
pyFHE - A Python Library for Fully Homomorphic
Encryption

by

Saroja Erabelli

B.S., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 14, 2020

Certified by. .
Vinod Vaikuntanathan

Associate Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

pyFHE - A Python Library for Fully Homomorphic

Encryption

by

Saroja Erabelli

Submitted to the Department of Electrical Engineering and Computer Science
on August 14, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Fully homomorphic encryption (FHE) schemes often entail complex lattice operations
and error associated with addition and multiplication, making them a challenge to
implement. While a few lattice cryptography libraries exist in C++, there is no such
library in Python, a language which allows simplicity and readability, making it ideal
for prototyping. Many such libraries also do not include bootstrapping, the most
complicated operation of FHE schemes. We present a new Python library pyFHE for
fully homomorphic encryption schemes, which currently includes the Brakerski-Fan-
Vercauteren (BFV) scheme, the Cheon-Kim-Kim-Song (CKKS) scheme, and boot-
strapping for CKKS.

Thesis Supervisor: Vinod Vaikuntanathan
Title: Associate Professor

3

4

Acknowledgments

I would first like to thank Vinod Vaikuntanathan, my thesis advisor, and PhD candi-

date Leo de Castro for all of their feedback and support throughout this year. They

were both very helpful in providing me guidance when I was stuck. Leo also met with

me regularly to help me debug and provided many valuable insights throughout the

process. I would not have been able to complete this project without his help.

I would also like to thank Chiraag Juvekar for helping me get started with this

project and providing direction on the components needed to design this library.

I would like to thank my academic advisor, Ron Rivest, for his perspective and

advice throughout my MIT experience. I am extremely grateful for his support and

positivity.

Thank you to all my friends at MIT, for their endless support and words of

encouragement.

A final thank you goes to my mom, my dad, and my brother for their unwavering

love and belief in me throughout the last 23 years.

5

6

Contents

1 Introduction 13

1.1 Roadmap . 14

2 Preliminaries 15

2.1 Basic Notation . 15

2.2 The Cyclotomic Ring . 15

2.3 The Ring Learning with Errors problem 16

2.3.1 Problem Statement . 16

2.3.2 Search LWE . 16

2.3.3 Decisional LWE . 17

2.3.4 Ring LWE . 18

2.3.5 In practice . 19

3 The BFV Encryption Scheme 21

3.1 Plaintext Space . 21

3.1.1 IntegerEncoder . 21

3.1.2 BatchEncoder . 22

3.2 Ciphertext Space . 23

3.3 Scheme . 23

4 The CKKS Encryption Scheme 27

4.1 Plaintext Space . 27

4.1.1 CKKS Encoding Scheme . 27

7

4.2 Ciphertext Space . 29

4.3 Scheme . 30

4.4 Bootstrapping . 32

4.5 RNS Representation . 35

5 Library Architecture and Capabilities 37

5.1 Library Architecture . 37

5.2 Capabilities . 38

5.3 Sample Implementation . 38

6 Parameter Selection 41

6.1 Polynomial degree . 41

6.2 Moduli . 41

6.3 Scaling Factor (CKKS) . 42

7 Performance 45

8 Conclusion 47

8

List of Figures

5-1 pyFHE Library Architecture . 38

5-2 CKKS Scheme Initialization . 40

5-3 CKKS Multiplication . 40

9

10

List of Tables

2.1 Notable variables in pyFHE . 19

4.1 CKKS Bootstrapping . 34

5.1 Capabilities of pyFHE . 39

7.1 Parameter Sets . 46

7.2 Runtimes for CKKS Multiplication 46

7.3 Runtimes for CKKS Bootstrapping 46

11

12

Chapter 1

Introduction

One of the biggest problems in cryptography today is being able to perform compu-

tations on encrypted data. Encryption schemes that allow us to do this are known

as homomorphic encryption schemes, where if we are given the encryption of 𝑎 and

the encryption of 𝑏, we can compute the encryption of 𝑎 + 𝑏 and the encryption of

𝑎 · 𝑏. One example of an application is if a user wishes to search stock data, but they

wish to keep their search queries private, they can do so if the search engine had a

homomorphic encryption scheme in place for queries [15]. Homomorphic encryption

also has many other applications in medical and genomic data. [7, 13, 15]

For many years, there existed partial homomorphic encryption schemes, such as RSA

and Paillier [1], where given the encryption of 𝑎 and the encryption of 𝑏, you can

compute the encryption of 𝑎+ 𝑏 or the encryption of 𝑎 · 𝑏, but not both. However, in

2009, Craig Gentry designed the first fully homomorphic encryption (FHE) scheme,

allowing us to compute both the encryption of 𝑎 + 𝑏 and the encryption of 𝑎 · 𝑏 [9].

Since then, a number of more efficient FHE schemes have been designed, including the

widely known Brakerski-Fan-Vercauteren (BFV) and Cheon-Kim-Kim-Song (CKKS)

encryption schemes [2, 6]

The pyFHE library provides Python implementations of the two well known FHE

schemes, the BFV and CKKS encryption schemes [2, 6], including CKKS boot-

13

strapping [4]. Some existing implementations of FHE schemes include the PAL-

ISADE library, Microsoft’s Simple Encrypted Arithmetic Library (SEAL), and HELib

[16, 19, 12], all of which are in C++ and designed for maximal performance. These

libraries also do not currently include bootstrapping for the CKKS scheme, although

they may be adding it in the future. The primary purpose of our library is to provide

readable code for FHE schemes that researchers can easily and quickly build on or

use to test correctness for their own optimizations and variants. We designed pyFHE

to achieve the following design goals:

1. Create a readable library for lattice cryptography that is easy to understand and

make changes to.

2. Create a modular design to make it easy to add new encryption schemes to the

library.

3. Write reliable and correct code with unit testing for all components of the library.

4. Provide usable code where it is straightforward how to use and test these en-

cryption schemes.

With these design goals in mind, we chose to design this library in Python, to

make the code as simple and readable as possible, while sacrificing the efficiency that

comes with C++ implementations [16, 19, 12]. The library can be found in the py-fhe

Github repository [17].

1.1 Roadmap

In Chapter 2, we introduce the mathematical background and notation assumed

throughout this paper. In Chapter 3, we give an overview of the BFV encryption

scheme as implemented in pyFHE. In Chapter 4, we give an overview of the CKKS

encryption scheme and bootstrapping as implemented in pyFHE. In Chapter 5, we

describe the library architecture and explain in more detail how to use it. In Chapter

6, we describe how to choose parameters for BFV and CKKS, and in chapter 7, we

give performance results for a few of these parameter sets.

