
State-space modeling and electroencephalogram

source localization of slow oscillations with

applications to the study of general anesthesia,

sedation and sleep
by

Gladia Chork Hotan
B.S. Physics, California Institute of Technology

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c© Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Brain and Cognitive Sciences

Aug 14, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Patrick L Purdon

Associate Professor of Anaesthesia, Massachusetts General Hospital
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Emery N Brown

Edward Hood Taplin Professor of Medical Engineering and of
Computational Neuroscience, Massachusetts Institute of Technology

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rebecca Saxe

John W. Jarve (1978) Professor of Brain and Cognitive Sciences
Associate Head, Department of Brain and Cognitive Sciences

Affiliate, McGovern Institute for Brain Science



2



State-space modeling and electroencephalogram source

localization of slow oscillations with applications to the study

of general anesthesia, sedation and sleep

by

Gladia Chork Hotan

Submitted to the Department of Brain and Cognitive Sciences
on Aug 14, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

General anesthesia, sedation and sleep correspond to distinct physiological states on
a spectrum of unconsciousness. Slow oscillations (0.1-1Hz) are a common feature of
these unconscious states. It is unclear whether these slow oscillations might have dif-
ferent properties that could relate to mechanistic or behavioral differences observed
in these states. In this thesis we develop novel methods to characterize the dynamic
properties and spatial relationships of slow oscillations during general anesthesia, se-
dation, and sleep. First we analyze the electroencephalogram (EEG) power spectrum
in each of these states and find that slow oscillation power increases with increasing
levels of unconsciousness. Next, we perform source localization analysis to character-
ize the spatiotemporal relationships among distributed cortical generators for the slow
oscillation using canonical coherence analysis. We find that the inherent spatial dis-
persion of MNE estimates could produce spurious coherence values even when sources
were uncorrelated. To improve the accuracy of coherence estimates, we develop an
improved source localization method using a state space model for the slow oscillation.
This method employs a novel state space representation for oscillatory signals devel-
oped by Matsuda and Komaki, combined with an expectation maximization (EM)
algorithm to estimate the model parameters in the sensor and source spaces. We
demonstrate in simulation studies that this oscillator-EM method improves localiza-
tion performance as compared to MNE. Finally, we apply the oscillator-EM method
to analyze slow oscillations in the propofol, dexmedetomidine and sleep datasets,
respectively. We illustrate how the application of this novel state space model and
source localization method can elucidate novel properties of slow oscillation dynamics
and coherence.
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Chapter 1

Introduction

1.1 General anesthesia, sedation and sleep: States

on a continuum of unconsciousness

General anesthesia, sedation and sleep can be thought of as states on a spectrum

of unconsciousness. General anesthesia is a drug-induced, reversible state of un-

consciousness, analgesia, amnesia and immobility. [15] The goal of surgical general

anesthesia is to place the brain into a precise state of unconsciousness, avoiding both

recall of the surgery and over-administration of the anesthetic. On the one hand,

recall of a surgery can lead to serious trauma in patients, who may recall the sensa-

tions of being cut without pain and feeling locked-in with no outlet to express strong

emotions. In severe causes, post-traumatic stress from surgical recall can result in

suicide. On the other hand, over-administration of anesthetics may lead to post-

operative cognitive dysfunction. Thus, it is important to avoid both underdosing and

overdosing of anesthetics.

Sedation is a drug-induced, reversible state of decreased movement and decreased

arousal. [15] Under milder sedation, patients may still be responsive to external

stimuli. Some sedatives like dexmedetomidine may be used to mimic a state of sleep.

Sleep is a naturally-occurring restorative state during which metabolites are cleared

from the brain. During sleep, sensitivity to stimuli is reduced, but the subject can be
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readily aroused.

The overarching goal of this thesis is to quantify differences in human brain activity

during general anesthesia, sedation and sleep so as to advance our understanding of

the neural correlates of depth of unconsciousness. To this end, we study EEG data

recorded from human subjects under propofol-mediated general anesthesia, sedation

with dexmedetomidine, and natural sleep.

General anesthesia under propofol

Propofol is a GABA-A agonist which targets GABA receptors on inhibitory interneu-

rons leading to the cortex, thalamus, striatum, midbrain and pons. In particular, it

targets arousal areas in the midbrain and pons. In light doses, propofol induces se-

dation. In higher doses, such as a 5-10 second bolus administration, propofol induces

general anesthesia. The patient becomes unresponsive and their respiration becomes

apneic, necessitating respiratory support by intubation. [15]

Propofol binds to GABA receptors on the synapses from inhibitory interneurons

onto pyramidal neurons, causing postsynaptic Cl− channels to remain open. The

resulting inward Cl− current causes pyramidal neurons to hyperpolarize. GABA-A

receptors are present throughout the brain, and since small numbers of inhibitory

interneurons connect to large numbers of excitatory pyramidal neurons, GABA-A

agonists binding to inhibitory interneurons suppress activity throughout the brain.

[15]

Each physiological response to GABA-A agonists like propofol is attributable

to different possible neural circuit mechanisms. Unconsciousness and sedation are

thought to be brought about by the potentiation of GABAergic interneurons in the

cortex, reticular thalamic nucleus, and arousal centers in the midbrain and pons.

Atonia, a condition in which muscle tone is lost, is thought to arise from GABA-

mediated inhibition of the pontine and medullary reticular nuclei. [15]

It is worth noting that anesthesia and analgesia are brought about by different

drugs. Propofol induces anesthesia but not analgesia; during surgery, opioid receptor

agonists such as fentanyl and remifentanyl are used to produce analgesia. It is typical
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to administer a cocktail of drugs containing an anesthetic and an analgesic to achieve

the twin aims of anesthesia and analgesia. If an anesthetic is administered without

an analgesic, the patient loses consciousness but may die of shock from the body’s

pain response to surgical incisions.

Sedation under dexmedetomidine

Dexmedetomidine is an α2 receptor agonist. It binds to α2 receptors on neurons

emanating from the locus coeruleus. These locus coeruleus neurons become hy-

perpolarized, leading to reducing norepinephrine release. This results in reduced

norepinephrine-mediated inhibition of the pre-optic area in the hypothalamus. The

disinhibited pre-optic area inhibits ascending arousal centers via GABAergic and

galainergic neurons, resulting in a state resembling physiological non-REM (NREM)

sleep. [15]

Natural sleep

Sleep is a natural, restorative process observed in virtually all organisms which have

brains or prototypical brains (in the form of neural bundles). Sleep promotes the

clearance of metabolites such as amyloid beta from the brain [71, 9]. Sleep has also

been shown to be necessary for memory consolidation [29], with sleep deprivation

hindering the performance of cognitively-demanding tasks [51].

There are four stages of sleep. REM sleep is the lightest state of sleep. Dur-

ing REM sleep, subjects exhibit rapid eye movements, whose number per unit time

increases through the night. The body enters a state of skeletal-muscle hypoto-

nia, which prevents movement (and thus injury) from the acting out of dreams. In

NREM1 sleep, subjects exhibit slow, rolling eye movements, and muscle tone further

decreases. NREM2 sleep is marked by spindles and K-complexes visible on the EEG.

These appear intermittently in short bursts of time at frequencies typically ranging

from 11-16Hz. NREM3 sleep, the deepest sleep stage, is marked by slow-wave sleep.

By this stage, spindles and K-complexes are no longer visible, and a strong slow os-

cillation is present. [52] Humans transition between the different stages of sleep in
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the course of a normal night’s sleep.

1.2 The neurobiology of the slow oscillation

1.2.1 Introduction to the slow oscillation

In this section, we delve deeper into the neurobiology of the slow oscillation. As we

will show in section 1.3, the slow oscillation is a key biomarker of unconsciousness,

which is why we chose to focus on it in our analyses. Before discussing its role as a

biomarker, we first explain the neurobiology behind how this important oscillation is

produced.

The slow oscillation in the brain consists of an alternation between Up states,

during which vigorous synaptic activity occurs, and Down states, during which neu-

rons are relatively silent. The oscillation occurs synchronously over large patches of

the cortex. The cortical slow oscillation persists after thalamic and callosal lesions,

indicating that the cortical network is sufficient to generate the slow oscillation [68].

The slow oscillation can also be produced in cortical slices in vitro. However, subcor-

tical structures are also involved in the slow oscillation, which is observed to occur

synchronously between neurons in the cortex, thalamus, striatum and cerebellum.

The horizontal axon collaterals of cortical pyramidal cells are likely to be responsible

for maintaining the long-range coherence of the slow oscillation.

The emergence of the slow oscillation is correlated with diminished arousal, as

in the quiescent waking state, and unconsciousness, such as during natural sleep,

sedation or general anesthesia. The functional role of the slow oscillation remains an

open question. Thus, we choose to focus on the slow oscillation as a biomarker of

depth of unconsciousness. In this section we review current literature on the neural

mechanisms that are thought to produce the slow oscillation.
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1.2.2 The neuroanatomy of thalamocortical synchrony

The corticothalamic system synchronizes the activities of cortical and tha-

lamic neurons

Majority of the inputs to relay cells and GABAergic cells in the reticular nucleus

(RTN) come from the corticothalamic system. Cortical inputs can excite or inhibit

thalamic relay cells via the RTN, thus synchronizing high- and low-frequency oscilla-

tions respectively.

The substrate which synchronizes populations of cortical and thalamic cells dur-

ing high-frequency oscillations consists of 1) focused corticothalamic axons arising

from layer VI cortical cells, and 2) diffuse corticothalamic axons arising from layer

V cortical cells. These interact with 1) specifically projecting core relay cells in the

dorsal thalamus and 2) diffusely projecting matrix cells in the dorsal thalamus [38].

Cortical layer 6 provides input to relay neurons in the dorsal thalamus

and to the reticular thalamic nucleus (RTN)

Corticothalamic terminals predominate on relay cells in the dorsal thalamus as well

as on RTN cells. Cortical layer 6 projects glutamatergically (excitatory) to thalamic

relay cells and also projects to GABAergic (inhibitory) cells in the RTN. The cortex

can therefore glutamatergically excite thalamic relay cells, or inhibit them via the

GABAergic cells in the RTN. Work by Steriade et al. [63] suggests that under normal

conditions in the intact brain, the cortex predominantly inhibits the thalamus.

Relay neurons in dorsal thalamus predominantly receive glutamatergic input from

layer 6 of the cortex. The RTN also takes input predominantly from cortical layer 6.

This is clear from an examination of the rat RTN: Of the synapses received by rat

RTN cells, 70% are corticothalamic terminals, 20-25% are thalamocortical collateral

synapses, and 15-20% are GABAergic synapses. The RTN primarily inhibits the

thalamus. [38]

Corticothalamic stimulation excites RTN cells but inhibits relay cells. When stim-

ulated, corticothalamic fibers induce fast-rising EPSPs in RTN cells. These EPSPs
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have both NMDA components as well as non-NMDA components, where the latter

consist of AMPA-based kainate receptors. Corticothalamic stimulation tends to in-

hibit relay cells. When thalamic relay cells are hyperpolarized, for example during

sleep, the RTN-mediated disynaptic inhibition overcomes the weak excitatory effect

of corticothalamic stimulation. In vitro, when relay cells are held at -55mV, weak

electrical stimulation of corticothalamic fibers produces a small, short-latency EPSP

in relay cells, but this is followed by a deep, prolonged IPSP that lasts up to 100ms.

This IPSP consists of both GABA-A and GABA-B-receptor-mediated components.

[38]

The synapses of corticothalamic fibers on RTN cells are more powerful than those

on relay cells. There are approximately 3 times as many GluR4 receptor subunits

at corticothalamic synapses on RTN cells than at corticothalamic synapses on relay

cells. This leads to an AMPA-receptor-based difference in synaptic strength between

the corticothalamic connections to RTN and the corticothalamic connections to re-

lay cells. Due to the larger number of GluR4 receptors subunits at corticothalamic

synapses on RTN, corticothalamic fibers exert a more powerful influence on RTN cells

than on relay cells. [28]

1.2.3 The thalamus takes input from layer 6 and layer 5 pyra-

midal cells, which have narrow and extensive axonal

ramifications respectively

Two classes of pyramidal cells project from cortex to thalamus: 1) pyramidal cells

with somata located in layer 6, which project from a particular cortical area to its

related thalamic nucleus, and 2) pyramidal cells with somata located in layer 5. [38]

The layer 6 pyramidal cells are small and have a narrow dendritic field, influencing

a narrow zone of the cortical area in which they lie. However, the terminals of a layer

6 pyramidal cell can influence thalamic relay cells that project to regions of cortex

outside the narrow cortical zone in which the pyramidal cell lies. A layer 6 pyramidal

cell gives off axon collaterals to the RTN. Its terminations in the dorsal thalamus
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project to the specific thalamic nucleus associated with the cortical area from which

the pyramidal cell receives input. [38]

The layer 5 pyramidal cells have extensive axonal ramifications in the thalamus

and cortex. They have thick axons that give off horizontal collaterals which extend

for a long distance throughout layers 3 and 4 of the cortex. A layer 5 pyramidal cell

projects not only to the thalamus, but also to the tectum, other brainstem regions,

and the spinal cord. A layer 5 pyramidal cell does not give off axon collaterals to the

RTN. Its terminations in the dorsal thalamus extend into numerous adjacent nuclei,

not just the thalamic nucleus from which its parent cortical area receives inputs. [38]

1.2.4 Relay cells are divided into two classes: core cells,

which have focused projections to cortex, and matrix

cells, which have diffuse projections to cortex

There are two classes of relay cells in the primate thalamus: parvalbumin-immunoreactive

core cells and calbindin-immunoreactive matrix cells. Table 1.1 summarizes the char-

acteristics of both types of cell. [38]

1.2.5 Cortical mechanisms of the slow oscillation

The Up state of the slow oscillation is likely initiated by pyramidal cells

in cortical layer 5

Up-state initiation refers to the initiation of synchronous activity from a relatively

silent network. Up states initiate in the same group of neurons, and engage the rest

of the cortical network in the same sequence on each cycle. [49] This was established

in various in vitro experiments [45, 23] and various in vivo experiments [43].

