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Abstract

Position-tracking is a useful primitive in a wide variety of domains, but positioning
at the intersection of robust, accurate, and cheap has remained elusive. Radio-based
techniques offer the potential to determine position reliably without relying on line-of-
sight visibility or integration methods. Recent work has demonstrated the feasibility
of passive UHF RFID tags as cheap tracking targets but has yet to prove its worth for
interactive applications. In this thesis, I explore the possibility of RFID localization
for interactive systems that require high throughput and low latency. I contribute an
SDR-based localization system and its characterization, a library that abstracts away
protocol-level details, and two interactive applications that demonstrate the system’s
capabilities.
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Chapter 1

Introduction

Knowing where things are is fundamental to interpreting and reacting to the world.

Humans perform localization operations constantly and subconsciously, relying on

light, sound, and touch to determine the location of objects in their environment,

and employing proprioception (also known as kinesthesia) to determine their own

position and pose.

Attempts to grant the same skills to machines have largely focused on bringing

machines the same senses humans use. Computer vision approaches remain popu-

lar; submarines use sound for underwater localization; the Roomba relies entirely on

touch, via bumping into things; and quadcopters and autonomous vehicles rely on a

kind of proprioception afforded by accelerometers.

It is natural that we have pursued these lines of development; they occur to us

first and are the easiest for us to conceptualize, as many of us have ample experience

with those sensory mediums ourselves. Their limitations similarly “make sense” to

us: if a webcam or a Kinect cannot see someone’s pose behind a wall, well, of course

it can’t—after all, we can’t either. This line of thinking has especially influenced

the fields of Human-Computer Interaction and Robotics, on the basis that it may be

easier to interact with (and reason about) machines that are more like us.

But the limitation is artificial. We have technology that can sense what we cannot,

senses without human analogy. Foremost among these is radio-based sensing, which

has been only occasionally featured in HCI and instrument design (as compared to
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more popular methods like vision; the Theremin [3] represents an early exception)

but has played an essential role in defense since WWII, in the form of radar [4].

Compared to more common sensing mechanisms in interactive applications, such as

vision and acceleration, radio offers the ability to sense through many obstructions

while avoiding estimation drift.

Radio-based sensing has its own challenges. It’s easy enough to isolate objects

that are moving at a different speed from the rest of the environment (hence radar

guns), but separating non-moving objects, or identifying individual objects generally,

is difficult and expensive. Radio-frequency identification (RFID) technology [5] ad-

dresses these problems using devices (“tags”) that can selectively respond to radio

signals and thus differentiate themselves from the environment and from each other.

Conveniently, these tags are often cheap and battery-free, and they are already in

wide circulation today for inventory management.

In this thesis, I explore the feasibility of using RFID localization in interactive

systems and the benefits and drawbacks of RFID sensing as compared to more con-

ventional methods.

1.1 Related Work

There are a few categories of work that have approached this point from different di-

rections. The most closely related efforts, from a technical perspective, are those that

deal with high-resolution RFID localization. These include RF-IDraw [22] (which

tracks relative motion accurately, but not absolute position), RFind [16] (which com-

putes absolute locations at a low framerate), and TurboTrack [15] (which computes

absolute locations quickly but relies on object motion to resolve positional ambigu-

ity). My work builds directly on this legacy, drawing on techniques from RFind and

TurboTrack to estimate location quickly and robustly.

Other projects have used RFID tags to faciliate Human-Computer Interaction

without localization. These include WISP [20] (which transmits sensor readings as

tag IDs), WiSh [11] (which uses phase information to determine the shape of an

16



object), PaperID [13] (which detects when humans touch RFID tags), and RFIBlocks

[14] (which computes the configuration of tagged building blocks). These efforts are

in the same vein of synthesis as my project, but they provide more limited measures

than tag position. General-purpose localization could enable these applications and

more, without requiring modification of existing RFID tags.

Finally, there are a few projects I’d like to mention that allow a human to manip-

ulate objects in the environment to control the state of a computing system. Makey

Makey [19] enables a user to map physical touch events (like “squeeze a banana”) to

more conventional input events (like “press ‘K’ ”). Reactable [12] uses vision to ob-

serve the position of marked cubes, which control the state of a musical synthesizer.

The Reality Editor [10] uses vision to identify electronic devices in the environment

and allows the user to see and manipulate their internal state.

I aim to bridge these categories with my system, which enables high-resolution

RFID localization as a source of input for tangible, interactive systems.

1.2 Contributions

In this thesis, I present:

1. BackTrack, a complete system for localizing multiple RFID tags quickly and

accurately enough to viably support interactive applications, built on off-the-

shelf software radios.

2. Characterization and evaluation of key components of the system, including

decoding, localization, and tracking.

3. An application programming interface (API) and library that abstract away the

details of how the system works, and two demonstration applications using that

library.

Like its predecessors RFind and TurboTrack, BackTrack performs wideband local-

ization of off-the-shelf passive RFIDs to compute a tag’s location relative to the an-

tennas (rather than determining its relative motion as in RF-IDraw). Unlike RFind,
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it can localize quickly and often, decreasing time per estimate from about 6.4 sec-

onds down to about 0.03, with a corresponding improvement of framerate by over

two orders of magnitude—putting the system within a plausible range for real-time

interaction [16]. Unlike TurboTrack, it can use a bandwidth beyond 100 MHz for

localization; as it relies on the tuning range rather than the sampling rate, this band-

width can obtained with cheaper hardware [15]. Due to the increased bandwidth, it

requires minimal post-processing of location estimates, and can accurately estimate

the location of static tags (in addition to moving tags).

More broadly, whereas previous systems served as proof-of-concept, this system

takes the techniques that its predecessors proved and optimizes, clarifies, and com-

bines them in a robust architecture. The end result is a complete platform for tracking

tagged objects and building interactive applications.
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Chapter 2

System Overview

In this paper, I present a system for tracking RFIDs for interactive applications. This

system is comprised of three major components as shown in Fig. 2-1. From low-level

to high-level, these are: software-defined radio hardware and the code that drives it,

a DSP component that estimates wireless channels and tag locations, and a library

that allows applications to control the operation of the radio and extract computed

position data without handling any radio- or protocol-level details. On top of these, I

include two small applications that each allow a user to interact with virtual systems

by manipulating physical objects in their environment.

The goals of this architecture are ensuring that the system can run the radios

continuously (without underflow) and query the RFID tags as fast as possible to

Figure 2-1: System Architecture
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maximize throughput, and isolating the end-user application from the rest of the

system, so that processing radio data does not block or interrupt user interaction.

Brief descriptions of these three components follow:

1. The lowest-level component is the radio hardware and the code that deals with

it. The system is built to run on USRP N210 software radios.[18]. It runs the

radios constantly to maximize framerate, and passes on the relevant RX data to

the next stage, localization. This component is isolated in its own OS process

to minimize the risk of late commands or TX underflow, which can corrupt

commands sent to the tag or cause it to lose power. This is the only part of the

system that deals with the radio hardware, so it’s the only part that needs to

change if the system is ported to another SDR platform (such as bladeRF, as

discussed in Chapter 7).

2. Next, the localization process gets the raw RX data from the query process

via a pipe. It then decodes the RN16 packets to find the reflective and non-

reflective segments in each hop, computes channel estimates for each frequency,

performs a super-resolution algorithm to compute distance estimates from each

antenna pair, and finally performs multilateration to determine the best point

of intersection. These distance estimates are then passed on to the application

process via the library.

3. The library should provide a simple, high-level API for acquiring location es-

timates for RFID tags. Hence, it consists of only a handful of functions; these

are described in Table 4.1.

On top of these three components, a programmer can build their application. This

is the part of the system that faces the user. It can use the library to obtain RFID tag

locations, which serve as the user’s input to the system, and it may respond by one

or more modes (visually, aurally, tangibly via actuators, etc.). The possibilities for

this part of the system are limited only by the imagination. In this thesis, I provide

two small applications to give a sense of what the system can do.

