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ABSTRACT

The general theory for multiple-speed lattice gas algorithms (LGAs) is developed where
previously only a single-speed theory existed. A series of microdynamical multiple-speed
models are developed that effectively erase the underlying lattice from the macroscopic
dynamics allowing the LGA to reproduce the results of continzum hydrodynamics ez-
actly. The underlying lattice is the 4D FCHC lattice. It is shown that this lattice:
1) Permits all integral energies, 2) Has sufficient symmetry to allow for an isotropic
stress tensor for each energy individually, 3) Allows interaction amongst ail energies,
and 4) Has discrete microscopic Galilean invariance, all of which allows the extension
of the model to higher-speeds. We show that this lattice is the only regular lattice with
these remarkable properties, all of which are required to show that the discreteness
artifacts completely disappear from the LGA in the limit of infinite speeds, so that cor-
rect continuum hydrodynamic behaviour results. Three finite-speed models that remove
the discreteness artifacts are developed. A three-speed model is developed that repro-
duces macroscopically the behaviour of the continuity and Navier-Stokes equations. A
four-speed model is developed that removes all but one of the artifacts from the mass,
momentum and energy conservation equations. A five-speed model for low density flows
is developed that removes all of the artifacts from these three equations. The mean dy-
namics of these models are unaffected by statistical fluctuations in the properties of
the flow. This is the Shot Noise Theorem for LGAs. Extensive simulation results are
presented for the three-speed model. We verify the removal of the discreteness artifacts
from the momentum equation using a decaying shear wave experiment and show that
they are still invisible for Mach numbers up to M ~ 4, beyond the theoretical limit.
Flow between flat plates replicated the expected parabolic profile of Poiseuille flow in
the mean when started from rest. Two separate measurements of the kinematic viscosity
of the fluid (normal pressure drop and the microscopic particle force at the wall) agreed
with each other and with the shear wave viscosity to better than 1%. Cylinder flow
simulations accurately reproduced drag coefficients and eddy-length to diameter ratios
for Re < 45 to within the error of experimental observation. At higher Reynolds num-
ber, Re ~ 65, vortex shedding was cobserved to occur, with the Strouhal number being
very close to the experimental value when corrected for the relatively large blockage,
18%, present in the simulation. CFD results for flow past cylinders at similar Reynolds
numbers produce either erroneous results (significant errors in eddy length to diameter
ratios) or rely on artificially perturbing the flow to cause phenomena that does not occur
naturally in the method (vortex shedding).
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Chapter 1

Introduction

The descriptive equations of fluid dynamics are highly non-linear partial differ-
ential equations which allow analytical solutions in only the most specialized of
cases. For most general flow scenarios, analytical development is not possible. As
a result, up until about 20 years ago, the only way to obtain information about
how a particular object would behave in a flow with particular characteristics was
to actually build the object, place it in a wind tunnel and perform the experi-
ment. With sophisticated non-intrusive diagnostics, gross properties of the flow
such as drag and lift could be measured. With considerably more effort, informa-
tion about the spatial dependence of some thermodynamic properties of the flow

could be acquired.

With the advent of modern computers, it became possible, potentially, to do
away with the cumbersome necessities of wind tunnel experimentation by sim-
ulating the equations of fluid behaviour numerically. Simulating fluid flow on

computers in this manner is called Computational Fluid Dynamics (CFD). After
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about 20 years of vigorous development[l], present day CFD calculations. when
not rendered useless by unstable numerical algorithms. are severely constrained
by the memory capacity and speed of available computing power(1, 2]. The vol-
umetric resolution required in three dimensional fluids in order to simulate the
small turbulent eddies needed to compute such practical quantities as the lift and
drag of an airfoil are beyond the computational requirernents presently available
or even imagined today. For example, to simulate flow past an airfoil with a
Reynolds number of about 1 million with the same accuracy as is now done in
state of the art wind tunnels would require a simulation volume on the order of
10 trillion cells. A CRAY-2 supercomputer. working at a rate of 3 x 107 cell up-
dates per second, would have to run continuously for over twenty thousand years
to compute such a highly resolved flow(3, 4). Put another way, at present, CFD
methods can accurately simulate fluids in three dimensions, up to a Reynolds
number of about 100 using aboat 1 million cells[3] which allows for full turbulence
modelling to all scales. This corresponds to accurate simulation of flow around
a car travelling at = kilometers per hour. For flows with very large Reynolds
numbers, the effect of viscosity is limited to a thin layer near the solid surface, the
so-called boundary layer. Qutside of this layer, the flow is effectively inviscid. The
width of the boundary layer scales with the inverse square roct of the Reynolds
number in this case[5]. For simulations of flows in this regime, it is possible to
have the Reynolds number scale with the square of the number of sites in a linear
dimension. This scaling improves the limit on Reynolds number in CFD simu-
lation so that accurate simulation of flows around a car travelling at 35 km/h is
possible. This is obviously still VERY far from practical situations. Clearly, large
improvements in algorithmn reliability and almost unimaginable improvements in

computing power are necessary if CFD) is to become a general purpose alternative
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to wind tunnel fluid experimentation.

In the last six years, lattice gas algorithm methods (LGA), motivated by the
philosophical challenge of reducing physics to logic[6, 7. 8, 9], have been developed
that provide a computational alternative to CFD. In the original development of
the algorithm(11], abstract particles exist only at the vertices of a square lattice
where time, space and direction has been discretized. All particles have the same
speed and move along various links of the lattice from rode to node. 'Speed’ refers
to the number of lattice sites a particle moves in one time step. At a particular
node, particles are made to rearrange themselves (or collide with each other) in
such a way that total particle number, momentum and energy (which is equal
to mass in the single speed case) at 2 node remains constant consistent with the
constraint that no more than one particle occupies a particular direction at a site
per timestep. This is the exclusion principle of lattice gas algorithms. This simple
system was observed to produce qualitatively correct macroscopic flow features in

two dimensions using only logical operations for system updates.

Since then, a very general theory of these single speed lattice gases has been
developed by several authors(12, 22] where an improved two-dimensional model(13]
and a model that could be used to generate three-dimensional systems(14] has been
proposed. The lattice gas algorithm should not be thought of as an oversimplified
version of molecular dynamics! but rather as an discrete particle engine that
obeys updating rules dictated by conservation requirements and lattice symmetries
which results in qualitative behaviour similar to, but independent of, continuum

fluid dynamics.

Nonetheless, existing lattice gases still have major limitations - as models for

‘where the actual molecular characteristics of the fluid are specified{15]
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real fluid dynamics. In 1991, in an introductory overview for a cnllection of state

of the art lattice gas papers, Dr. J.P. Boon stated

It should be stressed that contact between LGA simulations and labo-
ratory experiments have been very scarce and quantitative comparison
should be extremely valuable not only for the validation of the LGA
method but also for an analytical understanding of the transitional

regimes in the evolution towards turbulence. J.P. Boon{16]

In this thesis, we develop the general theory of mulitiple speed lattice gas al-
gorithms and show how they can be made to accurately and efficiently model a
true three-dimensional continuum fluid. We have found that although there are
artifacts in the macroscopic behaviour of multiple-speed LGAs, these artifacts
disappear naturally as higher speeds are added tc the model. When a discrete
continuum of infinite speeds has been added to the model, the lattice artifacts
disappear completely leaving only the exact equations of continuum hydrodynam-
ics. This behaviour is contingent on the underlying lattice having the structure
known as the four-dimensional face-centred hypercube (4D FCHC), the simplest
lattice that permits correct three-dimensional simulation{14] 2. We have found
that this lattice has the following key features: 1) It permits all integral energies
to be represented, 2) The set of velocity vectors for each energy have sufficient
symmetry to allow for an isotropic stress tensor at each energy individually, 3) All
energies may interact via energy exchange collisions, and 4) Discrete microscopic
Galilean invariance. All of these properties are required of the underlying lattice

if we are to extend the LGA concept to infinite speeds. It is remarkable that a

2by projection from 4D down to 3D
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lattice with all of these requirements exists. Moreover, we have found that the 4D

FCHC is the only regular lattice with these properties.

The main theoretical advance, as outlined in this thesis, is the creation of a
microdynamical system in which the lattice is entirely erased from the macroscopic
dynamics for finite-speed systems. This amounts to forcing the artifacts to have
the same values they would have in the continuum fluid for all times. This new
system behaves as though it were a true continuum fluid without any artifacts
of discretization. The lattice acts like an array of sampling points that do not

contaminate the dynamics.

This fundamental advance is made possible by twoe main ingredients. [First,
particles with several speeds[29, 30, 33] are included so that energy becomes an
independent degree of freedom. The structure of the underlying 4D FCHC lattice
allows these particles of different speeds to exist independently on sufficiently
symmetric sublattices while also allowing particles of different speeds to interact
via energy exchange collisions. Secondly, we use different rates for forward and
inverse processes[33] in the energy exchange collisions to introduce a new element
of freedom into the algorithm. This variable rate coeflicient can then be exploited
to force the lattice artifacts to have the continuum values necessary for correct
hydrodynamic behaviour. The validity of this method in remcving the artifacts
from the momentum equation at low-density, using a three-speed system, has
already been demonstrated by Molvig et al.[35]. Here, we extend the theory by
adding more rate coeflicients so that all of the artifacts can be removed at arbitrary

density.

In particular, we have developed a series of finite minimal-speed models that

remove the lattice artifacts in stages with the highest-speed model — a five-speed
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model — having the property that all artifacts are completely removed from the
mass, momentum and energy equations. In essence, we have completely erased
the effect of the underlying lattice — and with it its associated discreteness ar-
tifacts — from the dynamics of the lattice gas method. As a verification of the
method, a computer code for the lattice gas model that completely removes all
artifacts in the momentum equation > — a three speed model — was developed
for the CRAY-2 supercomputer and several experimental tests were performed.
These tests demonstrated that the artifacts had been removed and, as a result,
quantitatively correct behaviour was demonstrated by the model when simulat-
ing standard fluid dynamics experiments such as Poiseuille flow (parabolic flow
profile was developed in the mean with momentum lost down the length of the
pipe being deposited to the walls) and flow past a circular cylinder (where the
drag coefficient and length of characteristic downstream steady eddy length mea-
surements agreed with experimental results within the experimental error, once
the blockage effect in our simulations had been corrected for using a standard
experimental technique, for the entire range of Reynolds numbers where this phe-
nomenon occurs). An additional simulation demonstrates that the LGA model
naturally allows vortex sheeding to occur, consistent with raising the Reynolds
number above the threshold value of Re ~ 45. In contrast, the CFD results for
similar simulations are either seriously in error (eddy length measurements) or
rely on prior knowledge of the expected fluid behaviour to cause phenomena that

would not occur naturally (vortex shedding).

Finally, because of the Boolean nature of the LGA algorithm, it is possible

to devise massively parallel computer architectures[10, 75, 73] upon which the

3The LGA mass equation is identical to the continuity equation of continuum hydrodynamics
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algorithm may be simulated. We show that the advantage in computing power of
the LGA method over traditional floating point. finite-element, partial differential
equations solvers is of such a fundamental nature that the LGA method requires
about 1000 times fewer bit operations than the CFD method to update a similar
size of fluid volume. Thus, the LGA method caz simulate a volume 2bout 100
times larger than the CFD method with similar computational power and effort
which permits a significant step towards the goal of accurate simulation of high

Reynolds number hydrodynamic flows.

1.1 Comparison of LGA and CFD Theoretical

Development

To describe the LGA method in broad terms, we compare conventional CFD sim-
ulation to the lattice gas approach, as illustrated in Figure 1.1. In both cases,
we compare the path from the system we actually want to simulate - which is a
real gas of particles that is not constrained in its phase-space motion in any way
- to simulation output. Conventional CFD is based on the differential equations
of fluid dynamics, the Navier-Stokes equations. These equations do not directly
describe the actual real gas of particles but rather the mean dynamics of the mass,
momentum and energy densities. The derivation of the Navier-Stokes equations
from a real gas of molecules is a very complex piece of theoretical physics which is
profound in the sense that it accounts for the development of irreversible thermo-
dynamic behaviour from an underlying reversible microsystem. This development
of physics was pioneered by Boltzmann about 150 years ago, and although con-

siderable controversial debate ensued, the theory has been made rigorous to the

21



CONVENTIONAL CFD

REAL GAS
R | STATSTCS {Kmtcts. | CHAPMAN - Rl ; Stnutaton
i ® X ; Ortput
N [pemm | ENSKOGNM| siokes
] AN A ]
DiocretoPaicles \ A it

\
Continuous Spacs \ AN NE GAS

Continuous Specs mfm

EXACT mass, momenturn enaergy consarvation

Figure 1.1: Comparison of conventional CFD and lattice gas simulation methods

showing both simulation techniques evolution from real gas to simulation output.
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point that it is now a cornerstone of statistical mechanics[31, 48]. This process re-
quires statistical averaging of the discrete microsystem which leads to the kinetic
equation of Boltzmann which is then expanded about its equilibrium solution to

give the Mavier-Stokes and energy equations.

Centinuum differential equations cannot, of course, be solved on the inherently
discrete medium of the computer. To make progress, these equations must be dis-
cretized by some sort of finite element approximation. Hardware implementation
of floating point arithmetic has evolved to support this type of method. The
numerical method of finding an adequate approximation to the Navier-Stokes
equations has proved to be an extremely difficult one[51}, as emphasized by the
box for this step in Figure 1.1. This field is characterized by a diverse array of
numerical instabilities and artifacts which often make it difficult to assess the
accuracy of the simulation results. Nevertheless, since digital computers cannot
fundamentally solve differential equations, something like this must be done and

the result comes to us as the simulation output of the desired physical system.

By way of contrast, in the lattice gas method, the discretization necessary for
computation occurs at the microscopic level. Beginning with the same real gas,
we restrict the dynamics to a discrete space-time lattice such that particles can
only reside at the lattice vertices at discrete time steps of the simulation. The
lattice particles are not actual gas particles but can be considered large packets
of individual gas particles lumped into a single macroparticle. Discretizing the
system this way makes it possible to represent the microdynamical system of
the lattice gas ezactly with Boolean logic and to process it ezactly on a digital
computer. This system is very primitive; the microdynamics consist of a rectilinear

particle movement between collisions (duplicated by moving bits on the lattice),
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and collisions on the lattice sites that can also be processed in logic. Except
for the discretized space-time domain, the lattice gas has dynamics identical to
those of a real gas and mimics real gas behaviour in considerable detail. including
the collisional generation of entropy and relaxation to a local thermodynamic
equilibrium. These are the key attributes necessary to duplicate hydrocdynamic
behaviour(25]. In particular, the basic invariants that the Euler equations describe
(mass, momentum, and energy) are conserved exactly by the lattice gas system
at each site and for all times. It cannot possess numerical stabilities: in fact, the
rapid generation of local entropy imbues the system with extraordinary - literaliy

thermodynamic - dynamic stability.

The simulation is done on this microdynamical system with exact processing.
The statistical accumulation of data to observe the hydrodynamic behaviour is
done as a passive step, without impeding the continuing exact microdynamics.
This statietical accumulation of information mimics precisely the theoretical de-
velopment done on real gases to obtain the macroscopic equations. In this way,

the hydrodynamic-like quantities of the lattice gas are measured.

There is an important difference, however. The discretized space-time simula-
tion domain of the lattice gas does, in general, lead to observable consequences or
discreteness artifacts at the macroscopic level. One can see the signature of the
lattice macroscopically in much the same way that ore can distinguish between a
solid with a lattice structure and a fluid in the real world. For example, previous
isotropic incompressible two-dimensional and three-dimensional single-spced lat-

tice gas models yield, in the macroscopic limit, an Euler-like momentum equation
of the form(14]:

du
p5; T r9(p)u-Vu = -VP, (1.1)
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where the pressure P, is given by the equation of state for a lattice of dimension

D

P, = -;-p(l - %u’g(p)), (1.2)

and g(p) is a known density dependent factor due to the lattice. This is the first
of three latiice artifacts that beccme apparent in the general theory of lattice gas
methods. The function g(p) in front of the advective term of the momentum equa-
tion breaks the Galilean invariance found in real fluids; momentum is advected
with velocity g(p)u instead of with the fluid velocity u. Furthermore, the scalar
pressure term contains an anomalous contribution proportional to the fluid kinetic

energy, clearly an unphysical effect.

As previously mentioned, the main theoretical advance of this work is the
creation of microdyiia'm'ica.l system which results in the discreteness artifacts being
removed from the macroscopic behaviour of the model. For example, by setting
g = 1 in eqn. (1.1), we see that fluid is now advected with the correct velocity. For
multiple-speed systems we will find that this condition also removes the dynamic
pressure anomaly of eqn. (1.2). This new system behaves as though it were a true

continuum fluid without any artifacts of discretization.

1.2 Qutline of Analysis

In Chapter 2, we describe the physical model that is a lattice gas algorithm and
demonstrate why the 4D FCHC lattice is the simplest lattice that will allow accu-
rate simulation of three-dimensional fluids. Development of the microdynamical
equations, which include explicitly the translation and collision operators for the

model, follows. Rate coefficients for certain collision processes are introduced into
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the microdynamics that will allow for later removal of the lattice artifacts. By en-
semble averaging this equation, and using the Boltzmann approximation wherein
all states are statistically independent of each other, we arrive at the kinetic equa-
tien for lattice gas algorithms. An equilibrium solution is derived and found to

be of Fermi-Dirac rather than Maxweli-Boltzmann form.

In Chapter 3, the kinetic equation is expanded to first order in the Knudsen
number and the Euler equations for a general multiple-speed LGA are derived.
This derivation is accomplished by an expansion in the Mach number. subsidiary
to the Knudsen number expansion. Expressions for the lattice artifacts in the three
conservation equations are made explicit. We find that there are no artifacts in
the mass equation, one artifact in the momentum equation, and two artifacts in

the cnergy equation.

In Chapter 4, we examine the behaviour of lattice gas models with large num-
bers of speeds. We show that as the number of speeds becomes very large, the
values of the artifacts converge towards the continuum values naturally (without
the need for rate coefficients). In the limit of infinite speeds, we find that if the
model is renormalized so that the distance between speeds becomes infinitesimally
small, the artifacts become the continuum values ezacily. It ic not a simple matter
to add higher speeds to a lattice gas algorithm. To do this requires some rather
fortuitous properties of the 4D FCHC lattice that we demonstrate to exist. They
are: 1) All integral energies are represented, 2) The set of velocity vectors for each
energy have sufficient symmetry to allow for an isotropic stress tensor at each en-
ergy individually, and 3) All energies may interact via energy exchange collisions.
Without these properties, the continuum limit on the lattice gas model could not

be performed. The convergence of the lattice gas model to the continuum is shown
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to scale linearly with the number of speeds added. We show that LGAs with a
large number of speeds possess a form of discrete microscopic Galilean invariance
that allows the lattice to be transformed by any lattice vector. Macroscopic equa-
tions derived from the transformed microdynamics result in lattice artifacts of the
same form as derived in the stationary case, but they appear only as coeficients
of velocities that are the difference between the actual fluid velocity and the clos-
cst lattice vector and so are inherently small terms. This transformation allows
simulation of transonic simulations by lattice gas methods that have removed the

lattice artifacts.

In Chapter 5, we find the minimal-speed lattice gas system that allows the
artifacts to be removed using rate coefficients. We find that a three-speed model
with one rate coefficient removes the g artifact from the momentum equation
in arbitrary density systems. A four speed system with two rate coefficients is
derived that either removes both the g artifact and the most significant artifact in
the energy equation (related to the ratio of specific heats for the system) or reduces
the errors in the two artifacts to insignificant levels (< 1%). By performing an
expansion in density, we show in principle that it is possible to remove all three
artifacts. In the low density limit, we find that two of the artifacts collapse into one
condition. We develop the complete description of the lowest speed model - the
five speed model, with two rate coefficients - that can completely remove all three
artifacts. The expressions for the rate coefficicuts are ontimized so as to minimize

their computational complexity to allow for ease in computer application.

In Chapter 6, we address the noise problems in lattice gas methods. We show
that although the shot noise fluctuations in system properties from time-step to

time-step are of the same order as the magnitudes of the properties themselves,
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these large fluctuations do not effect the mean dynamics of the lattice gas model.
Due to the Boolean nature of the lattice gas model, all terms that might appear
nonlinearly in the collision operator can be reduced to linear terms. As a resulit,
the collision operator is multi-linear. This means that shot noise does not con-
tribute to second or higher order \erms in the expansion of the collision operator
about the mean, a result we call the Shot Noise Theorem for lattice gas methods.
We demonstrate, by developing both an exact combinatorial and approximate
theoretical calculation, that the magnitude of the remaining non-shot noise fluc-
tuations scales inversely with lattice volume size. With a lattice volume of about
one million sites, a typical value in our simulations, these remaining fluctuations
are absolutely negligible in comparison with the mean dynamics. This justifies
the Boltzmann approximation made in Chapter 2 to derive the kiretic equation as
well as allowing us to conclude that if we remove the artifacts from the lattice gas
method, then the correct hydrodynamic equations will be followed by the mean
dynamics of the LGA despite fluctuations in local quantities that may leave the

mean value submerged in noise.

