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Abstract

The secretory pathway processes approximately one-third of the cellular proteome, modifying
proteins with diverse chemical structures such as carbohydrates. These modifications can help guide protein
folding and expand the functional diversity of the proteome, ultimately influencing intracellular signaling
and extracellular interactions. The endoplasmic reticulum (ER) is the site of protein folding along the
secretory pathway, featuring a suite of chaperones to assist protein folding and quality control factors for
degrading misfolded proteins. Co- and post-translational modifications such as N-glycosylation take place
in the ER, and glycoproteins are further processed in the Golgi to yield a vast array of N-glycan structures.

During both normal physiology and disease, cells encounter environments that can result in
proteotoxic stress. The proteostasis network safeguards against protein misfolding stress through the
upregulation of chaperones and quality control factors. The unfolded protein response (UPR) regulates the
ER’s proteostasis network through the activity of transcription factors that remodel the expression of
proteostasis regulators. Prior studies in our lab have established a role for the UPR’s XBP1s transcription
factor in N-glycan maturation, demonstrating that XBP1s bridges ER stress with the molecular architecture
of N-glycans. However, these studies were limited to analyzing ectopically expressed model proteins. This
thesis examines the role of XBP1s in regulating the structural distribution of N-glycans in endogenous
systems, and explores the mechanisms by which XBP1s activation is regulated.

We employed stress-independent activation of XBP1s and glycomic analyses by lectin microarrays
and mass spectrometry to show that XBP1s drives significant changes in sialylation and bisecting GIcNAc
in HEK293 cells, and in high-mannose, branched, and core fucosylated N-glycans in HeLa cells. We also
inhibited formation of XBP1s in breast cancer cells displaying constitutively high levels of XBP1s to show
that glycosylation features associated with malignancy are modestly affected when XBP1s formation is
blocked. Lastly, we demonstrated that pharmacological activation of the IRE1-XBP1s signaling axis cannot
be sustained despite loss of co-chaperones negatively regulating IRE1. Our results demonstrate that XBP1s
is a significant regulator of both the UPR and N-glycosylation, and they emphasize the importance of
studying the regulation of IRE1-XBP1s signaling for understanding disease targets.
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Chapter 1

Crosstalk between the Unfolded Protein Response and N-Linked Glycosylation

Summary

Protein homeostasis (proteostasis) is orchestrated by numerous players, including chaperone
proteins that enhance folding, quality control factors that facilitate degradation, and enzymes that install
post-translational modifications that affect protein stability and function. Proteostasis is tightly regulated in
the cell, and proteostatic dysfunction is associated with many diseases such as neurodegeneration and
cancer. Proteostasis influences, and is influenced by, a multitude of cellular pathways including
glycosylation, but the crosstalk between pathways is not yet well-understood. Glycosylation, one of the
most common post-translational modifications, presents several challenges to its study, including template-
free biosynthesis, structurally similar building blocks, and highly branched structures. Glycosylation is
regulated at multiple levels, and emerging evidence shows that upstream transcription factors may control
the final molecular architecture of sugars used to modify proteins. There are data demonstrating that
proteostasis and glycosylation are linked, but relatively little mechanistic work has been performed to probe
the underlying biology. Notably, dysregulation of both proteostasis and glycosylation contributes to the
development of cancer. In this chapter, we discuss the crosstalk between proteostasis and glycosylation,

focusing on their roles in diseases such as cancer.
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Introduction to Protein Folding and Disease

Cells dynamically synthesize, fold, and degrade proteins with assistance from the proteostasis
network (Figure 1.1).%? The vast majority of proteins adopt defined three-dimensional structures to exert
their biological functions.® Even proteins with intrinsically disordered regions must be maintained in
functional states and often still must fold to function in their roles as molecular switches,** regulatory hubs

for protein—protein interaction networks,®®

and components of membrane-less organelles.”*° Protein
misfolding is known to cause a number of diseases, such as cystic fibrosis.**? Additionally, diseases
associated with amyloid aggregates, such as Alzheimer’s and Parkinson’s, have been linked to the decline
in proteostasis that accompanies aging.**** Furthermore, cancers often feature dysregulated proteostasis
and upregulation of cytoprotective elements that enhance cancer cell survival in conditions that would
otherwise cause protein misfolding injury and oxidative stress. The importance of proteostasis in cancer is
highlighted by the overexpression of the BiP Hsp70 chaperone, which plays a central role in the unfolded
protein response (UPR),™ in many types of cancers,’*® as well as overexpression of numerous other