In the following sections, I describe each component in detail.
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Chapter 3

Operation

The previous chapter laid out the three main components of the system: the query

process, the localization process, and the application library. This chapter describes

in detail the operation of the the first two components: how the system communicates

with the tag to determine its wireless channel, and how the system uses these wireless

channels to localize the tag. The next chapter deals with the remaining component.

At a high level, the system performs the following steps to determine the position

of an RFID tag:

1. Power up and query the RFID tag.

2. Simultaneously, transmit a narrowband low-power signal outside of the ISM

band, which is also backscattered due to the tag antenna’s wide frequency re-

sponse.

3. Decode the tag’s response to determine reflective and non-reflective states, and

compute a narrowband channel estimate.

4. Repeat #1–3 at several different out-of-band frequencies to stitch together a

wideband channel estimate.

5. Use the wideband channel to estimate coarse distances from each TX/RX an-

tenna pair.
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Figure 3-1: The Principle of Backscatte1

6. Use a super-resolution algorithm to compute a fine distance from each TX/RX

antenna pair.

7. Perform multilateration on the fine distances to estimate location.

The following subsections describe these steps in greater detail.

3.1 Backscatter Model

Before I describe how the RFID positioning system works, let me provide a primer on

how RFID communication works. This section provides a brief introduction to RFID

and introduces the problem of decoding addressed in the next section.

A major part of the appeal of RFID tags is their low power consumption; many

tags require no battery and are entirely passive. This capability derives from their use

of backscatter communication, as depicted in Figure 3-1. Rather than transmitting

their own radio signal, RFID tags switch their antenna impedance to communicate

with the reader. This switching between “reflective” and “non-reflective” states, like a

signal mirror reflecting the sun’s light, enables communication by redirecting external

power rather than expending internal power.

Backscatter presents its own challenges. The observable change from the tag’s

backscattering may be several orders of magnitude weaker than the signal transmitted
1Figure on the left adapted from [16] with permission.
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Figure 3-2: Backscatter in the Complex Plane

by the reader, leading to the classic self-jamming problem. This can be mitigated by

estimating and subtracting the transmitted signal in hardware, but, as Buettner and

Wetherall demonstrated, reads can range up to 6 meters even without this special

hardware.[8]

As shown in Figure 3-2, the two tag states (reflective and non-reflective) corre-

spond to two clusters of samples in the complex plane. The difference between those

clusters is the tag’s channel, which provides physical information about the tag’s lo-

cation relative to the antennas. To localize, we need to compute the channel, which

means we need to compute the difference between the reflective and non-reflective

states, which means we need to identify which received samples correspond to each

state.

Assuming single-tap channels for simplicity, we can model the system’s reception

of the tag backscatter as:

𝑦[𝑚] = (ℎ+ 𝑠[𝑚]ℎ𝑡)𝑥[𝑚] + 𝑤[𝑚]

where ℎ is the underlying environmental channel (defined as the midpoint between

the tag’s two states for convenience), ℎ𝑡 is the tag’s channel, 𝑠[𝑚] is the tag’s current

state (e.g. 1 for reflective, -1 for non-reflective), and 𝑤[𝑚] is the noise. 𝑥[𝑚] is

the transmitted signal, which is a pure tone; once modulated to baseband, we can
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disregard it as a constant factor.

In the next two sections, I describe how we can decode the received packet (i.e.,

recover 𝑠[𝑚]) as well as estimate the channel over the duration of a packet ℎ𝑡 in order

to use it for localization.

3.2 Communication

The previous section introduced backscatter and explained the information needed to

localize the tag. This section explains how we obtain this information, determining

when the tag is reflective or non-reflective (that is, 𝑠[𝑚]) in order to estimate the

channel ℎ𝑡.

3.2.1 RFID Coding Schemes

An RFID tag communicates with a reader by switching between reflective and non-

reflective states. The EPC Gen2 protocol specifies two coding schemes for tag-to-

reader communication: FM0 and Miller. FM0 supports higher data rates at the

potential expense of decoding accuracy (more bit errors); Miller, which uses longer

symbols for each bit, allows for lower error rates at the expense of the data rate.2

For simplicity, we consider only FM0 in this thesis. FM0 allows for greater maximum

throughput while still allowing for a reasonable spectrum of throughput-accuracy

tradeoffs, since we can set the backscatter link frequency (BLF) independently of the

encoding scheme.

FM0 encodes bits as in Figure 3-3. ‘0’ and ‘1’ are the same length (1/𝐵𝐿𝐹 ). ‘0’

flips in the middle, while ‘1’ does not. Bits may appear in either orientation, and the

amplitude always flips at bit boundaries. The rest of this section considers how to

accurately decode FM0 data.

2There are three variants of Miller, but all of them are more redundant than FM0.
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Figure 3-3: In FM0, there are four symbols (top), two each for data-0 and data-1, as
each may appear flipped. FM0 requires that there always be a flip between adjacent
bits, as shown in the enumeration of possible two-bit sequences (bottom).

3.2.2 Packet Parameter Estimation

Before we can decode the bits, we must first determine where they are. Thus, we

must perform packet detection to find the start of the packet and estimate the BLF

to determine bit boundaries.

The EPC Gen2 specification includes a Tag→Reader preamble for packet de-

tection [1]. The preamble includes a violation of the normal FM0 encoding rule to

avoid confusion with valid bit-sequences; by correlating with the preamble, we can

determine the where the packet begins. Performing the correlation requires that we

already have a template for the preamble. The specification gives us the content

of the preamble but not the precise BLF of the packet, which (per the specification)

may vary from what the Reader requested. This poses a particular problem for longer

packets (as in EPC packets, or RN16 packets encoded with Miller rather than FM0).

To decode accurately, we need to estimate both the start of the packet and

the backscatter link frequency. Together, these provide us with windows for each

reflective/non-reflective state in the packet, which we can then average and decode as
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1 0 1 0 violation 0

Figure 3-4: FM0 Packet Preamble. The violation (the missing flip between the fourth
and fifth bits) allows the preamble to be distinguished from normal FM0 bit sequences.

described in the next section. To estimate these packet parameters, I use a technique

akin to those found in GPS systems, which search a 2D space of times and frequencies

to find the best match for the received data.[9]

This approach raises two questions:

1. What are the bounds of the search in each dimension?

2. How do we score each point in the search space?

The EPC Gen2 specification answers the first question [1, Table 6-16]. The time

𝑇1 between the end of the reader’s command and the start of the tag’s response is

bounded by the formula:

𝑀𝐴𝑋(𝑅𝑇𝑐𝑎𝑙, 10𝑇𝑝𝑟𝑖)×(1−|𝐹𝑟𝑇 |)−2𝜇𝑠 ≤ 𝑇1 ≤ 𝑀𝐴𝑋(𝑅𝑇𝑐𝑎𝑙, 10𝑇𝑝𝑟𝑖)×(1+|𝐹𝑟𝑇 |)+2𝜇𝑠

where 𝑇𝑝𝑟𝑖 = 1/𝐵𝐿𝐹 , 𝐹𝑟𝑇 is frequency tolerance, and 𝑅𝑇𝑐𝑎𝑙 is determined by the

reader. For a BLF of 40 kHz and an RTcal of 72𝜇𝑠, this amounts to a range of 67.12𝜇𝑠

to 76.88𝜇𝑠. Additionally, the specification bounds the search space in frequency,

specifying a frequency tolerance of ±4% for 40 kHz BLF (38.4 kHz to 41.6 kHz) [1,

Table 6-9].

The second question, of how to score each parameter in the search space, is less

clear-cut. Correlation with the preamble makes sense and is typically considered

sufficient for packet detection, but it leaves out the information provided by the rest

of the packet, the contents of which are unknown. However, we know that regardless

of the encoded bits, the sign must flip at bit boundaries, and we can use this to

calculate correlation with the entire packet despite not knowing its contents.3

3Note that taking the sign of the amplitude difference at each bit boundary is essentially equiv-
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Figure 3-5: Packet Parameter Estimation. On top, the FM0 data; on the bottom,
the results of the parameter scoring function, with the chosen parameters circled.

