and Cunningham, 2015, Ardhuin et al., 2018]. These systems are particularly well suited

for measuring sea-ice area coverage and determining the sea-ice boundary. Satellite ob-

servation is, however, generally limited by the difficulty in accurately determining sea-ice

thickness and volume [Schweiger et al., 2011], as well as the inability to assess physical

characteristics such as heat and momentum transfer. Ice-hardened vessels can be used to

observe these physical characteristics, but they are costly to operate and environmentally
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intrusive because the transit path to the study site causes disturbance to the sea-ice being

studied [Lee et al., 2012]. Although other in-situ surface technologies such as moorings and

ice-tethered buoys [Richter-Menge et al., 2006, Toole et al., 2011] are minimally intrusive

and able to operate unattended, they are often crushed between ice floes [Jackson, 2016]

and only provide point measurements.

Subsea observational platforms, including remotely operated vehicles (ROVs) [Nicolaus

et al., 2012] and tow bodies, require the support of surface vessels for operation, but have

limited spatial extent and are infeasible for scaling up to basin-scale observation at meaning-

ful spatial and temporal resolution. Although human occupied submersibles have operated

under ice cover in the Arctic [Sagalevitch, 2013], conventional electric and diesel-electric sub-

marines are not considered viable for under-ice research because of their limited endurance

and the associated risk to the crew. In contrast, nuclear-powered submarines are perhaps

the most-capable of all platforms for in-situ Arctic sea-ice observation because these vessels

have access to an effectively limitless energy supply while underway, producing water, oxy-

gen, and heat for crew, as well as ample electricity for instrumentation. Important scientific

insights into Arctic sea-ice processes have relied on nuclear-powered military submarines

[Wadhams and Horne, 1980]. The obvious downside to using nuclear submarines for Arctic

research is that they are extremely costly to operate and are the exclusive domain of only

a few of the world’s militaries. More recently, autonomous underwater vehicles (AUVs), in-

cluding autonomous underwater gliders (AUGs), have demonstrated the ability to operate

under ice [Kukulya et al., 2016, Kunz et al., 2009, Williams et al., 2015]. With notable

exceptions [Kaminski et al., 2010, Furlong et al., 2012, Boeing, 2017], most AUVs do not

possess the required range to conduct basin-scale Arctic sea-ice surveys. AUGs, however,

routinely operate in polar waters [Lee et al., 2017, Zhou et al., 2019, Miles et al., 2016], have

successfully completed multiple trans-Atlantic missions [Ramos et al., 2018, Willis, 2009]

and with appropriate modification, may be viable for basin-scale Arctic operations. Scaling

up to persistent basin-scale synoptic observation using underwater platforms will require

miserly power budgets coupled with low unit costs.

A review of Arctic observation system technologies is provided in Table 1.1, which

highlights whether or not an observational platform meets the requirements for basin-scale

in-situ Arctic study. The table considers three aspects of Arctic observing capabilities:

range, cost, and analytical sensing. Range performance is evaluated with respect to the
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ability to traverse more than 5000 km. This range requirement is derived from the remote

aspect of the Arctic region. Costs are evaluated with respect to capital cost and daily

operating cost and are reported as orders of magnitude estimates which are not meant

to convey precision, but rather semi-quantitative relationships between survey methods.

Analytical sensing capabilities are evaluated with respect to the ability to measure sea-ice

volume, sea-ice area, heat transfer at the sea-ice interface, momentum transfer at the sea-

ice interface, and whether or not a given technology is environmentally intrusive. In this

context, intrusive signifies that the observing technology creates a significant disturbance

to sea-ice in the area being studied.

Traverse
> 5000 km

Capital
Cost

Operating
Cost (Daily)

Sea-ice
Volume

Sea-ice
Area

Heat
Transfer

Momentum
Transfer Nonintrusive

Satellites 3 108 104 y 3 7 7 3

Airplanes 3 105 − 108 104 y 3 7 7 3
Icebreaker
Campaigns 3 108 − 109 105 3 3 3 3 7

Ice Camps 7 108 − 109 102 − 105 3 3 3 3 y

Ice-Tethered
Buoys 7 106 102 3 3 3 3 7

Under-Ice
Moorings 7 106 100 3 3 3 3 3
Nuclear

Submarines 3 109 105 3 3 3 3 3

ROVs 7 104 − 107 105 3 3 3 3 7

AUVs 7 105 − 107 105 3 3 3 3 y

AUGs y 105 103 3 3 3 3 3

Table 1.1: Requirements table for basin-scale Arctic observation technologies. Requirements
are broken into categories of range, cost, and science. Technologies from remote sensing
and in-situ sensing are considered, including aerial, sea surface, and subsea technologies.

As Table 1.1 illustrates, the general drawback of ROVs and AUVs is limited range

capability for basin-scale Arctic operations. Although AUVs can overcome range limitations

by scaling up in size, this leads to an increasing trend in capital and operating costs. This

leaves AUGs as the Arctic observation technology that offers one of the most promising

compromises between range, cost, and observational capability.

Figure 1-1 reviews the design space of subsea Arctic-sampling technologies in terms

of mass and range, including four main size classes: extra large vehicles (Echo Voyager

[Boeing, 2017], Theseus [Butler and den Hertog, 1993]), large vehicles (Sentry [Kaiser et al.,

2016], Bluefin21 [Lehmenhecker and Wulff, 2013], Autosub [Furlong et al., 2012]), medium

vehicles (Tethys [Bellingham et al., 2010], Slocum [Jones et al., 2014], Spray [Sherman et al.,

2001], Seaglider [Lee et al., 2017]), and small vehicles (Remus [Kukulya et al., 2010]). The

highlighted area of the design space is comprised of vehicles with sufficient range and science
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capabilities to pursue meaningful deployments in the Arctic, while requiring only modest

costs. Like most marine vessels, unit costs of robotic underwater vehicles tend to correlate

with displacement, and operating costs are influenced substantially by the infrastructure

requirements for launch and recovery.

Figure 1-1: Overview of design space for under-ice surveying AUVs and AUGs in terms of
mass and range, where the blue highlighted region indicates the area of interest within the
design space. The top-right corner of each vehicle image indicates its approximate numerical
value within the design space. The scaling of the vehicle images is approximate.

The complexity of Arctic observation suggests that optimal survey methods would make

use of a blend of several technologies: satellites providing synoptic basin-scale estimate of

sea-ice extent, periodic icebreaker campaigns to collect physical samples within small regions

of interest, and persistent long-endurance AUGs and AUVs to record in-situ observations

across large under-ice transects. In such an observing network, AUGs would be limited by

energy storage constraints which directly influence range and science capabilities. Therefore,

this thesis proposes a hybrid AUG architecture that includes a high-efficiency thruster,

low-power acoustic sensors, and energy-optimal control policies for unattended transit and

survey. Efficient utilization of onboard resources is necessary for AUGs and AUVs to be

effective for sea-ice observing networks.
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1.3 Need for Static and Dynamic Sea-ice Inventory

Long-range AUGs have the potential to supplement the observational capability of both

static and dynamic sea-ice quantities. Static quantities refer to total inventory at a moment

in time, whereas dynamic quantities refer to the change in inventory over a time duration.

For example, for Arctic sea-ice survey operations, it is valuable to measure both the static

inventory and dynamic inventory of sea-ice variables. In particular, understanding static and

dynamic inventory sea-ice volume in the Arctic is of critical importance for understanding

Earth’s global heat budget [Jackson et al., 2012, Wadhams, 2012, Maksym, 2019].

While aerial observation systems face difficulties in measuring sea-ice volume [Schweiger

et al., 2011], an in-situ sea-ice observing AUG can directly measure sea-ice volume using

a principle known to humans for millennia: Archimedes’ Principle, originally stated by

Archimedes circa 250B.C. in ‘On Floating Bodies’ [Heath et al., 2002]. Archimedes’ Prin-

ciple states that a body submersed in fluid experiences an upward buoyant force that is

equal in magnitude to the weight of fluid being displaced. Thus, an AUG with knowledge

of sea-ice and sea-water densities can measure vertical sea-ice displacement using onboard

acoustic sensing, allowing the AUG to directly measure sea-ice volume. Therefore, with per-

sistent AUG sea-ice operations in the Arctic, it is possible to estimate static and dynamic

inventory of sea-ice volume.

1.4 Navigating the New Arctic

Aside from their ability to supplement crucially important sea-ice data products, AUGs

are prepared to adapt to evolving environmental conditions in the Arctic. As sea-ice cover

and sea-ice volume decline, ocean circulation patterns are changing [Kwok et al., 2013,

Horvat et al., 2016, Meneghello et al., 2018], Arctic freshwater content is increasing [Haine

et al., 2015, Carmack et al., 2016, Lique et al., 2016], sea-surface waves and turbulence are

intensifying [Thomson and Rogers, 2014, Zhang et al., 2013, Asplin et al., 2012], and annual

heat fluxes are rising [Screen and Simmonds, 2010]. Evolving environmental conditions in

the Arctic put a premium on capable and adaptable sea-ice observing technology.

The upcoming chapters of this thesis review an architecture for a modified AUG with

specialized hardware and software components that allow the vehicle to collect valuable

sea-ice data while adapting to dynamic and dangerous environmental conditions.
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1.5 Thesis Contributions

This thesis aims to extend the autonomous capabilities of AUGs to enable basin-scale in-situ

characterization of sea-ice in the Arctic. To support this central aim, this thesis includes

three primary contributions: a hierarchical acoustics-based sea-ice characterization scheme

to perform science data collection and assess environment risk, a multi-factor terrain-aided

navigation method that leverages bathymetric features and active ocean current sensing to

limit localization error, and a set of energy-optimal propulsive and hotel policies that react

to evolving environmental conditions to improve AUG endurance.

1.6 Thesis Organization

∙ Chapter 1 provides motivation for studying Arctic sea-ice and outlines viable tech-

nologies for studying Arctic sea-ice.

∙ Chapter 2 describes an architecture for an AUG that is capable of providing persistent

basin-scale synoptic observation of Arctic sea-ice.

∙ Chapter 3 proposes an approach for onboard characterization of sea-ice using a me-

chanical scanning imaging sonar.

∙ Chapter 4 proposes a method for terrain-aided navigation that leverages multiple

seafloor features and real-time ocean current estimation.

∙ Chapter 5 describes a set of energy optimal control policies that can be used to improve

AUG endurance.

∙ Chapter 6 provides a conclusion of the thesis and offers recommendations for future

work.
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Chapter 2

Proposed Architecture for

Autonomous Underwater Glider

2.1 Introduction

AUVs enhance the scope of Arctic sea-ice observation networks due to their ability to make

in-situ observations of sea-ice volume, sea-ice area, heat-transfer at the sea-ice interface,

and momentum-transfer at the sea-ice interface. Within the ecosystem of viable sea-ice

observing AUVs, there is a particular subset of design space that is ideal for enabling

persistent basin-scale synoptic observation of Arctic sea-ice: modest cost vehicles that are

capable of long-range missions. In particular, three commercially available AUGs shown in

Figure 1-1 coincide with this subset of design space: the Slocum AUG, the Spray AUG,

and the Seaglider AUG.

This thesis builds upon the standard Slocum G3 electric AUG configuration by proposing

a hardware and software architecture that enables the AUG to conduct long-range sea-ice

survey missions in the Arctic. The modified Slocum AUG is named: Polarsentinel.

The proposed architecture is derived from four fundamental requirements: scientific

data collection, long-range travel, unattended operation, and survival. Scientific data col-

lection is at the heart of why Arctic sea-ice survey is conducted in the first place: to better

understand processes governing sea-ice and related climate systems. Therefore, the AUG

must be capable of making observations of sea-ice and related oceanographic variables such

as temperature and momentum flux. Long-range travel is essential to enable synoptic sea-
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Figure 2-1: Rendering of Polarsentinel, the proposed AUG architecture. Polarsentinel is
a modified Slocum G3 Electric Glider. Physical modifications include: MSIS for sea-ice
characterization, DVL for environment state estimation and navigation, hybrid thruster
design for increased efficiency, and updated battery pack for increased energy capacity.

ice observation with only a limited number of vehicles. Additionally, long-range travel is

necessary to support launch and recovery maneuvers in remote areas of the world where

rendezvous points may be far away from the survey location. Therefore, the the AUG must

be capable of long-range travel on the order of basin-scale missions. Unattended opera-

tion is required to keep costs of Arctic sea-ice survey from growing exponentially with the

amount of infrastructure needed to enable operation. Therefore, the AUG must be capable

of unattended operation such that the AUG is not dependent on persistent surface vessel

support or acoustic transponders preemptively placed in the environment. Finally, AUG

survivability is necessary for recovering the valuable scientific data that was collected in

satisfaction of the first requirement. Additionally, AUG survivability is necessary for per-

sistent observation of Arctic sea-ice: similar to SpaceX’s motivation for developing reusable

rockets, it is difficult to perform persistent operations with single-use technologies. There-

fore, the AUG must be expected to survive Arctic sea-ice survey operations, which entails

the ability to accurately sense environment state and adaptively adjust the mission plan in

response to apparent risks. Together, these four requirements serve as the guiding principles

in the derivation of the proposed AUG architecture. Notably, each requirement is connected

to a central theme: intelligent allocation of AUG resources.
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2.2 Review of Hardware Components

A hardware architecture is proposed that utilizes a prototype high-efficiency hybrid thruster

and commercially available low-power acoustic sensors that enable real-time environmental

state estimation. To further improve energy efficiency, the thesis considers low-level opti-

mization behaviors for hybrid propulsion and acoustic sensing in conjunction with onboard

data interpretation that allows for efficient information transfer during vehicle surfacing.

AUG power expenditure can be divided into two primary categories: propulsive and

hotel. As a hybrid vehicle, propulsive power includes power draw for the buoyancy engine

and power draw to drive the propeller. Hotel electric power, or hotel load, consists of all

non-propulsive systems running onboard the AUG, including computers and active con-

trol systems, sensors, and communication equipment. Sensors running onboard the vehicle

include a Mechanical Scanning Imaging Sonar (MSIS) for sea-ice and sea-state characteri-

zation, a Doppler Velocity Log (DVL) for navigation and ocean current estimation, a Con-

ductivity Temperature and Depth (CTD) sensor for measuring proprioceptive water-column

variables, and an Inertial Measurement Unit (IMU) for measuring vehicle accelerations. A

summary of the AUG’s hardware components and corresponding power requirements are

given in Table 2.1.

For normal flight conditions, not all of the components mentioned in Table 2.1 are

necessary. For example, the communication components are only used when the AUG is at

the surface, which is a small fraction of total mission time. By toggling different components

on and off, a set of possible operating conditions can be defined. Two operating modes that

are commonly defined for underwater vehicles conducting science missions are transit mode

and survey mode. When the AUG is in transmit mode, scientific and nonessential systems

are turned off to limit power expenditure while traveling to science targets. Conversely,

when the AUG is in survey mode, analytical sensors are turned on to enable observation of

the science target. Hotel configuration can, however, be expressed as gradations between

transit and survey mode, instead of just binary states. For example, in instances of moderate

ocean currents, it may be beneficial to operate the DVL while transiting to improve AUG

navigation via active steering to counteract cross-track ocean currents even though the hotel

load is increased. Further treatment of hotel load optimization is discussed in Chapter 5.

Transit mode and survey mode are defined as the upper and lower bound of the AUG’s
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Hardware
Component

Instantaneous
Power Draw

Duty
Cycle

Average
Power Draw

[W] [%] [W]
Hybrid Thruster (min) 1.09 98.4 1.07
Hybrid Thruster (max) 18.10 98.4 17.80
Buoyancy Engine 101.00 1.6 1.60
Altimeter 0.41 41.2 0.17
Pitch Controller 2.18 0.9 0.02
Rudder 2.44 1.0 0.02
MSIS (700 kHz) 3.00 100.0 3.00
DVL (600 kHz) 2.00 100.0 2.00
CTD 0.14 100.0 0.14
Micro IMU 0.40 100.0 0.40
Flight Computer 0.16 100.0 0.16
BSD 0.40 100.0 0.40
Radio Modem (900 MHz) 21.00 0.00 0.00
Satellite Communication 6.00 1.00 0.06

Table 2.1: Review of hardware components including instantaneous power draw when the
component is active, the expected duty cycle during a typical AUG mission, and the average
power draw over the course of the mission. Hardware components fall into four main
categories: vehicle propulsion and control systems, sensors, computers, and communication
units.

hotel load, without including the power draw from communication equipment. This yields

an average power demand for transit and survey mode of 0.37 W and 6.37 W respectively.

2.3 Hybrid Propulsion

The hybrid AUG is unique among robotic underwater vehicles in that it is able to utilize

buoyancy engine propulsion and/or propeller thruster propulsion, while reaping the benefits

of both propulsive strategies: efficiency at low speeds via the buoyancy engine and variable

freedom of speed variability via the propeller thruster. The hybrid thruster is particu-

larly useful because it enables the AUG to operate despite adverse or cross-track currents,

whereas an AUG equipped with buoyancy engine alone would be susceptible to being swept

off-course. Prior work suggests a strategy wherein AUGs utilize high-speed transport to

mitigate the negative impact of adverse or cross-track currents [Jenkins et al., 2003]. The

ability to travel at higher speeds is especially useful in the context of sea-ice surveys because

higher speed may allow the AUG to evade dynamic sea-ice cover in order to reach a safe
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surfacing location.

In addition to the wider velocity envelope, hybrid thrust improves flexibility for AUG

path planning by not requiring that the AUG rely entirely on the sawtooth path associated

with the buoyancy engine. The AUG can instead travel at an arbitrary depth band without

loss of speed or efficiency, which may be beneficial for scientific observation, navigation

and localization, obstacle avoidance, or improved efficiency in shallow waters. Using the

buoyancy engine in conjunction with the thruster avoids a drawback common to AUVs of

expending energy to achieve neutral stability. AUVs often must contend with this because

they are ballasted slightly positively buoyant as a safety precaution [Jenkins et al., 2003],

[Bellingham et al., 1995]. Since the AUG does not have access to elevator control, it can

be challenging to stabilize with thruster and pitch controller alone [Claus et al., 2012]. By

providing a stabilizing force via buoyant loading of the glide surfaces, the buoyancy engine

boosts the efficiency of the thruster. Finally, this flexibility of two parallel propulsive

strategies makes the AUG more redundant to catastrophic failure during the mission, and

thus, single-fault tolerant with respect to propulsion.

To formalize the discussion of energy efficiency, the transport cost function 𝑓𝑇 𝐶 is defined

to be equal to the total energy expended per distance traveled, 𝑓𝑇 𝐶 = Δ𝐸
Δ𝑥 . Thus, lower

values of transport cost indicated greater energy efficiency of AUG travel.

2.3.1 Buoyancy Engine

The buoyancy engine allows the AUG to travel efficiently through the water column while

generating forward motion in a sawtooth trajectory, with the AUG inflecting downward

once it reaches the top of its flight band and inflecting upward upon reaching the bottom

of its flight band. Through the use of ambient hydrostatic pressure, the AUG only needs

to actively pump ballast at the lower inflection points, enabling low energy expenditure

during the majority of the trajectory. The buoyancy engine’s efficiency decreases, however,

in proportion to a narrowing flight band because a narrowing flight band corresponds with

an increase in the frequency of AUG inflections. Thus, efficiency is highest when the flight

band includes the full depth range of the AUG. Analytical models adapted from Jenkins et

al. [Jenkins et al., 2003] suggest that the transport cost of buoyancy engine travel is min-

imized at approximately 12∘ pitch angle, although steeper angles yield greater horizontal

speeds. AUG designs such as the Slocum and Seagliders also utilize isopycnal hulls with
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compressibility characteristics roughly matching seawater, further minimizing buoyancy en-

gine energy expenditure [Webb, 2006].

2.3.2 Propeller Thruster

While the buoyancy engine is efficient for travel at relatively low speeds, large depth bands,

and shallow pitch angles, the hybrid thruster is better suited for missions requiring higher

speeds or narrow flight bands. An expanded vehicle dynamics envelope provides more

flexibility for mission planning and adaptive control to contend with adverse environmental

conditions often encountered in the Arctic. Large portions of the Arctic basin are on

continental shelves and have shallow depths. For example, much of the Chukchi Sea is

between 25 m and 50 m deep. When including an appropriate safety margin for possible

sea-ice cover and inflection at depth, the resulting flight band is narrow and energetically

expensive for buoyancy engine transit. Although AUGs are generally designed to travel

throughout their entire depth range during transit, there are control methods that can be

used for hybrid AUGs to travel at constant depths. Claus and Bachmeyer demonstrate the

ability to use a linear reduced order model of AUG dynamics paired with a linear quadratic

regulator controller to minimize energy loss due to lift induced drag from excess buoyant

force [Claus and Bachmayer, 2016].

Optimization of AUG thrust for energy conservation requires understanding of the rela-

tionship between through-water speed and thruster input power. This can be described as

an efficiency curve, which is given below. The propulsive power is specified in W and the

through-water speed of the AUG 𝑣𝑡𝑤 is given in m s−1.

𝑃𝑝𝑟𝑜𝑝(𝑣𝑡𝑤) = 3.79𝑣3
𝑡𝑤 + 1.99𝑣2

𝑡𝑤 − 0.22𝑣𝑡𝑤 + 1.09 (2.1)

This theoretical model for a prototype thruster currently under development considers

propeller, motor, and motor controller losses, and is designed to provide a wide velocity

envelope while maintaining efficiency across its range.

Figure 2-2 shows the comparison between buoyancy engine efficiency and prototype

thruster efficiency when the AUG is operating in transit mode. Note that the two propulsive

modes have different dependencies for efficiency: the buoyancy engine depends on pitch

angle and depth band, while the thruster depends on through-water speed. The thruster is
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Figure 2-2: Comparison of transport cost between the buoyancy engine and the prototype
thruster when operating in transit mode. The blue solid curves correspond to the transport
costs of the buoyancy engine, while the yellow, orange, and red dashed lines correspond
with the prototype thruster.

most efficient at 0.5 m s−1, independent of depth band and pitch angle. This figure suggests

that a fairly broad thruster velocity envelope is more efficient than the buoyancy engine

when operating within a narrow depth band. However, these efficiency curves do not take

into account the effect of science payload or ocean currents. For increased science payload

or adverse ocean current magnitudes, it becomes more efficient to travel at higher speeds.

2.4 Battery Pack Design

A Slocum AUG can be equipped with an extended endurance pack configuration comprised

of lithium primary cells, providing approximately 10 kW h at ambient Arctic ocean temper-

atures. Although Lithium primary batteries are not rechargeable, they allow for a three-fold

increase in the AUG’s onboard energy capacity compared to lithium ion secondary batteries,

to help meet the range requirements of an Arctic mission. Both classes of lithium battery

chemistry have thermal characteristics that are superior to most other battery chemistries,

making them better suited for Arctic missions where water temperature is approximately

−2 ∘C. Although the extended endurance pack configuration is necessary to meet the range

requirements of Arctic survey, the lithium secondary pack configuration has been instru-
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Battery Chemistry
Ambient
Capacity

Derated
Capacity

Derating
Factor Recharge

Smart
Query

[kW h] [kW h] [%]
Alkaline Primary 2.2 1.6 72 7 7

Lithium Secondary 3.2 2.1 65 3 3

Lithium Primary 12.0 10.0 83 7 7

Table 2.2: Comparison of battery chemistry configurations for the proposed AUG. Batteries
are compared in terms of ambient energy capacity, derated energy capacity, whether or not
they are rechargeable, and whether or not they are capable of smart querying. The mass and
energy capacity figures listed in the table assume a standard number of AUG mid-sections
corresponding with four battery pack sections.

mental in the development of the proposed architecture because of its rechargeable and

smart-querying features.