In Chapter 7, we present our simulation results for the three-speed lattice gas
model that removes the Galilean invariance artifact from the momentum equa-
tion. A brief description of the LGA code that has been developed to perform
this task on the CRAY-2 supercomputer is presented. The simulation process is
split into two sections, validation experiments and actual fluid flow experiments.
The first set of sirnulation resuits demonstrates the validity of the method. In
Section 7.2 we show, using a deceying shear wave experiment in an unbounded
volume, that all artifacts in the momentum equation have been removed to within
the level of statistical noise. The same experiment on a single-speed model clearly

shows the expected anomalous behaviour. Since the model maintains a tight
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thermodynamic equilibrium essentially down to the individual site level. accurate
hydrodynamic behaviour is cbserved even for systems with perturbations as small
as a few lattice sites in wavelength. The model also shows that the limit on low
Mach number, M « 1, from theory is not necessary in practice as accurate hy-
drodynamic behaviour is observed for flows up to M ~ .4. In Section 7.3, for flow
between two parallel plates - Poiseuille flow - we find that the expected parabolic
profile is formed in the mean. We measure the viscosity of the fluid from both the
momentum loss down the length of the pipe and from the momentum deposited
to the walls. These two measurements agree with each other, and with the in-
depenclent measurement of viscosity for a given density and temperature from
the shear wave experiment, to within 1%. Finally, in Section 7.4, we present the
results of flow past a cylinder for Reynolds numbers in the range 0 < Re < 65. In
the regime of attached eddies, Re < 45, our results for drag coefficient and eddy
length measurement agrees with experimental results to within the exnerimental
errors. In these results, we have employed the same relation for correcting for
finite flow blockage that is used in actual wind tunnel experimentation. We show
that CFD results are in error in this regime. The results for one flow where a
vortex street is generated naturally by the model with Re ~ 65 are shown. The
Strouhal number for this flow is about 18% higher than what it should be, in
comparison with zero-blockage fluid experiment results, due to blockage effects of

the same magnitude in our experiment.

In Chapter 8, we compare the computational efficiency of the lattice gas model
and present CFD models. We find that on computers that support 64-bit logical
word operations, such as a CRAY, that the lattice gas requires about a teuth of the
storage requirements of CFD while the two algorithms operate at essentially the

same speed. We show that if the lattice gas method were employed on a computer
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that had a processor specifically designed to perform the logical operations of the
lattice collision operator, the same way the floating point processcr on the CRAY
is ideally suited to CFD nexds, the LGA would then run about 100-1000 times as
quickly as the CFD floating-point supported code.

In Chapter 9 we present our conclusions and recommendations for further
work. Multiple-speed lattice gas methods can be used to accurately and effi-
ciently simulate three-dimensional fluid dynamics behaviour. Since we have a
fully developed model that removes the artifacts in both the momentum and en-
ergy equations, the next group of fluid experiments simulated should involve heat

transfer.
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Chapter 2

The Lattice Gas Algorithm

This chapter discusses the physical features needed to construct a lattice gas al-
gorithm that can yield true fluid dynamics. This requires that the macroscopic
behaviour of the lattice gas algorithm is described by the Navier-Stokes equations.
Microdynamical equations for the evolution of the model as well as a formal expres-
sion for the dynamics (in binary arithmetic form) that describe all such systems
are given. The microdynamical equations are then statistically averaged which
allows us to develop the kinetic equation as well as the equilibrium distribution
for this lattice gas model. The equilibrium distribution has Fermi-Dirac rather
than the usual Maxwell-Boltzmann form. Details of specific implemertations of
lattice gas algorithms are discussed in Chapters 5 and 7 where the simulation

results are presented.
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2.1 The Physical Model

The general class of lattice gas algorithms that we are studying all have the

following properties:

1. A population of particles that each have unit mass and may be categorized
into species dependent on the speed of the particle. All particles within a
species are identical and move the same number of lattice sites per time step

- the particle ’speed’.

2. A totally discrete phase space (discrete values of position in all dimensions
and discrete particle-velocity directions) and discrete time ¢. Discrete time

means that the particles hop from site to site.

3. An underlying lattice on which the particles reside only at the vertices.
There are many lattices to choose from but we will see that the four-

dimensional lattice known as the face-centred hybercube (4D FCHC) is ideal.

4. A set of collision rules that allow collisions amongst particles of a particular
species and amongst particles of differing species such that mass, momentum
and energy (and no other property) are conserved. Particles interact with
solid boundaries in a classical way (i.e. particles do not propagate through

solid matter).

5. An exclusion principle so that at each vertex no two particles can have
identical velocities. This limits the maximum number of particles of a given
species at a vertex to the nurber of directions a particle with that speed

can travel consistent with the structure of the underlying lattice.
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The discrete nature of the microscopic behaviour of this systern is quite differ-
ent from that of a continuous Boltzmann gas where particles are free to move in
any direction and have a continuous spectrum of speeds. The problem of finding
an algorithm to do ¢rue hydrodynamics can be viewed as the problem of removing,
from the macroscopic level, the consequences of the discreteness in the underlying
dynamical system. Once the discreteness effects have been removed the finding
of hydrodynamic behavior is in a sense obvious, since the microdynamical system

conserves mass, energy and momenturm.

The five principal artifacts of discreteness are:

1. non-isotropy of the stress tensor

2. Momentum ncn Galilean-invariance
3. dynamic pressure anomaly

4. Specific Heats ratio artifact

5. Energy non Galilean-invariance.

That certain lattices do in fact give an isotropic stress — the original discovery that
gave much of the impetus to present lattice gas work — is by now well known [14].
With an appropriate lattice and a specific realization of the lattice gas algorithm
described above, correct qualitative behaviour of real fluids has been reproduced
(see Lim(17] and d’Humiéres et al.[18] who have separately collected the results
from over 30 published experiments into two summary articles). The presence of
the other four artifacts prevent correct quantitative results, however. Recently,
Molvig, et.al. [35] have shown how the second two artifacts can be simultaneously

removed by appropriately introducing an energy degree of freedom. The last twe
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artifacts are new, a result of gfi@xamination of the independent energy transport
equation that results for multiple speed lattice gas models. Chapter 3 presents
the derivation of expressions for all of the remaining artifacts while Chapter 5

describes how thev may be removed.

The key new feature is the treztment of the energy degree of freedom. One
must devise interactions that conserve mass, energy and momentum, which induce
energy exchange or transitions among the energy states, while residing on the
appropriate lattice. If we imagine a two-dimensional square lattice where there
are stopped particles, particles that move along the links of the lattice (north,
south, west and <ast) and particles that move diagonally, one example [11] of
how an energy exchange collision can occur is illustrated in Figure 2.1 along with
its inverse process[29]. Note that the vector lengths for the square lattice ensure
that energy and momentum are conserved for interacting particles with equal
masses. Algorithms that do not allow particles of multiple speeds cannot have
energy exchange collisions and, as a consequence, mav have a spurious momentum

invariant [11] and cannot remove the other two momentum discreteness artifacts.

2.2 Choice of an Underlying Lattice

In the last section we indicated that the lattice must have a sufficient degree of
symmetry to ensuze that the stress tensor is isotropic and that its structure permits
the existence and interaction of particles with different speeds. The stress tensor
indicates the way the macroscopic fluid responds to shear stresses. A true fluid
can react to a shear stress by moving equally freely in all directions which is what

we mean by an isotropic stress tensor. We will quantify these requirements in
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Figure 2.1: Example of energy exchanging interactions among particles. The lower

event is termed the forward process while the upper one is the inverse process.

Chapter 3 but for now we will let these qualitative requirements guide us in the
choice of a lattice.

The first fully deterministic lattice gas model with discrete time, positions, and
velocities was introduced by Hardy, de Pazzis and Pomeau[11], a model now known
as HPP. By a deterministic model we mean that specifying the intial distribution
of particles on the lattice is enough to determine the later particle distribution at
any time. In a deterministic model, there is only one possible output of a collision
for a given input. The HPP model was a single speed deterministic model on a

square two- dimensional lattice. Particles 'collided’ when two particles entered
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a lattice site heac-on, resulting in a rotation 90 degrees. if the other two sites
were empty. This procedure conserved mass and momc-tum (energy conservation
is indistinguishakle from mass conservation for single speed models) locally but
also conserved momentum along each vertical and horizontal line, a set of spurious
invariants. This, coupled with the fact that this lattice does not have the requisite
symmetry for istotropic macroscopic flow, required that a different lattice be found

if realistic fluid dynamics was to be simulated.

In 1986 a lattice model introduced by Frisch, Hasslacher, and Pomeau(13)
removed the spurious invariants of the HPP model and had the required symmetry
to allow qualitatively accurate fluid dynamics simulation for the first time. This
model is also two-dimensional but is based on a hexagonal lattice rather than a
square one. Particles, which all have the same speed, may move in any one of
six directions defined by the lattice. Particles arriving at a site head-on collide,
but now the outcome may be non-deterministic as the result may be a rotation
of 60 degrees to the left or to the right. These head-on collisions conserve, in
addition to mass and momentum, the difference of particle numbers in any pair
of opposite directions on the lattice. To remove this spurious invariaat, triple
collisions or the addition of a zero-velocity ‘rest-particle’ was added to the model.
These additions coupled with the possibility of a non-deterministic model allowed
for experimentation with many different FHP models {e.g. see [12],[19],[20] or
21]) but there was still a major flaw with the model which prevented detailed
comparison with true fluid flow results. Since the flow was still not Galilean
invariant, velocity profiles of the lattice model became distorted once the mean
velocity of the flow exceeded a critical value[24] and furthermore, the equation
of state was dependent on this velocity, an unphysical feature that causes the

dynamical pressure anomaly[25] mentioned as the third artifact above.
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The originators of th;F HP model(13] then began looking for a lattice that
could be used to simulate fully three-dimensional fluid flow. Wolfram[22] had al-
ready shown that three dimensional regular lattices do not have enough symmetry
to ensure macroscopic isotropy. A suitable four-dimensional model with requisite
symmetry properties was introduced by d’Humiéres, Lallemand, and Frisch[29).
This lattice is face-centred hypercubic (FCHC), defined as the set of signed inte-
gers (T, T2, T3, T4) such that (z, + 12+ r3+z4) is even. Each node is connected by
links of length ¢; = v/2 to 24 nearest neighbors, having two coordinates differing
by an integer. The theory for single speed lattice gas systems on the 4D FCHC
lattice has been developed in considerable generality by Frisch, et al.[14]. We will
use their notation and formalism to extend the theory to multi-speed systems in

this and remaining Chapters.

Three dimensional fluids reside in the projection of the F*CHC lattice to three
dimensions as shown in Figure (2.2). Note that the lattice sites of the fluid form an
ordinary cubic iattice with unit lattice constant. Such a model may be thought of
as a pseudo four-dimensional model{29] where there is unit perodicity, and hence

no macroscopic structure, in the x4 direction.

The nearest neighborhood of the FCHC lattice is thus described by the 24
displacement vectors obtained from the six permutations of (+1,+1,0,0). A
particle with one of these velocities has energy=1 (one-half times the mass of
the particle times the magnitude of the velocity vector squared where the mass
is unity) and has the lowest energy a moving particle may have. In the three-
dimensional projection, as shown in Figure (2.2), twelve of these vectors do not
have a fourth dimension component and can be thought of as moving diagonally

in one of three planes of the cubic lattice. The other twelve vectors that do have a
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Figure 2.2: The 4D FCHC lattice projected to 3 dimensions. The neighborhood
of cne node is shown, displaying the links to nearest neighbors in the FCHC, 4D
sense. Dotted lines indicate single links of the FCHC system with no displacement
in the 4th dimension. Solid lines indicate links where up to two particles may

propagate with 4-dimensional displacements of 1.

fourth-order component travel along one of the links of the cubic lattice. Up to two
particles may occupy any one of these links in the three-dimensional projection
but are differentiated in the fourth-dimension by the value of x4 which is either
+1. Higher order velocities, which can be expressed as a linear combination
of some subset of these 24 ‘basis’ vectors, also can be projected to the three
dimensional lattice in the same way. Propagation and collisions proceed in this
model as if a full 4D lattice was being used. Collision rules should conserve mass.
all four components of momentum separately, and energy while avoiding spurious
conservations. We denote the particle species or energy with the integer j index

and a particular direction within a species with i. Thus the vector (j,7) indexes
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the complete state space. In the formal developments that follow. we sometimes
use the notation, j = (j,t¢) for this state vector. The unit energy particles have
a velocity spectrum consisting of the 24 nearest neighbor vectors of the FCHC

lattice, denoted ¢1 = ¢, ;.

Next-nearest neighbors are reached by the displacements, (42.0,0,0), and
its four permutations, which form on Lyperoctaedron (HO) and the 16 vectors
(£1,%1,41,+£1), which form a hypercube (HC). The unicn of the HO and HC
gives the generic FCHC polytope[22]. In other words, the next-nearest neighbor
sublattice also has the FCHC geometry. This feature is essential to the viability of
the model, because it guarantees the needed isotropy of the fourth order tensors[13]
for each particle type separately. The 24 velocity vectors of the type 2 particles

are denoted c2 = cy;.

Next-next nearest neighors and so on may be discerned in a similar way. The
number of displacements for a particular energy is equal to the number of velocity
vectors (including permutations) that have the appropriate energy. Finally, we
have zero-velocity rest particles that take part in energy exchange collisions. The
number of rest particles per site is determined by the specific nature of the model.

This relationship will be discussed in Chapter 3.

We have indicated that there are two types of collisions; collisions that occur
within a particle species where a!l before and after collision particles have the
same energy, and energy exchange collisions where the collision process alters the
number of particles per species while still maintaing local conservation laws. The
underlying lattice causes a major conceptual difference between the two types
of collisions. Like-particle collisions result in the set of incoming particles being

simply rotated about the net momentum vector into one of the other planes of
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the FCHC lattice. These like particle collisions correspond to isometries of the
underlying lattice [40]. Maintaining the lattice symmetry, dynamically, requires
that such processes have identical rates for forward and inverse processes. Such a

situation is called detailed balance.

In contrast, the energy exchange interaction is not related to any symmetry of
the lattice. This means that it is possible (and as we will find later necessary to
achieve true fluid dynamical behavior) to have the forward and inverse processes
proceed at different rates. Variable rate coefficients are easily implemented in a
lattice gas by utilizing a binary mask [35] whose density on the lattice is equal to
the rate coefficient. Differing forward and inverse rates imply violation of detailed
balance, of course. In fact, such an interaction does not even obey semi-detailed
balance, a weaker condition thought [14] to be necessary to the proof of an H-
theorem for the system. In spite of this, it turns out detailed balance can be
recovered, after a kind of Boolean renormalization, for the interaction of quasi
particles and quasi holes, leading to an H-theorem that guarantees the modified
Fermi-Dirac disiributions in equilibrium needed to provide true fluid dynamical
behavior. This piece of theory is presented in the following section.

Finding similar energy exchanging interactions among equal mass particles
in the other low lying integer energy states is not so simple. The constraint
of the lattice and of integer values for energy and momentum severely restricts
the possibilities for such interactions. It is indeed fortuitous that the FCHC
lattice required for 3D isotropy allows the energy exchange collisions needed for
thermalization to occur for the lowest energy states in the simple binary form

illustrated above.

In fact, the 4D FCHC lattice has all the properties we would ever require, for,
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as is shown in Chapter 4, not only can this lattice represent all integer values
of energy, but the set of velocity vectors for each energy satisfy the symmetry
requirements individually and collisions between ail energy species are permitted.
For these reasons, the 4D FCHC lattice is the underlying lattice on which we have

chosen to conduct our multi-speed lattice gas experiments.

2.3 Microdynamical Equations

In this section we develop a set of microdynamical equations that describe the
evolution of the lattice gas algorithm. The algorithm is constructed by attaching
2 Boolean field, nj(t.,r.), to each node r. of the lattice at time ¢.. The number
of bits per lattice site, b, is equal to the number of different elements in the state
vector, j = (j,%). Updating of the Boolean field in time consists of a propagation
step,

n5i(te, ra) = nsi(te + 1,00 + €54) (2.1)
followed by a collision step inducing a rearrangement of the b-bits on each lattice

site. A possible state of the lattice site is given by the é-element vector s where
s={s55=0 or 1,j=1,...,b} (2.2)

and each element is 0 or 1 depending on whether a particle occupies that position
in state-space or not. Thus there are 2° possible states at each node. Following
Frisch, et. al. [14] we describe a collision by a nondeterministic transition rule from
an in-state s = {sj} to an out-state s’ = {sj}, which has an assigned probability

A(s — 8') > 0 of occurring. This probability must sum to unity over all out-states
Y As—d)=1 (2.3)
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and is dependent only on the lattice states. s and s'. and not the lattice node.

The collisions will be constructed to conserve mass, energy and momentum.
and assumed to be sufficiently complex to eliminate any spurious invariants. In-
variance of the transition probability under all the isometries of the FCHC lattice
is also assumed[14]. The transition probabilites may either obey the conditions of
detailed balance

A(s — &) = A(s' — 3), Vs. ¢ (2.4)
which indicates equal rates of forward and backward collision processes between

all pair combinations of states, or that of semi-detailed balance

Y As—d) =Y As—s)=1, Vs (2.5)

which s.ates that if, before a collision, all states have equal probabilities, they stay
so after collision, or they may obey neither of the two. The semi-detailed balance
condition is trivially satisfied when the collision rule is deterministic and one-to-
one. The nondeterministic nature of our algorithm does not obey this condition

in this form. This is an important and necessary departure from previous work.

Apart from this important property, and the larger state space. the formal-
ism is identical to that introduced by Frisch. et. al. [14]. The complete update
rule is consequently formally identical. A Boolean function, ,,, implementing
transitions between any pair of states, s and §', is introduced. The function, ¢,,,
is eﬂ'ectivels' the lookup table of some computer implementation. Its ensemble

average[31] is the transition probability discussed above,
(o) = A(s = &), V3,6 (2.6)

and,

Y &u=1 Vs (2.7)
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Since the £’s are Boolean, this equation indicates that for a given s. £,,, = 0 for
all s’ except one. Thus, for a given in-state s and realization of £,,, only one
out-state s’ is possible. We may now postulate a form of the microdynamical
update rule,
nj(t. + 1L, r. + ¢;) = nj + Aj(n;) (2.8)
where Aj(n;) is the collision operator for the system. We wish to find an exact,
explicit form for this function. The Boolean field nj(t.,r.) is also a series of b
Boolean values which n.atches up with only one of all of the possible input states
3. An identity for nj is
ny = () ];’In;‘,i'(l — ng) ) 3 b (2.9)
The function of the first sum over s is to cycle through all possible in-states, one
of which will correspond to nj. Given a s, the product term compares all the
Boolean elements of s with n and has the value 1 if all the elements of the two
vectors are identical and zero otherwise. The identity 0° = 1 is used. The third
sum has the value 1 and was tacked on for convenience. Similarly, if we use the

fact that &, is non-zero for only one s’ given s, we have an expression for the

updated field

nj(te + 1,ru +¢5) = 3 s§ow [Ing (1 = ng) "™, (2.10)
2,8 ¥

We sum over s until the product is non-zero. This means that the correct input
state has been found. The factor £,, ensures that we select the correct output
state when summing over s’ once the correct s has been found. If we combine
the s and s’ sums in eqn. (2.9) and then solve for the collision operator Aj(nj) in

eqn. (2.8) plugging in from eqns. (2.9) and (2.10) we find

Dy(ng) = 3(sf — sy)éaw [T ngd (1 — )00 (2.11)
5,0 J
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the explicit form we desired.

2.3.1 Conservation Laws

The collision function, Aj, is constructed so as to yield the conservation laws for
mass, momentum, and energy. The mass conservation law,
Zm,-Aj,-(nj,-) =0 an.' (2.12)
it
can be replaced by the moment of unity for the equal mass spectrum of the general
b-bit model. Of course, particle number is not conserved for each particle type.
Momentum conservation is
Emjc,-,-AJ-,-(nJ-,-) =0 an,'. (2.13)
Ji
The energy conservation law, unlike solitary speed models[14], is now different

froni mass conservation,

Y. imiciAji(ngi) =0 Vny; (2.14)
5

2.3.2 Recovering Detailed Balance for Quasi-Particles

It is desirable that the collision transition probabilities obey either detailed or
semi-detailed balance in order to guarantee that an equilibrium exists due to the
creation of an H-Theorem{31] for this system. In Section 2.2, we stated that
collisions within a energy species obey detailed balance but that the need to have
a variable rate for the energy exchange collisions required the abandonment of
the balance conditions. We can recover a form of detailed balance for our class of

models by absorbing the rate coefficient mask fields into the particle fields to form
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a kind of quasi-particle for which the collision function will obey detailed balance.

The theory allows any particle species to be renormalized in this manner.

First we simply rewrite the collision function by using the definition of the

Boolean hole field, fi;; = 1 — nj;,

Aytm) = 30 —sj)e.ynn’.’n}‘ ", (2.15)
Now let FY, 7, be the Beolean mask whose statistical or ensemble average determines
the rate of the forward process in a collision, (FZ,.) = F’, dependent only on the
existence of particles of species j, and not on the details of the state. Similarly,
let I, be the Boolean mask whose statistical average determines the rate of the
inverse process. For example, if we have a three-speed system (energies 0,1 and
2) that undergoes energy exchange collisions as depicted in Figure 2.1, the equi-
libration condition for the energy exchange process on a specific two-dimensional

plane of the FCHC lattice can be written,
FProngifiyifiyigr = I°nyingipafofa; (2.16)

where ¢ and i + 1 indicate directions that differ by 90 degrees. This equation
indicates the Boolean nature of the model. For a forward process to occur, there
must be a rest particle and a type 2 particle and two adjacent type 1 holes that
the incoming particles can collide into. The inverse process has the opposite
requirements. Equilibrium is reached when the rate of forward reaction is balanced
by the inverse rate. For this case, we can associate the renormaliztion solely with

the rest particles.