Experimental evidence points to the fact that cortical layer 5 is important for

initiation of Up states. In vivo, the polarity of the extracellular slow oscillation

potential reverses toward the middle cortical layers.[64] In vitro, multiunit activity

during the slow oscillation was strongest and earliest in layer 5. [59] When layer 4 is
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Core cells Matrix cells

Distribution Core cells are found only in the
principal sensory and motor re-
lay nuclei, in certain nuclei of the
pulvinar and in some intralami-
nar nuclei.

Matrix cells form a widely dis-
tributed matrix throughout all
the nuclei of the dorsal thalamus.

Projections
to cortex

Core cells are topographically or-
ganized. Adjacent groups of core
cells project to adjacent regions
of a single area of cortex, termi-
nating in localized zones in the
middle layers (deep layer 3 and
layer 4).

Diffuse projections. Adjacent
matrix cells in a thalamic nucleus
may project to two different (al-
though usually adjacent) cortical
areas. The axons of matrix cells
terminate in superficial layers (1,
2 and upper 3) of the cortex.

Role Core relay cells send place- and
modality-specific information to
the cortex.

Matrix relay cells disperse activ-
ity across large areas of the cor-
tex.

Table 1.1: Properties of core and matrix relay cells

cut horizontally, the slow oscillation can still be generated in layers 5 and 6, but not

in the upper layers. Furthermore, optogenetic manipulation of layer 5 and layer 2/3

pyramidal cells has shown that layer 5 is involved in Up state initiation. [11]

In particular, there is much evidence that layer 5 pyramidal cells initiate the slow

oscillation. Many layer 5 pyramidal cells fire rhythmically, exhibiting resonant firing

frequencies below 15 Hz in response to both hyperpolarizing and depolarizing current

pulses. [2] Low-frequency resonance may initiate the slow oscillation. Layer 5 contains

“intrinsic-bursting pyramidal cells”, a pyramidal cell subtype that bursts in response

to depolarizing current. [21] This pyramidal cell subtype has been implicated in the

initiation of cortical epileptiform activity, which some argue is a dysregulated Up

state [72]. Recordings from anesthetized and sleeping cats have shown that intrinsic-

bursting pyramidal cells fire before all other neuron types before Up state onset.

[20] Also, there is a high degree of convergence onto and divergence from layer 5

pyramidal cells, as evidenced by the fact that layer 5 pyramidal cells 1) have wide

axonal arborization within layer 5 [18] and 2) have high dendritic spine density [24].

Because of these features, layer 5 pathways cause epileptiform discharges to propagate
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horizontally. [69]

It is currently thought that there are two possible mechanisms by which the slow

oscillation is initiated by pyramidal cells in cortical layer 5. The first is initiation by

persistently active, pacemaker-like cortical neurons. The second is stochastic initia-

tion by temporal summation of spontaneous synaptic activity. [49]

There has been debate over the type of neuronal firing that initiates the slow

oscillation, with two possible scenarios for the intracortical initiation of the Up

state. In the first scenario, Mini-EPSCs [26], which are spontaneous, action potential-

independent excitatory synaptic potentials, temporally summate in a critical number

of layer 5 pyramidal neurons, causing these neurons to spike. This tips the entire cor-

tical network into the Up state. In the second scenario, Layer 5 pyramidal neurons

which fire consistently during the Down state initiate the Up state after the refrac-

tory mechanisms from the previous Up state have subsided. There is mixed evidence

regarding the second scenario. Most in vivo intracellular and extracellular recording

studies done in cats have not identified spiking activity in any cortical layer during

the Down state. However, in vivo rodent studies have found spontaneous spiking in

layer 5 pyramidal neurons during the Down state. [34] In vitro, pyramidal cells in

layer 5 do spontaneously fire during the Down state. [59]

Synaptic activity is probably primarily responsible for the maintenance of

the Up state

Following Up state initiation, Up states are sustained for hundreds of milliseconds to a

few seconds. The question of whether synaptic or intrinsic membrane properties con-

tribute more to the sustaining of the persistent neural activity that characterizes the

Up state remains under debate. There is some role played by intrinsic mechanisms in

the persistent activity of the Up state, as seen in the involvement of layer 5 pyramidal

cells. However, most evidence supports a synaptic basis for persistent activity during

the Up state: recurrent excitatory synaptic activity balanced by synaptic inhibition.

[49]

The fact that manipulation of membrane potential does not affect Up state pe-
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riodicity supports the hypothesis that intrinsic mechanisms are less important for

Up state persistence. Injection of current to hyperpolarize or depolarize the cellular

membrane potential does not affect Up state duration or period [67], showing that

Up state persistence does not depend on membrane voltage.

Instead, there has been substantial evidence suggesting that excitatory synaptic

activity is important for Up state persistence. Firstly, membrane potential variance

and irregularity of interspike intervals are high in cortical neurons during Up states,

which is consistent with excitatory and inhibitory synaptic barrages sustaining the

persistent activity. Secondly, when AMPA or NMDA receptor antagonists, which

block fast glutamatergic transmission, are applied to cortical slices in vitro, Up states

are not observed. [59] Thirdly, blockade of NMDA receptors by ketamine reduced Up

state duration in vivo by more than half. [67] Similar observations have been made

in slices.

Inhibitory synaptic activity is also important for Up state persistence, since a

balance between synaptic excitation and synaptic inhibition in necessary to maintain

the membrane potential near spike threshold, where synaptic noise can transiently

cause firing.

Thus, synaptic activity, rather than intrinsic membrane properties, is likely to be

the major contributing factor to Up state persistence.

Intrinsic membrane properties (the activation of activity-dependent K+

conductances) are probably primarily responsible for Up state termination

The question of whether Up state termination depends on synaptic or intrinsic mech-

anisms has also been a subject of debate. In a synaptic explanation for Up state

termination, Up state termination may be caused by enhanced activity of inhibitory

interneurons or synaptic depression of excitatory synapses near the end of the Up

state [70]. Alternatively, in an intrinsic explanation, Up state termination may be

caused by the activation of activity-dependent hyperpolarizing conductances.

It has been shown that the activation of activity-dependent K+ conductances in

a neuron (primarily pyramidal cells) during Up states decreases the excitability of
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the neuron, decreasing its firing rates and leading to Up state termination. On the

other hand, while the synchronous initiation of the Up state is linked to increased

excitability in a stereotypical subnetwork of neurons, no such stereotypical subnetwork

or sequence of activation has been found which may explain synchronous Up state

termination. Thus, it is likely that an intrinsic rather than a synaptic mechanism is

primarily responsible for Up state termination.[49]

Synaptic inhibition is unlikely to cause the transition to the Down state because

1) there is no increase in inhibitory cell firing when Up states terminate, and 2) in-

hibitory conductances decrease as the Up state progresses. However, it should be

noted that further research is necessary before synaptic inhibition can be ruled out

as a mechanism for Up state termination. There are three main pieces of evidence

to support this idea. Firstly, slow GABA-B-mediated inhibition may play a role in

terminating Up states. In vitro, progressive pharmacological blockade of slow GABA-

B mediated inhibition caused a continuous increase in the Up state [44]. Secondly,

synaptic inhibition dominates 4-7% of cortical neurons prior to Up state termination

[40]. However, it is unclear whether this contributes significantly to Up state termina-

tion. Thirdly, “late-firing” inhibitory cells, ie. inhibitory cells that fire towards the end

of the Up state, might be important contributors to Up state termination synchrony

provided that they have a wide enough axonal spread. Somatostatin (SOM)-positive

inhibitory cells are a possible candidate.

All in all, the activation of activity-dependent K+ conductances is the most likely

mechanism behind Up state termination. The activation of GABA-B receptors may

exert a modulatory influence on Up state duration.

1.2.6 Thalamic mechanisms of the slow oscillation

Thalamocortical projections are mainly involved in Up state initiation and

determination of the period of the Up state

The thalamus is thought to be involved in the initiation of the Up state and the

determination of the period of the Up state via the following process: [49]
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1. After a Down state, thalamocortical neurons (excitatory thalamic relay cells)

fire a post-inhibitory rebound spike-burst.

2. An Up state is produced in the cortex.

3. Corticothalamic input depolarizes inhibitory thalamic reticular nucleus (TRN)

cells, causing them to fire and inhibit the thalamocortical neurons.

This hypothesis has been supported by evidence that sensory or thalamic stimulation

reliably produces Up states in animals [7].

Spontaneous thalamic activity appears to be necessary for the initiation of spon-

taneous Up states. It has been shown that the severing of thalamocortical axons in

mouse barrel cortex in vitro decreases the frequency of the slow oscillation. [57]

Inactivation of the thalamus decreases the frequency of the slow oscillation and

reduces the synchronization of the Up states in cortical neurons [41]. This indicates

that the thalamocortical dialogue is crucial for synchronization of the slow oscillation,

and that the thalamus directly influences the period of the slow oscillation. Inter-

estingly, within 30h after thalamic inactivation, the cortex recovers its normal slow

oscillation frequency. This may indicate that the slow oscillation is highly important

to cortical networks, since cortical recurrent circuitry is recruited to compensate for

the missing thalamic signal for Up state initiation.

It is thought that sensory and non-sensory thalamic nuclei are involved in the

initiation and maintenance/termination of the Up state respectively. Core cells form

the focused thalamocortical projections from sensory thalamic nuclei, while matrix

cells form the diffuse thalamocortical projections from non-sensory thalamic nuclei.

During Up state initiation, relay cells in sensory thalamic nuclei are inhibited by the

TRN. On the other hand, relay cells in non-sensory thalamic nuclei are dominated by

excitation during the Up state, indicating that they may be involved in sustaining and

possibly terminating it. Furthermore, since thalamocortical projections from these

non-sensory nuclei are diffuse, the non-sensory nuclei might play a role in maintaining

the Up state. [49]

32



Core and matrix cells in the thalamus maintain widespread thalamocorti-

cal synchrony

The following outlines a possible process by which core and matrix cells play a com-

plementary role in spreading synchronous activity through large areas of cortex: [38]

1. Within a cortical zone, matrix cells terminate in superficial layers while core

cells terminate in middle layers. This forms a coincidence-detection circuit

which allows for temporal integration between inputs from the two cell classes.

Coincidence could generate synchronous activity within cortical columns and

between cortical columns activated by the same stimulus.

2. This activity would in turn be transmitted to the thalamic nuclei corresponding

to these columns via layer 6 corticothalamic cells, reinforcing thalamocortical

synchrony.

3. The diffuse projections of matrix cells in the thalamic nucleus where the activity

originated could be responsible for spreading the oscillation to other cortical

areas.

4. Other thalamic nuclei would be recruited via the diffuse projections of layer 5

corticothalamic neurons.

5. The diffuse projections of matrix cells from these other thalamic nuclei would

further recruit more cortical areas. It should be noted that the principal targets

of layer 5 corticothalamic axons are thalamic nuclei, which are rich in matrix

cells.

The widespread collaterals of layer 5 corticothalamic cells within the cortex would

also promote the spread of the activity.

1.2.7 The delta oscillation

Closely related to the slow oscillation is the delta oscillation (1-4Hz), which mostly

appears during deep slow-wave sleep. Delta oscillations are thought to be generated
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by 1) intrinsic properties of thalamocortical neurons, and 2) intrinsic properties of

layer 5 pyramidal neurons. [49]

The generation of delta oscillations by thalamocortical neurons is associated with

h-currents and T-currents. During slow-wave sleep, brainstem cholinergic neurons

decrease in activity beyond the spindle range, causing greater hyperpolarization of

membrane potentials. [66] At this level of hyperpolarization, interactions between

the h-current and the T-current produce delta oscillations. The hyperpolarized mem-

brane potential activates the h-current and de-inactivates the T-current, causing a

Ca2+ spike. The Ca2+ spike deactivates the h-current and inactivates the T-current,

causing repolarization which restarts the cycle. [47]

Steriade et al. demonstrated that the delta oscillation remains after removal of

the thalamus, suggesting that there may be a separate cortical generator of the delta

oscillation. This generator is thought to function based on mechanisms similar to

those which generate Up and Down states in the slow oscillation: the activation of

intrinsic bursting pyramidal neurons in cortical layer 5 followed by the activation of

long-lasting K+ conductances. [68] Thus, the cortex is thought to be the primary

initiator of the slow oscillation, while delta oscillations may originate either in the

cortex or via thalamocortical neurons.

Delta oscillations are synchronized by cortical Up states in deep slow-wave sleep.

The synchronization is due to the depolarization of corticothalamic cells during the

Up state, which produces monosynaptic excitatory input, and disynaptic inhibition

from TRN cells. [66] Similar to spindles, the delta oscillation is thought to promote

synaptic plasticity. [49]

1.3 The slow (0.1-1Hz) oscillation as a biomarker

of unconsciousness

In this section we discuss literature which has studied how the slow oscillation appears

as a biomarker of unconsciousness. Steriade et al. [65] conducted experiments in cats,
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recording intracellularly from reticular thalamic neurons. The cats were anesthetized

with urethane, ketamine-xylazine or ketamine-nitrous oxide. The slow oscillation

was found in 65% of recorded cells. Action potential spiked were fired during the

depolarizing envelopes of the slow oscillation. As the cellular membrane voltage

became more hyperpolarized, the frequency of neuronal spiking was reduced and the

slow oscillation amplitude increased.