In the proposed architecture, four distinct battery pack sections are considered: the

pitch pack, the payload pack, the aft-short pack, and the aft-long pack. The four packs

with lithium secondary pack configuration are shown in Figure 2-3. Each battery pack

chassis section has different design considerations, where the chassis sections are designed

via Computer-Aided Design (CAD) and constructed using 3D printers. 3D printing allows

for a high degree of customization and an ability to limit weight without compromising

strength by utilizing internal lattice structure during construction.

The pitch pack has two functions: contributing to the energy supply of the AUG and

providing a pitch moment by sliding forward and aft. The position of the pitch pack along

the axis of the AUG body helps establish the glide angle 𝜉 for efficient travel through the

water column in coordination with the buoyancy engine. As a result, the pitch pack chassis

is designed to allow for sturdy connection with the piston that is responsible for sliding the

pack back and forth. Additionally, careful consideration is given to the width of the pitch

pack to prevent the pack from becoming pinched by a compressed hull when the AUG is at

depth, which would result in lack of glide angle controllability.

The payload pack is designed to fit around the central AUG electronic components,

including the BSD computer, the IMU, and the main circuit board. Unlike the pitch pack,

the payload pack is not dynamically positioned within the AUG body during the mission, so

a minimal chassis design is used to maximize the room for the central electronic components.

As a result of utilizing 3D printers for manufacturing the chassis, small adjustments can be
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Figure 2-3: Battery pack configuration for proposed AUG design. The configuration in-
cludes four battery packs: the pitch pack, the payload pack, the aft-short pack and the
aft-long pack. Lithium secondary batteries are shown in the diagram, but a similar design
is possible for the higher energy density lithium primary batteries.

made such as the inclusion of gripper arms to improve battery stability while minimizing

weight.

Similar to payload pack, the aft-short and aft-long packs do not dynamically change

position within the AUG. The two aft battery packs are designed to be flush against the

bottom of the AUG hull to accommodate the ballast pump that is positioned above the

battery packs.

The lithium secondary battery packs are particularly useful for AUG operations because

of their smart querying feature. Smart querying means that individual batteries amongst

the four battery packs can be queried for voltage, current, percent charge, temperature, and

desired charge rate. Additionally, individual batteries can be toggled on and off for both

charging and discharging sequences. Having in-depth knowledge of battery state and precise

control of battery maintenance enables better situational awareness for mission planning

and greater efficiency when charging or discharging the batteries. By having centralized

control of all batteries, selective charging can be performed when the AUG is on the bench

without needing to disassemble the vehicle, enabling greater duty cycle for the AUG during

research deployments.

The BSD computer can perform battery monitoring while the AUG is submerged similar
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Figure 2-4: Subplot A shows the graphical user interface (GUI) that is used for displaying
battery state and charging the battery packs when the AUG is connected to a power supply
while on the bench. Subplot B shows an example of battery state being tracked over time
during a charge sequence, and Subplot C shows an example of the battery state GUI being
used to monitor battery state when the AUG is connected to the bench.
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to the bench-top monitoring shown in Figure 2-4. This onboard awareness of battery state

is particularly helpful for fault diagnosis purposes where it may be necessary to initiate

contingency planning based on the remaining energy supply. Depending on the severity of

the fault detected, vehicle recovery may be deemed infeasible and the AUG enters a state of

data transmission to minimize data loss. Entering such a state is analogous to a Mars rover

mission where instrument retrieval is not possible, but the transmitted data is still extremely

valuable. However, with further improvements to cognitive robotics, the AUG may be able

to enter a state of pseudo-hibernation while harvesting freely available environmental energy

thus prolonging mission duration long enough for vehicle rescue, similar to Mark Watney,

the character portrayed by Matt Damon in The Martian (2015), who resourcefully cultivated

spuds using Martian soil and bio-waste to enable his possibility of returning to Earth.

2.5 Onboard Acoustic Sensing

Onboard acoustic sensing can provide several functionalities, including: navigation, map-

ping, and communication. In the context of unattended sea-ice survey in the Arctic, external

aids such as surface vessels or landmark beacons are unavailable for acoustic communica-

tion. Furthermore, unattended underwater vehicles are solely responsible for performing

exteroceptive sensing of environment state to enable active mission adjustments in response

to said environment state.

Two acoustic sensors are considered in the proposed architecture: a Mechanical Scanning

Imaging Sonar (MSIS) and Doppler Velocity Log (DVL). The MSIS is used for characteri-

zation of sea-ice and sea-state, while the DVL is used for navigation and estimating water

column currents. The MSIS is located in the nose cone of the AUG and be rotated 360∘

about the instrument’s axis of rotation, thus forming a composite image from a series of

acoustic scans. A gimbal mount is used within the AUG nosecone such that the MSIS axis

of rotation is aligned with the horizontal plane rather than the AUG body. The DVL is

mounted in a downward-facing orientation in the middle section of the AUG. The DVL

has four profiling beams at 30∘ offset from the normal direction of the transducer head,

and each DVL beam measures the Doppler shift to estimate water-track and bottom-track

velocities. The DVL is rigidly mounted to the AUG body such that the instrument axes

move with the AUG axes. Figure 2-5 shows the acoustic beam-width for both instruments.
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Figure 2-5: Acoustic beam width for the MSIS and DVL instruments. The MSIS beam
width is given by two angles: 𝜙𝑀𝑆𝐼𝑆,ℎ = 3∘ is the horizontal beam width, and 𝜙𝑀𝑆𝐼𝑆,𝑣 =
35∘ is the vertical beam width. The DVL consists of four narrow profiling beams, each with
beam width angle 𝜙𝐷𝑉 𝐿 = 2.2∘.

Min Range Max Range Frequency Beam Width Mass Power
[m] [m] [kHz] [∘] [kg] [W]

Micron MSIS 0.3 75.0 700 35, 3 0.33 3.0
Pathfinder DVL 0.2 89.0 600 2.2 1.19 2.0

Table 2.3: Review of notable parameters for the MSIS and DVL instruments. Note that the
maximum and minimum range listed for the DVL instrument corresponds to DVL operating
in bottom-track mode. When the DVL is operating in water-track mode, the instrument
range envelope is tapered.

Table 2.3 reviews other acoustic sensor parameters such as range, frequency, mass, and

power. The minimum range of the sensors is dictated by the blanking distance of the

acoustic source, and the maximum range is dictated by attenuation and absorption of the

acoustic signal in the water column.

Control and interpretation of the MSIS and the DVL sensors serve as the foundation

of this thesis. Specifically, Chapter 3 focuses on interpretation of MSIS data for making

sea-ice characterizations, Chapter 4 focuses on interpretation of DVL data for improving

AUG navigation, and Chapter 5 leverages the results discussed in the two previous chapters

to derive a set of energy-optimal AUG control policies. By improving the state estimation

and control methods of the AUG, the vehicle is more prepared for basin-scale in-situ survey
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of Arctic sea-ice.

2.6 Review of Software Components

To support sensing, planning, and control onboard the AUG, several software modules must

operate together in a coordinated fashion on the AUG science computer, otherwise referred

to as the Backseat Driver computer (BSD). To make coordination of a diverse set of com-

puter programs and hardware components, a robotics middleware called Robotic Operating

System (ROS) is utilized. A robotics middleware provides a set of software frameworks

that allows for management of software packages, message-passing between components,

and low-level control of devices. ROS is open source and widely adopted amongst a diver-

sity of research communities. Other notable robotics middleware programs include Mission

Oriented Operating Suite with Interval Programming (MOOS-IvP) [Benjamin et al., 2010]

and Lightweight Communications and Marshalling (LCM) [Huang et al., 2010].

ROS employs a modular design approach such that individual software modules are

responsible for specialized tasks, and these modules communicate with one another using

pre-defined message formats. Individual software modules are refereed to as ROS nodes, and

communication links between ROS nodes are called ROS topics. Each ROS topic supports

a specific message type which is defined by a ROS message. For example, a Navigation

node may publish pose information to a AUG Localization topic, where the message passed

to the topic contains the current time in seconds along with 𝑥, 𝑦, 𝑧 position in meters. The

collection of ROS nodes and ROS that support robotics operations are referred to the ROS

computation graph. The ROS computation graph for the proposed AUG architecture is

shown in Figure 2-6.

Walking through Figure 2-6, the sonar surface classifier ROS node is responsible

for data processing and controlling of the MSIS instrument, represented by the tritech msis

hardware component, and publishing sea-ice and sea-surface characterization information

to the ice classifications and wave classifications ROS topics so that the BSD

computer can react to the evolving environment state. Similarly, the dvl navigator

ROS node is responsible for data processing of the DVL instrument, represented by the

pathfinder dvl hardware component, and publishing navigation updates and propulsion

commands to the navigation updates and propulsion commands ROS topics so that the
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Figure 2-6: Robot Operating System (ROS) computation graph for the software components
running the AUG’s BSD computer, a Raspberry Pi. The red boxes are ROS nodes, the
orange boxes are ROS topics, and the blue boxes are AUG hardware components. The figure
highlights the connectivity between onboard sensor processes and AUG control processes.

BSD computer can react to the evolving vehicle state. The dvl navigator ROS node also

helps to control the MSIS instrument because the node is responsible for publishing AUG

depth information, which impacts the range setting to be used by the MSIS.

The back seat driver node is responsible for ingesting all of the environment state

and vehicle state updates from the MSIS and DVL interpretation nodes. Then, the BSD

node is responsible for sending control commands to the AUG flight computer, which is

represented by the slocum glider hardware component. The AUG control commands

then feed into the DVL navigation node to help perform odometry, a sub-component of

navigation. Additionally, the BSD node is able to request MSIS control behavior via the

bsd sonar polling topic. For example, if the BSD wants to initiate an AUG surfacing

maneuver, it may first request a sequence of MSIS sea-ice and sea-surface scans to confirm

that the environment state is conducive to safe surfacing.

The low-level details of the BSD node are outside the scope of this thesis, but a high-

level discussion of this node is provided in Section 2.7. The low-level details of the MSIS

and DVL processing nodes are provided in Chapter 3 and Chapter 4, respectively.
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2.7 Risk Aware Planning and Control

Conducting in-situ sea-ice survey in the Arctic is inherently dangerous for underwater ve-

hicles. Figure 2-7 provides a schematic overview of typical sea-ice features in the Arctic

environment, showing how these features threaten vehicle safety.

Figure 2-7: Schematic diagram of an AUG conducting a sea-ice survey in the Arctic. The
figure showcases how environment features make in-situ sea-ice survey dangerous for AUGs.
The AUG is denied access to the ocean surface except for intermittent gaps between ice floes
known as leads. Additionally, thick multi-year ice and pressure ridges serve as obstacles
that the AUG must avoid when operating close to the sea surface. Figure adapted from
[Jurohi, 2008].

As shown in Figure 2-7, sea-ice cover precludes the option for vehicle surfacing, de-

creasing the frequency that the AUG can receive mission updates, receive a new GPS fix,

or transmit data. In the event that a serious fault is detected, the AUG cannot readily

perform a mission abort and request an impromptu recovery operation from a shore-side

support team. To make matters worse, even if the AUG was able to request a recovery

operation, the rescue may be too dangerous to attempt, and the vehicle would be lost at

sea.

In terms of sea-ice features serving as obstacles, multi-year ice and pressure ridges can be

on the order of 10 m thick. Pressure ridges in particular can even impinge upon the seafloor

in coastal areas. As a result, operations along the continental shelfs surrounding the Arctic,

like the Chukchi Shelf for example, are particularly dangerous for AUG operations because

seafloor depth is typically between 30 m and 100 m, limiting the available of water column

that is safe for operations.

Therefore, it is critical for the AUG to have access to robust risk-aware re-planning capa-
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bilities running onboard, or for the AUG to be provided a comprehensive set of contingency

plans to fall back on should a conflict arise during the mission. This risk-aware planning

and control capability is outside the scope of this thesis, but other researchers have focused

more intensely on this problem. Previous efforts include probabilistic path planning under

bounded risk [Ono et al., 2013], convex optimization for hybrid path and activity planning

[Fernandez-Gonzalez et al., 2017], activity planning that is based on risk-reward trade-

off [Ayton and Williams, 2018], and goal-directed risk-bounded activity planning onboard

AUVs [Timmons et al., 2016].

For the context of this thesis, it is assumed that a risk-aware planning system is opera-

tional onboard the AUG. This system is referred to as the Backseat Driver (BSD). The BSD

is responsible for sending mission updates and control commands to the AUG as necessary.

To enable informed decision making, the BSD utilizes state updates provided by the MSIS

sea-ice characterization module and the DVL navigation module, both of which constitute

the main contributions of this thesis.

2.8 Summary and Future Work

This chapter reviews the proposed AUG architecture in terms of hardware and software

components, which is designed to enable basin-scale in-situ characterization of sea-ice. In

doing so, this chapter motivates the need for onboard acoustic sensing for sea-ice character-

ization and navigation, as well as intelligent resource management to improve AUG energy

efficiency.

Future work for specific software components will be discussed in more detail in the

following chapters. For future work related to the AUG architecture, a formalized system

for sea-ice and ocean current forecasting should be included. By having access to sea-ice and

ocean current predictions, the mission planning system will be more capable of assessing

mission risk and more prepared to develop contingency plans as necessary. Sea-ice modeling

typically applies conservation equations of mass and momentum over the domain of interest

to make a prediction regarding the underlying Ice Thickness Distribution (ITD) and Floe

Size Distribution (FSD) functions [Hunke and Lipscomb, 2015, Feltham, 2008]. Accuracy of

sea-ice models can be improved if coupled with atmospheric models and ocean circulation

models. Similarly, ocean current modeling typically applies a reduced form of the Navier-
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Stokes equations over the domain of interest [Lermusiaux et al., 2006]. Uncertainty in both

sea-ice and ocean current models can arise from uncertain boundary conditions, uncertain

initial conditions, and uncertainty in the underlying physics. Additionally, high spatial or

temporal resolutions can quickly lead to computational intractability. Moreover, to improve

the proposed AUG architecture, a simplified but reliable sea-ice model and ocean current

model should be included in the shore-side computation system so that local predictions of

sea-ice and ocean-currents can be exploited by the AUG mission planner.
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Chapter 3

Synoptic Sea-ice Mapping

3.1 Introduction

Onboard acoustic sensing serves as the primary mechanism for AUVs to perform extero-

ceptive sensing of their environment. Significant efforts have been pursued in the realm

of sonar-based mapping and characterization of oceanographic phenomena. In regards

to acoustic-based mapping of the environment, a simultaneous localization and mapping

(SLAM) approach that uses a probabilistic scan-matching routine to cross-register sequen-

tial scans recorded by an MSIS can be used to reconstruct a map of the underwater en-

vironment [Mallios et al., 2014]. This scan-matching method has demonstrated success in

confined underwater cave environments [Mallios et al., 2016]. In the operational inverse of

the underwater cave-mapping scenario, an MSIS has also been used for AUV iceberg map-

ping where the vehicle leverages a vehicle-attached occupancy map (VOM) representation

to build a map of the iceberg [Zhou et al., 2019]. In terms of ice floe mapping, multi-

beam sonars have been mounted on AUVs to build digital elevation maps (DEMs) of the

sea-ice cover and successfully distinguish between first-year sea-ice and multi-year sea-ice

[Wadhams and Doble, 2008]. Similarly, multi-beam methods have been used in Antarctica

to show that Antarctic sea-ice is characteristically thicker than what has been shown with

ice-coring methods or satellite remote survey [Williams et al., 2015].

Aside from mapping efforts, onboard acoustics have been useful for characterization and

detection of oceanographic phenomena as well. Of particular importance due to economic

interest and risk of catastrophic environmental damage is the in-situ acoustic characteriza-

tion and detection of submerged oil. By investigating the acoustical scattering properties
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associated with submerged droplets, it is possible to use broadband acoustics to quantify

oil concentration and transport in the ocean [Loranger, 2019]. In the Arctic context, it has

been shown that broadband acoustic backscatter techniques may be capable of detecting oil

layers directly underneath the sea-ice cover when the sonar is operated with normal inci-

dence with respect to the oil and sea-ice layer [Bassett et al., 2016]. Additionally, methods

exist for estimating sea-ice thickness solely from acoustic backscatter, rather than consider-

ing freeboard altitude or keel depth [Bassett et al., 2020]. Thus, methods of characterization

based on acoustic signature can be used in combination with sonar mapping techniques to

establish a more detailed understanding of the environment.

For the AUG design, full coverage sea-ice mapping and acoustic characterization is not

pursued as it would require constant operation of the scanning sonar, which would quickly

deplete AUG resources (Note that more careful treatment of AUG resource management is

presented in Chapter 5). Instead, intermittent sea-ice sensing using the MSIS instrument

is proposed, where observations are made on the order of 50 m spatial intervals. This

intermittent sea-ice sensing process is referred to as synoptic sea-ice mapping (SSIM). This

Chapter develops an acoustic model for performing SSIM and applies SSIM to two ice

observation datasets. Heavy emphasis is placed on the ability to discern thin first-year

sea-ice from open water since this operational scenario is particularly challenging given the

sensing modalities of the AUG and particularly important for the survivability of the AUG.

In SSIM, a three-tier classification scheme is used for describing sea-ice observations

based on the following hierarchical factors: sea-ice presence, sea-ice thickness, and sea-ice

roughness. This classification scheme is beneficial because it enables the use of multiple

sensing modalities of the AUG, it concisely represents science data which improves the data

transfer rate during AUG surfacing, and it promotes situational awareness of the onboard

mission planning module.

3.2 Properties of Sea-ice

Sea-ice prevails in the Arctic at several different orders of magnitude in size, from mm sized

ice crystals to km sized ice floes [Lucieer et al., 2016, Mei et al., 2019]. Properties of sea-ice

at the smaller scale have more relevance for SSIM because sea-ice micro-structure dictates

the acoustic scattering properties of the material. That said, large-scale sea-ice features
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Figure 3-1: Schematic diagram of AUG sampling sea-ice in the Arctic and transmitting
compressed sea-ice information via satellite communication. The onboard sensor process-
ing module reduces raw acoustic measurements into hierarchical sea-ice features: sea-ice
presence, sea-ice thickness, and sea-ice roughness. Figure adapted from [Lee et al., 2012].

such as pressure ridges are of critical importance for the navigation and mission planning

systems [Wadhams and Doble, 2008].

Modeling all physically realizable components of sea-ice structure for the purpose of

developing a detailed acoustics model is outside the scope of this thesis (The Community Ice

CodE (CICE) manual provides a thorough overview of all aspects of sea-ice modeling [Hunke

and Lipscomb, 2015]). Instead, this chapter focuses on capturing the general essence of sea-

ice structure in order to perform SSIM with a scanning sonar. To do so, inhomogeneities

introduced by brine channels that form during sea-ice formation are considered. Since salt

cannot be incorporated into the crystalline structure that forms when water freezes, the

salt is discarded from the material in a process known as brine rejection. This process

leaves behind hollow columnar sections known as brine channels. These brine channels are

known to contain bubbles which then act as scatterers when the sea-ice is ensonified by

an acoustic signal [Bassett et al., 2020]. In addition to brine channel structures, another

important sea-ice structural element is the vertically aligned congelation ice crystals that
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𝑐 𝜌
[m s−1] [kg m−3]

Air 343 1.225
Seawater 1450 910
Sea-ice 3845 1028

Table 3.1: Density and speed of sound for three mediums: air, seawater, and sea-ice.
Seawater is assumed to have a temperature of −2 ∘C and a salinity of 32 g kg−1. Density
and speed of sound values for sea-ice are taken from [Timco and Frederking, 1996] and [Vogt
et al., 2008], respectively.

form at the bottom of ice floes [Bassett et al., 2020]. These ice crystals lead to a complex

ridging structure found at the bottom of sea-ice floes and are referred to as skeletal ice.

Along with structural aspects of sea-ice, bulk properties of sea-ice and the two adjacent

mediums, namely air and seawater, are relevant for acoustic scattering processes as well.

Table 3.1 reviews the density and speed of sound for air, seawater, and sea-ice. These

bulk properties are crucial for understanding acoustic scatter intensities resulting from the

interface of two mediums. Since the speed of sound difference between sea-ice and seawater

is much greater than the density difference between the two mediums, the acoustic return

intensity models are less sensitive to precise values for seawater and sea-ice density [Bassett

et al., 2020]. Other notable properties of sea-ice, including mechanical properties, thermal

properties, and electromagnetic properties, are discussed in [Schwarz and Weeks, 1977].

3.3 Detection of Thin First-year Sea-ice

During sea-ice survey operations, the AUG may use multiple sensing modalities to perform

SSIM. Thick multi-year ice can readily be identified by examining the differential of the keel

vertical range measured by the MSIS and the depth reported by the AUG pressure sensor.

However, this depth-differential approach does not have the vertical resolution necessary

for detecting thin first-year sea-ice. Here, thin sea-ice is defined as sea-ice that is ≤ 10 cm

in thickness, which corresponds to the minimum thickness that can be reliably discerned

using the depth-differential approach.

To overcome the challenge of detecting thin sea-ice, features of the acoustic signature

that is induced by the properties of sea-ice are considered. First, the bubbles and other

inhomogeneities that reside in the brine channels of sea-ice lead to internal scattering which

elongates the acoustic signal received by the MSIS, increasing the peak-width of the signal.
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Next, the small-scale roughness of the sea-ice skeletal layer promotes Lambertian scattering

(i.e. the surface scatters uniformly in all directions regardless of incidence angle) which

enables meaningful acoustic returns at large incidence angles. Finally, the differences in

speed of sound and density for the three mediums indicate that the seawater/air interface

will lead to higher magnitude acoustic returns compared to the seawater/sea-ice interface.

Figure 3-2 highlights how these features can be used to discern thin sea-ice from open

water, including example acoustic scan-lines recorded during laboratory testing. Section

3.4 provides a more rigorous derivation of the classification scheme used for discerning thin

sea-ice from free surface, Section 3.6 describes two experiments where the MSIS was used

to observe ice and free surface conditions, and Section 3.7 describes the results of applying

the SSIM classification scheme to the two datasets.

3.4 Hierarchical Characterization of Sea-ice

The AUG uses a tiered sea-ice characterization scheme based on three hierarchical features

of sea-ice: sea-ice presence, sea-ice thickness, and sea-ice roughness. This classification

scheme is beneficial because it enables the use of multiple sensing modalities of the AUG,

it concisely represents science data which improves the data transfer rate during AUG

surfacing, and it promotes situational awareness of the onboard mission planning module.