In the formal expression for the collision function, equation (2.11), these masks

are part of the Boolean transition function, £,,, for the complete transition and

45



are not denoted explicitly. Note, however, that the energy exchange collisions
always require the presence of a rest particle or rest hole. and therefore. the rate
mask factors will only appear when rest particles and holes appear as non zero
factors in the state product [Jj: n;',"( 1- nj:)“"j’). Thus by defining the quasi-rest
particle field,

no = F°ng (2.17)

and quasi-rest hole field,
fio = 1°7io (2.18)

we can extract the rate masks from the transition function and put them with the
state product, now as part of the quasi particle density. This renormalization is
trivially generalized

nji = Fing; (2.19)
and quasi-rest hole field,

i = P (2.20)
so that other processes may be rate controlled with direction independent masks

that become part of the moving quasi particles. The collision function can now

be written in terms of the quasi-particle fields,

% _(1“’ N
Ay =3 (85 - ) [Ing iy (2.21)
jl

a8

where the function, £.,,, now leads to a transition probability, when ensemble
averaged,

A(s — o) = (€1,) (2.22)
that obeys the detailed balance condition,
Al(s = d)= A(s = 3) (2.23)
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because for the quasi-particles and quasi-holes the forward and backward rates of
all collisions are now equal. Since it is now the case that 7;; # 1 — n;; we speak of
quasi-particles and quasi-holes separately. In the next section we show that these
equations assure that a thermal equilibrium exists and that it has Fermi-Dirac

form.

2.4 The Kinetic Equation

The kinetic equation is obtained from the microdynamical equation (2.8) by sta-
tistical averaging and employing some assumptions about the correlations arising
because of the nonlinearity in the microdynamics. For dilute gases, one usually
assumes the Boltzmann approximation, wherein the probabilities for the different
states in the in-state are independent and the statistical average of a product
factors to the product of averages. In Chapter 6 we prove the validity of this
assumption for the lattice gas models we are studying in the form of a Shot Noise
Theorem. The result hinges on the absence of self-correlation effects from all lat-
tice models and the negligible effect of non self-correlatior terms in models of
moderate size that obey detailed balance. Hence we will apply the Boltzmann
postulate of equal a priori probabilities for all microscopic states that have the
same macroscopic state for a system in thermal equilibrium. In standard Statis-
tical Mechanics parlancef31), this means that in thermodynamic equilibrium the
system under consideration is a member of a microcanonical ensemble. When we
ensemble average some property of the system, we take the value of this property
for every member of the ensemble and then normalize by the size of the ensemble.

It is in this way that we can calculate continuous and ultimately macroscopic
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properties of our microscopically discrete system.

Thus we define the average number of particles in state, j = (J,7), from the

ensemble average as
Nji = (njq) (2.24)

The average hole density is then,

Njg = (i) =1- (nj). (2.25)
Similarly, the average quasi-particle density is.

Nji = (nji) = (F')N; (2.26)
while the quasi-hole density is,

Nii = (iljs) = (P) N, (2.27)
The rate factors were extracted from the transition matrix £.s which indicates
when a transition from state s to state s is allowed. It is statistically independent

of the ny. Thus, the ensemble average of a quasi-particle or hole is equal to the

product of the average of the mask and appropriate density separately.

The kinetic equation is obtained by averaging the microdynamical update
rule (2.8), using either equation (2.11) or (2.21) for the collision function and
employing the Boltzmann assumption. The average collision function. or collision
operator Cj; = (Aj;), can then be written in either of the two forms. In terms of

the particle densities,
Clns) = 306§ = ) Als = ) I~ (1= Nyt (2.28)
or in terms of the quasi-particle densities,

Cy(NG) Z(sj —85)A(s — s )H./Vj, 4"(1 ek (2.29)
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The collision operator vanishes when it operates on the particle distributions
that correspond to thermal equilibrium. In this state, there is no net effect of the
collision process on the system dynamics. In Frisch, et al. (14], an equilibrium
solution for a single speed lattice gas system that obeys semi-detailed balance
was found based on a series of provable lemmas. It is possible to generalize
their lemmas to our multi-speed model that obeys detailed balance to obtain the

following

Lemma 1 The follewing statements are equivalent:

@ The Nj; ’s are a solution of the set of equations
Ci(mg) = 2 (sf — o) A(s = NI N (1= )™ =0 vi  (2.30)
a8 ¥

® The Nj; ’s are given by a generalized Fermi-Dirac distribution

]

Ny =
s r; + ezp(amj + ym;c;; - u + ,ij)

(2.31)

where r; = (I)/(F’), is the rate coefficient factor, a,v,5 are arbitrary
real numbers, and u, is an arbitrary D-dimensional vector which we will
take as the fluid velocity. The quantities, m;j, ¢ji, and €; = 3m;jc}, are the
microscopic mass, velocity and energy, respectively.

The lemma of Frisch, et.al. [14] applies by replacing the densities by quasi-
densities. The proof is given in detail in Appendix A. The lattice gas model
obtains a Fermi-Dirac distribution at equilibrium because of the built-in exclusion
principle, not more than one particle may occupy a particular position in state

space at a particular time.
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To develop transport theory, or hydrodynamics, the difference equation (2.8)
must be converted to a differential equation. This is done by first ensemble av-
eraging the entire update equation and then Taylor expanding the displacement
operator for slowly varying space and time scales. In the lattice model, the unit
length is the lattice spacing while the unit time is the time required to traverse the
lattice spacing. Because there may be many particles (with different velocities)
occupying a lattice site, the probability of a collision occuring at any site is very
high. This translates into a short free mean path of order the lattice spacing which
means that the unit time is of order the collision time and particle microvelocities.
¢j, are of order the sound speed. Thus the expansion of the ensemble averaged mi-
crodynamical equation is actually an expansion in the Knudsen number, x ~ /L,
where ) is the mean free path and L is a typical macroscopic scale length. This is
the same expansion parameter used to develop the transport equations of hydro-
dynamics. As is standard with such expansions[3i], all the transport effects are
contained in the terms through O(x?) where the zeroth order gives the equilibrium
distribution, first order gives the Euler equations and the second order gives the

Navier-Stokes equation. Through this order the kinetic equation becomes,

) 1 10° 0
&Nji + V-cjiNj; + -2-VV : cjic;iNji + E-WNJ'; + T (V-cj;iNy) =Cy. (2.32)

We have already calculated the equilibrium distribution for this lattice gas
system, eqn. (2.31). In the next Chapter, we develop the Euler equations.
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Chapter 3

Euler Equations for the Lattice
Gas

The Euler equations are the hydrodynamic equations describing the conservation
of mass, momentum, and energy, in the limit when the transport coefficients (dif-
fusivity, viscosity, thermal conductivity, etc.) are negligible. They arise formally
from moments of the kinetic equation for kinetic distribution functions in local
thermal equilibrium (when perturbations to the local equilibrium proportional to
the spatial gradients are neglected as small)[31).

In this Chapter we develop the Euler equations for the multi-speed lattice
gas model. When we compare these equations with the hydrodynamic equations,
we find that the form of the lattice equations are correct but there are a few
scalar coefficients that are different from the continuum equations. In the three
conservation equations, these discrepancies can be summarized into three different

terms or lattice artifacts. Deriving these artifacts is the purpose of the current
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Chapter while showing how they may be removed (made to equal the continuum

values) is the subject of Chapters 4 and 5.

In order that we may illustrate the method of calculation of the Euler equations
as well as present the hydrodynamic results, we will sketch the calculation of the
continuum Euler equations as described in any book on Statistical Mechanics (e.g.

Huang(31]).

In the continuum, the microscopic distribution function is a continuous func-
tion of space, velocity and time, usually denoted f(x,v,t) where x and v are
D-dimensional vectors corresponding to the D dimensions of the volume. This

function obeys the kinetic equation

% FO, v, 1) + V- vf(x,v,8) = C(f, ) (3.1)

where C(f, f) is the non-linear Boltzmann collision operator. If we multiply this
function by any one cf the mass, momentum or energy of the microscopic parti-
cles and then integrate over velocity we get a vanishing result since these three

propertites must be conserved by the collision function

m |
/ P®v| mv e, f)=0. (5.2)
Fmv?
These are the only moments that cause this to happen. Thus, the mass, mo-

mentum and energy moments of the kinetic equation can be summarized in the

general form

3

5906t) +V Ty =0 (3.3)
where

a8 = [dPogv)fix,v,1) (34)
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q(v) q(x,t) To(x,1)

m p pu

mass density | fluid momentum

mv pu S
l fluid momentum | Stress Tensor
imv? U Q
energy density energy flux

Table 3.1: Summary of notation and names for different moments of the kinetic

equation.

Lixt) = [dPog(v)viix,v, 1) (3.5)

The notation that we will use for each of these moments when the conservation
moments are performed is shown in Table 3. This notation will be used for both

the continuum and the lattice gas system.

To find the Euler equations, we plug in the equilibrium distribution for f(x, v, t)
and calculate the conservation moments explicitly. In the D)-dimensional contin-
uum fluid, the equilibrium distribution has the form of a Maxwellian in velocity
space

n(x,1)

(2xT(x,t)/m)P/? exp[-m(v — u(x,t))*/(2T(x,t)]. (3.6)

f(x7v1 t) =

We now can calculate the moments in eqns.(3.4). The results are

p = mn(x,t) 3.7)
pu = mn(x,t)u(x,t) (3.8)
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S = PI+puu=nTI+ puu (3.9)

U = U+ -;-pu2 = -?—nT + %pu2 (3.10)
) 2 1
Q = U+ Pt gpuiu= (T30, 4 Lot (3.11)

where P, = nT is the scalar or isotropic pressure and U, is the internal energy.
We see that

P, = =U, (3.12)

W] )

which is the relation that describes equipartition of energy in an ideal gas. If
we use the thermodynamic relation P, = (c,/c, — 1)U, = (v ~ 1)U, [32], where
Y = ¢p/c, is the ratio of specific heats, we find that y = (D + 2)/D, the ideal gas

relation.

In summary, we have the following conservation equations for the continuum

gas. For mass the continuity equation

gt-p +V-.-pu=0. (3.13)
For momentum
0
5 +V. (I-;—Up 4 puu) = 0, (3.14)

which may be alternatively written when we multiply the continuity equation by

the low velocity, u, and subtract the result from above, as

gtu +pu-Vu=-VP, (3.15)
Finally, the energy equation is

D42
Uy + 5oty 4 v (222 22Uy + 5pu)u =0, (3.16)
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3.1 General Form of the Lattice Moment Equa-

tions

The analysis leading to the Euler equations will treat a very general class of
systems with a spectrum of masses and energies. Collisionality sufficient to achieve
thermal equilibrium over all states during time scales of interest will be assumed.
This section and the next will derive the Euler equations tlat result under those
assumptions, and indicate the restrictions and conditions required to obtain true
fluid dynamic behavior at the Euler level. The lattice system is characterized by

the following parameters in a species space indexed by j and a direction space

indexed by @

Nji(x,t) = microscopic distribution function

m; = rnicroscopic mass
Cji = velocity vector (c;= magnitude
g i (6= magnitude) (3.17)
d; = number of directions per site
€ = 2mjc? = microscopic kinetic energy
rj = (I} /(F7) = rate coefficient ratio.

The Euler equations follow from the mass, momentum and energy moments of
the lattice kinetic equation (2.32) through first order in the Knudsen expansion.

Thus we have,

m;
0
.Z. (EN,-.-(x, Cji,t) + V - ¢ji Nji(x, cf"t)) mjci; | =0 (3.18)
PR
€;

where the collision operator on the right-hand side vanishes since collisions con-
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serve mass, momentum and energy identically. There are two differences between
this kinetic equaticn and the kinetic equation used for a continuum gas. First of
all, in the continuum the velocity spectrum is continuous so one performs integrals
over velocity to get the Euler equations. Here, the velocity spectrum is discrete so
sums are taken rather than integrals. Secondly, as we have seen. the equilibrium
relation for a real gas can be shown to be of Maxwell-Boltzmann form while for

the lattice gas the equilibrium is Fermi-Dirac.

We now give the general results for the lattice Euler equations and discuss
their consequences. Explicit calculations will be done in the next section. The

mass moment gives the continuity equation directly,

%p +V-pu=0 (3.19)

where p = ¥, m;jN;(x,cj,t) is the fluid density. This equation is identical to

the continuity equation of hydrodynamics. The momentum equation is
7]
-&pu +V.8=0, (3.20)

where S = ¥°;; mjcjic;iNji(x,cji,t), is the complete stress tensor, including the
advection of fluid momentum. One finds [14] for systems with a lattice structure

sufficient to guarantee isotropy of this tensor, that S can be written as
S =1P, -+ gpuu, (3.21)

where the factor g, which is a function of both density and temperature in multi-
speed lattice systems, is not in general equal to unity as it is in hydrodynamics.
If we multiply the continuicy equation, eqn. (3.19), by the fluid velocity and then
subtract the result from the momentum equation, eqn. (3.20), and substitute for

the stress tensor using eqn. (3.21), we find
p%u +gpu-Vu+uV - (pu(g - 1)) = -VP,, (3.22)
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exhibiting, with g # 1, the generally non-Galilean invariant character of lattice
gas hydrodynamics, since momentum is advected with velocity gu instead of u.
In previous models this problem was circumvented by restricting consideration to
incompressible flows thereby eliminating the third term in equation (3.22) and
by rescaling the time to put the second term in the proper hydrodynamic form.
But this technique does not work when mixtures of fluids are being simulated
([36, 37]) since the velocity of the fluid interface is constrained by the conservation
of particles to be equal to the average particle velocity and therefore cannot be
subject to the same rescaling. Even when this rescaling may seem justified in a

single fluid flow, the single-speed isotropic pressure is [14]

Py = 3p(1 ~ Zug(p) (3.23)

where D = 2 for the FHP lattice and D = 4 for FCHC. This indicates that the
pressure of the flow is velocity dependent. This unphysical result makes it very
difficult if not impossible to quantitatively compare one-speed lattice results with
actual flows. Furthermore, the dynamic pressure anomaly is the same order as the
variation in the pressure that accounts for drag and lift on objects placed in fluid
flow. This means that the simulated drag will vary from the actual value by order
unity and will be dependent on the flow conditions. Similarly, one cannot correctly
predict the pressure dependent flow separation phenomenon that is so critical in
liydrodynamic design if this anomaly is present. Recently[38], it has been found
that adding rest particles to a single-speed model allows the Galilean factor to be
re-adjusted to the desired hydrodynamic value but at the expense of violating the
semi-detailed balance condition. Thus, there is no longer an H-Theorem for this
medel and monotonic evolution to any equilibrium is not assured. In contrast,

as described in Chapter 2, a multi-speed model with collisicn rate masks may be
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renormalized so that detailed balance is obeyed.

In the muiti-speed FCHC model, we will show that the isotropic pressure has

the form
2 1 2
P, = B[U,, + 1pu?(1 - g). (3.24)

We now notice that if g = 1, then both the non-Galilean invariant character of
the advected momentum (eqn.(3.22) becomes identical to eqn.(3.15)) and the dy-
namic pressure anomaly are removed (eqn.(3.24) becomes identical to eqn.(2.12)).
The energy equation had not been previously examined for single-speed lattice
gas hydrodynamics since in existing algorithms it was identical to the continuity
equation (3.19). The inclusion of an energy conservation constraint is what allows
the possibility of the removal of the pressure anomaly in the multiple-speed case.

The energy moment of eqn. (3.18) gives the energy equation in the correct form,

]
U +V-Q=0, (3.25)

where Q = Y, ; cji€;Ny;, is the full energy flux, including advection of the hydro-
dynamic energy density.

If the aigorithm is to describe realistic hydrodynamics, the energy density U,
must be the sum of the particle kinetic plus internal energy U, plus the hydro-
dynamic flow energy -2"-pu2, eqn.(3.10). The lattice gas energy density does have
this form. In addition, the energy flux must explicitly contain the fluid energy
advection term %puzu, in addition to the thermodynamic terms describing the
consequences of distortion of the fluid element during flow. For the lattice gas,

the energy flux takes the form

Q= (7Up + g’%puz) u (3.26)
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where v is effectively the ratio of specific heats, and ¢’ is the energy analog of
the Galilean factor, g, that appears in the momentum equation. If we compare
this with the actual relation, eqn.(3.11), we find that in eqn.(3.26), v should equal
(D+2)/D and ¢’ should equal one. In general in the multi-speed lattice gas, this

is not the case.

We now rewrite the lattice momentum and energy conservation equations so
that each equation has two contributions, the correct hydrodynamic result and a

portion due to the presence of the lattice. For the lattice stress tensor we write

g?pu + V- (1P, + puu) + V  [(g - 1)puu] =0 (3.27)

and for the energy equation

g 1 1
b?(Up + -2—pu2) + V.- (U, -+ §pu2 + P,)u 3.28)

1 D+2 1
+ V-[(g—l)ﬁpu2+('y— i )Up+(g’—1)-2-pu2]u=0

where the quantities in square brackets are artifact relations that vanish when
the artifacts take on the continuum values. When this occurs, the remaining
terms give the correct conservation equations precisely, eqns. (3.14) and (3.16).
The g term appears in the energy equation when we substitute for #Up using
eqn. (3.24) to give the isotropic pressure, P,. Using the total derivative notation,
& =% +u-V, eqn. (3.27) becomes

p%% —_VP,-V-Al (3.29)

where A1 = (g—1)puu is the artifact term for the momentum equation. If we dot
this equation with the flow velocity, u, and use the continuity equation, rewritten

in terms of the total derivative

%p =—p(V-u) (3.30)
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we attain, after a bit of manipulation

D
priev’ + 3o (V u)+ V- uP, - P(V-u) = —u- V- Al (3.31)

The energy equation, eqn. (3.28), can also be manipulated to obtain
D
D—t(Up +306%) + (Up + Lpu?)(V - u) + V- uP, = -V - A2u (3.32)

where A2 contains all the artifact relations in the energy equation. Subtracting

eqn. (3.31) from eqn. (3.32) and using eqn. (3.30) to substitute for the divergence

of the velocity field, we arrive at

Dy _Upt+P)D
Dt P p Dt

p=—u-V.-A1-V. A2u. (3.33)

When g = 1, all artifacts in the momentum equation vanish and we get the
equipartition of energy result P, = U, from eqn. (3.24). If we substitute for U,
into eqn. (3.33) , where now A1 = 0, we find

D, D+2P D D+2 ;1 2]
Bt =5 o~ V(1 p=) B+ - Ugedu. @34

The equation of state for the lattice gas fluid, like any other fluid, can be
written in terms of three thermodynamic quantities. We choose pressure, density

and entropy, S, as the three variables and solve the equation for the pressure, P,
P, = P,(p,S). (3.35)

A small change in the pressure can be expressed in terms of small changes in the
D_  ,D oP,\ D
-D-ZP, =c, EP + ("é?‘)p ’5{5 (336)
where 2 = (3P, /dp)s is the square of the sound speed for the flow.

other two quantities
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We are examining the Euler equations for the lattice gas and so we have
neglected all molecular transport effects in this analysis. In this situation, the

flow is isentropic[65), 5:S = 0, so that eqn. (3.36) reduces to

Dp_nl, (3.37)

Upon comparing eqns. (3.37) and (3.34) we find that if the energy artifacts have
been removed, v = Pﬁl and g’ = 1, then for a lattice gas

2=D+2h (3.38)
D »

which is identical to the result in a true ideal gas. If the two energy artifacts have

not been completely removed, we use eqn. (3.30) with eqn. (3.34) to get

-ll)—)t-P, [7—+(y~1) ] D’ uV[(7—D—,#)P+(’ )Il)ptF]

(3.39)
which shows that the square of the sound speed is actually close to ¢? = 'y%- ina
laitice that has artifacts.

In summary, there are three lattice artifacts. One is in the momentum equation
for both single- and multiple-speeds lattice gases in two separate places. While
this artifact, g, is not in general equal to the Galilean invariant factor 1, we found
that if g = 1, the momentum conservation equation for the multiple-speed lattice
gas becomes correct while the single- speed result still has an unphysical feature.
Furthermore, there are two artifacts in the energy equation, ¢' and +, which are

not in general equal to their hydrodynamic values of 1 and (D + 2)/D, respectively.
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3.2 Calculating Expressions for the Artifacts

In this Section, we develop the Euler equations for the multiple-speed lattice gas
model on the FCHC lattice based on an expansion of the equilibrium distributions,
eqn.(2.31), for small fluid velocity u (or small Mach number) through third order
in the Mach number. By expanding to this order, we capture all the artifacts
that were described in the last Section which then allows a direct comparison
with fluid dynamics results. This expansion [41, 14, 22} is in a sense subsidiary
to the weak gradient expansion that underlies transport theory. It can be done
in continuum kinetic theory as a convenience, but is often unnecessary since the
velocity integrals over the Maxwellian distribution can be carried out in any case.
For lattice gases, these integrals become sums that cannot be done without the

subsidiary expansion.

