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by
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Abstract

Three common KRas mutants were compared with wild type KRas in a mouse model
of APC-driven colorectal cancer to understand differences in cell-cell communication.
Using single-cell RNA sequencing and a handful of novel computational methods, a set
of nine highest priority ligands expressed by non-immune cells that differ statistically
between G13D-mutant KRas and the others was identified for further study. This
set contains two ligands that have been previously recognized as important in this
context, as well as novel ligands and some with poorly understood relevance to the
clinic. While no secondary validation of how these ligands could be affecting clinical
outcomes was performed here, the simplicity of interpretation of the computational
methods demonstrated begs for further study, particularly of the effects of changes in
these ligands in vivo. Follow-up studies will be undertaken at the Dana Farber Cancer
Institute to continue fleshing out our understanding of how molecular differences in
KRas can lead to differences in tumor composition as well as distinct prognoses.

Thesis Supervisor: Douglas A Lauffenburger
Title: Ford Professor of Biological Engineering
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Chapter 1

Introduction

1.1 KRas in Colorectal Cancer

Colorectal cancer (CRC) is the fourth-most common cancer worldwide, as well as

the second-most deadly, and its incidence is continuing to rise, particularly in non-

Western countries. The five-year survival rate in the United States across all stages

is only 64.5%.[30] Nearly all (∼ 96%) of these cancers originate as polyps [30] – non-

invasive growths of the mucus-producing cells in the walls of the large intestine –

often with mutations in the tumor suppressor p53 or a common oncogene such as

APC or KRas.[32] Risk factors that increase the likelihood of developing CRC are

age, inflammatory bowel disease (IBD), obesity, and diabetes.[30]

The current standard of care is surgical resection for early stages, adjuvant chemo-

therapy for later stages, and cytotoxic chemotherapy for metastatic CRC.[28] Anti-

EGFR antibodies are often used in combination with chemotherapy, however they

are only used in patients with wild type KRas as KRas mutational status is highly

predictive of resistance to EGFR inhibition.[23]

KRas is an oncogene mutated in approximately 40% of patients with CRC, and is

the most commonly mutated oncogene across cancer as a whole – lying downstream of

EGFR and upstream of the MAPK/ERK, PI3K, and NF𝜅B pathways (among others)

leading to increased survival and proliferation.[31, 10, 21] Like other small GTPases,

KRas is active when bound to a high-energy GTP molecule and deactivates upon
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hydrolysis to the lower-energy GDP, requiring the protein to exchange its bound

GDP for a new GTP molecule to reactivate. Mutations in KRas and its associated

pathways correlate with resistance to EGFR inhibition, leading to poor prognosis for

KRas-mutant cancers, which account for more than 30% of all cancer patients.[28, 25]

Studies across many laboratories and institutions have found differences between

the different mutants of KRas. The most common site for mutation is G12, found

in approximately 80% of CRC patients with a KRas mutation,[27] however other

sites, such as G13 and A146, are reasonably common as well. As a GTPase, many

of these mutations occur in the nucleotide binding and hydrolysis region – G12 mu-

tations slow intrinsic and extrinsically-driven hydrolysis, A146 mutations drastically

raise nucleotide exchange rates, and G13 mutations affect both processes to a lesser

degree. These molecular effects also translate into differences at the epidemiological

level – G12 mutations are significantly correlated with worse prognosis and lower sur-

vival rates, while A146 mutations have improved survival compared to others. These

differences are related to differences in therapeutic responses such as inhibition of

EGFR with e.g. cetuximab – to which G12-mutant CRCs are resistant while G13

mutants’ responses are between those of G12-mutant and KRas-wild type tumors.[10]

While KRas was originally divided only by whether it was mutated or not,[23] this

view has been superseded by a more personalized view based on which mutation is

present in a patient’s tumor that can hopefully better guide treatment.[10]

Downstream of KRas along multiple signaling pathways lie intercellular signals

– proteins that are secreted or displayed on the plasma membrane to communicate

with other cells. Cancer-associated fibroblasts and both myeloid- and lymphoid-

derived immune cells are targets for some of these signals, through various cytokines,

chemokines, and growth factors.[21] These signals also affect other malignant cells to

promote many malignant cellular phenotypes.[1] Tumor cell signaling can have large

effects on their microenvironment: GM-CSF signaling recruits myeloid-derived sup-

pressor cells to minimize immune response, the immunotherapy target PD-L1 selec-

tively excludes B and T cells, and IL-6 reprograms the stroma to increase angiogenesis.[21,

1]
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1.2 scRNAseq & Cell-cell communication methods

One technology that has been increasingly used to study intercellular communica-

tion, including in CRC, is single-cell RNA sequencing (scRNAseq). Due to its high-

dimensional nature, scRNAseq takes a broad snapshot of what individual cells are

doing within a sample, allowing for inference of both cell types and clonal hetero-

geneity of expression. Many previous studies have used this to their advantage to

quantify signaling and signal strength between different cell types.[4, 5, 11, 19, 36]

Broadly, scRNAseq works by isolating single cells in suspension, encapsulating

them (usually in droplets or wells), lysing the cells, and converting their mRNA

to a complementary DNA template with unique barcodes to identify each cell and

transcript, followed by more generic DNA amplification and sequencing library prepa-

ration. This method allows for counting reads from the same transcript only once,

and grouping these counts based on the transcripts’ cell of origin. With this informa-

tion, expression is quantified on the single-cell, single-molecule scale, generating huge

amounts of data to be handled computationally.

Using the expression of genes whose protein products are known markers of spe-

cific cell types, the barcodes corresponding to cells of the same type can be grouped to

generate distributions and draw general conclusions about each cell type individually.

Furthermore, using lists of known ligand-receptor pairs (such as provided in [29]), a

number of computational methods have been developed to infer protein-level interac-

tions between cells based on these RNA-level measurements.

Seemingly the most common way of evaluating cell-cell communication in a high-

throughput fashion is to take some combination of the RNA expression of both the

ligand and its cognate receptor. Some take a simple “score” for the interaction as

the product of the mean ligand and receptor expressions – optionally grouping either

by cell type for a more nuanced look at what cells are communicating.[18, 19, 36]

Others have used the mean of both genes,[5] more complicated combinations such

as the L2-norm of the z-score of each gene across all cell types,[11], or even complex

graph-based analysis for relative significance.[4]
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One thing that all of these methods have in common is that they look at the

strength of both the receptor and the ligand when considering which interactions are

likely occuring in situ. However, this ignores situations where, for example, the sig-

naling network only requires low absolute amounts of activated receptors to produce

a large response to the ligand. Additionally, when comparing interactions between

different samples, they generally treat a two-fold difference in the ligand as equiv-

alent to a two-fold difference in the receptor – which is not always the case when,

for example, the receptors are already nearing saturation with the lower amount of

ligand and the equilibrium leads to a sublinear response. Here, we instead look only

at changes in the amount of ligand as long as the receptor is expressed at a level

capable of receiving signal. Therefore, the differences in ligand expression are treated

as the only value changing – which is particularly useful with an assumption that

signals of interest are unidirectional.

1.3 Goals of this work

In the current study, we aim to use single-cell RNA sequencing (scRNAseq) to evalu-

ate differences in cell-cell communication across genetically-engineered mouse models

of colorectal cancer (CRC) with different KRas mutations (using APC deletion specif-

ically within the gastrointestinal tract to initiate malignancy). While KRas is known

to drive differences in signaling, and different KRas mutations are known to have

differing clinical consequences for patients with CRC, this work seems to be the first

to examine the signaling mechanisms that could lead from molecular differences to

clinical outcomes.

Here, intercellular signaling is computationally inferred downstream of wild type

KRas and three of its most common mutations in CRC (G12D, G13D, and A146T),

with specific focus placed on findings that tumors with G13D-mutant KRas have

increased immune cell infiltration. A prioritized list of ligands that are significantly

changed in non-immune cells from the G13D model is presented for experimental

follow-ups (such as ligand overexpression or blocking ligand-receptor interaction) to
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confirm phenotypic and clinical relevance. These are thought of as signals produced

by the tumor cells themselves that could be causing mutation-specific differences in

their microenvironment. The hope is that eventually, the ligands of interest here

could expand both the biological understanding of specific KRas mutations as well as

inform therapeutic design and use that is more tailored to smaller subsets of patients.
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Chapter 2

Methods

2.1 Animal protocols

Three mice from each of the four KRas genotypes under study were used, one of

which from each model was additionally enriched for CD45+ cells to ensure full

interrogation of the immune compartment (see Section 2.3). All of the mice were

Apcfl/fl with inducible Villin-CreER, with mutant KRas alleles containing a lox-stop-

lox motif. This ensures that APC deletion and KRas mutation occur specifically

in the gastrointestional tract (the site of nearly all Villin expression [35]) when Cre

recombinase expression is induced.