14

Chapter 2

Preliminaries

2.1 Basic Notation

Let ⌊𝑥⌉ denote the nearest integer to 𝑥, and ⌊𝑥⌋ and ⌈𝑥⌉ denote rounding down

and rounding up, respectively. For an integer 𝑞, we define Z𝑞 to be the space Z ∪

(−𝑞/2, 𝑞/2], and we use [𝑧]𝑞 to denote the reduction of the integer 𝑧 modulo 𝑞 to the

interval. In pyFHE, we reduce an element 𝑅 (mod 𝑞) using Polynomial::mod and

reduce to Z𝑞 using Polynomial::mod_small. We use 𝑥← 𝐷 to denote the sampling

of 𝑥 from a probability distribution 𝐷. Writing 𝑥 ← 𝑆 from a set 𝑆 denotes the

unifory sampling from the set 𝑆. Let 𝜆 denote the security parameter, such that all

known attacks against a given cryptographic scheme require Ω
(︀
2𝜆
)︀

bit operations.

Let 𝐷Z,𝜎 denote the discrete Gaussian distribution, where the probability of choosing

𝑥 is proportional to exp (−𝜋|𝑥|2/𝜎2) . Let 𝒵𝒪 (𝜌) be the distribution which draws

each entry from the set [−1, 0, 1] with the probability distribution
[︀
𝜌
2
, 1− 𝜌, 𝜌

2

]︀
.

2.2 The Cyclotomic Ring

We will work extensively in the polynomial ring 𝑅 = Z[𝑥]/𝑓(𝑥) where 𝑓(𝑥) ∈ Z[𝑥] is a

monic irreducible polynomial of degree 𝑁 . Specifically, we will choose 𝑓(𝑥) = 𝑥𝑁 + 1

where 𝑁 is a power of two. Note that 𝑓(𝑥) = Φ𝑀(𝑥), the 𝑀 𝑡ℎ cyclotomic polynomial

where 𝑀 = 2𝑁. Let 𝑅𝑞 denote the ring 𝑅, where the coefficients of each polynomial

15

are reduced to elements in Z𝑞. For an element 𝑝 ∈ 𝑅, let ||𝑝||∞ denote the largest

absolute value of its coefficients.

2.3 The Ring Learning with Errors problem

Many FHE schemes such as Brakerski-Gentry-Vaikuntanathan (BGV), Brakerski/Fan-

Vercauteren (BFV), and Cheon-Kim-Kim-Song (CKKS) rely on the Learning with

Errors (LWE) problem, a hard lattice problem which has been used proven to be as

hard as all worst-case lattice problems, making it a prime candidate to base crypto-

graphic protocols on [2, 8, 6]. All cryptographic protocols based on LWE are secure

under the assumption that worst-case lattice problems are hard [18].

2.3.1 Problem Statement

Learning with Errors (LWE) is a problem introduced by Oden Regev in 2005 involving

solving a linear system of equations with error [18]. An algorithm 𝒜 is said to solve

the LWE problem, if given several samples (𝑥, 𝑦) where 𝑥 ∈ Z𝑛
𝑞 (a vector of 𝑛 integers

modulo 𝑞), and 𝑦 ∈ Z𝑞, where for some linear function 𝑓 : Z𝑛
𝑞 → Z𝑛

𝑞 , we have 𝑓(𝑥) = 𝑦

with high probability, with some known noise model, 𝒜 returns a close approximation

of 𝑓 with high probability.

2.3.2 Search LWE

More formally, given a secret vector 𝑠 ∈ Z𝑛
𝑞 and noise distribution 𝜒, and polynomially

samples 𝑘 such that

⟨𝑎1, 𝑠⟩+ 𝑒1 = 𝑏1 (mod 𝑞)

⟨𝑎2, 𝑠⟩+ 𝑒2 = 𝑏2 (mod 𝑞)

...

⟨𝑎𝑘, 𝑠⟩+ 𝑒𝑘 = 𝑏𝑘 (mod 𝑞)

16

where each 𝑒𝑖 is sampled from the noise distribution 𝜒 and each 𝑎𝑖 is sampled uni-

formly at random from Z𝑛
𝑞 , the Learning with Errors (LWE) problem is to find

the vector 𝑠 in probabilistic polynomial time.

Example. The LWE problem may ask you to recover the secret 𝑠 ∈ Z4
19 given

the following system of equations:

2𝑠1 + 3𝑠2 + 14𝑠3 + 8𝑠4 ≈ 5 (mod 19)

12𝑠1 + 8𝑠2 + 𝑠4 ≈ 7 (mod 19)

2𝑠1 + 8𝑠2 + 7𝑠3 + 5𝑠4 ≈ 1 (mod 19)

13𝑠1 + 11𝑠2 + 10𝑠3 + 18𝑠4 ≈ 5 (mod 19)

4𝑠1 + 2𝑠2 + 17𝑠3 + 5𝑠4 ≈ 2 (mod 19)

...

9𝑠1 + 3𝑠2 + 12𝑠3 + 6𝑠4 ≈ 0 (mod 19)

where each equation is correct up to an error of 𝑒 = ±1. Without error, we could easily

solve the system of equations using Gaussian elimination. However, the error makes

the problem difficult. In this case, solving LWE would give the secret 𝑠 = (1, 2, 3, 4).

Solving for 𝑠 is known as the Search LWE problem, and is actually not as suitable

for cryptography as the Decisional LWE problem described below.

2.3.3 Decisional LWE

The Decisional LWE problem is defined as follows. Given an oracle 𝒪𝑛
𝑠 which outputs

samples of the form (𝑎, ⟨𝑎, 𝑠⟩ + 𝑒) where 𝑎 is chosen uniformly at random from Z𝑛
𝑞

for each sample and 𝑒 is chosen randomly according to the noise distribution 𝜒 for

each sample, and an oracle ℛ which outputs samples of the form (𝑎, 𝑏) ∈ Z𝑛
𝑞 × Z

uniformly at random, then solving the Decisional LWE problem entails determining

whether you are interacting with the oracle 𝒪𝑛
𝑠 or the oracle ℛ based on the samples

you receive.

17

Example. The Decisional LWE problem may give you the following samples:

((2, 3, 14, 8), 5) (mod 19)

((12, 8, 0, 1), 7) (mod 19)

((2, 8, 7, 5), 1) (mod 19)

((13, 11, 10, 18), 5) (mod 19)

((4, 2, 17, 5), 2) (mod 19)

...

((9, 3, 12, 6), 0) (mod 19)

Solving the Decisional LWE problem would be outputting 𝒪𝑛
𝑠 , since the above sam-

ples were generated with the secret 𝑠 = (1, 2, 3, 4).

The error introduced in the LWE problem is fundamental to the security of FHE

schemes, since it makes the recovering the secret key from the public key and cipher-

texts extremely hard.