In continuum mechanics, the form of the equilibrium Maxwellian is calculated
from an H-Theorem and results in a function with three undetermined Lagrange
multipliers, after we have made the identification that the momentum coefficient
should be proportional to the fluid velocity, similar to the coefficients that ap-
pear in eqn.(2.31) for a lattice gas. In the continuum, these three coeflicients are
determined(31] by equating the mass, momentum and energy moments (the con-
served quantitites) of the general Maxwellian to the known expressions for these
three quantites (Table 3). We do the same procedure for the Fermi-Dirac relation
while utilizing the Mach number expansion. We take moments of the equilibrium
relation order by order where the form of the coefficients as functions of the fluid
velocity is initially undetermined. This provides a freedom in the perturbation
theory to structure the resulting equations in a most convenient manner. Exploit-

ing this freedom is the key to obtaining the proper hydrodynamic equations.
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The first step is to expand the coefficents. a, v, and 3, in eqn.(2.31) as a
function of the fluid velocity u by noting that they are scalars and so can depend
on u only through u? to the order we are carrying this expansion. Consequently,

they may be expressed as

a =a(u?) =ap+ ay(u?)
7 =7(t?) = +7(s?) (3.40)
B =3(u*) =3+ (v’

where the subscripts denote the order in u. One can anticipate that 3, will

correspond to the thermodynamic expression 3o = 1/kT.

Plugging the above into the equilibrium relation eqn. (2.31) and then expand-
ing Nj; in powers of u yields
Nji=N;[l + Njymjejii-u
+  3N{vimi(ciii - u)? + Ni(mjoz + €;02) (3.41)
1
+ N;‘Yzijﬂi ‘u+ -N;"‘ygm?

6
+ O(u')]

(csi - u)® + N}'(yomjc;ii - u)(mjaz + €;62)

where
N; = £
j —
rj + ezp(aom; + foe;)
is the zero order, isotropic, Fermi-Dirac equilibrium density (per direction), and
F(z) = 1/(1 4+ €%). The term N; has been pulled out of the expansion so that

the coefficients N;, N, and N} have the simplest possible form. The form of

= F(— lnr,- + agm; + ﬂoEj), (342)

these coefficients, which are easily calculated from repeated differentiations of the

function F(z), are

, - F
Ni = F=-(1-Nj) (3.43)
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"

N! = T=(1_N,-)(1—2N,-) (3.44)
N" — EZ—_(l—N-)(l-GN‘+6N-2) (3.45)
i = T £V j il :

Note that r; does not appear in the expressions as written above. It only enters

in the equilibrium relations relating the various deasities, N; in equation (3.42).

When taking the mass, momementum and energy moments of the above ex-
panded distribution function, we have to sum over particle species j, and direction
, t. The result of the direction sum indicates whether a lattice is sufficiently sym-
metric. This is the case when the direction vectors, c;;, give rise to isotropic
tensors of both the second and fourth rank when summed over directions. As
mentioned in Chapter 2, this is a feature assured by the FCHC lattice for all
- patticle speeds individually. This will be shown in Chapter 4.1.1. It means that

E:ngcj',' = %C?I, (346)
and
d:
chiCjiCj.'Cji = 'DTEJT?)'CJ'AM’ (3.47)

where we have adopted the notation of Wolfram [22], defining A™) as the com-
pletely symmetric 4th rank tensor,

AL 5 = Bapbos + Baybis + basbop. (3.48)

Because of the symmetry of the direction vectors, sums over an odd number of

cji's vanish[22)

>.¢i =0 (3.49)
ZCj;Cj;Cj; = 0. (3.59)
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Of course, a sum over directions of a quantity that does not depend on direction

results in the factor d;, ¥_; = d;, for a particular speed.

To facilitate the summation over species space, four inner products are defined

(a,b)o = 3 d;Nje;b;
Jj

(a,b)l = —Zd_,-NjN_;a,-bj (351)
j

(a,b)y = Y d;N;Nla;b;
J

(a, b)3 = — Z djN,-NJ"”a,-bj.
J

where a and b are any system vectors over species space such as mass or energy.

Because of the symmetry relations eqns. (3.46), (3.47), (3.49), only the zeroth
and second order moments of mass and energy are non-zero while the first and
third moments of momentum survives. This gives six equations which should in
principle allow us to solve for the six coefficients ao, a2, ¥, etc. so that these
moments give the correct hydrodynamic values. We will then calculate the stress
tensor and energy flux vector using these results to make the form of the artifacts

explicit and to complete the calculation of the lattice Euler equations.

3.2.1 Mass and Energy Coefficienis

We begin with the mass and energy momeats, evaluated order by order. The
lowest order result, where Nji = Nj, defines the zero order mass and energy

densities according to

P =Y m;N; = ¥ m;d;N; = (m, 1), (3.52)

Ji J
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and

U = ZGJN Zejd N; = (¢, 1),. (3.53)

Ji®

There is no first order contribution to the mass and energy densities since N},-l)
has a single c;; which is annihilated by the direction sum. There are two second

order terms, the terms on the second line of eqn. (3.41). Second order expressions

are

p® =" m;NP = 2 m;N;Nj(mjao + ¢;B2) + 3 mN; Ni3d(cic - u)? (3.54)

It It I
and

U® = 6N = T eN;N(mjen + :62) + X emiN; N $ad(es - w)?. (3.55)

3 i 3
The third order contribution to mass and energy also vanish due to eqns. (3.49).
We may make the left sides of the zeroth and second order equations any-
thing we like and solve for the coefficients ag, fo, 02, f2. Usually this expansion is
developed so that all the mass is contained in p© through second order so that
the mass of the fluid is not velocity dependent. Thus one utilizes the freedom in
the perturbation theory (underdeterminedness of the coefficient equations) to set

p® = 0. Then, p = p©, to second order and the continuity equation is complete.

The energy moment is different since there may be both a zeroth and second
order contribution. There is the particle kinetic energy, U,, which is zeroth order

and the energy associeted with the fluid flow, -;-puz, which is second order in u.
In summary, we identify
p9=p and UO=y, (3.56)

which allows us, in principle, to solve for ap and Bo. Since we have already

identified f; as being related to temperature through the equation of state, we
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conclude that ag allows us to specify the density. To obtain the correct second

order values of density and energy, we solve for the coefficients, a,, and $, so that
PP =0 and U® =ipu’ (3.57)

The result will be left in terms of the momentum coefficient 7o to be computed
subsequently. Thus, both density and energy will agree with the true fluid dy-

namics relations (eqn. (3.10)).

Utilizing the notation of eqns. (3.51) and the direction symmetry relations,
eqns. (3.54) and (3.55) can be written as

1

(m7 m)laz + (m’ e)1ﬂ2 = quua(mz, 6)2 (3'58)
1

(ma 6)102 + (61 e)lﬂ2 = 573“2(m5’ 5)2 - %qu (359)

Equations (3.58) and (3.59) are soluble provided the determinant of this two

equation, two unknown system,
A = (m,m)(s,€); — (m, f)? (3.60)

does not vanish. But A4 # 0 is the condition that the mass and energy “vectors”
are not collinear. This is just the independence of the mass and energy properties
that the present, multiple-speed, algorithm exhibits. This is not the case for single-
speed systems. Thus, A is not equal to zero in all cases for the multiple-speed
algorithm. Solving for a; and g, yields

a; = -}i[(m, ehipu® + i»,guZ ((e, 1(m?,€)2 — (m, €); (me, 6)2)] (3.61)

D
B = _(ﬂz;i'“_h%p,‘z+fﬁ7§uz ((m, m)y(me, €); — (m, €): (m?, €),)(3.62)

This completes the solution of the mass and energy coefficients vp to third

order. The equations ar« retaired in the most general form here. Simplifications
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will be indicated as the conditions needed to obtain hydrodvnamic behavior are

derived subsequently.

3.2.2 Momentum Coefficients

We now calculate the coefficients 4o and +, from the first and third orders momen-
tum moments respectively since the zeroth and second order contributions vanish
due to the vector symmetry relations. The first order momentum moment, which
should be equal to the first order term pu, is
p = Em,c,,z = 702 N,-NJ'-mfc,-;cj.- +u
Ji 38

- -%,%(m,e)u as

which gives the coefficient, 7o, in terms of the equilibrium quantities,

D o
-2 P 3.64)
* =TT me) @

We have made the density p a zeroth order quantity. Thus, the fluid momen-
tum, pa, is purely first order. Requiring that all momentum be contained in pu

through third orde: determines the second momentum coefficient, v,.

Z m;c; N, (3)

= Zm,c,, [N Tamjcji - w + 3
3k

(ar2m; + €;58,)) (3.65)

2 2~ \
= -’Y:z—(m, 6)1“ + _,o [ag(m, mejs + ﬂ,(me, 5)2] u

0

N’"yom?(cj.' ‘u)P+ N (yomjcji - u) X

_7 ZN Nm -—-—m464 2“
¢ iSipm+2)t
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2 2
= —mg(m.chu+ L fag(m, me); + fy(me. )]
2

! 2 2y .2
'70-——-—-D(D+2)(m ,€ )su"u

where we have used the fact that (A® : uu)-u = (2uu+ v’I)-u = 3u?u. Solving
for v, gives

Ny = -'Yguz (m2’€2)3
2T OF2) (m,e) (m,eh

[ea(m?, €)z + Bi(me, €)a] (3.66)

Plugging in for 5, @z, and B, from eqns. (3.64), (3.61) and (3.62) respectively,

gives - in terms of equilibrium quantities only.

With all of the coefficients now determiner}, we may now caiculate the stress

tensor and energy flux vector.

3.2.3 Stress Tensor

To third order in u the pressure tensor is,

5

> mic;ic;iNj;

I

szN [cﬁcll + 3N, ”707“2((3:-‘:18‘310‘31- : uu) + MNj(mjar + e,ﬁg)c,.c,,]
i

2

IB(U‘°’ — (m, €103 — (6, )] + AW : vu— 210

m(me, ) (3.67)

Again we use A® : uu = 2uu + u?I so that eqn. (3.67) can be written as

2 2
S = I%[U(o)—-(m,ti)laz (e,¢€ )ﬂ2+(m€af)22(D +2)J
+ —-i”-%—(me €)uu (3.68)
DD +2)" P
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Substituting U(®) = U, eqn. (3.64) for 7o, and eqns. (3.61) and (3.62) for a; and

B2, the stress tensor becomes, after some algebra,

R 1.2 1.2 D (me,e),
S = Ipltie =i 5 ?) |

D (me,e),
+ (D T3 (m,e)? p) puu. (3.69)

This is of the form anticipated in eqns. (3.21) and (3.24) with the Galilean factor,

g, given by
D (me.¢),

D+2 (m.e?’ (3.70)

g:

3.2.4 Energy Flux

Finally, we calculate the energy flux, Q, to third order in u, giving

Q = E aE_,'Nj,'C_,'.'

3
= Y &N [(70 + 1) Njm;ejic;i - u + N”’ Yornic;icjicsic; - uuu
3

+ Nj Yomji{aam; + €;5;)cjic)q - u]

2 2
= —(rn+ ’Yz)ﬁ(ﬁa €)iu — 'YSWZE)-(C, me?)zu’u
+ 72)-70 [oa(me, )2 + o, €)3] a (3.71)

Substituting for v and v, we get the following form of the energy flux moment.

(59 (m2,5)1 _ (mc, 5)2 } (m€1€)2 _ (62,6)2]}
Q m,¢€ )1 [1 { [(ma 5)1 (515)1 ] K ﬂﬁ [(mae)l (‘:af)l ]
p?D? (e, eh(m?, €!)
¥ %”"2 [2(0 ¥ DR {(""2")“ - e } ] G
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The final thing to do is to substitute for a2 and 3, simplify the result, and we

achieve the predicted form for the energy flux moment, eqn. (3.26)

Q= (10, + g'kpu?) u (3.73)
where
= _(fz.fl{_. 3.74
" P, ent, 14
and
' p*D(e,e) { (me?, €)s _ (m?, 52)3‘ D +
9= 2(ma5):1, (67 6)l (m’e)l D+2

(m?e): _ (me,e)y

(ma C)l (6’ C)l

i [(mz,e)z(f, eh — (m,ehi(me,e)z + b%;(m» 6)?] [

2

(me,e)2  (,¢€),

2 2
vy [(m,m)l(mﬁ, €)2 — (m, e)i(m’, €), — ﬁ,;(m’m)‘(m’ 6)‘] [(m,c); " (een

and A is the previously defined determinant (eq. 3.60).

In summary, we have the following conservation equations for the multiple-

speed lattice gas. For mass the continuity equation

2o+ V.=, (3.76)

identical to the continuum result, eqn. (3.13). For momentum

-gt-pu +V. (I'?ﬁ [U,, + %pu’(l - g)] + gpuun) =0 (3.77)

with g given by eqn. (3.70). When ¢ = 1, this equation reduces to eqn. (3.14),
the continuum momentum equation.

In the single-speed lattice gas, the isotropic pressure term had a dynamic
anomaly that presisted despite the attainment of Galilean invariance, eqn. (3.23).

For the multiple-speed case, however, we see that this anomaly can be eliminated

71
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entirely by having the correct hydrodynamic energy together with Galilean invari-
ance. Note that the term required for the cancellation of the second order energy,
3pu? in eqn. (3.69), results from combining the terms involving a; and ,, with
the scalar part of A® : uuu. It cannot be related to any simple properties of the
tensor A(). The cancellation of the pressure anomaly only seems to occur in gen-
eral for systems which are purely kinetic energy systems. Molvig et al.[39] showed
that when particles have an independent component of internal energy, as in the
work of Chen et al.[42], the internal energy terms that propagate through the cal-
culation remain uncancelled in the scalar pressure term and restore the pressure
anomaly. This is because the stress tensor is basically a kinetic energy moment
while the components a; and J, are calculated from a full (internal plus kinetic)
energy moment. Thus, the internal energy contribution from these coefficients

cannot be cancelled in the stress moment.
Finaily, the energy equation is
0 I, S
5iWUr +5o0) + V- (YU +g'5pu"Ju =0 (3.78)

which reduces to the continuum relation: eqn. (3.16) when v = 953 and ¢’ = 1.

In the next two Chapters, we examine how these three artifacts can be made
to equal their continuum values so that the conservation equations for the lattice

gas and continuum fluid are identical.
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Chapter 4

Approach to Continuum

Through Adding Higher Speeds

In the last Chapter, we derived quantities that represent the artifacts inherent to
a multiple-speed lattice gas model in comparison with the continuum fluid resuit.
These artifacts are present because of two physical reasons. First, while in the
continuous Boltzmann gas, particles are free to move in any direction, the lattice
case restricts particles to move only in a discrete set of directions that conform
with the structure of the underlying lattice. Secondly, a real gas allows particles
to have a continuous spectrum of speeds from zero to infinity (or the speed of light
in relativistic treatments) while lattice gas models so far have been restricted to
just one speed [14], [17],[18] or a few discrete speeds {39], [42]. In Chapter 5, we
will examine how the rate of energy exchange collision coefficients, r;, that were
introduced into the general theory to recover detailed balance, can be exploited
to remove these macroscopic artifacts in a finite but multiple speed system even

though, microscupically, the reasons for the artifacts, as stated above, still exist.
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In this Chapter, we examine the evolution of the lattice gas model as parti-
cles with higher and higher speeds are added to the algorithm without the rate
factors. We show that the lattice algorithm approaches and then identically be-
comes the continuous model in the limit of infinite speeds being added to the
lattice model. This means that the artifacts disappear in this limit. Intuitively,
this seems possible since in the limiting case of the lattice model, particles of all
speeds are permissable as in the continuous case. To show that this is true, there
are a number of properties of the underlying lattice that are necessary. First of
all, the lattice must possess enough symmetry that particles of all speeds can be
represented. This requires that both the second and fourth order velocity tensors
for all speeds are symmetric which results in the lattice exhibiting an isotropic
stress and that there are no gaps in the particie energy spectrum. Both of these
requirements are fortuitous properties of the underlying lattice we have chosen,
the 4D FCHC lattice. The lattice must also allow energy exchange collisions be-
tween any groups of energies since it is these interactions that destroy evidence of
the lattice, which it does. This makes the model ‘discretely continuous’ since the
particle speeds are still discrete. A renormalization process allows us to reduce
the width between speeds to an infinitesimally small value which permits passage
to the full continuum. This is done in Section 4.1.2. Finally, we find that in the
limit of the discrete continuum, the model possesses discrete microscopic Galilean
invariance which allows translation of the lattice by any lattice vector without
introducing discreteness artifacts. Thus a lattice gas model employed on the 4D
FCHC lattice approaches a continuum model as higher speeds are added without
the aid of the chemistry tricks needed for the finite speed casc.

Although the lattice gas model approaches the continuum model as more

speeds are added, the convergence is relatively slow. In fact, we find that the
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convergence is linear with respect to the maximum energy allowed by the system.
It was found that one must employ a model with at least seven different speeds in
order to get any appreciable dynamical range where the artifacts are less than the
error in the accuracy to which we can measure them, which is about 1% (this will
be discussed in Chapter 7). This convergence may be aided by utilizing a hybrid
model. Combining the chemistry tampering of present multi-speel lattice models
with the convergence properties of a model with higher speeds allows the removal
of discreteness artifacts from all of the conservation equations (mass. momentum

and energy) as we show in Chapter 5.

The system we will be examining in this Chapter is the same one as in Chap-
ter 3 except that we set r; = 1 for all j which now means that all collisions
proceed at equal rates for forward and inverse processes and detailed balance is
restored without the need for quasi-particle and quasi-hole definitions. The results
are identical except that the zero-order isctropic Fermi-Dirac equilibrium density,

eqn. (3.42), is now
N; = ! .
1 + ezp(aom; + fo€;)

Another simplification that we use for the rest of the analysis is that the masses

(4.1)

of all particles are identical and have the value unity. With m; = 1 for all species

the microscopic kinetic energy, ¢; = 3¢3, is the series of integers 0,1,2,... and is
equivalent to the species index, j = ¢;. Thus a sum over species is equivalent to

a suIn over energies.
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4.1 Continuum Values of the Artifacts

The approach to the continuum is begun by first making a series of assumptions
about our system and then examining the consequences. Imagine that we can add
particles of any desired energy (from zero to infinity) to our system to create a
discrete infinite spectrum of particles speeds. This assumes that the FCHC lattice
allows particles of any energy to be represented and that each set of velocity
vectors for a particular speed pr.ssesses sufficient symmetry. That this is so will
be shown in Section 4.1.1. Important macroscopic properties of the lattice fluid
are calculated by taking moments of the microscopic distribution function. In
the proposed discrete system, this is accomplished by taking a sum over discrete
energies (from zero to infinity). For the sake of argument, imagine that these
discrete sums can be turned into integrals over an energy variable ranging from
zero to infinity and that the connection can be made in the following way. Using
the definition for density as an example, (eqn. (3.52)) is transformed
0 )

p= gdij — /o cE"NdE = (E") (4.2)
so that the sum over species j is replaced with an integral over energy which is
denoted by E in the continuum case. As indic ted, we have assigned the masses
of all particles to be unity. The microscopic zero-order distribution function is

now simply N where
1

N= 14 aexp(E/T)

asindicated in eqn. (4.1) where a = ¢*°, the inverse fugacity, and we have identified

(4.3)

fo = 1/T, the temperature in energy units. The final identification is that the
number of directions per site for species j (d;) can be represented as proportional

to the energy of that species raised to some power n. It is conjectured that the
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value of this exponent should be

(4.4)

where D is the number of dimensions. Numerical and theoretical illustration
of this will be presented in Section 4.1.1. Heuristically, if one imagines that d;
represents the density of states for species j, then this is equal to the number of
velocity vectors that orignate from the origin of some space of dimension D and
terminate at a distance between v and v + dv so that the equivalent energy of

all such vectors (where m; = 1) is j. The number of such vectors is equal to the

surface area of a hypersphere of radius v which is proportional to v2~!. If we
then transfer to energy coordinates where F' ox v? then
d;Aj x vPldv
x vP%vdv
D=2
x E°TdE (4.9)

so that d; has the suggested behaviour. We will continue with the general exponent
n and calculate what values of n (if any) will give the desired continuum values of
the artifacts. The precise value of the proportional constant is not important for
this analysis since this value cancels from the artifact expressions. A numerical
value of this constant is calculated in the next section and is shown to be equal

to a theoretical value that may be derived using number theory.

In a similar manner we can comprise a catalogue of all the moments that
appear in the artifacts of Section 3.2. The moment notation of eqn. (3.51) requires
sums over quantities of the form N,-NJ(') = N, in the notation of this Chapter,
where [ denotes the order of the derivative to be taken. These sumns over various

derivatives of the microscopic distribution function, upon being transferred into
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integrals, can be partially performed using integration by parts to remove the
derivatives from the moment definition (since the distribution function vanishes

as the energy approaches infinity)

U= o  cE"ENdE = (E™)
(1,1), = n [ cE"INdE = n(E™!)
(1,€), = (n+1)[°cE"NdE =(n+1)(E")
(e;e1 = (n+2) [° cE™*!NdE = (n + 2)(E™)
(1,€)2 = (n+ )n [° cE"INdE = n(n + 1 )(E™) (4.6)
(e,€)2 = (n+2)(n+1)[3°cE"NdE = (n + 1)(n + 2)(E™)
(€)= (n+2)(n+3)[CcE'NIE = (n+2)(n+3)(E™")

(e€)a= (n42)(n+1)nf°cE”'NdE =n(n+1)(n+2)(E"")
(€)= (n+3)(n+2)(n+1)°cE’NIE = (n+1)(n+2)(n +3)(E".