Chauvette et el. [19] experimentally compared the slow oscillation in cats under

sleep and ketamine-xylazine anesthesia. They measured field potentials, extracellular

unit recordings and intracellular activities of cortical neurons in the cats, recording

from a large number of cortical areas including suprasylvian gyrus (associative cor-

tex), ectosylvian gyrus (auditory cortex), postcruciate gyrus (somatosensory cortex),

precruciate gyrus (motor cortex), posterior marginal gyrus (primary visual cortex)

and frontal gyrus medial prefrontal cortex). They found that the slow oscillation

groups neuronal firing, and is larger in amplitude and more periodic under ketamine-

xylazine anesthesia than during sleep. Specifically, neuronal firing was grouped by

the depth-negative phase of the local field potential (LFP). (The depth-negative volt-

age was defined relative to a reference electrode placed between the skull and the

temporal muscle). Secondly, they found that slow oscillations become present in

more cortical areas under ketamine-xylazine anesthesia than during sleep. In slow-

wave sleep, the slow oscillation was most prominent in the suprasylvian gyrus. It

occurred at irregular intervals and did not occur regularly in all locations. On the

other hand, under ketamine-xylazine anesthesia, the slow oscillation was prominent

across all recording locations and was highly periodic. Thirdly, from the intracellular

recordings, they determined that silent states are prolonged under ketamine-xylazine

anesthesia as compared to during sleep. The duration of silent states in several areas

and in all areas when pooled together was significantly longer under anesthesia than

during sleep. The ratio of time spent in the silent state to the total time of recording

was also significantly higher under anesthesia than during sleep. When all recordings

were pooled together, the amplitude of slow oscillations throughout the cortex was

significantly larger under anesthesia than during sleep, although when individual re-
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gions were compared, the slow amplitude was significantly higher under anesthesia

only in the somatosensory cortex. Overall, the results suggest that slow oscillations

increase in amplitude and become more widespread across the cortex as depth of

unconsciousness increases. Within each cortical area, the slow oscillation exhibits

greater coherence and periodicity in ketamine-xylazine anesthesia than during sleep.

A study by Lewis et al. [42] identified the slow oscillation in intracranial record-

ings from epilepsy patients undergoing propofol anesthesia. A microelectrode array

in the temporal cortex was used to record LFPs and single units. The slow oscillation

appeared at loss of consciousness (LOC) and remained throughout unconsciousness.

After LOC, spikes became phase-coupled to the local slow oscillations. The synchrony

between slow oscillations across regions in space, as measured by the phase-locking

factor, decreased during propofol anesthesia. This signalled a fragmentation of func-

tional connectivity between cortical areas.

1.3.1 Propofol vs dexmedetomidine

There have been few studies comparing EEG activity during propofol anesthesia

versus dexmedetomidine sedation in humans. Kasuya et al. [39] compared the BIS

index during propofol sedation with the BIS index during dexmedetomidine sedation,

but the BIS index omits many important features of the EEG which become evident

with spectral analysis. Heard et al. [35] compared the pharmacodynamic responses

of children anesthetized with propofol or dexmedetomidine-midazolam, but did not

study the changes in their brain states as measurable by EEG.

1.3.2 Propofol vs sleep

While there are numerous studies on propofol and numerous studies on sleep, few

have drawn rigorous comparisons between the two using full-head EEG studies and

frequency-domain analysis techniques. Murphy et al. [48] conducted 256-electrode

EEG studies of subjects undergoing propofol anesthesia as well as during natural

sleep. However, they treated propofol-induced unconsciousness as a single state, and
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NREM sleep as a single state. It is known that NREM2 sleep differs from NREM3

sleep in that sleep spindles occur during NREM2 sleep but not during NREM3 sleep,

and NREM3 sleep is thought to be a deeper state of unconsciousness than NREM2

sleep. Furthermore, Purdon et al. [54] identified via a phase-amplitude modulation

analysis two distinct states of unconsciousness under propofol anesthesia – trough-

max, a lighter state of unconsciousness that appears during loss and recovery of con-

sciousness, and peakmax, a deeper state of unconsciousness that persists throughout

deep unconsciousness. Thus, we investigate in detail the different states of uncon-

sciousness that occur during propofol anesthesia and natural sleep. Our analyses

of propofol-induced unconsciousness separately consider the troughmax state dur-

ing loss of consciousness, the peakmax state during deep unconsciousness, and the

troughmax state during recovery of consciousness. Our analyses of sleep separately

examine NREM2 sleep and NREM3 sleep.

1.3.3 Dexmedetomidine vs sleep

Huupponen et al. [37] compared time-domain spindle activity during dexmedetomi-

dine sedation and natural sleep, but time-domain plots do not reveal the structure

of EEG activity as clearly as frequency-domain analyses do. Furthermore, the study

was carried out using a single-channel EEG recorded from the forehead, and thus

did not capture the global properties of dexmedetomidine sedation and natural sleep.

We extend their work by carrying out frequency-domain comparisons between data

recorded from the entire scalp during dexmedetomidine sedation and natural sleep.

1.4 Innovation and significance

In this thesis, we present the first three-way comparison between propofol anesthe-

sia, dexmedetomidine sedation, and sleep, using data recorded from healthy volun-

teers using the same 64-electrode EEG cap system. Our hypothesis is that sleep,

dexmedetomidine sedation and propofol anesthesia place the brain in states which

lie on a spectrum of depth of unconsciousness. We use spectral analysis and source
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localization to make quantitative comparisons between the states of unconsciousness.

We use canonical coherence analysis at specific frequencies of interest to elucidate the

changes in cortical functional connectivity during propofol anesthesia, dexmedetomi-

dine sedation and natural sleep. We also conduct the first quantitative analysis of

how source localization biases the computation of canonical coherence. Finally, we

develop a novel source localization method based on a state-space model of neural

oscillations which outperforms the standard minimum norm estimate (MNE) source

localization technique at spatially localizing neural oscillations. We validate our lo-

calization method in simulations and apply it to the EEG data.

Clinical relevance

Current clinical standards for measuring the level of unconsciousness during surgical

anesthesia include tests of behavioural responsiveness, checks for brainstem reflexes

such as the oculocephalic reflex, and the BIS index. None of these measures provide

a rigorous quantification of the depth of unconsciousness. For instance, the BIS in-

dex, which is a single number extracted from multiple features of the EEG signal,

tends to reflect that young children and elderly patients are not deeply unconscious

even when their EEG spectrograms suggest the contrary [22, 3, 55]. This can re-

sult in the over-administration of anesthetic drugs, which may lead to temporary

cognitive impairments after surgery. We will conduct a precise quantitative charac-

terization of the EEG signatures of propofol-mediated general anesthesia, sedation

under dexmedetomidine, and natural sleep. These results will aid in the development

of robust metrics of unconsciousness which could be used to ensure that anesthetics

and sedatives are administered in appropriate amounts to achieve precise states of

unconsciousness ranging from sedation to surgical general anesthesia.

Methodological importance of source localization to neuroscience

While many analyses in the field have examined functional connectivity in the context

of coherence between pairs of EEG sensors, connectivity between functional regions in

the brain itself is a more fundamental quantity of interest. Source localization allows
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for neural activity to be inferred non-invasively based on EEG sensor recordings,

enhancing our ability to draw scientific conclusions about the brain when invasive

recording is not possible. In this thesis, we demonstrate that the standard MNE

source localization technique is insufficient to accurately recover the spatial locations

of cortical oscillations. We present a source localization method based on a state-

space oscillator model that outperforms MNE. We hope that our method will help

to improve the ability of the neuroscience community to probe cortical activity using

non-invasive scalp recordings, unlocking a deeper understanding of the brain which

was not possible before.

1.5 Thesis overview

In Chapter 2 we present the propofol, dexmedetomidine and sleep datasets. We

define 5 conditions of interest corresponding to various depths of unconsciousness:

troughmax and peakmax in propofol, sedation in dexmedetomidine, and NREM2 and

NREM3 in sleep. We show our results for scalp-level frequency-domain quantification

of the slow oscillation power in EEG sensor space. We introduce minimum norm

estimate (MNE) source localization, and apply it to the sensor-space data to arrive

at the spatial distribution of slow oscillation power on the cortex.

In Chapter 3 we introduce canonical coherence analysis, the frequency-domain

analogue of canonical correlation analysis. We apply canonical coherence analysis

to the source-localized data to examine the functional connectivity within and be-

tween two resting state networks of interest – the default mode network (DMN) and

salience network (Sal) – under the 5 conditions of interest. We show that slow-band

functional connectivity in these networks decreases with increasing depth of uncon-

sciousness. We show that MNE spreads out the source estimate all over the cortex,

resulting in spurious canonical coherence that prevents us from accurately estimating

the functional connectivity. We explore the possibilities of removing the spurious

coherence analytically and numerically, and show that its removal is intractable.

In Chapter 4 we introduce a state-space oscillator model for source localization,
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which we refer to as the oscillator-EM (expectation maximization) source localization

method. We test the oscillator-EM method in simulations and show that it outper-

forms MNE in terms of accuracy at reconstructing the spatial location of a simulated

oscillation. We apply the oscillator-EM method to the real data and recalculate

the canonical coherence in the DMN and Sal networks. Under oscillator-EM, the

coherence decreases rather than increases with increasing depth of unconsciousness,

contrary to expectations and opposite to the results under MNE. We discuss possible

reasons for this difference in the results.

In Chapter 5 we conclude with a summary of the thesis and discuss future direc-

tions for this work.
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Chapter 2

Slow oscillation power and spatial

distribution in sensor and source

space

2.1 Propofol, dexmedetomidine and sleep datasets

2.1.1 Propofol dataset

The propofol dataset used consists of data from 10 healthy volunteers between 18

and 36 years of age. The subjects were American Society of Anesthesiology Phys-

ical Status I with Mallampati Class I airway anatomy. During the study, subjects

breathed 30% oxygen by volume. Each subject’s heart rate was monitored with an

electrocardiogram. Their oxygen saturation was measured through pulse oximetry,

respiration and expired carbon dioxide with capnography, and blood pressure through

an arterial line. The arterial line was also used for blood sampling. To ensure subject

safety, at least three anesthesiologists were present at each study: one was responsible

solely for the medical management of the subject during the study, the second con-

trolled the propofol administration, and the third performed blood sampling. When

a subject became apneic, the first anesthesiologist assisted breathing with bag/mask

ventilation. A phenylephrine infusion was used to maintain mean arterial pressure
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above a patient-specific level determined from the subject’s baseline measurements.

[54]

Propofol target effect-site concentrations of 0, 1, 2, 3, 4, and 5 µg/mL were

achieved using a computer-controlled infusion. Each concentration level was main-

tained for 14 min. CLOR was the target effect-site concentration at which the subject

stopped responding to the button press stimulus. Emergence was achieved by low-

ering the target effect-site concentrations to CLOR = 0.5µg/mL, CLOR = 1.0µg/mL,

CLOR = 1.5µg/mL, and CLOR = 0µg/mL, for 14 min each. Structural MRI (Siemens

Trio 3 Tesla, T1-weighted magnetization-prepared rapid gradient echo, 1.3-mm slice

thickness, 1.3 × 1 mm in-plane resolution, TR/TE = 2530/3.3 ms, 7deg flip angle)

and digitized scalp electrode positions (Polhemus FASTRACK 3D) were acquired for

each subject prior to each study. [54]

EEGs were recorded using a 64-channel BrainVision Magnetic Resonance Imaging

Plus system (Brain Products, Munich, Germany) with a sampling rate of 5000 Hz,

resolution 0.5 µV least significant bit (LSB), bandwidth 0.016-1000 Hz. [54]

Subjects were instructed to close their eyes throughout the study. They were

tasked to respond to auditory stimuli by button presses to assess their level of con-

scious behavior. The stimuli consisted of either a verbal stimulus or an auditory click

and were presented every 4s in a repeating sequence of click-click verbal-click-click,

with a total of 210 stimuli per target effect-site concentration level. Verbal stimuli

consisted either of the subject’s name or a word, randomized with an equal number

of name or word stimuli at each level. Subjects were instructed to press one button if

they heard their name and to press the other button if they heard any other stimulus.

Button-press stimuli were recorded using a custom-built computer mouse which was

strapped to the subject’s hand. [54]

2.1.2 Dexmedetomidine dataset

The dexmedetomidine dataset used consists of data from 10 healthy volunteers be-

tween 18 and 36 years of age. All subjects provided informed consent and were

American Society of Anesthesiology physical status I with Mallampati class I airway
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anatomy. [4]

A 1 µg/kg loading bolus of dexmedetomidine was administered over 10 min, fol-

lowed by a 0.7 µg/kg/h infusion for 50 min. During the study, subjects breathed

21% oxygen by volume. Each subject’s heart rate was monitored with an electrocar-

diogram. Their oxygen saturation was measured through pulse oximetry, respiration

and expired carbon dioxide through capnography, and blood pressure through a blood

pressure cuff. [4]

During induction and emergence, EEGs were recorded using the same 64-channel

BrainVision Magnetic Resonance Imaging Plus system (Brain Products, Munich, Ger-

many) at a sampling rate of 1000 Hz, resolution 0.5 µV least significant bit, and band-

width 0.016 to 1000 Hz. The subjects were instructed to close their eyes throughout

the study. [4]

The subjects were presented with auditory stimuli during the study and asked to

respond by button presses to assess their level of conscious behavior. The stimuli

consisted of the subject’s name presented every 2 min. Button-press stimuli were

recorded using a custom-built computer mouse which was strapped to the subject’s

hand. [4]

2.1.3 Sleep dataset

The sleep dataset used consists of data from 10 healthy volunteers between 19 and

32 years of age. The subjects spent two consecutive nights sleeping in the sleep

laboratory. Subjects were screened to ensure that they had regular sleep schedules

and no histories of sleep disorders, psychiatric problems, neurological disease, tobacco

or drug use. One night of home monitoring was performed before the study to exclude

subjects with obstructive sleep apnea (using a threshold of AHI<5 and RDI<15)

(WatchPAT, Itamar Medical). [53]

EEGs were recorded using the same 64-channel BrainVision MRI Plus system

(Brain Products) with a sampling rate of 5000 Hz, resolution 0.5 µV least significant

bit (LSB), bandwidth 0.016–1000 Hz. In addition to the EEG cap, the subjects wore

standard clinical PSG sensors including PTAF, airflow, abdominal belt, and eye, chin,
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and limb electrodes. EMG data were bandpass filtered between 10 and 70 Hz with the

addition of a notch filter at 60 Hz. Airflow and abdominal belt data were bandpass

filtered between 0.1 and 12 Hz. EEG and DC channel data were unfiltered. [53]

2.2 Conditions of interest: 5 distinct states of un-

consciousness

Under propofol general anesthesia, we analyze two distinct states of unconsciousness.