2.3.4 Ring LWE

The Ring LWE (RLWE) problem is defined very similarly to above. Given an oracle

𝒪𝑠 which outputs samples of the form (𝑎, ⟨𝑎, 𝑠⟩ + 𝑒) where 𝑎 is chosen uniformly at

random from 𝑅𝑞 for each sample and 𝑒 is chosen randomly according to the noise

distribution 𝜒 for each sample, and an oracle ℛ which outputs samples of the form

(𝑎, 𝑏) ∈ 𝑅𝑞 × 𝑅𝑞 uniformly at random, then solving the Decisional LWE problem

entails determining whether you are interacting with the oracle 𝒪𝑠 or the oracle ℛ

based on the samples you receive.

18

Table 2.1: Notable variables in pyFHE

Parameter Description Name in pyFHE
𝑞 Modulus in ciphertext space ciph_modulus
𝑄 Large modulus in ciphertext space (CKKS only) big_modulus
𝑡 Modulus in plaintext space (BFV only) plain_modulus
𝑁 Polynomial ring degree where 𝑓(𝑥) = 𝑥𝑁 + 1 poly_degree

𝑁 is a power of two ring_degree
𝑅 Polynomial ring Z[𝑥]/(𝑥𝑁 + 1)
𝑅𝑞 Polynomial ring Z𝑞[𝑥]/(𝑥𝑁 + 1)
∆ Scaling factor (CKKS) scaling_factor

Quotient ⌊𝑞/𝑡⌋ (BFV)
𝜒 Discrete Gaussian distribution 𝐷𝑁

Z,𝜎 sample_triangle

2.3.5 In practice

The RLWE assumption is that the RLWE problem is infeasible. In practice for

this assumption to hold, we choose the noise distribution 𝜒 according to a discrete

Gaussian distribution 𝐷𝑁
Z,𝜎 [8]. Note that the output of this distribution are the

coefficients of an 𝑁 − 1 degree polynomial in the ring 𝑅𝑞. For the rest of the paper,

let 𝜒 denote the probability distribution 𝐷𝑁
Z,𝜎. For simplicity, we implement 𝜒 in

pyFHE as the triangle distribution 𝒵𝒪
(︀
1
2

)︀
, where we choose from [−1, 0, 1] with the

probability distribution
[︀
1
4
, 1
2
, 1
4

]︀
. We summarize all the above notation in Table 2.1.

19

20

Chapter 3

The BFV Encryption Scheme

In this chapter, we give a brief overview of the BFV encryption scheme, as imple-

mented in pyFHE.

3.1 Plaintext Space

In BFV, in addition to our ciphertext modulus, we have a plaintext modulus 𝑡. Our

plaintext space is the polynomial ring 𝑅𝑡 = Z𝑡/(𝑥𝑁 + 1). In order to encrypt an

integer, we must first encode it into the polynomial plaintext space 𝑅𝑡. In pyFHE, we

currently support two types of encodings: an IntegerEncoder and a BatchEncoder

based on the Chinese Remainder Theorem.

3.1.1 IntegerEncoder

The IntegerEncoder inputs a base 𝑏 (with a default value of 2), and encodes an

integer 𝑥 ∈
[︁
− 𝑏𝑁−1

2
, 𝑏

𝑁−1
2

]︁
by writing it in base 𝑏. The coefficients in base 𝑏 become the

coefficients of our encoded plaintext polynomial. We decode a plaintext polynomial

by evaluating it at 𝑏. For example, for the base 𝑏 = 2, we encode 6 = 1 · 22 + 1 · 21 as

𝑥2 +𝑥1, and we decode 𝑝(𝑥) = 𝑥2 +𝑥1, by evaluating 𝑝(2) = 6. This encoder supports

homomorphic operations since

IntegerDecode (IntegerEncode(𝑎) + IntegerEncode(𝑏)) = 𝑎 + 𝑏

21

and

IntegerDecode (IntegerEncode(𝑎) · IntegerEncode(𝑏)) = 𝑎 · 𝑏

as long as no modular reductions occur. An important limitation of this encoding

scheme is that the result will not decode correctly if any modular reductions have

occurred in ciphertext evaluations (either mod 𝑥𝑁 + 1 or mod 𝑞).

3.1.2 BatchEncoder

The BatchEncoder encodes 𝑁 integers modulo 𝑡 into a single plaintext polynomial.

In order to use this encoding scheme, we must set the plaintext modulus 𝑡 to be

prime such that 𝑡 ≡ 1 (mod 2𝑁). When this is the case, there exists an element 𝜁

such that 𝜁2𝑁 ≡ 1 (mod 𝑡) and 𝜁𝑚 ̸= 1 (mod 𝑡) for all 1 ≤ 𝑚 < 2𝑁, known as a

(2𝑁)𝑡ℎ primitive root of unity [19]. Then 𝑥𝑁 + 1 (mod 𝑡) has roots 𝜁 𝑖 for all odd 𝑖

such that 1 ≤ 𝑖 < 2𝑁, so 𝑥𝑁 + 1 factors as

𝑥𝑁 + 1 = (𝑥− 𝜁)
(︀
𝑥− 𝜁3

)︀
. . .
(︀
𝑥− 𝜁2𝑁−1

)︀
.

Now, using the Chinese Remainder Theorem (CRT), we can uniquely express el-

ements mod 𝑥𝑁 + 1 as 𝑁 different elements mod 𝑥− 𝜁 𝑖 for odd 𝑖 where 1 ≤ 𝑖 < 2𝑁.

Expressing a polynomial 𝑝(𝑥) in the ring Z[𝑥]/ (𝑥− 𝜁 𝑖) is the same as evaluating

𝑝 (𝜁 𝑖) , since 𝑥 ≡ 𝜁 𝑖 in this ring.

We use this CRT representation to define our decoding procedure below.

Decode(𝑝(𝑥))→
[︀
𝑝 (𝜁) , 𝑝

(︀
𝜁3
)︀
, . . . , 𝑝

(︀
𝜁2𝑁−1

)︀]︀
We implement this function as a variation of the Number Theoretic Transform,

which allows us to evaluate 𝑝(𝑥) at the odd (2𝑁)𝑡ℎ roots of unity, rather than at all

of the (2𝑁)𝑡ℎ roots of unity. We use its inverse as our batch encoding function, which

22

takes 𝑁 integers modulo 𝑡 and outputs a polynomial in 𝑅𝑡. The plaintext polynomial

is stored in a Plaintext object within the poly parameter. This encoder supports

homomorphic operations component-wise since

Decode(𝑝(𝑥) + 𝑞(𝑥)) =
[︀
(𝑝 + 𝑞) (𝜁) , (𝑝 + 𝑞)

(︀
𝜁3
)︀
, . . . , (𝑝 + 𝑞)

(︀
𝜁2𝑁−1

)︀]︀
and

Decode(𝑝(𝑥) · 𝑞(𝑥)) =
[︀
(𝑝 · 𝑞) (𝜁) , (𝑝 · 𝑞)

(︀
𝜁3
)︀
, . . . , (𝑝 · 𝑞)

(︀
𝜁2𝑁−1

)︀]︀

3.2 Ciphertext Space

Our ciphertext space is the two-dimensional space 𝑅2
𝑞 , consisting of two polynomials

in 𝑅𝑞. These two polynomials are stored in a Ciphertext object within the c0 and

c1 parameters.