We now calculate the continuum values of the artifacts g, ¢’ and 7. We start
with the expression for g (eqn (3.70)). Plugging in the appropriate moments from
above we find that g is a function only of (E™) moments which then cancel. The

expression redaces to

D n+2

= ) 4.7

I=D+zn+1 1)
This artifact is removed when g = 1 or when
D-2

- 4.8

n=— (48)

which is the value conjectured in eqn (4.4). Next, the expression for v (eqn (3.74)),
in terms of the continuous moments, also permits some convenient cancellations

and reduces to
n+2

n4 1t

y= (4.9)
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The continuum value of v is (D+2)/D. When we make the calculated value of v
equal to its correct value we get an expression equivalent to the expression for
g calculated above. Thus, when n = (D — 2)/2 both the g and 7 artifacts are

removed.
Finally, we examine the rather unwieldy expression for ¢’ (eqn (3.75)). After
plugging in the appropriate moments and performing some algebra we find

' n+2
I =D+ +17

n(DK(n,a) +2) + (-"‘))—2 - D)(1 - K(n,a))+ 2} (4.10)

where K(n,a) is a function of the energy moments and has the following form

n_(E")(E™Y)

Kima) = 7 gy

(4.11)

When the distribution function, N, has Fermi-Dirac form, K(n,a) is a mono-
tonically increasing function of n with a value at n=0 between 0.75 and 0.96
(dependent on a = e*°) which then approaches the value 1.00 asymptotically as
n — co. Appendix B discusses the behaviour of this function. When we now try

to remove this artifact by making ¢’ = 1 we find a quadraiic equation for n with

the roots
D-2
n=— (4.12)
once again and
1/D .
n=-2 [l - ITI;,(—n’-Ej- (413)

which is actually an implicit solution for n. The only roots from this second
equation are for a < 1.0 where the solution for n is a function of a. The number
of directions for a particular energy, which is a function of the underlying lattice,
cannot depend on a characteristic property of the fluid such as the inverse fugacity.

Thus, this second root is extraneous and can be ignored (see Appendix B).
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We are left with the result that if we can make the transformation via a
limiting process that will allow us to change our moment sums into integrals
where the number of directions per site, d;, is given the explicit relation of being
proportionai to £“~3/2 then all three of the artifacts g, g’ and ~ disappear. If it
is possible to develop a limiting procedure for cur model that allows the addition of
pariicle speeds up to infinity and transforms our discrete system into a continuum,
our model will give true hydrodynamic continuum behaviour ezactly. It is not
surprising that once we have passed our discrete system to the continuum that
the artifacts disappear because we could have done the same low Mach number
expansion that we utilized here in the continuum where, of course. no artifacts
would have resulted. What is surprising is that the model allows such a limiting

procedure to occur. The demonstration of this is the topic of the next few sections.

4.1.1 Sums to Integrals - Preliminaries

Before proceeding with the mechanics of the limiting procedure we state and prove
a few important characteristics of the underlying 4D FCHC lattice that make
such a procedure possible. This lattice is defined as the set of signed integers
(x1, %2, T3, Z4) such that (z, + T3 + T3 + 74) is even. Because of this, it is possible
to show that the magnitude of this vector is likewise also even. In fact, only
quadruples that sum to an even number can give vector magnitudes (sum of the
squares of the coordinates) that are even. The species index, j, is equivalent to
the microscopic kinetic energy when the mass of all particles is given the value

one

. 1
i=seg=3d= -Z-(mf + 23 + 23 + z3) (4.14)
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which forces ¢; to be integer. Irom now on. j will be understood to stand for
particle energy and we will use the terms particle ‘energy’ and particle ‘species’
interchangeably. We wish all energies to be represented in our model if a con-
tinuum specirum is to be realized. This requires that all even numbers may be
represented as the sum of four squares with the sum of the four numbers also being
even. This is equivalent to requiring that every number can be represented as the
sum of four squares. This conjecture, which has its roots in elementary number
theory dating back to the time of Diophantus. was proved by J.L. Lagrange, with
some help from Euler, in 1770 (44]. This is the minimum number of squares nec-
essary to accomplish this. Because the sum of the four squares may take anyeven
number, the energy, which is one-half of this value, may take any integral vaine.
Thus, the species index, j, which is also the sequence of integers, is equivalent to
the energy index. Since the macroscopic properties of the system are calculated
by summing over the species index, or equivalenilv the particle energy, we find

that the FCHC lattice allows all integer energies to be represented.

Knowing now that every energy may be represented in our model, we now
examine the value d;, the number of diractions for each energy or equivalently,
the number of ways the even integer 25 may be represented as the sum of four
squares. In Section 4.1 we conjectured that

D=2

= e T
di = ce;

= ce; (4.15)

for D=4. We now show this experimentally and calculate the proportionality
constant. In Figure 4.1, we see d; plotted as a function of energy up to €. = 1024
where d; was calculated explicitly for each energy. For example, the vectors that
make up a energy=1 particle are obtained from (+1, £1,0,0) upon permuting the
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indices and signs. Thus, di = 24. Similarly, there are two separate vectors with
energy=2, (£2,0,0,0) and (+1.+1.41.+1), which. when all the permutations
are counted, also gives d, = 24. Although there does not appear to be a linear
relationship between the two quantities, if we form the accumulated sum of this
quantity,

J
disum = ) _ di (4.16)
k=1
and plot this as a function of energy, see Figure 4.2, a quadratic relationship

between these two variables becomes apparent with a best fit resulting in
d,sum = 9.88¢;. (4.17)

with a very small fitting error in the slope of about 0.3%. To find the average
value of d;, denoted (d;), from the above relation we note that

Zk ’(’“) ~ 12 (4.18)

2

for large j so that the average can be deduced from

J J
Yode =Y (d) =9.88¢ (4.19)
k=1 k=1
as
(dj) ~ 19.766j. (420)

This is the average order of d; if a large number of energies are included. This
is further justification of our conjecture concerning d; in eqn. (4.15). It has been
found that the actual values of d;, as shown in Figure 4.1, may be calculated using

the following procedure.
Given an energy ¢; = j, the number of different direction vectors, d; is
d; = 240(k) where j=2"k,n>0 (4.21)
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Figure 4.1: The number of directions for species j, d; as a function of particle

energy ranging from 0 to 1024.
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Figure 4.2: The accumulated sum of the number of directions for a given species j

as a function of energy. The relationship is quadratic with d;sum = 9.88¢ being

the best fit.
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where o(k) is the sum of all the positive divisors of &, including | and k. It is
possible to calculate o(k) explicitly once & has been completely factorised into

prime numbers
k= pip3*p5...05" (4.22)

where p; # 2 since all factors of 2 have been removed from 7 to give k. If k=1,

o(1) =1, for k£ > 1 we find
ay+1 a4+l an+1 __
o(k) = (Pl ‘) (Pz 1) (____Pn 1). (4.23)
pl—l pg-—l Pn"“l

Equation (4.21), rewritten equivalently as

d, = 240°(n) (4.24)

where 0°(n) is the sum of only the odd divisors of n, is another classical result of
number theory first proved by Jacobi in 1828[44] as a consequence of his studies
in the theory of elliptic functions. Actually, the result in eqn. (4.24) holds only
for even values of n while a slightly different result holds for odd values of n. As
shown in eqn. (4.14) the quantity we are really representing as the sum of four
squares is 2j which is always even, as previously described. The factor of 2 only
contributes even divisors so that it is irrelevant for calculating d,, dy; = d;. A
further dip into number theory will allow us to come up with theoretical values
for the average orders of djsum and d;. It is known[44] that the average order of
o(n), the sum of the divisors of n, is

o(1)+0(2) +... + o(n) = I%wzn’ + O(rlogn). (4.25)

To estimate the average order of d;sum however we only want to sum the odd

divisors of the numbers 1 through n. The relationship between tbe sum of the
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odd divisors and the above expression was focund to be

S0e10°(0) _ 3 Eihads
Z]-la(j) 2—101)

where NV is some large integer (V = 1024 was used) so that d;sum is

1 .
~3 (4.26)

1
djsum = Zd;, =24 E o°(k) ~ 24 Z( 24(3) =% ~ 7% (4.27)
=1 k=1 k=1 12

Consequently, the average order of d; is
d; ~ 2n?;. (+4.28)

Numerically, d;sum ~ 9.87;% and d; ~ 19.74j which agree with the values calcu-
lated ‘experimentally’ in eqns. (4.17) and (4.20) respectively within the error of
the fit. As a final point on this topic, we calculate the above two relations using a
geometric argument following Hardy{44]. The quantity d, represents the number
of lattice points on the hypersphere defined by z? + r2 + 22 + r? = n. The sum
djsum is one less (due to the value d, = 1) than the number of lattice points
inside or on this same hypersphere. If we associate with each such lattice point
a lattice hypercube in an uniform manner. the volume of the marked hypercubes
is of the same order as the volume of \he related hypersphere. A straightforward
series of integrations illustrates that the volume of a four-dimensional hypercube
with radius n is Z*~, For our problem, we only want to include the even integers,
i.e. sum over 2j where j ranges from 1 to . A reasonable conjecture is that the
even and odd radii contribute equally to the accumulation of volume inside the

hypersphere. Thus, th= value of d;sum should be one-half the total volume where

n=2j
J 2(945\2
djsum = 3" d ~ §(= (f’) ) ~ 722 (4.29)
k=1 it

the same value calculated using the results of number theory.
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We now see that the value of the proportionality constant in eqn. (4.15) is 272,
Furthermore, with D=4, the relationship between d; and the energy j is of linear

order. precisely the relationship required to remove the lattice artifacts.

The second fortunate property of the FCHC lattice is that it is highly symmet-
ric. One of the five principal artifacts of discreteness, as stated in Chapter 2, is
that the stress tensor of the fluid may be non-isotropic due to preferred directions
caused by the presence of the lattice. To ensure that this is not the case, the
allowed velocity vectors, c;;, must give rise to isotropic tensors of both the second
and fourth rank when summed over direction space for each energy individually.
The conditions for this property were given in Chapter 3.2. They are restated

here for convenience

Zc,-,-c,-.- = %Cfl, (4.30)
and
d:
ECjicjiCjiCji = -5(73-’:-'_—2-)-6;11“’, (4.31)

where A is the cempletely symmetric 4th rank tensor, as defined in eqn. (3.48),

ALY 5 = 62065 + barbis + basbos. (4.32)

Wolfram({22], in an examination of the symmetry groups of the 4D FCHC lat-
tice, states that the 24 vectors obtained from the six permutations of (£1, 1,0, 0)
(what we would call a type or energy 1 vector) and the union of (£2,0,0, 0) and
its four permutations with the 16 vectors created by (£1,£1,£1,£1) ( j = 2
vectors) both satisfy the above symmetric relations separately. We would now

like to examine if this symmetry holds for higher energies.

First of all, we look at the second rank tensor calculated using the left side

of eqn. (4.30) for general energy j. All off-diagonal terms of this tensor are zero
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since the sum over direction space allows each element in the vector c;; to appear
in each component with either sign an equal number of times. Thus a sum over
non-equal elements will have each possible pair of components appearing with
both positive and negative sign which then cancels, giving a total sum of zero.
Likewise, all of the diagonal terms are equal since all elements appear in each
comp-nent an equal number of times. We pick a particular direction component,
@, and sum c;, over all directions. There are d; terms which can be grouped into

D (the number of dimensions) groups. Each one of these groups gives the sum c?

(eqn. (4.14)). Thus we have shown that
o= 21 4.33)
S ciicy = Bl (4:33)

for all energies j. Secend order symmetry does hold for all energies in the 4D

FCHC lattice.

Showing that fourtk-order symmietry also holds for the FCHC lattice is a
little more complicated and once again establishes a counnection with number
theory. Unlike the second order symmetry relation that holds for any lattice that
allows both positive and negative components of the velocity vectors, fourth-order
symmetry holds generally only for the four-dimensional FCHC lattice we are using

as the framework for our lattice gas algorithm.

The fourth-order tensor calculated using the left side of eqn. (4.31) has entries
that can be categorised into two groups. First of all, entries whose indices are
identical in pairs. For D = 4, this includes entries where all four components
are identical and entries that have two pairs of equal components. The second
group includes all the entries not included in the first, that is entries with indices
where a component appears an cdd number of times. For D = 4 this includes

entries where: 1) all four components are unequal, 2) three components are the
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same, the other different and 3) one pair of equal components but the other two
differ from each other. For the same reason that forced the off-diagonal elements
of the second-order tensor to be zero, all elements that fall into the second group
as described above also identically vanish when sumrmed over all directions. We

examine the two elements of the first group individually.

The number of different velocity vectors with energy ; may be surnmarised in

the list

(zlksx2k|x3kvx4k) (4.34)

where

Tyg 2 Top 2 Tap 2 T4 20 (4.35)

for a set of vectors k = 1 t0 kmqa; that all have the same energy j. For j = 1,
kmez = 1 and for j = 2, kmer = 2. For the same reason that caused all the
diagonal elements of the second order tensor to be equal, all elements within each
of these two sets are equal to all other members of that set. Consequently, we only
need to examine one member of each of these sets. When all four components
arz equal in the fourth order tensor, we find that within the permutations allowed
by a pariicular velocity vector of the set k, a sum over all fourth powers of the
elements of these vectors is equivalent to summing over the fourth powers of the
components of the velocity vector k and then dividing by D and multiplying by
the number of permutations of the vector k. If we sum over all k we find that

d; d D .4

Set=3 3 (4.36)

i=1 i=1 a=1
When there are two equal pairs of components in the fourth order tensor, denoted
by subscripts o and 3 say, we find that the sum of the product of the squares

of the o and B components of all velocity vectors within each vector & and its
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permutations equals the sum of the product of the squares of separate components
of the vector k taken two at a time multiplied by the number of permutations of
this vector and divided by the number of different pairs of D objects. If we sum

over all k we find that

dy D=1
Z Cjia Jlﬁ = Z Z 2 D D-l) (4.37)
i=1 1=l a=1 B=a+l

where the expression 91%'—11 is the number of different pairs that can be formed

from D objects. We now make use of the identity

D 2
(Z la) = C = Z xm- + 2 2 Z Z ‘rla'rui (4'38)

a=1 a=1i a=1 d=a+1

by solving the above for the second term on the right side and substituting it into
eqn. (4.37). The result is

d:‘C} Tl
2: JtacJ;ﬁ = D(D — (D — 1) Y E (4.39)

i=1 i=1 a=1

The completely symmetric fourth-order tensor as given by eqn. (4.32) has the value
3 when all four components are equal, the value 1 when there are two different
pairs of equal components and zero otherwise. This means that we require the

left side of eqn. (4.39) to be one-third of the left side of eqn. (4.36). Equating the

two 4 D 4 D
d5c§ - ?a . x?a
S R eI N (40
and sclving for the right side gives
3djc}
R 1/ (4.41)
ZZ Z (B +2)

which is exactly the result needed for fourth order symmetry (eqn. (4.31)). Re-

moving the common divisor of D we require that

Z Z 2 d;ct. (4.42)

1=1a=1




This can be compared with a relevant result from number theory, written using
our notation J
J

(x4 3 + 2 + 1) = 3d;ct. (4.43)

i=1

when c? is any even integer. This result was stated by Licuville in 1858 but

was first proved by Stern(45] in 1889. A proof of the above relation is given in
Appendix C. As previously stated, cf- is only an even integer. Equation (4.42)
reduces to the above only when D = 4 and c? is even. the ingredients of the
4D FCHC lattice. Thus the 4D FCHC lattice ensures that the allowed velocity
vectors, cj;, give rise to isotropic tensors of both the second and fourth rank
when summed over direction space for each and any energy individually. What
is remarkable is that the 4D FCHC lattice is unique in having this property. It
is known (23, 22| that in five and higher dimensions the only regular polytopes
that exist do not have the required fourth order symmetry for the base set of
vectors that comprise these polytopes. Furthermore, in four dimensions! the only
regular lattice with the required fourth order symmetry has FCHC form. Thus,
we conclude that the 4D FCHC lattice is the only regular lattice that possesses

all of the properties necessary to allow an extension of the lattice gas algorithm

to infinite speeds.

This may be contrasted with two- (HPP[11),FHP[13]) or three-dimensional
lattices that either do not have the required 4th order symmetry (in HPP or the
3D case) or cannot represent particles of higher energies (FHP). Even if the 3D
lattice had the requisite symmetry this lattice could not represent all integral
energies as it is another known result of number theory [44] that all integers of

the form 4™(8k + 7),n,k > 0 cannot be represented as the sum of three squares.

lthe lowest dimensional systemn that can represent all integral energies
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This means there would be ‘gaps’ in the 3D energy spectrum amounting to at
least one out of every eight of the energies. which prevents a complete spectrum

from being represented.

In summary, we have shown that sums over particle species are equivalent to
sums over particle energies, that the 4-dimensional FCHC lattice we are using
allows all integral energies to be represented and that the set of velocity vectors
for each energy, c;; separately gives rise to isotropic tensors of both the second and
fourth rank when summed over direction and it is the only regular lattice that has
these properties. All of these properties are required if we are to make a connection
between the discrete lattice gas algorithm and the true continuum. That such
a lattice exists and, moreover, that it is unique, is a completely unexpected and
remarkable result that permits the extension of the lat*ice gas algorithm to infinite
speeds. Knowing that this extension is possible, we now perform a standard
renormalization procedure that allows us to remove the discreteness artifacts from

the macroscopic behaviour of the lattice gas algorithm entirely.

4.1.2 Sums to Integrals - The Limiting Procedure

We have shown in Section 4.1 that the artifacts disappear if the correct average
value of the number of directions, d;, is used and there is an infinite continuum
of energies. This requires that the defining moments are integrals rather than
discrete sums. The difference between a sum over some function and an integral

over the same function is given by the Euler-Maclaurin Summation Formula [46)

3 b h? ' ' h4 " et
T(h) = [ flzdz+ 55 1F0) - f@)) = s F"0) = F(@)] + . (444)
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Figure 4.3: [lustration of the Euler-Maclaurin Summation Formula. The area
under the curve is approximated by the sum under the rectangles. The error in

accuracy is -elated to the step size, h.

where T(h) is the trapezoidal sum defined as

b
T(h) =423 fi — Lh(fa + fi) (4.45)

i=e
where h is the step size between adjacent values of f;, see Figure 4.3. In the
limiting process we are examining, we sum over all positive values of energy so
that the limits are a = 0 and b = co. Secondly, we replace d; with its average
expression, as given in eqn. (4.13). since large values of energy are involved. As a
consequence. the second and third terms in the definition of the trapezoidal sum,

T(h) are zero. Finally, relabel the step size, h, as the step in energy space, Ae.
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In the present discrete system. Ae = 1. The Euler-Maclaurin formula reduces to

Ae f flej) = /0°° F(E)dE — %(-20—),_\8 + !77—2(6(&436“ -

;=0

(4.46)

which illustrates that the error between the sum and the integral is second order
in the step size. We see that if we can re-scale the width between energies so that
Ae — 0 then the sum becomes identical to the integral. This is, of course, the
way an integral is defined. Examine the density relation where the largest value

of energy is €y,q; (we will ultimately take the limit €, — o)

tmasx €masx
p=)Y_ d;N; =) ce;N;Ae (4.47)
,=0 €,=0
where N; is given by eqn. (4.1), here slightly rewritten as
1
N; =
77 14aexpe/T

(4.48)

with a = e, the inverse fugacity, which is independent of energy and 8, = 1/T.
We define a rescaled energy, E, and temperature, T"

2]

E= o (4.49)
and
T = EnT (4.50)

where n is a real number arbitrarily closz to, but less than, the value 1. For
practical purposes, we may think of n = 1 but for the purpose of the theoretical
treatment we are performing, n = 1 — 62 where § is arbitrarily small and real.

Notice that

Nl

(4.51)

Rl

so that
1 1

iz 1+aexpe;/T = l+aexpE[T"

= Ng (4.52)
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and the distribution function is unaffected by the rescaling. As €mq; is increased.,
we also increase T so that the rescaled temperature I" remains finite. We now
perform the energy rescaling of eqn. (4.49) on the other elements of the density
sum. In particular, we define

1

Ae=1=——¢ . =AEc,, .. (4.53)
The density sum is now
€rnas
p= [Z cENEAE} ek (4.54)
E=0

where the sum is over the variable E and increments in steps of AE. This proce-
dure can be repeated for all the moments that are needed, as listed in eqn. (4.6).