The first state, “peakmax”, corresponds to surgical general anesthesia, during which

a subject cannot be roused by external stimuli. This state is termed peakmax because

during this state, the maximum alpha oscillation amplitude occurs at the peaks of the

slow oscillation [54]. The second state, “troughmax”, corresponds to induction and

emergence from general anesthesia, and is a lighter state of unconsciousness during

which the subjects were able to respond intermittently to the auditory stimuli by

button-pressing. During troughmax, the maximum alpha amplitude occurs at the

troughs of the slow oscillation [54].

Since our dexmedetomidine dataset comprises sedation at a fixed dose of dexmedeto-

midine, a single state of unconsciousness is produced. We refer to this state as ”se-

dation”.

From our sleep dataset, we analyze NREM2 and NREM3 sleep, which are the

deepest stages of sleep. These stages were chosen so as to compare the deepest stages

of sleep with general anesthesia, which is intuitively thought of as a deeper state

of unconsciousness than sleep, and with sedation, which has been shown to mimic

NREM2 or NREM3 sleep depending on the dose concentration of the sedative [37].
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2.3 Slow oscillations in EEG sensor space

2.3.1 Data cleaning: Removal of bad and bridged channels

For each subject, bad channels and electrically bridged channels were identified and

excluded from the analyses. Bad channels were identified by visual inspection of the

EEG timeseries and spectrograms.

Electrical bridging occurs when EEG electrode gel oozes between electrodes and

forms an electrical contact. This results in two or more electrodes having almost

identical electrical signals. We chose to remove bridged electrodes from the analyses

because the actual spatial location of the source of the bridged signal is unclear.

To determine which channels were electrically bridged, we used “eBridge”, a tool

implemented in Matlab for detecting bridged electrodes. [6] The tool identifies bridged

electrodes by calculating electrical distance (ED) between pairs of electrodes:

Pi−j(t) = Pi(t)− Pj(t) (2.1)

EDij =
1

T

T∑
t=1

(Pi−j(t)− Pi−j(t))2 (2.2)

where Pi−j(t) is the voltage difference between electrode i and electrode j at time t.

This calculation is done over all the data epochs. If a pair of channels is bridged, the

plot of number of epochs versus electrical distance for the pair of channels will show

both a local peak (LP) and a local minimum (LM). The tool searches for an LP with

ED ≤ 3 and an LM with ED ≤ 5. The two channels are marked as bridged if their

ED in 50% or more of the epochs falls below or at the ED corresponding to the LM.

[5]

For each of the 5 states of unconsciousness – NREM2, NREM3, sedation, trough-

max and peakmax – the bad and bridged channels for each subject were plotted

topographically on the scalp. To obtain accurate estimates of the spatial distribution

of power over the whole head and to obtain accurate source localization results, sub-

jects with a large number of bad/bridged channels (approximately 10 or more) or with

large regions of adjacent bad/bridged channels were excluded from the analysis. The
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latter occurred most frequently at the back of the head in the sleep and dexmedeto-

midine subjects, consistent with the fact that under lighter states of unconsciousness,

subjects were more likely to move and thus cause electrical bridging.

After excluding subjects with a large number of bad/bridged channels, a total

of 3 subjects for NREM2, 5 subjects for NREM3, 6 subjects for dexmedetomidine

sedation, 7 subjects for troughmax, and 9 subjects for peakmax were used in the

analyses.

2.3.2 Multitaper spectral analysis

The data from each subject was downsampled to 250Hz. Multitaper spectral analysis

was used to estimate power spectra [8]. The multitaper method applies a series of

orthogonal tapers to each window of data to reduce the variance and bias of the spec-

tral estimates. These tapers are known as the discrete prolate spheroidal sequences

(DPSS).

We used 4s non-overlapping windows. The number of tapers to be used can be

calculated from the time half-bandwidth product NW , which is a function of the

desired spectral resolution:

NW = N
∆f/2

Fs
(2.3)

K = 2×NW − 1 (2.4)

where N is the length of the data window in samples, W = ∆f/2
Fs

is the half-bandwidth,

∆f is the desired spectral resolution in Hz, Fs is the sampling frequency in Hz, and K

is the number of tapers. We chose a spectral resolution of 1Hz, and correspondingly

used 3 DPSS tapers. The results were averaged across all 64 EEG channels for all

subjects in each of the 5 conditions of interest.
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2.3.3 Results: Slow oscillation power and spatial distribution

in EEG sensor space

The average power spectra and average total slow band power are shown in figure

2-1. The slow band power is the greatest in peakmax, intermediate in NREM3 and

troughmax, and smallest in NREM2 and dexmedetomidine (dex) sedation. Thus,

higher slow band power is associated with deeper states of unconsciousness. The

power spectra of each condition show two main frequency bands of oscillations: the

slow-delta in the <4Hz range and the alpha/spindles in the 7-16Hz range.

(a) (b)

Figure 2-1: Power spectral analysis of each condition of interest (dexmedetomidine,
NREM2, NREM3, Propofol troughmax, Propofol peakmax) performed on 2 min of
4s non-overlapping data windows using multitaper spectral analysis (3 tapers, 1Hz
spectral resolution). (a) Average power spectra for each of the 5 conditions. (b)
Average slow band power in each condition. Higher slow band power correlates with
deeper states of unconsciousness.

The spatial distribution of the slow oscillation in EEG sensor space is shown

in figure 2-2. For this analysis, the power in the 0.1-1Hz range was selected from

the multitaper results, averaged across all subjects and all channels, and plotted

topographically on the scalp. The plots are scaled such that all plots from each drug

type have the same scale. Within each drug type, slow oscillation power at most

spatial locations on the scalp increases with increasing depth of unconsciousness.

The maximum slow oscillation power is around 12dB for sleep NREM3, whereas in
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propofol peakmax it is around 20dB, consistent with the fact that peakmax is a

deeper state of unconsciousness than NREM3. Thus, average slow oscillation power

increases across the whole scalp as depth of unconsciousness increases. The slow power

magnitude and distribution under dexmedetomidine sedation resembles NREM2 sleep

more closely than NREM3 sleep, possibly indicating that the depth of unconsciousness

under dexmedetomidine sedation at this dosage is similar to NREM2 sleep.

While these scalp-level results provide a general overview of the spatial differences

in slow power during different states of unconsciousness, an understanding of changes

in the brain itself is necessary to make deeper statements about how activity in the

various brain regions changes in the different states of unconsciousness. Therefore,

we next sought to estimate slow oscillation activity on the cortical surface via source

localization.

2.4 Slow oscillations in source space

2.4.1 Overview of source localization techniques

“Source localization” is a term used to describe methods for estimating electrical

activity in the brain based on EEG activity measured at the scalp. Two main ap-

proaches to source localization exist. The first is to look for a small number of

equivalent dipoles which represent a handful of brain regions thought to contribute to

the EEG activity. This approach is appropriate when only a small number of active

sources is expected, for instance in the case of a stimulus-evoked potential. A number

of dipole fitting algorithms fall into this category. The second approach is to assume

that dipoles could be present at all possible locations on the cortex, and localize ac-

tivity to the entire grid of dipoles. This dipole grid is called the source space. The

grid-based approach is appropriate when source activity is anticipated to be spread

out over the brain. Examples of grid-based approaches include beamforming, spatial

scans, and maximum a posteriori (MAP) Bayesian algorithms. Sparse priors such as

the Laplacian prior can be used to model distributed but sparse source activity. [56]
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We first focus on minimum norm estimate (MNE) source localization, which is an

MAP approach that tends to produce distributed source activity. We chose this ap-

proach because the slow oscillation is known to be a widespread cortical phenomenon,

and because our initial EEG-space analyses indeed showed that the slow oscillation is

distributed across the scalp as depth of unconsciousness increased in the 5 conditions

of interest.

2.4.2 MNE source localization

We begin by constructing a mesh of current dipoles distributed at regular spacings

across the cortical surface. We call these current dipoles “sources”. In our study, we

used an ico-3 parcellation of the cortex, which assumes a current dipole mesh that

contains a total of 1280 sources. Our data was recorded using a 64-electrode EEG

cap, so we had measurements from 64 sensors on the scalp. The sensor activity y(t)

is related to the true source activity xtrue(t) by

y(t) = Gxtrue(t) + η. (2.5)

G is the forward operator or gain matrix which captures the physics of the problem.

The forward model is calculated based on MRI scans of the subject’s head anatomy. η

is the noise in the measurement. Note that xtrue(t) has dimensions nsources×nsamples,

G has dimensions nsensors×nsources, and y(t) and η have dimensions nsensors×nsamples.

Our task is to solve for x(t) given our measurements of y(t).

We divided the data into epochs of length 4s each. Let y(t) be the EEG sensor

data in each epoch. We assume that the process is stationary in each epoch, so

y(t) ∼ N(µ, σ2).

The source-space activity is recovered from the sensor-space data by solving the

inverse problem. Let x(t) be the reconstructed source-space data in an epoch. Then

x(t) = My(t) (2.6)
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whereM is the inverse operator. x(t) is normally distributed as x(t) ∼ N(Mµ,M2σ2).

In the minimum-norm estimate (MNE) method, a unique solution for the inverse

problem is found by minimizing the L2 norm of the vector of source estimates:

x̂ = argmin
x

(||y −Gx||2C−1 + ||x||2R−1), (2.7)

where the matrix norm is defined as

||x||2A−1 = xTA−1x. (2.8)

The MNE inverse operator can be solved for analytically by matrix differentiation,

and is given by

M = RGT (GRGT + C)−1, (2.9)

where C is the noise-covariance matrix and R is the source-covariance matrix. C

captures the covariance between EEG sensors whileR captures the covariance between

sources in source space. In the MNE setup, C and R are diagonal.

2.4.3 Multitaper spectral analysis in source space

We then performed multitaper spectral analysis on the source-space data epochs. In

accordance with the multitaper method, the source-space data x̂ in each 4s epoch is

first tapered with the first three DPSS tapers S (m), where m = 1, 2, 3, to achieve a

spectral resolution of 1Hz.

Denote the tapered source-space data by

x(m)(t) = x(t)S (m) for m=1,2,3. (2.10)

The tapered data is then Fourier-transformed into the frequency domain:

X(m)(f) = x(m)(t)F . (2.11)
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Note that the time-domain transforms, S (m) and F , are applied on the right of x(t)

because the timeseries are the rows of x(t), not the columns. x(t) has dimensions

nsources × nsamples.

The average of the tapered data then gives the source-space power spectral density,

X(f) =
1

3

3∑
m=1

X(m)(f). (2.12)

2.4.4 Results: Slow oscillation spatial distribution in source

space

All the analyses involving MNE source localization make use of the MNE software

toolbox [25] developed by the MGH Athinoula A. Martinos Center for Biomedical

Imaging. For each subject in each of the 5 conditions, MNE source localization was

performed in each epoch to obtain time-domain source estimates. The power spectral

density in the slow band (0.1-1Hz) was estimated using multitaper spectral analysis

on the time-domain source estimates. An average subject brain for each condition was

constructed using the built-in morphing functions in the MNE toolbox. This average

brain is an anatomical average of each subject’s brain. The source-space timeseries

data for each subject, each epoch was morphed onto the average subject brain using

the morphing functions in the MNE toolbox. The average of the power estimates from

all epochs on the average subject brain was computed, giving the overall average slow

band power in source space. The source-space spatial distribution of the average slow

band power in each of the 5 conditions is shown in figures 2-3, 2-4 and 2-5.

The slow power spectral density is spread over the cortex. For propofol and sleep,

there is some concentration of slow power in the anterior and posterior regions. For

dexmedetomidine, the slow power density shows some concentration in the posterior

regions. This analysis suggests that slow oscillations induced by propofol, dexmedeto-

midine and sleep are present throughout the cortex and could alter the functional state

and functional connectivity between cortical areas.