Sea-ice thickness is estimated by first measuring sea-ice keel depth by taking the dif-

ference between MSIS acoustic range and AUG pressure sensor depth, and then using the

density difference between sea-ice and seawater to estimate sea-ice thickness. Sea-ice pres-

ence can readily be discerned for thick multi-year ice by inspecting the depth differential in

keel vertical range and AUG depth. However, sea-ice presence is more challenging to assess

for thin first-year sea-ice because the depth-differential does not have the vertical resolution

to distinguish thin sea-ice from free surface. This section develops a scheme for performing

SSIM with hierarchical sea-ice characterization, with emphasis on detecting thin first-year

sea-ice.

First, the linear acoustic wave equation is derived from first principles, including: the

equation of state (3.1), the conservation of mass (3.2), and the conservation of momentum

(3.3). Here, u is the velocity vector in m s−1 𝜌 is density in kg m−3, 𝑐 is speed of sound in

m s−1, and 𝑝 is pressure in Pa.
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Figure 3-2: Schematic diagram of the MSIS sonar discerning thin sea-ice cover from free
surface. 𝑃𝑅, 𝑃𝑇 , and 𝑃𝐼𝑆 represent the reflected, transmitted, and internal scattering
acoustic waves, and together, they make up the components of acoustic scattering. The
three subplots at the bottom of the figure show real acoustic scan-line data from laboratory
testing that correspond with the bearings and surface conditions portrayed in the diagram
(Note that the small initial peak in subplot A is caused by sidewall reflection in the test
tank).

𝜌(𝑝) = 𝜌(𝑝)|𝑝=𝑝0 + (𝑝 − 𝑝0)𝜕𝜌

𝜕𝑝
|𝑝=𝑝0 + (𝑝 − 𝑝0)2

2!
𝜕2𝜌

𝜕𝑝2 |𝑝=𝑝0 + ... (3.1)

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0 (3.2)

𝜌
𝜕u
𝜕𝑡

+ 𝜌u · ∇u = −∇𝑝 (3.3)

By considering only 0th and 1st order terms from the first principle equations, the linear
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acoustic wave equation can be derived, which is shown in Equation (3.4).

∇2𝑝 − 1
𝑐2

𝜕2𝑝

𝜕𝑡2 = 0 (3.4)

The linear acoustic wave equation is a second order partial differential equation (PDE)

that governs how acoustic waves propagate through a medium. One solution to the PDE

of particular interest is the plane wave solution, which is shown in Equation (3.5). Here, r

is the receiver location, k is the wave number, 𝜔 is the angular frequency of the wave, 𝑡 is

time, 𝐴 is the wave amplitude, and 𝑗 is the imaginary number.

𝑝(r, 𝑡) = 𝐴𝑒𝑗(k·r−𝜔𝑡) (3.5)

The plane wave is useful because it is simple and because it approximates arbitrary

acoustic sources in the far-field. For example, a monopole source emits a spherical wave,

but in the far-field, the spherical wave can be approximated as a plane wave.

When an acoustic wave transitions from one medium to another at a planar, Snell’s law

of refraction can be used, along with the continuity of pressure and the continuity of normal

velocity, to determine the reflection and transmission behavior of the wave. Snell’s law can

be written as 𝜆1
cos 𝜃1

= 𝜆2
cos 𝜃2

, where 𝜆𝑖 and 𝜃𝑖 are the wavelength and wave propagation

angle with respect to the planar boundary of the 𝑖𝑡ℎ medium. Both sides are multiplied by

frequency 𝑓 to get 𝑐1
cos 𝜃1

= 𝑐2
cos 𝜃2

, where 𝑐𝑖 is the speed of sound for the 𝑖𝑡ℎ medium.

Next, the incidence wave 𝑃𝐼 is related to the reflected wave 𝑃𝑆 and the transmitted

wave 𝑃𝑇 via the reflection and transmission coefficients, 𝑅 and 𝑇 .

𝑃𝐼(r, 𝑡) = 𝑃0𝑒𝑗(k1·r−𝜔𝑡) (3.6)

𝑃𝑅(r, 𝑡) = 𝑅𝑃0𝑒𝑗(k1·r−𝜔𝑡) (3.7)

𝑃𝑇 (r, 𝑡) = 𝑇𝑃0𝑒𝑗(k2·r−𝜔𝑡) (3.8)

Now, the continuity of pressure and continuity of normal velocity are applied to solve

for 𝑅 and 𝑇 . Here, velocity 𝑉 is given by the following expression: 𝑉 = 1
𝑗𝜔𝜌

𝜕𝑃
𝜕𝑥 .
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𝑅 𝑇

Air → Seawater 1.0 2.0
Seawater → Air -1.0 0.0
Air → Sea-ice 1.0 2.0
Sea-ice → Air 1.0 0.0
Seawater → Sea-ice 0.4 1.4
Sea-ice → Seawater -0.4 0.6

Table 3.2: Reflection and transmission coefficients for all acoustic transitions for the three
mediums: air, seawater, and sea-ice. For this table, the incidence acoustic wave is assumed
to be traveling normal to the boundary between the two mediums and that each medium
is homogeneous.

𝑉𝐼(r, 𝑡) + 𝑉𝑅(r, 𝑡) = 𝑉𝑇 (r, 𝑡) (3.9)

𝑃𝐼(r, 𝑡) + 𝑃𝑅(r, 𝑡) = 𝑃𝑇 (r, 𝑡) (3.10)

After plugging in the formula for velocity 𝑉 , the two expressions in Equation (3.10) are

used to solve for the 𝑅 (3.11) and 𝑇 (3.12) coefficients as a function of the density and

speed of sound for both mediums, as well as the angle of incidence for the first medium 𝜃1.

𝑅 =
𝜌2
𝜌1

sin 𝜃1 −
[︂(︁

𝑐1
𝑐2

)︁2
− cos2 𝜃1

]︂ 1
2

𝜌2
𝜌1

sin 𝜃1 +
[︂(︁

𝑐1
𝑐2

)︁2
− cos2 𝜃1

]︂ 1
2

(3.11)

𝑇 =
2𝜌2

𝜌1
sin 𝜃1

𝜌2
𝜌1

sin 𝜃1 +
[︂(︁

𝑐1
𝑐2

)︁2
− cos2 𝜃1

]︂ 1
2

(3.12)

Although these equations do not consider inhomogeneities in the medium or non-planar

interfaces between mediums, these equations help to establish an understanding for how the

acoustic wave behaves at the various interfaces present in the AUG sea-ice survey scenario.

Table 3.2 shows 𝑅 and 𝑇 coefficients for all pairs of the three mediums given in Table

3.1. The incident wave is assumed to be traveling normal to the medium, 𝜃1 = 90∘. As

expected, the Table shows that the air → seawater and air → sea-ice interfaces act like rigid

boundaries, whereas the seawater → air and sea-ice → air interfaces act like pressure-release

boundaries. Of particular importance for discerning thin sea-ice cover from free surface is
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the fact that the seawater → sea-ice interface has lower acoustic reflectivity compared to

the seawater → air interface. Although the transmitted wave from seawater to sea-ice

will reflect off of the air and partially transmit back into seawater, this pathway yields a

weaker acoustic intensity compared to the direct seawater → air reflection. This analysis is

confirmed in [Bassett et al., 2020]. Therefore, based purely off of the bulk properties of the

three mediums, it can shown that the free surface yields a higher acoustic return than the

thin sea-ice cover.

Now, it is important to consider how irregularities in the sea-ice medium and micro-

structure of the sea-ice medium affect the acoustic signal received by the MSIS. First, to

understand the effect of irregularities in the medium, the acoustic scattering equations and

acoustic array theory are considered. The acoustic beam pattern 𝐵(𝑠) is given as a function

of 𝑠 = sin 𝜃, and the taper function 𝑇 (𝑢) is given as a function of 𝑢 = 𝑧
𝜆 . The beam pattern

shows how the acoustic wave propagates into the medium, and the taper function represents

an infinitesimal point source along the array transducer (or on the surface of the scattering

object). Functions 𝐵 and 𝑇 are Fourier transform pairs of each other.

𝐵(𝑠) =
∫︁ ∞

−∞
𝑇 (𝑢)𝑒𝑗2𝜋𝑠𝑢𝑑𝑢 (3.13)

𝑇 (𝑢) =
∫︁ ∞

−∞
𝐵(𝑠)𝑒−𝑗2𝜋𝑠𝑢𝑑𝑠 (3.14)

As a sanity check, it can be easily verified that a taper function equal to the delta

function leads to uniform beam pattern for all angles 𝜃, which is consistent with the case of

a monopole source. Similarly, an infinite taper function with uniform intensity leads to a

delta function as the beam pattern, which is consistent with the plane wave case. For finite

taper arrays, as is true with real world acoustic sensors, the Fourier integration yields a

sinc function, where sinc(𝑥) = sin(𝑥)
𝑥 . The main peak of the sinc function corresponds with

the main lobe of the acoustic beam pattern, while the local extrema of the sinc function

correspond with the side lobes of the beam pattern.

When the Kirchhoff Approximation is made, which assumes locally planar reflections,

finite acoustic targets behave the same way as finite acoustic sources: the finite targets

yield a sinc-shaped acoustic reflection. When an acoustic wave encounters a field of in-

homogeneities, as is the case with bubbles present in the sea-ice brine channels, this is
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called volume scattering and the effects of attenuation and dispersion must be considered.

Together, attenuation and dispersion lead to a complex internal scattering process, which

for the purposes of sea-ice survey, lead to elongated acoustic signals received by the MSIS

[Bassett et al., 2020]. Therefore, the increased peak-width from internal scattering in the

sea-ice layer serves as the second feature that allows thin sea-ice to be discerned from the

free surface.

Now it is important to consider the external surface scattering that results from the

ridged skeletal layer of sea-ice. The skeletal layer consists of vertically aligned congelation

of ice crystals that form at the bottom layer of sea-ice. However, exact scattering equations

for non-trivial geometries are mathematically challenging, or even intractable, to derive. For

example, even the acoustic scattering of a fluid sphere is rather mathematically involved

[Anderson, 1950, Sullivan-Silva, 1989]. Instead of pursuing an exact acoustic model given

the expected structure of skeletal ice, a dimensionless scatter function 𝑆 is introduced for the

material. This allows for the use aggregate statistics to model the complicated and intricate

geometries. The scatter function is dependent on four angles, the azimuth and zenith angles

of the incident acoustic wave with respect to the target surface normal 𝜔𝑖 = (𝜑𝑖, 𝜃𝑖), as well

as the azimuth and zenith angles of the receiver with respect to the target surface normal

𝜔𝑟 = (𝜑𝑟, 𝜃𝑟). The far-field acoustic scatter function can be written as a function of 𝑆, as

shown in Equation (3.15).

𝑃𝑠(r) = 𝑃0

(︃
𝑒𝑗𝑘𝑟

𝑟

)︃[︂
𝑆(𝜔𝑖, 𝜔𝑟)

𝑘

]︂
(3.15)

The form of 𝑆 dictates the how the material responds to acoustic excitation at different

angles. This modeling approach is identical to the Bidirectional Reflectance Distribution

Function (BRDF) from the optics community [Nicodemus, 1965]. Figure 3-3 shows the

qualitative behavior of different scatter functions 𝑆, which is herein referred to as the

Bidirectional Scattering Distribution Function (BSDF).

As a result of the micro-ridging structure at the bottom skeletal layer, sea-ice expresses

Lambertian scattering behavior, meaning that the sea-ice surface yields uniform acoustic

scattering independent of incidence angle. Therefore, the ability to receive acoustic returns

at large angles of incidence serves as the third acoustic feature that allows thin sea-ice cover

to be discerned from free surface.
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Figure 3-3: Examples of BSDF function 𝑆 for different surfaces. Note that only the reflected
wave is portrayed in figure for simplicity. Surface A portrays a mirror-like surface that
exhibits a planar wave reflection, Surface B portrays a glossy surface that exhibits a specular
wave reflection, and Surface C portrays a Lambertian surface that exhibits uniform reflection
in all directions. Figure adapted from [VonHaarberg, 2018].

In conclusion, the SSIM strategy includes a hierarchical characterization of sea-ice that

considers three primary attributes: sea-ice presence, sea-ice thickness, and sea-ice roughness.

Sea-ice thickness and roughness can be assessed via the combination of keel vertical range

and AUG depth. However, assessing the presence of sea-ice, namely thin first-year sea-ice,

requires further treatment of the received acoustic signal. Based on first-principle acoustics

equations and the known properties of sea-ice, three attributes of the acoustic signal are

suggested that can allow thin sea-ice the be discerned from free surface: increased peak-

width, increased incidence angle, and decreased maximum intensity. These attributes are

portrayed in Figure 3-4, where the figure displays acoustic data collected during tank testing

in Woods Hole, MA.

3.5 Active Sensing

In this section the SSIM problem is considered from the active sensing perspective: how

can the MSIS be actuated to achieve the sea-ice observations that are desired, and how can

actuation be adapted to the the current vehicle and environment state? Of course SSIM

also depends on AUG control, but this is outside the scope of this thesis. Active sensing is

discussed in greater detail in Chapter 6 as a future work item.

For now, four control parameters pertaining to the actuation of the MSIS instrument

are considered: range 𝑟𝑀𝑆𝐼𝑆 , gain 𝑘𝑀𝑆𝐼𝑆 , bearing 𝜓𝑀𝑆𝐼𝑆 , and angular resolution �̇�𝑀𝑆𝐼𝑆 .

Note that angular resolution �̇�𝑀𝑆𝐼𝑆 encodes the difference in bearing between successive

MSIS measurements, so high resolution scanning corresponds with small values of �̇�𝑀𝑆𝐼𝑆 .

Due to the gimbal mounting mechanism used onboard the AUG, the MSIS axis of rotation
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Figure 3-4: Array of acoustic scan-lines for both ice and water surface conditions, for 5∘,
15∘, and 25∘ incidence angles. High intensity peaks that appear before and after the 0.4 m
range are caused by sidewall and surface reflections that arise from the confined test tank
environment that was used during data collection. Note that the data was collected in a
freshwater environment.

is parallel to the sea-ice surface, effectively decoupling instantaneous AUG pitch from the

SSIM problem.

The range and gain setting can be controlled in response to the vertical distance between

the MSIS transducer head and the sea-ice keel. This vertical distance is referred to as the keel

offset. By adjusting the range and gain setting in response to keel offset, the transmission

loss of the acoustic signal can be accounted for. Equation (3.20) gives the simple sonar

equation, where 𝐿𝑝 is the sound pressure level, 𝐿𝑠 is the source level, 𝐻𝑖 is the transmission

loss of the incident wave, 𝐻𝑠 is the transmission loss of the scattered wave, and 𝑇𝑠 is the

target strength of the material.
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𝐿𝑝 = 10 log10

(︃
|𝑝|2

|𝑝𝑟𝑒𝑓 |2

)︃
dB re 𝑝𝑟𝑒𝑓 (3.16)

𝐿𝑠 = 10 log10

(︃
𝐴2

𝑟2
𝑟𝑒𝑓 𝑝2

𝑟𝑒𝑓

)︃
dB re 𝑟𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 (3.17)

𝐻 = 10 log10

(︃
𝑟2

𝑟2
𝑟𝑒𝑓

)︃
dB re 𝑟𝑟𝑒𝑓 (3.18)

𝑇𝑠 = 10 log10

(︃
|𝑆|2

|𝑟𝑟𝑒𝑓 𝑘|2

)︃
dB re 𝑟𝑟𝑒𝑓 (3.19)

𝐿𝑝 = 𝐿𝑠 − 𝐻𝑠 − 𝐻𝑖 + 𝑇𝑠 (3.20)

Next, the bearing and angular resolution can be adjusted as a function of the sea-ice

property currently being estimated, between sea-ice presence, sea-ice thickness, and sea-ice

roughness. Detecting sea-ice presence is dependent on the thickness level. For the more

challenging case of thin first-year sea-ice, the MSIS is commanded to observe a large swath

of ±60∘ incidence relative to the sea surface at high angular resolution. Large incidence

angles must be considered during the sea-ice detection process because angle of incidence is

one of the key acoustic properties that allows sea-ice to be discerned from free surface. Next,

to measure sea-ice thickness, only a narrow bearing window ±10∘ must be considered at

high resolution. Finally, to measure sea-ice roughness, a moderate bearing window of ±30∘

must be considered at high resolution, which allows variation in thickness to be assessed

without introducing distortion effects that occur at large incidence angles.

In this thesis, wave characterization in the Marginal Ice Zone (MIZ) is not considered.

However, characterizing waves requires a different active sensing strategy for the MSIS

instrument: the use of low angular resolution over a small bearing window. This sensing

strategy allows for the measurement of the Doppler shift of the traveling wave, and when

multiple successive wave characterizations are made, the wave propagation direction can

be deduced [Burgess et al., 2020]. As discussed in Chapter 2, having knowledge of wave

properties in the MIZ is helpful both for science purposes but also for adaptive mission

planning carried out by the BSD computer. A summary of the different sensing modes is

shown in Table 3.3. Further discussion on MSIS actuation is provided in Chapter 5 in the

context of hotel load minimization and energy efficiency.
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Sensing Mode Bearing Resolution
𝜓𝑀𝑆𝐼𝑆 �̇�𝑀𝑆𝐼𝑆

Sea-ice Presence ±60∘ High
Sea-ice Thickness ±10∘ High
Sea-ice Roughness ±30∘ High

Table 3.3: Review of MSIS actuation strategies in terms of instrument bearing and angu-
lar resolution for different sensing modes: sea-ice presence, sea-ice thickness, and sea-ice
roughness.

3.6 Experiments

Two sets of SSIM experiments were conducted with the MSIS. First, Subsection 3.6.1 reviews

a set of laboratory tank tests in Woods Hole, MA. Then, Subsection 3.6.2 reviews a set of

field deployments in Saint-Fabien, QC. After the experiments are introduced, the results of

SSIM are discussed in Section 3.7.

3.6.1 Laboratory Tests in Woods Hole

During laboratory testing in Woods Hole, MA, the MSIS was suspended in an outdoor test

tank at 42 cm depth. Half of the tank surface was ice-free and the other half of the tank was

covered with a 7.25 cm thick layer of ice. The MSIS was mounted in the center of the tank

to minimize the effect of side-wall reflections. The tank was filled with freshwater, and as a

result, the ice in the tank did not have a brine channel structure that was described in Section

3.2. That said, the ice contained frozen air bubbles which act as internal scatterers in the

ice slab, and the bottom layer of the ice structure had a characteristic micro-structure that

was qualitatively similar in roughness compared to the skeletal layer of sea-ice. Although

the conditions in the tank test are quite different than what is expected of the ice-surveying

AUG in the Arctic, this data-set helps provide a proof-of-concept for the ice detection

process as part of the SSIM module. Figure 3-5 shows the experimental setup of the tank

test.

To accommodate the shallow mounting depth of the MSIS, the minimum range setting

of 2 m was utilized. Recall that the minimum detectable range for the MSIS is 30 cm, which

is derived from the blanking distance of the sonar. Also, to avoid over-saturation of the

acoustic signal, a low gain setting was used as well. After measurements were taken when

the tank surface was evenly split between ice-free and ice-covered area, small ice wedges
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Figure 3-5: Experiment setup for the laboratory tank testing with the MSIS in Woods Hole,
MA. The figure shows the MSIS sonar mounted at a water depth of 42 cm and centered
at the interface of free surface and ice cover. The ice was measured by hand to be 7.5 cm
thick.

were added to the ice-free area. In doing so, the Percent Ice Cover (PIC) was modulated

on one side of the test tank, which allows for investigation of the effect of PIC on the

received acoustic signal. Interestingly, even a small PIC was observed to have a large effect

on the acoustic signature of the sonar swath, making ice presence readily detectable even

in the case of partial ice coverage. This observation is particularly helpful from an AUG

safety perspective because it helps minimize the chances that the AUG attempts a surfacing

maneuver in a potentially dangerous partial ice-cover situation. Figure 3-6 showcases how

the PIC was modulated during the tank test experiments.

3.6.2 Field Deployments in Saint-Fabien

During field deployments in Saint-Fabien, QC, the MSIS was deployed in various sea-ice

conditions within Baie du Ha! Ha!, a small bay on the Saint Lawrence River. The survey

site in Saint-Fabien is located at [48.3∘N, 68.8∘W]. Figure 3-7 shows the testing locations

of the four-day research deployment in Saint-Fabien.

The sea-ice in Baie du Ha! Ha! was accessed via ice canoe. Ice canoeing originally

served as a means of transport between the shores of the Saint Lawrence River, but now ice

canoeing is considered a sport. However, since ice canoeing provides a great deal of mobility

amongst a harsh landscape of ice floes and pressure ridges, ice canoes are commonly used as

vehicles for research as well. Some members of the Saint-Fabien operations team are shown

in Figure 3-8 as they prepare their scientific equipment for various experiments. Behind
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Figure 3-6: Percent Ice Cover (PIC) variation during laboratory tank testing in Woods
Hole, MA. The left column of the figure shows the raw camera images of the various PIC
conditions, while the right column of the figure shows the ice wedges highlighted in red for
ease of interpretation.

the canoe, I can be seen constructing the wooden mount that was used to hold the MSIS

in place while recording sea-ice observations. Since space is limited onboard the ice canoe,

only essential equipment can be carried during deployment.

After reaching a suitable science location, the crew can stand up on the ice floe and

assemble their equipment. For in-water sampling instruments like the MSIS sonar, a hole

must first be cut into the ice cover using an ice saw to enable access to the underwater

environment below. Figure 3-9 showcases one of the holes that was cut in the sea-ice

in order to enable data collection. During the Saint-Fabien deployment, the sea-ice was

observed to be between 25 cm and 30 cm thick.

Similar to the varying PIC data-set collected in the laboratory, a data-set of varying PIC

conditions was collected during the Saint-Fabien deployment as well. To produce varying
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Figure 3-7: Field deployment in Saint-Fabien, QC. The deployment spanned four consecu-
tive days, where the sampling location for each day is indicated by a gold star in the right
subplot. The light-blue highlighted area shows the approximate portion of the bay that was
covered with land-fast sea-ice for the duration of the deployment. Outside the land-fast
sea-ice zone, marginal sea-ice cover was observed.

Figure 3-8: Ice canoeing in Baie du Ha! Ha!, a small bay in Saint-Fabien, QC, situated on
the Saint Lawrence River. Operated by a team of five people, the ice canoe is sledged over
ice floes and pressure ridges, and paddled across sections of open water. Only a limited
amount of scientific equipment may be deployed in the field because all equipment must be
carried onboard the canoe.

PIC conditions during the field deployment, small sea-ice wedges were carefully removed

from the area directly above the MSIS instrument. The varying PIC conditions are shown

in Figure 3-10.

Table 3.4 shows the PIC values for both the Woods Hole tank test data and the Saint-

Fabien field deployment data, shown in Figure 3-6 and Figure 3-10 respectively.
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Figure 3-9: Preparation for data collection during field deployments in Saint-Fabien, QC.
Sub-figure A shows a hole that was cut into the ice cover using an ice-saw so that under-ice
MSIS sonar samples can be recorded. Sub-figure B shows the view from underneath the
sea-ice cover, captured using a waterproof GoPro camera.