We can make the notation of eqn. (3.51) very compact

(€)= (=1)F 3 dNBer (4.55)

=0
where & indicates that the kth derivative of N; should be taken, i.e. N }3) = N;N}"
in the notation of Section 3.2. When k = 0 we get the zeroth-order moments for

dersity (m=0) and energy (m=1). The re-scaled moments have the following form

len

(€ = |(=1)* Y cENPEmAE| en2t™
E=0
(™ = (E™)eptm™. (4.56)

We now take the limit as €nq; — 00. We see that the expression outside the square
brackets, ¢nq. raised to some positive exponent, also approaches infinity. When
we plug these expressions into the defining relaiions for the artifacts, eqns. (3.70),
(3.74), and (3.75), the €no; terms cancel. If we rescale the left-hand side of
equation (4.56) with ¢*3+™) we are left with the finite expression on the right-

hand side, (E™);, which is the new re-scaled generalized finite moment expression.
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The step size, AE becomes infinitesimally small so that the difference between
the sum and the integral, as given by the Euler-Maclaurin furmula. eqn. (4.46),
disappears. This means that

len
¢maz

lim S f(E)AE = /0 " {(E)E (4.57)

fmaz—00 E=0

where lime,,,, o0 €1, = 00 because 1 — n = 62 > 0. The expressions for (E™),
which are now integrals, are identical to the relations in eqn. (4.6). As calculated
in Section 4.1, these relations for the moments cause the artifacts to become
the correct continuum values. .\s an illustration of this, values of g and vy were
calculated as functions of temperature, T’ and the inverse fugacity a = e*° that
make up the continuum distribution function Ng, eqn. (4.52) with €,,,; = 160, a
relatively large value. The results, as shown in Figure 4.4 for g and F igure 4.3 for
7, demonstrate that the continuum values, g = 1 and v = %3 = L.5for D =4, are
reproduced for values of 7' much smaller than €pq;. Similar behaviour is observed
for the third artifact, ¢’. Truncation errors due to the finite range of energy cause
g and 4 to deviate from their continuum values at higher temperatures where
contributions to the integral beyond €ma. are significant. A complete continuum

is needed to make the artifacts disappear for all temperatures.

We have shown that the lattice gas model employed on the four-dimensional
FCHC lattice directly and seamlessly reproduces true hydrodynamic behaviour
as the upper bound on particle enerzy approaches infinity. Because this model
can be made to approach a continuum via the limiting process described above,
it is natural that the artifacts should disappear since the same low Mach number
expansion that was used to generate expressions for the artifacts in this discrete

system could have been used in the continuum case, where no artifacts would have

resulted.
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Figure 4.4: Calculation of g using integrals with €,,, = 160 for 0 < a < 10 and

0 < T <£19.2. The result shows that this artifact is very close to its continuum

value (1.0) at temperatures much less then the maximum energv.
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10

Figure 4.5: Calculation of 4 using integrals with €p,; = 160 for 0 < a < 10 and
0 < T < 19.2. The result shows that this artifact is very cluse to its continuum

value (1.3) at temperatures much less than the maximum energy.
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4.2 Convergence Properties of the Model

We now know ‘hat the artifacts acquire the correct continuum values when a
complete spectrum of speeds are allowed in our lattice gas model. In this section
we investigate the rate at which the artifacts converge to their continuum values
as higher energies are added to a finite multipie-speed model. We will concentrate
on the Galilean invariance factor g but what is found for this artifact has been

shown to hold equally well for the other two artifacts.

It was demonstrated in Section 4.1.1 that every integral energy can be repre-
sented on the FCHC lattice. An energy ¢; has a particular number of allowable
directions d; that is given by eqn. (4.21) and for large enough energies can be
accurately approximated with its average value as given in eqn. (4.28). To inves-
tigate the convergence of g to the continuum value, we calculate g from eqn. (3.70)
for various values of the temperature 7', and the inverse fugacity, e, as we raise
€maz. We wish to approximate an integral over all positive energies with a discrete
sum over a finite range of energies. Thus, there are now two sources of error. The

error as indicated by the Euler-Maclaurin Formula and the truncation error

_[)oof(ej)dfj = /0 e"mf(os,-)d.e,-+ lju f(e;)de;

€max

= go F(&) + —3(f(emaz) + £(0)) — (4.58)
f'(emaz) = £'(0) | f"(€maz) — f"(0) =
[ = + o - ] + /m f(&;)de;

where the step size Ae = 1. For every ¢, it was desired to find the range over-
temperature where the root-mean square error in g from the value g=1 was less
than 1%, because this was about the accuracy to which the Galilean invariance

factor, g, could be measured ([39] or see Chapter 7). A number of interesting
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properties were discovered. First of all, the error in g was largely independent of
the inverse fugacity. Secondly, there seemed to be a lower limit on the value of T
in order for the error to be about 1%. Reasons for this will be described shortly.
Thirdly, it was found that the upper limit of T whereby the RMS error was 1%
increased linearly with €mar with a proportionality constant of about 0.12. Thus,
it was found that the RMS error in g was about 1% or less for temperatures over
the range

0.60 < T < 0.12€mas. - (4.59)

A consequence of this result is that there is no region where the error in g is
less than 1% for €marz < 5. The RMS error in g for many values of €,,. may be
found in Table 4.1 while the results for ¢,z = 10, 40, and 160 are in F igures 4.6,
4.7 and 4.8 respectively.  The tabulated results show that the RMS errcr in g
remains at a value of about 1% as the upper bound of temperature is increa..ed
linearly with the maximum value of energy. From the indicated figures, we see
that the calculated value of g differs from the value g = 1 for both extremely high
and low values of the temperature. For an explanation of this we must examine
the terms in eqn. (4.58) that .ndicate the difference between the continuum and
discrete system. Besides the errors related to derivative values of the integrand,
there is an error related to the truncatiou at a finite value of €z, quantified by
the terms —% f(€maz) and the integral from €., to infinity, and an error related
to the value of the integrand at €4, = 0, which is :} f(0). The truncation errors
whiie being significant at low values of €,,,, become negligible at large upper limits
in energy. This effect is responsible for the small improvement in the RMS error
of g as €nas increases from a value of 10 to 30 but above this value, the effect
is negligible and the error remains relatively constant. The other error, related

to the value of the integrand at ¢; = 0, is non-zero only for non-energy moments
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Figure 4.6: Calculation of ¢ using discrete sums with €, = 10 for 0 < a < 10.

and 0.6 < T < 1.2. The RMS error in g over the plotted range is 1.13%.
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Figure 4.7: Calculation of g using discrete sums with €pq; = 40 for 0 < a < 10.

and 0.6 < T < 4.8. The RMS error in g over the plotted range is 0.93%.
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Figure 4.8: Calculation of ¢ using discretc sums with €maz = 160 for 0< a < 10.

and 0.6 < T < 19.2. The RMS error in g over the plotted range is 0.9'%. When

Tinaz = 0.12¢,,., the error remains constant at about 1%,
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€maz RMS error in ¢
060 < T <0.12 €pqr |
5 No Range
10 1.13 %
I 20 0.98 %
30 091 %
40 0.93 %
60 0.91 % i
80 0.92 % |
160 0.91 %

Table 4.1: The range of temperature, T, that allows a RMS error in g of about

1% increases linearly with the largest allowed energy in the system, €mqz.

such as the density or the first-order mass moment (m, m); which appear in the
expressions for the artifacts. Thus, when calculating g from sums for finite speed
systems, there will be a constant difference between this quantity and the value of
g calculated from integrals due to the finite value of particle number at an energy
of zero. This effect becomes larger as you lower the temperature as lower energy
states are more populated when the temperature is low. It was found that for a
temperature lower than (.60, this error would be large enough to cause an overall
error in g of greater than 1%. Even if this contribution to the error along with
the truncation error could be removed there would still be a finite error between
the discrete and continuum calcuiation of the artifacts. The limiting procedure

described in Section 4.1.2 is required to reduce the step size to zero and make the
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error in g vanish completely. Passage to the continuum was made by re-scaling the
energy and temperature parameters with the quantity e, ,. where n is arbitrarily
close to, but less than, the value of one. If we do this re-scaling on the present
system we find that the range of re-scaled temperature, T (eqn. (4.50)), that

results in errors of less than 1%, from eqn. (4.59), is

O,;ﬂ < T <0.121", (4.60)

ema::

When we take the limit where ¢,,,, approaches infinity, the lower limit on 7"
approaches zero while the upper limit approaches infinity since 1 —n > 0. In fact,
we know from the analysis of Section 4.1.2 that the error for the whole range of

temperature becomes zero in this limit.

In summary, we have found a range of temperature for a given 4D FCHC
lattice model that allows particles with energies up to €n.. where the Galilean
invariance factor artifact, g, is within 1% of its correct continuum value. This
range of temperature increases linearly with the maximum energy allowed in the
system. A corollary of this is that the convergence of the discrete model to the

continuum model is linear.

4.3 Discrete Microscropic Galilean Invariance

We have investigated what happens to our model when we add higher speeds by
examining the convergence of the artifacts to their continuum values, However,
the artifact expressions we have been using were calculated using a low Mach
number or subsonic expansion. To fully utilize the benefits of adding higher
speeds to our model, we would like to be able to use fluid velocities that were

comparable to any allowable microscopic velocity. Moreover. we would like the

104



physics in the frame moving at this finite fluid velociiy to be the same as if we
were in a stationary frame. This requires the model to have discrete microscopic
Galilean invariance. Previously, we found that the artifacts g and g’ indicated
the presence of macroscopic non-Galilean invariance. We now show that the same
artifacts exist, using a velocity transformed definition of eqn. (3.51) over species
space, in the transonic case. Before beginning the transonic derivation we must
ensure that our model can accomodate a velocity transformation. If we transform
the stationary basis vectors, c;; to a new set of vectors, c;i; using the arbitrary

lattice vector c;

Cji = Cjiy + CJ (4.61)

we require that there be only one stopped particle so that the Fermi exclusion
principle, which states that there can only be one particle with a particular velocity
at any one site, is not violated. We also require a infinite spectrum of energies,
or at least an upper bound that is much larger than any vector, ¢y, we may be
transforming by, to ensure that the set of transformed vectors, c;;, is complete for
each energy. We have already shown in Section 4.1 that the FCHC lattice allows
an infinite set of particle energies to be represented with sufficient symmetry
to ensure isotropic stress tensors. We now assume there is a zeroth order Hluid

velocity, u where

u=-cy+éu (4.62)

where c; is the closest lattice vector to the fluid velocity and éu is the error
between the two. The magnitude of this vector is always less than or equal to
3 and so is inherently small. In Chapter 7 we will show that even when the
magnitude of du = .5, the errors in the artifacts are still less than 10%. In effect,

this small vector is quantifying the discreteness error in the system. The system,

105



due to its discrete nature, may not be able to exactly represent the fluid velocity
with a single lattice vector. If we solve eqn. (4.62) for c; and then substitute this

relation into eqn. (4.61) we find
Cji = ¢ji; — Su + u. (4.63)

We know that for the discrete lattice gas, the equilibrium distribution has Fermi-
Dirac form (eqn. (2.31) with r; = 1). It is possible to complete the square in
the exponent of this relation for c;; and derive a relation that is dependent only
on the difference between the microscopic velocity vector and the fluid velocity.
Since cj; —u = c¢;i; — 6u, we may make this substitution and expand the exponent

out again to get the transformed distribution function

1

N'Ii' =
! 1 +ezp{a*mj + y*mjcj; - bu+ Boe;r)

(4.64)

where a®,~*, 8" are still arbitrary real numbers and the definition of the trans-
formed energy is

6]'1 = %mj:c?,. (465)

We now proceed as was done in Section 2.4 to expand the distribution function
in terms of the inherently small factor 6u. This justifies only expanding the
distribution function to second order in this small term, even though the total
fluid velocity can be quite large. All the moments are now over the transformed
energy space, denoted by ¢;;. We calculate the macroscopic properties to third
order in this small quantity but expect that all physical properties should now
appear at the lowest order since the fluid velocity is now zeroth order. All higher
order contributions are now artifacts. Upon doing this calculation we find that
the mass, momentum and energy moments of the kinetic equation, eqn. (3.18),

gives conservation equations for these three quantities that have the correct form
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as outlined in eqns. (3.19), (3.20), and (3.25). A summary of the important

moments follows:

d_m;Nj; = p = p¥ (4.66)
Momentum J
> mjc;iNj; = pu = pu'® (4.67)
Energy J
Y imic N = U, + Lpu? = U (4.68)
i
where
Up =Y dyesNy. (4.69)
5

Note that the energy has the correct hydrodynamic form as given by eqn. (3.10).

Stress Tensor

ijCj,'Cj,'le; = I—z)-UpI + puu + [—;-p5u2(1 —g)I+ p(g — 1)5“5!1] (4.70)

'
where the square bracketed term is second-order. The zeroth order term is com-

pletely correct with
2
D

as required. The expression for g in the above is identical to eqn. ( 3.70) except

P, =<U, (4.71)

that the inner products are now over the transformed energy spectrum. Once
again, we see that if g = 1, then the higher order contributions are removed and

we are left with the zeroth order term for the stress tensor which is identical to

the continuum value.
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Energy Flux

D+2 D+2
Z jmicie;iNp = (—D—-Up + ;}pu2) u+ (‘y - —-—b—) Upbu
3’ A
+ p(1 — g)éu - [Il)-&uu - uéu] (4.72)

D-1 1
+poutsu [ =5—=(1-9) - 41 - 9)

where the zeroth order term is as required for hydrodynamics, eqn. {3.11). The
first-order term is the v artifact with v given by eqn. (3.74) with moments over
the transformed energy spectrum. The Stress tensor Galilean term. g, is also
important in the energy flux relation at second order and third order. Finally, the
g’ artifact, as given by eqn. (3.75) using the transformed energy spectrum, appears
as a third order error. All three artifacts appear in the energy flux relation.
When the artifacts take on their correct continvum values, all of the higher order
contributions to the energy flux vanish. Only the hydrodynamically correct zeroth

order contribution remains.

These results illustrate that artifacts appear only as coefficients of the small
error velocity 6u and that the artifacts we find here are the same three that
were calculated in the small Mach number case. If the fluid velocity happens to
correspond exactly with a lattice vector, u = ¢, then all artifacts vanish. This
shows how it is possible to get accurate hydrodynamic results from a supersonic
lattice gas when the macroscopic flow velocity is equal to one of the microscopic
particle velocities. Furthermore, if we make the fluid velocity small in the above
treatment by setting u = du ~nd simplifying, we reproduce the results for the
stress tensor and energy flux vector given by eqns. (3.21), (3.24), and (3.26) of
Section 3.1. Since the artifacts may be removed by adding highar speeds to the
model, we have shown that the 4D FCHC lattice gas model may be used to
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simulate transonic flows because the system permits discrete microscopic Galilean
invariance. Because the new transformed velocity, 6u, is still small, it is not
necessary to go beyond the 4th order symmetry requirements of the FCHC lattice
to be able to remove the artifacts at large Mach numbers. Since the second
order expansion in velocity was sufficient in the low Mach number case, it is also
sufficient here since the small velocity term in the transonic case will never be
larger than the largest velocity that was found to still produce accurate results in
the low Mach number models (presented in Chapter 7). The lattice gas model is

not restricted to simulating subsonic flows. as was previously thought{14, 39].
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Chapter 5

Removing the Artifacts

In Chapter 4 we demonstrated that the three lattice artifacts uniformly approach
tleir hydrodynamic values as higher speeds are added to the lattice gas model.
However, the convergence rate is linear, which is slow. When an additional speed is
added to the algorithm, the additional amount of computational effort required to
move the new particles also increases linearly since the number of added directions
increases linearly with speed (eqn. (4.28)). On the other hand, the computational
work required to collide these new particles with all existing particles is propor-
tional to the total number of particles in the model, which grows quadratically
with speed (eqn. (4.27)). Consequently, the amount of work we have to do grows
quadratically while the convergence of the artifacts is only linear if we rely solely

on adding higher energy particles in order to remove the artifacts.

In this Chapter, we show how the artifacts can be removed in a finite speed
system. Becanse of the disproportionate amount of incremental work when a new

speed is added, it is always desirable to use the lowest speed model that will allow
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the desired artifacts to be removed. The key elements that allows us to do this are
the collsion rate coefficients that we introduced into the microdynamics in Chap-
ter 2. Basically, the freedom created by the introduction of the adjustable decay
rates will be utilized to impose the desired conditions of: i) Galilean invariance,
ii} equipartition, and iii) an Adiabatic equation of state energy equation. The
first two of these are conditional o the g artifact while the third depends on the

values of the vy and ¢’ artifacts.

From the standpoint of kinetic theory, what will be done is to set the ap-
propriate higher order moments to the values required by the requisite macro-
scopic features. Without the adjustable decay rates, the moments are fized by
the Fermi-Dirac distributions (equation (5.42) with r; = 1), once the density
and temperature are known. Thus all the equilibrium density ratios, N;/N;, are
determined by p, and U,. The introduction of the decay rates r; allows these

individual particle densities to be somewhat adjustable, even for p and U, fixed.

While the density, momentum and energy moments cacnot be tampered with,
the higher order moments, such as (me, €)2, do not have any restrictions on their
values (except they must remain positive, of course). This allows us to establish
relationships for these moments which force the artifacts to have the correct values.

These relationships are realized by adjusting the rate coefficients.

The value of g when r; = 1 for all energies, 7, is illustrated in Figures 4.5, 4.7
and 4.8 for values of jpmar = €nar=10,40 and 160, respectively. Except for very
smell values of a = ™ and temperature, ¢ is always smaller than the continuum
value of one. Thus, we wish to raise the value of g to its correct value by an amount

dependent on the lattice site’s local density and teraperature. The equation for
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g, eqn. (3.70), is
_ D (Hiﬁf 6)2
" D+2(mel "

If we want to raise the value of g, we need to raise the value of the moment (me, €),.

g (5.1)

Similarly, both v and ¢’ are everywhere smaller than their continuum values but

while v is actually closer to its desired value than g is, ¢’ differs from its desired

value in a much more complicated way, as the expression for ¢, eqn. (3.75) might

suggest. As a result, when we make g = 1, the other artifacts stray further away
from their desired values and other moments must be alterred to return them to

the continuum values.

The momentum equation is contaminated only by the g artifact. Making g = 1
causes our lattice momentum equation to become identical to the hydrodynamic
result (eqns. (3.22) and (3.23)). Thus, we start our analysis with the g artifact
with the goal of finding the smallest system that will allow it to be removed. A
three speed system with a solitary rate coefficient, ro, allows us to remove this
artifact for a limited but substantial range of density and temperature. The next
important artifact is the ratio of specific heats v which appears as a first order of
the Mach number quantity in eqn. (3.26). This quantity must be set to the ideal
gas value (D+2)/D if the lattice model is to simulate heat transfer correctly. The
nature of the g and v equations is such that a simultaneous solution is not possible
for a large range of density and temperature. We find in a four speed system with
two separate rate coeflicients that when an exact solution is not possible, it is still
possible to make the errors in the artifacts smaller than 1%, an acceptable level.
The final coefficent, ¢’, is a third order effect in both the small Mach numnber,
eqn. (3.26), and transonic, eqn. (4.72), energy equations so that its impact cn the
dynamics is limited. Still, we may attempt to remove it, along with the other
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artifacts, but we find that there is no simultanecus solution for general density.
Furthermore, unlike the g and + case, there are no set of rate coefficients that
make the errors small in a low speed model. We do find that if the equilibrium
density is small, tractable results for removing all three artifacts do occur. In this
low density regime, the 7 relation collapses to the g relation so that there are
really only two artifacts. We again find that a three speed mode! removes both ¢
and v while a five speed model is required to remove all three. Complete solutions
as well as the range of applicability for all results in the cases described above will

be presented in this Chapter.

3.1 Making g=1 - 3 Speed Model

The zeroth order density and energy equations, eqns. (3.52) and (3.53), specify
the coefficients ap and . Requiring g = 1 adds an additional equation to the
system so that one additional variable is required to solve the system completely.
This means that only one rate coeficient is required, the rest may be set equal to
one. The rate coefficients only affect energy exchange collisions. Thus, we must
have a system that allows particles to exchange energies during a collision. The
smallest system that has this property is the three speed model where particles
with ¢; = j = 0,1 and 2 are allowed (we have set all masses in the system equal
to one). The energy exchange collision occurs when two type 1 particles collide at
right angles to produce a stopped particle and a type 2 particle, as in Figure 2.1.
We will associate the rate coefficient with the stopped particles, ro, for algebraic
simplicitly since the stopped particle distribution does not appear in the energy

moments. The relation for g, eqn. (5.70), is in terms of moments of the equilibrium
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distribution function, eqn. (3.42) which we rewrite once again as

yr
e . 2
Ny = (5.2)

where y = €™, the fugacity, y = a™! as defined in Chapter 4, and z = ¢, a
quantity related to temperature. When simulating a lattice gas model, we like to
specify the density and temperature of the equilibrium fluid. This means that we
will treat density, p, and the temperature related variable, z, as input parameters
while y is a variable that must be tuned to give the desired density. The internal
energy, Uy, is then calculated from the equation of state using p and z. Thus the

unknowns are the fugacity, y, and the rate coefficients, T;.

For the three speed model, we keep ro and set r; = ro = 1. As calculated in
Section 2.2, the number of directions for the energy=1 particles is d; = 24 as it
is for energy=2, d, = 24. For reasons that will be explained shortly, we set the
maximum number of stopped particles allowed at a site to six, dy = 6. Using

eqn. (5.2), the equilibrium distributions for this model are

yr
Ny, =
0 yr+1
M = yiz (5.3)
Y
Ny = ——.

We have dropped the subscript on the rate coefficient, r, since there is only one
in this model. The equations defining the density and energy, together with the
Galilean invariance condition (g = 1), form three equations which in principle
allow determination of the Lagrange multipliers, ag, and fo, as well as the rate
ceefficient, 7. The resulting equations are quartic in the fugacity, y, with analytic

solutions that are neither insightful nor useful. A more practical approach, as
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stated above, is to treat z as a temperature input parameter and use an expansion
in the density, essentially a virial expansion, that will turn out to be rapidly
convergent. In this expansion, we use the quantity, f = p/d; = p/24, to represent
the density. This is a characteristic bit occupation density and will be smaller

than unity in all applications we investigate.