We next sought to explore how functional connectivity in the slow band changes
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under the different states of unconsciousness. In chapter 3, we make use of the

MNE source localization results to estimate slow-band functional connectivity be-

tween brain regions of interest in the source space.
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Figure 2-2: Spatial distribution of average slow band (0.1-1Hz) power in EEG sensor
space, Laplacian-referenced. The power spectral density was estimated using mul-
titaper spectral analysis on 2mins of 4s non-overlapping data windows (3 tapers,
spectral resolution 1Hz). The slow power is broadly distributed across the scalp.
Slow power increases across the whole scalp as the depth of unconsciousness increases
(from NREM2 to NREM3; from troughmax to peakmax). The slow power magni-
tude and distribution under dexmedetomidine sedation resembles NREM2 sleep more
closely than NREM3 sleep, possibly indicating that the depth of unconsciousness un-
der dexmedetomidine sedation at this dosage is similar to NREM2 sleep.
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(a) Propofol baseline

(b) Propofol troughmax

(c) Propofol peakmax

Figure 2-3: Average slow band power spectral density in source space for the propofol
subjects. The power spectral density was estimated by performing source localiza-
tion on the EEG data, then using multitaper spectral analysis (4s non-overlapping
windows, 3 tapers, spectral resolution 1Hz) on the source-space timeseries data. For
each condition of interest, the spectral estimates for each subject were morphed onto
the average brain anatomy for the subjects in that condition. The average slow-band
power spectral density was calculated from the morphed source estimates. The slow
power density is distributed across the cortex, with some concentration in the anterior
and posterior regions. This analysis suggests that propofol-induced slow oscillations
are present throughout the cortex and could alter the functional state and functional
connectivity between cortical areas.
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(a) Sleep baseline

(b) Sleep NREM2

(c) Sleep NREM3

Figure 2-4: Average slow band power spectral density in source space for the sleep
subjects. The power spectral density was estimated by performing source localiza-
tion on the EEG data, then using multitaper spectral analysis (4s non-overlapping
windows, 3 tapers, spectral resolution 1Hz) on the source-space timeseries data. For
each condition of interest, the spectral estimates for each subject were morphed onto
the average brain anatomy for the subjects in that condition. The average slow-
band spectral density was calculated from the morphed source estimates. The slow
power density is distributed across the cortex, with some concentration in the anterior
and posterior regions. This analysis suggests that sleep slow oscillations are present
throughout the cortex and could alter the functional state and functional connectivity
between cortical areas.
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(a) Dexmedetomidine baseline

(b) Dexmedetomidine sedation

Figure 2-5: Average slow band power spectral density in source space for the
dexmedetomidine subjects. The power spectral density was estimated by performing
source localization on the EEG data, then using multitaper spectral analysis (4s non-
overlapping windows, 3 tapers, spectral resolution 1Hz) on the source-space timeseries
data. For each condition of interest, the spectral estimates for each subject were mor-
phed onto the average brain anatomy for the subjects in that condition. The average
slow-band spectral density was calculated from the morphed source estimates. The
slow power density is distributed across the cortex, with some concentration in the
posterior regions. This analysis suggests that dexmedetomidine slow oscillations are
present throughout the cortex and could alter the functional state and functional
connectivity between cortical areas.
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Chapter 3

Source space functional

connectivity in resting-state

networks

3.1 Resting-state networks of interest

Resting-state networks refer to functionally connected brain regions which become

active when subjects are not engaged in any particular focused task. Functionally

connected regions are regions whose neural activity is coherent. In studies of resting

state networks, subjects are typically not assigned any task, but are simply asked to

fixate on a cross and remain still, or remain still with their eyes closed. Their neural

activity is recorded using fMRI or EEG. fMRI tracks low-frequency BOLD (blood-

oxygen level-dependent) signals, while EEG tracks voltages on the scalp, but both

types of signals are related to the local field potential. There are two main approaches

to analyzing the resting state data. The first is the ROI-based approach, in which neu-

ral activity is analyzed in predefined regions of interest. The second is the independent

components analysis (ICA) approach, which separates out statistically independent

non-Gaussian components of the signal without any prior hypothesis on where regions

of interest may be located. Both ROI-based approaches and ICA have been shown to
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identify similar resting-state functional networks, indicating that the presence of rest-

ing state networks is a robust phenomenon. The most commonly-identified resting

state networks include the default mode network (DMN), the sensorimotor network,

the executive control network, the mesial visual network, the lateral fronto-parietal

network, the temporo-parietal network, and the auditory network. [58] Studies have

also identified a salience network distinct from the executive control network. [60]

The default mode network (DMN) is arguably the most extensively studied net-

work. Activity within the default mode network increases when the subject is idle or

resting, and decreases when the subject is performing cognitively-demanding tasks,

such as tasks involving visuo-spatial reasoning or working memory. [58] Anatomical

regions involved in the default mode network include the precuneus and posterior

cingulate, the lateral parietal cortex, and the mesial prefrontal cortex. Implicated in

introspection and awareness, the densely interconnected precuneus/posterior cingu-

late node is hypothesized to be a center connecting the various parts of the DMN.

[16, 17, 33]

Another pair of DMN regions, studied by Buckner et al., consists of the medial

temporal hippocampal formation and the dorso-medial prefrontal cortex (dMPFC).

The medial temporal hippocampal formation comprises 1) the entorhinal cortex,

which plays a role in declarative memories, and 2) the parahippocampal cortex, which

is involved in memory encoding and retrieval. These hippocampal regions could play

a role in accessing memories which are invoked when conducting mental simulations.

The dMPFC is involved in constructing theory of mind. It is hypothesized that the

role of the hippocampal formation in default mode activity is to access past experi-

ences, which are then used as analogies to predict future events. The dMPFC region

is not functionally correlated with the hippocampal formation, but the two regions are

anatomically connected to the posterior cingulate cortex (PCC). Therefore, it is pos-

sible that the dMPFC interacts with the hippocampal formation via the PCC when

prior episodic memories are being incorporated into mental simulation.[16] Greicius

et al. also identified the PCC as part of the DMN, implicating it in episodic retrieval.

[31] In a follow-up paper, they demonstrated structural connectivity between PCC
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and MPFC and PCC and medial temporal lobe using diffusion tensor imaging (DTI),

thus providing a structural explanation for the function connectivity between those

regions. [32]

Opposite to the DMN, the salience network identified by Seeley et al. is activated

during cognitively effortful tasks. The salience network includes the dorsal anterior

cingulate cortex (dACC) and orbital frontoinsular cortex (FI), and is connected to

subcortical and limbic structures. The frontoinsular cortex activates during working

memory tasks and is thought to be involved in interoceptive and autonomic process-

ing. The group found that the lateral and parietal prefrontal cortices were often

activated in tandem with the dACC and FI in tasks involving response selectivity,

working memory and attention. Furthermore, dACC and FI response has also been

observed during pain, uncertainty and other threat to homeostasis, indicating that

these regions may respond to personal salience in addition to the demands of cognitive

tasks. [60] For the purposes of our study, this makes the salience network an interest-

ing network to study during different states of unconsciousness, since responsiveness

to pain and external stimuli diminishes with deeper unconsciousness.

A study by Boveroux et al. showed that resting state network connectivity breaks

down under propofol. In their study, subjects were tasked to make keyboard presses

in response to beep sounds, and their level of consciousness was assessed by the Ram-

say scale. Subjects were considered awake if they scored 2 on the Ramsay scale (clear,

strong response to verbal command). They were dosed with propofol, either to induce

mild sedation (Ramsay score of 3: Clear but slow response to a verbal instruction to

squeeze the experimenter’s hand) or to induce deeper unconsciousness (Ramsay score

of 5 to 6: No response to verbal commands). It was found that connectivity in the

default mode and executive networks decreased during mild sedation and decreased

further during deeper unconsciousness. Normal connectivity was restored when con-

sciousness was regained. On the other hand, connectivity within the auditory and

visual networks remained unchanged under both types of propofol dosing. There was

also no change in connectivity between primary visual and primary auditory cortex.

[13] On the other hand, another study by Greicius et al. found that DMN functional
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connectivity was preserved during midazolam sedation, except in the posterior cingu-

late cortex. [30] These results suggest that we should expect connectivity to decrease

in some resting state networks under sleep, dexmedetomidine sedation and propofol

anesthesia, but that the different resting state networks may be differentially affected

during these states of unconsciousness.

In our study, we chose to focus on the default mode network and the salience

network since their activity is correlated with two different types of processing –

introspection and mental simulation in the DMN, and response to salient stimuli in

the salience network.

3.2 Source-space canonical coherence analysis

After performing MNE source localization on the EEG data timeseries (Section 2.4.2)

and using the multitaper method to convert it into the frequency domain (Section

2.4.3), we performed canonical coherence analysis at the frequency of interest in

accordance with the method described in [61]. We used 3 DPSS tapers to obtain

independent estimates of the frequency-domain source activity. We chose 0.5Hz as

the frequency of interest since it is in the middle of the slow band.

Canonical coherence analysis is the frequency-domain analogue of canonical cor-

relation analysis. We will first explain the goal of canonical correlation analysis.[12]

Given two vector spaces, A and B, the first canonical correlation between A and B

is given by

ρ1 = cos(θ1) = max{a1 · b1 | a1 ∈ A, b1 ∈ B,

‖a1‖ = ‖b1‖ = 1}. (3.1)

The variable θ1 is known as the first principal angle. Geometrically, the first canonical

correlation (ie. the cosine of the first principal angle) is the correlation between a

maximally correlated pair of vectors, a and b, drawn from A and B respectively. The
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kth canonical correlation is given by

ρk = cos(θk) = max{ak · bk | ak ∈ A, bk ∈ B,

‖ak‖ = ‖bk‖ = 1,

ak · ai = bk · bi = 0, foralli ∈ {0, 1, . . . , k − 1}}.(3.2)

Thus, canonical correlation analysis finds a maximally correlated pair of vectors from

A and B, then finds the next most correlated pair which is orthogonal to the first

pair, and so forth.

For the purposes of our study, we apply the canonical correlation method to

the frequency-domain source-space activity X(f). For slow-band canonical coherence

analysis, we select f = 0.5Hz, the center of the slow band, as the frequency of interest.

Since X(f) are frequency-domain vectors, the analysis is termed canonical coherence

analysis instead of canonical correlation analysis, but the mathematics of the method

remain the same. Also note that X(f) are complex.

We seek to find the first canonical coherence between a pair of brain areas of

interest. For a given brain area i, the tapered data X
(m)
i (f), m=1,2,3 are treated as

independent estimates of the frequency-domain source activity. Thus, we concatenate

the tapered data in brain region i into a single (n × 1)-dimensional vector Xi(f).

Denote the pair of brain regions whose canonical coherence we are computing as i

and j respectively, with corresponding source activity Xi(f) and Xj(f).

The variablesXi(f) andXj(f) are complex random vectors. To understand canon-

ical coherence analysis, we invoke the vector interpretation of random variables. [50]

[27] In this vector interpretation, a zero-mean random variable A can be thought of as

a vector with length σA. The correlation (coherence, in frequency domain) between

two zero-mean random variables can be thought of as the cosine of the angle between

them. The expectation operator, E, is the analogue of the dot product between vec-

tors. Thus, the vector space A from which we search for a1 is the span of the random

variables which are the elements of the random vector Xi(f). Likewise, we search for

b1 from the vector space B, where B is the span of the random variables in the random
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vector Xj(f). The span of the elements of Xi(f) is defined as the linear combination

a =
n∑
k=1

α∗kX
(k)
i (f) where X

(k)
i (f) is the kth element of Xi(f). This can be expressed

in vector notation as a = α† ·Xi(f). Likewise, the span of the elements of Xj(f) is

b =
m∑
k=1

β∗kX
(k)
j (f) = β† · Xj(f), where m is the dimensionality of Xj(f). Thus, for

these random vectors, the first canonical coherence is given by:

ρ1 = cos(θ1)

= max{a1 · b∗1 | a1 ∈ A, b1 ∈ B, (3.3)

‖a1‖ = ‖b1‖ = 1}

= max{E[a1b
∗
1] | a1 ∈ span(Xi(f)), b1 ∈ span(Xj(f)),

σa1 = σb1 = 1} (3.4)

Note that ρ1 can be interpreted as a coherence because ρ1 =
E[a1b∗1]

σa1σb1
since the variances

σa1 and σb1 are constrained to be 1.

We follow the approach developed in [62]. ρ1 can be expressed in terms of the

cross-spectral matrix:

ρ1 = max{E[α†Xi(f)Xj(f)†β] | a1 ∈ span(Xi(f)), b1 ∈ span(Xj(f)),

σa1 = σb1 = 1}

= max{α†SXiXj
(f)β | a1 ∈ span(Xi(f)), b1 ∈ span(Xj(f)),

σa1 = σb1 = 1} (3.5)

This can be solved by the method of Lagrange multipliers. For convenience, we define

u = SXiXi
(f)1/2α (3.6)

v = SXjXj
(f)1/2β. (3.7)

Then

α†SXiXj
(f)β = u†SXiXi

(f)−1/2SXiXj
(f)SXjXj

(f)−1/2v
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, u†JXiXj
(f)v. (3.8)

We seek to find ρ1. Since ρ1 can be complex, we modify the problem slightly and

instead maximize the magnitude of ρ1, ‖ρ1‖2 = ρ1ρ
∗
1. Thus, the Lagrange function is

Λ(ρ1, u, v) = ρ1ρ
∗
1 − λ1(u†u− 1)− λ2(v†v − 1). (3.9)

We take the gradient of Λ and set the gradient to zero to obtain the extrema of Λ.

The solution works out to be a singular value problem. The kth singular value of

JXiXj
(f) works out to be the kth canonical coherence, and uk and vk work out to be

the left and right singular vectors of JXiXj
(f) respectively:

ρk = u†kJXiXj
(f)vk

= u†kUΣV vk

= e†kΣek

= sk (3.10)

Therefore, the canonical coherence between a pair of brain regions i and j is computed

by calculating

JXiXj
(f) = SXiXi

(f)−1/2SXiXj
(f)SXjXj

(f)−1/2, (3.11)

calculating its singular value decomposition

JXiXj
(f) = UΣV †, (3.12)

and then taking the first singular value s1, which is equal to the first canonical co-

herence.