Mice were orthotopically injected with 4-hydroxytamoxifen to induce tumor for-

mation, and tumor growth was monitored each week by colonoscope. KRas mutation

had no effect on tumor initiation, but led to faster growth compared to wild type

KRas. When the colonic lumen was 50% obstructed due to tumor growth, the tu-

mors were harvested and non-malignant epithelium trimmed away from the palpable

tumor mass.

2.2 RNA extraction and sequencing

Tumor dissociation into single cells for library preparation was done as a two-step pro-

cess, as described previously.[22, 13] In the first step, harvested tumors were washed
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in ice-cold PBS and digested in 2mg/mL collagenase type II in DMEM at 37∘ for

1 hr or until fragments had dispersed. After washing again with ice-cold PBS, the

suspension was filtered to isolate epithelial crypts larger than 40 μm and smaller than

100 μm. In the second step, the suspension was chelated with a 3mM EDTA and

1mM DTT buffer at 4∘ for 45min followed by 30 s of shaking. Crypts were then

digested again with 2mg/mL Collagenase type II and 2.5mg/mL DNAse at 37∘ for

20min followed by mechanical disruption with a 27.5-gauge needle. The resulting

single cell suspension was washed twice with ice-cold PBS and enriched for live cells

using the MACS dead cell removal kit (magnetic-activated cell sorting; from Miltenyi

Biotec). Final suspensions were prepared at 1.5 * 105 cells/mL, which were spiked

with 18 μL Optiprep per 100 μL suspension to maintain cell viability.[22, 13]

Encapsulation was performed using the inDrop platform (from 1CellBio) as de-

scribed previously.[17] Using the CEL-Seq workflow, the inDrop protocol begins with

reverse transcription followed by exonuclease I (ExoI) digestion and solid-phase re-

versible immobilization purification (SPRIP). Then single-strand synthesis and an-

other round of SPRIP generates a pure cDNA template for in vitro transcription linear

amplification using T7 polymerase (followed by SPRIP) to generate many copies of

RNA for each original molecule. Finally, RNA fragmentation (followed by SPRIPR),

library primer ligation, final reverse transcription, and enrichment PCR yield a large

DNA library with the proper sequencing primers.

Resulting libraries were sequenced on a BGI nanoball system, splitting each sample

across four lanes for deeper sequencing and therefore more accurate quantification.

2.3 CD45 enrichment

CD45 enrichment of one sample per KRas genotype was done using the MACS kit as

per the manufacturer’s directions except replacing the 0.5% BSA with 0.05% BSA and

using large (LS) columns. Briefly, dissociated cells were resuspended in buffer con-

taining magnetic microbeads coated with anti-CD45 antibodies. Then a magnet was

used to hold the captured cells in a filter column while the unbound cells were washed

20



Table 2.1: Description of the samples

Sample KRas
CD45

Enriched?
Mouse
number Sac Date

# barcodes
detected

# likely
cells

108RD WT Yes 2602 08 Nov 2018 8532 2516
144R No 18960 4631
178D WT No 2625 09 Nov 2018 17103 3246
200 WT No 2700 08 Nov 2018 7033 1975
110RD G12D Yes 2622 09 Nov 2018 10837 1856
146R No 10975 2524
175D G12D No 2627 07 Nov 2018 9382 2379
201 G12D No 2626 09 Nov 2018 7106 1687
297 G13D Yes 5764 20 Mar 2019 7622 1930
199R No 16952 4425
177D G13D No 5649 22 Feb 2019 8691 1924
203 G13D No 5763 20 Mar 2019 7443 1930
109RD A146T Yes 2607 08 Nov 2018 4009 1115
145R No 16523 3021
176D A146T No 2603 07 Nov 2018 17461 4254
202 A146T No 2610 07 Nov 2018 12109 2094

through with buffer. Finally, the bead-bound cells were eluted from the column using

buffer after removal from the magnet. These enriched samples then continued on with

library preparation and sequencing as above, alongside an unenriched fraction from

the same tumor dissociation.

2.4 Raw data processing

Demultiplexing of cell barcodes was done using dropTag for each lane using the de-

fault configuration file for inDrop v1/2, also reporting base call quality scores in the

UMI (unique molecular identification; the barcode given to each transcript) using

the -s flag.[26] For each lane, dropTag takes in the paired-end reads – one being the

cell barcode and UMI, while the other is a part of the gene – and produces a single

.fastq file of biological (i.e. gene) reads annotated with sample, cell barcode, and

UMI metadata.

Single-end alignment of the biological reads against the mouse mm10 (GRCm38)

21



transcriptome [3] was then performed using the TopHat2 aligner [15] and the corre-

sponding BowTie2 index [20], prepared with the annotation file (.gtf format) avail-

able on Ensembl [38], reporting only the best match for each read. This step also

combined the four lanes of each sample, yielding a single alignment file.

The resulting alignments were then counted using dropEst, given the base call

qualities from dropTag and using the barcode correction method via the -m flag.[26]

For each sample, dropEst merges cell barcodes with errors into a canonical list pro-

vided for the library preparation procedure, and merges UMI sequences that are close

to each other using an estimate of the likelihood that they originally derived from

the same molecule in the cell and were split due to an error during amplification or

sequencing. dropEst returns a matrix of every unique barcode (less than the number

of barcodes found in sequencing due to merging of errors) by every gene that was

captured in the biological reads in any cell of that sample (from alignment), where

the value is the estimated number of truly unique UMIs (i.e. corrected for likely

errors).

This “count matrix,” as it is known, is assumed to be a faithful count of the number

of unique transcripts for each gene that was captured during library preparation. Note

that while this is likely a good assumption for highly expressed genes – where missing

a molecule or two of mRNA is only a small percentage difference in expression –

the lower the biological expression of the gene, the higher the chance of missing a

significant portion of the mRNA molecules for that gene, leading to a preponderance

of zeros referred to as “drop outs” (i.e. genes that aren’t measured despite being

expressed in the cell). Therefore, there is systemic bias in scRNAseq data that makes

lowly expressed genes seem even less expressed than they are in reality.

Steps 1–3 (see Table 2.2) were done on the luria cluster at MIT that runs CentOS,

using 16 Intel Xeon E5-2650 v2 (2.60GHz) or E5620 (2.40GHz) CPUs and up to

128GB of memory, except for Step 1 that used only 8 cores with up to 96GB, 128GB,

or 192GB of memory.

These steps used R v3.5.1, BamTools v2.5.1, dropEst v0.8.5, TopHat v2.1.1,

BowTie v2.3.5.1, OpenBLAS v0.2.19, and Pandoc v2.7.3. All further computa-
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tion was performed on an ASUS Q534UXK laptop with a Intel Core i7-7500U CPU

(2.70GHz, 2904MHz) running Windows 10 Home. 64-bit Python v3.7.1 and its mod-

ules were provided by Anaconda3, including NumPy v1.16.2, pandas v0.23.4, Mat-

plotlib v3.0.2, SciPy v1.1.0, and scikit-learn v0.20.1 and run using a Jupyter notebook

v5.7.4 with an iPython v7.2.0 kernel.

2.5 Preprocessing, Filtering, & Classification

Count matrices were loaded into a python environment using the rpy2 module v2.9.1

from the .rds files output by dropEst. The sparse (barcode- i.e. column-oriented)

dgCMatrix was converted to a dense array using a custom function. The data were

then loaded into custom objects for further processing and eventual analysis.

Barcodes were filtered in each sample based on total counts as described in [12].

Briefly, given a count matrix 𝑓 : 1, barcodes were arranged by decreasing total counts;

2, the cumulative sum was calculated; and 3, the secant line was drawn from (0, 0)

to
(︁
𝑁,

∑︀
𝑖𝑗 𝑓𝑖𝑗

)︁
. The distance between the cumulative sum and its secant was then

used as a measure of the contribution of each barcode to the total counts across the

sample. Cells with more total counts than the 70th percentile of this distance after

its maximum were kept.

The data were then normalized using a minor modification of the gene frequency /

inverse cell frequency (GF-ICF) method, itself previously adapted from the term fre-

quency / inverse document frequency (TF-IDF) score used in text mining to rank doc-

Table 2.2: Data processing time

# Step Avg Time Runs Total Time
(ℎℎ : 𝑚𝑚) (ℎℎ : 𝑚𝑚)

1 dropTag demultiplexing 00 : 12 64 12 : 31
2a TopHat2 genome preparation 00 : 19 1 00 : 19
2b TopHat2 alignment 02 : 44 16 43 : 55
3 dropEst count estimation 00 : 30 16 07 : 54

Total 64 : 40
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Purple are inputs, orange is a physical sample, red is a data file
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uments based on the frequency of a given word across a large set of text documents.[8]

Briefly, given a count matrix 𝑓 , the gene frequency of gene 𝑖 in cell 𝑗 is

𝑔𝑓𝑖𝑗 =
𝑓𝑖𝑗∑︀
𝑖 𝑓𝑖𝑗

,

or the fraction of UMIs in that cell from the given gene and is equivalent to 𝐶𝑃𝑀/106.