Thus we have the density relation for the three speed model, eqn. (3.52)
1
= ZIVQ + Nl + 1V2 = f(y, r, 2) (5.4)

the Galilean invariance condition, eqn. (3.70) with D=4 for the 4D FCHC lattice,
written out using the notation of eqns. (3.51) is

_ 2[N(1 = M)(1 —2M\1) +4N,(1 = Np)(1 — 2Ns)
3 [N1(1 = Nq) + 2No(1 — Np))?

which may be rewritten as a function, gcond(y, z, f) =0,

le oy (5.5)

3
0 = f[N](l —Nl)(l —2Nl)+4N2(1 —IVQ)(I "2N2)] —'2'[N1(1 *1V1)+2N2(1 —‘.!VQ)]z
(5.6)
which allows us to solve for y as a function of the input parameters f and z.

Knowing y(f, z) will allow us to find r(f, z) from eqn. (5.4).
The virial expansion is established by developing the fugacity, y, in a power
series,
y=yf+yaf’ +yaf Hyaf +oe (5.7)
Plugging this relation into eqn. (5.6) and setting the result equal to zero order by

order in f, the coefficients y;(z) may be calculated as rational polynomials,

z 8
_ 32(~1 -+ z)z3§4+z) (59)
9(2 + 2)
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_ —82% (44 2) (64 + 482 — 15222 4 34423 — 682% — 1225 + 25)

5.10
27(2 + z)° 10
v — 128(z — 1)2%(4 4 2)(—384 — 208z + 74822 — 8702° — 224 + 4125) (5.11)
Ya = 81(2 + 2)11 S

It turns out that, in spite of the complexity of these coefficients, this series is
rapidly convergent for most physically useful temperatures. The coefficients y; are
of order unity for values of z in the range .1 — 10, which corresponds to almost
a doubling in temperature. The relationship between z and the temperature, T,
will be derived in Section 5.4. Neglected terms. if the series is retained to this

order, contribute less than 1% even for a density of f ~ %, or p=12.

If the corresponding power series for the rate coefficient r is developed from
equation (5.4), one does not obtain the same accuracy - possibly related to the
poor convergence properties of the series for 1/(1 +2) = 1 —z + 22 — z3...
However (5.4) can be solved exactly for r as a rational function of the fugacity, y,

—4(=29" + fy® —yz + fyz — y2 + fy2* + f2°)
= > (5.12)
Y (=9 +4fy? — 5yz + 4fyz — 5yz? + 4fyz? — 23 + 4f23)

and the accurate series for y through fourth order in f may be substituted. This

will provide an accurate expression for the rate coefficient for all usable densities.

In a similar manner, we can compute the energy,

] 2y
= =9 5.13
Up = 24(N; + 2N,) 4(y+z +y+22) (5.13)

and by substituting the series for y through fourth order, we obtain the equation

of state.

The accuracy of this procedure can be established first from the magnitude
of the y; coefficients, displayed graphically as a function of z in Figure 5.1. The
coefficient y, would be off-scale on this plot. Note that the magnitude of y, is
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\% Coefficients of Fugacity Expansion

Ny

o

Figure 5.1: Expansion coefficients in the density expansion for the fugacity. Co-

efficients y,, y3, and y4 are shown.

less than 1. over the range 0 < z < 15. It is straightforward to calculate the
magnitudes of higher coefficients by extending the fugacity expansion. eqn. (5.7),
to higher orders in f. Explicit calculation shows that the magnitude of ys is less
than 0.5 while yg is bounded by 0.2 in this raage. This implies correction terms to
y order ~ .5f%, or .016 for densities up to f ~ .5 which is less than 1% of the value
of y at this density and temperature. At lower values of f and z, the correction
effect is even smaller. The full expression for the fugacity, through order f4, is

plotted as a function of f and z in Figure 5.2.

The key factor limiting the dynamical range and the applicability of the entire
lattice gas method, is the rate coefficient. r. The coefficient must be positive, of

course. To maintain rapid thermalization within the flow, in practice. r cannot be
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Figure 5.2: Fugacity from the 4t order expansion as a function of density, .1 <

f < .8 and the temperature variable, .5 < 2 < 10.
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too large or toc small. Typical allowed values would be in the range .1 <r < 10
although the closer to the 'natural’ value of r = 1, the easier it is to maintain.
As the three-dimensional plot of r as a function of density and the temperature
variable, z, shows in Figure 5.3, r is positive and within the acceptable range when
f < .56 and for all z, .5 < z < 10. For increased densities, f > .56, the range of
z for which r is positive becomes constricted until for f = .75 where r < 0 for all
z and there is no longer a physical solution. For the range 0.56 < f < .75, the
algorithm can no longer access low z flows. Figure 5.4 shows a cross-section of r
with f = 2/3 which shows the constricted range of z where realistic flow is still
attainable. In this regime, care would have to be taken to assure the simulation

didn’t require temperatures in the unphysical range.

The range for which r is positive is strongly dependent on the number of
stopped particles in the model. The maximum value of f that allows a positive

solution for r over the range of z, .1 < z < 10. for various values of dp is shown in

Table 5.1.

Table 5.1: The limit on density to assure that r is positive as a function of the

nurnber of stopped particles in a three-speed model.
Clearly, the more stopped particles the better. We limit ourselves to dp = 6 for
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Figure 5.3: Three speed model rate coefficient for .1 < f < .8 and .5 < z < 10.

showing the plateau topography over the main dynamical range. For f > .56,

r < 0 for some z which is unphysical.
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Figure 5.4: Rate coefficient as a function of temperature, z. at a density of f=2/3.
The negative ranges of r correspond to regions where realistic (Galilean invariant

and non-anomalous pressure) flow cannot be obtained with this algorithm.

practical reasons. First of all. we anticipate that we will not be pushing this model
bevond f = .3 so that six stopped particles are sufficient to assure positive values
of r up to this limit. Furthermore. with six stopped particles we may associate
a stopped particle with each of the six orthogonal intersecting planes in a 4D
cartesian coordinate system. Thus at any site. it is possible to have a stopped
particle to permit an energy exchanging collision in each orthogonal plane. With
less stopped particles. fewer energy exchanging collisions can occur, which reduces
the algorithm’s ability to maintain g = 1. This is reflected in the reduced range of
possible density as dy is decreased. Of course. if we wish to transform the lattice

to the frame of any velocity vector. we require d, = 1 to maintain the exclusion
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principle. In models with larger speeds, we will find that the dp = 1 requirement

is not as restrictive as it is in this case.

The removal of all artifacts from the momentum equation has been demon-
strated using this technique for the thiee speed model in extensive simulation
results, which will be discussed in Chapter 7. Once the removal of the g artifact
had been established, a number of standard fuid dynamical experiments, such as
flow in pipes or flow around bluff objects. were run with this model to illustrate
that the system transferred momentum correctly. In these dynamical cases, it
was possible that the local values of temperature and density could change sig-
nificantly if a simulation was started off far from equilibrium. For this reason, it
Wwas necessary to have a rate coefficient that exhibited very little dependence on
these quantities, such as the large plateau region of r in Figure 5.3. Another way
of assuring r remains at the appropriate value is to create a feedback system that
can sense the local density and temperature (z) and then alter the collision mask

accordingly.

If the zero order distributions, Nj, can be measured directly, the local density,

f, can be calculated from eqn. (5.4) and z can be calculated from eliminating the
variable y from the expressions for N; and N, in eqns. (5.3)

N,

Z = -

N,

where 1\7 = i%’ﬂ Knowing f and z, we can calculate the updated values of Yy

(5.14)

and r from eqnus. (5.7) and (5.12) respectively. Unfortunately, it is not possible
to sense the N; directly in a system with a non-zero fluid velocity. This is not an
issue for the density measurement since all contributions from the mass moment
over Nj; vanish except the zeroth order but it does become important for the z

measurement. What we can do is sum the local density Nji, eqn. (3.41), over
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direction and then divide by the number of directions to get an averaged zero

order density for energy j

N o
) = B 1 s i) + N

N; 1+ x| (5.15)

which is different from the desired quantity V; by the second order quantity xu?.
Normally, such a small error could be ignored but since the mask is being used to
remove an effect that is second order !, we must remove second order errors from
the value of the mask. Since N; = (N;)/[1 + y,u?], we can substitute this into

eqn. (5.14) to obtain z in terms of the measured zero order densities
A 2
iy (1+ %)
(Na) (1+ 3)

where (N}) = 1—(N;). This relation is correct to second order in the fluid velocity.

(5.16)

The quantity x; contains moments of the zero order distribution function through
the coefficients 0,3, and f,. For these calculations, the averaged distribution
(N;) may be used since this adds second order errors to the x; result which, in
turn, is a fourth order error in z, which is negligible. Since the length scale for
gradients in macroscopic variables such as fluid velocity or global density is much
larger than the lattice spacing, we do not need to set the mask separately at each
site. It is sufficient to set one value of the mask based on the average density
and temperature over a region of the lattice, the size of which corresponds to the
smallest macroscopic scale length. This feedback technique was used successfully

to maintain the removal of the g artifact in simulations where local values of the

1The pressure anomaly is second order, eqn. (3.24)
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density and temperature changed significantly (i.e. region behind a bluff object

with flow accelerating from rest - see Chapter 7).

As a final observation on this model, we calculate the other two artifacts v
and ¢’ to see how far away they are from their hydrodynamic values, shown in
Figures 5.5 and 5.6 respectively. Since there is no further freedom in this model,
these quantities remain artifacts and affect the energy equation. We find that
setting ¢ = 1 pushed vy > 1.5, its correct value for a four-dimensional degree of
freedom lattice, although the error is small at low density and becomes worse as
the density is increased. This is because the rate coefficient. F igure 5.3. becomes
larger at higher densities which means the constitutive moments of the artifact
relations change by a greater amount at larger densities. On the other hand, ¢ has
values both greater and smaller than unity, attaining unphysical negative values
for large density, low temperature regimes. There is a region of parameter space,
04 < f<06and4<z<8, however, where the value of ¢’ is very close to the

value 1.

9.2 Making g=1 and v = 1.5 - 4 Speed Model

In order to accurately simulate low Mach number heat transfer, it is necessary
that both the g and 4 artifacts have their correct hydrodynamic values, 1 and
1.5 respectively in a four-dimensional volume. Requiring v = 1.5 adds another
equation to the system that, in turn, requires a further free variable that can be
tuned to give this result. This means that we need to add another rate coeflicient
to the system. Although the v artifact is quite small once g=1, asillustrated in the

3-speed model, it cannot be completely removed at all densities and temperatures
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Figure 5.5: The artifact v as a function of density, f, and energy, z using the
solvtions for the 3 speed model that makes g = 1. Although close to the continuum
value of 1.5 at low density, the discrepancy grows with density although the largest

error for f = .5 iz limited to 17%
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0.8
Figure 5.6: The artifact ¢’ as a function of density, f, and energy, z using the

solutions for the 3 speed model that makes g = 1. Note the proximity of ¢ to the
hydrodynamic value ¢’ = 1 in the range 0.4 < f < 0.6 and 4 < 2 < 8.
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in low speed models.

That the error in v is small once g has been corrected can be shown by isolating
for the ratio p/(1,¢€), in the g artifact when g=1. Since this same ratio appears in
the expression for 7, eqn. (3.74), we can substitue the resvlt from the g relation.
We use the fact that higher order moments can be written in terms of lower order

moments, specifically

(1, 6)1 = Up - Zdijgéj (517)
J
(e€)2 = (e,€)y —23 ;N1 - Nj)el. (5.18)
J
where the correction terms are at least quadratic in the zero-order density V;, to
rewrite «
y = (e,€n {D+2 (1,€);
U, D (¢ €),)
D+2 X diNie; 25 diN}(1 ~ Nj)é?
- _ 2 %ilVje; 1
(e (519
D+2 D+2¥;diN'e; D+22 (U, - ¥, d;N%;) 2 2
= —_— — . 4 — ’V “
D D 0, D U, (nehn 5),:‘1:”: (1= Nj)e;

which clearly shows that at low density + approaches the continuum value v —
(D+2)/D = 1.5, for the 4D case. As the density is increased, the two higher order
terms in eqn. (5.19) contribute significantly and push + away from 1.5. By adding
another rate coefficient we could attempt to force the two higher order terms to
cancel each other. To examine this requirement more rigorously, we make the

expansion in density explicit by defining the notation
<" >=3 d;NFe?, (5.20)
i

the nth energy moment of the zero-order density distribution raised to the kth

power. All of these moments are necessarily positive quantities. /V; is the prob-
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ability of particle occupation and so must be less than 1. In this notation. the

relevant moments in the g and v relations are, using eqns. (3.51)

U, = <e>
(Lehi = <e> —<e>, (5.21)
(,eh = <> —-<e>,
(€ = <> -3 <> 42< e >,. (5.22)

Using the above, eqn. (5.19) becomes

D+2(1+2<c2>2<e>1—<€>2<62>1

= m— O(N? 5.23
7 <e>1< e? >, + (’)) (5.23)

D

so that the second rate coefficient must force
2< €€ ><e>1=< €>< € > (5.24)

for 4 to be correct at low to moderate densitjes. The following relationships hold

amongst the moments
<E> > <e> > <ed, (5.25)

<e> > <> > <e>, (5.26)

for all N; in the physical range 0 < N; < 1. The rate coefficient cannot alter these
relations. The determination of which of the pair < €! > and < € >, is larger

depends on N;.

In the 3-speed model, the left-side of eqn. (5.24) is larger than the right since
Y > 1.5 whea ¢ = 1. This means we would like to increase the value of the largest
moment < € >, to balance the two sides. We may make this moment larger

by preferentially increasing the number of particles with higher speeds. This can
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be accomplished by associating the new rate coefficient with the highest speed
distribution in the model, r;,..,. At low densities and temperatures. < ¢ >~ <
€ >; and < €8 >;~< € >, since there are very few particles in higher energy
states. This along with the relations in eqns. (5.25) and (5.26) indicates why the
first order in density contribution to v, eqn. (5.23), is positive. As the denaity
and temperature increase and more particles are in the highest speed, the rate
coefficient is more effective in reducing the discrepancy between the two sides
of eqn. (5.24). Still, if jmq is too smail, it may not be possible to increase the
value of < €2 >, enough over the other moments to satisfy 2qn. (5.24) due to the
requirements of eqns. (5.25) and (5.26). In these cases, there is a value of the
rate coefficient that minimizes the error in the artifacts g and 4. If this error is
acceptably low?, then this approximate solution is acceptable. We know that the
balancing of eqn. (5.24) must become easier as higher speeds are added since the

artifacts naturally vanish as the discrete continuum i: approached, as shown in
Chapter 4.

The smallest system that might be able to remove both of these artifacts is
again the 3-speed model with two rate coefficients, the previous ro to remove g
and the new rate r, to set 4 correctly. When we attempt to solve eqns. (3.70) and
(3.74) simulataneously for y and r; with ;. = 2, we find that no exact solutions
are possible, for the reasons described above. Moreover, at typical densiiies and
temperatures, the minimum errors attainable in the artifacts are greater than 5%,

which is too large to be practically useful.

The next smallest system is the four-speed model where we add particles

with energy=3. The velocities for this energy are all the signed permutations

?below the threshold of being measured
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of (2,1,1,0), of which there are 96. d3 = 96. As does any complete set of velocity
vectors for a given speed, j, on the 4D FCHC lattice, the set of j = 3 vectors are
sufficiently symmetric to ensure an isotropic stress tensor. We associate the rate

coefficient r3 with this energy so that NV, = 7~ and eqn. (5.4) becomes
f= %No + N+ Ny +4N; = f(y,ro, 73, 2) (5.27)
from which we can solve for r, analytically
ro = [~4(=6ray® + fray® — 5ray?z + fray*z — dray?z? + fray?z?
—drayz’ — fray® — 272 4 fy?® —yt oy fyrt - yaS 4 f ) (5.28)

[¥(=25ray” + 4 fray® — 21rap?z + 4fray’z — 21ray?2® + A fryy?a? — 1Trayz®
+4fray2® — 9y 4 4fy20 — 5yt 4 4fyzt — 5yz° + 4fy2® — 28 4 4£25)).

The equations we use to solve for y and r3 are

= 2[Mi(1 = M)(1 = 2Ny) + 4Ny(1 — Ny)(1 — 2M;) + 36 Na(1 — N3)(1 — 2N3)] f
9=3 [Mi{1 = M)+ 2N5(1 = Np) + 12N5(L — Vo) 2

(5.29)

and

- [M(1 = M) + 4Ny{1 ~ N,) + 36N5(1 — Ny)] ;o3
! [Ni(1 - M) + 2Na(1 — N3) -+ 12N;(1 — N3)|[M; + 2N, + 12N;) (2'30)
5.

Again we find that it is not possible to find an exact solution for all density and

temperatures with this model but the errors are much smaller than in the jpoc = 2
model. For example, Figure 5.7 shows the g = 1 and v = 1.5 contours as functions
of y and r; for a typical case where f = .26 and z = 5.5. Although the curves
come very close to each other, they do not intersect which indicates there is no
solution (y,r3) that removes both artifacts simultaneously. However, we see that

a8 r3 increases, the two curves approach each other to a point of minimum distance
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Figure 5.7: Contours of g = 1 and v = 1.5 as functions of the fugacity, y, and the
rate coefficient, r3, for f = .26. z = 5.5 in a four-speed model. Since the contours
do not intersect, there is no simultaneous solution for the artifacts at this density
and temperature. The point where the curves are closest together, as indicated,

results in an error in both artifacts of only .5%. which is acceptable.

and then diverge. If we select the point midway between the two curves at the
point of closest approach, y = 0.95. r3 = 2.34, the error in either artifact is only
.5%, which is smaller than the accuracy to which we can measure the artifacts in

a simulation. Thus, we can use this point as a solution for the system.

On the other hand. at higher densities and values of z, it becomes possible to
calculate an exact solution to the system. As shown in Figure 5.8 for the case
f = .44,z = 9.35, the two contours do intersect at y = 3.76, 73 = 4.40, so that the

two artifacts can completely be removed in this case.
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Figure 5.8: Contours of ¢ = 1 and vy = 1.5 as functions of the fugacity, y, and
the rate coefficient, r3, for f = .44, z = 9.35 in a four-speed model. In this case,
the contours do intersect so that an exact solution for removing the artifacts is

possible.

There are two regions of solution for this system. A region where the solution
is exact at high density and z and the rest of parameter space where no exact
solution is possible, but a ‘solution’ that minimizes the errors in the artifacts may
be found. The ‘solutions’ in this second region can be used only if the errors in the
artifacts are 1% or less so that there is no detectable evidence of the artifacts in the
macroscopic behaviour of the model. Figures 5.9, 5.10, 5.11 illustrate the solutions
YsTo, and 73 to this system. Although the numerically calculated solutions y and

s appear planar for the most part, there is some slight curvature so that the
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best-fit equations to these curves in the approximate solution region are

y(f,z) = 0.01-1.49f +4.59f% — 6.03f° + 1.03f=

— 1.64f%2 4+ 2.08f3z — .025f2% + 0.129 (%2 (5.31)
ra(f,z) = 0.3740.42f —2.64f2 - 0.29fz + 1.66f22

+0.0952% — 0.074f 2 — 0.18222. (5.32)

The root-mean-square errors in these two relations with respect to the actual
solutions are 1.5% and 2% respectively. Once we have y and r3, r is calculated
using eqn. (5.28). For z > 2., we see that the solution for ry is rather flat which
is ideal for maintaining the correct values of the artifacts in a system where the

density and temperature may be changing rapidly.

The curvature in the solution changes abruptly when the exact solution region

is entered. The curve that separates the two solutions :n parameter space is
z2=17.3—18.0f (5.33)

where approximate solutions solutions exist for z less than this relation and exact
solutions exist for z greater than this relation. The best-fit equations to the

solutions in the exact region are

y(f,z) = 26.2-93.8f+89.4f2 — 218z + 8.45fz — 7.73f%2

+ .06437%2* (5.4
rs(f,z) = —116+414f ~ 386 + 8.62z — 31.0fz + 36.3 /%2
+.07542% — .105 222 (5.35)

Because the range in which an exact solution is possible is a small portion of

the parameter space that we investigated, the above equations reproduce the data
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Figure 5.9: Fugacity as a function of density, f,
speed model that gives g ~ 1 and 0%

and temperature, z for the four-

=~ 1.5 in the region 2 < 17.3 - 18.0 f and an
exact solution for z > 17.3 — 18.0 f.
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Figure 5.10: Rate Coefficient rq as a function of density, f, and temperature, z for

the four- speed model that gives g ~ 1 and v ~ 1.5 in the region z < 17.3 - 18.0f

and an exact solution for z > 17.3 — 18.0 f.
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Figure 5.11: Rate Coefficient r3 as a function of density, f, and temperature, z for
the four- speed model that gives g~1and vy~ L5 in the region z < 17.3 — 18.0f

and an exact solution for z > 17.3 — 18.0 f.
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points quite accurately, with an overall root-mean-square error of about 0.2% in
both cases. In a simulation where the masks may be changing rapidly. requiring
repeated calculation of the masks®, it would probably be more computationally

efficient to maintain a look-up table of the variables y and r3 and interpolate when
needed.

Figure 5.12 presents the maximum error from either ¢ or 4 for our solution.
Of course, in the exact solution range the error is zero. The region of parameter

space where the maximum error is 1% or less is given by
z > —3.44+269f —-239f° (5.36)

which indicates that for f < .15, acceptable solutions exist for all z while at

f ~ .4, only solutions where z > 3.5 are acceptable.