Laboratory Testing in Woods Hole, MA
Name A B C D E F G

PIC [%] 8.7 14.6 25.0 37.2 48.9 73.6 88.3

Field Deployment in Saint-Fabien, QC
Name A B C D E F G

PIC [%] 36.3 50.6 60.6 66.0 74.6 — —

Table 3.4: Percent Ice Cover (PIC) for two data-sets: a laboratory test data-set recorded
during tank test operations in Woods Hole, MA, and a field deployment data-set recorder
during ice-canoe operations in Saint-Fabien, QC.

Although the data collected during the Saint-Fabien deployment is not extensive in

terms of exposure to a variety of sea-ice conditions, or representative of the acoustic samples

that the AUG would collect during sea-ice survey due to limited range offset, the data is

instrumental in the development of the SSIM module. The dataset provides key insights

regarding the acoustic properties of sea-ice and helps to inform future design decisions for

Polarsentinel.

3.7 Results

For results of the SSIM module, sea-ice detection serves as the primary focus. To perform

sea-ice detection, a binary classifier was employed based on the three acoustic features de-

scribed in Section 3.4: peak width, incidence angle, and maximum intensity. For the binary

classifier, sea-ice cover is considered the positive condition and free-surface is considered
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Figure 3-10: Percent Ice Cover (PIC) variation during field deployment testing in Saint-
Fabien, QC. The left column of the figure shows the raw camera images of the various PIC
conditions, while the right column of the figure shows the ice wedges highlighted in red for
ease of interpretation.
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the negative condition. The performance of the binary classifier is evaluated using a Re-

ceiver Operating Characteristic (ROC) curve. ROC curves are helpful for evaluating the

performance of a binary classifier because they encode both error conditions: False Positives

(Type I error) and False Negatives (Type II error). Since ice cover is defined as the positive

condition, a false positive occurs if SSIM detects ice when no ice is present, and a false

negative occurs if the SSIM detects free surface when ice is present.

3.7.1 Feature Extraction

Before performance of the SSIM ice detection scheme is assessed, the result of feature ex-

traction are shown with respect to the three sea-ice acoustic features: peak width, incidence

angle, and maximum intensity. Figure 3-11 displays the sea-ice features for the acoustic

data collected during laboratory tests in Woods Hole, and Figure 3-12 displays the sea-ice

features for the acoustic data collected during field deployments in Saint-Fabien.

Peak width of the acoustic signal is extracted using the Full Width Half Maximum

(FWHM) method. FWHM assesses the width of a signal by considering the distance be-

tween two points on the signal that are half of the maximum signal amplitude. Next, the

maximum intensity is easily extracted from the acoustic scanline by taking a maximum over

the array of intensities, and the angle of incidence is calculated from the current bearing

angle of the MSIS. Note that the acoustic intensity of the MSIS includes a time variable

gain (TVG), which corrects for signal loss due to attenuation and spreading.

Although the laboratory dataset is considerably more dense than the field deployment

dataset, both datasets exhibit the same trends. Relative to free-surface, sea-ice cover tends

to correlate with large peak-widths, strong acoustic return at large incidence angles, and

weak acoustic return at small incidence angles. These patterns are consistent with the

acoustic equations discussed in Section 3.4. The fact that both datasets express the same

trends with regards to the acoustic features of sea-ice despite differing operating conditions

is a testament to the generality of the SSIM ice detection approach.

3.7.2 Sea-ice Detection

Using the features displayed in Subsection 3.7.1, a binary classifier can be constructed that

outputs whether or not sea-ice is present based on acoustic observation as input. The

performance of the binary classifier is evaluated using ROC curves, where the x-axis shows
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Figure 3-11: Acoustic features of sea-ice for laboratory data collected in Woods Hole, MA.
Peak-width, incidence angle, and maximum intensity are plotted as 3D coordinates in three-
view format. The color of each point indicates percent ice cover (PIC), where dark blue
denotes free-surface, yellow denotes full ice cover, and green or purple colors indicate partial
ice cover.

the False Positive Rate (FPR) and the y-axis shows the True Positive Rate (TPR) of the

classifier. In this context, a True Positive outcome signifies that the classifier correctly

identifies the presence of sea-ice, and a False Positive outcome signifies that the classifier

incorrectly identifies the presence of sea-ice. As such, the perfect classifier resides at point

(0,1), correctly identifying the presence of ice 100 % of the time, and falsely identifying

sea-ice as water 0 % of the time.

To evaluate the effectiveness of the feature-based approach of sea-ice detection, de-
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Figure 3-12: Acoustic features of sea-ice for field data collected in Saint-Fabien, QC. Peak-
width, incidence angle, and maximum intensity are plotted as 3D coordinates in three-view
format. The color of each point indicates percent ice cover (PIC), where dark blue denotes
free-surface, yellow denotes full ice cover, and green or purple colors indicate partial ice
cover.

tections are made given individual acoustic pings. One benefit of analyzing the classifier

performance given a single acoustic ping is that this approach makes no assumption re-

garding the MSIS control strategy. However, for increased classification performance, it is

beneficial to consider an ensemble of neighboring acoustic pings. This is analogous to ap-

plications in computer vision: it is more challenging to classify an object based on the value

of individual pixel rather than classifying an object based on neighboring pixel information

like a convolution neural net based strategy. Therefore, to demonstrate the capability of
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using neighboring acoustic scanline information, sea-ice detection is also performed based

on a moving window of the 10 most recent acoustic pings recorded, which is referred to as

an acoustic swath.

Figure 3-13 shows the SSIM ice detection performance via inspection of the correspond-

ing ROC curves. Note that ROC curves are reported separately for the two datasets. For

each dataset, both the single-ping and the swath-of-pings detection schemes are shown. As

expected, the swath of pings approach leads to greater classification performance for both

datasets. The line of no-discrimination, which represents the performance of the random

classifier, is included for reference.

Figure 3-13: Receiver Operating Characteristic (ROC) curves for SSIM sea-ice detection,
evaluated on laboratory and field datasets. Both laboratory and field datasets are eval-
uated with respect to single-ping and swath-of-pings classifiers. The optimal ROC curve
points are indicated with orange stars, and the point of perfect classification and line of
no-discrimination are included for reference.

The optimal point on the ROC curve depends on the relative cost of the two error
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conditions: False Positive (Type I error) or False Negative (Type II error). As a reminder,

a False Positive signifies that the detector interprets free-surface conditions as sea-ice cover,

and False Negative signifies that the detector interprets ice cover as free surface. The former

is costly because the AUG may be forced to remain submerged longer than intended, leading

to worsened navigation performance, and the latter is also costly because the AUG may

attempt to perform a surfacing maneuver into ice cover. For simplicity, it is assumed that

both errors are equally costly, and this determines that the optimal point on the ROC

curve is the the point that is geometrically closest to perfect classifier position at (0,1). The

optimal ROC curve points are shown visually in Figure 3-13, and they are also displayed

numerically in Table 3.5.

Tank Data Field Data
FPR TPR FPR TPR
[%] [%] [%] [%]

Individual Ping 0.5 74.6 17.5 76.8
Ensemble of Pings 2.4 92.4 18.6 90.1

Table 3.5: True Positive Rate (TPR) and False Positive Rate (FPR) for two sea-ice detection
modes: detection based on individual MSIS pings and detection based on an ensemble of
neighboring MSIS pings. TPR and FPR rates are given for both laboratory and field
experiments, which are described in Section 3.6. The metrics listed correspond with the
optimal ROC curve points that are indicated by orange stars in Figure 3-13.

As shown numerically in Table 3.5, and visually in Figure 3-13, the consideration of

multiple ensembles at once can improve the performance of the sea-ice detection system.

Note that the individual ping detector has a lower FPR than the ensemble of pings detector

because both error conditions have been deemed as equally costly and the classifier is

designed to minimize the geometric distance to the point of perfect classification. Thus,

the marginal improvement in TPR outweighs the marginal regress in FPR. If errors with

different relative cost are considered instead, the detector will be designed to favor the

minimization of the more costly error.

Next, the impact that PIC has on classifier performance is considered. To do so, the

classifier TPR is shown as a function of PIC for fixed values of FPR. By setting fixed values

of FPR, it is possible to make sensible comparisons between the classifier performance on

each dataset. Figure 3-14 displays TPR as a function of PIC for fixed values of FPR.

As expected, the high values of PIC are consistently easier to perform successful sea-ice
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detection, as conveyed by the general positive linear trend in the plot. Interestingly, for

the laboratory data-set, the classifier shows impressive classification given minimal PIC.

The ability to detect sea-ice despite only partial ice coverage is especially valuable from an

AUG survivability standpoint. The same data displayed in Figure 3-14 is shown in tabular

format in Table 3.6.

Figure 3-14: True Positive Rate (TPR) sea-ice detection performance as a function of
Percent Ice Cover (PIC) for fixed levels of False Positive Rate (FPR). Both laboratory and
field datasets are considered. High PIC conditions have better TPR performance than low
PIC conditions, indicated by the general positive trend of the plot.

It is important to note that the hand-annotated labels for ice-presence in both the

laboratory and field datasets have limited accuracy. Often, the transition from sea-ice cover

to free surface was ambiguous. As a result, some instrument bearing angles where the

MSIS ensonified the edge of sea-ice cover were mislabeled as free surface. Therefore, the

classification performance presented in this chapter is hindered by the limited accuracy of
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Woods Hole Test Tank Data
FPR = 2 % FPR = 10 % FPR = 30 %

PIC TPC CPC TPR TPC CPC TPR TPC CPC TPR
[%] 𝑛 𝑛 [%] 𝑛 𝑛 [%] 𝑛 𝑛 [%]
8.7 545 1143 47.7 966 1143 84.5 1033 1143 90.4
14.6 177 1164 15.2 756 1164 64.9 923 1164 79.3
25.0 829 1235 67.1 1089 1235 88.2 1147 1235 92.9
37.2 981 1198 81.9 1153 1198 96.2 1160 1198 96.8
48.9 1020 1196 85.3 1149 1196 96.1 1165 1196 97.4
73.6 1492 1512 98.7 1512 1512 100.0 1512 1512 100.0
88.3 1197 1197 100.0 1197 1197 100.0 1197 1197 100.0
100.0 10867 11082 98.1 11002 11082 99.3 11043 11082 99.6

Saint-Fabien Field Deployment Data
FPR = 2 % FPR = 10 % FPR = 30 %

PIC TPC CPC TPR TPC CPC TPR TPC CPC TPR
[%] 𝑛 𝑛 [%] 𝑛 𝑛 [%] 𝑛 𝑛 [%]
36.3 0 32 0.0 0 32 0.0 30 32 93.8
50.6 0 36 0.0 2 36 5.6 36 36 100.0
60.6 0 32 0.0 0 32 0.0 25 32 78.1
66.0 0 32 0.0 6 32 18.8 32 32 100.0
74.6 22 48 45.8 44 48 91.7 48 48 100.0
100.0 108 325 33.2 184 325 56.6 325 325 100.0

Table 3.6: Analysis of how TPR performs on different PIC conditions, given three fixed
values of FPR: 2 %, 10 %, and 30 %. As expected, low PIC values are consistently more
difficult to detect correctly compared to high PIC values. The number of points that fall
into each category are given by the True Positive Count (TPC) and Condition Positive
Count (CPC). Note that the TPR values shown in the table correspond with plotted points
in Figure 3-14.

ground-truth surface information.

3.8 Summary and Future Work

This chapter reviews properties of sea-ice, develops an acoustics-based model that enables

detection of sea-ice, and evaluates this feature-based classification approach on laboratory

test data and field deployment data. The efforts of this chapter support the development of

a SSIM module that performs onboard sensor interpretation and control of an MSIS sonar

that is mounted in the nosecone of the Polarsentinel AUG. The SSIM module characterizes

surface conditions based on three hierarchical attributes: sea-ice presence, sea-ice thickness,
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and sea-ice roughness. The predominant focus of this chapter was on the detection aspect

of the SSIM module because sea-ice detection is particularly challenging in thin first-year

sea-ice conditions.

Leveraging the sea-ice feature representation described in this chapter, an interesting

future work item would be the determination of the sea-ice scattering function 𝑆(𝜔𝑖, 𝜔𝑟),

as estimated with empirical data. As acoustic scattering is intimately connected with sea-

ice structure, it may be interesting from a scientific perspective for a network of AUGs to

persistently estimate the scattering function of sea-ice. In a similar vein, NASA utilizes

persistence satellite observation to estimate the BRDF of Earth’s surface [Schaaf, 2020].

In a slightly more obscure instance, researchers have defined the reflectance map of the

human face, including the effects of sub-surface scattering, given a plethora of human face

observations [Debevec et al., 2000].

In addition to sea-ice characterization, is is also important for the AUG to evaluate en-

vironmental state with regard to the sea-state, and in particular, wave magnitude and wave

propagation direction. Using the same MSIS sonar, it is possible to employ power spectral

analysis with a set of sequential observations to determine wavelength and propagation di-

rection [Burgess et al., 2020]. Other related efforts of characterizing sea-state include the

estimation of near-surface turbulence using an ADCP [Zippel and Thomson, 2016], and

measuring wave-number using an airborne lidar system [Sutherland and Gascard, 2016].

Other than enabling acquisition of scientific data, control of the MSIS also impacts the

AUG energy budget via two mechanisms: duty cycling of sensing and control systems in

response to vehicle and environment state, and satellite communication during vehicle sur-

facing. As a result of using the hierarchical scheme for characterizing sea-ice as described

in Section 3.4, the energy efficiency of satellite communication can be greatly improved be-

cause only a small subset of abstracted and compressed sea-ice information is required to be

sent over the energetically expensive satellite link rather than the full raw data complement.

More careful treatment of energy optimal AUG control policies is presented in Chapter 5.
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Chapter 4

Multi-Factor Terrain-Aided

Navigation

4.1 Introduction

Navigation is one of the unifying challenges that is at the heart of all mobile robotics

development, a challenge that is critical for both vehicle survivability and scientific data

collection. Although navigation is comprised of three core components, namely localization,

path planning, and map building, this thesis chapter focuses primarily on the localization

aspect of navigation. When operating in underwater environments, robots do not have ac-

cess to the most ubiquitous navigation solution: the Global Positioning System (GPS). As

a result, navigation is particularly challenging for AUVs operating in surface-denied regions

such as the sea-ice covered Arctic since AUVs cannot rely on periodic GPS updates to con-

strain navigation error. Thus, AUVs must rely on alternative methods for navigation, which

can be divided into three broad categories: inertial, acoustic transponder, and geophysical.

A brief review of each of these categories is provided in the following paragraphs. Then,

the remainder of this chapter describes and evaluates a proposed navigation solution that

is designed for a sea-ice surveying AUG. More discussion on the path planning aspect of

navigation is provided in Chapter 5 in the context of the Adaptive Velocity Control (AVC)

algorithm, and more discussion of the map building aspect of navigation is discussed as a

future work item in Section 4.5 in the context of a Simultaneous Localization and Mapping

(SLAM) architecture.
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Inertial navigation systems (INS) generally use accelerometers or gyroscopes to observe

the acceleration vector, which can then be twice integrated in time to yield a position up-

date. Alternatively, for AUGs that pursue sawtooth trajectories, a combination of vehicle

pitch and depth change over time can be used to estimate through-water velocity, which

can then be integrated in time to estimate vehicle position [Claus and Bachmayer, 2015].

The strengths of INS navigation solutions are that they are self-contained and acoustically

quiet. Being self-contained allows INS to be range-independent and have minimal external

infrastructure requirements, while being acoustically quiet allows for minimal impact on

marine mammals and the possibility for stealth missions. The primary weakness of INS

navigation solutions is that position error grows unbounded due to the fact that position is

derived by integration acceleration or velocity observations over time. With the exception

of military-grade INS systems, which are generally expensive, energetically costly, and re-

stricted by the International Traffic in Arms Regulations (ITAR), INS navigation solutions

lead to significant error in position estimates a result of this unbounded growth. If INS is

reinforced with a DVL instrument for estimating water column currents, navigation perfor-

mance can be significantly improved [Kinsey and Whitcomb, 2004, Medagoda et al., 2015].

Additionally, the incorporation of model-based filters that account for nonlinear vehicle dy-

namics models can further improve navigation performance of INS [Arnold and Medagoda,

2018].

Acoustic transponder navigation solutions leverage Time of Flight (TOF) measurements

to estimate range and bearing information between an AUV and acoustic transponders,

where the transponders are positioned at a known locations. Two common configurations

for acoustic transponder navigation include Long Baseline (LBL) and Ultra-short Baseline

(USBL). LBL systems involve placing a set of acoustic beacons throughout the region of

operation so that the AUV can triangulate its position using range estimates from multiple

beacons. Conventionally, an AUV emits an interrogation signal that instigates a response

from the beacons, and then the two-way travel time (TWTT) of the signal is used to

estimate range. However, an alternative LBL implementation involves the AUV acting as a

passive listener and using one-way travel time (OWTT) to deduce range, but this involves

highly accurate clock synchronization between the AUV and the beacons. LBL systems can

be highly accurate and reliable for AUV navigation [Whitcomb et al., 1999, Yoerger et al.,

2007, Jakuba et al., 2008] and have demonstrated success during AUG sea-ice survey in the
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Arctic at mesoscale ranges [Webster et al., 2015]. However, LBL systems do not extend well

to basin-scale operations or regions with complex bathymetry due to the infrastructure cost

of placing beacons throughout the region of operation and the need to maintain line-of-sight

between the AUV and the beacons. On the other hand, USBL systems involve mounting an

acoustic transponder array on a surface support vessel so that TOF and signal phase can

be used to estimate range and bearing relative to the AUV. Conventionally, an AUV emits

an acoustic signal so that the surface vessel can deduce the position of the AUV. However,

recent efforts include an inverted USBL design where the AUV acts as a passive listener

that can deduce its position relative to the support vessel [Rypkema et al., 2017]. USBL

systems can also be highly accurate for AUV navigation [Rigby et al., 2006, Jakuba et al.,

2015, Morgado et al., 2011], but similar to LBL systems, they suffer from limited range.

Although USBL systems allow for more operational flexibility than LBL systems because

the surface vessel can dynamically update its position in response to the AUV location,

USBL systems do not extend well to sea-ice survey operations because the presence of

sea-ice precludes the use of surface vessels.

Geophysical methods use fixed external environment information paired with onboard

sensing for environment feature extraction to perform navigation. Environment informa-

tion that can be used for AUV navigation include bathymetric [Claus and Bachmayer,

2015, Anonsen and Hallingstad, 2006, Teixeira et al., 2015, Salavasidis et al., 2019, Lu-

cido et al., 1996], magnetic [Pasnani et al., 2018, Armstrong et al., 2010, Armstrong et al.,

2009], and gravimetric [Kinsey et al., 2008, Kinsey et al., 2013]. Due to its relatively large

spatial variance and perceptibility with standard sensor suites, seafloor bathymetry is the

most commonly used field variable for geophysical navigation. The class of algorithms

that leverage terrain information to improve vehicle navigation is referred to as Terrain-

aided Navigation (TAN). Bathymetric features for TAN can be extracted using acoustic

sensors [Claus and Bachmayer, 2015, Teixeira et al., 2015] or optical sensors [Eustice et al.,

2005, Hover et al., 2012]. The benefits of geophysical navigation are that minimal support

infrastructure is required since environment features are extracted via onboard sensing, and

that localizing with respect to fixed environmental features leads to bounded error as op-

posed to the unbounded error growth experienced by an INS system. That said, geophysical

methods have their limitations as well: navigation accuracy is dependent on the accuracy

and resolution of the ground-truth map, the existence of features in the environment, and
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the ability of the AUV to make accurate observations of said features. In sections of the

high Arctic, the best resolution available for ground-truth digital elevation maps (DEM)

is 200 m [Jakobsson et al., 2012]. For operating in unknown or resolution-limited environ-

ments such as the Arctic, Simultaneous Localization and Mapping (SLAM) techniques can

be pursued [Barkby et al., 2011, Barkby et al., 2009, Mallios et al., 2014, Mallios et al.,

2016, Johnson-Roberson et al., 2010].

In general, AUV navigation typically involves a combination of the aforementioned ap-

proaches. For example, it is common to combine inertial and acoustic transponder methods

[Kepper et al., 2018, Morgado et al., 2013, Hegrenaes et al., 2009, Van Uffelen et al., 2013],

or inertial and geophysical methods [Donovan, 2012, Medagoda et al., 2011]. For more

extensive reviews of AUV navigation methods, the reader is referred to a set of excellent

survey papers [Paull et al., 2014, Kinsey et al., 2006, Leonard and Bahr, 2016, Stutters

et al., 2008, Melo and Matos, 2017]. For GPS-denied sea-ice survey in the Arctic, AUGs

can utilize DVL-reinforced inertial navigation in combination with terrain-based geophysical

navigation to determine AUG position with bounded error.

4.2 Doppler Velocity Log Odometry

The navigation system for the sea-ice surveying AUG consists of an inertial component

and a geophysical component. The inertial component of the navigation system utilizes a

DVL instrument to actively sense water column currents to improve odometry; hence, this

component is referred to as DVL-Odometry (DVL-Odo). DVL-Odo is composed of two sub-

routines: a routine for estimating AUG through-water velocity and a routine for estimating

ocean currents. The goal of DVL-Odo is to determine an accurate estimate of vehicle over-

ground velocity v𝑜𝑔. Once an estimate for v𝑜𝑔 is obtained, it can be integrated forward in

time to estimate the evolution of AUG position. As a result of this time-integration, even

small disturbances in the estimate for v𝑜𝑔 will lead to unbounded error growth in vehicle

position estimates. To reduce this navigation error, the AUG either receives a GPS while

at the surface, or the AUG localizes itself with respect to the seafloor via a TAN process.

Over-ground velocity v𝑜𝑔 can be written as the sum of through-water v𝑡𝑤 and ocean

current velocity v𝑜𝑐. Note that v𝑜𝑔 and v𝑜𝑐 are given in the absolute world frame, and v𝑡𝑤
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is given in the relative vehicle frame.

v𝑜𝑔 = v𝑡𝑤 + v𝑜𝑐 (4.1)

Subsection 4.2.1 describes a method for estimating v𝑡𝑤 via dead-reckoning (DR), and

Subsection 4.2.2 describes a method for estimating v𝑜𝑐 via velocity shear propagation (VSP).

Together, they enable estimation of over-ground velocity throughout the water column via

Equation (4.1), and then this over-ground velocity is integrated in time to yield position

estimates for the AUG. Of course, when the AUG is within sensing range of the seafloor,

v𝑜𝑔 is given directly from the bottom-track velocity recorded by the DVL. However, this

estimate is only available in a limited portion of the water column. By utilizing an estimation

process based on DR and VSP, the AUG can estimate v𝑜𝑔 throughout the water column,

even when the seafloor is not observable. Additionally, estimating v𝑜𝑐 allows for the AUG

to take advantage of energy optimal control policies that are presented in Chapter 5.

4.2.1 Dead Reckoning

Due to the sawtooth nature of the AUG trajectory, the through-water velocity can be

measured via a combination of depth, pitch and compass sensors, as shown in [Claus and

Bachmayer, 2015]. This approach for measuring through-water velocity is particularly ad-

vantageous because depth, pitch, and compass sensors are relatively low power and accurate

to better than 1 % of dynamic range. Let v𝑡𝑤 =
(︂

𝑢𝑡𝑤 𝑣𝑡𝑤 𝑤𝑡𝑤

)︂
T be the components

of the through-water velocity vector, with 𝑢 pointing to the East, 𝑣 pointing to the North,

and 𝑤 pointing to vertically downward. The vertical velocity can be measured as a change

in depth over a change in time.