Note that
∑︀

𝑖 𝑓𝑖𝑗 = 0 iff no genes were detected for cell 𝑗, and in those cases all 𝑔𝑓𝑖𝑗

are taken to be 0.

The inverse cell frequency of gene 𝑖 is

𝑖𝑐𝑓𝑖 =

⎧⎪⎨⎪⎩log
(︁

𝑁
𝑛𝑖

+ 1
)︁

𝑛𝑖 ̸= 0

0 𝑛𝑖 = 0,

where 0 ≤ 𝑛𝑖 ≤ 𝑁 is the number of cells in which at least one UMI from the given

gene was seen. The base of the logarithm is arbitrary, as a change of base is equivalent

to constant multiplicative scaling. This inverse frequency is high for genes that are

captured in few cells and low for genes captured in many cells, thereby providing gene-

wise weighting that exaggerates uncommon genes and minimizes common genes.

The value taken as the “expression” of gene 𝑖 in cell 𝑗 is then 𝑔𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖. Unlike

in [8], L2-normalization was not performed as that removes the dependence on the

total counts in a cell (see Appendix A). Additionally, for better handling of the

extrema of 𝑛𝑖, the above definition of 𝑖𝑐𝑓𝑖 has been extended from that given in [8]:

𝑖𝑐𝑓𝑖 = 𝑙𝑜𝑔
(︁

𝑁
𝑛𝑖

+ 1
)︁
. The modified form above returns 0 for 𝑛𝑖 = 0 instead of ∞,

which allows undetected genes to be dropped before or after normalization. As this

normalization scheme is dependent on both the counts within each cell as well as the

detection of a gene across all cells, GF-ICF normalization needs to repeated from the

raw counts when changing which cells are included.

The first round of filtering was done for each sample separately. The sample was

clustered using the Leiden algorithm as implemented in SCANPY.[34, 37] Each cell

is treated as a node of a graph and edges are drawn between cells with non-zero

membership in the fuzzy simplicial sets calculated as an intermediate in UMAP after
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PCA transformation.[37, 24] Each node is assigned to its own cluster, and clusters are

merged greedily if they improve (i.e. lower) the Constant Potts Model (CPM; note

that this is not the “counts per millions” used elsewhere) objective function ℋ of the

partitioning 𝒫 , i.e.

ℋ (𝒫) =
∑︁
𝑐∈𝒫

[︂
𝑒𝑐 − 𝛾

(︂
𝑛𝑐

2

)︂]︂
,

where 𝑒𝑐 and 𝑛𝑐 are the number of edges and nodes respectively within cluster 𝑐

and 𝛾 > 0 is a resolution parameter. This resolution parameter defines the internal

density of the clusters such that: 1, no two clusters can be merged to lower ℋ; and

2, no cluster can be split to lower ℋ. Finally, the partitioning is refined to make all

clusters well-connected – that is, such that from each node in a cluster you can reach

every other node without leaving that cluster. This tries to guarantee that clusters

have smooth distributions of important genes, as opposed to disconnected clusters

which can have multiple pockets of more self-similar cells and still resist splitting as

they are all more unlike the cells around them.

To summarize the cells within each cluster, all genes whose mean expression is

higher within a given cluster than across all other cells were considered as possi-

ble “markers.” The significance of these markers was evaluated by a Mann-Whitney

U test with Bonferroni correction. The resulting p-values and log fold-change were

used to rank these cluster “markers” and the highest-ranked genes were visually in-

spected. A large dominance of mitochondrial genes, i.e. those starting with “mt-” in

the annotation file, or erythrocyte genes, e.g. hemoglobin, was used as criterion for

cluster-level removal.

A second round of filtering was then done with these now individually-filtered

samples, normalizing and clustering all of the cells together. The intersection of the

gene set was taken across the samples, yielding a matrix where every gene was mea-

sured in every sample. Similar criteria as above were used to eliminate clusters from

the combined partitioning. This process was repeated until no clusters were domi-

nated by mitochondrial or erythrocyte genes, dropping genes that were not measured

in any cell still remaining.
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The filtered cells were normalized and clustered all together, and “markers” were

calculated for each cluster as above. These markers were manually inspected for cell

type enrichment, using the Human Protein Atlas as a reference for immune subtypes

and the markers from a single-cell investigation of the small intestine for epithelium-

and goblet-like cells.[35, 9]

2.6 Displaying Expression Data

For displaying the expression of a given gene over a large number of cells, one com-

monly used plot is the violin plot, which marks the minimum and maximum as the

endpoints of a centerline that splits a histogram-like density cloud. However, the

density cloud gives no measure of magnitude between different plots, so violin plots

are often plotted with a random subsection of the data points to imply absolute den-

sity. Here, there is an additional problem of the high fraction of zero for many genes

leading to a visually uniform density cloud for all nonzero values, thereby masking

the nonzero distribution. To compensate for this, violin plots throughout this thesis

are shown with the zero values excluded and the percent zero marked beneath the

plot.

Additionally, it is helpful in this context to show the means of the data – both

each sample mean individually and the mean of sample means within each model.

The mean of sample means within each model is used, as each sample is treated as

a repeated measure of the model, with each cell within that sample being a point

measured from that sample’s particular distribution. The following section will use

the same measures as marked in Figure 2-2 as summary statistics.

2.7 Renormalization & Prioritization

The data were then re-normalized from count data by dividing each value by the sum

of counts for that cell and multiplying by 106 to yield CPM (counts per million). Fi-

nally, the data were arcsinh-transformed to expression values as 𝐸 = arcsinh(𝐶𝑃𝑀) =
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Figure 2-2: Description of violin plot format

Left: traditional violin plots
Right: modified to only show nonzero values

Marked on both plots are the sample mean, mean of samples means within each
model, and number of nonzero cells. On the right, the percent nonzero and nonzero
parallels to the means (in black) are also shown. Up to 100 random cells for each
sample are plotted with small horizontal jitter; if there are fewer than 100 cells to

display, all are shown. The expression of Mmp7 is used as an example.

ln
(︀
𝐶𝑃𝑀 +

√
𝐶𝑃𝑀2 + 1

)︀
. This transformation was used instead of the GF-ICF nor-

malization above since it does not depend on the distribution of expression across all

cells, and therefore could be more suitable for studying distributions of values across

a subset of cells.

To look for signals coming from the non-immune compartment that were signif-

icantly different in G13D compared to the rest of the models, the ligand-receptor

interactions [29] were first limited to pairs where both the ligand and receptor were

measured in every sample across the experiment. Then, these ligands’ expressions

across all cells within each model regardless of sample were used as repeated mea-
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surements in a Kruskal-Wallis H-test (the rank-based i.e. non-parametric extension

of one-way ANOVA) with Benjamini-Hochberg correction to look for ligands that

have significant differences across the four models. Next, these significantly changing

ligands were then subset to those where the mean of the G13D sample nonzero means

(i.e. the mean of only those cells in the sample were the gene was detected) were an

extremum of the equivalent mean of means for the other models. Post-hoc tests were

run by Mann-Whitney U with Benjamini-Hochberg correction on the sample means to

determine how many of the other three models were different from the G13D samples.

Depending on whether 1) any model, 2) at least two models, or 3) all three of the

other models were significantly different from G13D, three lists of possibly interesting

ligands were defined, each containing all of the ligands captured by the next smaller

set. These are listed in Supplemental Table B.1.

For prioritization, three different methods were used: 1) consider only those lig-

ands where the wingspan (i.e. 𝑚𝑎𝑥−𝑚𝑖𝑛) of the model mean of means is larger than

the wingspan of the sample means within each model individually; and 2) rank the

absolute differences, or 3) percent differences between G13D as the extremum and

its next nearest model mean of means. The first method prioritizes those genes with

low variability of the sample means within a single model given large variability in

the model mean of means. The second and third prioritize ligands by the separation

of G13D as the extremum from its next nearest neighbor, whether by absolute or

percent difference. These are all shown in Figure 2-3.

Three different subsets of expression were considered: 1) binarizing the data,

replacing all nonzero values with one; 2) using only the nonzero data; and 3) using all

the data directly. The mean of the first is equivalent to the fraction of cells expressing

the gene, the second to the nonzero mean described previously, and the third to the

traditional mean used in single-cell RNAseq.