First, we estimate the channel by taking the inner product of the signal with the

known preamble (at the candidate offset and frequency). Then we process the rest

of the packet, projecting the difference at bit boundaries (which are guaranteed to

flip) on to the channel estimate. Depending on the result of this projection (positive

or negative), we add the difference or its negation on to the channel estimate. After

finishing the packet, the magnitude of the channel estimate, which represents the

separation between the presumed reflective and non-reflective states, provides a score.

We select the parameter pair with the highest score as the best estimate of the packet

parameters.

Fig. 3-5 shows the results of this process. The heatmap shows the amplitude of

the search space over BLF and start index, where navy blue a low score and yellow

indicates a high score. The figure also shows how the system selects the correct

(BLF,index) pair by choosing the highest value in the search space.

Pythonic pseudocode for this process is included in Listing 3.1. Note that a

margin argument is included which specifies how many samples to ignore at the

alent to deciding the packet contents, as discussed in the next section.
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edges of half-bits (as these may occur when the tag is switching between reflective

and non-reflective states and weaken the channel estimate).

This approach to parameter estimation uses the entire packet, estimates both the

packet start and frequency, and works well in practice. Aside from channel noise, the

only thing that could throw off the windows is variation within the packet, but this

is tightly limited by the specification [1, Table 6-9] to ±2.5%, and (since our BLF

estimate is estimated from the whole packet, rather than the preamble alone) the

error does not accumulate.

3.2.3 Maximum Likelihood FM0 Decoder

Now that we know where the packet is and where the bits are within the packet,

we need to decode those bits. The definition of FM0—0 flips in the middle and 1

doesn’t—suggests a simple strategy for decoding: look in the middle of each bit and

see if it flips. In this section, I demonstrate that, under Additive White Gaussian

Noise (AWGN), this decoding strategy is not optimal, and I introduce a simple im-

plementation of the optimal decoder. For simplicity, I assume we are given a real

FM0 signal with zero mean and one sample per half-bit.

First, consider the simple approach of checking for a flip in the middle of each bit.

Given a real FM0 signal with zero mean, this amounts to sign comparison between

the first and second half of each bit. As we assume the bit consists of two samples,

this is a sign comparison between the two samples. With this decoding strategy, an

error occurs if EITHER noise pushes the first sample OR the second sample to other

side of zero (flipping) their sign, but not if it pushes both over.

But this naive approach throws away useful information. In particular, it does not

make use of the fact that flips are guaranteed at bit boundaries; equivalently, it fails

to take into account the fact that FM0 is actually a stateful encoding. As described in

the EPC Gen2 specification, FM0 actually has four states, with transitions depicted

in 3-6.

We can take advantage of this statefulness to build a more robust decoder. The

flip at the boundary between bits, beyond serving as a convenience for clock synchro-
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1 def estimate_parameters(data, packet_length, margin):
2 "Estimate the start index and frequency of an FM0 packet."
3

4 # Half-bits in the preamble; 1 = reflective, -1 = non-reflective.
5 preamble = [1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1]
6 best_score = -infinity
7 best_parameters = (0, 0)
8 for blf in FREQ_CANDIDATES:
9 step = SAMPLE_RATE / blf

10 for i in OFFSET_CANDIDATES:
11 channel = 0
12 # Compute channel estimate from preamble.
13 # This requires the the mean of the preamble is zero;
14 # i.e., reflective and non-reflective states are balanced.
15 for j in range(len(preamble)):
16 start = round(j * step / 2 + i + margin)
17 end = round((j + 1) * step / 2 + i - (margin - 1))
18 channel += preamble[j] * mean(data[start:end])
19

20 # Refine estimate using bit boundaries in the rest of the packet.
21 for b in range(packet_length):
22 # Average the half-bit before the boundary.
23 left_start = round((6.5 + b) * step + i + margin)
24 left_end = round((7 + b) * step + i - (margin-1))
25 left_sample = mean(data[left_start:left_end])
26 # Average the half-bit after the boundary.
27 right_start = round((7 + b) * step + i + margin)
28 right_end = round((7.5 + b) * step + i - (margin-1))
29 right_sample = mean(data[right_start:right_end])
30 # Project difference on to channel estimate.
31 diff = right_sample - left_sample
32 proj = diff.real * channel.real + diff.imag * channel.imag
33 # Update channel estimate.
34 channel += sign(proj) * diff
35

36 score = abs(channel)
37 if score > best_score:
38 best_parameters = (blf, i)
39 best_score = score
40

41 return best_parameters

Listing 3.1: Packet Parameter Estimation
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Figure 3-6: FM0 State Machine. Edges indicate transitions based on the next encoded
bit. Inside each state is the corresponding encoder output.

nization, can serve as a useful constraint in decoding. Looking at the two samples

inside any bit, there are four possibilities allowed by the encoding: HIGH-HIGH

(1), LOW-LOW (1), HIGH-LOW (0), and LOW-HIGH (0). But looking at the two

samples at a bit boundary, there are only two possiblities allowed by the encoding:

HIGH-LOW and LOW-HIGH. Intuitively, because there are fewer legal possibilities

between bits than within them, it’s more reliable to decode the bit boundaries rather

than the bits themselves. Once the bit boundaries have been decided, these directly

imply the contents of the bits. For example, if a HIGH-LOW boundary is followed

by a LOW-HIGH boundary, then the inside must (1).

The above passage is intended to provide an informal description of the optimal

decoder and intuition for why it outperforms the simple decoder. A more rigorous

analysis follows, assuming Additive White Gaussian Noise (AWGN).

First, consider the naive FM0 decoder, which detects whether there is a flip in the

middle of the bit. Assume we have one sample per window. Call the amplitude of the

signal 𝑎, the noise added to the first sample −𝑛1, and the noise added to the second

sample 𝑛2. Assume we are decoding coherently, so that the noise orthogonal to the

FM0 signal is discarded; the channel has noise power 𝑁0, but only 𝑁0/2 is relevant

to our decoding, so 𝑛0, 𝑛1 ∼ 𝒩 (0, 𝑁0/2).

Detecting a flip means registering if the first and second samples have the same

sign (data-1) or opposite signs (data-0). There are four cases to consider, as depicted
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Figure 3-7: Naive FM0 Decoder: Four cases

in Fig. 3-7.4 In case (1), the effect of noise is small on both samples (𝑛1 < 𝑎 and

𝑛2 < 𝑎), then we see the samples are positive and negative, respectively. The samples

have opposite signs, so we correctly classify the bit as a 0. In case (2), we experienced

more noise on the first bit, so 𝑛1 > 𝑎 while 𝑛2 < 𝑎. Then 𝑎−𝑛1 < 0 and −𝑎+𝑛2 < 0,

so we observe that both samples are negative and misclassify the bit as a 1. We get

the same result in case (3), where 𝑛2 > 𝑎 while 𝑛1 < 𝑎: both samples are positive,

so we decode a 1. In case (4), the noise is large on both samples, so that 𝑛1 > 𝑎 and

𝑛2 > 𝑎. In this case, both samples flip from their “intended” signs and we decode a 0

again.5

Let 𝑝 be the probability that 𝑛1 > 𝑎. As 𝑛1 and 𝑛2 are drawn from the same

distribution independently, this is also the probability that 𝑛2 > 𝑎. An error occurs

if either 𝑛1 > 𝑎 or 𝑛2 > 𝑎, but not both. 𝑃 (𝑛1 > 𝑎 ∨ 𝑛2 > 𝑎) = 𝑝 + 𝑝 − 𝑝2; to

account for the “but not both”, we subtract out 𝑃 (𝑛1 > 𝑎 ∧ 𝑛2 > 𝑎) = 𝑝2 to get

𝑃 (𝑛1 > 𝑎 ⊕ 𝑛2 > 𝑎) = 2𝑝 − 2𝑝2 = 2𝑝(𝑝 − 1), which is the probability of a decoding

error with this scheme. 𝑛1, 𝑛2 ∼ 𝒩 (0, 𝑁0/2), so 𝑝 = 𝑃 (𝑛1 > 𝑎) = 𝑄( 𝑎√
𝑁0/2

) and the

bit error rate is 2𝑄( 𝑎√
𝑁0/2

)(1−𝑄( 𝑎√
𝑁0/2

)).