63



3.3 Results: Source-space canonical coherence be-

tween the Default Mode Network and Salience

Network in the slow band

With reference to the abovementioned literature on the brain regions comprising the

default mode network (DMN) and salience (Sal) network, we selected all the source-

space anatomical regions belonging to each network for this analysis. The sources in

each network are shown in figures 3-1 and 3-2. The DMN consists of the superior

frontal, rostal middle frontal, inferior parietal and middle temporal anatomical regions

in the Freesurfer [1] anatomical parcellation of the cortex. The Sal network comprises

the rostral and caudal anterior cingulate regions.

For each subject, we computed the canonical coherence at f = 0.5Hz (the middle

of the slow band) between every pair of regions within and between these two net-

works. The results are shown for one propofol, one sleep and one dexmedetomidine

subject in figures 3-3, 3-4 and 3-5 respectively. The results show that DMN-DMN,

DMN-Sal and Sal-Sal connectivity decrease more during peakmax than during trough-

max, sedation, NREM2 and NREM3, corresponding to the idea that disruption to

neural processing is greater under anesthesia than under sedation and sleep. At peak-

max, there has been a connectivity decrease in almost all DMN-DMN and Sal-Sal ROI

pairs, indicating a disruption to both internal and external processing. By contrast,

during NREM2 and NREM3 sleep and during dexmedetomidine sedation, Sal-Sal

connections show a clear decrease in coherence, but many DMN-DMN connections

maintain a coherence close to the baseline value. This correlates with the idea than

external processing (by the Sal) may be more disrupted than internal processing (by

the DMN) during sleep and sedation.

However, we note that the minimum coherence observed in all conditions is around

0.68, which is quite high. In the next sections, we show how this minimum coherence

is caused by the inaccuracies introduced by source localization.
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3.4 Source-space canonical coherence analysis ac-

counting for the effect of the resolution matrix

The standard canonical coherence analysis described in the previous section does not

account for the effect of source localization, which introduces spurious coherence be-

tween sources. The inverse solution does not reconstruct source activity with perfect

accuracy; instead, activity at each source location spreads to other source locations.

[36] The relationship between the true source activity xtrue and the reconstructed

source activity x is

x(t) = My(t) = MGxtrue(t) , Kxtrue(t) (3.13)

where K is the resolution matrix. K captures the amount of activity which is spread

from each source to the other source locations. K has dimensions nsources × nsources,

and x(t) and xtrue(t) have dimensions nsources × nsamples. In this section, we de-

rive source-space canonical coherence taking into account the effect of the resolution

matrix and show that it is intractable to analytically remove the influence of the

resolution matrix on the canonical coherence.

To apply canonical coherence analysis in source space, we seek a derivation of

canonical coherence which accounts for the spurious coherence introduced by the

resolution matrix. Let us begin by tapering and Fourier transforming x(t):

X(f) = Kxtrue(t)S
(m)F = KXtrue(f) (3.14)

Canonical coherence analysis is performed at a particular frequency of interest, so

choosing a particular f of interest, X(f) and Xtrue(f) have dimensions nsources by

(ntapers × nepochs). Let k = ntapers × nepochs.

Let a set of sources be called a “label”. Assume that we have two non-overlapping

labels of interest, label 1 and label 2, containing n1 and n2 sources respectively. Let

the vectors of true frequency-domain source activity in labels 1 and 2 be X
(1)
true(f) and
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X
(2)
true(f) respectively.

Label 1: x
(1)
true, n1 sources

Label 2: x
(2)
true, n2 sources

Let

Xtrue(f) =

X(1)
true(f)

X
(2)
true(f)


nsources×k

(3.15)

Then the resolution matrix acts on Xtrue(f) to produce the reconstructed source

activity, X(f), as follows:

X(f) = KXtrue(f)(X(1)(f))n1×k

(X(2)(f))n2×k

 =

(K11)n1×n1 (K12)n1×n2

(K21)n2×n1 (K22)n2×n2

(X
(1)
true(f))n1×k

(X
(2)
true(f))n2×k


=

K11X
(1)
true(f) +K12X

(2)
true(f)

K21X
(1)
true(f) +K22X

(2)
true(f)

 (3.16)

The first canonical coherence is given by

ρ1 = max{E[α†X(1)(f)X(2)(f)†β] | a1 ∈ span(X(1)(f)), b1 ∈ span(X(2)(f)),

σa1 = σb1 = 1} (3.17)

Thus, the quantity to maximize is

E
[
α†X(1)(f)X(2)(f)†β

]
= E

[
α†
(
K11X

(1)
true(f) +K12X

(2)
true(f)

)(
K21X

(1)
true(f) +K22X

(2)
true(f)

)†
β
]

= E
[
α†
(
K11X

(1)
true(f)X

(1)†
true(f)K†21 +K11X

(1)
true(f)X

(2)†
true(f)K†22+

K12X
(2)
true(f)X

(1)†
true(f)K†21 +K12X

(2)
true(f)X

(2)†
true(f)K†22

)
β
]

= α†
(
K11E

[
X

(1)
true(f)X

(1)†
true(f)

]
K†21+

K11E
[
X

(1)
true(f)X

(2)†
true(f)

]
K†22+
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K12E
[
X

(2)
true(f)X

(1)†
true(f)

]
K†21+

K12E
[
X

(2)
true(f)X

(2)†
true(f)

]
K†22

)
β

= α†
(
K11SX(1)

true(f)X
(1)
true(f)

K†21+

K11SX(1)
true(f)X

(2)
true(f)

K†22+

K12SX(2)
true(f)X

(1)
true(f)

K†21+

K12SX(2)
true(f)X

(2)
true(f)

K†22

)
β

, α†
(
K11S11K

†
21 +K11S12K

†
22 +K12S21K

†
21 +K12S22K

†
22

)
β

(3.18)

by a similar calculation, the constraint σa1 = 1 works out to be

E
[
α†X(1)(f)X(1)†(f)α

]
= α†

(
K11S11K

†
11 +K11S12K

†
12 +K12S21K

†
11 +K12S22K

†
12

)
α = 1

(3.19)

and the constraint σb1 = 1 is

E
[
β†X(2)(f)X(2)†(f)β

]
= β†

(
K21S11K

†
21 +K21S12K

†
22 +K22S21K

†
21 +K22S22K

†
22

)
β = 1

(3.20)

We will solve this by the method of Lagrange multipliers. The objective function

to maximize is

C(α, β) = α†(K11S11K
†
21 +K11S12K

†
22 +K12S21K

†
21 +K12S22K

†
22)β , α†Hβ (3.21)

with the constraints

α†
(
K11S11K

†
11 +K11S12K

†
12 +K12S21K

†
11 +K12S22K

†
12

)
α , α†Pα = 1 (3.22)

β†
(
K21S11K

†
21 +K21S12K

†
22 +K22S21K

†
21 +K22S22K

†
22

)
β , β†Qβ = 1 (3.23)
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Let

u = P 1/2α (3.24)

v = Q1/2β (3.25)

Assume that the inverses P−1/2 and Q−1/2 exist. In practice, these are numerically

computable in the Python numpy package. Then the constraints simplify to

α†Pα = u†u = 1 (3.26)

β†Qβ = v†v = 1 (3.27)

And the quantity to maximize becomes

C(u, v) = u†(P−1/2)†HQ−1/2v

= u†P−1/2HQ−1/2v (3.28)

, u†Fv (3.29)

where (3.28) follows from the fact that P † = P .

Since C is complex, we maximize CC∗.Thus, the Lagrange function is

Λ(u, v, λ1, λ2) = CC∗ − λ1(u†u− 1)− λ2(v†v − 1) (3.30)

The maximum of CC∗ is found by solving

∇uCC
∗ − λ1∇u(u

†u) = 0 (3.31)

∇vCC
∗ − λ2∇v(v

†v) = 0 (3.32)

We choose to differentiate with respect to u∗ and v∗, obtaining:

∂

∂u∗
CC∗ − λ1

∂

∂u∗
u†u = 0

C∗Fv − λ1u = 0 (3.33)
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∂

∂v∗
CC∗ − λ2

∂

∂v∗
v†v = 0

CF †u− λ2v = 0 (3.34)

(3.33) and (3.34) form a pair of simultaneous equations for u and v. To avoid trivial

solutions, we turn this into a singular value problem. From (3.34):

F †u =
λ2

C
v (3.35)

Multiplying (3.33) by F †, we obtain:

F †Fv =
λ1

C∗
F †u (3.36)

Substituting (3.35) in (3.36):

F †Fv =
λ1

C∗
λ2

C
v (3.37)

Similarly, from (3.33):

Fv =
λ1

C∗
u (3.38)

Multiplying (3.34) by F :

FF †u =
λ2

C
Fv (3.39)

Substituting (3.38) in (3.39):

FF †u =
λ1

C∗
λ2

C
u (3.40)

Thus, the Lagrange problem reduces to a singular value decomposition of F:

F †Fv =
λ1

C∗
λ2

C
v (3.41)
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FF †u =
λ1

C∗
λ2

C
u (3.42)

The kth canonical coherence is given by the kth singular value of F :

ρk = u†kFvk

= u†kUΣV †vk

= sk (3.43)

To summarize, the resolution matrix modifies the matrix whose singular value de-

composition gives the canonical coherences. The relevant matrix is now given by

F = P−1/2HQ−1/2 (3.44)

where

H = K11S11K
†
21 +K11S12K

†
22 +K12S21K

†
21 +K12S22K

†
22 (3.45)

P = K11S11K
†
11 +K11S12K

†
12 +K12S21K

†
11 +K12S22K

†
12 (3.46)

Q = K21S11K
†
21 +K21S12K

†
22 +K22S21K

†
21 +K22S22K

†
22 (3.47)

From the form of the H, P and Q matrices, we see that analytical removal of the

impact of the resolution matrix on the canonical coherence is intractable. In the next

section, we explore numerical simulations to determine whether there is a possibility

of numerically removing the spurious coherence.

3.5 Simulation: MNE causes spurious canonical

coherence

In this section, we use simulations to determine the amount of spurious canonical

coherence introduced by the MNE method. We show that removal of this spurious

coherence by numerical means such as thresholding or bootstrapping is not tractable.
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We defined 7 labels on the dorsal cortex for the simulations, as shown in figure

3-6. For each label, we simulated 200 4s epochs of a sine wave at 1 Hz in the label

and zero-mean Gaussian white noise elsewhere. The amplitude of the sine wave was

chosen to be 1 and the standard deviation of the white noise to be 0.3, corresponding

to a signal-to-noise ratio of about 3. Using the forward model computed by MNE,

the simulated activity was brought up to sensor space. We used an EEG electrode

montage from a Biosemi 64-EEG cap to simulate the sensor space data. The sensor-

space data was then inverted back onto the cortex using the MNE inverse solution.

Figure 3-7 shows the degree of spreading out of cortical source activity caused

by the MNE inverse solution. In this figure, the simulated activity was originally

confined to label 6. However, after MNE inversion, the cortical activity diminishes

greatly in amplitude and become spread out into other labels and over the whole

cortex.

To systematically investigate the effect of MNE on canonical coherence estima-

tion, we simulated a slow oscillation (1Hz) in each label in turn, with white noise in

all other labels (signal-to-noise ratio 3). The simulation duration was 60 4s epochs.

The canonical coherence between the label containing the simulation and all other

labels was calculated before (ground truth) and after MNE source localization. These

simulations were each repeated 20 times to obtain the median canonical coherence.

These simulations were conducted with a 64, 128 and 256-electrode EEG cap to de-

termine whether increasing the EEG electrode density improved canonical coherence

estimation. Increased electrode density corresponds to denser sampling on the scalp,

which might improve the spatial resolution of the source estimates.

The median canonical coherence between pairs of cortical labels before (ground

truth) and after MNE source localization with a 64, 128 and 256-electrode EEG cap

is displayed as the rows in each matrix in figure 3-8. The coherence after MNE

localization is much higher than the ground truth, and is high between pairs of labels

that should have low coherence. This is due to the tendency of MNE to spread the

solution out over the whole cortex. Recovery of the original location of the signal is

intractable even when the EEG electrode density is increased from 64 to 128 to 256
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electrodes.

In figure 3-9 we show the median canonical coherence with standard error bars for

simulations in two particular labels, labels 0 and 3. When the simulation was placed

in label 0, the coherence after MNE localization increased the most in the labels closer

to label 0 (labels 1, 2 and 3), and less in labels 4, 5 and 6. This is probably because

labels 4, 5 and 6 were further from label 0 and more shielded from the spreading of the

MNE result by the curved geometry of the brain. Increasing the number of electrodes

from 64 to 128 (or 256) brought the coherence closer to the ground truth in labels

4, 5 and 6, but did not appreciably improve the coherence estimation in labels 1, 2

and 3. When the simulation was placed in label 3, the coherence in all labels after

localization became high, making it difficult to tell which label contained the original

signal. The spurious coherence in label 0 was reduced as the number of electrodes

was increased from 64 to 128 to 256, but there was no appreciable improvement in

the accuracy of the coherence estimation in the other labels. This is probably because

label 3 was located in a central, flat region of the dorsal cortex, so the MNE solution

spread out to all the other labels on the cortex.

The results show that removal of the spurious canonical coherence by numerical

methods is not tractable. Even if the average ‘baseline’ canonical coherence can be

removed by thresholding, it may not be possible to tell where the original signal was,

especially in flatter areas of the cortex. For instance, when the simulated activity

is in label 3, the activity becomes spread almost uniformly into the other labels.

Furthermore, attempts to remove the spurious canonical coherence by techniques

such as bootstrapping to find coherences significantly above the average value are

unlikely to succeed since the overall coherence in multiple brain regions is highly

elevated after MNE source localization.
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3.6 Summary: Limitations of MNE source local-

ization

We chose MNE to model the slow oscillation because of its tendency to produce

distributed source activity, but we have shown that the method introduces a large

amount of spurious canonical coherence which is analytically and numerically in-

tractable to remove. Thus, spurious coherence can only be reduced by improving the

resolution of source estimates, which corresponds to a resolution matrix that is closer

to the identity matrix.