𝑤𝑡𝑤 = Δ𝑧

Δ𝑡

Then, using the glide angle as a sum of the AUG pitch 𝜑 and angle of attack 𝛼, 𝜉 = 𝜑+𝛼,

and heading measurement 𝜓, the through-water velocity in the horizontal plane can be

written as:

87



𝑢𝑡𝑤 = 𝑤𝑡𝑤

tan 𝜉
sin𝜓

𝑣𝑡𝑤 = 𝑤𝑡𝑤

tan 𝜉
cos𝜓

Putting the three equations together, the through-water velocity estimate is given as

a function of measurements from the pressure sensor, pitch sensor, and compass. This

estimate is referred to as the dead-reckoned (DR) estimate of through-water velocity.

v𝑡𝑤 =
(︂

Δ𝑧
Δ𝑡

tan 𝜉 sin𝜓
Δ𝑧
Δ𝑡

tan 𝜉 cos𝜓 Δ𝑧
Δ𝑡

)︂
T (4.2)

4.2.2 Ocean Current Estimation

After obtaining an estimate for through-water velocity, the AUG must determine the rela-

tionship between the relative vehicle frame and the absolute world frame to estimate ocean

current velocities. The AUG can do this via two primary mechanisms: using surface drift

velocity obtained from successive GPS measurements or using bottom-track DVL velocities

when the seafloor is within range of the DVL. For the surface drift case, v𝑜𝑔 is measured by

successive GPS fixes at known times when v𝑡𝑤 = 0 as the AUG is floating in a Lagrangian

manner, which leads to v𝑜𝑐 = v𝑜𝑔. For the DVL bottom-lock velocities, the DVL instru-

ment measures v𝑜𝑔 by measuring the Doppler shift of acoustic ping returns from stationary

seafloor surfaces. Then, ocean currents can be estimated by subtracting the through-water

velocity: v𝑜𝑐 = v𝑜𝑔 − v𝑡𝑤. Both mechanisms for establishing a reference to the world-frame

are infrequently available during an AUG mission, making direct observation of absolute

velocity sparse. Therefore, successive accumulation of velocity shear is required to prop-

agate absolute velocity estimates when a world-frame reference is not directly observable

[Visbeck, 2002, Todd et al., 2017].

The velocity shear propagation (VSP) method uses the difference between through-water

velocity measurements to measure a velocity shear, where a velocity shear encodes the

change in ocean current velocity across a specified change in depth. Specifically, a velocity

shear is computed as the difference between the DR through-water velocity v𝑡𝑤,𝐷𝑅 and

the DVL water-track through-water velocity v𝑡𝑤,𝐷𝑉 𝐿 at the same instance in time. This is

possible because the DVL water-track velocity measurements are recorded at some distance
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Δ𝑧 away from the transducer head. By taking the difference of the through-water mea-

surements at the same instance in time, the over-ground velocity terms cancel out, leaving

behind the velocity shear term Δv𝑜𝑐.

v𝑡𝑤,𝐷𝑅 = v𝑜𝑔 − v𝑜𝑐(𝑧) (4.3)

v𝑡𝑤,𝐷𝑉 𝐿 = v𝑜𝑔 − v𝑜𝑐(𝑧 + Δ𝑧) (4.4)

v𝑡𝑤,𝐷𝑅 − v𝑡𝑤,𝐷𝑉 𝐿 = v𝑜𝑐(𝑧 + Δ𝑧) − v𝑜𝑐(𝑧) = Δv𝑜𝑐 (4.5)

These velocity shear terms Δv𝑜𝑐 can be incrementally added together via forward prop-

agation to estimate water column currents in a relative frame. Once an absolute velocity

reference becomes available via GPS surface drift or DVL bottom-track, the absolute refer-

ence is back-propagated through the previous velocity shear measurements to provide water

column velocity estimates in the absolute frame. Together, the forward and backward prop-

agation routines comprise the VSP method of estimating ocean currents.

Although the VSP update equations are relatively simple to write down, performing VSP

in practice is like taking a walk through Relativity, a lithograph print by M.C. Escher where

multiple gravity vectors are depicted in a room full of orthogonal staircases; the AUG records

through-water velocity estimates in a continuously evolving relative frame, which can make

the deduction of the absolute reference frame disorienting. To help establish a concrete

understanding of the VSP method in action, Figure 4-1 showcases a schematic example of

how the AUG can back-out water column estimates v𝑜𝑐 from relative velocity measurements

v𝑡𝑤 and an absolute velocity reference v𝑜𝑔 by performing backward propagation and forward

propagation.

Once through-water velocity is estimated with DR and ocean currents are estimated

with VSP, over-ground velocity can be integrated forward in time to estimate the position

evolution of the AUG. Consequently, improving inertial estimates for AUG position also

leads to performance improvement of the geophysical navigation method because the initial

guess for AUG position is closer to the true AUG position, effectively reducing the search

space of the geophysical method.
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Figure 4-1: Schematic diagram of the Velocity Shear Propagation (VSP) method being used
to estimate water column currents. The VSP method uses forward propagation and back
propagation to estimate ocean currents throughout the water column.

4.3 Multi-Factor Terrain-Aided Navigation

The geophysical component of AUG navigation system entails a Terrain-Aided Navigation

(TAN) algorithm that considers multiple characteristics of the seafloor, referred to as Multi-

Factor Terrain-Aided Navigation (MF-TAN). MF-TAN uses range estimates from the four

beams of the DVL instrument to compute three geometric factors of the seafloor: depth,

slope, and orientation. Then, these observed factors are used to localize the AUG with

respect to ground-truth bathymetry. Provided that the seafloor is observable, the MF-TAN

navigation method has bounded navigation error, which contrasts with DVL-Odo which

experiences unbounded navigation error. The fact that MF-TAN has bounded navigation

error is particularly important for Arctic sea-ice survey missions where the AUG is sub-

merged for significant lengths of time. Note that MF-TAN can be viewed as a superset of

the DVL-Odo method because DVL-Odo provides an initial pose estimate to the MF-TAN

before localization with respect to the ground-truth bathymetry can be performed. Addi-

tionally, when seafloor features are unobservable, the AUG relies solely on the DVL-Odo

algorithm to determine its position. Thus, this two-pronged navigation solution is well-

suited for AUGs that may spend significant portions of the missions without the ability to

observe the seafloor due to their glide-path trajectory through the water column.

Conventional TAN methods only consider seafloor depth when performing localization
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with respect to the ground truth map. Figure 4-2 motivates the use of additional seafloor

factors by displaying the Digital Elevation Map (DEM), Digital Slope Map (DSM), Digital

Orientation Map (DOM) for the Kolumbo Volcano underwater crater. As shown in the

figure, each factor contains features that are independent of each other, which effectively

increases the density of features available to the AUG to perform localization.

Figure 4-2: Three factors of seafloor for the Kolumbo Volcano underwater crater: depth,
slope, and orientation. Together, these three factors comprise the ground-truth map avail-
able to the AUG when performing navigation via the MF-TAN algorithm. A kernel density
plot is provided for each factor to convey the relative uniqueness of a particular location in
the environment.

4.3.1 Multi-Factor Extraction

Three factors of seafloor are used to perform MF-TAN: depth, slope, and orientation. The

AUG measures these factors by using range observations from the DVL instrument, where

the four beams of the DVL instrument span a cross-sectional area of the seafloor below the

AUG. Once DVL range estimates are collected, the MF-TAN method fits a plane to the

points in 3D space using a least squares formulation, which allows for extraction of depth,

slope, and orientation. Figure 4-3 displays a schematic diagram of seafloor factor extraction

using the DVL instrument. Effectively, MF-TAN exploits the Janus configuration of the

DVL beams in order to estimate seafloor slope and orientation, wheres conventional TAN

formulations only consider seafloor depth.
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Figure 4-3: Schematic diagram of seafloor factor extraction using the DVL instrument. To
extract seafloor factors, a plane is fit to a set of bottom-contact points in 3D space. Then,
seafloor depth, slope, and orientation can be readily extracted and used by the MF-TAN
algorithm.

To match the resolution of the ground-truth bathymetric map, several successive DVL

observations are considered in aggregate when extracting seafloor factors. Using multiple

DVL observations for factor extraction prevents the AUG from oversampling the environ-

ment compared to the ground-truth map. For example, a ground-truth bathymetry map

may be gridded at 10 m resolution, but when the AUG is flying at an altitude of 5 m, the

DVL beams cover an area of approximately 6 m in terms of spatial extent. In this situa-

tion, the AUG would be vulnerable to detecting high frequency features in the environment

that would not be found when consulting the ground-truth map. In this situation, the

DVL observations can be treated as the continuous signal the ground-truth map as the

discrete sampling of the continuous signal. Then, the Nyquist sampling theorem states that

the discrete signal sample rate must be at least twice the maximum frequency contained

by the continuous signal in order to prevent aliasing. Since the sample frequency of the

ground-truth map is fixed, the DVL observations are instead spatially averaged to twice the

length of the bathymetric map griding to obey the Nyquist sampling criterion. In addition

to matching the resolution of the ground-truth map, the consideration of multiple DVL

observations also improves the stability of the seafloor factor extraction process.
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4.3.2 Particle Filter

Once the AUG extracts factors from the seafloor, the factors can be used in combination

with other AUG state variables to perform localization with respect to the ground-truth

bathymetry map. To solve this filtering problem, a particle filter (PF) formulation is em-

ployed. The PF, also known as Sequential Monte Carlo (SMC), uses random sampling to

estimate posterior distributions of dynamical systems given partial and noisy observations

without making assumptions about the state-space of the model or the state distributions.

Although PF do not extend well to high dimensional systems, they perform well for large-

scale and nonlinear systems, and as a result, they have been employed in some recent TAN-

based AUV navigation efforts [Paull et al., 2014, Claus and Bachmayer, 2015, Donovan,

2012].

Leveraging the formulation described in [Donovan, 2012], let x𝑡 represent the state of

the AUG at time 𝑡, y𝑡 represents the observation acquired at time 𝑡, Y𝑡 represents the full

history of observations up to time 𝑡. Under the Markov assumption, state transition and

observation processes only depend on the previous state and the current state respectively.

For AUG navigation, the posterior distribution of particular interest is denoted by 𝑝(x𝑡|Y𝑡),

which is the probability of the current state given the observation history of the AUG. Then,

the evolution of the posterior distribution equation can be written as a two-step recursion

with update and prediction steps:

𝑝(x𝑡|Y𝑡) = 𝑝(y𝑡|x𝑡)𝑝(x𝑡|Y𝑡−1)∫︀
𝑝(y𝑡|x′

𝑡)𝑝(x′
𝑡|Y𝑡−1)𝑑x′

𝑡

(4.6)

𝑝(x𝑡+1|Y𝑡) =
∫︁

𝑝(x𝑡+1|x𝑡)𝑝(x𝑡|Y𝑡)𝑑x𝑡 (4.7)

Since the distributions shown in Equation (4.6) and Equation (4.7) can be intractable to

compute analytically, they are approximated by a set of weighted particles where the weight

of each particle represents the likelihood that the particle was drawn from the desired distri-

bution. Although the PF produces an approximate solution for the posterior distribution,

the accuracy of the PF can be improved by increasing the number of particles. However,

increasing the number of particles also increases computational time required to perform

filtering. Thus, the number of particles included in the PF requires careful consideration
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regarding the trade-off between accuracy and computational time.

Although the PF can produce accurate approximations of the posterior distribution, two

common failure modes of the PF must be addressed: sample impoverishment and particle

collapse. Sample impoverishment occurs when the weight distribution amongst the particles

becomes uneven and a large number of particles have negligible weight. In this situation, the

expressivity of the PF is reduced and the PF may no longer be able to accurately estimate

the posterior distribution. To overcome this failure mode, particle resampling techniques

are employed where the particles with negligible weight are replaced by new particles that

are placed in the vicinity of higher weight particles. This resampling approach exacerbates

the next failure mode: particle collapse, which occurs when the majority of the particles

collect in a narrow section of the state space. Particle collapse diminishes the ability of the

PF to react to future measurements, and thus, the PF is more likely to get trapped in local

minima. To overcome particle collapse, process noise is added to each particle in a process

known as jittering to artificially spread out the particles in the state space. Together, the

base PF algorithm with resampling and jittering processes included is known as Sequential

Importance Resampling (SIR). Then, if resampling is performed at every time-step and

strong jittering is utilized to prevent particle collapse due to frequent resampling, the filter

becomes a Jittered Bootstrap Particle Filter (JBPF). The JBPF has been shown to provide

robust navigation estimates in response to sparse observations and relatively featureless

terrain [Claus and Bachmayer, 2015, Houts et al., 2013, Bar-Shalom et al., 2004].

To enable robust navigation of the AUG, the MF-TAN algorithm utilizes the JBPF.

The novelty of the MF-TAN algorithm pertains to how particles are resampled and weights

are readjusted in response to multiple seafloor factors observed by the AUG and the nav-

igation drift reported by DVL-Odo. By including multiple seafloor factors in the filtering

process, MF-TAN is able to discard a larger number of suboptimal particles compared to

conventional TAN methods that only consider seafloor depth, and as a result, MF-TAN

reaches an accurate navigation solution more readily. In the case of sparse seafloor obser-

vations, which is common for AUGs that pursue sawtooth trajectories in the water column,

MF-TAN is more likely to converge to the correct navigation solution because it utilizes

more environmental constraints to bound the viable positions of the AUG. That said, it

is important to recall that the accuracy of MF-TAN is dependent on the accuracy of the

ground-truth bathymetric map and the accuracy of the extracted seafloor features.
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4.4 Results

Our methods for ocean current estimation with VSP, navigation with DVL-Odo, and nav-

igation with MF-TAN are evaluated using AUG sea-trial data from a November 2019 de-

ployment within an active submarine volcano in the Southern Aegean Sea. For this set of

experiments, a Slocum AUG was used as a reconnaissance platform to provide initial sur-

veys of the Kolumbo caldera crater to inform subsequent ROV mission planning. During

these missions the AUG relied on its default DR process, which included a static current

correction that calculated a temporal and depth-averaged water column current based on

discrepancy between the GPS and DR localization estimates during its prior dive. This DR

with depth-averaged current correction (DR-DACC) does not directly observe ocean cur-

rent velocities and is unable to account for temporally dynamic currents or biasing caused

by variability in the AUG’s depth band.

4.4.1 Doppler Velocity Log Odometry

Results of the VSP ocean current estimation process and DVL-Odo navigation are shown

in Figure 4-4. Although access to independent water column currents observations are

not available for comparison, the strong performance of DVL-Odo serves as evidence that

the water column current estimates are accurate. Accuracy of DVL-Odo is confirmed by

comparing DVL-Odo navigation to GPS position updates when the AUG is at the surface.

It is important to note that DVL-Odo is not performing Terrain-Aided Navigation (TAN)

with known bathymetry maps in this figure. Instead, DVL-Odo estimates the water column

currents with the VSP method according to Section 4.2.2, and these water column currents

are used to improve estimates of over-ground velocity v𝑜𝑔.

In Dive A, the AUG travels almost due north for approximately 6000 m, while staying

submerged underwater for approximately 2.5 h. When the AUG surfaces, DVL-Odo indi-

cates a localization error equal to 4.4 % of distance traveled whereas DR-DACC indicates

a localization error of 11.9 % of distance traveled. The AUG observes a strong southward

ocean current, approaching 0.5 m s−1 in magnitude, for the majority of the water column,

along with a small northward counter-current near the sea surface. In Dive B, the AUG

identifies a south-eastward current in the upper 40 m of the water column and a north-

westward current between 40 m and 80 m. Dive B includes 2 GPS surface updates during
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Figure 4-4: Offline ocean current sensing for a selection of AUG missions during the Novem-
ber 2019 deployment in the Southern Aegean Sea. Each row of the figure corresponds to
a particular mission. The AUG starts each mission at the origin of the local mean coor-
dinates (LMC) coordinate system. The decreased localization error provided by DVL-Odo
compared to DR-DACC serves as evidence that the water column currents are being esti-
mated accurately.

the mission. DVL-Odo indicates a localization error of 16.9±12.2% of distance traveled

while DR-DACC indicates a localization error of 51.9±14.4% of distance traveled. In Dive

C, the AUG identifies a low magnitude westward current throughout the water column,

as well as a higher magnitude westward current at approximately 100 m depth. Dive C

includes 10 GPS surface updates during the mission. DVL-Odo indicates a localization

error of 23.1±13.5% of distance traveled while DR-DACC indicates a localization error of

97.7±52.6% of distance traveled.

4.4.2 Multi-Factor Terrain-Aided Navigation

This section discusses the results MF-TAN, including: factor extraction, JBPF resampling,

and AUG navigation. The section concludes with navigation results for the DR-DACC,
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DVL-Odo, and MF-TAN algorithms applied to the AUG missions during the November

2019 research deployment in the Southern Aegean Sea. First, Figure 4-5 shows the result

of seafloor factor extraction for Dive A of the Southern Aegean Sea missions. In Dive A,

the AUG transited out of the Kolumbo crater and then transited approximately 6000 m

North of the crater. During the transit, the seafloor increases in depth, decreases in slope,

and dynamically changes in orientation. Note that for small slope angles, the measured

orientation factor of the seafloor is arbitrary, which is indicated by the sporadic values for

the orientation factor during the last leg of Dive A. As a result, the orientation factor is not

included as a constraint in the JBPF filtering process when slope values are below a critical

threshold.

Since the ground-truth bathymetry is gridded at 10 m, a point cloud of DVL bottom-

track points are collected until the point cloud covers 20 m in lateral distance before seafloor

factors are extracted via a least squares procedure, in accordance to the Nyquist sampling

theorem as discussed in Subsection 3.7.1. Additionally, DVL bottom-track points recorded

during bottom reflections were not included in the point cloud for feature extraction due to

time lag identified between the pitch sensor and the DVL instrument. In future implemen-

tations, this time lag can be accounted for as part of an automated calibration process.

Next, the seafloor factors deduced from DVL observations are used to localize the AUG

with respect to a ground-truth bathymetry map using the JBPF filtering method. Figure

4-6 portrays two instances of the MF-TAN localizing the AUG position with respect to the

ground-truth map, one within the Kolumbo crater and one outside the Kolumbo crater.

The subplots in the figure highlight the portions of the environment that were consistent

with the seafloor factors measured by the AUG.

With access to the observed seafloor factors and DVL-Odo navigation uncertainty, the

MF-TAN algorithm performs particle resampling and particle propagation. To do so, the

JBPF computes particle weights based on the uncertainty ellipse provided by DVL-Odo and

the seafloor factors measured by the AUG. A set of tolerance parameters were included for

the seafloor factors such that the acceptable tolerance for a particular factor was designed to

match the relative observability of the factor. As such, the depth factor has the most strict

tolerance and the slope factor has the most lenient tolerance. To improve computational

efficiency, the most restrictive constraints are considered first. In this implementation, a

simple model of position uncertainty growth was utilized where uncertainty was assumed
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Figure 4-5: Bathymetric factor extraction for Dive A of the November 2019 deployment
in the Southern Aegean Sea. The factor extraction shows how stability can be improved
by considering successive DVL ensembles rather than just considering a single ensemble at
each time-step. Note that the depth factors present at approximately 100 m water depth
are caused by stratification in the water column.

to expand radially outward at a rate of 20 % of distance traveled, which is slightly greater

than the expected error growth of DVL-Odo. Although this is a crude approximation

for position uncertainty, it allows for a proof-of-concept for the MF-TAN algorithm. In

future implementations, it may be beneficial to pursue a model-based approach such as

the Extended Kalman Filter (EKF). After particle weights have been assigned, particles

below a critical weight threshold, new particles are added in the near vicinity of the highest

weight particles, and jittering is added to the particle position. In this implementation, a

maximum of 100 particles were considered at a time, but the precise strategy for setting

the optimal number of particles for the MF-TAN algorithm requires further investigation.

Once particles have been resampled, particles are propagated forward in time according to
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Figure 4-6: MF-TAN localization using three factors of the seafloor. The figure contains
two subplots: Subplot A shows when the AUG performs localization within the Kolumbo
crater, and Subplot B shows when the AUG performs localization outside of the crater.
Each subplot highlights the three factor constraints in isolation, as well as the intersection
of the constraints. When the factors are considered in combination with DVL-Odo position
drift, the AUG is able to localize itself with respect to the ground-truth bathymetry.

the v𝑜𝑔 estimated by DVL-Odo.

The main benefit of the MF-TAN algorithm compared to conventional TAN algorithms
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Dive TAN Fix Distance DF �̃� DF 𝜎 MF �̃� MF 𝜎 Red.
𝑛 [m] [100 m2] [100 m2] [100 m2] [100 m2] [%]

A 42 6063 12.5 99.5±306 9.5 95.1±304 15.4±13.8
D 9 433 5.0 5.2±2.5 2.0 2.8±2.0 38.6±31.9
E 59 647 14.0 14.2±4.9 7.0 7.7±5.5 46.2±29.8
F 24 810 10.5 12.6±6.3 3.0 4.0±3.5 61.1±31.8
G 58 421 9.0 8.6±2.6 4.0 4.2±2.1 47.4±27.6

Agg. 192 8374 10.0 30.5±147.7 5.0 25.1±146.8 41.3±31.9

Table 4.1: Comparison of Depth-Factor (DF) and Multi-Factor (MF) seafloor constraints
during TAN fixes for the November 2019 deployment in the Southern Aegean Sea. DF
and MF constraints are given as areas, corresponding to the portion of the ground-truth
bathymetric map that is consistent with the factor(s) observed by the AUG. For each dive,
median area (�̃�) and mean area (�̃�) are reported. The final column shows the percent
reduction in area that occurs when using MF instead of DF. The final row of the table
reports the aggregate of the five dives.

is that MF-TAN leverages two additional seafloor factors, namely seafloor slope and seafloor

orientation, to narrow the set of viable states where the AUG can be positioned. By nar-

rowing the set of viable states, MF-TAN can more readily avoid local minima solutions and

more readily recover a valid terrain fix after a sustained period without seafloor observa-

tions. Table 4.1 shows how the inclusion of slope and orientation seafloor factors were able

to reduce the size of the viable state-space for the AUG. The table reports the size of the

viable state space in units of area for both the conventional Depth Factor (DF) approach

and the novel Multi-Factor (MF) approach. Across 5 dives and almost 200 TAN fixes, the

MF allows for a 41.3±31.9 % reduction in the size of the viable state space compared to DF.

Note that Dive A experiences a particularly high mean and standard deviation as a result

of the relatively feature-limited bathymetry during the end of the dive and the relatively

long dive sections with no seafloor measurements. It is important to note that the size of

the viable state-space is sensitive to the tolerance factors chosen for each depth factor. For

example, if the tolerance parameters are overly strict, the viable area reported by the JBPF

will be exceedingly small, which will negatively impact AUG navigation by contributing to

particle collapse.