We can quantify the performance of this decoding scheme in terms of SNR (signal-

to-noise ratio) and BER (bit error rate); SNR is a common metric for measuring the

quality of an information channel, and determining BER as a function of SNR is a

4WLOG, we assume the bit in question is actually a data-0.
5In this case, we make two mistakes due to noise but they cancel out; we’re so wrong, we’re right.
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Figure 3-8: An FM0-encoded bit and its neighboring half-bits, with noise.

standard way to quantify the performance of a decoding scheme. For further reference,

see [21]. For this naive decoding scheme, the SNR (defined as signal power divided

by the noise power per symbol) is 𝑎2/𝑁0, and thus the BER, as a function of SNR, is

2𝑄(
√
2𝑆𝑁𝑅)(1−𝑄(

√
2𝑆𝑁𝑅)).

Now let’s consider the maximum likelihood decoder. There are a few ways of

looking at it. One way is the view the task still in terms of checking the middle of the

bit for a flip, but now with error-correction via the boundary-flip constraint. Let’s

zoom out from the bit we’ve looking at to see around it:

Because FM0 guarantees sign flips at bit boundaries, we expect that −𝑎+𝑛0 and

𝑎 − 𝑛1 have opposite signs. If that’s not the case, one sample must have pushed

to the wrong side of the line by noise, and we should correct for it. But which is

it—the second sample of the preceding bit, or the first sample of this bit? Since noise

values closer to 0 are more likely (with a Gaussian distribution), it’s more likely that

whichever sample has the smaller magnitude is the one that has been pushed over the

line. Thus, before we use the samples in the current bit to decode it, we can correct

them against the adjacent samples.

After we’ve applied the correction, we’re back where we were before: we have two

boolean values. If exactly one is wrong, the decoded bit is wrong; if zero or both

are wrong, the decoded bit is right. We end up again with 2𝑝(1 − 𝑝), where 𝑝 is
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Figure 3-9: BER vs. SNR in theory and simulation. Simulation conducted by en-
coding 220 random bits, injecting the appropriate amount of Gaussian noise for the
desired SNR, and decoding.

the probability of one of our values being flipped. What is 𝑝 now, after boundary-

correction?

With correction, what matters is that −𝑎+𝑛0 < 𝑎−𝑛1. They can have the same

sign, but as long as −𝑎+𝑛0 < 𝑎−𝑛1, we can correctly decide that the first sample of

the bit, 𝑎− 𝑛1, should be considered HIGH. We’ll make an error only if the relative

ordering of the samples is switched, so that −𝑎 + 𝑛0 > 𝑎 − 𝑛1. Rearranging terms

shows that this occurs when 𝑛0+𝑛1 > 2𝑎. As 𝑛0, 𝑛1 ∼ 𝒩 (0, 𝑁0/2), the sum 𝑛0+𝑛1 ∼

𝒩 (0, 𝑁0). Thus, 𝑝 = 𝑃 (𝑛0 + 𝑛1 > 2𝑎) = 𝑄( 2𝑎
𝑁0

). Plugging this into the expression

above, we have an overall error probability of 2𝑝(1− 𝑝) = 2𝑄( 2𝑎
𝑁0

)(1−𝑄( 2𝑎
𝑁0

)), which

in terms of SNR is 2𝑄(2
√
𝑆𝑁𝑅)(1−𝑄(2

√
𝑆𝑁𝑅)). Compared to the naive decoder,

this yields the same error rates with half the SNR, providing an effective gain of

10 log10 2 ≈ 3𝑑𝐵 over that decoding scheme.

These relationships are summarized in Fig. 10. Experimental results are included

in section 5.1.

A few points worth mentioning before moving on:
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• FM0 is stateful, and can be viewed as a simple convolutional code. In general,

the maximum likelihood decoder for a convolutional code is the Viterbi decoder,

which employs dynamic programming. In the case of FM0, this can be simplified

to the scheme described above, since any half-bit can constrain only the half-bit

on the other side of its neighboring boundary.

• In other words, the contents of any FM0 bit are not independent of the contents

of neighboring bits, due to the guaranteed flip at boundaries—but the half-bits

on either side of a boundary are independent of the rest of the transmission.

• The naive decoding scheme is equivalent to BPSK decoding the half-bits fol-

lowed by XORing non-overlapping bit pairs, while the ML decoding scheme is

equivalent to Manchester decoding the boundaries followed by XORing over-

lapping bit pairs. The gain provided by the ML scheme over the naive scheme

corresponds to the gain provided by Manchester over BPSK.

3.3 Localization

3.3.1 Wideband Channel Estimation

Obtaining channel information across a wide bandwidth is essential to localizing ac-

curately. TurboTrack [15] used OFDM and software radios with a large instantaneous

bandwidth to get channel estimates spanning 100 MHz; unfortunately, a large instan-

taneous bandwidth is both expensive and strictly limited by hardware. TurboTrack’s

predecessor, RFind [16], instead stitched together a wideband channel estimate from

many narrowband estimates by retuning the RF frontend between queries. Unfortu-

nately, this process was relatively slow, and produced roughly one location estimate

every 6.4 seconds, making it unsuitable for interactive applications.

This system follows RFind’s frequency-hopping approach (heavily optimized, as

discussed in Secs. 3.4.1 and 4.2.2), enabling it to use a large bandwidth on cheaper

hardware. While powering up and querying the RFID at 925 MHz, the system si-

multaneously transmits a low-power signal at another frequency: 800 MHz, then 820,
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Figure 3-10: A wideband channel estimate, stitched together via frequency-hopping

840, and so on up to 1100 MHz.

At each out-of-band frequency, we decode the tag’s in-band response (as described

in Sec. 3.2) and use it to determine the portions of the signal where the tag is reflective

or non-reflective (𝑠[𝑚], from Eq. 1). We then average the corresponding samples in

the out-of-band signal to obtain two channel estimates, corresponding to the reflective

and non-reflective states of the tag. We subtract one from the other to obtain ℎ𝑡, a

narrowband estimate of the tag’s wireless channel.

Computing narrowband estimates at all 15 out-of-band frequencies yields a wide-

band channel estimate ℎ𝑡[𝑘], for 𝑘 = 0 . . . 14.

This process must be performed once with the tag at a known location to ob-

tain calibration data. Subsequent channel estimates are divided by the calibration

estimate, which corrects for the uneven frequency responses of the antennas (the

system’s and the tag’s) and the part of the channel from the SDR to the antennas

(which provides no information as to the tag-antenna distance). After division, the

quotient corresponds to the difference between the tag’s distance and its distance at

calibration, so we add the calibration distances back in the next step of the process.
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Figure 3-11: The IFFTs of two channel estimates captured at different distances (top),
and the IFFT of one divided by the other (bottom). Division is deconvolution in the
time domain, so the peak in the bottom plot corresponds to the difference in distance
between the two measurements.

3.3.2 Distance Estimation

The wideband channel estimates, covering a bandwidth of 300 MHz, can provide

us with a round-trip distance resolution of 𝑐
𝐵𝑊

= 2.997×108𝑚/𝑠
3×108𝐻𝑧

≈ 1𝑚 (amounting

to a one-way resolution of 0.5m), but this is insufficiently accurate for fine human

control. Obtaining centimeter-scale distance resolution from this alone would require

a bandwidth of 𝑐
.02𝑚

= 15𝐺𝐻𝑧, which is infeasible for both technical and regulatory

reasons. Instead, this system makes the most of its bandwidth by employing the same

super-resolution technique developed in recent wideband RFID localization systems:

1. Perform an interpolated IFFT on the wideband channel estimate to obtain a

coarse distance estimate.

2. Use the coarse distance estimate with the IFFT to obtain filtered phases.

3. Use the filtered phases to estimate a fine distance estimate.

The filtered phases are then used to bridge the gap to fine resolution on the

assumption of sparsity of multipath near the tag. The essence of this technique was
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introduced and described in prior work [16, Section 4.2], but it is sufficiently important

to this system that I describe it here and highlight some optimizations.