3.3 Scheme

Given the security parameter 𝜆 and defining ∆ = ⌊𝑞/𝑡⌋, we present the BFV encryp-

tion scheme [8] below:

∙ SecretKeyGen
(︀
1𝜆
)︀
: Choose values for 𝑁 , 𝑡, 𝑞, 𝜎 based on the security param-

eter 𝜆, where 𝑁 is a power of two as noted in Section 2.2. Sample s ← 𝜒 and

output

sk = s

∙ PublicKeyGen (sk): Set s = sk, sample a← 𝑅𝑞, e← 𝜒 and output

pk =
(︁

[− (a · s + e)]𝑞 , a
)︁

∙ RelinearizationKeyGen (sk, 𝑇): Set s = sk. Let 𝑙 = ⌊log𝑇 𝑞⌋. Then for 𝑖 ∈

23

{0, 1, . . . , 𝑙}, sample a𝑖 ← 𝑅𝑞, e𝑖 ← 𝜒. Output

rlk =
(︁[︀
− (a𝑖 · s + e𝑖) + 𝑇 𝑖 · s2

]︀
𝑞
, a𝑖

)︁
for 𝑖 ∈ {0, 1, . . . , 𝑙}

The above key generation methods are implemented in BFVKeyGenerator. For relin-

earization, we choose 𝑇 =
⌈︀√

𝑞
⌉︀
, as suggested in [8].

∙ Encrypt (pk,m): To encrypt m ∈ 𝑅𝑡, let pk = (p0,p1) . Sample u, e0, e1 ← 𝜒

and output

ct =
(︁

[∆ ·m + p0 · u + e0]𝑞 , [p1 · u + e1]𝑞

)︁
∙ Decrypt (sk, ct): Set s = sk and ct = (c0, c1) and output

[︂⌊︂
𝑡

𝑞
[c0 + c1 · s]𝑞

⌉︂]︂
𝑞

Encryption and decryption are implemented in BFVEncryptor and BFVDecryptor,

respectively.

∙ Add (ct1, ct2): Output

ctadd =
(︁

[ct1 [0] + ct2 [0]]𝑞 , [ct1 [1] + ct2 [1]]𝑞

)︁

∙ Multiply (ct1, ct2, rlk): Compute

c0 =

[︂⌊︂
𝑡

𝑞
(ct1 [0] · ct2 [0])

⌉︂]︂
𝑞

c1 =

[︂⌊︂
𝑡

𝑞
(ct1 [0] · ct2 [1] + ct1 [1] · ct2 [0])

⌉︂]︂
𝑞

c2 =

[︂⌊︂
𝑡

𝑞
(ct1 [1] · ct2 [1])

⌉︂]︂
𝑞

Relinearize the ciphertext by writing c2 in base 𝑇 as c2 =
𝑙∑︀

𝑖=0

c(𝑖)2 𝑇 𝑖 with c(𝑖)2 ∈

24

𝑅𝑇 . Set

c′0 =

[︃
c0 +

𝑙∑︁
𝑖=0

rlk[𝑖][0] · c(𝑖)2

]︃
𝑞

c′1 =

[︃
c1 +

𝑙∑︁
𝑖=0

rlk[𝑖][1] · c(𝑖)2

]︃
𝑞

and output ctmul = (c′0, c′1) .

Addition, multiplication, and relinearization are implemented in BFVEvaluator.

Currently, BFVEvaluator::multiply automatically relinearizes the ciphertext after

each multiplication. Further evaluation functions and bootstrapping have not yet

been implemented for BFV in pyFHE.

25

26

Chapter 4

The CKKS Encryption Scheme

In this chapter, we give a brief overview of the CKKS encryption scheme, as im-

plemented in pyFHE. The most notable difference between CKKS and other FHE

schemes is that CKKS is an approximate homomorphic encryption scheme which sup-

ports complex-number arithmetic, as opposed to just integer arithmetic. It achieves

this through its encoding scheme.

4.1 Plaintext Space

Our plaintext space is the polynomial ring 𝑅𝑞 = Z𝑞/(𝑥𝑁 + 1). In order to encrypt

a complex number, we must first encode it into the polynomial plaintext space 𝑅𝑞.

This encoder is implemented in pyFHE as CKKSEncoder.

4.1.1 CKKS Encoding Scheme

The CKKS encoding scheme is similar to the CRT batching scheme described in

section 3.1.2. One notable distinction between the two schemes is that the CKKS

encoding function maps C𝑁/2 → 𝑅𝑞 via a function similar to the Fast Fourier Trans-

form, whereas the batch encoding function maps Z𝑁
𝑡 → 𝑅𝑡 via a function similar to

the Number Theoretic Transform.

27

A natural encoding scheme to use is an existing embedding scheme (an embedding

scheme satisfies homomorphic addition and multiplication) from C to a polynomial

ring. Thus, CKKS uses the canonical embedding map 𝜎 which maps Q[𝑥]/(𝑥𝑁 +1)→

C𝑁 as part of the decoding function [14, 6].

Let 𝜁 = exp
(︀
2𝜋𝑖
2𝑁

)︀
, a complex (2𝑁)𝑡ℎ root of unity. The canonical embedding map

for Q[𝑥]/𝑓(𝑥) → C𝑁 is defined as the vector of evaluations at the complex roots of

𝑓(𝑥), for any polynomial 𝑓 with degree 𝑁 . When 𝑓(𝑥) = 𝑥𝑁 + 1, we define 𝜎 using

the odd (2𝑁)𝑡ℎ roots of unity as shown below:

𝜎(𝑝(𝑥))→
[︀
𝑝 (𝜁) , 𝑝

(︀
𝜁3
)︀
, . . . , 𝑝

(︀
𝜁2𝑁−1

)︀]︀
This looks very similar to the CRT batching described in section 3.1.2. How-

ever, here 𝑝(𝑥) has rational coefficients and 𝜁 is complex, which imposes additional

constraints on the image of 𝜎. Since, 𝑝(𝑥) has rational coefficients, for any complex

number 𝑤, we have 𝑝(𝑤) = 𝑝 (𝑤). Thus, 𝑝(𝜁 𝑖) = 𝑝
(︁
𝜁 𝑖
)︁

= 𝑝
(︀
𝜁2𝑁−𝑖

)︀
for all 1 ≤ 𝑖 < 2𝑁.