After MF-TAN continually localizes the AUG throughout the mission when seafloor

measurements are available, the resulting navigation trajectory can be compared to GPS

updates retrieved when the AUG surfaces. Figure 4-7 shows the result of three factor extrac-

tion from the environment and the resulting trajectory devised by the MF-TAN navigation
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algorithm for Dive F of the Southern Aegean Sea deployment. Then, Figure 4-8 shows

the navigation performance for four dives during the deployment in the Southern Aegean

Sea that contain bottom-track data. Finally, Table 4.2 compares navigation performance

numerically between the MF-TAN, DVL-Odo, and DR-DACC navigation methods.

Figure 4-7: Bathymetric factor extraction and MF-TAN navigation for Dive F of the Novem-
ber 2019 deployment in the Southern Aegean Sea. The depth, slope, and orientation factors
correspond with the first, second, and third rows of the figure subplots. The MF-TAN
method leverages three factors of seafloor bathymetry to significantly improve navigation
performance over the DVL-Odo and DR-DACC methods.

In Dive F, the dive which had the largest reduction in viable state-space when utilizing

MF instead of DF 4.1, MF-TAN is able to take advantage of all three seafloor factors to

improve AUG navigation. In this dive, the AUG crosses over the Southwestern rim of the
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Dive Legs Distance DR-DACC DVL-Odo MF-TAN MF-TAN 𝜖 MF-TAN 𝜖
𝑛 [m] [%] [%] [%] [m] [m]

A 1 6063 11.9 6.8 1.5 93.6 93.6
D 1 433 38.9 28.4 12.1 52.3 52.3
E 4 647 88.7 44.6 34.6 55.2 56.0 ± 26.4
F 4 810 64.8 40.4 21.3 32.9 43.1 ± 28.2
G 3 421 33.2 32.4 13.4 14.2 18.8 ± 10.9

Agg. 13 8374 25.4 15.4 7.1 36.9 46.0 ± 29.5

Table 4.2: Performance comparison between three methods of navigation: Dead Reckoning
with Depth-averaged Current Correction (DR-DACC), DVL Odometry (DVL-Odo), and
Multi-Factor Terrain-Aided Navigation (MF-TAN). Navigation error is given as a percent-
age of distance traveled for the three methods, and the median (𝜖) and mean (𝜖) navigation
errors in [m] are given for the MF-TAN method. Standard deviations are also listed for
dives with multiple legs. The final row of the table shows the aggregate navigation per-
formance across the five AUG missions. The AUG missions are from the November 2019
research deployment in the Southern Aegean Sea.

Kolumbo Volcano underwater crater. When traversing over the rim of the caldera, the

slope and orientation factors are particularly informative: the slope factor momentarily

records relatively low values as the AUG passes over the apex of the crater rim, and the

orientation factor records a dramatic shift when AUG traverses from one side of the crater

to the other. Together, the exploitation of the three seafloor factors allow the MF-TAN to

achieve localization error that is approximately twice as low as DVL-Odo which does not

have any terrain-aided correction.

Table 4.2 showcases the navigation results for the MF-TAN, DVL-Odo, and DR-DACC

methods, as applied to the AUG missions from the November 2019 research deployment in

the Southern Aegean Sea. Note that only AUG dives that contained bottom-track data were

included in the table, because the MF-TAN would not be applicable for comparison other-

wise. Navigation error is compared as a percent of distance traveled. However, unlike the

DR-DACC and DVL-Odo methods, the MF-TAN method does not experience unbounded

growth in navigation error. Thus, for MF-TAN, navigation error is also listed in m as a

median and mean for the five dives during the deployment.

Interestingly, the MF-TAN algorithm achieves its lowest navigation error in terms of

distance traveled in Dive A, which is the dive with the least amount of seafloor observa-

tions. This strong navigation performance for Dive A may be due to the already strong

performance by the DVL-Odo algorithm, and the strong performance of the DVL-Odo al-
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Figure 4-8: Multi-Factor Terrain-Aided Navigation (MF-TAN) for four dives during the
November 2019 research deployment in the Southern Aegean Sea. MF-TAN is compared
against DVL-Odo and DR-DACC, and both TAN fixes and GPS fixes are displayed. The
MF-TAN navigation method consistently achieves the lowest navigation error compared to
the other methods.

gorithm may be due to the simple flight path of the dive. This observation provides two

valuable insights: (1) the performance of the MF-TAN algorithm is intimately connected

to the performance of the DVL-Odo method, and (2) the navigation performance of the

AUG is intimately connected to the chosen path for the AUG. The second insight, which is

referred to as active localization, is expanded further as a future work item in Chapter 6.

In aggregate, the MF-TAN achieves a navigation error of 7.1 % of distance traveled,
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which is approximately twice as low as DVL-Odo, and approximately four times as low as

DR-DACC. Additionally, for all 13 legs across the 5 AUG dives, the MF-TAN algorithm

achieves a median navigation error of 36.9 m, and a mean navigation error of 46.0±29.5 m. In

conclusion, the minimal navigation error realized by MF-TAN makes it the ideal candidate

for AUG sea-ice survey in the Arctic when the vehicle is denied access to the sea-surface

for extended durations of time.

4.5 Summary and Future Work

This chapter presents an AUG navigation solution that combines inertial methods and

geophysical methods. The DVL-Odo method leverages a DVL instrument to estimate water

column currents in real-time to improve odometry of the inertial system. Then, MF-TAN

builds upon DVL-Odo by considering multiple factors of the seafloor to perform localization

with respect to a ground-truth map of the underlying bathymetry. Both DVL-Odo and

MF-TAN are evaluated with respect to AUG missions during a November 2019 research

deployment in the Southern Aegean Sea. During these dives, the MF-TAN navigation

method consistently estimates vehicle position to within 100 m of the true AUG position,

regardless of the distance traveled by the AUG during the dive.

The combination of inertial and geophysical methods for navigation is particularly help-

ful for remote robotic agents that are unable to rely on external infrastructure for navigation

assistance. In an interesting parallel to the underwater domain, terrain-aided navigation

methods have recently been deployed by NASA’s Jet Propulsion Laboratory (JPL) in the

context of the Entry Descent and Landing (EDL) pipeline for the Mars 2020 Perseverance

Rover [NASA, 2020]. For the Mars 2020 mission, optical-based TAN is used to identify

hazards in the environment and navigate the spacecraft to a safe landing site. Previous

Mars expeditions required more risk-averse mission planning for EDL because the decision

making of the landing system was fairly primitive. However, now that hazard risk is actively

assessed in the EDL pipeline via an optical TAN process, JPL was able to confidently select

a landing site in the near vicinity of dangerous terrain, which in turn allows the Persever-

ance Rover to pursue especially interesting science objectives. Ambitious mission planning

in response to improved navigation is echoed in the underwater domain as well: by improv-

ing the navigation capabilities of AUGs in surface denied situations, mission concepts such
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as basin-scale sea-ice survey are enabled.

Future work for AUG navigation in the context of basin-scale sea-ice survey include the

incorporation of more environmental field variables in the MF-TAN algorithm. For example,

the magnetic anomaly in the Arctic could be used to supplement the three seafloor factors

presented in this thesis to further refine navigation performance. Additionally, SLAM ap-

proaches to AUG navigation would be particularly useful in high-Arctic latitudes where

ground-truth bathymetry is only available at a resolution of 200 m. By actively building a

high resolution map the seafloor, the AUG may be capable of precise navigation independent

of the ground-truth map resolution.
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Chapter 5

Energy-Optimal Control Policies

5.1 Introduction

The intelligent allocation of onboard resources is critical for the success of AUG sea-ice

survey operations in the Arctic. By actively limiting energy consumption while still making

progress towards the science objective of the mission, the AUG is able to extend mission

duration and range, increase the amount of science data that can be collected, and reduce

the probability of catastrophic failure caused by total exhaustion of the onboard energy

supply. Thus, pursuing AUG behaviors that enact intelligent allocation of onboard resources

is universally beneficial for the four design requirements mentioned at the beginning of

Chapter 2: scientific data collection, long-range travel, unattended operation, and survival.

In this chapter, the notion of energy efficiency is formalized by defining the transport

cost function, and then a set of optimized vehicle behaviors that minimize the transport

cost function is derived. The aforementioned optimized vehicle behaviors include methods

for adaptive propulsion control, vertical path planning via the selection of the optimal AUG

depth band, and active sensing control via duty cycling of acoustic sensors.

5.2 Objective Function: Minimize Transport Cost

Several objectives must be considered simultaneously when planning AUG missions. For

example, objectives pertaining to range, endurance, localization, science, safety, communi-

cation, and rendezvous must be considered. Each of these objectives must be satisfied via

the utilization of one common resource: the energy carried onboard the AUG. Therefore,
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efficient allocation of energy is universally beneficial for improving AUG missions.

When developing an AUG mission plan, the notion of resource management can be

defined as one of several objectives that is considered in the context of a multi-objective

optimization problem. This can be expressed as:

min
u

[𝑓1(u), 𝑓2(u), ..., 𝑓𝑘(u)]

s.t. u ∈ 𝑈

Where 𝑘 is an integer number of objective functions, 𝑓𝑖 is the 𝑖th objective function, u

is an input control vector, and 𝑈 is the feasible set of input control vectors. Although con-

straints such as vehicle dynamics limit the feasible set of control vectors, multi-objective op-

timization is challenging and often intractable due to competing objectives and uncertainty

in environmental variables such as ocean current conditions and sea-ice cover. For context,

consider that the AUG must decide whether or not an additional sensor, such as an imaging

sonar, should be turned on. The resource management objective would be minimized if the

sensor remains off, but the science objective would be minimized if the sensor is turned

on. Not only do the two objectives compete with one another, but the non-commensurate

objectives [Schwartz et al., 2002] make it difficult to assess a marginal increase in energy

conservation relative to a marginal increase in scientific sampling. Additionally, since envi-

ronmental states are generally uncertain, it is difficult to provide guaranteed performance

for a particular mission plan. Methods designed to account for the relative importance of

competing objectives during the mission include the Valuated State Space [Jenkins et al.,

2003] method and Interval Programming method [Benjamin et al., 2010].

Rather than considering resource management in the context of global optimization

over AUG control variables, resource management is applied to a decoupled version of

the problem where a subset of the control variables are provided a-priori by some high-

level mission planner and hotel load optimization policy. The high-level mission planner is

responsible for general route parameters such as sequences of waypoints. The hotel load

optimization procedure is responsible for duty cycling the AUG hardware components in

response to vehicle and environment state. Then, given the high-level mission plan and

hotel load, the propulsive system of the AUG can be optimized with respect to energy
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conservation. This low level propulsive optimization is referred to as adaptive velocity control

(AVC), which seeks to minimize the transport cost of the AUG. Transport cost is defined

in terms of Joules expended per meter traveled, which unlike transport economy [Jenkins

et al., 2003], is independent of vehicle weight in order to avoid biases favoring increased

vehicle displacements without consideration of supporting infrastructure requirements, as

well as associated capital and operating costs.

By decoupling the AUG control problem into hierarchical steps, the propulsive system

can be optimized for transport cost independently of other AUG control choices. The control

vector u can then be divided into two sub-components: u = [up, uh]T, where up refers to

control variables of the AUG’s propulsive system and uh refers to the control variables of

the AUG’s hotel system. Then, AVC can be expressed as:

min
u

[𝑓𝑇 𝐶(u) | uh]

s.t. u ∈ 𝑈

Where 𝑓𝑇 𝐶 represents the transport cost of the AUG and is independent of time. For

this paper the AUG dynamics are assumed to be well characterized, though it is important

to note that several AUG dynamics issues have been observed in the past [Jenkins et al.,

2003], [Claus and Bachmayer, 2016]. Additionally, the vertical component of ocean currents

is assumed to be negligible compared to the horizontal component.

5.3 Adaptive Velocity Control

We define the transport cost objective function 𝑓𝑇 𝐶 to be equal to the total energy expended

per distance traveled, 𝑓𝑇 𝐶 = Δ𝐸
Δ𝑥 . Minimizing 𝑓𝑇 𝐶 is the same as maximizing 1

𝑓𝑇 𝐶
= Δ𝑥

Δ𝐸 ,

which is equivalent to maximizing the total range of the AUG given a finite energy supply.

It is important to note that Δ𝐸 refers to the total energy expended by the AUG, not just

the energy expended via the AUG propulsive system. This means that the science payload

running onboard the AUG affects the optimal travel behavior of the vehicle [Bradley et al.,

1992].
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5.3.1 Simplified 1D Model

First, the 1D case is considered where the AUG travels in a straight line and the ocean

current is either entirely favorable or entirely adverse, meaning there is no cross-track ocean

current. The function to minimize can be written in terms of the instantaneous total power

utilized and the over ground velocity 𝑣𝑜𝑔 of the AUG.

𝑓𝑇 𝐶 = 𝑃𝑡𝑜𝑡𝑎𝑙

𝑣𝑜𝑔
(5.1)

Then, the total power expended by the AUG can be divided into two components: the

propulsive load 𝑃𝑝𝑟𝑜𝑝 and the hotel load 𝑃ℎ𝑜𝑡𝑒𝑙. Similarly, the over-ground velocity can be

divided into two components: through-water velocity 𝑣𝑡𝑤, and ocean current velocity 𝑣𝑜𝑐.

𝑓𝑇 𝐶 = 𝑃𝑝𝑟𝑜𝑝 + 𝑃ℎ𝑜𝑡𝑒𝑙

𝑣𝑡𝑤 + 𝑣𝑜𝑐
(5.2)

Here, the hotel load and ocean currents are assumed to be given. The optimal through-

water velocity of the AUG is given by argument minimum of the transport cost objective

function:

𝑣*
𝑡𝑤 = arg min

𝑣𝑡𝑤

[︂
𝑃𝑝𝑟𝑜𝑝 + 𝑃ℎ𝑜𝑡𝑒𝑙

𝑣𝑡𝑤 + 𝑣𝑜𝑐

]︂
(5.3)

The vehicle velocity given by equation (5.3) is plotted for varying hotel loads and ocean

current conditions in Figure 5-1. The figure shows the optimal AUG speed increases with

hotel load and decreases with favorable ocean current currents. When there is a strong ad-

verse current, the optimal speed for all hotel load scenarios approaches the AUG’s maximum

speed of 1.5 m s−1, which requires 18.05 W of power to support.

As mentioned previously, minimizing 𝑓𝑇 𝐶 is the same as maximizing 1
𝑓𝑇 𝐶

= Δ𝑥
Δ𝐸 , which

is equivalent to maximizing the total range of the AUG given a finite energy supply. To

explore this visually, two plots are shown: Figure 5-2 shows the maximum AUG range as

a function of hotel load while neglecting the affect of ocean currents, and Figure 5-3 shows

the maximum AUG range as a function of ocean current conditions for both the transit and

survey hotel load scenarios.

Figure 5-2 shows that the AUG can travel in excess of 7500 km if operating in transit

mode for the entire mission, and that the AUG can travel in excess of 2500 km if operating
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Figure 5-1: Energy optimal propulsive speed as a function of hotel load and ocean current
conditions for the 1D case. Color in both subplots indicates hotel load, where hotel load
values vary between transit mode (0.37 W) and survey mode (6.37 W).

in survey mode for the entire duration. However, it is important to approach these range

estimates with caution because they neglect the effect of ocean currents, where adverse or

cross-track ocean currents can severely hinder the range performance of the AUG.

Figure 5-3 shows that the AUG range changes drastically dependent on the ocean cur-

rent conditions. For example, for the transit hotel load case, the approximate AUG range

for 1 m s−1 favorable current, 0 m s−1 current, and 1 m s−1 adverse current are 27 000 km,

7500 km, and 1000 km, respectively. Although it is unrealistic for the AUG to experience

entirely favorable or entirely adverse ocean currents of 1 m s−1 magnitude for the entire mis-
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Figure 5-2: AUG range as a function of vehicle through-water speed and hotel load. This
plot assumes an energy supply of 10 kW h and ignores the effect of ocean currents. The blue
curve shows how the range-maximizing through-water speed of the AUG increases with
increasing hotel load, echoing the result of equation (5.3).

Figure 5-3: AUG range as a function of vehicle through-water speed and ocean current
conditions, shown for the transit hotel load in the left subplot and the survey hotel load in
the right subplot. This plot assumes an energy supply of 10 kW h. The blue curve shows how
the range-maximizing through-water speed of the AUG increases with decreasing favorable
ocean currents, echoing the result of equation (5.3).

sion duration, this analysis provides an upper and lower bound of AUG range performance.
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5.3.2 Generalized 3D Model

For the general 3D case, the impact of operating the buoyancy engine is accounted for and

a 3D representation of the ocean currents is utilized. The usage of the buoyancy engine

impacts the AUG through-water speed and the AUG energy budget. The through-water

speed can now be treated as the sum of components from the thruster 𝑣𝑝𝑟𝑜𝑝 and the buoyancy

engine 𝑣𝑏𝑢𝑜𝑦, where the buoyancy engine component is dependent on the AUG pitch angle

𝜑 and is well approximated with the following second order polynomial:

𝑣𝑏𝑢𝑜𝑦 = (1.13e−1) + (1.55e−2)𝜑− (2.17e−4)𝜑2 (5.4)

Then, the through-water speed is given by the summation of components from the

thruster and the buoyancy engine. Note that the resulting through-water speed acts in the

AUG heading direction 𝜓, but has a declination of 𝜉 with respect to the horizontal plane,

where 𝜉 is the AUG glide angle given by the sum of pitch and angle of attack: 𝜉 = 𝜑+ 𝛼.

The through-water speed can be expressed as:

𝑣𝑡𝑤 = 𝑣𝑝𝑟𝑜𝑝 + 𝑣𝑏𝑢𝑜𝑦 (5.5)

Velocity vectors are denoted with boldface text v, while speeds are denoted with reg-

ular text 𝑣, where speed is given by the L2 norm of the velocity vector 𝑣 = ‖v‖. The

vertical component of through-water speed 𝑣𝑡𝑤 sin 𝜉 can now be used in conjunction with

the vertical component of the ocean current vector to express the average power draw of

the buoyancy engine, and the horizontal component of through-water speed 𝑣𝑡𝑤 cos 𝜉 can be

used in conjunction with the horizontal component of the ocean current vector to express

the over-ground speed.

The average power draw of the buoyancy engine is dependent on the following parame-

ters: dive-to depth 𝑧𝑑𝑖𝑣𝑒, climb-to depth 𝑧𝑐𝑙𝑖𝑚𝑏, AUG pitch 𝜑, AUG glide angle 𝜉, the vertical

component of the ocean current vector 𝑤𝑜𝑐, the energy cost of operating the ballast pump

during bottom inflections 𝐸𝑝𝑢𝑚𝑝, and the percent of ballast volume pumped by buoyancy

engine 𝛾. Note that 𝐸𝑝𝑢𝑚𝑝 is generally a function of dive-to depth 𝑧𝑑𝑖𝑣𝑒. Here, 𝑧𝑑𝑖𝑣𝑒 and

𝑧𝑐𝑙𝑖𝑚𝑏 define the depth band of AUG, which are now assumed to bed given. In Section 5.4,

a depth band optimization policy is discussed which takes into account the shear structure

within the water column. The selection is 𝛾 is discussed further in Section 5.5. Let 𝑤𝑜𝑐
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represent the average vertical component of the ocean current velocity over the depth band.

Now, the average power consumption of the buoyancy engine can be written as a change in

energy over a change in time:

𝑃𝑏𝑢𝑜𝑦 = Δ𝐸

Δ𝑡
= 𝛾𝐸𝑝𝑢𝑚𝑝[︁

2(𝑧𝑑𝑖𝑣𝑒−𝑧𝑐𝑙𝑖𝑚𝑏)
𝑣𝑡𝑤 sin 𝜉+𝑤𝑜𝑐

]︁ (5.6)

Figure 5-4 explores equation (5.6) visually, where the average power draw of the buoy-

ancy engine is shown as a function of depth band size and AUG pitch angle, where the

other variables in equation (5.6) are assumed given. The figure shows that 𝑃𝑏𝑢𝑜𝑦 grows

exponentially for small depth bands and large pitch angles. This power draw equation is

utilized more formally in Section 5.4 when AUG depth band is optimized with respect to

transport cost. For the remainder of this section, it is assumed that the 𝑃𝑏𝑢𝑜𝑦 = 1.5 W, the

average buoyancy engine power for a 500 m depth band at 12∘ pitch.

Figure 5-4: Average power draw of the buoyancy engine as a function of depth band size
𝑧𝑑𝑖𝑣𝑒 − 𝑧𝑐𝑙𝑖𝑚𝑏 and AUG pitch angle 𝜑 assuming zero angle of attack and negligible vertical
component of ocean currents. Since the average power grows exponentially for small depth
bands and large pitch angles, exceeding 1000 W in some cases, the plot is capped at 24 W
for easier interpretation.

Now that the buoyancy engine has been accounted for in terms of its contribution to

AUG through-water velocity and AUG energy consumption, over-ground velocity can be

written in terms of arbitrary 3D ocean currents so that AVC can be performed. Ocean
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currents are no longer restricted to being co-linear with the vehicle path as was true in

the 1D case. Let 𝜓 be the AUG heading, 𝜂 be the ocean current heading, 𝛿 = 𝜂 − 𝜓 be

the relative alignment of the ocean currents with respect to the AUG heading. If 𝛿 = 0∘,

ocean currents are entirely favorable and if 𝛿 = ±180∘ ocean currents are entirely adverse.

For angle magnitudes between 0∘ and 180∘, the AUG must overcome a cross-track current

𝑣𝑜𝑐 sin 𝛿 to maintain the desired heading. After accounting for the cross-track current, the

co-linear component of the ocean current 𝑣𝑜𝑐 cos 𝛿 can be considered, yielding the following

equation for optimal AUG speed over-ground:

𝑣𝑜𝑔 =
(︁
(𝑣𝑡𝑤 cos 𝜉)2 − (𝑣𝑜𝑐 sin 𝛿)2

)︁ 1
2 + 𝑣𝑜𝑐 cos 𝛿 (5.7)

Note that for general 3D ocean current vectors, the vertical component of ocean cur-

rent velocity does not affect speed over-ground because it is perpendicular to the horizontal

ground plane. However, the vertical component of ocean current affects the power con-

sumption of the buoyancy engine, as shown in equation (5.6).

Leveraging equation (5.7), the optimal through-water speed can be written, which serves

as the AVC control policy in the general 3D case:

𝑣*
𝑡𝑤 = arg min

𝑣𝑡𝑤

[︃
𝑃𝑝𝑟𝑜𝑝 + 𝑃𝑏𝑢𝑜𝑦 + 𝑃ℎ𝑜𝑡𝑒𝑙

𝑣𝑜𝑔

]︃
(5.8)

Where 𝑃𝑝𝑟𝑜𝑝 and 𝑃𝑏𝑢𝑜𝑦 are dependent on 𝑣𝑡𝑤, and 𝑃ℎ𝑜𝑡𝑒𝑙 is independent of 𝑣𝑡𝑤. Equation

(5.8) serves as the general AVC policy that minimizes AUG transport cost in response to

ocean current conditions and hotel load.