Motivation

To understand this procedure, consider the use of phases in localization. In an ideal

environment with no multipath, measured phases correspond directly to the line-of-

sight (LOS) distance. If the distance relative to the calibration distance was 𝑑, then

the phase 𝜑 at wavelength 𝜆 would be 2𝜋𝑑
𝜆

mod 2𝜋. This would allow computing

precise distances (limited by the precision of the tuning and phase measurement),

but it would result in ambiguities at each multiple of 𝜆. Measuring another phase

𝜃 at a slightly larger wavelength, 𝜆 + 𝜖, would eliminate much of that ambiguity,

because each possible (𝜑, 𝜃) combination would recur only once every 𝜆/𝜖 repetitions

of the longer wavelength, making distances ambiguous at multiples of 𝜆2

𝜖
+ 𝜆 rather

than 𝜆.6

This approach would work just fine and simplify localization greatly: rather than

many hops over a wide bandwidth, we could make do with just two closely-spaced

channel estimates. Staying in band and querying at 900 and 901 MHz would grant

us 𝑐
901𝑀𝐻𝑧−900𝑀𝐻𝑧

≈ 300𝑚 of unaliased range with accuracy limited only by our

precision in measuring phase. So, why doesn’t every RFID reader come with fantastic

localization capabilities?

The problem is multipath. All of the above works accurately, quickly, and with

a narrow bandwidth on the assumption that phases correspond to the line-of-sight

distance. In practice, they do not: the signal takes many paths on its route from the

TX antenna to the RX antenna, bouncing off objects and walls, each path traversing

a different distance, each producing a different phase at the receiver. The result is a

garbled sum of complex exponentials with a phase that may differ greatly from that

of the LOS path.

A system entirely reliant on phase would need vanishingly little bandwidth, but

6This is the principle behind aliasing in general; more tightly spaced samples reduce ambiguity
and allow for a larger unaliased domain.
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Figure 3-12: Phases before and after filtering

it would have no way to deal with this problem. A system that didn’t rely on phase

wouldn’t have this problem in the first place, but it would require an enormous

bandwidth. The super-resolution algorithm allows this system to strike a happy

medium: use a wide bandwidth to filter out much of the multipath inteference from

the phases, and then use the filtered phases to estimate distance.

Filtering Phases

RFind presented the following phase-filtering transform, with a proof of its ability to

suppress multipath:

𝜃𝑘 = ̸
𝐾∑︁
𝑖=1

ℎ𝑘𝑒
𝑗 2𝜋

𝑐
(𝑓𝑖−𝑓𝑘)𝑑

𝑐
0

where 𝑑𝑐0 is the coarse distance estimate corresponding to the LOS peak in the

IFFT.7

An intuitive interpretation of this procedure is zeroing out everything except the

LOS path in the time domain, in order to suppress the effect of multipath from
7The LOS peak is estimated as the earliest peak—the first peak that occurs at a distance greater

than the minimum possible distance, which is the distance between the TX and RX antennas. In
practice, the IFFT has sidelobes due to windowing, so the actual peak chosen is the earliest one
above a certain threshold, relative to the largest peak (which might not correspond to the LOS).
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non-line-of-sight paths on phases in the frequency domain. More precisely:

1. Take the interpolated IFFT of the wideband channel estimate, as mentioned

before.

2. Find the peak corresponding to the LOS path and zero-out every other bin in

the IFFT.

3. Take the FFT of this modified array and return the phases of the first 15 bins.

This interpretation suggests that we can use the value from the IFFT peak directly

rather than re-processing the wideband channel estimate. And this special case, in

which we take the FFT of an array with only non-zero value, is well-known: the FFT

of an impulse is constant across frequency, while the FFT of a delay has constant

magnitude and linear phase. By the shift theorem, 𝑥[𝑛− 𝑙] ↔ 𝑒
−𝑗2𝜋𝑘𝑙

𝑁 𝑋[𝑘]. Given the

IFFT as 𝑥[𝑛] and the index of the LOS peak as 𝑖, we can compute the filtered phases

directly as:

𝜃𝑘 = ̸
(︁
𝑥[𝑖]𝑒

−𝑗2𝜋𝑘𝑖
𝑁

)︁
≡ ̸ 𝑥[𝑖]− 2𝜋𝑘

𝑖

𝑁

Fine Distance Estimation

Now we can find the distance estimate that best matches the filtered phases 𝜃𝑘.

RFind proceeded with a clustering optimization algorithm that grouped distances

from each frequency together and computed their cluster error as deviation from the

mean distance. But with the knowledge that the filtered phases are necessarily linear,

we can solve for the best distance directly.

Denote the first frequency of the hops 𝑠, and the step size between hops 𝑡. Then

the 𝑘𝑡ℎ frequency is 𝑠 + 𝑘𝑡, and the 𝑘𝑡ℎ wavelength 𝜆𝑘 = 𝑐
𝑠+𝑘𝑡

. With the phase

𝜃𝑘 = ̸ 𝑥[𝑖]− 2𝜋𝑘 𝑖
𝑁

, we then compute the distance modulo 𝜆𝑘 as

𝑑𝑘 ≡ 𝜆𝑘
𝜃𝑘
2𝜋

=
𝑐
(︀
̸ 𝑥[𝑖]− 2𝜋𝑘 𝑖

𝑁

)︀
2𝜋(𝑠+ 𝑘𝑡)

mod 2𝜋

Replacing the mod 2𝜋 with an integer phase ambiguity term 𝑛 yields:
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𝑑𝑘 =
𝑐
(̸︀

𝑥[𝑖]− 2𝜋𝑘 𝑖
𝑁
+ 2𝜋𝑛

)︀
2𝜋(𝑠+ 𝑘𝑡)

=
𝑐
(︁

̸ 𝑥[𝑖]
2𝜋

− 𝑘 𝑖
𝑁
+ 𝑛

)︁
𝑠+ 𝑘𝑡

The question is then, what choice of 𝑛 brings the distances for each frequency 𝑑𝑘

into agreement best? The ideal would be perfect agreement, where 𝑑𝑘 is constant

across all frequencies. It turns out we can find this by solving for 𝑛 constant across

all frequencies (𝑑𝑛
𝑑𝑘

= 0):

𝑛 =
𝑑𝑘(𝑠+ 𝑘𝑡)

𝑐
+ 𝑘

𝑖

𝑁
−

̸ 𝑥[𝑖]

2𝜋

𝑑𝑛

𝑑𝑘
=

𝑑𝑘𝑡

𝑐
− 𝑖

𝑁
= 0

𝑑𝑘 =
𝑐

𝑡

𝑖

𝑁

𝑛 =
𝑖(𝑠+ 𝑘𝑡)

𝑡𝑁
− 𝑘

𝑖

𝑁
−

̸ 𝑥[𝑖]

2𝜋
=

𝑠𝑖

𝑡𝑁
−

̸ 𝑥[𝑖]

2𝜋

This choice of 𝑛 yields 𝑑𝑘 = 𝑐
𝑡

𝑖
𝑁

, which is independent of 𝑘 and thus constant

across all frequencies (corresponding to 0 cluster error). Of course, this distance is

exactly the coarse distance estimate: 𝑐
𝑡

is the unaliased range (the range the IFFT

encompasses) and 𝑖
𝑁

is the normalized index of the LOS peak in the IFFT.

But this exact solution for 𝑛 is not an integer, and we need an integer number of

wavelengths to reconstruct a distance estimate from phase. The difference between

each 𝑑𝑘 will only grow as we move away from the exact solution, so the lowest-error

cluster can be found directly by rounding 𝑛 to the nearest integer and averaging the

corresponding 𝑑𝑘s.