chaperones.?%
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Figure 1.1: Protein homeostasis is a dynamic process. During and after translation, proteins can undergo
folding to adopt defined three-dimensional structures. Misfolded proteins lack function and can also lead
to the formation of amyloid fibrils and amorphous aggregates, which have been associated with pathology.
Steps between folding intermediates, native states, and misfolded states are mediated by players such as
chaperone proteins and protein disulfide isomerases. Cells feature mechanisms for quality control of
misfolded proteins such as the ubiquitin-proteasome system (UPS), ER—-associated degradation (ERAD),
and autophagy. Co-translational and post-translational modifications can impart new biological activity or
enhanced stability to proteins, but can also contribute to pathology. Post-translational modifications are
also used to facilitate protein degradation, as in the case for ERAD and the UPS. Disease can occur when
there is proteostasis imbalance.
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Active research on proteostasis has led to breakthrough therapies, including small molecules to
treat the underlying cause of cystic fibrosis, correcting and potentiating misfolded and non-functional forms
of the CFTR chloride ion channel.?22° On the other hand, clinical trials for antibodies targeting downstream
consequences of failed proteostasis, such as amyloid-f oligomers and fibrils in Alzheimer’s disease, have
failed to achieve cognitive benefit.*3* These clinical setbacks with Alzheimer’s disease are just a few
examples of our limited understanding of diseases associated with proteostasis, but do suggest the need to
correct proteostasis in cells, before irreversible protein aggregation has occurred. Proteostasis modulators
for cancer treatment include the blockbuster drug bortezomib, a proteasome inhibitor approved for multiple
myeloma.32 However, resistance to bortezomib treatment can result from alterations in cellular metabolism
and glycosylation.**3

Here, we introduce the proteostasis network, post-translational modifications with focus on N-
linked glycosylation, and the hallmarks of cancer. Furthermore, we provide the conceptual framework for
crosstalk between the endoplasmic reticulum’s (ER’s) unfolded protein response and N-glycosylation using

cancer as an exemplar biological context.

The Proteostasis Network

Cellular proteostasis is regulated by many elements, and different subcellular compartments are
controlled by distinct regulators. Within the cytosol, protein folding capacity is maintained by a number of
chaperone systems, including ribosome-associated chaperones, the heat shock factor 1 (HSF1)-regulated
Hsp40/70/90 systems, and the TRiC/CCT chaperonins.®

Among the proteostasis networks of a eukaryotic cell, that of the secretory pathway is of particular
interest, as roughly one-third of the proteome passes through the ER and Golgi for processing and
maturation in these specialized subcellular compartments.®® The secretory pathway begins with
translocation of nascent polypeptides into the ER membrane, followed by further processing in the Golgi,
and finally export to cellular membranes, the lysosome, or the extracellular milieu. The proteostasis network
in the ER is regulated by the unfolded protein response, which safeguards the ER from protein misfolding
stress.” In cases of unresolved ER stress, the UPR commits cells to apoptosis via signaling through Bcl-2
family members, TRAIL receptors, death receptors, and activation of caspases.®”*

The UPR is comprised of the three ER transmembrane sensor proteins IRE1, ATF6, and PERK,
each of which signals to its downstream transcriptional effector XBP1s, cleaved ATF6 (ATF6f), and ATF4,
respectively, through distinct mechanisms (Figure 1.2)."> Each of the three branches of the UPR induces

42-47

expression of certain genes and biological responses with some overlap, including but not limited to

genes encoding chaperone proteins, quality control factors including components of the ubiquitin-

proteasome system, and genes involved in metabolism and glycosylation.**°
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ER Transmembrane Transcription
Stress Sensors

Factors

Figure 1.2: The unfolded protein response safeguards ER proteostasis through three distinct
pathways. PERK, IRE1, and ATF6 are ER transmembrane sensor proteins that signal to their respective
transcription factors ATF4, XBP1s, and ATF6f. PERK activation can also lead to blocking protein
translation. Each pathway involves a distinct mechanism, including phosphorylation of elF2a (PERK-
ATF4), splicing of XBP1 mRNA (IRE1-XBP1s), and cleavage of ATF6. The XBP1s and ATF6f
transcription factors upregulate the ER proteostasis network via induced expression of genes for proteins
involved in protein folding, such as chaperones, to mitigate ER stress. Unresolved stress can lead to
apoptosis via the ATF4 transcription factor.