For ligands of interest expressed on non-immune cells in G13D, the corresponding

receptors were examined for significantly nonzero expression to find which cell type(s)

could be receiving said signal. To do this, the fraction of nonzero for each cognate re-

ceptor was calculated for each cell type across the G13D model (regardless of sample),
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Figure 2-3: Visualization of wingspan tests
For each pair of solid (within model) and dashed lines (between models),

the wingspans are:

Top: largest range of nonzero means
Middle: largest range of overall means
Bottom: largest range of percent zero

A comparison is significant if the dashed wingspan (between models) is larger than
solid wingspan (within model). Here, Mmp7 is used as an example, which is

significant by percent zero and overall mean.
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then these values were binarized such that below some threshold fraction the receptor

was considered “off” in that cell type and above such was considered “on” and capable

of receiving a signal. This threshold was varied across the full range of possible values

(0 to 1, inclusive) in increments of 0.01 = 1%. The receptors were then collapsed back

onto their cognate ligand of interest and the number of cell types where at least one

receptor was “on” for a given ligand was calculated. Repeating this for each threshold

value yields a count of how many cell types could sense the ligand given a minimum

required fraction of nonzero receptor expression that is monotonically decreasing –

as the required fraction of nonzero receptor expression increases, the number of cell

types that can pass that threshold decreases. The ligands of interest can then also

be prioritized based on the highest nonzero fraction for any of its cognate receptors

in at least one cell type, with a lower fraction zero implying a lower sensitivity for a

homogeneous cell type.
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Chapter 3

Results

3.1 Filtering, Visualization, & Broad Classification

After filtering, wild type (WT) samples produced 12, 297 cells, G12D 8, 446 cells,

G13D 9, 953 cells, and A146T 10, 206 cells for a total of 40, 902 cells in this experiment

(see Table 2.1). In turn, WT makes up 30% of the total cells, with G13D and A146T

each contributing around 25%, and G12D filling the remaining nearly 20%.

After processing and filtering (see Sections 2.4 and 2.5), including two rounds

of cluster-level filtering on the full dataset, the data were visualized using PCA-

UMAP.[37, 24] Both model identity and Leiden clustering (with 𝛾 = 1) are shown

in Figure 3-1.[34] Different regions show variable intermixing of the different models,

e.g. cluster 12 is solely G12D while cluster 2 is well-mixed between all four models.

In the classification step (see Section 2.5), clusters 2, 4, 10, 14, and 16 were

identified as immune cells, while the remaining clusters showed minimal immune /

hematopoietic markers. These clusters were taken as the immune compartment, and

the immune and non-immune compartments were separately clustered and visualized,

and had markers calculated for further classification. The results of this round of

clustering are shown in Figure 3-2. G13D contributed over 40% of the immune cells,

with WT following it at nearly 30% – only 15% came from each of G12D and A146T.

In contrast, WT and A146T each contributed about 30% of the non-immune cells,

with G12D and G13D each adding 20%.
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Figure 3-1: PCA-UMAP visualization of full dataset
using the first 50 PCs and

√
𝑛𝑐𝑒𝑙𝑙𝑠 neighbors

Top: which model each cell came from
Bottom: Leiden clustering with 𝛾 = 1
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When considering only the twelve samples (three per model) that were not en-

riched for any marker, G13D samples are much more dominated by immune cells than

the other three models. In fact, two of the three unenriched G13D samples are more

than half immune, while this is true for no other unenriched sample (see Table 3.1).

Furthermore, there are only three other samples that are more heavily dominated by

immune cells than the third unenriched G13D sample.

3.2 Further Classification

For the immune compartment, this second round of classification found well-defined

cell type identifications for two-thirds of the resulting clusters. Clusters 7 and 12,

comprising 9.4% of immune cells, were dominated by epithelial and mucosal genes,

and so were classified as “Colonic” contaminants in the immune compartment. Clus-

ters 5, 6, and 9, comprising 19.4% of immune cells, were of unclear cell type, and so

were considered a single heterogenous “Unknown” cell type for downstream analysis.

All five of these clusters lie either between the macrophages (clusters 0, 10) and gran-

ulocytes (clusters 1, 2, 11, 13) or on the outskirts as nearly isolated clusters alongside

the plasma cells (cluster 8). Both B cells (cluster 3) and combined T cells / NK cells

(cluster 4) segregated from the remaining cells. Finally, two types of dendritic cells

were seen – conventional (cluster 14) and plasmacytoid (cluster 15).

Within the mixed T and NK cell cluster, a further round of normalization, cluster-

ing, and classification was attempted, but clear internal divisions could not be drawn

and so were treated as a single cell type (see Figure B-1).

In the non-immune compartment, however, there was no clear subtyping based

on markers despite the mix of cell types expected to be present – including endothe-

lial, secretory, healthy epithelial, and tumor. Clusters instead seemed to be majorly

defined by the fraction of each model they derive from, with 3 of the 15 clusters com-

prising 16.4% of the cells containing essentially a single model and a further 8 clusters

containing a single model that accounts for the majority. In many cases, these clus-

ters derive majorly from only a small subset of the samples. As there was no obvious
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Figure 3-2: PCA-UMAP visualization of immune and non-immune compartments
using the first 50 PCs and

√
𝑛𝑐𝑒𝑙𝑙𝑠 neighbors, with 𝛾 = 1

Top: Leiden clustering of the immune compartment
Bottom: Leiden clustering of the non-immune compartment
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Figure 3-3: Number and fraction of cell types by sample
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Figure 3-4: Number and fraction of cell types by sample in the immune compartment
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way to separate these cells further for downstream analysis, all non-immune cells were

grouped as a single “non-immune” cell type, disregarding internal variation and likely

lowering power compared to using truly cell type-pure groupings.

The final classification percentages are shown in Figures 3-3 and 3-4 and Tables 3.1

and 3.2. As expected, the CD45-enriched samples (in italics) have a higher immune

content than their unenriched counterparts – and in fact the CD45-enriched sample

with the lowest immune fraction is still only surpassed by a single unenriched outlier

(sample 203). Secondarily, it can also be noted that the G13D samples have higher

proportion of immune cells than those with different KRas alleles.

3.3 Ligands of Interest in G13D

To try to uncover why the G13D samples have higher immune burden, we can focus

on the ligands expressed by the non-immune cells that could be sending signals out

into the tumor’s microenvironment. For use with extant methods, such as iTALK and

CellPhoneDB, several assumptions were evaluated on the arcsinh-normalized data.

iTALK considers either the top half of genes by average expression, or differentially

expressed genes (DEGs) as determined by a number of possible methods.[36] One

option that is implemented for identifying DEGs is a simple univariate Wilcoxon

ranked-sum test, equivalent to the Mann-Whitney U used as a post-hoc test here.

However, we wanted a method that takes advantage of the repeated measures we had

for each model (i.e. three mice per genotype) and that is able to compare between

more than two groups.

CellPhoneDB only considers a gene if it was detected (i.e. nonzero) in more than

10% of its cluster.[5] As shown in Figure 3-5 however, this would restrict analysis to

very few ligands and receptors – and an even smaller fraction of interactions given

that CellPhoneDB requires both the ligand and the receptor to pass this threshold to

calculate a score. Due to the preponderance of zeros in this dataset, this threshold

was considered too restrictive, and led to consideration of the relative contributions

of nonzero values and the fraction nonzero to the mean over all of the cells.
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Table 3.1: Fractions of each sample assigned to each cell type
Italics : CD45-enriched samples; directly followed by their corresponding unenriched sample – means no cells were found in

this particular sample / cell type combination.