The image of 𝜎 turns out be precisely the set

𝐻 = {(𝑥1, 𝑥2, . . . , 𝑥𝑁) ∈ C𝑁 such that 𝑥𝑖 = 𝑥𝑁−𝑖}

[14]. Thus, we need only include the roots of unity whose power is 1 (mod 4). The

elements 1 (mod 4) in Z2𝑁 are equivalent to the powers of 5 in Z2𝑁 . so we define a

variant of the canonical embedding as the first part of our decoding scheme below:

Embedding(𝑝(𝑥))→
[︁
𝑝 (𝜁0) , 𝑝 (𝜁1) , . . . , 𝑝

(︁
𝜁𝑁

2
−1

)︁]︁
where 𝜁𝑗 = 𝜁5

𝑗
. We define this function using powers of five to allow us to implement

it using an optimized variant of the Fast Fourier Transform [3]. This function is

implemented in pyFHE in FFTContext::embedding. Note that this function supports

28

component-wise homomorphic addition and multiplication.

For our encoding function, we use Embedding−1, with an output in Q[𝑥]/
(︀
𝑥𝑁 + 1

)︀
.

Now, the most crucial part of the CKKS encoding scheme is to multiply the resulting

polynomial by a scaling factor ∆ to maintain precision throughout rounding errors

coming from this encoding scheme and homomorphic operations. The encoding and

decoding schemes are as follows:

∙ Encode(z,∆): For an (𝑁/2)-dimensional vector z, output

𝑚(𝑥) =
⌊︀
∆ · Embedding−1 (z)

⌉︀

∙ Decode(𝑚): For a plaintext polynomial 𝑚 ∈ 𝑅𝑞 with scaling factor ∆ output

z = Embedding
(︀
∆−1 ·𝑚

)︀

These two functions are implemented in CKKSEncoder. Each Plaintext stores a

plaintext polynomial as well as a scaling factor, which is input into the encoding

function as a parameter.

4.2 Ciphertext Space

Our ciphertext space, like in BFV, is the two-dimensional space 𝑅2
𝑞 , consisting of two

polynomials in 𝑅𝑞. These two polynomials are stored in a Ciphertext object within

the c0 and c1 parameters. However, in CKKS, the values of the modulus 𝑞 and the

scaling factor ∆ can change for each ciphertext. Each ciphertext keeps track of its

current modulus and its scaling factor. We call the maximum modulus a ciphertext

can have 𝑄 and refer to it as big_modulus in pyFHE.

29

4.3 Scheme

We introduce one additional sampling distribution for CKKS. For a positive integer

ℎ, we call ℋ𝒲𝒯 (ℎ) the set of vectors in {0,−1, 1}𝑁 that contain exactly ℎ non-zero

values (a Hamming weight of ℎ). We will also use 𝜒 and 𝒵𝒪 (𝜌) as defined in section

2.1. Given the security parameter 𝜆, we present the CKKS encryption scheme [6]

below:

∙ SecretKeyGen
(︀
1𝜆
)︀
: Choose values for 𝑁, 𝑞,𝑄,∆, ℎ based on the security pa-

rameter 𝜆. We choose powers of two for 𝑞, 𝑄, and ∆, such that ∆ < 𝑞 < 𝑄 to

avoid introducing error during rescaling. We must also choose 𝑁 to be a power

of two, as noted in Section 2.2. Sample s← ℋ𝒲𝒯 (ℎ) and output

sk = ⟨1, s⟩

∙ PublicKeyGen (sk): Set ⟨1, s⟩ = sk, sample a← 𝑅𝑄, e← 𝜒 and output

pk =
(︁

[−a · s + e]𝑄 , a
)︁

∙ SwitchKeyGen (sk, s′): Set ⟨1, s⟩ = sk, sample a← 𝑅𝑄, e← 𝜒, and output

swk =
(︁

[−a · s + e + 𝑄 · s′]𝑄2 , a
)︁

∙ RelinearizationKeyGen (sk): Set ⟨1, s⟩ = sk, and output

rlk = SwitchKeyGen
(︀
sk, s2

)︀
The above key generation methods are implemented in CKKSKeyGenerator.

∙ Encrypt (pk,m): To encrypt m ∈ 𝑅𝑞, let pk = (p0,p1) . Sample u ← 𝒵𝒪
(︀
1
2

)︀
and e0, e1 ← 𝜒 and output

ct =
(︁

[m + p0 · u + e0]𝑞 , [p1 · u + e1]𝑞

)︁
30

∙ Decrypt (sk, ct): Set ⟨1, s⟩ = sk, and ct = (c0, c1) and output

[⟨ct, sk⟩]𝑞 = [c0 + c1 · s]𝑞

Encryption and decryption are implemented in CKKSEncryptor and CKKSDecryptor,

respectively.

∙ Add (ct1, ct2): To add two ciphertexts, they must have the same modulus and

scaling factor, which will also be the modulus and scaling factor of their cipher-

text sum. Output

ctadd =
(︁

[ct1 [0] + ct2 [0]]𝑞 , [ct1 [1] + ct2 [1]]𝑞

)︁

∙ Multiply (ct1, ct2, rlk): To multiply two ciphertexts, the must have the same

modulus, which will also be the modulus of their ciphertext product. Compute

c0 = [(ct1 [0] · ct2 [0])]𝑞

c1 = [(ct1 [0] · ct2 [1] + ct1 [1] · ct2 [0])]𝑞

c2 = [(ct1 [1] · ct2 [1])]𝑞

Relinearize the ciphertext to obtain

c′0 =
[︀
c0 +

⌊︀
𝑄−1 · c2 · rlk [0]

⌉︀]︀
𝑞

c′1 =
[︀
c1 +

⌊︀
𝑄−1 · c2 · rlk [1]

⌉︀]︀
𝑞

and output ctmul = (c′0, c′1) with scaling factor ∆mul = ∆1 ·∆2.

∙ Rescale (ct,∆′): Given a ciphertext ct with scaling factor ∆ct and modulus

𝑞ct output

ctrescale =

(︃[︂⌊︂
ct[0]

∆′

⌉︂]︂
𝑞/Δ′

,

[︂⌊︂
ct[1]

∆′

⌉︂]︂
𝑞/Δ′

)︃

with scaling factor Δct
Δ′ and modulus 𝑞

Δ′ .

31

Addition, multiplication, relinearization, rescaling are implemented in CKKSEvaluator.