The mitochondrion coordinates its own unfolded protein response® that induces expression of
mitochondrial chaperones and proteases, with consequences seen in immunity, metabolism, cell survival,
and aging.>**? Interestingly, cytosolic proteostasis has been linked to protein import into mitochondria,
and the ER makes extensive contact sites with mitochondria,>®° hinting at the possibility of crosstalk
between the cytosolic, ER, and mitochondrial proteostasis networks.>*°

Due to the widespread influence of dysregulated proteostasis in biology and disease, it is
unsurprising that the proteostasis network is a drug target for many diseases beyond the aforementioned
cystic fibrosis and neurodegenerative disorders. For example, there is great interest in targeting the
proteostasis network for treating the lysosomal storage disorders Gaucher disease and Tay-Sachs disease,*
and liver diseases caused by aggregates of alpha-1 antitrypsin (AATD).®* Furthermore, chaperones are often
necessary for folding metastable oncogenes such as v-Src®?®* and other cancer-related client proteins.®® ER

proteostasis in particular is a cancer target, with inhibitors for the Grp94 Hsp90 chaperone in development.®®
Chemical Tools to Control the Unfolded Protein Response
Professional secretory cells, such as B cells and pancreatic p-cells, rely on upregulation of the

unfolded protein response (Figure 1.2) in accordance with their roles in secreting antibodies and insulin,
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respectively. Additionally, normal physiology including embryogenesis and development require robust
proteostasis and dependence on protein folding capacity. Furthermore, ER proteostasis plays important
roles in disease,® especially in a variety cancers.®®"° In order to fully understand the functions of the UPR
in biology and disease, stress-independent methods of activation are required beyond those that induce the
global UPR.

Classic tools used to induce ER stress include the compounds thapsigargin, tunicamycin, and
Brefeldin A.™ Such compounds activate global ER stress by blocking calcium ion import into the ER
(thapsigargin), blocking protein N-glycosylation (tunicamycin), or blocking protein transport from the ER
to the Golgi (Brefeldin A). These ER stressors can lead to massive protein misfolding, thus activating all
three branches of the UPR. Applications of such compounds have led to dissection of the effects of ER
stress on autophagy and other aspects of biology,” but their global consequences for cell health make
branch-specific effects difficult to analyze. Moreover, ER stressors are not viable therapeutic drugs for UPR
modulation, as they are highly cytotoxic.

Chemical genetic methods have been developed to modulate ER proteostasis without global UPR
induction,** * allowing elucidation of branch-specific biology. Screening methods for small molecule,
pharmacologic control of ATF6 have identified compounds that selectively activate ATF6.”*" Molecules
that activate IRE1 have largely proven to be quite cytotoxic or pleiotropic,” and lacking in sustained
potency.’®"® The search for potent, selective activators of IRE1 is ongoing, with promising first-in-class
compounds recently identified from high-throughput screening.” Pharmacologic control of ATF6 and IRE1
have shown promising effects in conferring protection from heart damage following myocardial
ischemia/reperfusion in vivo, and in reducing secretion of toxic amyloid precursor protein (APP) in cellular
models, respectively.” " Extensive overviews of tools and methods to control the UPR and cellular

proteostasis have been reported elsewhere®*® and will not be further discussed in this chapter.