Percentage
of Sample

WT G12D G13D A146T

108RD 144R 178D 200 110RD 146R 175D 201 297 199R 177D 203 109RD 145R 176D 202

Non-immune 36.4 78.1 95.1 88.0 64.0 96.6 73.2 79.1 52.3 79.3 41.9 11.0 28.3 94.3 94.2 85.0
Immune 63.6 21.9 4.9 12.0 36.0 3.4 26.8 20.9 47.7 20.7 58.1 89.0 71.7 5.7 5.8 15.0
Granylocyte 20.3 4.1 0.0 0.4 10.3 – – 5.6 32.1 0.7 24.2 28.0 29.7 0.0 0.1 4.7
Unknown 10.7 1.4 0.5 4.8 1.2 0.0 24.9 2.6 31.7 2.2 2.6 2.3 5.7 2.0 1.1 1.3
Macrophage 18.8 3.0 1.0 2.6 14.2 1.0 1.2 9.8 8.1 4.1 7.7 6.9 12.0 1.4 1.2 2.4
Colonic 1.3 8.1 1.3 2.1 4.4 0.9 0.0 0.3 1.8 6.6 1.1 0.5 2.9 0.8 0.8 0.9
B cell 4.1 2.1 0.2 0.7 0.7 – – 0.3 4.9 1.9 9.1 0.4 13.7 0.6 1.9 2.4
T/NK cells 1.3 1.5 0.6 0.7 0.9 0.0 0.0 1.2 4.5 3.9 10.5 7.3 2.7 0.1 0.3 2.4
Plasma cells 4.0 1.0 1.2 0.4 3.3 1.3 0.6 0.5 4.1 1.1 1.8 1.4 1.5 0.6 0.1 0.4
pDC 2.0 0.3 0.1 0.1 0.8 – – 0.2 1.3 0.1 0.7 0.6 0.4 0.1 0.0 0.1
cDC 1.0 0.3 0.1 0.2 0.3 – – 0.3 0.6 0.0 0.6 0.3 3.0 0.2 0.2 0.4
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Table 3.2: Fractions of each sample assigned to each cell type in the immune compartment
Italics : CD45-enriched samples; directly followed by their corresponding unenriched sample

– means no cells were found in this particular sample / cell type combination.

Percentage
of Immune

WT G12D G13D A146T

108RD 144R 178D 200 110RD 146R 175D 201 297 199R 177D 203 109RD 145R 176D 202

Granulocyte 31.9 18.9 0.6 3.4 28.6 – – 26.7 36.1 3.2 41.6 58.8 41.4 0.6 1.6 31.1
Unknown 16.8 6.4 9.4 39.9 3.4 1.2 93.1 12.5 35.6 10.7 4.4 4.8 8.0 34.1 19.2 8.8
Macrophage 29.6 13.9 19.5 21.9 39.3 30.6 4.4 47.2 9.1 19.8 13.2 14.5 16.8 24.3 21.2 16.1
Colonic 2.1 36.9 27.0 17.6 12.1 27.1 0.2 1.4 2.0 32.0 1.9 1.0 4.0 13.3 13.5 5.9
B cell 6.5 9.5 4.4 6.0 1.9 – – 1.4 5.5 9.2 15.7 0.9 19.1 10.4 33.5 16.1
T/NK cells 2.1 6.9 11.3 6.0 2.4 1.2 0.2 6.0 5.0 18.9 18.0 15.4 3.8 2.3 5.3 15.8
Plasma cells 6.3 4.8 24.5 3.4 9.3 40.0 2.2 2.6 4.6 5.5 3.1 2.9 2.1 9.8 2.4 2.6
cDC 3.2 1.3 1.9 0.4 2.2 – – 0.9 1.5 0.7 1.2 1.3 0.5 1.2 0.4 0.7
pDC 1.6 1.5 1.3 1.3 0.7 – – 1.4 0.6 0.2 1.0 0.6 4.3 4.0 2.9 2.9
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This was further noted when looking at the distributions of individual ligands and

receptors. Figure 3-6 shows the distribution and relative magnitude of a sampling

of the 50 highest-expressed ligands and receptors by overall mean of the 601 that

were measured along with at least one counterpart. All of these have a peak at

zero alongside a normal-looking distribution for the nonzero values. This led to

consideration of nonzero values and the fraction of these values as separate measures

that both contribute to the overall mean. Mathematically,

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (𝑒) =

∑︀
𝑖 𝑒𝑖
𝑛

,

𝑚𝑒𝑎𝑛𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (𝑒) =

∑︀
𝑖 𝑒𝑖∑︀

𝑖 1 (𝑒𝑖 ̸= 0)
, and

𝑓𝑟𝑎𝑐𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (𝑒) =

∑︀
𝑖 1 (𝑒𝑖 ̸= 0)

𝑛
, therefore

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (𝑒) = 𝑚𝑒𝑎𝑛𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (𝑒) * 𝑓𝑟𝑎𝑐𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (𝑒)

where 1 (𝑥) = 1 if 𝑥 is true and 0 otherwise. Note that it is possible that the product

of two components each with no significant differences between/across models can

itself be significantly different.

Looking for ligands on non-immune cells that are different in G13D compared to

the other models, lists were generated that prioritized these ligands using both of these

components as well as the overall mean (see Section 2.7; Supplemental Table B.1).

Using a wingspan test – where the largest range of mean expression within any single

model has to be smaller than the range of the model mean expressions – using these

metrics, 10 ligands were found to be of top priority: B2m, Plat, Vim, Fn1, Apoe,

Mmp7, Agrn, Pgf, Sema3e, and Efna5. These ligands were also found near the top of

the prioritization lists when ranking by difference between G13D and the next most

extreme model, using the same array of statistics. Two further ligands were found in

two of the wingspan tests using the nonzero mean where the mean of G13D sample

means is the minimum of any model, and so were included in the list of top priority

ligands even though they were not found to be high priority using other metrics.

Furthermore, the prioritization lists by difference also relatively consistently found
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Figure 3-5: Histograms of fraction nonzero for genes and ligands/receptors
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Figure 3-6: Distributions of highest-expressed ligands and receptors

Left: the distribution of arcsinh-normalized expression
Right: the fractional expression relative to the maximum mean

Every fifth ligand/receptor is shown when ranked by overall mean for the first 51
highest-expressed ligands/receptors. The number under the gene name is its

0-indexed rank by overall mean.
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Figure 3-7: Expression of ligands of interest in non-immune cells

45



Figure 3-7: Expression of ligands of interest in non-immune cells, cont’d
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Table 3.3: Prioritization of ligands of interest using their cognate receptors

* denotes ligands that were deprioritized, as their expression in the immune
compartment likely dominates over that from non-immune cells (see Figure 3-9)
The threshold value is the fraction of nonzero receptor expression required for

receiving a ligand’s signal for which no cell type has a single receptor that passes
and therefore is the threshold above which the ligand cannot affect any cell type.

Gene Threshold

Vim 0.85
Mmp7 0.85
Fn1* 0.85
Apoe* 0.57
Plat 0.46
Pgf 0.29
Efna5 0.26
Sema3e 0.25
B2m 0.21
Agrn 0.19
Col5a3 0.09
Ereg* 0.07

a handful of other genes – e.g. Ptn and Sema3c – but these were not included for

further prioritization as it was unclear how to handle the inconsistencies between

different metrics while the wingspan test produced a reasonable number of candidate

ligands to follow-up on experimentally. Delving into these lists is left to those readers

who want to dig deeper into the nuanced biology of these genes in the current context.

For these 12 ligands of interest, the expression levels of their cognate receptors

across G13D samples were checked to see which cell types (if any) could be receiving

these differential signals. The number of possible receiver cell types was plotted for a

range of threshold nonzero receptor fractions, treated as a boundary for where the cell

type as a homogeneous whole would be able to receive the signal (see Section 2.7). It is

good to keep in mind that this is not a wise interpretation for cell types that have a lot

of internal variation – and is especially bad for the Colonic and Unknown pseudo-cell

types that were identified in the immune compartment which have multiple separable

components. These curves are shown in Figure 3-8 and the resulting ordering in

Table 3.3.
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Figure 3-8: Prioritizing ligands of interest using their cognate receptors

Top: the number of cell types with at least one receptor for the ligand
whose fraction nonzero is greater than the threshold
Note: Mmp7 and Fn1 match Vim for their entire length

Bottom: the number of ligands that have at least one cell type that pass
the fraction nonzero threshold for at least one of their receptors

The 𝑥-axis is the threshold nonzero fraction above which the receptor is “on” across
a given cell type and capable of receiving the signal of ligand presence.
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The GF-ICF [8] expression of each ligand of interest was painted onto a PCA-

UMAP projection [37, 24], coloring each cell with the mean of its cluster [34] to

increase the prominence of the coloration (see Figure 3-9). Fn1, Apoe, and Ereg are

mostly restricted to the immune compartment but are captured in the above analyses

of non-immune cells. Their expression by non-immune cells will likely be overwhelmed

by their immune expression and, as such, were deprioritized. Vim and Pgf are mostly

expressed in the immune compartment as well, but a single non-immune cluster also

has notable expression. This cluster also dominates the expression of Plat, Agrn,

Sema3e, and Efna5. Additionally, if thinking of Mmp7 expression as a marker of

Paneth cells, the Paneth-like cluster also express Col5a3. Lastly, B2m shows broad

expression across all immune and some non-immune clusters.