One last step remains. The nearest integer 𝑛 isn’t always the best distance es-

timate, and sometimes the coarse estimate is right between two clusters, such that

noise can easily cause to system to vacillate between them. To avoid this, the system

employs a simple Markov model of motion at the end of distance estimation, using the
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Figure 3-13: The IFFT magnitude (top), with the coarse distance estimate indicated
by the dashed line. The phase clusters (bottom, gray lines) deviate more further from
the coarse estimate. The line closest to the coarse estimate has the least error and is
the best choice for our final distance estimate.

best two distance candidates (the floor and ceiling of the exact solution for 𝑛). For

each new measurement, it uses the forward algorithm to determine the probabilities

for the new candidates and picks the highest one to pass in to the next stage.8

3.3.3 Location Estimation

Once we have distance estimations for every out-of-band TX/RX antenna pair, we

combine them through multilateration to compute a 2D or 3D location estimate

(depending on the configuration). Unlike previous systems, which computed exact

solutions for pairwise intersections with a fixed antenna configuration, this system

treats multilateration as an optimization problem and employs a standard non-linear

least squares solver [2] to compute the final location.

For 𝑁 out-of-band receivers, there are 𝑁 residuals 𝑅. 𝑅𝑘 denotes the Euclidean

distance between the candidate point 𝑝 and the edge/surface of the ellipse/spheroid

8If the new probabilities are too low (indicating a disjuncture between consecutive measurements,
possibly due to the tag exiting or entering the operating region), the system resets the probabilities
to avoid getting stuck.
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with focal points at the TX antenna and the 𝑘th RX antenna and round-trip distance

𝑑𝑘, so:

𝑅𝑘(𝑝) = |𝑝− 𝑎⃗𝑇𝑋 |+ |𝑝− 𝑎⃗𝑅𝑋,𝑘| − 𝑑𝑘

The non-linear least squares solver numerically finds a point 𝑝 that minimizes the

sum of the squared residuals 𝑆:

𝑆(𝑝) =
𝑁−1∑︁
𝑘=0

𝑅𝑘(𝑝)

In the critically constrained case, there may be ambiguous solutions; these can be

eliminated with appropriate bounds on the search space (e.g. the constraint 𝑦 > 0,

corresponding to directional antennas).

This approach has the virtues of not being tied to a particular antenna config-

uration, code reuse between the 2D and 3D cases, and good performance when the

problem is overconstrained (by e.g. having more out-of-band receivers than spatial

dimensions).

3.4 Tracking

The previous sections described the steps necessary to compute one location estimate.

This section bridges the gap between getting a single location estimate for a single tag

and getting many location estimates for many tags. Interactive applications typically

require low latency (< 100ms) to produce a responsive, usable experience, and this

section consider how to achieve this.

3.4.1 Framerate Optimizations

As noted in 3.3.1, this system stitches together a wideband channel estimate from

several narrowband estimates, which requires hopping the out-of-band TX/RX from

one frequency to another and querying the tag to get an FM0 packet at each frequency.

This approach is inherently slower than one based on a large instantaneous bandwidth,
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Figure 3-14: Multilateration with two out-of-band receivers. The function to minimize
is shown as a log heatmap. The optimal point (corresponding to the intersection of
the ellipses) is circled in red. Note that there is another solution with 𝑦 negated, but
it is ignored because it is behind the antennas.

which can compute a full wideband estimate from a single packet. This difference

accounts for some of the performance difference between RFind (which computes

one location every 6.4 seconds) and TurboTrack (which computes 300 locations per

second). I found that I was able to optimize the hopping approach considerably; this

is discussed in Sec. 4.2.2. In this section, I discuss higher-level optimizations relating

to the EPC Gen2 protocol.

RFind and TurboTrack generated a single query and repeated it indefinitely; this

means that each query started a new communication session with the tag and had

to use a full-length Query command (and a Select, in multi-tag scenarios), and each

command was preceded and succeeded by a long charge gap, as if powering up the

tag for the first time. BackTrack instead treats each round of hops as a single round

of communication with a tag; it keeps that tag powered, and rather than repeating

a Query command, it issues a Query once to begin the session and follows it up

with QueryAdjusts.9 This improves throughput because QueryAdjusts are shorter

9Unfortunately, the even-shorter QueryRep command is unsuitable for this purpose, as it causes
the tag’s internal counter to underflow and prevents the tag from responding to repeated queries in
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Figure 3-15: One full round of communication: one Query, followed by 14 QueryAd-
justs

Figure 3-16: The repeated transmission for TurboTrack (top), vs. the repeated
QueryAdjust (bottom)

than Queries: the packet contains 9 bits, rather than 22 [1, Table 6-28], and it omits

calibration pulses required to initiate a round. BackTrack also does away excessive

charge gaps: it powers the tag up at the start of the round and maintains power for

the duration of the round. These efforts reduce the average duration of one query-

response from 3.284 ms down to 1.896 ms, increasing throughput from about 305

queries per second up to 527.

Further protocol-level optimizations are possible (such as increasing the frequency

of reader commands or tag responses), but these would likely trade-off other desirable

metrics such as range or accuracy for only marginal benefit—and, following the hop-

ping optimizations described in Sec. 4.2.2, the main bottleneck is tuning time rather

than communication time.

the same session.
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Figure 3-17: Reading a tag: RN16, ACK, EPC

3.4.2 Multi-tag

An essential capability of RFID localization—and an advantage over other radio-

sensing technology—is that RFID tags can be targeted individually. This means

that they can be queried and localized one at a time without requiring the system

disentangle one tag’s response from another (or from other objects in environment).

BackTrack supports tracking an arbitrary number of tags, with protocol-level opti-

mization to reduce the impact on throughput, and provides utilities to ease working

with multiple tags.

To work with multiple tags, we must first determine each tag’s identifier (“EPC”,

for Electronic Product Code). Previous localization systems relied on a separate

RFID reader to handle this aspect of communication, but this system handles it

itself. The main challenge here is in decoding a tag’s RN16 and replying with an

ACK in a timely fashion; the EPC Gen2 specification puts a tight deadline on this

turnaround of 500𝜇𝑠.[1, Table 6-1] To make this deadline reliably, I implemented the

turnaround functionality in C++ (see 4.2) and tweaked the SDR network settings

to reduce latency. The end result is the API function backtrack.get_epc(), which

queries the tag, decodes the RN16, replies with an ACK, and decodes the tag’s EPC

for future reference.

That EPC can then be passed to other functions. backtrack.calibrate(epc)

estimates the tag’s channel at a known location and saves it with the tag’s EPC.

backtrack.init(epcs) takes a list of EPCs, loads the calibration data for each, and
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computes minimal selectors for future queries. The protocol allows specifying which

tags should respond with the Select command, which can filter tags by their EPC.

In particular, the Select command can be used to filter on any substring of the full

96-bit EPC. The system takes advantage of this to make the Select commands as

short as possible for the set of tags to be tracked, which improves throughput when

tracking multiple tags.
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Chapter 4

Implementation & Evaluation

4.1 Hardware

My experimental setup consisted of the hardware depicted in Fig. 4-1: three USRP

N210s [18] with SBX [17] daughterboards in my apartment. One USRP handled

in-band RX/TX; one handled out-of-band RX/TX; and the third provided an extra

out-of-band RX channel for 2D trilateration.

I used three MT-242025 antennas. I connected one of these to a ZAPD-2-21-3W-

S+ power combiner which in turn connected to the in-band TX and out-of-band TX.

I connected another antenna to a ZAPD-2-21-3W-S+ power splitter which in turn

connected to in-band RX and one out-of-band RX. I connected to the last antenna

directly to the other out-of-band RX. The USRP N210s were synchronized via an

OctoClock-G and connected to a NETGEAR GS110MX network switch, which in turn

connected to my laptop, a System76 Galago Pro with an Intel i7-7500U processor.

I used SMARTRAC Belt paper tags in my experiments, adhered to objects such as

paper cups, plastic bottles, cardboard boxes, and whiteboard markers.

4.2 Software

The system is implemented primarily in Python, using the Python 3 bindings for

the USRP’s UHD driver (version 3.15.0.0) to control the radios. Some components
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of the system are implemented in C++ for speed; these include decoding, channel

estimation, and the Query-ACK turnaround. The C++ components are called di-

rectly from Python, using the pybind11 library (which Ettus uses to provide UHD

bindings). Among other libraries, the system makes extensive use of numpy, scipy,

and matplotlib (for debugging and generating the figures here). The applications

are built with pygame, PyAudio, and pynput.