Post-Translational Modifications

Owing to compartmentalization of the ER and Golgi, secretory pathway proteins are presented
unique environments for protein maturation, including glycosylation by a suite of enzymes (i.e.,
glycosyltransferases and glycosidases) and disulfide bond formation by protein disulfide isomerases. Such
co- and post-translational modifications can impart enhanced stability and functional diversity. For
example, proteins undergoing glycosylation are covalently modified with sugars to yield linear or branched
sugar structures called glycans (Figure 1.3). Glycans attached to proteins (or to other glycoconjugates such
as lipids) help comprise the layer of sugars on the cell surface called the glycocalyx. The glycocalyx
contributes to cell—cell recognition and cell-matrix interactions.®> Glycans also affect the function of

proteins, influencing downstream biology (further discussed in the following section).
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Figure 1.3: Post-translational modifications are chemical groups attached to proteins via covalent
linkages. A: Such modifications are diverse and only a small selection is presented here. Some
modifications such as phosphorylation, acetylation, and hydroxylation use small chemical moieties (shown
in red), but their effects on protein conformation and function can be profound. Others, such as
glycosylation and ubiquitylation, use larger chemical groups (sugars and proteins, respectively) to build
linear or branched structures. These modifications are installed or removed by specific enzymes. Examples
of the roles of post-translational modifications are highlighted. B: Chemical structures of common
monosaccharide building blocks used in protein glycosylation. Several are structural isomers, such as the
hexose sugars (mannose, glucose, and galactose) and the HexNAc sugars (GIcNAc and GalNAc).

Proteins can also be modified with ubiquitin, a small regulatory protein that can direct other
proteins for proteasomal degradation when polyubiquitinated (i.e. modified with a chain of ubiquitin
molecules) (Figure 1.3A). Ubiquitin-mediated protein degradation takes place as a quality control
mechanism for misfolded proteins (Figure 1.1), such as those in the ER destined for ER-associated
degradation (ERAD).%® In contrast to polyubiquitylation, monoubiquitylation of proteins does not target
proteins for degradation, but instead can affect protein localization and endocytic trafficking.®* Additional
post-translational modifications include phosphorylation, acetylation, and hydroxylation (Figure 1.3A),%
which can confer additional levels of regulation and dramatically alter the structure and function of proteins,
acting as molecular switches or rheostats for tuning activity. The entire repertoire of post-translational
modifications is too grand to be described in detail here. We will focus on N-linked glycosylation in

particular for its emerging connections to the unfolded protein response.

N-Linked Glycosylation
Unlike macromolecules such as nucleic acids (DNA and RNA) or proteins, glycans are synthesized

without templates, instead relying on the biosynthesis of nucleotide-activated monosaccharides as building
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blocks,*®" their associated transporters,®® and enzymes that mediate the addition and removal of
monosaccharides.® Structural isomers of monosaccharides are often the building blocks of glycans (Figure
1.3B), making discrimination of these sugars based on molecular weight alone challenging.*® Researchers
have developed chemical tools and methods to study glycosylation, utilizing bioorthogonal chemistry,
metabolic and chemoenzymatic engineering, array-based technologies, and mass spectrometry.?-%

Several forms of glycosylation occur in cells, including O-linked glycosylation, C-linked
mannosylation, S-linked glycosylation, glypiation (glycosylphosphatidylinositol anchor attachment), and
phosphoglycosylation. N-Linked glycosylation of asparagine is, however, the most common.?” Again, we
focus on N-linked glycosylation here owing to its emerging connections to ER proteostasis and the UPR.
N-Glycosylation features step-wise synthesis of a precursor oligosaccharide, en bloc transfer of the
precursor, followed by further step-wise processing (Figure 1.4A),% with the potential to create highly
branched structures. N-Glycosylation is evolutionary conserved® and has wide-ranging effects in health
and disease.’® All kingdoms of life feature N-glycosylation, but may utilize specialized building blocks
depending on the organism.’®® Initial studies had suggested that over half of the proteome is N-
glycosylated,°? but more recent analyses suggest one-fifth as the upper limit.%’