Using the set of ligand-receptor interactions in [29], the set of receptors that

interact with any of the ligands of interest was collated (see Table 3.4) and their

expressions were also painted onto the PCA-UMAP projection, with each cell being

colored by the mean of its cluster as above (see Figure 3-10). All receptors are shown

regardless of expression level, as a threshold for determining significant cell type-

wide response is not established. Five of the 12 ligands have only a single receptor

measured in every sample, while Fn1 is by far the most prolific with 19 different

receptors (dominated by the integrin family).

Some receptors – Atp1a3, Hfe, Itga2b, Itga4, Itga5, Itga8, Itga9, Itgb3, Lrp1,

Lrp8, Nrp1, Plaur, Plxnd1, Sdc3, and Sorl1 – were mainly restricted to the immune

compartment, while others – Cd151, Egfr, Epha4, Ephb2, Ephb6, Erbb4, Flt1, Itga2,

Itga3, Itgb6, Ldlr, Lrp4, Lrp5, Nt5e, Sdc2, Tnfrsf11b, and Vldlr – were highly domi-

nated by the non-immune compartment. The remaining receptors were spread across

both subsets of cells. This segregation of expression leads to the interesting possibil-

ity that a single ligand could be causing different signals based on which receptor is

expressed in different cell types.
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Figure 3-9: Ligand of interest expression in full dataset
using the first 50 PCs and

√
𝑛𝑐𝑒𝑙𝑙𝑠 neighbors

Each cell is colored by the GF-ICF mean of its cluster (with 𝛾 = 1).
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Figure 3-10: Receptors for ligand of interest expression in full dataset
using the first 50 PCs and

√
𝑛𝑐𝑒𝑙𝑙𝑠 neighbors

Each cell is colored by the GF-ICF mean of its cluster (with 𝛾 = 1).
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Figure 3-10: Receptors for ligand of interest expression in full dataset, cont’d
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Table 3.4: Cognate receptors for ligands of interest

Ligand Receptor(s)

B2m Hfe
Col5a3 Sdc3
Plat Lrp1

Sema3e Plxnd1
Vim Cd44
Agrn Atp1a3, Lrp4
Ereg Egfr, Erbb4

Mmp7 Cd151, Cd44, Erbb4
Pgf Flt1, Nrp1, Nrp2

Efna5 Epha2, Epha4, Epha5, Ephb2, Ephb6
Apoe Ldlr, Lrp1, Lrp2, Lrp5, Lrp8, Scarb1, Sorl1, Vldlr

Fn1
Cd44, Itga2, Itga2b, Itga3, Itga4, Itga5, Itga8,
Itga9, Itgav, Itgb1, Itgb3, Itgb6, Itgb7,
Itgb8, Mag, Nt5e, Plaur, Sdc2, Tnfrsf11b
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Chapter 4

Discussion

4.1 Ligands of interest

Previous studies on differences between different KRas mutations have found only

a few of the same ligands as were of interest here. Vim and Fn1 were found to

be highly expressed by G13D-transformed human breast epithelium as compared to

the same cell line transformed instead with G12D.[33] Similarly, the expression of

these two genes was decreased by siRNA knockdown of KRas in both G13D-mutant

MDA-MB-231 cells as well as KRas-wild type BT-549 cells, both human breast cancer

lines.[16] What is known about others can even be somewhat contradictory. Low B2m

expression, for example, was shown to be associated with recurrence of CRC and so

results in a poor prognosis,[2] implying that G13D-mutants – with their high levels of

B2m seen here – are less likely to recur than the other KRas alleles. Conversely, several

studies have found that patients with G13D-mutant KRas have a worse prognosis than

those with other KRas mutations.[31, 6]

Most of the ligands found here, however, are relatively novel for their importance

in different KRas mutations. While Mmp7 has been shown to be upregulated by

G12D-mutation of KRas in pancreatic ductal adenocarcinoma,[7] it appears that no

one has published a comparison of Mmp7 expression across a series of KRas-mutant

tumors. Ereg has been shown to be downregulated by KRas mutation compared to

KRas-wild type tumors, and furthermore loses its positive correlation with clinical
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outcomes with mutation of KRas,[14] but that paper does not state which mutations

were seen in their KRas-mutant group.

Overall, the importance of the ligands identified here is uncertain as there is not

enough existing literature to support or refute most of them.

4.2 Strengths & Weaknesses

To begin filling the hole in the literature, this work attempts to be a first pass at

studying the effects of KRas mutations on intercellular communication. Using four

models with an 𝑛 of only 3 mice (or 4 if counting the CD45-enriched sample sepa-

rately), there is clearly much room to expand on this type of analysis. Additionally,

several different prioritization methods were proposed here, but an evaluation of which

set produces the most relevant results in vivo still awaits experimental follow-up or

orthogonal computational validation.

However, this method is quite extensible, allowing for optimization e.g. of the

summary statistic in ranked prioritization, while being quite robust in other senses,

capturing a consistent set of ligands using either the mean across all cells or dividing

it into two analyses of nonzero mean and fraction nonzero. Additionally, this form

of analysis can be used for scRNAseq data, bulk sequencing of sorted cells, or quan-

tified RNA-FISH for specific ligands as it is theoretically agnostic to the source of

input data. Even mass cytometry data could be treated in an analogous way, using

protein-level measurements to more directly quantify surface-bound ligands instead

of inferring protein level from mRNA expression. As a set of conceptually simple

ideas (requiring statistical change with either larger inter- versus intra-model varia-

tion or large separation between the extremum and its nearest neighbor), minimal

assumptions need to be made to pull out differences that can be used as a starting

place for furthering correlative or mechanistic explanations.
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Chapter 5

Conclusions

A lot is going on with KRas mutations that is not fully understood due to systemic

deficiencies in the literature as a whole. While on the largest scale, different mutant

KRas alleles are recognized to have distinct clinical implications, they are usually

compared as a block with wild type KRas for molecular and cellular comparisons.

Across four different models of APC-driven colorectal cancer with four common KRas

alleles, scRNAseq is able to find statistically large differences in cell-cell communica-

tion that set the G13D mutation apart from G12D and A146T mutations and wild

type KRas, despite the large range in clinical outcomes between KRas-wild type and

KRas-mutant tumors. While the analytical methods described here require very little

in the way of complex mathematics, their simplicity of interpretation allows for the

possibility of deep understanding. It captures two ligands (Vim and Fn1) known to

have differential effects with different KRas mutations, as well as a handful of novel

genes whose roles in this context are not well established. With further investigation

into a small set of high priority ligands, these differences can hopefully be corrob-

orated with other experimental or computational evidence and be understood with

biological insight within the highly variable context of colorectal cancer.
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Appendix A

GF-ICF L2-Normalization

This section will show that using L2-normalization of GF-ICF values for each cell

removes its dependency on the total counts of that cell.

Proof. From Section 2.5, to convert a count matrix 𝑓 with 𝑁 cells to its corresponding

expression matrix 𝑒, for gene 𝑖 and cell 𝑗:

𝑔𝑓𝑖𝑗 =
𝑓𝑖𝑗∑︀
𝑖 𝑓𝑖𝑗

𝑖𝑐𝑓𝑖 =

⎧⎪⎨⎪⎩𝑙𝑜𝑔
(︁

𝑁
𝑛𝑖

+ 1
)︁

𝑛𝑖 ̸= 0

0 𝑛𝑖 = 0

𝑒𝑖𝑗 = 𝑔𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖 ,

where 𝑛𝑖 = |{𝑗 : 𝑓𝑖𝑗 > 0}| is the number of cells in which at least one UMI from the

given gene was seen. Note that 0 ≤ 𝑛𝑖 ≤ 𝑁 . For reference, the total counts of cell 𝑗

is
∑︀

𝑖 𝑓𝑖𝑗. From substituting the first equation above in the last,

𝑒𝑖𝑗 =
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖∑︀

𝑖 𝑓𝑖𝑗
.
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With L2 normalization by cell, you instead have

𝑒′𝑖𝑗 =
𝑒𝑖𝑗√︁∑︀

𝑖 𝑒
2
𝑖𝑗

=
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/

∑︀
𝑖 𝑓𝑖𝑗√︁∑︀

𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/
∑︀

𝑖 𝑓𝑖𝑗)
2
.

As
∑︀

𝑖 𝑓𝑖𝑗 does not depend on 𝑖, it can be pulled out of the summation.

𝑒′𝑖𝑗 =
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/

∑︀
𝑖 𝑓𝑖𝑗√︁

(
∑︀

𝑖 𝑓𝑖𝑗)
−2∑︀

𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖)
2

=
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/

∑︀
𝑖 𝑓𝑖𝑗

(
∑︀

𝑖 𝑓𝑖𝑗)
−1

√︁∑︀
𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖)

2

=
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖√︁∑︀
𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖)

2

As neither 𝑖𝑐𝑓𝑖 or
∑︀

𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖)
2 depend on

∑︀
𝑖 𝑓𝑖𝑗, neither does 𝑒′𝑖𝑗.