The widely distributed solutions produced by MNE do not appear to match the

actual distribution of source activity. Additionally, MNE is known to result in depth

bias, which is the phenomenon in which sources located deep in the cortex are incor-

rectly localized to superficial regions. Gaussian or Laplacian priors can be specified

beforehand to reduce the depth bias, as is the case in methods such as weighted

MNE, dynamic statistical parametric maps (dSPM), and standard low-resolution

electromagnetic tomography (sLORETA). [56] A study by Bradley et al. showed that

localization accuracy could be improved by using LORETA with a p-norm of 1.5,

or a combination of sLORETA to identify the source with the highest activity and

LORETA (p=1.5) to find other active sources. [14] Another approach to improve

localization accuracy is to tailor the prior to the dataset, using approaches such as

sparse Bayesian learning (SBL) and automatic relevance determination (ARD). These

approaches learn the prior from the data, compensating for the fact that the full pos-

terior may not be accurately represented by the posterior mode. [56] Yet another way

to encourage sparse solutions is by using an L1-norm in place of the L2-norm.

The various MAP source space methods are nonparametric, since they do not make

assumptions on the generative process behind the data. These approaches may obtain

the most plausible naive solution when the underlying generative process is unknown.

However since we are looking for the slow oscillation in particular, we are able to

parametrically model the oscillation we aim to localize. Therefore, for our particular

application, reasonable assumptions can be made about the form of the generative
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process, which we expect will improve source localization performance better than

nonparametric methods. In the next chapter, we use a state-space modelling approach

to improve the accuracy of source localization.
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Figure 3-1: Sources (red points) corresponding to the default mode network in an ico-
3 parcellation of the cortex. The regions included in the default mode network for this
analysis include the superior frontal, rostral middle frontal, inferior parietal, middle
temporal, medial orbitofrontal, precuneus, posterior cingulate, parahippocampal and
entorhinal cortices.
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Figure 3-2: Sources (red points) corresponding to the salience network in an ico-
3 parcellation of the cortex. The regions included in the salience network for this
analysis include the rostral and caudal anterior cingulate cortices.

Figure 3-3: Canonical coherence (CC) at 0.5Hz of the MNE localized results for one
propofol subject. CC within and between the DMN and Sal networks decreases more
during peakmax than during troughmax.
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Figure 3-4: Canonical coherence (CC) at 0.5Hz of the MNE localized results for one
sleep subject. The CC in the Sal network decreases more prominently than in the
DMN as the state of unconsciousness deepens from baseline to NREM2 to NREM3.

Figure 3-5: Canonical coherence (CC) at 0.5Hz of the MNE localized results for
one dexmedetomidine subject. The CC in the Sal network decreases more promi-
nently than in the DMN as the state of unconsciousness deepens from baseline to
dexmedetomidine sedation.
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Figure 3-6: Labels defined on the brain for the canonical coherence simulations. The
labels are arranged sequentially from anterior to posterior to help characterize changes
in canonical coherence as the distance between labels increases.

(a) Before MNE (b) After MNE

Figure 3-7: Example of MNE distributed solution. (a): A simulated signal was gener-
ated in label 6 (1Hz oscillation, a single 4s window, white noise elsewhere, signal-to-
noise ratio of 3). (b): After MNE source localization, the estimated activity appears
distributed across all other labels, covering much of the cerebral cortex. These re-
sults show that MNE may not be able to accurately reconstruct the spatial location
of cortical source activity.
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Figure 3-8: Median canonical coherence between pairs of cortical labels before (ground
truth) and after MNE source localization with a 64, 128 and 256-electrode EEG cap.
A slow oscillation (1 Hz) was simulated in each label in turn, with white noise in
all other labels (signal-to-noise ratio 3). The simulation duration was 60 4s epochs.
The canonical coherence between the label containing the simulation and all other
labels was calculated before (ground truth) and after MNE source localization. These
simulations were each repeated 20 times to obtain the median canonical coherence.
The results are displayed as the rows in each matrix. The coherence after MNE
localization is much higher than the ground truth, and is high between pairs of labels
that should have low coherence. This is due to the tendency of MNE to spread the
solution out over the whole cortex. Recovery of the original location of the signal is
intractable even when the EEG electrode density is increased from 64 to 128 to 256
electrodes.
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Figure 3-9: A simulation (1Hz oscillation, 60 4s epochs, white noise with SNR 3, 20
runs of simulation) was placed in a particular label with 64, 128 and 256 electrode
setups. Other labels contained white noise. The figures show the median and standard
deviation in canonical coherence between the label containing the simulation and all
other labels. 1st column: Simulation in label 0. After localization, the coherence
increased the most in the labels closer to label 0, and less in the labels which were
further from label 0 and more shielded from the spreading of the MNE result by the
geometry of the brain. Increasing the number of electrodes from 64 to 128 (or 256)
brought the coherence closer to the ground truth in labels 4, 5 and 6. 2nd column:
Simulation in label 3. After localization, the coherence has increased in all labels. As
the number of electrodes increases from 64 to 128 to 256, the spurious coherence in
label 0 is reduced. However, the coherence in all the labels is high, making it difficult
to tell which label contained the original signal.
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Chapter 4

Improving source localization with

a state-space oscillator model

4.1 The Matsuda-Komaki oscillator model

To improve source localization performance, we used a parametric method involving

a state space model to model the temporal dynamics of neural oscillations. The

Matsuda-Komaki oscillator state-space model, as described in [46], has the form

xt+1,1

xt+1,2

 = a

Ff︷ ︸︸ ︷cos(2πf∆t) − sin(2πf∆t)

sin(2πf∆t) cos(2πf∆t)

xt,1
xt,2

+

vt,1
vt,2

 (4.1)

yt = Gxt,1 + wt (4.2)

where

vt,1
vt,2

 ∼ N

0

0

 ,

σ2 0

0 σ2

 (4.3)

wt ∼ N(0, τ 2). (4.4)
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Equation (4.1) is known as the state equation, and equation (4.2) is called the ob-

servation equation. The state x cannot be observed directly, but is assumed to evolve

according to the state equation. In this formulation, the state equation describes an

oscillation in time, corresponding to a neural oscillation. xt,1 is the real part of the

state at time t and xt,2 is the imaginary part. yt is the observed measurement at time

t, related to the hidden state by G. Both the state and observation equation contain

zero-mean Gaussian noise, which captures the uncertainty in the state’s evolution as

well as the noise in the data measurement.

This formulation has been shown to perform well when applied to real data, and

has several advantages. Firstly, it accounts for measurement noise, which is always

present in real data. Secondly, it does not require bandpassing, which can cause edge

artifacts in the signal. Thirdly, the phase of the signal can be readily estimated from

the real and imaginary parts of the fitted vector x. [46]

4.2 The oscillator-EM method: Source localiza-

tion under the oscillator model

For our problem of interest, x is the vector of source-space activity decomposed into

real and imaginary parts, and y is the EEG sensor data. G is the forward model,

augmented such that every even column is 0, corresponding to not observing the

imaginary part of the signal. Since neural data contains several oscillations, one

rotation matrix is set up for each oscillation frequency to be fit by the model. The

overall state space model is constructed by placing the rotation matrices for each

oscillation Ff on the diagonals of a large F matrix. For instance, to fit a model

containing a slow and an alpha oscillation, the vector of source activity x is duplicated

and concatenated vertically with itself. A large F matrix is constructed to fit the slow

and alpha oscillations:
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~y
~y

 = a

F slow 0

0 F alpha

~x
~x

 . (4.5)

Thus, our model has the overall form

xt = Fxt−1 + wt (4.6)

yt = Gxt + vt (4.7)

where

vt ∼ N(0, C) (4.8)

wt ∼ N(0, Q). (4.9)

An expectation maximization (EM) algorithm is used to estimate the parameters

of the state-space model based on the data. During the E-step, a Kalman filter and

fixed interval smoother are used to estimate the state x and calculate the complete

data likelihood. During the M-step, parameters of interest such as C, Q and F are

estimated by maximizing the complete data likelihood with respect to parameters.

The E and M steps are performed iteratively until convergence in the likelihood is

reached.

We conducted initial validation studies of the model by simulating activity from

the state equation at a frequency of 10Hz. Due to the nonlinear form of F , we

used the Newton-Raphson numerical maximization method in the M-step for finding

the parameters of F , namely the amplitude a and frequency f . The EM algorithm

was able to accurately recover the oscillation amplitude and frequency. We next

moved on to source space simulations and demonstrated that this oscillator-EM source

localization method outperforms MNE in terms of its accuracy at reconstructing the

spatial location of the oscillation(s) (Section 4.3).
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After the model had been validated in simulations, we applied it to the real EEG

data from the 5 conditions of interest. For the real data, our approach was to first

determine the oscillation frequencies present at the scalp level, and then source localize

with those identified frequencies plugged into the F matrix. The EM algorithm was

then used to estimate C and Q, assuming F was known based on the sensor-space fits

(Section 4.4). Finally, based on the oscillator-EM localization results, we recalculated

the source-space canonical coherence between resting state networks (Section 4.5).

4.3 Simulation studies: The oscillator-EM method

outperforms MNE at source localization

4.3.1 Simulation of a single slow oscillation

We first simulated 4 seconds of a slow oscillation at 1Hz in four rostral sources in

the frontal cortex. White noise was simulated in all other sources, with a signal-to-

noise ratio of 100. A sampling frequency of Fs = 100Hz was used. We projected

the simulated activity up to the scalp level using the forward model. We tested

the accuracy of the oscillator-EM method by using it to invert the scalp-level sensor

space activity back onto the cortex, and comparing the result with the simulated

ground truth. We used 10 iterations of the EM algorithm. For comparison, we also

used MNE to invert the scalp-level activity. The results are shown in figure 4-1 for

one snapshot in time. The oscillator-EM method outperforms MNE at recovering

the spatial location of the slow oscillation. As shown in the previous chapter, MNE

spreads the solution out over the entire cortex. The highly local simulated slow

oscillation is completely overwhelmed by noise in the MNE estimate and cannot be

recovered. On the other hand, the oscillator-EM estimate becomes spatially more

accurate with each iteration of the EM algorithm. After 10 EM iterations, the location

of the simulation oscillation is largely well-recovered. MNE also significantly reduces

the estimated current amplitudes on the cortex, whereas oscillator-EM does not.
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Simulation Oscillator-EM MNE

Figure 4-1: Comparing oscillator-EM localization of a simulated slow oscillation with
MNE. A 1Hz oscillation travelling at 3.6ms−1 was simulated in a series of 4 adjacent
sources in the frontal cortex (white noise elsewhere, signal-to-noise ratio 100). The
oscillator-EM algorithm appears to recover the amplitude and spatial location of the
simulated source with greater accuracy than MNE.

4.3.2 Simulation of a slow and an alpha oscillation in an over-

lapping region

In practice, real data usually contains multiple oscillations, so we sought to test

whether the oscillator-EM method could separate oscillations at two distinct frequen-

cies occurring at the same spatial location. In the same four rostral sources, we

simulated a slow and an alpha oscillation of equal amplitude (both the amplitudes

were set to 1). We again brought the source-space data up to sensor space using

the forward model, and inverted it back onto the cortex using oscillator-EM with 10

iterations of the EM algorithm. This time, the oscillator-EM model used for the fits

contained both Fslow and Falpha in the F matrix. The results, shown in figure 4-2,

demonstrated that oscillator-EM was able to recover both the slow and alpha in the

correct spatial location, even though the two oscillations had completely overlapped

in space. This is an encouraging result because we expect spatial overlap between

oscillations at different frequencies to occur in real data. This simulation has shown

that spatial overlap with other frequencies is unlikely to affect localization of the slow

oscillation in real data using oscillator-EM.
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4.3.3 Simulations in different cortical regions

We next expanded our simulation studies to different regions on the cortex. While the

oscillator-EM method worked well in the rostral region, regions further away from the

scalp and regions located in cortical sulci are expected to be more difficult to localize

in, since activity in those sources is more difficult to observe from the scalp. Thus,

we simulated a slow and an alpha oscillation of equal amplitudes (both 1) in various

cortical regions.

In figure 4-3 we explore oscillator-EM localization in several dorsal regions. We

expect localization to be better for dorsal regions which are close to the scalp. The

localization results were the best in the rostral region, reasonably good in a central

dorsal region, and not as good in a posterior region. Due to the curvature of the brain,

the posterior region is located further away from the EEG sensors on the scalp, so it

is reasonable that localization performance is not as good in that region.

In figure 4-4 we choose lateral regions for the simulation. The first two rows show

that the oscillator-EM estimate is more spread out for these lateral regions than for

the dorsal regions previously tested, probably due to the fact that these lateral regions

are located further away from the scalp EEG sensors, and thus the sources in them

are less easy to detect. On the whole, however, the performance is still better than

MNE because the amount of spreading over the cortical surface is less. The last row

of the figure shows that the sources hidden under the curved surface of the frontal

lobe cannot be detected at all by the EEG sensors, which is not surprising; however,

surprisingly, both the slow and alpha oscillations in the single source on the temporal

lobe are well-detected.

In figure 4-5 we compare localization in a dorsal gyrus with localization in a dorsal

sulcus. Localization performance is better in the gyrus; in the sulcus simulation, the

oscillator-EM estimate is much more spread out over the cortex. This is as expected

since the sources in a gyrus are less concealed from the scalp than the sources in a

sulcus. Nevertheless, even in the tricky case of localizing in a sulcus, the oscillator-

EM estimate spreads out less over the cortex than MNE for both of the oscillations
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localized.