Currently, CKKSEvaluator::multiply automatically relinearizes the ciphertext after

each multiplication. We recommend also calling CKKSEvaluator::rescale with the

original scaling factor after each multiplication in order to reduce the ciphertext prod-

uct’s scaling factor from ∆2 to ∆, to avoid blow-up of the scaling factor after further

homomorphic multiplications.

4.4 Bootstrapping

After many multiplications and rescaling operations, the ciphertext modulus will be

too small compared to the scaling factor, which would cause the message to wrap

around (mod 𝑞) allowing the noise to corrupt the message. However, before this can

occur, we can increase the modulus of the ciphertext through bootstrapping [4]. We

will give a brief overview of the CKKS bootstrapping procedure, while omitting details

about rotation, conjugation, and matrix multiplication. These details can be found in

[4] and are implemented in CKKSEvaluator::rotate, CKKSEvaluator::conjugate,

and CKKSEvaluator::multiply_matrix. Bootstrapping involves the following steps:

∙ ModRaise: Starting with a ciphertext ct such that [⟨ct, sk⟩]𝑞 = 𝑚(𝑥), we

raise our modulus 𝑞 to the big modulus 𝑄. We also change the scaling factor ∆

to ∆′ = 𝑞, so that our plaintext coefficients stay as integers > 1. This step does

not involve any homomorphic operations, but we now would have a different

plaintext if we decrypted ct, namely, [⟨ct, sk⟩]𝑄 = 𝑡(𝑥), such that [𝑡(𝑥)]𝑞 =

𝑚(𝑥). This function is implemented in CKKSEvaluator::raise_modulus.

∙ CoeffToSlot: We homomorphically perform the Embedding−1 function on

our ciphertext in order to move our plaintext polynomial coefficients into our

decoded slots, with the output split into two vectors t0 =
(︁
𝑡0, 𝑡1, . . . , 𝑡𝑁

2
−1

)︁
and t1 =

(︁
𝑡𝑁

2
, 𝑡𝑁

2
+1, . . . , 𝑡𝑁−1

)︁
. The Embedding−1 function can be represented

32

through the equations z′𝑘 = 1
𝑁

(︁
𝑈𝑘

𝑇 · z′ + 𝑈𝑇
𝑘 · z′

)︁
for 𝑘 = 0, 1 where

𝑈0 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 𝜁0 . . . 𝜁

𝑁
2
−1

0

1 𝜁1 . . . 𝜁
𝑁
2
−1

1

...
...

1 𝜁𝑁
2
−1 . . . 𝜁

𝑁
2
−1

𝑁
2
−1

⎞⎟⎟⎟⎟⎟⎟⎠ and 𝑈1 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜁

𝑁
2
0 𝜁

𝑁
2
+1

0 . . . 𝜁𝑁−1
0

𝜁
𝑁
2
1 𝜁

𝑁
2
+1

1 . . . 𝜁𝑁−1
1

...
...

𝜁
𝑁
2
𝑁
2
−1

𝜁
𝑁
2
+1

𝑁
2
−1

. . . 𝜁𝑁−1
𝑁
2
−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We precompute these matrices in CKKSBootstrappingContext, and perform

this function in CKKSEvaluator::coeff_to_slot.

Now that we have the coefficients of 𝑡(𝑥) in our plaintext slots, we wish to com-

pute 𝑚(𝑥) = [𝑡(𝑥)]𝑞 homomorphically. In order to do so, we use 𝑞
2𝜋

sin
(︁

2𝜋𝑡
𝑞

)︁
as an

approximation for [𝑡]𝑞 with the assumption that 𝑚 is much smaller than 𝑞.

∙ EvalExp: To compute sin, we use the Taylor series approximation for 𝑒
2𝜋𝑖t𝑘
𝑞·2𝑟

for 𝑘 = 0, 1 in CKKSEvaluator::exp_taylor and square it 𝑟 times in

CKKSEvaluator::exp to reduce error. Increasing the value of the parameter 𝑟

reduces the error, but increases the number of multiplications performed.

∙ ImagExt: To extract the imaginary part of the exponential function, we com-

pute

m𝑘 = [t𝑘]𝑞 ≈
𝑞

2𝜋
sin

(︂
2𝜋t𝑘
𝑞

)︂
=

exp
(︁

2𝜋𝑖t𝑘
𝑞

)︁
− exp

(︁
−2𝜋𝑖t𝑘

𝑞

)︁
2𝑖

for 𝑘 = 0, 1.

∙ SlotToCoeff: In the final step, we homomorphically perform the Embedding

function to put our decoded slots back into the plaintext polynomial. To do so,

we compute the equation z = 𝑈0m0+𝑈1m1 to obtain back our original message

z in a larger modulus 𝑄1 such that 𝑞 < 𝑄1 < 𝑄. We do not end up with the mod-

ulus 𝑄 due to multiple rescaling operations that occur during bootstrapping.

This function is implemented in CKKSBootstrapping::slot_to_coeff.

The bootstrapping procedure along with more details about how the scaling factor

changes is summarized in Table 4.1. The procedure is implemented in

33

Table 4.1: CKKS Bootstrapping

Decoded Slots Encoded Plaintext Scaling Modulus
Factor

Before z 𝑚(𝑥) = 𝑚0(𝑥) + 𝑥𝑁/2𝑚1(𝑥) ∆ 𝑞
Embedding (𝑚/∆) ∆ · Embedding−1 (z)

ModRaise z′ 𝑡(𝑥) = 𝑡0(𝑥) + 𝑥𝑁/2𝑡1(𝑥) ∆′ 𝑄
[𝑡(𝑥)]𝑞 = 𝑚(𝑥)

∆′ · Embedding−1 (z′)
CoeffToSlot Embedding−1 (z′)
𝑘 = 0, 1 𝑡𝑘/∆′ ∆′ · Embedding−1 (𝑡𝑘/∆′) ∆′ 𝑄′

Scale (𝑘 = 0, 1) 2𝜋𝑖𝑡𝑘
𝑞

∆′ · Embedding−1
(︁

2𝜋𝑖𝑡𝑘
𝑞

)︁
∆′ 𝑄′

EvalExp 𝑒
2𝜋𝑖𝑡𝑘

𝑞 , ∆′ · Embedding−1
(︁
𝑒

2𝜋𝑖𝑡𝑘
𝑞

)︁
,

𝑘 = 0, 1 𝑒−
2𝜋𝑖𝑡𝑘

𝑞 ∆′ · Embedding−1
(︁
𝑒−

2𝜋𝑖𝑡𝑘
𝑞

)︁
∆′ 𝑄′′

ImagExt 𝑞
2𝜋

sin
(︁

2𝜋𝑡𝑘
𝑞

)︁
𝑘 = 0, 1 [𝑡𝑘]𝑞 = 𝑚𝑘 ∆′ · Embedding−1 (𝑚𝑘) ∆′ 𝑄′′

Scale (𝑘 = 0, 1) 𝑚𝑘/∆′ ∆′ · Embedding−1 (𝑚𝑘/∆′) ∆′ 𝑄′′

SlotToCoeff Embedding (𝑚/∆′) 𝑚(𝑥) ∆′ 𝑄1

Reset scaling Embedding (𝑚/∆) 𝑚(𝑥) ∆ 𝑄1

factor z

34

CKKSEvaluator::bootstrap.