More generally, any cell-wise L𝑝-normalization removes this dependency.

Proof.

𝑒′𝑖𝑗 =
𝑒𝑖𝑗

𝑝

√︁∑︀
𝑖 𝑒

𝑝
𝑖𝑗

=
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/

∑︀
𝑖 𝑓𝑖𝑗

𝑝
√︀∑︀

𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/
∑︀

𝑖 𝑓𝑖𝑗)
𝑝

=
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖/

∑︀
𝑖 𝑓𝑖𝑗

(
∑︀

𝑖 𝑓𝑖𝑗)
−1 𝑝

√︀∑︀
𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖)

𝑝

=
𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖

𝑝
√︀∑︀

𝑖 (𝑓𝑖𝑗 * 𝑖𝑐𝑓𝑖)
𝑝

60



Appendix B

Supplemental Figures and Tables

Table B.1: Lists of non-immune ligands for which G13D was significantly different by
Mann-Whitney U post-hoc tests after Kruskal-Wallis H between all models

All Benjamini-Hochberg multiple hypothesis corrected

Italics are non-significant

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Plat 0.0 1.5e-262 1.2e-92 1.7e-169

B2m 0.0 0.0 0.0 0.0

C1qb 0.0 0.0 9.9e-66 2.2e-118

Ptn 0.0 0.0 1.3e-145 1.9e-262

Vim 0.0 0.0 2.5e-281 0.0

Lcn2 0.0 0.0 2.6e-37 6.7e-213

Fn1 0.0 0.0 2.4e-134 2.0e-271

Apoe 0.0 0.0 0.0 0.0

Mmp7 0.0 0.0 0.0 0.0

C1qa 2.8e-308 0.0 7.7e-65 7.0e-64

Ccl4 9.1e-278 2.1e-36 1.2e-74 1.1e-01

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Cxcl2 7.3e-266 9.2e-80 4.1e-49 5.9e-02

S100a9 7.9e-258 2.3e-39 1.8e-62 4.9e-05

S100a8 2.3e-243 1.5e-28 1.7e-67 2.5e-01

Igfbp4 9.7e-238 3.9e-138 3.4e-73 4.6e-190

Lama5 7.5e-236 2.9e-156 7.4e-60 4.5e-121

Rbp4 9.2e-217 4.9e-15 2.2e-76 3.3e-06

Col1a2 2.4e-212 2.4e-18 5.1e-94 2.3e-02

Psap 1.6e-199 7.8e-164 1.0e-15 1.2e-45

Sema3f 3.4e-192 4.0e-133 8.8e-47 1.2e-93

Agrn 9.0e-173 6.4e-164 5.1e-50 2.6e-74

Calr 4.7e-171 1.6e-155 1.4e-52 3.5e-82

Lgals3bp 4.0e-168 6.5e-157 9.4e-61 5.2e-92

Thbs1 4.7e-159 2.1e-124 3.4e-01 1.9e-08

Col3a1 5.2e-158 8.2e-20 4.9e-74 2.1e-03

Ccl3 1.1e-154 3.2e-41 3.6e-25 8.9e-04

Mfge8 5.2e-148 2.5e-134 1.1e-46 2.4e-75

Sema5a 1.5e-146 8.7e-29 3.8e-136 7.6e-63

Il1rn 8.9e-146 2.9e-49 5.6e-109 4.1e-07

Sema4g 4.7e-138 1.8e-39 8.9e-136 6.6e-37

Nlgn2 6.9e-133 1.2e-86 7.4e-30 8.6e-67

Cubn 1.4e-132 1.7e-72 2.8e-31 7.6e-66

Cdh1 2.5e-119 5.5e-40 3.9e-10 1.3e-06

Col1a1 1.6e-117 3.3e-10 6.1e-51 4.0e-01

Csf1 1.3e-114 1.9e-91 1.3e-21 4.9e-57

Sema3a 4.3e-114 8.6e-78 8.5e-28 1.6e-62

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Rps19 1.9e-110 7.1e-103 2.1e-85 1.1e-48

Il18 5.9e-108 7.1e-46 3.0e-43 4.0e-01

Sema3c 5.5e-105 3.9e-75 2.3e-28 5.0e-83

Col9a3 1.3e-103 1.0e-54 2.1e-24 2.3e-51

Gas6 1.1e-100 2.1e-80 4.2e-87 2.3e-33

Rgmb 7.6e-99 1.6e-05 2.5e-41 5.4e-08

Lama3 3.7e-93 3.5e-05 7.6e-15 1.2e-92

Rtn4 2.3e-88 1.5e-14 1.1e-02 6.6e-71

App 1.7e-87 2.9e-67 2.3e-05 2.3e-07

Lamc2 3.9e-83 1.2e-03 1.1e-04 1.6e-33

L1cam 1.8e-82 5.3e-56 7.6e-75 1.6e-23

Sema4a 8.5e-78 2.1e-13 2.3e-76 1.6e-20

Pgf 6.7e-76 5.0e-60 1.9e-17 4.1e-32

Kitl 7.4e-76 4.1e-67 9.4e-09 2.3e-36

Pdgfc 1.6e-72 3.1e-41 1.5e-18 1.1e-35

Igf1 3.3e-70 1.7e-41 4.0e-17 1.5e-45

Vegfa 4.1e-67 2.3e-36 2.5e-03 3.9e-02

Hp 1.2e-63 1.1e-03 2.6e-20 3.9e-01

Efna4 5.3e-63 5.7e-48 7.9e-13 7.1e-36

Hsp90aa1 1.6e-61 6.0e-61 5.6e-33 1.6e-27

Dll4 1.7e-60 1.7e-17 1.3e-10 2.4e-01

Il1a 3.5e-53 6.4e-04 2.4e-20 2.2e-07

Adam9 1.2e-52 7.5e-03 1.5e-39 1.1e-02

Cgn 2.2e-52 2.8e-32 5.4e-52 1.7e-14

Cd274 1.0e-51 7.9e-52 1.0e-02 5.9e-14

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Hbegf 3.7e-51 3.2e-23 4.3e-02 2.5e-01

Dlk1 2.4e-50 1.2e-56 3.1e-08 2.3e-09

Tnf 8.5e-50 4.4e-37 2.9e-01 3.2e-18

Sema3e 1.6e-48 1.4e-37 6.6e-11 6.1e-24

Cd14 1.0e-47 1.5e-03 1.4e-36 2.5e-01

Dcn 4.1e-47 2.1e-09 3.7e-23 3.9e-01

Il7 4.1e-47 1.6e-31 2.9e-09 4.0e-02

Serping1 1.8e-45 3.7e-30 1.5e-10 3.4e-34

Lin7c 4.7e-45 1.1e-30 1.9e-40 5.4e-10

Cxcl16 6.2e-45 8.1e-38 2.3e-04 1.7e-24

Sema7a 2.2e-43 8.7e-23 2.0e-18 8.0e-39

Efna1 2.8e-43 1.2e-25 2.6e-02 2.2e-03

Lamb2 4.6e-43 8.4e-26 2.9e-10 6.2e-31

Vegfb 2.2e-41 6.1e-16 3.4e-05 1.1e-01

Dll1 5.4e-38 2.0e-06 2.4e-10 1.1e-04

Il2 2.8e-37 2.3e-23 4.4e-09 3.6e-33

Col4a1 5.5e-37 2.4e-21 4.3e-04 9.8e-31

Ccl28 5.9e-37 5.9e-07 1.8e-26 6.4e-29

Liph 8.2e-37 6.0e-07 4.1e-33 3.2e-04

Tgfb3 7.6e-36 1.5e-25 1.7e-08 3.4e-19

Pdgfd 3.2e-34 1.3e-21 7.4e-09 2.7e-21

Ntn4 2.1e-33 4.7e-33 2.4e-01 8.3e-08

Gpi1 7.0e-33 9.9e-03 6.5e-18 1.6e-01

Mmp9 2.4e-32 2.0e-09 4.5e-05 3.7e-03

Adam12 4.6e-32 3.7e-20 6.1e-07 2.8e-21

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Mmp13 7.2e-32 4.3e-06 2.3e-01 1.0e-08