N-Glycans can adopt various structures that influence protein function (Figure 1.4B). They

contribute to the formation of distinct proteoforms'®

with glycan-dependent functions in immunity,
development and beyond.'®**% For example N-glycans can influence the threshold of immune activation.
Specifically, a deficiency in MGATS, a $1,6-branching GIcNAc transferase, lowers the activation threshold
of T cells and increases the incidence of autoimmunity by enhancing T cell receptor clustering that results
from altered N-acetyllactosamine levels and galectin binding.'°® N-Glycans have also been reported to affect
viral escape from the immune system. The HIV gp120 envelope glycoprotein is heavily glycosylated with
high-mannose glycans, which protect it from proteolytic processing required for antigen presentation and
cytotoxic T cell priming.®” Additionally, the N-glycans on gp120 help form the protective glycan shield
that allows HIV to evade neutralizing antibodies.'® Other N-glycan epitopes that modulate immune
function include core fucose, which was shown to be required for T cell activation.'® The core fucose
epitope is further required during development, evidenced by the poor survival of mice lacking Fut8, the
fucosyltransferase enzyme responsible for initiating core fucosylation, due to growth and respiratory
defects.**** These examples provide just a snapshot of the many roles of N-glycans in biology and disease.

Therapeutic antibodies are often engineered to display desired N-glycan modifications, which can
function as structural rheostats and thus modulated accordingly. For example, a monoclonal antibody
against EGFR was chemoenzymatically engineered to display desired sialylated and non-fucosylated

(afucosylated) glycans, optimizing binding affinity and enhancing cytotoxic activity against human skin

27



112

cancer cells.* Afucosylated glycans have emerged as prominent determinants of enhanced antibody-

dependent cell cytotoxicity'***

and are often desirable for antibodies used as anti-cancer therapeutics.
N-Glycans in Protein Quality Control

Early in the secretory pathway, N-glycans mediate protein folding and quality control by allowing
access to the lectin-based protein chaperones calnexin and calreticulin in the ER,™° as well as to their partner
proteins in folding, oxidation, and glycan trimming.""*® Glycoproteins with the specific glycan structure
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Figure 1.4: Protein N-linked glycosylation is a co- and post-translational modification that installs
glycans onto asparagine side chains of proteins. A: A 14-residue precursor oligosaccharide is first
synthesized in a step-wise fashion while attached to a dolichol pyrophosphate molecule on the ER
membrane. Monosaccharide substrates in the form of nucleotide sugars are each added to the growing sugar
chain by their respective transferase enzymes, and the biosynthesis of the precursor requires the action of
flippase enzymes after attachment of the seventh monosaccharide. After the 14-residue precursor is
biosynthesized, it is added to a nascent glycoprotein by the oligosaccharyltransferase complex as the
polypeptide translocates from the ribosome to the ER. After installation of the precursor, initial trimming
occurs in the ER and the nascent glycoprotein is trafficked to the Golgi for further processing. B:
Glycosylation enzymes in the Golgi process the N-glycan with sequential removal and addition of
monosaccharides by specific enzymes, ultimately yielding a vast array of potential glycan structures,
including hybrid glycans, complex glycans, core fucosylated glycans, and sialylated glycans. The specific
identity of the glycan has important and varied effects on cellular communication and the function of
proteins. Emerging evidence shows that certain transcription factors may coordinately remodel the
expression of enzymes to yield specific glycan structures.
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of GlciManyGIcNAc; (Glc, glucose; Man, mannose; GIcNAc, N-acetylglucosamine) cycle through
calnexin/calreticulin binding until the terminal glucose is trimmed from the structure, thereby preventing
re-entry into the folding cycle. Proper folding and re-entry into the cycle is monitored by the UGGT
glucosyltransferase enzyme that can re-install the terminal glucose for another cycle of folding.
Additionally, glycans serve as signals for ER—associated degradation whereby glycoproteins that fail to
properly fold are processed by the EDEM mannosidase enzymes, retrotranslocated to the cytosol with the

help of lectin receptors, and tagged for ubiquitin-mediated proteasomal degradation.®®

Deciphering Regulation of Glycosylation

Our current understanding of how glycosylation is regulated is quite poor. Hundreds of genes are
involved in N-glycosylation, and how the cell regulates all of these players in a coordinated fashion is not
well-understood, though the roles of transcription factors and miRNA in regulating glycosylation are
emerging. Evidence of transcription factors controlling glycosylation-related gene (glycogene) expression
is in general lacking, with information available for only about two dozen glycogene—transcription factor
interactions.™® Examples of transcription factors controlling glycogene expression include the HNF1a and
ATF2 transcription factors, which can regulate the expression of fucosyltransferase and fucose biosynthesis
genes_lzo-lzz

Regulation of gene expression by miRNA can also control the expression of individual
glycogenes.'?® A recent analysis of sequencing reads from the human genome and experimental validation
suggested that 2,300 true human mature miRNAs exist, half of which were annotated in the miRBase
database at the time of publication.’** Currently 80 glycogenes are known to be regulated by miRNAs'®
but because accurate miRNA prediction algorithms are currently lacking, most studies have focused on
individual miRNAs. Looking forward, the development of focused CRISPR-Cas9 libraries targeting human

miRNAs"?® could make high-throughput screens for miRNA—glycosylation biology more feasible.