4.5 RNS Representation

In order to speed up multiplication, we use the Residue Number System (RNS) rep-

resentation of elements in 𝑅𝑄 [3]. To use this representation, we choose a modu-

lus 𝑃 > 𝑁𝑄4 such that 𝑃 = 𝑝1𝑝2 . . . 𝑝𝑛 for distinct primes 𝑝𝑖 ≡ 1 (mod 2𝑁) for

1 ≤ 𝑖 ≤ 2𝑁. For a single ciphertext multiplication, instead of performing a naive

𝑂(𝑁2) polynomial multiplication in Z𝑞, we perform 𝑛 polynomial multiplications in

Z𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑛, and reconstruct the product in Z𝑃 using the Chinese Remainder

Theorem. Since 𝑝𝑖 ≡ 1 (mod 2𝑁), we can perform these 𝑛 polynomial multiplications

using the NTT, making our runtime 𝑂 (𝑛𝑁 log𝑁) . In pyFHE, we reconstruct to Z𝑃

after every multiplication, and since the largest modulus we perform multiplication in

is 𝑄2, as long as 𝑃 > 𝑁𝑄4, we will not overflow the modulus 𝑃 . We manage the RNS

representation through CRTContext, and include this optimization as an optional pa-

rameter num_primes in CKKSParameters, which is input to Polynomial::multiply.

We recommend turning off this parameter for 𝑁 ≤ 2048, since it only provides a

speedup for larger 𝑁 .

Future work includes supporting rescaling in the RNS representation, which would

allow us to remain in RNS representation until decryption.

35

36

Chapter 5

Library Architecture and Capabilities

5.1 Library Architecture

pyFHE is designed to have a common set of classes for every fully homomorphic

encryption scheme. The high-level architecture is illustrated in Figure 5-1. The

layers are organized as follows:

1. Crypto Scheme: The existing schemes in pyFHE are BFV and CKKS.

2. Crypto Methods: These include all cryptographic protocols in a scheme.

3. Crypto Objects: These objects are common to all cryptographic schemes.

4. Polynomial Ring Layer: This allows us to perform operations such as addi-

tion and multiplication in the ring Z[𝑥]/(𝑥𝑁 + 1).

5. Math and FFT Layer: This includes all basic math and number theory

operations, including FFT, NTT, CRT, and random sampling.

To add a new FHE scheme to the library, one simply needs to add a Parame-

ters class, a Key Generator class, various Encoder classes, Encryptor and Decryptor

classes, an Evaluator class, and a Bootstrapping Context class if implementing boot-

strapping. These classes can use the existing Ciphertext, Plaintext, SecretKey,

and PublicKey modules to implement the scheme. If the new FHE scheme is based

37

Figure 5-1: pyFHE Library Architecture

on the Ring LWE problem, as most FHE schemes are, we can use the Polynomial

module to implement ring operations. Finally, we have basic math and number theory

operations any scheme can use as necessary.

5.2 Capabilities

We summarize the functions currently supported in pyFHE in Table 5.1. We omit

functions that are only useful for bootstrapping in this table. Future work includes

adding more functionality to BFV, adding more FHE schemes to the library, and

adding more optimizations including full-RNS for both schemes [10, 5].

5.3 Sample Implementation

A sample implementation of CKKS is shown in Figures 5-2 and 5-3. Figure 5-2 il-

lustrates how to initialize various components of the CKKS scheme, and figure 5-3

illustrates how to encode and encrypt two messages, perform a homomorphic multi-

38

Table 5.1: Capabilities of pyFHE

Functions Supported BFV CKKS
Add
AddPlain
Subtract
Multiply
MultiplyPlain
Relinearize
Rescale
LowerModulus
KeySwitch
Rotate
Conjugate
MultiplyMatrix
Exponentiate
Bootstrap

plication, and decrypt the result.

39

Figure 5-2: CKKS Scheme Initialization

Figure 5-3: CKKS Multiplication

40

Chapter 6

Parameter Selection

Before we can use BFV or CKKS, we must pick a number of parameters including:

1. The polynomial degree 𝑁 (a power of two)

2. The ciphertext modulus 𝑞

3. The plaintext modulus 𝑡 (BFV only)

4. The large ciphertext modulus 𝑄 (CKKS only)

5. The scaling factor ∆ (CKKS only)

6.1 Polynomial degree

For both schemes, a larger choice of 𝑁 will give a higher security level and less

efficiency. Since we are currently using this library primarily to test correctness

rather than to use in secure applications, we often choose smaller values of 𝑁 such as

𝑁 = 16 so that we can test functions quickly.

6.2 Moduli

For both schemes, a larger ciphertext modulus 𝑞 allows us to perform more homo-

morphic operations before the noise gets too large. For testing, we have used values

41

of 𝑞 anywhere from 40 bits to 1200 bits. However, 𝑞 and 𝑄 are upper bounded based

on the security parameter 𝜆 and polynomial degree 𝑁 [7, 19].

For BFV, decryption works correctly as long as the noise is less than Δ
2

where

∆ = ⌊𝑞/𝑡⌋ . Thus, a smaller value of 𝑡 allows more homomorphic operations. One

should choose 𝑡 to be exactly as large as needed for the largest plaintext value.

6.3 Scaling Factor (CKKS)

For CKKS, a larger value of the scaling factor ∆ yields more precision, but allows less

homomorphic operations. More specifically, for a plaintext polynomial 𝑚(𝑥) ∈ 𝑅𝑞

where 𝑚(𝑥) = Encode (z,∆) , we will compute the error in the result of decoding

𝑚(𝑥) + 𝑒(𝑥) for some accumulated error 𝑒.

Since we have 𝑚 = ⌊∆ · Embedding−1 (z)⌉ , we introduce 𝑒round such that

𝑚 + 𝑒round = ∆ · Embedding−1 (z) where ||𝑒round||∞ ≤
1

2
.