Since the optimal through-water velocity is designed to oppose cross-track currents while

maintaining forward progress, AVC inherently includes active steering to minimize cross-

track and long-track drift caused by ocean currents. Thus, the active steering aspect of AVC

leads to a further reduction in transport cost compared to standard control methods that

would otherwise require additional time and energy to correct for navigation error caused

by ocean current drift. Although this approach is not a path planning method since it does

not modify the horizontal path plan, it is used as a control policy to minimize transport cost

along a pre-specified trajectory. In the event that strong adverse or cross-track currents are

encountered, the AUG may not be capable of pursuing the intended path, and contingency

planning may be initiated by the higher-level mission planning system. The results of AVC
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are shown in Figure 5-5.

Figure 5-5: AVC given horizontal ocean current speeds ≤ 1 m s−1, where the vertical compo-
nent is assumed to be negligible. In each subplot, the x-coordinate represents the cross-track
component of the ocean current and the y-coordinate represents the co-linear component of
the ocean current. The color shown in both subplots represents the optimal AUG through-
water speed for transit and survey hotel loads given by the AVC control policy in equation
(5.8).

Subplots A and B of Figure 5-5 echo the results obtained in the 1D case, namely that

it is energetically beneficial for the AUG to speed up in the presence of adverse currents or

increased hotel loads and to slow down in the presence of favorable currents or decreased

hotel loads. Additionally, the figure conveys the impact of cross-track ocean currents: the

AUG must increase its velocity significantly to counteract cross-track currents while still
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maintaining forward progress.

To perform AVC, ocean current velocities must be known, and as a result, the DVL

and science computer must be used to actively estimate these ocean currents. Thus, the

AVC control policy is not serviceable for conventional transit mode operation because con-

ventional transit hotel load does not include DVL and science computer operation. This

presents a trade-off that must be considered while transiting: utilize the conventional

method of minimizing transit hotel load and forfeit the ability to perform AVC, or in-

crease the hotel load during transit by operating the DVL and science computer to enable

AVC. The value of this trade-off is dependent on environmental state. For example, if ocean

current velocities have magnitude zero, it is unnecessary to operate the DVL and science

computer because AUG propulsion cannot be adjusted in response to ocean currents.

Figure 5-6: Transport cost improvement obtained by operating the DVL while transiting.
By operating the DVL during transit, the AUG can perform AVC, which includes active
steering to avoid cross-track and long-track drift caused by ocean currents. For ocean
currents of small magnitudes, transport cost increases when the DVL is operated during
transit.

Figure 5-6 explores this trade-off by showing the percent decrease in transport cost

when using the DVL and science computer while transiting, when compared to the default

transit hotel configuration. The black solid line indicates when the AUG transport cost is

energetically equivalent between transiting with or without the DVL and science computer
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being operated. Inside the black solid line the transport cost associated with use of the DVL

is increased and outside the black solid line the transport cost is decreased. Interestingly,

the environmental state that leads to the greatest decrease in transport cost when using the

DVL involves favorable ocean current with no cross-track component. This is largely due

to the active steering component of AVC: the default transit mode overshoots the intended

waypoint due to long-track drift caused by favorable ocean currents, requiring a navigation

correction that must then backtrack while fighting against ocean currents that are now

entirely adverse to reach the target waypoint.

5.4 Exploitative Depth Band Selection

With sufficient available water depth, the AUG can perform adaptive depth band selection

to exploit velocity shear structure in the water column. This process is referred to as

exploitative depth band selection (EDBS). As an example, if the water column contains two

water mass layers such that one layer has a favorable current and the other layer has an

adverse current, it may be energetically optimal for the AUG to confine itself to the favorable

layer instead of travel throughout the full available water column. The downside of this

narrowing of depth band is an increased frequency of inflections, which corresponds with an

increased usage of the energetically expensive buoyancy pump. This trade-off presents an

optimization that can be exploited to further improve the transport economy of the AUG

if water column estimates are available.

Let 𝑣𝑜𝑐,𝑧 and 𝜂𝑧 represent the ocean current magnitude and direction at depth 𝑧, which

are assumed to have been estimated via the VSP method discussed in Section 4.2.2. Then,

given the heading of the AUG 𝜓 and the hotel load 𝑃ℎ𝑜𝑡𝑒𝑙, the ocean current heading offset

is given by 𝛿𝑧 = 𝜂𝑧 − 𝜓 and the optimal through-water speed 𝑣*
𝑡𝑤,𝑧 at depth 𝑧 is given by

equation (5.8). The over-ground speed 𝑣𝑜𝑔,𝑧 at depth 𝑧 is given by equation (5.7), where

𝑣𝑜𝑔,𝑧 encodes the relative alignment of the ocean currents with respect to AUG heading.

Let 𝜑 be the pitch angle of the AUG and 𝑃𝑝𝑟𝑜𝑝,𝑧 be the instantaneous propulsive power

of the hybrid thruster which is a function of the optimal through-water speed 𝑣*
𝑡𝑤,𝑧 via

equation (2.1). Then, let 𝑧𝑑 and 𝑧𝑐 be the dive-to and climb-to depths of the AUG, which

are the parameters that define the depth band of the AUG. The optimal depth band can

then be selected by taking the argument minimum of the transport cost function, where the
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transport cost is now a function of depth band. Here, three sources of energy expenditure

are considered: the buoyancy engine ballast pump, the hybrid thruster, and the hotel load.

The buoyancy pump is modeled by a fixed energy cost 𝐸𝑝𝑢𝑚𝑝 in units of J, which in general

can be modeled as a function of dive-to depth 𝑧𝑑. The propulsive unit and hotel load are

modeled in units of W, so they must be integrated over time to yield a quantity of energy.

To perform this integration, integration is performed over the depth band defined by 𝑧𝑑 and

𝑧𝑐, and the variable of integration 𝑑𝑡 is replaced using through-water vertical speed and the

vertical component of the ocean current, both at depth 𝑧: 𝑣𝑡𝑤,𝑧 sin 𝜉 + 𝑤𝑜𝑐,𝑧 = 𝑑𝑧
𝑑𝑡 . Similarly,

the over-ground speed 𝑣𝑜𝑔,𝑧 must be integrated over the depth band to give the horizontal

distance traveled while moving through the depth band. Again, 𝛾 is the percent of ballast

volume pumped by buoyancy engine. The optimal depth band can then be written as the

argument minimum of the transport cost function:

DepthBand* = arg min
𝑧𝑑, 𝑧𝑐

⎡⎢⎢⎢⎣
𝛾𝐸𝑝𝑢𝑚𝑝

2 +
∫︁ 𝑧𝑐

𝑧𝑑

𝑃𝑝𝑟𝑜𝑝,𝑧 + 𝑃ℎ𝑜𝑡𝑒𝑙

𝑤𝑡𝑤,𝑧 + 𝑤𝑜𝑐,𝑧
𝑑𝑧∫︁ 𝑧𝑐

𝑧𝑑

𝑣𝑜𝑔,𝑧

𝑤𝑡𝑤,𝑧 + 𝑤𝑜𝑐,𝑧
𝑑𝑧

⎤⎥⎥⎥⎦ (5.9)

The expression in equation (5.9) concisely captures an intriguing trade-off between the

energy cost of using the buoyancy pump during bottom inflections and the two water-

column-integrated variables: power and over-ground speed. Note that the energy cost of

the buoyancy pump is divided by two because the pump is only utilized during bottom

inflections. To showcase the expressivity of this result, exemplar scenarios are presented. If

a vehicle has negligible buoyancy pump cost, 𝐸𝑝𝑢𝑚𝑝 ≈ 0, then the EDBS will simply select

a depth band of infinitesimally minimal height that is centered about the most favorable

current in the water column. A similar conclusion can be made for vehicles with exorbitantly

high hotel loads: the water-column-integrated hotel load dominates the buoyancy pump cost

regardless of the size of the depth band, so the optimal depth band centers on the most

favorable current in the water column. On the other hand, if a vehicle has excessively high

buoyancy pump energy cost, EDBS will maximize the depth band height to minimize the

frequency of using the energetically expensive buoyancy pump. For the case of uniform

water column currents in depth, EDBS again maximizes the size of the depth band because

there is no shear layer to exploit. Finally, when there is high contrast between velocity

shear layers in the water column, it may be optimal for the vehicle to restrict itself to a
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narrowed depth band within the most favorable shear layer.

Since EDBS considers all valid combinations of dive-to and climb-to depths, the policy

will always perform at least as well as the default behavior of utilizing the maximum avail-

able water column. To improve the computational speed of EDBS, additional constraints

can be used to bound the set of valid dive-to and climb-to combinations.

5.5 Adaptive Duty Cycling

Although hotel load is often considered as a static differential between transit mode and

survey mode, individual hardware components can be optimized with respect to vehicle and

environment state. In this section, the duty cycle reduction of three of the most power-

intensive hotel components is considered: the Doppler Velocity Log (DVL), the Mechanical

Scanning Imaging Sonar (MSIS), and the Back-seat Driver computer (BSD). Additionally,

buoyancy engine power can be lowered by reducing pump volume of the buoyancy engine

and by pursuing a shallower pitch angle of 5∘ to limit frequency of inflections. This reduction

of hotel components in response to science and navigation requirements is referred to as

adaptive duty cycling (ADC).

The constraint that limits the minimum DVL duty cycle pertains to AUG localization

and ocean current velocity estimation. For both of these functions to be performed with

reasonable accuracy, it is necessary for the DVL to make at least 10 water-track observations

for each vertical meter traveled by the AUG. At a nominal speed of 0.75 m s−1 at 5∘ pitch,

the DVL must take samples at a frequency of 0.65 Hz. The nominal sampling frequency

for the DVL at 100 % duty cycle is approximately 2 Hz. Therefore, to minimize DVL usage

while meeting localization and state estimation requirements, the DVL can be operated at

a duty cycle of 32 %.

For duty cycle reduction of the MSIS, the science constraint enforces that sea-ice clas-

sifications are made at a spatial resolution of 50 m. From Section 3.7.2, each sea-ice sonar

scan takes 15 s to record. At a nominal speed of 0.75 m s−1 at 5∘ pitch, it takes the AUG

approximately 67 s to travel 50 m. Thus, to minimize the usage of the MSIS while adhering

to the sea-ice sampling constraint, duty cycle of the MSIS can be set to 22 %.

Finally, the BSD computer must be in operation to command the hotel load sensors

such as the DVL and the MSIS, as well as process sensor data from these instruments in
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real-time and send AUG control commands as necessary. The BSD computer is estimated

to operate at 50 % duty cycle while maintaining proper coordination of AUG sensors, data

processing, and AUG control.

The results of duty cycle reduction is summarized in Figure 5.1. The cumulative power

draw for the hotel load has been reduced from 5.4 W to 1.5 W, reducing the total AUG

power draw for survey operations from 6.37 W to 2.47 W. Further reduction in energy

consumption can be realized when using the hybrid thruster by decreasing the pumped

displacement volume of the buoyancy engine. For example if the buoyancy engine, which

requires approximately 2.95 W h per bottom inflection for full volume displacement, instead

pumps just 20 % of its available volume, the duty cycle would decrease by 80 % resulting

in 0.59 W h per bottom inflection. Despite glide efficiency decreasing with decreased pitch

angle, additional duty cycle minimization may be obtained by decreasing the vehicle pitch

angle to shallower angles around 5∘ that remain above the critical stall angle. While the

exact percentages of duty cycle reduction are dependent on specific operating constraints

of hardware components, significant energy reduction can be achieved through adaptive

minimization of buoyancy engine and hotel system power draw without sacrificing science

or mission requirements. As illustrated in the discussion section, a duty cycle reduction of

this magnitude can lead to substantial improvements to AUG range and mission duration.

Hardware
Component

Default
Power Draw

Reduced
Duty Cycle

Reduced
Power Draw

[W] [%] [W]
DVL 2.00 32.0 0.64
MSIS 3.00 22.0 0.66
BSD 0.40 50.0 0.20

Table 5.1: Review of hardware components that can be adaptively duty cycled during
mission to reduce power expenditure. For resource-constrained AUG missions in the Arctic,
operation of these instruments can be reduced to save energy while still meeting mission
safety and science data collection requirements.

5.5.1 Satellite Data Transfer

In this AUG architecture an MSIS collects data at a rate of approximately 8 kilobytes per

second and requires 15 seconds to complete a scan across the most informative ±60∘ sector

for sea-ice classification. This means that each sea-ice scan completed by the MSIS is ap-
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proximately 125 kilobytes in size. In order to accommodate the decision input requirements

of the AUG’s embedded contingency planner and the bandwidth limitations of the satellite

communications, an automated sea-ice characterization process can perform a hierarchical

analysis of sea-ice features, including: presence or absence of sea-ice, sea-ice thickness, and

sea-ice roughness. From these three sea-ice features, sea-ice scan measurements can be

categorized as a discrete set of sea-ice types. More details on this acoustics-based sea-ice

characterization scheme are included in Chapter 3.

The satellite communication system requires 6.5 W of power when active. At the signal-

to-noise levels typically available in the Arctic, the satellite communication system would

be expected to transmit no more than 240 bits per second reliably. Raw acoustic scan data

for one sea-ice observation is 125 kilobytes whereas the compressed sea-ice characterization

information can be encoded in 8 bytes, which constitutes a four orders of magnitude size

reduction. This results in an equivalent decrease in power required to transmit sea-ice

information via satellite communication. It is noteworthy that even if the AUG had access

to unlimited power, the data transfer rate for transmitting raw data would eclipse the

collection rate by over 1.5 orders of magnitude, meaning that each minute of data collected

would require over an hour of satellite-base transmittal. Thus, based on energy budget alone,

automated sea-ice interpretation and information compression is a necessity for sonar-based

AUG survey of Arctic sea-ice.

5.6 Results

Our methods for propulsive control with AVC and ocean current estimation with VSP are

evaluated using AUG sea-trial data from a November 2019 deployment within an active

submarine volcano in the Southern Aegean Sea. For this set of experiments, a Slocum AUG

was used as a reconnaissance platform to provide initial surveys of the Kolumbo caldera

crater to inform subsequent ROV mission planning. During these missions the AUG relied

on its default DR process, which included a static current correction that calculated a

temporal and depth-averaged water column current based on discrepancy between the GPS

and DR localization estimates during its prior dive. This DR with depth-averaged current

correction (DR-DACC) does not directly observe ocean current velocities and is unable

to account for temporally dynamic currents or biasing caused by variability in the AUG’s
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depth band. Six AUG missions are selected to evaluate the AVC method and a subset of

these missions are used to illustrate the performance of the VSP ocean current estimation

method.

5.6.1 Adaptive Velocity Control

Based on the demonstrated validity of the ocean current estimation process, the potential

utility of AVC can now be explored. Although the AVC method was not running onboard

the AUG, potential performance benefits of using this control method can be evaluated

through offline analysis of three AUG control policies: constant velocity buoyancy drive,

constant velocity hybrid drive, and adaptive velocity hybrid drive.

Figure 5-7 shows the behavior of the AVC method when applied to the Dive A series

previously described in Figure 4-4. As shown in Figure 5-7, the AUG increases its propulsive

speed in times of adverse or cross-track currents, whereas the AUG decreases propulsive

speed in times of favorable currents. Since the majority of Dive A consisted of adverse ocean

currents, AVC characteristically commands the vehicle to a faster through-water speed than

the constant velocity controller. While traveling at higher speeds increases the average

power consumption of the AUG, the mission duration is decreased such that the total

power consumption is reduced. Thus AVC is able to adaptively respond to environmental

state.

Table 5.2 shows the results of the three velocity controllers when applied to six of the

AUG missions during a series of dives in November 2019 in the Southern Aegean Sea. The

velocity controllers are evaluated with respect to three metrics: mission duration, average

power draw, and transport economy. Since the transport economy metric normalizes for

the distance traveled during the mission, it is the most informative metric when comparing

across the different missions.

As seen in the table, the hybrid AUG achieves a transport cost that is approximately

twice as efficient as conventional buoyancy drive. Although the buoyancy engine alone

yields the lowest average power draw, the slower speeds of the buoyancy engine travel lead

to significantly longer mission times, which leads to less overall energy efficiency.

Additionally, because the measured water column currents were consistently non-zero,

the adaptive hybrid controller reliably outperforms the constant hybrid controller, regardless

of the magnitude and direction of water column currents. This result confirms that transport
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Figure 5-7: AVC when applied to Dive A of the November 2019 deployment in the Southern
Aegean Sea. The Hybrid Adaptive Speed curve shows the optimal AUG speed over time,
which responds to varying ocean current conditions. The Hybrid Constant Speed is only
optimized with respect to hotel load, so it does not change during the mission. The Forward
Currents and Starboard Currents during mission are estimated via the VSP method.

cost can be independently optimized as a decoupled component of the AUG mission planning

problem. The adaptive hybrid controller performs 4.6 % more efficiently than the constant

hybrid controller, and in instances of strong adverse ocean currents for large portions of the

mission, such as in Dive A, the adaptive speed controller performs as much as 8.2 % better.

Therefore, by using acoustic sensing to estimate ocean currents in real-time onboard the

AUG, the vehicle can perform AVC to reap significant improvements in energy efficiency. In

addition to AVC, further energy management improvements can be realized by modulating

total displaced volume pumped by the buoyancy engine in relation to thruster power, and

depth band can be continuously adjusted to maximally exploit favorable shear layers in the

water column.

5.6.2 Exploitative Depth Band Selection

In this section, results of applying the EDBS control policy are shown for AUG dive data

obtained during the November 2019 research deployment in the Southern Aegean Sea. The

plots shown in Figure 5-8 and Figure 5-9, along with the data shown in Table 5.3, make the

following AUG operation assumptions: the AUG is operating in reduced hotel survey mode
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Mission
Name

Distance
Traveled [m]

Mission Time [min]
Buoyancy
Constant

Speed

Hybrid
Constant

Speed

Hybrid
AVC
Speed

Dive A 6063 328 143 115
Dive B 2520 114 47.8 45.7
Dive C 4910 243 92.2 89.4
Dive D 2050 97.7 40.9 38.0
Dive E 905 64.3 19.2 17.3
Dive F 985 74.8 21.6 18.9

Mission
Name

Distance
Traveled [m]

Average Power Draw [W]
Buoyancy
Constant

Speed

Hybrid
Constant

Speed

Hybrid
AVC
Speed

Dive A 6063 7.9 13.2 15.1
Dive B 2520 16.2 21.6 22.0
Dive C 4910 11.1 16.5 16.8
Dive D 2050 11.1 16.5 17.2
Dive E 905 16.2 21.6 22.8
Dive F 985 16.2 21.6 23.0

Mission
Name

Distance
Traveled [m]

Transport Cost [J m−1]
Buoyancy
Constant

Speed

Hybrid
Constant

Speed

Hybrid
AVC
Speed

Dive A 6063 25.5 18.5 17.1
Dive B 2520 43.9 24.5 23.9
Dive C 4910 32.9 18.6 18.3
Dive D 2050 31.7 19.8 19.1
Dive E 905 69.1 27.5 26.2
Dive F 985 73.8 28.4 26.5
Mean Transport Cost 46.1 ± 18.7 22.9 ± 4.1 21.9 ± 3.8

Table 5.2: Offline performance analysis between three AUG velocity control policies applied
to November 2019 Southern Aegean Sea missions previously mentioned: constant velocity
with the buoyancy engine alone, constant velocity with the hybrid buoyancy and thruster
system, and AVC with the hybrid buoyancy and thruster system. The control methods are
evaluated with respect to three metrics: mission time, average power draw, and transport
cost. The most important metric for AUG energy efficiency, transport cost, shows that in
this mission context the hybrid AUG performs approximately twice as well compared to
the buoyancy engine alone, and the AVC method reliably outperforms the constant velocity
controller.

(2.12 W), the AUG is operating at 5∘ pitch angle, and the ballast pump volume is set to

20 % of maximum ballast volume. The derivation of these operating conditions is discussed
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in Section 5.5. The Figures display the results of the EDBS policy as applied to two separate

dives during the research deployment: Dive B with strong velocity shear structure in the

water column, and Dive F with more uniform structure in the water column.

Figure 5-8: EDBS as applied to Dive B of the November 2019 research deployment in the
Southern Aegean Sea. The EDBS method is applied at heading intervals of 45∘. For each
AUG heading considered, the left subplot shows the transport cost as a function of depth
band, where the yellow color indicates low transport cost and the blue color indicates high
transport cost. Similarly, each right subplot shows the water column velocities at 1 m depth
intervals with the resulting optimal depth band highlighted in orange.

The results displayed in Figure 5-8 and Figure 5-9 are displayed numerically in Table

5.3. In the table, the EDBS method is compared to the default behavior of utilizing the full

126



Figure 5-9: EDBS as applied to Dive F of the November 2019 research deployment in the
Southern Aegean Sea. The EDBS method is applied at heading intervals of 45∘. For each
AUG heading considered, the left subplot shows the transport cost as a function of depth
band, where the yellow color indicates low transport cost and the blue color indicates high
transport cost. Similarly, each right subplot shows the water column velocities at 1 m depth
intervals with the resulting optimal depth band highlighted in orange.

available water column (WC). The final column of the table shows the percent reduction in

transport cost that the EDBS yields compared to the default full available water column

approach. Importantly, for both dives, the EDBS method always performs as well or better

compared to the default result. When velocity shear structure is present, as in Dive B, the

EDBS method shows that transport cost can be reduced even if as little as 50 % of the water
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column is utilized by the AUG. This result is rather remarkable because it contrasts with

the commonly held belief that AUG efficiency is maximized when the full water column is

utilized.

Although EDBS is designed to minimize transport cost and not AUG over-ground speed,

metrics for the latter are also included in Table 5.3 because AUG speed over-ground has

important implications for mission planning. Interestingly, the EDBS control policy tends

to yield slightly lower over-ground speeds compared to the default WC alternative. This is

because EDBS exploits favorable ocean currents, which in turn lead to slower over-ground

speed when energy-optimal speed control is pursued. This phenomena is explored visually

in Figure 5-10. Even though it is marginally reduced with EDBS, over-ground speed is

consistent in magnitude regardless of heading direction and depth band control. This con-

sistency is especially useful for scheduling and cooperating with multi-agent teams because

the evolution of the AUG path is predictable regardless of the ocean current conditions.

This idea of human robot interaction is explored further as a future work item in Chapter

6.

Since Dive B has strong velocity shear structure in the water column, the EDBS method

is able to reap a greater percent reduction in transport cost compared to Dive F which has

more uniform velocity structure throughout the water column. On average, the EDBS

method achieves 6.36 ± 5.76% reduction in transport cost compared to WC for Dive B, and

the EDBS method achieves 1.43 ± 1.22% reduction in transport cost compared to WC for

Dive F.

Therefore, it is important to remember that the performance improvement attainable via

applying the EDBS control policy is strongly dependent on environmental conditions. For

a water column with fairly uniform structure, the EDBS policy will yield small or negligible

improvements to transport cost compared to the default approach. However, when strong

shear structure is present in the water column, the EDBS policy is able to achieve significant

reductions in transport cost compared to the default approach. For example, for the water

column profile shown in Dive B, the EDBS policy is able to achieve a transport cost reduction

of 16.2 %. For similar shear structures as Dive B but with larger ocean current magnitudes,

the performance improvement by EDBS will be even more pronounced.