A Novel Connection: XBP1s and Glycosylation

Previous studies had shown that XBP1s can activate the hexosamine biosynthetic pathway (HBP),
a glucose metabolic pathway that generates the UDP-GIcNAc metabolite used for protein glycosylation,
but it was unknown whether XBP1s influences either the extent of protein N-glycosylation or the final
structure of glycans decorating proteins.?” ' Our lab discovered that XBP1s activation can remodel the
expression of glycosylation enzymes.*?” As one of the major regulators of the unfolded protein response,
XBP1s plays instrumental roles in controlling the expression of chaperone proteins and quality control
factors, but it was surprising to discover that XBP1s can also coordinate the expression of multiple

glycogenes that influence glycan structures.
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Using stress-independent activation of XBP1s and glycomic profiling by mass spectrometry, our
group went on to show that XBP1s alters the structural distribution of N-glycans installed on a secreted
glycoprotein domain derived from the CD2 adhesion protein, shifting from majority oligomannose N-
glycans to predominantly hybrid N-glycans.**” XBP1s activation also influenced terminal N-glycan epitopes
such as LacdiNAc (N,N’-diacetyllactosamine) and fucosylated LacdiNAc. Pulse-chase studies
demonstrated that synthesis and trafficking of the model protein were not affected, thus the observed N-
glycan changes were due to alterations in N-glycan maturation, likely mediated by shifts in glycogene
expression. We demonstrated that the effects of XBP1s in shifting glycoform distributions were
generalizable to the secreted collagen-a.1(l) C-propeptide domain.'’ These findings suggest that
intracellular stress signaling, and XBP1s in particular, can coordinately regulate the molecular architecture

of N-glycans. However, the CD2 and collagen protein domains used in these initial studies®’

were
ectopically expressed and, in the case of CD2 involved a domain that is not normally glycosylated,
rendering the biological relevance of XBP1s-dependent remodeling of glycosylation uncertain at the time.
Nonetheless, these studies demonstrated that XBP1s bridges ER proteostasis with N-glycan maturation,

which has potential to influence disease progression. Both ER stress and glycosylation contribute to the

128-130 131-136

development of cancer and resistance to cancer therapies, suggesting a potential role for crosstalk

between ER stress and glycosylation.

The Hallmarks of Cancers
Cancers are heterogeneous diseases distributed across the body,**"*° and are the second leading

cause of death (after heart disease) in the United States.*® There are over 100 types of cancer,'**

among
which the most common are colorectal, lung, breast, and prostate cancer.**® Despite this heterogeneity, all
cancers feature uncontrolled cell division and a dysregulation of normal tissue homeostasis that can lead to
metastasis, or the spread to distant body parts. Cancer cells grow continuously and overcome biological
safeguards such as apoptosis and senescence, while feedback mechanisms such as cell cycle checkpoints
are broken. Metastatic cancer can lead to organ damage, and weakened immune systems associated with
cancer treatments lead to higher risk of complications such as infections and sepsis.*?

The Hallmarks of Cancer describe eight biological alterations that enable transformation of healthy
cells into malignant cells.*** 3 These principles include (1) sustaining proliferative signaling, (2) evading
growth suppressors, (3) resisting cell death, (4) enabling replicative immortality, (5) inducing angiogenesis,
(6) activating invasion and metastasis, (7) reprogramming of energy metabolism, and (8) evading immune
destruction (Figure 1.5A). These hallmarks encompass the effects of oncogenes such as Ras, PI3K, and

EGFR;!93 1147 inactivation of tumor suppressors such as Rb, p53, and Hippo;**4**° upregulation of anti-
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apoptotic factors;™! expression of telomerase;*** induction of angiogenesis in hypoxic conditions;**¥*>*