Now, decoding 𝑚 + 𝑒 gives

̃︀z = Embedding
(︀
∆−1 (𝑚 + 𝑒)

)︀
= Embedding

(︀
∆−1 ·𝑚

)︀
+ Embedding

(︀
∆−1 · 𝑒

)︀
= Embedding

(︀
∆−1 ·

(︀
∆ · Embedding−1 (z)− 𝑒round

)︀)︀
+ Embedding

(︀
∆−1 · 𝑒

)︀
= z− Embedding

(︀
∆−1 · 𝑒round

)︀
+ Embedding

(︀
∆−1 · 𝑒

)︀
42

For any polynomial 𝑝(𝑥) =
𝑁∑︀
𝑖=0

𝑝𝑖𝑥
𝑖, for all 0 ≤ 𝑘 < 𝑁, we have

||Embedding(𝑝)||∞ ≤ |𝑝 (𝜁𝑘) | =

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=0

𝑝𝑖𝜁
𝑖
𝑘

⃒⃒⃒⃒
⃒

≤
𝑁∑︁
𝑖=0

⃒⃒
𝑝𝑖𝜁

𝑖
𝑘

⃒⃒
=

𝑁∑︁
𝑖=0

|𝑝𝑖|

≤ 𝑁 · ||𝑝||∞

Thus, the error 𝑒decode = ̃︀z− z can be bounded by

||𝑒decode||∞ ≤ ||Embedding
(︀
∆−1 · 𝑒round

)︀
||∞ + ||Embedding

(︀
∆−1 · 𝑒

)︀
||∞

≤ ∆−1 ·𝑁 (||𝑒round||∞ + ||𝑒||∞)

≤ ∆−1 ·𝑁
(︂

1

2
+ ||𝑒||∞

)︂
.

In practice, we can use this estimate to choose ∆. For example, if choosing ∆ = 215

gives us a final decoded message with 4 bits of precision, if we wants 6 bits of precision,

we can choose ∆ = 217. In certain operations, we must increase the size of the scaling

factor if the size of our decoded slots becomes small. For example, in bootstrapping,

the size of our slots becomes 2𝜋𝑡
𝑞
, so we choose our new scaling factor ∆′ such that

𝑒decode is much smaller than 2𝜋𝑡
𝑞
.

However, note that we must have ||𝑚||∞ = ||∆ · Embedding−1(z)||∞ < 𝑞
2

in order

to decrypt correctly. Once ∆ gets too close to 𝑞
2
, we will no longer have be able to

perform anymore homomorphic operations, since the resulting plaintext norm could

become larger than 𝑞
2
. Choosing a larger ∆ will result in ∆ getting close to 𝑞 after

fewer operations.

43

44

Chapter 7

Performance

One of pyFHE’s limitations in comparison to C++ libraries [19, 16] is its poor per-

formance. However, this is a tradeoff we decided to make for readability purposes.

All experiments were run on a 2.7 GHz Intel Core i5 processor. We give runtimes for

one CKKS multiplication (including relinearization) in Table 7.2 and for one CKKS

bootstrapping operation in Table 7.3 for various values of 𝑁 . For multiplication, we

used the Parameter Set 1 given in Table 7.1, and for bootstrapping, we used Param-

eter Set 2. We chose 𝑟 ≥ 6, the number of squarings to approximate the exponential

function while bootstrapping, such that each component’s real and imaginary parts

of the resulting message from bootstrapping was within 0.05 of the original mes-

sage, which was a (𝑁/2)-length vector whose elements were of the form 𝑎 + 𝑏𝑖 where

(𝑎, 𝑏) ← [0, 1)2. Amortized time refers to the total time divided by the number of

plaintext slots 𝑁
2
.

We used the RNS representation for 𝑁 > 2048 and did not otherwise, since this

gave the optimal performance. Although we need 𝑁 ≥ 2048 for any reasonable level

of security, we suggest using this library for smaller values of 𝑁 such as 𝑁 = 16 to

obtain reasonable performance. Currently, this library is intended to aid researchers

in testing correctness of variations of the schemes rather than to be used in secure

applications. It is possible it will be suitable for secure applications in the future after

further optimizations have been implemented.

45

Table 7.1: Parameter Sets

Parameter log2 ∆ log2 𝑞 log2𝑄

Set 1 30 600 1200
Set 2 30 40 1200

Table 7.2: Runtimes for CKKS Multiplication

log2𝑁 Total Time Amortized Time
4 4.4 ms 0.4 ms
5 12 ms 0.8 ms
6 85 ms 2.6 ms
7 0.19 s 3.1 ms
8 0.69 s 5.4 ms
9 2.8 s 11 ms
10 12 s 23 ms
11 48 s 47 ms
12 100 s 49 ms
13 190 s 46 ms
14 390 s 48 ms

Table 7.3: Runtimes for CKKS Bootstrapping

log2𝑁 Total Time Amortized Time 𝑟
4 0.28 s 35 ms 6
5 1.2 s 77 ms 6
6 6.6 s 0.21 s 6
7 30. s 0.47 s 6
8 170 s 1.4 s 6
9 20 min 4.7 s 7

46

Chapter 8

Conclusion

We designed the Python library pyFHE v1.0 [17] to provide readable implementations

of fully homomorphic encryption schemes that are easy for researchers to modify

and test. Currently, pyFHE supports the BFV encryption scheme and the CKKS

encryption scheme, and is one of very few libraries [11] that currently includes CKKS

bootstrapping. We currently sacrifice performance for readability, but future work

includes implementing optimizations [3, 10, 5] to allow the library to be usable in

secure applications.

47

48

Bibliography

[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on ho-
momorphic encryption schemes: Theory and implementation. ACM Computing
Surveys (CSUR), 51(4):79, 2018.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):13, 2014.

[3] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for ap-
proximate homomorphic encryption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 34–54. Springer,
2019.

[4] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 360–384. Springer, 2018.

[5] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
A full rns variant of approximate homomorphic encryption. In International
Conference on Selected Areas in Cryptography, pages 347–368. Springer, 2018.

[6] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
409–437. Springer, 2017.

[7] Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic computation of
edit distance. In International Conference on Financial Cryptography and Data
Security, pages 194–212. Springer, 2015.

[8] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[9] Craig Gentry. A fully homomorphic encryption scheme, volume 20. Stanford
University Stanford, 2009.

49

[10] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved rns variant of
the bfv homomorphic encryption scheme. In Cryptographers’ Track at the RSA
Conference, pages 83–105. Springer, 2019.

[11] Heaan. https://github.com/snucrypto/HEAAN, March 2020.

[12] Helib. https://github.com/homenc/HElib, July 2020.

[13] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation
on encrypted genomic data. In International Conference on Cryptology and In-
formation Security in Latin America, pages 3–27. Springer, 2014.

[14] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

[15] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 113–124. ACM, 2011.

[16] Palisade. https://gitlab.com/palisade/palisade-release, April 2020.

[17] pyfhe. https://github.com/sarojaerabelli/py-fhe, August 2020.

[18] Oded Regev. The learning with errors problem.

[19] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, April 2020.
Microsoft Research, Redmond, WA.

50