4.2.1 Protocol

In implementing the EPC Gen2 protocol to communicate with RFID tags, the system

chooses a backscatter link frequency of 40 kHz and a Tari length of 24𝜇𝑠. Unless

otherwise specified, these are the values assumed in all protocol-related computations

above.

4.2.2 Throughput

In order to achieve framerates suitable for interactive applications, BackTrack employs

several optimizations to improve throughput. Some protocol-level optimizations were

discussed in Sec. 3.4.1, but the most significant optimization concerns the use of the

radio hardware. Whereas the RFind authors reported that they could switch to a new

frequency once every 130 ms, Bell’s work [6] suggests that, with retuning commands

scheduled in advance, the N210 with an SBX daughterboard can achieve tuning rates

more on the order of hundreds of microseconds rather than hundreds of millseconds.

I confirmed this with my own setup and drastically reduced the time between hops.

Further, BackTrack uses fewer hops than RFind; RFind used 22 hops over 220 MHz

(spaced 10 MHz apart), while I use 15 hops over 300 MHz (spaced 20 MHz apart).

Sampling in the frequency domain leads to aliasing in the time domain, but a step

size of 20 MHz still allows 𝑐
20𝑀𝐻𝑧

≈ 15𝑚 without aliasing (7.5m one-way).
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Table 4.1: Library API

Function Description

get_epc() → EPC1 Read a tag and return its EPC (Electronic Product Code);
this is used to identify the tag in other API functions.

Assumes there is only one tag in read range.

calibrate(epc) → None Perform channel estimation on the given tag, and save the
result as calibration data. Assumes tag is in the designated
calibration location.

The user must call this once before tracking tags. (But once
is enough, across multiple runs, restarts, etc.)

init([epcs]) → None Initialize the system and prepare to track the given tags.

start() → bool Start the query and localization processes.

stop() → bool Stop the query and localization processes.

get_location(epc,
block=False)

Return the given tag’s most recent location for the given
tag. If block is true, waits for a fresh location.

→ Location2 This communicates with the localization process, pulling
any location estimates since the last time the function was
called.

The application is responsible for calling this function reg-
ularly to avoid pipe build-up.

1 An EPC is a big integer that stores the tag’s 96-bit identifier.
2 A Location is 2D or 3D floating-point vector relative to the origin, in meters.

4.2.3 Library

As mentioned in Ch. 2, BackTrack includes a library for acquiring location estimates

for RFID tags. The application programming interface (API) implemented by this

library consists is presented in Table 4.1. This API is quite minimal, but it suffices

for the applications presented in Ch. 6.
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4.3 Evaluation Environment

I began this project as an attempt to build off of TurboTrack, working with a large

instantaneous bandwidth to get a high rate of tracking. The onset of COVID-19 in

the Spring of 2020 necessitated relocating my experiments to my apartment, and I

brought home a smaller setup consisting of USRP N210s, which lack the instantaneous

bandwidth needed for a TurboTrack-like system; serendipitously, this led me to the

discovery that their was plenty of room to optimize frequency-hopping approach,

as discussed above. Moreover, as a result of this shift, I evaluated the system in

my apartment bedroom (see Fig. 4-1)—a typical, furnished bedroom with plenty of

multipath, including an 8’×4’ metal whiteboard behind the antennas.
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Chapter 5

Results

In this chapter, I present the results of evaluating key characteristics of the system

via experiment.

5.1 Range

The operating range of an RFID system is constrained by two things: the ability to

power up the tag, and the ability to decode the tag’s response. In the home envi-

ronment, I conducted experiments to characterize each of these, inspired by Buettner

and Wetherall’s evaluation of their USRP-based reader [8].

5.1.1 Powering up

In the first experiment, I tested the system’s ability to power up the tag. I kept the

tag at a fixed position and repeatedly queried and ACKed the tag, varying the TX

gain to simulate different distances via the Friis equation. Unlike moving the tag

to different distances, this experiment kept the impact of multipath fixed and was

more feasible to perform in the close quarters of my bedroom. Success was defined as

correctly decoding the tag’s 128-bit EPC packet with no errors (which requires first

powering up the tag, decoding the RN16, and replying with a valid ACK), and the

tag was queried 20 times at each gain setting.
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Figure 5-1: Success in identifying a tag versus distance (simulated by attenuation).

I chose gains corresponding to 10cm distance of increments, starting at the actual

distance of 68cm. The results are shown in Fig. 5-1. As shown in the plot, there is a

sharp cutoff where the success rate drops quicky from 100% to 0%. This mirrors the

effect found by Buettner and Wetherall [8].

Note that the power-up range could be extended within an external amplifier

(omitted in my setup) or antennas with higher gain; these extensions were not relevant

in my physically constrained testing environment.

5.1.2 Decoding

In the second experiment, I tested the system’s ability to correctly identify the tag

under increasing levels of noise. I recorded one EPC packet with the tag in a fixed

location, and then repeatedly attempted to perform the full decoding procedure (iden-

tifying packet parameters, averaging half-bit windows, and performing FM0 decoding)

with increasing levels of added Gaussian noise.

For this experiment, I calculated the signal-to-noise ratio per half-bit. Note that
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Figure 5-2: SNR vs. BER, in theory and in practice.

this yields a different SNR than calculating per-sample, as averaging multiple samples

of Gaussian noise drawn from the same distribution effectively reduces the noise

power.

The experimental results are plotted in Fig. 5-2 with the theoretical and simu-

lated BER-SNR curves from section 3.2.3. Recall that these theoretical/simulated

schemes are simpler than reality in that they do not have to perform any estimation

of the packet’s parameters before decoding—they assume we are given one sample per

half-bit and that we are decoding coherently, with no need to estimate the channel.

Nonetheless, the experimental BER-SNR curve matches that of the ML decoder rea-

sonably well. It deviates by obtaining a slightly lower BER than expected at higher

SNRs; this is likely due to the fact that, when the injected Gaussian noise is low, the

original noise dominates, and the original noise is not perfectly Gaussian nor white.

The original noise is largely phase noise from the hardware’s local oscillators, and it

may have more or less impact on the decoder’s error rate depending on the alignment

of the tag’s channel and the direct TX-to-RX channel between the antennas.1

1An increase is noise that is orthogonal to the tag’s channel lowers the SNR without causing
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Similarly, the real decoder underperforms theory at very low SNRs. This is likely

due to the fact that we know the channel perfectly in theory, whereas in reality we

must estimate it (and the other packet parameters) from noisy data.

5.2 Throughput

For throughput, the relevant metric is how many valid locations the system can

produce per unit time. As discussed in 3.4.1, the system employs several optimizations

to improve the query rate (and thus the framerate) over previous work.

Fig. 5-3 depicts the result of these optimizations. It estimates the performance of

RFind in tracking multiple tags using the published single-tag latency (∼ 6.4 seconds

per location). “BackTrack before protocol optimizations” refers to the performance of

the system after optimizing the use of the radio hardware (hop rate) but before mak-

ing any protocol-level optimizations, while “BackTrack after protocol optimizations”

a corresponding increase in BER, since the orthogonal noise is removed after projection onto the
channel estimate.
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Figure 5-4: Accuracy experiment with stationary positions in 2D.

indicates the performance of the final system, after all optimizations.

This figure makes it clear that most of the improvement in framerate results from

the decrease in time between hops, but protocol optimizations provide a considerable

boost as well. It also highlights how quickly the per-tag framerate falls as the num-

ber of tags increases; I discuss some possible ways to mitigate the effect of this in

interactive applications in Ch. 7.

5.3 Accuracy

In the home environment, I tested the system’s accuracy by placing the tag in different

static locations and recording the 2D locations output by the system. I marked 12

locations on a surface in four rows and three columns, spaced 10cm apart. I ran the

system, moved the tagged object to the next marked location, and recorded the next

500 locations output by the system. The results (with points from all 12 locations)

are shown in 5-4.

Overall, the mean distance error from the true location was 1.10cm, the median
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was .752cm, the standard deviation was .894cm, and the maximum error was 4.77cm.