Interestingly, EDBS tends to yield slightly slower speed over-ground than the default

WC method, but overall, the AUG speed over ground is fairly consistent regardless of
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Dive B from November 2019 Deployment in the Southern Aegean Sea
AUG

Heading
Optimal

𝑧𝑐𝑙𝑖𝑚𝑏

Optimal
𝑧𝑑𝑖𝑣𝑒

Utilized
WC

Avg. 𝑣𝑜𝑔

WC
Avg. 𝑣𝑜𝑔

EDBS
Avg. 𝑣𝑜𝑔

Imp.
𝑓𝑇 𝐶

WC
𝑓𝑇 𝐶

EDBS
𝑓𝑇 𝐶

Imp.
[∘] [m] [m] [%] [m s−1] [m s−1] [%] [J m−1] [J m−1] [%]
0 39 79 50.6 0.734 0.734 0.02 7.12 6.92 2.8
45 0 77 97.5 0.745 0.741 −0.52 8.40 8.39 0.1
90 0 54 68.4 0.740 0.714 −3.61 9.21 8.34 10.5
135 0 50 63.3 0.726 0.694 −4.48 9.40 8.09 16.2
180 0 61 77.2 0.728 0.712 −2.27 9.28 8.20 13.2
225 0 63 79.7 0.745 0.719 −3.52 8.75 8.34 4.9
270 0 79 100.0 0.748 0.748 0.00 7.64 7.64 0.0
315 32 79 59.5 0.694 0.671 −3.32 6.38 6.18 3.2

Dive F from November 2019 Deployment in the Southern Aegean Sea
AUG

Heading
Optimal

𝑧𝑐𝑙𝑖𝑚𝑏

Optimal
𝑧𝑑𝑖𝑣𝑒

Utilized
WC

Avg. 𝑣𝑜𝑔

WC
Avg. 𝑣𝑜𝑔

EDBS
Avg. 𝑣𝑜𝑔

Imp.
𝑓𝑇 𝐶

WC
𝑓𝑇 𝐶

EDBS
𝑓𝑇 𝐶

Imp.
[∘] [m] [m] [%] [m s−1] [m s−1] [%] [J m−1] [J m−1] [%]
0 0 75 94.9 0.719 0.717 −0.28 10.29 10.14 1.47
45 0 76 96.2 0.724 0.722 −0.31 8.92 8.88 0.44
90 23 79 70.9 0.720 0.716 −0.57 7.21 7.14 1.03
135 8 79 89.9 0.714 0.713 −0.07 6.14 6.11 0.37
180 0 79 100.0 0.728 0.728 0.00 6.64 6.64 0.00
225 0 66 83.5 0.721 0.711 −1.29 7.79 7.68 1.41
270 0 63 79.7 0.717 0.711 −0.90 9.32 8.99 3.66
315 0 66 83.5 0.722 0.719 −0.39 10.42 10.11 3.09

Table 5.3: Performance comparison between the EDBS method and the default behavior of
utilizing the full available water column (WC). Water column data is taken from two dives
from the November 2019 deployment in the Southern Aegean Sea. The dives are vertically
scaled to 80 m for ease of comparison. Dive B has significant velocity shear structure in the
water column while Dive F is more uniform throughout the water column. Performance is
evaluated at 45∘ heading intervals, where performance metrics include transport cost and
average speed over ground.

heading direction and depth band behavior. This occurs because EDBS exploits favorable

ocean currents in the water column, and in doing so, the energy optimal through-water

speed given by AVC is sufficiently reduced that the over-ground AUG is actually lowered.

The speed over-ground associated with energy-optimal speed control is further discussed in

Figure 5-10.

5.6.3 Mission Concept: Sea-ice Survey at the Chukchi Plateau

Although the Slocum mission concept originally proposed by Stommel for AUGs over 30

years ago was focused on high-endurance physical oceanographic studies of the water col-

umn [Stommel, 1989], technological advancements in battery chemistry, hybrid thrust, and

low-power computation and sensing, can enable AUG mission scenarios for high-endurance

unattended missions in confined environments, such as sea-ice surveys in the Arctic. The
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Figure 5-10: Energy-optimal through-water speed and over-ground speed for sea-ice survey
using a reduced hotel load of 2.47 W. The AUG over-ground speed is relatively constant
across a fairly wide range of ocean current conditions, as indicated by the flat bowl shape in
the 3D over-ground speed plot. Interestingly, the AVC control algorithm leads to a decrease
in over-ground speed when small magnitude favorable ocean currents are encountered.

dangers of Arctic under-ice missions emphasizes on-board sensor interpretation, adaptive

operation, and careful resource management. From an historical perspective, these con-

straints are not new. Mariners have faced similar requirements for millennia, and in many

ways the AUG control policies that are proposed in this thesis are not unlike those devised

centuries ago. In particular, opportunistic scavenging of low potential environmental energy

has been understood at least since the first sail was affixed to a boat. The identification of

ocean currents to improve velocity-made-good performance is clearly documented in Ben-

jamin Franklin’s analysis of sailing routes around the Atlantic Gulf Stream [Poupard and

Franklin, 1786]. More recently, thermal AUGs [Webb et al., 2001] and wave AUGs [Hine

et al., 2013] have demonstrated the ability to generate sufficient thrust exclusively from

ocean thermal gradients and kinetic surface energy respectively, to propel robotic vehicles

across entire marine basins. While the resource management policies that are proposed here
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are potentially useful in areas where other energy-scavenging platforms currently operate,

they are more expansive in context. Specifically, these AUG resource management policies

can provide a method for efficiently scavenging environmental energy while under sea-ice

cover, where there is no opportunity to utilize wind, thermal gradients, or surface wave

energy. Thus, with only modest modification to a legacy AUG design, it may be possible

to greatly extend its range and observational capacity to enable low-cost, persistent, and

unattended survey of marine polar regions.

With this scenario in mind it is possible to examine the possibility of a presently difficult-

to-impossible science mission: persistent unattended observation of the marginal ice zone

(MIZ) and associated underlying water column temperature profile during seasonal sea-ice

advance/retreat. During this time period the MIZ may migrate more than 40 km d−1, out-

pacing the speed of conventional buoyancy-driven gliders, potentially trapping and crushing

them. If, for example, the marginal ice zone survey area were located at the Chukchi Plateau

[75.5∘N, 164.0∘W], and the AUG start and end point is located near Utqiaġvik Alaska, which

is the closest population center, the round-trip transit would be 913 km. In this scenario,

the transit path along the continental shelf margin has a typical water column depth of

approximately 100 m, enabling bottom lock DVL odometry, but the survey area includes

regions with depths ranging beyond 1000 m, necessitating use of an AUG capable of deep

operation. In this hypothetical mission scenario the water column currents in the transit

path are assumed to have shear flow characteristics commonly found at continental margins,

equivalent to the shear flow encountered during Dive B shown in Figure 4-4, and that water

column currents in the survey region include an additional velocity component in the deeper

region of the water column generated by the anticyclonic Beaufort Gyre at 315∘ azimuth

with a 0.1 m s−1 horizontal velocity, as described by [Plueddemann et al., 1998]. Using

these environmental state assumptions, the estimated mission duration and total range of

scientific survey can be calculated for a conventional 1000 m buoyancy driven AUG and for

a modified hybrid AUG utilizing various adaptive control policies.

Under the conditions of this mission scenario, conventional control using a buoyancy

driven 1000 m Slocum AUG operating with a 26∘ pitch angle would be unable to make

the full round-trip transit, falling just short of a full round trip transit at 895 km, without

having initiated an ice survey at the study site. If the pitch angle is reduced to 12∘, the

buoyancy driven AUG would complete the round trip transit and only be able complete a
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Figure 5-11: Overview of unattended AUG sea-ice survey mission scenario during the spring-
summer sea-ice retreat. For this mission, the AUG departs Utqiaġvik, Alaska, transits
450 km to the survey site on the Chukchi Plateau, performs a sea-ice survey, and then
transits 450 km back to Utqiaġvik. The feasibility of this mission depends on the resource
management of the AUG. Figure adapted from bathymetric map by [Jakobsson et al., 2012].

285 km sea-ice survey. The addition of a hybrid thruster following the AVC control policy

decreases transit time by almost a factor of 3 while increasing the total survey distance

by over 200 km. However, implementation of the additional adaptive control policies, ADC

and EDBS, provide additional energy efficiency, enabling the AUG to increase the sea-ice

survey by over an order of magnitude, as shown in Table 5.4.

AUG Control Policy Transit Transit Survey Survey Range Imp.
ID Drive Speed Pitch [d] [J m−1] [d] [km] [%]
1 Buoyancy Constant 26∘ 28.6 40.2 — — 0.0
2 Buoyancy Constant 12∘ 40.8 25.1 15.2 285 33.8
3 Hybrid Constant 12∘ 15.3 23.4 7.0 514 59.3
4 Hybrid AVC 12∘ 14.3 22.5 7.1 558 64.3
5 ADC AVC 5∘ 16.6 7.4 44.4 2880 324
6 EDBS AVC 5∘ 16.8 6.6 43.9 3000 337

Table 5.4: Performance analysis of six AUG control policies applied to a hypothetical
sea-ice survey at the Chukchi Plateau. The survey mission includes ≈900 km round-trip
transit, with remaining energy used for science data collection. The baseline AUG control
policy is a buoyancy driven propulsion using 26∘ pitch. Each successive control policy
demonstrates continual performance improvement, where performance improvement is given
by the increase in total range relative to the baseline control policy.

Although the EDBS is effectively a 1D path planner that optimizes for bathymetric
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constraints and water column currents along the vertical 𝑧-axis, the low-level energy resource

management processes described here can be combined with higher-level 𝑥𝑦-plane path

planners that incorporate water current forecast modeling and risk assessment. Prior path

planning work based on satellite observed surface water currents has demonstrated current-

augmented vehicle speed over-ground in excess of 1 m s−1 during transoceanic crossings

[Ramos et al., 2018], improving energy efficiency while minimizing travel time.

5.7 Summary and Future Work

Looking toward the future of robotic under-ice survey, it is informative to consider that in

addition to propulsion system inefficiencies, other AUG inefficiencies stem from limitations

in fabrication processes which thereby constrain vehicle design. Although the resource man-

agement policies described here were applied to a legacy AUG design, they may, in principle

be extended to other vehicle classes. As technological innovations in materials, manufac-

turing, and design advance, these policies should also be well-suited for next-generation

designs that are more hydrodynamically efficient.

Under-ice survey of recently identified but distant ocean worlds of Europa and Enceladus

is still the realm of science fiction, but may be within technological reach. For example,

the NASA ICEE resource accommodation plan for a Europa surface lander limits the entire

payload to just 32.7 kg, 1600 W h, and 600 megabits for 20 days of stationary operations

[Krajewski, 2018]. Survey below the estimated 10 km thick Europan ice sheet [Billings and

Kattenhorn, 2005] using a mobile platform will almost certainly require decreased payload

accommodation, suggesting that propulsion/hotel load balancing will result in a platform

with a mass and power budget less than, or at most equivalent to, the AUG designs con-

sidered here. Assuming a mission cost in excess of $100M at present currency values, this

translates to a Europan survey platform costing more than $1M per kg. Incorporating on-

board sensing and control policies which can opportunistically identify and scavenge kinetic

environmental energy sources as described here, along with thermal/chemical gradients

could greatly reduce the required size of the power system, minimizing the vehicle system’s

mass while greatly extending mission life for under-ice exploration of these remote ocean

worlds. Looking back toward polar Earth deployments, these innovations could provide

an elegant approach for faster, more complete synoptic under-ice survey of polar marine
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environments without requiring scaling up in vehicle size, cost, and risk. As Jenkins et. al.

aptly recognize, failure to adapt vehicle behavior in response to environmental state can

lead to catastrophic losses of performance.

“Ocean currents can greatly enhance or degrade glide efficient. Failure to respond

to those currents with appropriate adjustments to speed to fly can result in failure

to exploit performance improvement offered up by Nature free of charge or can

make even worse already catastrophic losses of performance.”

[Jenkins et al., 2003]

The majority of this chapter focuses on the development of vehicle behaviors and policies

that improve the energy efficiency of the AUG by adaptively taking advantage of environ-

mental conditions, principally the water column currents. The set of policies derived in this

Chapter are applicable to arbitrary AUG and AUV missions independent of the specific

trajectory being pursued. However, further improvements to AUG energy efficiency can

be achieved by exploiting water column current information during the mission planning

process.

Similar to how the EDBS policy exploits velocity shear structure in the water column,

waypoint selection and route planning routines can exploit three-dimensional structure in

the ocean current vector field. If high-fidelity ocean current predictions are available, or if

it is possible to perform ocean current simulations for the domain of interest, a rigorous

partial differential equation (PDE) based approach that performs level set evolution can

be used to determine energy-optimal or time-optimal paths for arbitrary ocean current

conditions [Subramani and Lermusiaux, 2016]. However, for long endurance vehicles such

as Polarsentinel, it is intractable to predict the ocean current field for the spatial and

temporal scales that would be required. In the case of these long-endurance vehicles, it is

possible to transmit local ocean current field to the AUG during surfacings so that the AUG

can adaptively adjust its route plan [Ramos et al., 2018, Rao and Williams, 2009]. That

said, neither of the these approaches include adaptive vehicle behaviors such as AVC and

EDBS that actively minimize transport based on real-time estimates of environment state.

Therefore, future research that combines energy optimized vehicle control policies based on

real-time environment state with energy optimized mission planning based on high-fidelity

ocean current predictions would be useful.
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Additionally, to build upon the idea of adaptive duty cycling of onboard instruments,

further research can be done in the realm of active sampling. Similar to the active localiza-

tion problem where the AUG seeks out sequences of poses that are conducive to limiting

localization and navigation error, the active sampling problem is when the AUG seeks out

sequences of poses and sensor control settings that are conducive to collecting science data.

Importantly, active sampling is not simply a path planning problem of maximizing informa-

tion gain along a trajectory, but active sampling also includes the control of AUG sensors.

In the context of Arctic sea-ice survey, the AUG active sampling module seeks out routes

that enable sea-ice observation and sends polling commands to the MSIS to make various

sea-ice and sea-state characterizations. This process must be adaptive, reacting to vehicle

and environment state as necessary. For example, if the AUG finds itself trapped under-

neath a collection of ice floes in the MIZ when trying to perform a surfacing maneuver, the

AUG may need to make a series of sea-state measurements with the MSIS to back-out the

wave propagation direction in hopes of discovering an area of ice-free fetch at the sea sur-

face. Therefore, active sampling is not only helpful for energy efficiency purposes, but active

sampling plays a critical role in risk assessment and onboard mission re-planning. Due to

this coupling with mission planning, it is recommended that active sampling techniques are

well-vetted via realistic simulation before pursuing sea-trials in the Arctic.
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Chapter 6

Discussion and Future Work

6.1 Contributions

This thesis aims to extend the autonomous capabilities of AUGs to enable basin-scale in-situ

characterization of sea-ice in the Arctic. To support this central aim, this thesis includes

three primary contributions: a hierarchical acoustics-based sea-ice characterization scheme

to perform science data collection and assess environment risk, a multi-factor terrain-aided

navigation method that leverages bathymetric features and active ocean current sensing

to limit localization error, and a set of energy-optimal propulsive and hotel policies that

react to evolving environmental conditions to improve AUG endurance. Together, these

contributions allow modest-cost AUGs to survey the Arctic more persistently than ever

before.

Although the contributions presented in this thesis are motivated by persistent basin-

scale sea-ice survey in the Arctic using an AUG, the benefits derived from these contributions

are attainable for all AUVs, not just AUGs. Since AUVs are generally slow moving due

to the inescapable drag penalty associated with high underwater speed, AUV dynamics

can easily become dominated by ordinary ocean currents. To avoid catastrophic losses

in performance due to being swept off-course or fighting against adverse currents, AUVs

must be capable of adapting to their environment. Provided that appropriate sensors are

available, this thesis describes how AUVs can actively sense and react to ocean currents

in an energy-optimal manner. Though the need for energy efficiency is exacerbated by

unattended operations in dangerous environments such as the Arctic, improving efficiency

is ubiquitous for all forms of AUV operations. In addition to energy efficiency, navigation
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accuracy is another omnipresent requirement for all AUVs. By leveraging real-time ocean

current and seafloor information, this thesis proposes a method for maintaining bounded

navigation error without relying on acoustic beacons or periodic surfacing for GPS updates.

As a result of devising an improved and self-contained approach for navigation, AUVs can

pursue increasingly risky operations in pursuit of invaluable science data such as sea-ice

survey in the Arctic. Therefore, by improving energy efficiency and navigation accuracy,

this thesis allows AUVs in general to strive towards more exhaustive, more dangerous, and

more scientifically uncharted missions.

6.2 Future Work

Since state estimation and control efficiency are central to the operation of autonomous

systems, the contributions presented in this thesis can be extended in several key areas of

AUG research. Such key areas include: human robot coordination, active sensing, active

localization, execution monitoring, and verification and validation.

Human Robot Coordination

During AUG deployments, the vehicle does not interact with the human operator through

physical interactions like a humanoid personal assistance robot. Instead, the AUG is given

a mission plan to follow or science goals to explore, and the AUG is expected to intermit-

tently report its progress back to the operator during the mission before the vehicle is later

recovered by the operator. Thus, two principal considerations for human robot coordination

emerge: communication and predictability. Intelligent communication allows the AUG to

concisely convey important and actionable information during limited windows of opportu-

nity when the AUG is at the sea surface. This thesis describes a method for transmitting

compressed sea-ice classification information rather than raw acoustic data to reduce the

time required for satellite communication. However, instead of communicating individual

sea-ice classifications, it would be beneficial for the AUG to communicate the synoptic

sea-ice map that has been computed during the mission so that the human operator can

more readily adjust the mission plan if necessary. To accomplish this, previous efforts for

semantic mapping and human-in-the-loop control can be leveraged [Jamieson et al., 2020].

Additionally, predictability of AUGs is important for scheduling coordinated actions such as
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launch and recover. Perhaps unexpectedly, the contributions of this thesis discovered that

the energy optimal speed control of the AUG leads to fairly constant speed over-ground

regardless of the ocean current conditions, as shown in Table 5.3 and Figure 5-10. As a

future work item, it would be interesting to explore how predictable AUG behavior such

as consistent over-ground speed can be exploited by multi-agent teams, such as human

operators planning recovery operations or surface vessels supporting submerged vehicles.

Active Sensing

Active sensing tasks the robotic agent to adaptively plan sequences of control commands

to satisfy some sensing objective; both sensor control variables and propulsive control vari-

ables are considered by the active sensing system. This thesis explores how sensor control

variables, namely the control parameters of the mechanical scanning imaging sonar and the

duty cycling of scientific equipment, could be actuated in response to sea-ice characteriza-

tion objectives while maintaining energy efficiency. To further develop the active sensing of

sea-ice surveying AUG, it would be valuable to include a science-driven hybrid mission and

path planner that allows the AUG to sample the most interesting locations of the Arctic

sea-ice cover [Smith et al., 2011, Ayton et al., 2019b, Ayton et al., 2019a]. For example,

in the pursuit of characterizing the impact of emergent Arctic dynamics on annual sea-ice

cover, it would be especially informative for the AUG to retrieve samples at the edge of the

Marginal Ice Zone (MIZ), where the precise location of the MIZ boundary is poorly defined

at the beginning of the mission.

Active Localization

Active localization is effectively a subset of active sensing, whereas the primary sensing

objective of the AUG is minimizing navigation uncertainty. As discussed in Chapter 4,

the navigation performance of the AUG is dependent on observable environmental features

and path geometry. Path geometry is important for localization because relatively simple

path geometry leads to more accurate ocean current estimation by the DVL-Odo module.

Thus, the hybrid mission and path planning module can actively seek out trajectories that

allow the AUG to localize itself with respect to the ground-truth bathymetric map [Censi,

2006, Häusler et al., 2013, He et al., 2011]. For example, the AUG path that leads to the

best navigation solution may be significantly longer in terms of distance traveled than the
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direct path to the goal.

However, the path that leads to the best navigation solution may also be more dangerous

in terms of the threat of collision with the seafloor. To account for the risk of collision, it may

be possible to prescribe convex exclusion zones in the environment using the approximate

convex decomposition (ACD) algorithm [Lien and Amato, 2004, Lien and Amato, 2007] that

are constructed based on dynamic constraints of the vehicle such as maximum ascent angle.

Then, these the active localization is tasked with planning a trajectory that maximizes

navigation performance subject to the constraint that the trajectory does not coincide with

any exclusion zones. The necessity for exclusion zones stems from the fact that several

path planning modules rely on convex optimization for planning trajectories [Ono et al.,

2013, Fernandez-Gonzalez et al., 2017].

In addition to trajectory planning for active localization, other sensor control parameters

like AUG pitch and adaptive hotel load management can be optimized with respect to

AUG localization. Therefore, active localization should be one of the prominent objectives

considered by the multi-objective mission planning system, along with energy efficiency and

science data collection.

Execution Monitoring

An execution monitoring system allows a robotic agent to determine when plan execution

does not evolve as intended, thus allowing the agent to identify when mission replanning

is necessary. The need for an execution monitoring system stems from uncertainties in the

robot or uncertainties in the environment, where uncertainty may originate from missing

information, unreliable resources, stochastic phenomena, or inherently vague concepts [Pet-

tersson, 2005]. For example, the evolution of sea-ice cover in the Arctic is a stochastic

process that is driven by ocean currents and atmospheric conditions, both of which are also

uncertain processes. Therefore, the AUG mission planner has a limited ability to identify

safe surfacing areas at the onset of the mission. Thus, an execution monitoring system is

necessary to evaluate sea-ice classifications leading up to an intended surfacing location to

decide whether or not the environment is sufficiently safe to surface. Execution monitoring

onboard AUGs has demonstrated success in the past [Smith et al., 2012, Timmons et al.,

2016], but future work must extend execution monitoring capabilities to handle domain-

specific tasks such as surfacing from underneath ice cover.
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Verification and Validation

The analysis presented in this thesis was performed on real AUG and sensor data, but

the analysis itself was performed during offline investigation. That said, to realize the

potential of the contributions discussed in this thesis, the methods must be operationalized

to run onboard the vehicle during field deployments. To do so, a sequence of verification

and validation steps should be pursued, including simulation testing, bench testing, and

field testing. Since sea-ice survey in the Arctic is inherently very dangerous for AUGs,

it is important to make sure each software and hardware component is properly vetted

before Arctic sea-trials. To do so, rigorous simulation testing can be performed to assure

robustness, and analog sea-ice survey missions can be conducted locally where the threat

of vehicle loss is significantly lower.

6.3 Conclusion

By enhancing the autonomous capabilities of AUGs via improvements to onboard environ-

mental sensing, unattended navigation, and energy optimal control, it is possible to pursue

increasingly daring missions such as basin-scale sea-ice surveys in the Arctic; chasing the

vision shaped by Henry Stommel in 1989.

“I walk into our control room, with its panoply of views of the sea. There are

updated global pictures from the remote sensors on satellites, there are evolving

maps of subsurface variables, there are charts that show the position and status

of all our Slocum scientific platforms, and I am satisfied that we are looking at

the ocean more intensely and more deeply than anyone anywhere else.”

[Stommel, 1989]
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