Pdgfb 7.6e-32 8.2e-25 2.6e-01 6.4e-13

Vcam1 9.8e-32 1.2e-26 1.3e-08 7.7e-16

Agt 7.9e-31 5.1e-12 4.7e-04 6.0e-02

Cxcl13 1.0e-30 5.3e-25 1.2e-01 2.4e-14

Lamb1 1.6e-30 1.9e-27 6.8e-05 1.3e-16

Cxcl10 1.2e-29 4.5e-29 4.0e-06 2.6e-12

Adam10 1.5e-29 2.0e-07 1.0e-01 3.2e-12

Cx3cl1 2.5e-29 1.9e-01 5.4e-16 3.6e-02

Spint1 3.4e-29 2.3e-02 2.1e-07 3.7e-05

Col4a2 2.5e-28 2.6e-15 3.4e-01 4.8e-18

Bmp2 6.4e-28 3.7e-01 6.8e-17 3.3e-03

Efna5 1.2e-27 2.6e-15 2.0e-07 8.7e-19

Sema6d 3.6e-26 3.9e-19 2.4e-09 3.1e-02

Sema3b 3.1e-25 6.4e-03 1.6e-20 1.1e-01

Sorbs1 8.9e-25 5.6e-07 1.8e-04 1.6e-02

Col14a1 1.5e-24 2.3e-16 3.4e-03 2.4e-18

Ctf1 2.0e-24 4.1e-18 1.6e-01 9.3e-14

Egf 2.3e-24 7.8e-04 3.7e-07 8.5e-05

Ptdss1 3.4e-24 4.8e-06 5.0e-24 2.4e-03

Adam15 1.1e-22 1.9e-02 1.3e-09 2.6e-01

Col18a1 3.8e-22 6.2e-16 1.4e-01 1.6e-13

Jag1 4.2e-22 6.7e-03 1.2e-06 6.0e-02

Adam17 9.4e-22 2.0e-04 1.1e-05 7.3e-02

Bst1 1.6e-21 4.3e-13 2.7e-01 8.3e-06

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Edn1 2.5e-21 3.0e-13 4.1e-01 9.1e-08

Prss23 5.6e-21 2.4e-16 3.9e-01 2.7e-08

Slit2 9.7e-21 6.0e-18 4.5e-03 2.7e-12

Lrpap1 2.5e-20 1.1e-05 2.4e-04 7.5e-02

Il10 2.4e-19 4.3e-01 1.1e-06 2.5e-01

Ccl20 5.2e-19 4.5e-01 8.7e-12 3.9e-06

Mdk 5.3e-19 3.5e-09 1.5e-07 9.2e-19

C3 1.1e-18 8.9e-14 2.8e-01 5.3e-10

Il34 3.1e-18 9.1e-09 2.4e-02 2.6e-01

Bmp3 9.8e-18 9.4e-03 1.1e-13 5.7e-02

Sema4d 1.3e-17 7.4e-14 4.2e-02 6.4e-12

Serpine1 2.1e-17 3.1e-05 1.1e-02 2.8e-03

Timp1 2.6e-17 6.2e-13 1.3e-01 3.3e-11

Il15 3.5e-17 2.5e-08 1.8e-01 8.7e-15

Sema4b 1.7e-16 1.3e-06 9.5e-02 5.3e-05

Fbln1 2.1e-16 3.9e-15 1.3e-03 5.8e-11

Fgf1 2.7e-16 2.6e-01 1.3e-12 6.1e-02

Pros1 2.7e-16 7.4e-05 3.1e-02 2.3e-17

Ccl25 9.0e-16 1.5e-07 3.1e-01 9.6e-07

Jag2 9.5e-16 6.6e-14 4.4e-03 3.3e-10

Psen1 7.8e-15 5.6e-02 2.9e-13 9.4e-02

Fgf9 1.2e-14 5.2e-12 1.3e-01 4.8e-09

Chad 1.5e-14 4.9e-02 3.1e-13 7.5e-04

Nrtn 1.8e-14 5.8e-12 3.3e-03 1.3e-08

Tfpi 5.8e-13 1.9e-10 3.3e-01 1.8e-01

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Fbn1 8.8e-13 1.9e-02 6.6e-09 1.6e-02

Nmb 9.0e-13 1.9e-09 1.6e-03 3.3e-11

H2-M3 4.5e-12 6.1e-04 3.2e-03 4.3e-01

Il6 8.2e-11 3.2e-01 8.3e-03 1.3e-06

Mmp2 2.3e-10 6.2e-02 3.7e-02 1.2e-03

Tnfsf8 2.8e-10 2.4e-10 3.6e-04 5.0e-06

Itih2 3.0e-10 3.9e-01 2.6e-05 2.6e-04

Ly86 2.0e-09 6.0e-10 1.5e-01 8.2e-02

Nrg3 2.3e-09 1.1e-02 3.1e-01 5.9e-06

Hspg2 4.5e-09 2.3e-05 1.5e-01 3.0e-01

Bgn 1.1e-08 1.3e-03 8.7e-06 4.1e-01

Col8a1 1.3e-08 3.3e-07 3.6e-01 7.3e-02

Hras 2.1e-08 7.2e-09 1.4e-01 3.0e-04

Ereg 2.7e-08 3.7e-01 9.9e-03 6.2e-02

Efnb1 3.4e-08 4.0e-02 1.3e-06 4.7e-01

Cfh 7.9e-08 1.2e-01 7.1e-02 1.0e-02

Tgfb1 1.1e-07 3.8e-08 2.9e-01 2.2e-03

Ccl24 2.2e-07 1.4e-02 8.5e-05 6.1e-07

Col5a2 2.3e-07 1.1e-02 1.5e-05 2.7e-01

Btc 3.1e-07 3.5e-04 3.3e-01 1.4e-06

Efna2 7.8e-07 2.1e-05 3.8e-03 6.2e-06

Il16 1.1e-06 4.4e-03 1.4e-02 2.9e-08

Nid1 1.6e-06 1.5e-02 3.9e-03 2.8e-01

Adam2 1.9e-06 3.4e-07 3.0e-04 9.8e-04

Vcan 3.0e-06 4.8e-01 4.2e-04 3.3e-03

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Efemp2 3.8e-06 1.3e-05 1.1e-01 2.7e-05

Col4a3 4.1e-06 1.8e-06 6.7e-02 2.7e-04

Clcf1 4.2e-06 3.0e-03 8.8e-02 2.4e-07

Fbln2 8.9e-06 9.5e-02 3.1e-04 4.0e-01

Ltf 1.1e-05 3.5e-02 1.1e-01 9.9e-02

Vwf 3.1e-05 3.2e-01 2.4e-02 1.8e-01

Cxcl12 4.8e-05 4.1e-01 9.8e-03 2.5e-01

Itgb3bp 5.8e-05 3.5e-01 5.8e-03 4.1e-01

Efnb2 1.5e-04 1.7e-01 2.3e-05 4.8e-02

Edil3 1.9e-04 1.5e-04 6.9e-02 4.5e-04

Flt3l 3.3e-04 3.9e-03 2.4e-01 9.4e-05

Plau 3.5e-04 1.3e-05 1.2e-01 2.9e-02

Cd28 4.4e-04 5.8e-05 2.4e-01 1.2e-02

Col5a3 8.4e-04 1.3e-03 4.1e-01 7.7e-03

Icam1 1.3e-03 1.7e-02 4.5e-01 8.8e-03

Serpinc1 2.9e-03 2.2e-01 3.8e-02 2.5e-04

Mfng 3.0e-03 1.3e-02 1.2e-01 4.0e-04

Timp3 3.4e-03 2.3e-01 4.0e-01 4.2e-04

F7 4.4e-03 1.0e-04 2.7e-01 1.8e-01

Bmp4 4.5e-03 8.5e-03 3.2e-01 2.5e-03

Col4a5 4.8e-03 6.5e-02 3.7e-01 3.7e-02

Qrfp 9.3e-03 8.1e-03 8.8e-02 2.3e-03

Icosl 1.0e-02 8.4e-03 2.6e-03 1.6e-01

Efnb3 1.5e-02 4.5e-03 3.1e-01 2.0e-02

Mst1 2.2e-02 1.4e-01 8.5e-03 2.4e-01

Continued on next page
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Table B.1 – continued from previous page

Ligand in
Non-immune

p(H)
across models

p(U) G13D vs

A146T G12D WT

Btla 2.5e-02 4.3e-01 5.4e-02 1.8e-02

Has2 2.8e-02 3.5e-02 4.8e-01 3.8e-02

Ntn1 3.7e-02 2.0e-01 3.4e-01 3.8e-03

Pf4 4.8e-02 6.7e-02 2.6e-01 4.2e-01
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Figure B-1: PCA-UMAP visualization of the T/NK subset with some markers
using the first 50 PCs and

√
𝑛𝑐𝑒𝑙𝑙𝑠 neighbors, colored by cluster mean

Top row is NK-cell markers
Second and bottom rows are T-cell markers

The last plot is the Leiden clustering results, with 𝛾 = 1
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