4.3.4 Simulations of slow and alpha oscillations with varying

relative amplitudes

In our final set of simulations, we tested the effect of varying the relative slow and

alpha oscillation amplitudes on the oscillator-EM localization performance. These

simulations were carried out in the various regions tested in section 4.3.3. The results

for the rostral region are shown in figure 4-6. When the slow amplitude is half the

alpha amplitude (0.5 is to 1), the localization of the slow becomes less accurate. We

observe simular results in the other regions as well; varying the relative oscillator

amplitudes may decrease localization performance for one or both oscillations. Nev-

ertheless, the spatial accuracy of the recovered source estimates is still better than

that obtained by MNE.

4.4 Oscillator-EM source localization applied to

the EEG data

4.4.1 Finding neural oscillations using the Matsuda model in

EEG sensor space

After validating the oscillator-EM method in simulations, we applied it to the real

EEG data from the 5 conditions of interest. We first used the Matsuda model to

fit neural oscillations in sensor space, following the approach developed by Beck et

al. [10]. For each subject from each condition, we used one 4s epoch of EEG data.

The iterative procedure described in [10] was used to identify the frequencies and

amplitudes of oscillations present in each clean EEG channel. The iterative procedure

increases the number of oscillations in the model one at a time, and calculates the

AIC of each model. The model with the lowest AIC is chosen to be the best model

for that electrode.
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Based on this procedure, we constructed a histogram of frequencies found for

each subject. Examples for a representative subject from each of the 5 conditions

are shown in figure 4-7. In each subfigure, the top panel shows all the frequencies

found in the 0-4Hz range, and the bottom panel shows all the frequencies found in the

7-16Hz range. From the histograms, we see that a single peak in the slow-delta band

(0-4Hz) and 1-2 peaks in the alpha band (7-16Hz) are identified for each subject. In

propofol peakmax there is only one alpha frequency with a median of around 10Hz,

whereas for the other conditions there are both a “slow” alpha (<10Hz) and a “fast”

alpha (>10Hz). In some of the other subjects, there was only 1 alpha frequency in

the other conditions. Each subject’s histogram was visually inspected. The median

of the slow frequencies was used as the identified value of the slow frequency for the

subject. If there were two alpha peaks, the median of the peak below 10Hz was taken

as the first alpha frequency, and the median of the peak above 10Hz as the second

alpha frequency; otherwise, the median of the single alpha peak was used as the alpha

frequency.

It is interesting to note from figure 4-7 that in NREM2 sleep, NREM3 sleep and

dexmedetomidine sedation, the peak found in the 0-4Hz range was at 1Hz or slightly

above 1Hz. This slow frequency is higher than the median slow frequency found in

propofol troughmax and peakmax. It is possible that for the dexmedetomidine and

sleep data, the oscillator model is explaining the slow and delta oscillations by a

single frequency peak instead of two peaks. As we have reviewed in section 1.2.7, the

slow and delta oscillations could be generated by different cortical or thalamocortical

mechanisms. Further work could be done to determine how well the oscillator model

can separate the slow and delta oscillations, given their close proximity in frequency.

4.4.2 Source localization of real data with oscillator-EM

The slow and alpha frequencies identified by the procedure described in section 4.4.1

were input into the F matrix of the state equation in oscillator-EM source-space

localization algorithm. For the analysis of real data, we chose to fit the source and

noise covariance matrices Q and C, but not the parameters of the oscillators in F .
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This is because fitting the oscillator amplitudes and frequencies in source space adds

an additional possible source of error and uncertainty. Since the data was collected

in EEG sensor space, the EEG-level fits of the oscillator parameters are likely to be

the most accurate estimates we can obtain.

For each of the 5 conditions, we selected 90-100 noncontiguous 4s epochs of clean

data from the various clean subjects. As far as possible, the number of epochs selected

from each clean subject was kept about the same in order to get a good estimate for

the data across subjects. In each epoch, we downsampled the data to 100Hz and ran

10 iterations of the oscillator-EM algorithm to arrive at our source estimates for the

data.

4.5 Source-space canonical coherence in resting state

networks under oscillator-EM source localiza-

tion

Using the oscillator-EM localization results for the data in each epoch, we calculated

the canonical coherence (CC) between and within the default mode network (DMN)

and salience network (Sal) at 0.5Hz. Using 3 DPSS tapers with about 100 epochs

in each condition, we obtained around 300 independent estimates of the frequency-

domain source activity for each condition, and calculated the CC as before (Section

3.2).

The results are shown in figures 4-8, 4-9, 4-10 and 4-11. The histogram of CC

values between pairs of brain regions (figure 4-8) shows the opposite trend to the

CC results from MNE source localization. The CC values are skewed closer to 1 in

peakmax and NREM3, the deeper states of unconsciousness in propofol and sleep

respectively, and are lower in the lighter states of unconsciousness. Visualizations of

the CC in each condition show that peakmax has overall higher coherence within and

between DMN and Sal than troughmax (figure 4-9), NREM3 has overall higher co-

herence than NREM2 in both networks (figure 4-10), and dexmedetomidine sedation
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has CC values similar to NREM2 and troughmax. Notably, the minimum value of

canonical coherence found in the real data with the oscillator-EM model was about

0.10, much lower than the MNE minimum of 0.68. This likely reflects the reduction

in spurious coherence under oscillator-EM.

We hypothesize why the oscillator-EM estimates produce high coherence in the

deeper states of unconsciousness, contrary to our expectations. The oscillator-EM

model is better able to spatially localize oscillations than MNE, but a 4s window

may not be enough time to estimate the phase relationships between oscillations in

different parts of the cortex. As can be seen from the simulation results in section 4.3,

for instance in figure 4-2, there is a time lag between the ground truth simulation and

the recovered slow and alpha oscillations; peaks and troughs in the recovered slow

and alpha occur a few time points after they have occurred in the simulated data.

This lag is to be expected since the Kalman filter and fixed interval smoother become

more accurate after aggregating data from a longer time period. A 4s epoch may

not be enough to recover the true phase relationships between the slow oscillation in

various regions.

It is encouraging that oscillator-EM works well in simulations, but we plan to

move forward with further tests of the accuracy of the oscillator-EM canonical co-

herence results in real data. One possibility is to conduct simulations in which we

test whether oscillator-EM can accurately recover a known ground truth canonical

coherence. Another possibility is to select data epochs longer than 4s and see if the

oscillator-EM CC results change when more data is used for the estimate. Thirdly,

we can test oscillator-EM with simpler meaures of functional connectivity such as the

phase-locking factor used in Lewis et al. [42], or the simple pairwise coherence be-

tween pairs of single sources randomly selected from within the DMN and Sal regions

of interest.
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Simulation Recovered Slow Recovered Alpha

Figure 4-2: Columns: Simulation of spatially overlapping slow and alpha oscillations
of equal amplitude; Slow and alpha oscillations recovered using oscillator-EM source
localization. Rows: Results at 5 time snapshots. The oscillator-EM method success-
fully recovers both oscillations despite their spatial overlap.
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Simulation Recovered Slow Recovered Alpha

Figure 4-3: Columns: Simulation of slow and alpha oscillations of equal amplitude;
Slow and alpha oscillations recovered using oscillator-EM source localization. Rows:
Different views from anterior, lateral, and posterior perspectives. Performance of the
oscillator-EM method varies with spatial location on the cortex. The oscillations in
the frontal cortex (1st row) are localized best. Localization is less precise in a dorsal
(2nd row) and posterior (3rd row) region. However, the spatial location recovered is
still more precise than with MNE (not shown).
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Simulation Recovered Slow Recovered Alpha

Figure 4-4: Columns: Simulation of slow and alpha oscillations of equal amplitude;
Slow and alpha oscillations recovered using oscillator-EM source localization. Rows:
Various lateral regions. Localization performance decreases in regions further away
from the scalp sensors (2nd and 3rd rows) and in regions obscured from the scalp by
the brain’s anatomy (3rd row), as expected.
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Simulation Recovered Slow Recovered Alpha

(a) Simulation in a dorsal gyrus

(b) Simulation in a dorsal sulcus

Figure 4-5: Columns: Simulation of slow and alpha oscillations of equal amplitude;
Slow and alpha oscillations recovered using oscillator-EM source localization. Com-
paring localization performance in a gyrus versus a sulcus in the dorsal region. The
oscillator-EM estimate is more spread out when localizing in a sulcus, as expected
since cortical currents within sulcii are more difficult to measure at the scalp with
EEG.
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Simulation Recovered Slow Recovered Alpha

(a) Simulation with slow amplitude 1, alpha amplitude 0.5

(b) Simulation with slow amplitude 0.5, alpha amplitude 1

Figure 4-6: Oscillator-EM simulations with a larger slow than alpha amplitude (1 vs
0.5) (a) and vice versa (0.5 vs 1) (b). For the slow oscillation, the source localization is
more accurate when the amplitude is larger. The localization of the alpha oscillation
remains accurate when the amplitude is reduced.
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(a) Propofol Troughmax (b) Propofol Peakmax

(c) NREM2 (d) NREM3

(e) Dexmedetomidine

Figure 4-7: Histograms of oscillator frequencies identified by fitting the oscillator
model to data from all clean EEG channels in a 4s epoch of data for a representative
subject from each condition. In each figure, the top panel shows all the frequencies
found between 0 and 4Hz (the slow-delta band) and the bottom panel shows all the
frequencies found between 7 and 16Hz (the alpha-spindle band). In general, one peak
in the slow band and 1 or 2 peaks in the alpha band are found.
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Figure 4-8: Histograms of the canonical coherence (CC) distribution in the 5 condi-
tions under oscillator-EM source localization. The CC is skewed towards values closer
to 1.0 in peakmax and NREM3.
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Figure 4-9: Canonical coherence under oscillator-EM source localization in troughmax
and peakmax aggregated across propofol subjects. Peakmax shows overall higher
coherence than troughmax.
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Figure 4-10: Canonical coherence under oscillator-EM source localization in NREM2
and NREM3 aggregated across sleep subjects. NREM3 shows overall higher coherence
than NREM2.
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Figure 4-11: Canonical coherence under oscillator-EM source localization in
dexmedetomidine sedation aggregated across dexmedetomidine subjects. The results
for dexmedetomidine resemble the results for NREM2 sleep.
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Chapter 5

Conclusion

5.1 Thesis summary

In this thesis, we have quantified the differences in the slow oscillation under 5 distinct

states of unconsciousness: troughmax and peakmax under propofol general anesthe-

sia, sedation under dexmedetomidine, and NREM2 and NREM3 sleep. We showed

that slow oscillation power increases from NREM2 to dexmedetomidine sedation,

NREM3, troughmax and then peakmax, consistent with the idea that deeper states

of unconsciousness produce slow oscillations of greater amplitude. We characterized

the spatial distribution of the slow oscillation power in both sensor space and source

space, making use of MNE source localization for the latter. We explored the func-

tional connectivity between source-space regions in the DMN and Sal networks under

the different states of unconsciousness. Under MNE source localization, the canon-

ical coherence decreases with increasing depth of unconsciousness, correlating with

increased disruption to processing.

On a methodological front, we explored the limitations of MNE source localization,

demonstrating that the method causes large spurious coherence by spreading out the

source estimate solution all over the cortex. After establishing that the removal of

the spurious coherence is intractable, we presented oscillator-EM, a novel method

for source localization that employs a state-space model of neural oscillations. We

showed in simulation that oscillator-EM outperforms MNE. However, the canonical

101



coherence under oscillator-EM is the opposite of the expected result, showing higher

coherence in deeper states of unconsciousness. We hypothesize that 1) the 4s epochs

used may not be enough to capture coherence relations using oscillator-EM due to

the time lag in tracking the oscillations whch we observed in simulations; and 2)

that adding spatial smoothing to the Matsuda transition matrix could improve the

localization by imposing reasonable values on sources which are difficult to observe

from the scalp.

5.2 Future directions

The oscillator-EM method has proven to work well in simulations. More testing is

required to ensure that the canonical coherence results obtained from oscillator-EM

localization in real data are accurate. We plan to conduct simulations to determine

whether oscillator-EM can accurately recover a known coherence. We will also test

oscillator-EM on longer data segments to check whether the same coherence results

are obtained. Lastly, we will test the oscillator-EM results with simpler measures

of functional connectivity such as coherence between pairs of sources and the phase-

locking factor.
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[24] J. DeFelipe and I. Fariñas. The Pyramidal Neuron of the Cerebral Cortex: Mor-
phological and Chemical Characteristics of the Synaptic Inputs. Prog. Neurobiol.,
39(6):563–607, Dec 1992.

[25] MNE Developers. MNE: MEG + EEG Analysis and Visualization. https:

//mne.tools/stable/index.html#, 2012-2020.

[26] P. Fatt and B. Katz. Spontaneous subthreshold activity at motor nerve endings.
J. Physiol., 117(1):109, May 1952.

[27] Robert G Gallager. Stochastic processes: theory for applications. Cambridge
University Press, 2013.

[28] Peyman Golshani, Xiao-Bo Liu, and Edward G Jones. Differences in quantal
amplitude reflect glur4-subunit number at corticothalamic synapses on two pop-
ulations of thalamic neurons. Proceedings of the National Academy of Sciences,
98(7):4172–4177, 2001.

[29] Laurel A Graves, Elizabeth A Heller, Allan I Pack, and Ted Abel. Sleep depriva-
tion selectively impairs memory consolidation for contextual fear conditioning.
Learning & memory, 10(3):168–176, 2003.

[30] Michael D Greicius, Vesa Kiviniemi, Osmo Tervonen, Vilho Vainionpää, Seppo
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