EMT transition states;*> metabolic rewiring and oncometabolites;***>" and immunoediting.**®

Defining the Hallmarks of Cancer provides a framework to study the disease and to identify
potential therapeutic targets. These hallmarks have been updated over time,** reflecting progress in our
understanding of cancer. As cancer research advances, we may expect to add to the list of cancer hallmarks

(Figure 1.5B).12% 159162

A The Hallmarks of Cancer
sustaining evading growth resisting enabling replicative
suppressors cell death immortality
inducing activating invasion reprogramming evading immune
angiogenesis and metastasis energy metabolism destruction

CJ—»Lactate

vascular endothelial cells

B Emerging Hallmarks C XBP1s and N-Glycans:
endoplasmic aberrant Emerging Hallmarks Connected?
reticulum stress glycosylation XBP1s?

Figure 1.5: Emerging cancer hallmarks and new connections. A: The Hallmarks of Cancer describe
eight alterations in healthy cells that enable transformation into malignant cells. B: Many biological
processes have been proposed as emerging cancer hallmarks, including ER stress and glycosylation. C:
Work in our lab has suggested that XBP1s may be a master regulator of both ER stress and protein
glycosylation, potentially linking two emerging cancer hallmarks.
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Connection between Emerging Hallmarks of Cancer: ER Stress and Glycosylation
Emerging hallmarks of cancer include DNA replication stress,™ ER stress,'? glycosylation,®*¢
and circadian regulation.’® Tumors undergo significant stress conditions, including nutrient deprivation

and hypoxia, which affect metabolism, glycosylation, protein synthesis,®**%

and can impede the cell’s
protein folding capacity, leading to ER stress.'®*®® Additionally, ER stress responses can negatively
regulate anti-tumor immunity.**"** XBP1s activity inhibits the capacity of dendritic cells to support T cell
function, and the UPR transcription factor CHOP regulates the activity of immune-suppressive myeloid-
derived suppressor cells (MDSCs). Inducing ER stress in mice with thapsigargin enhances tumor growth
by increasing the immunosuppressive capacity of MDSCs. These observations suggest that targeting ER
stress might be an effective strategy to enhance existing cancer immunotherapies.

Another attractive target for cancer therapy is glycosylation,'”

given that the surface of every cell
is covered with a layer of sugars (i.e., the glycocalyx) that can modulate various biological processes, and
that glycosylation is often dysregulated in cancer, leading to tumor-associated carbohydrate antigens that
can serve as biomarkers.*"*"*’? For example, the sugars on the cancer cell surface are often transformed to
display more sialic acid, mannose, or fucose residues. Since cancer cells often feature upregulation of
proteostasis factors such as XBP1s, it is possible that the transcriptional remodeling of glycogenes resulting
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from XBP1s activation*" may also induce changes in glycan structure that contribute to malignancy. Thus,

XBP1s may bridge ER stress and glycosylation as connected cancer hallmarks (Figure 1.5C).

Conclusions

The UPR and glycosylation each modulate biological processes that contribute to a multitude of
diseases. Our current understanding of the interplay between the UPR and glycosylation is nascent, but
such a conceptual framework will help illuminate future studies. Protein glycosylation is regulated at many
levels, including by transcription factors, but our overall understanding of which transcription factor-
glycogene pairs exist and contribute to biology is incomplete, with mechanistic work available for only
about 15 glycogenes.* In the following chapters, we combine stress-independent activation of XBP1s in
cells with glycomic analyses to profile glycosylation changes on endogenous proteins (Chapter 2). We
then describe the results of direct, pharmacological inhibition of IRE1 to prevent formation of endogenous
XBP1s in breast cancer cells, and report on the associated glycomic changes (Chapter 3). Lastly, we
explore the negative feedback loop regulating IRE1 activity as a mechanism that prevents sustained
pharmacological IRE1 activation (Chapter 4). Our results demonstrate that XBP1s is a significant player
in regulating glycosylation, with varying effects across cell types. In addition, our findings on IRE1
regulation emphasize the importance of continued research to identify regulators of the IRE1-XBP1s

signaling axis for target discovery.
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