As is apparent from Fig. 5-4, this error was unevenly distributed among the X and Y

axes, with the X-axis error being about 16.8x the Y-axis error on average. This error

data, broken down by distance and axis, is summarized in Fig 5-5.

The discrepancy of errors along the X and Y axes follows from the antenna ar-

rangement: the RX and TX antennas in my home setup were arranged along the X

axis, all with the same Y coordinate. Thus, the ellipses from each RX-TX pair share

the same major axis, and a slight change in the distance estimate of one ellipse would

result in a corresponding large change is the X coordinate of the intersection with the

other ellipse. This also explains the increased spread as the points get farther from

the antennas along the Y axis: at greater distances, the ellipses are larger and the in-

tersection points are proportionally closer to the center of each ellipse along its major

axis, where the curve is more horizontal and the derivative 𝑑𝑥
𝑑𝑦

is maximized—so the

same error in phase will produce a larger error in the X component of the intersection

point.
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Chapter 6

Applications

Recall that the ultimate goal of this work is to explore the feasibility of RFID lo-

calization for interactive systems. Up to this point, I have discussed the technical

details of the system and how it achieves operating parameters suitable for interac-

tive systems. In this chapter, I present two modest applications of the system which

test the ultimate usability of the system and demonstrate its capabilities, built with

the application library described in 4.2.1

6.1 Sequencer/Synthesizer

The first application is a combined musical sequencer/synthesizer. Some tags act as

markers that can fill in slots in a musical sequencer. The X and Y coordinates of

these tags are mapped to musical time (when should the sound play?) and sample

selection (which sound should play?). Other tags control oscillators in a polyphonic

synthesizer. The X and Y positions of these tags are mapped Theremin-style to

volume and frequency, respectively.

Besides being a real-time system requiring fine-grained control, this example is

intended to demonstrate the possibilities for assigning different behavior to different

objects. In Fig. 6-1, for example, the cup serves as a different physical instrument

than the bottle and marker: the user can “play” the cup directly, immediately chang-

1Videos of these applications can be found at https://ijc8.me/research/backtrack.
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Figure 6-1: The Sequencer/Synthesizer in action. In the application (left), the large
white circles represent the objects controlling the sequencer, while the small red dot
represents the object controller the synthesizer. These objects, and the surrounding
environment, are shown in the photo (right).

ing the note and how loud it is by moving the cup around, while the user can arrange

the other objects to configure a rhythmic loop.

6.2 Multimapper

The second application acts as a sort of input translator. Many wonderful interactive

applications already exist that are intended for use with the conventional input meth-

ods of keyboard and mouse. Inspired by MaKey MaKey [19], which maps electrical

connections, this application maps RFID tag interactions to traditional keyboard and

mouse events, enabling a user to control existing desktop applications by interacting

with tagged objects in their environment.

The behavior of this application is specified by a configuration file, consisting of

a simple list of rules. Rules specify what to do when certain tags enter or leave

2D regions of space. Configuration files are written in a standard, human-readable

configuration language (YAML [7]). The user can choose which configuration to

user when invoking Multimapper. Together, these allow the user to easily extend

Multimapper to support different interactive applications without writing any code.

As an example, the heavily-commented configuration for the drawing example is given
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Figure 6-2: Multimapper configured for use with a drawing application. Screenshot
of multimapper (top left), photo of the environment (top right), finished drawing
(bottom).

Figure 6-3: Multimapper configured for use with a two-player Pong clone. In the
unmapped game, both paddles are controlled by keyboard inputs.
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in listing 6.1.
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1 # Required: set of tags to track:
2 tags: [c0dec0dec0dec0dec0dec0de, 000000000000000000000000]
3 smoothing: 10 # Optional: length of location history for smoothing estimates.
4 rules: # Rule section.
5 # The first two rules define how the tag 0000... controls when we're drawing,
6 # while the last rule defines how the tag c0de... controls where we're drawing.
7 - event: exit # Required: what event triggers this rule? (0000...)
8 # This rule fires when a matching tag exits the specified bounds.
9 tag: 0* # Optional: which tags should activate this rule?

10 # Rectangular 2D region specified by opposite corners, in meters:
11 bounds: [[-0.5, 0.3], [-0.3, 0.5]]
12 action: mouseup # Required: what happens when this rule triggers?
13 # Argument specific to the action - here, which mouse button to release:
14 target: left
15 - event: enter # This rule fires when a matching tag enters the bounds.
16 tag: 0*
17 bounds: [[-0.5, 0.3], [-0.3, 0.5]] # Same region as the previous rule.
18 action: mousedown
19 target: left # Which mouse button to press.
20 # Optional appearance settings:
21 color: "#990000"
22 active_color: "#009900"
23 label: DRAW
24 label_size: 24
25 - event: inside
26 # This rule fires constantly when a matching tag is inside the bounds.
27 tag: c* # Match the other tag (c0de...).
28 bounds: [[-0.3, 0.1], [0.7, 0.8]]
29 action: mousemove
30 # What region (in pixels) on the screen should we map the tag location to?
31 target: [[0, 0], [1920, 1080]]
32 label: MOVE
33 label_size: 48
34 color: [80, 80, 80] # Alternate way of specifying color.
35 screen:
36 width: 720 # Window dimensions (pixels).
37 height: 720
38 bounds: [[-0.5, 0], [0.9, 1]] # Physical region to show in the window (meters).
39 tag_radius: 20 # Size of marker drawn for each tag (pixels).

Listing 6.1: Multimapper Configuration for Drawing
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Chapter 7

Conclusion

In this thesis, I explored the potential of RFID localization as an input modality

for interactive systems. In this final chapter, I reflect on some of the challenges and

opportunities for this technology going forward.

One obstacle between this system and real interactive deployments is cost. The

system is built on software-defined radio equipment that costs several thousand dol-

lars, which may make it infeasible for many use cases.1 Luckily, as the system does

not require a high sampling rate and new SDRs have arrived in the last few years,

it is likely possible to move the system to a considerably cheaper platform without

too much additional development time. I identified the bladeRF 2.0 as a promising

candidate and performed initial experiments in powering up an RFID tag while trans-

mitting an out-of-band signal, but more work is required to complete a bladeRF-based

implementation and evaluate its performance.

One practical observation from testing the system is that there is more to be done

for multitag usability. Though tags can be addressed independently, having multiple

tags too close together tends to degrade accuracy; this may due to mutual coupling

of the tag antennas, or due to the system’s inability to separate out multipath with

sufficient precision. This issue may not be significant in the supply chain/inventory

management applications that RFID tags were intended for, but it is problematic
1Consider the impact of the Kinect, originally intended as a gaming peripheral, on HCI; not

because body-tracking technology did not exist already, but because the Kinect offered it in a
smaller, cheaper, easier-to-use package.
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for small-scale interactive applications, in which a single user may be manipulating

many objects within their reach. More investigation and modeling of close-proximity

scenarios may provide insight into mitigating the impact on accuracy.

Looking ahead, the system is limited in another respect when tracking many

objects. Because tags are queried one at a time in round-robin fashion, the framerate

per tag quickly drops as the number of tags increases (see Fig. 5-3). The system’s

query rate could be used more effectively, by, for example, querying tags that are

moving faster more often, to reduce the overall error. Another possibility is querying

multiple tags (using a selector that applies to both) at once and detangling their

collided responses, which could improve multitag framerates by a constant factor.

Finally, there is plenty of room to explore the applications of this system from an

HCI perspective. One idea is to build out a platform for rapidly prototyping physical

interfaces. Familiar interfaces, such as buttons, levers, dials, sliders, computer mice,

touchscreens, and so on can all be seen as specialized position-tracking systems. A

general-purpose position-tracking system could be used to implement many different

conventional control schemes, and I believe RFID localization is well-suited to this

purpose due to its accuracy, lack of line-of-sight constraints, and intrinsic ability to

distinguish objects. The interface designer could assign a positioning modality to

each tagged object: this rubber duck acts like a button, this book acts like a switch,

this yo-yo acts like a slider, and so on. Such a system would convert small, wireless

stickers into any kind of positional control, allowing the designer to instantly switch

between them and quickly experiment with tangible alternatives.
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