This solution used the value dy = 6, a maximum of six stopped particles
per site. As in the 3-speed model, the range for which ry is positive and hence,
physical, depends on the value of d, strongly. With dy = 1 there is only a very
limited region of parameter space, f < .2 and z > 4. where g is positive. With
do = 3, this rate coefficient is positive for 0. < f £ .275 and z > 2.. which is

entirely enclosed in the region where the errors in g and v are bounded by 1%.

With the solution for the removal of g and v system complete. we now calculate
the final artifact, g’ using the computed solutions and eqn. (3.75). The result,
shown in Figure 5.13, shows that typically ¢’ < .6 which is significantly different

from the continuum value 1.

Unlike the 3-speed model where there was a range of parameter space with

g' ~ 1, ¢’ is everywhere smaller than unity in this case. To make g =1 as well

3Using the same feedback procedure as outlined in Section 5.1
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Max er{%' 02 ‘_
0.01

Figure 5.12: Illustrates the maximum error in the artifacts g and « for the four
speed model with two rate coefficients. For z > —3.4 + 26.9 f — 23912, the

maximum error is less than 1%. This is the usable range of this model.
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Figure 5.13: The artifact ¢’ as a function of density, f, and energy, = using the

solutions for the 4 speed model that makes ¢ ~ 1 and ¥ ~ 1.5. ¢’ is everywhere
less than 0.7, for this model, which means the error in this artifact is at least 30%

in this model.
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would require another rate coefficient and higher speeds. The equation for ¢/,
eqn. (3.75) is so complicated that insight into what moments need to be alterred,
as was possible for g and +, is not possible. In a four-speed model with three
rate coefficients, exploratory attempts to find full solutions resulted in no pessible
Physical solutions for all densities and temperatures both large and small. Al-
though the ¢ = 1 and v = 1.5 contours were once again very close together, the
g = 1 contour was an order of magnitude displaced from the other two contours in
parameter space. We prove in Section (5.4) that a five-speed model is the small-
est system that can remove all three artifacts in the low-density limit. Thus, if a
solution exists for general density, the system must have at least five speeds. If
we move to a five-speed system and solve just for the g and 7 artifacts by adding
a 5 rate coefficient, the range for which only approximate solutions are possible
decreases slightly in comparison with the four speed model while the improvement
in the minimum errors associated with artifacts in this region are only about 0.1%
smaller, on average. Consequently, the additional computational effort required
to add the fifth speed outweighs the slight improvement in the accuracy of tka
solution over the four speed model, when the removal of just the first two artifacts
is the goal. On the other hand, a five speed system is the minimum model required

to remove all three artifacts.

The four-speed model presented here can be used in simulations where the term
including the remaining artifact is negligible. To find this range we examine the

relative magnitudes of the two contributions to the energy flux vector, eqn.(3.26)

Q= ('yU,, + g'%pu2) u (5.37)

when the ratio of specific heats has its correct value, vy = 23'—2- and g = 1. For this
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lattice gas, eqn. (3.38) indicates that

2;..;_.2.(/’, = -g—pcg, (538)
We then find that .
102
%1 ~ %g' M? (5.39)
P

where M is the Mach number. We have seen that for this model g < 1. We set
¢’ = 1in eqn. (5.39) to be conservative (and so that this calculation will hold
for the case where all of the artifacts have been removed) and then calculate the
Mach number that will keep the magnitude of the second-order contribution to
the energy flux less than ~< 0.5% of the zeroth order contribution. This value of
Mach number is

M <0.15. (5.40)

Thus, we can use the four-speed model developed here to accurately simulate

heat and momentum transfer in flows with a Mach number, M < 0.15.

3.3 Density Expansion of Artifact Relations

The Fermi-Dirac form of the equilibrium distribution complicates analytical com-
putation of solutions for systems where the artifacts are removed. We were able
to achieve a system where g = 1 by employing a virial expansion in the fugacity
while a combination approximate-exact solution for the simultaneous g =1 and
7 = 1.5 case was possible only by numerical calculation. In low-speed models,
it does not seem possible to remove all three artifacts or reduce the errors to an
acceptable level in the arbitrary density case. In order to cbtain some physical

insight into how the artifacts are removed as well as to see if tractable solutions for
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the removal of all three artifacts are possible at low densities. we now expand the
artifact relations for small densities. We have written the equilibrium distribution
Nj; as an expansion in Mach number, eqn. (3.41) so that it can be expressed as
a function of the isotropic distribution function N;. An expansion about small
density proceeds by expanding NV, as a small quantity, using eqn. (5.2)

vy

yrj 3
N; = - = ot
’ yr’-+21 1+!.’.'L

- er z( 1y (er)

zJ 1_0
~ Z( 1y ( ) = (NEP), (5.41)
=0
which is an expansion to order k around the low density equilibrium expression
NJ-LD =4 rie" e Poi, (5.42)
zJ

Incidentally, this low density distribution now has the Maxwell-Boltzmann form.

The relative error in the truncated expansion can be shown to be

N; —I(JYJ'LD)k = (=1)* (%)k (5.43)

so that if we wish to keep the error in a third order, or k = 3, expansion below
5%, we require that N; < .27. We now expand all three artifacts to third order

in the low density relation and attempt to remove the artifacts order by order.

The explicit expressions for the distribution function and its derivatives appear
in the artifact calculations of Section 3.2 only in the moment relations, eqn. (3.51).
Thus we do not need to repeat the calculation of the artifacts, we may simply
expand the moments that appear in the artifact expressions about the low density

function. All four moments of eqns. (3.51), expanded to third order, may be
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summarised as
(a,b)a ~ 3 d;NFP(1—2"NEP 4 3"NED)q 4.
o~ (j ab>; —-2" < ab>; +3" < ab >3 (5.44)
using the notation of eqn. (5.20).

As usual, we begin with the expansion of the g artifact, eqn. (3.70)
D (<> —-4<e > 49 <€ >5)
D+2 (<e> -2<e>;+3 <€ >3)?
D <ée><é>, <e> <€> <>,

3 1414 -4 3 - 5
D42 <€>f <€Dy <€t > <>,
9<£2>3_16<6>2<62>2_.4<€>2<60>2
< €2 > <e>i< e >y <e>1< 0>
2 0 ¢ 2 <e>

<€ > € >2+< >3+12(<€>2) —6 3)]

<E@><ef>; <> <e> <e>

(<€ > =< >y 4+ <€ >y)

(5.45)

+4

To achieve hydrodynamics, the lowest order term in this expansion should have
the value 1 while the higher order terms should vanish. We view this as three
equations for the three moments < €2 >,. To give g = 1 at zeroth order requires
that

D+2<e>?
2= 1 5.46
<e€ > D <& > ( )
while if the first order contribution is to vanish then
< €>3 1<é >
= —_ . 5.47
<€ > <62>‘(<e>1 4<£°>1) (5.47)
For notational convenience, we define
< €>9
= ~ O(N; 5.48
’ <€E> ( ,) ( )

a first order in density expansion parameter. The following are all combinations
of moments that are zeroth order in density

D <€°>1
= 5.49
"= Prices, (549)
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]
<€eE>1 <€ > -
K = 5 1 2 (O.DO)
<€ >1 <€>9q

<e> <>,

= 5.61
¢ <&@ >; <e>y (5.51)
<€e>1<€>3
= 3.52
u e (5.52)
Thus egn. (5.46) is
<€ > = Sex (5.53)
and eqn. (5.47) is
< é >2=<€>‘x(1-—5-). (5.54)
n 1

Similarly, a straightforward calculation shows that the third order contribution to

g in eqn. (5.45) vanishes if

= ’;—2 [(s =2 + w6 - ¢)]. (5.55)

< € >a=

We now proceed to calculate v, eqn. (3.74), in the same manner

(<e°>1—<e°>2+<e°>3)(<62>1-2<62>2+3<e2>3)

T = (<e>1—2<e>2+3<e>3)(<6>1—<€>2+<e>3)
~ <e°>1<€2>1[1_§§;§1z+§§%}][1—2%'{'3%]
<e>? 1-25822 4 35 1— 5822 4 s
D — el 14
= ZpR[iea- ey MRSt ) g

where in the last line we have substituted the relations for < €2 >, that make
g9 = 1. As was found in Section 5.2, when g = 1, the zeroth order term in v is
correct, ¥ = gg_z. From eqn. (5.56), we see that the first order contribution to v
vanishes if £ = 2 and if we plug this value into the second order contribution, this

term also vanishes if £ = 3, independent of U
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To complete the expansion solution. we examine the third artifact g’, eqn. (3.75).
As before, we substitute for the various moments using eqn. (5.44) and then ex-
pand to second order in the density variable z. We then force the zeroth order
term to have the value unity while the two higher order terms vanish using the
three < € >, moments. Although the calculation is straightforward. it is also
tedious and the expansion terms are cumbersome. We simply state the results.

The zeroth order term is

y_D4+2[<e€>1 1
9= 2 <€>1772

so that ¢’ =1 if

<& >=—
Using this result, the first order term vanishes if

D+43 -«

3 = s
<€ > D+2 4r

< €>9 (5.59)

while the second order term is zero if

_(a—2)*(48 4 10D — D?) + 4u(D + 4)(9 - 2¢) <e
- 108un*(D + 2)

<€ >; >3 (5.60)

where we have used the results from the first two moments.

To summarize, it is possible to cause all three artifacts to have their correct
hydrodynamic values through second order in the density expaasion if, in the

D = 4 FCHC system, x = 2, { = 3 and

< €>y <e> 4

< € >1= <é >1= —;7"2——3' (5.61)
>
< 62 >2= < j’>1§- < 63 >2= < ;2 l-::-;- (5.62)
<e>yx? < € >y 4ps?
< é Sa= 1-3— <é Sa= - ! 57 (5.63)



where the < €? >, relations force g = 1. the < € >, relations force ¢’ = 1 and

the conditions on & and ¢ force v = 1.5.

In the arbitrary density case, the three artifact relations required three rate
coefficients to make a solution possible. Now that we have performed a density
expansion on the artifacts, we find that there are eight relations that need to
be satisfied to remove all the artifacts. Although each of these relations are
considerably simpler than the arbitrary density artifact equations, we still must
solve a non-linear system of eight equations and eight unknowns where the number
of speeds in the model as well as the density and temperature are parameters.

Consequently, the complete solution is certainly not trivially attained.

5.4 Removal of Artifacts at Low Density

In the previous section, we examined the artifact relations when the Fermi-
Dirac equilibrium was expanded in a power series of the low density equilibrium,
eqn. (5.42). We now examine the artifact relations when the density expansion
is truncated after the first term. In this low density limit, once there are two
particles at a site that may collide, there is such a low probability that another
particle will be occupying an output site for that collision that the probability of
a hole site is 1 — N; ~ 1 effectively. Thus, we assume if the input particles for
a collision are present then the collision will occur without the need to check for
output hole sites. This changes the collision dynamics from Fermi-Dirac back to
the familiar Maxwell-Boltzmann which explains why the low density limit of the

Fermi-Dirac distribution is in fact the Maxwellian

NP =rieap[~(ag + foe;)] = r; y 2. (5.64)
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This is also known as the “classical limit” of the Fermi-Dirac distribution[48].

We will show that in the low density limit, it is possible to analytically solve the
artifact relations when sufficient number of rate coefficients and particles speeds
have been sdded to the system. The artifact relations in the low density limit
are the zeroth order terms of the artifact expansions of the last section. We will

re-derive those results here in more detail.

In the low density limit, all the inner products of egn. (3.51) reduce to
(a,b). = Y d;Nja;b; for+=0,1,2,3. (5.65)
J

Furthermore, all moments of eqn. (5.20) with £ > 1 are no ionger needed. We

drop the subscript on the one remaining first order moment so that
<€ >=) d;N;j". (5.66)
J

The low density expressions for the artifacts result from reducing all subscripts
on the moments to zero. Thus, there are only four moments left in the system of
equations, < €" > for n=0,1,2,3. We already have expressions for the moments
where n = 0 and 1

<€e&>=p <é>=U, (5.67)
which allows us to solve for the coefficients aq and Bo. Thus, only the n = 2 and
3 moments are free to remove the three artifacts, which seems to leave the system

unsolvable but it turns out to be exactly as many as are needed.

Because the masses of all particles have been set equal to unity, the mass
demsity, p, equals the pasticie density, p = n. We define a fluid temperature for

this system in the same way that it is done for a continuum fuid
2
P,=nT= -D—Up (5.68)
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where P, is the scalar part of the pressure tensor, the Boltzmann constant for this
system is taken as £ = 1 and the second equality holds because of equipartition of
energy in an ideal gas, which we know also holds for a multiple-speed lattice gas if
9 =1, eqn. (3.24). Thus, U, = 2nT. We know in closed systems that the particle
density must remain constant. If the system is also isothermal, U, or equivalently

< € >, remains constapt.

The first artifact we will examine is the expression for g. The low density form

of eqn. (3.70) is
_ D <e&> D <é>
" D+2<e>2’ T D12 U2

Since g is smaller than one in a system without rate coefficients, we must raise

g n. (5.69)

its value. Since n and U, are constant in closed, isothermal systems, the only
moment that is free is < €2 >. It is clear that a rate coefficient must be used to
preferentially increase the number of particles with higher speeds so as to increase
the second energy moment to the level where ¢ = 1. If we put ¢ = 1 and then
solve for < € > we find

2 _D+2U7

<€ >= -5 (5.70)

If we can force the second moment of energy to have this value, the first artifact will

be removed. The low density expression for the second artifact, v (eqn. (3.74)), is

<e> <e>
= = e, 5.71
TP es<es U3 (5.1)

If we now plug in the relation for < €2 > that makes g = 1 we find that

D+2<e>?

P D +2
= = 5.72
K <e>2[ D p ] D (5.72)

which is the required value for the ratio of specific heats in an ideal gas. The

condition on < ¢? > in eqn. (5.70) removes both the g and 7 artifacts. In the last
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section, we found that v was correct to zeroth order when g = 1 and that only
higher order contributions contaminated the value of 7. In the low density case,
the higher order terms are not present and the value of 7 is exactly correct when

g=1.

We now turn our attention to the final artifact, g', as given by eqn. (3.75).
The low density value of this expression is

, _ pPD<ée> <e€> <eé>] D
T T 2<exs <e> <e>|D+2

+

g

% <e><62>—<e><62>+2 <e>? <ex_<e> +
A Dp <e> <e>
2 <e> <>
1 - 2 - —— 2 _ .
v [p<e> <e><e> Dpp<€>][<e> <62>]} (5.73)
where
2
A=p<62>—<6>2=5<6>2 (5.74)

substituting for < € > from eqn. (5.70). We now see that the second square-
bracketed term on the second line and the first bracketed term on the third line
(using the above identity for A) are both identically zero. When we substitute for

< € > we can simplify the remaining partion of ¢’ to

D+2| <>/ D \?
'= 2 S —— - . .
=73 [p <e>3 (D+2) 1] (5.75)

Like g, the natural value of g’ is smaller than the desired value of 1. The only
moment that can be alterred in this expression is the third energy moment < ¢ >.
Once again, we wish to raise this moment using another rate coefficient so that ¢

becomes unity. The value of < ¢® > that makes ¢’ =1 is

cdoe DD+ <> (D+4)(D+2)U;
D? p> D? n?

(5.76)
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Of course, the required expressions for the low density second and third energy
moments are identical to the lowest order density results shown in eqn. (5.61).
With D=4 for the FCHC !attice. we find the following requirements for the four

energy moments

<> = n (5.77)
<é> = T (5.78)
<€e€> = 6nT? (5.79)
<€e&€> = 24nT3 (5.80)

These four equations can be expressed in a very compact form. In fact the
problem of removing the three artifacts in the low-density realization can be sum-
marised as the following. We must solve the set of four equations

jmu
< >= 3 diN;j* =n(k+1)T*  fork=0123 (5.81)

}=20

where n and T are the desired (input) density and temperature and
N; =yr;z™7 (5.82)

for y(n,T), 2(n,T) and rj(n,T) where only one rate coefficient is needed to remove

g and 7 and two are needed to remove all three artifacts.

There is still a great deal of freedom in this system in deciding what value
of jmar should be used and which energies should have masks. We address these
issues in a systematic way in the remainder of this section with the goal of finding
the lowest jpq. that will allow a solution with an appreciable range in temperature,
T. We wish to minimize j,,,, because the higher j.., the larger the number of

particles the lattice algorithm must move around and collide which means larger
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computation time or. equivalently, slower computation speed per update cvcle of
the lattice. What we mean by appreciable range in T' will be explained in the
following section. We begin by examining the smallest system that permits the g

and « artifacts to be removed, jn.. = 2.

5.4.1 Three Speed System

In Section 5.1 we used a three speed system (particles with energy 0,1 and 2) to
remove the g artifact in an arbitrary density system. Obviously, there must be a
low density solution as well that removes both g and 5. This is found by solving
the first three equations of eqn. (5.81) putting r; = r; = 1, i.e. only the stopped
particles have a mask, ro, as we did for the arbitrary density system. If one of
the other speeds had the mask we would stiil get a solution valid for the same
range of T but the results are more algebraically complicated and so require more
computational effort to employ in a simulation. With the above system, it is a
straight forward matter tc solve for the three unknowns (for the FCHC system,
dl = dg = 24)
2(2-3T7)

3r-1
nT(2 - 3T)?

6(3T - 1)
6(T — )5z + (T = 3)*)

T(T - 3)? '

z=eﬁ°

y=e (5.83)

dgrg =

The dynamical range is set by the first of these three equations as the range where
z = € is positive and finite. Outside of this range, it is not possible to enforce
g =1. This rangeis 1/3 < T < 2/3 which allows a doubling of the temperature in

flow simulations. As a practical example, this range could be scaled to represert
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temperatures of from 200 to 400 degrees Kelvin, which is more than sufficient for a
simulation of the Earth'’s atmosphere. We see that, unlike in the arbitrary density
case where the value of dy had a strong impact on the extent of the solution as a
function of temperature, in the low density case dp affects only the magnitude of
ro and does not affect the possible range of temperature. We can now set dp = 1
so that the system may be transformed by any lattice vector and still preserve the
exclusion principle which permits us to extend the model to transonic speeds as

shown in Section 4.3.

For fluid temperature, T > 5/9, the variable z is less than unity, implying a
negative. thermodynamic temperature. This means that the system has a pop-
ulation inversion with N, > N;. It does not imply any kind of thermodynamic
instability. To the contrary, this is a well-known feature of systems with a bounded
energy spectrum{48]. One can show, explicitly [35] that lattice gas systems with
this feature can equilibriate with positive temperature systems. Heat flows from
low to high 3, including the negative £, ranges. It is the fluid temperature,

calculated by inverting eqn. (5.83)

_ z+4
T 3242)

rather than the thermedynamic temperature, which provides the most useful pa-

(5.84)

rameter in the lattice gas dynamics. Figure 5.14 shows T(z) as above while Fig-
ures 5.15 and 5.16 shew y/n(T) and ro(T) with one stopped particle per site
as functions of temperature. We see that ro is within the acceptable range of
.1 < 7o < 10 for the majority of the allewable range of T and is close to unity for
T < 5/9 where 2z > 1. Finally, we may take this solution that removes g and «y

and calculate the final artifact using equ. (5.75). The result simplifies to
g = (3T - 1)(2-3T)

s (5.85)
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the structure of which shows explicitly its positive value within the range of al-

lowable temperature, i1<T< 2, Figure 5.17 illustrates this relation. We see
that ¢' < .4 for all T and so there is nc range of t mperature where ¢’ ~ 1 for this

system.

Solving three of the four equations of eqn. (5.81) corresponds to removing
the two artifacts g and v while allowing g’ to be free. We now ask that all four
equations be satisfied, thereby removing all three artifacts. We do this by adding
the mask r;, in addition to ro, to make the fourth unknown. When we try to
solve this system with only three speeds we find that the only solution with real
roots is when T = 0 which, besides creating a trivial system, forces the mask r,
to be negative. Since the masks represent a rate coefficient for collision processes
between speeds, a negative value is unphysical. If we add the mask to the j = 1
species, 1, instead of j = 2, we get the same result. There is no way to make all
three of the artifacts disappear in a three speed system; we must go to a system

with higher jnaz.

5.4.2 Four Speed System

We now add an energy 3 particle, for which ds = 96, to create a four speed
system. We begin the investigation of this system by putting 7, = r, = 1 so that
the four unknowns are y, z, 1y and r5. In this case, it is possible to solve eqn. (5.81)
to get

w _ _4T*—5T+2
- (2T - 1)?

Z2=¢€

<O0forall T

4With j = 3, there are 96 permutations of the velocity vector (2,1,1,0)
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Figure 5.14: Fluid temperature for the three speed low density model as a function

of z.
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Figure 5.15: The density normalized fugacity y/r as a function of temperature in

the allowable range { < T' < 2.
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Figure 5.16: Rate coeflicient ro that removed the artifacts ¢ and 4 as a function
of temperature iz the allowable range 3 < T < £ with dy = 1. The rate coefficient

is not appreciably different from 1 for T < 5/9, the range for which = > 1.
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Figure 5.17: The third artifact ¢’(T') as a function of temperature when the other
two artifacts, g and v, have been removed in a three speed model. Its value is
always less than 0.4 so that ¢’ is always significantly in error in this model since

¢’ =1 in the continuum.
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36(2T — 1)*

There are many problems with this system. Both the quantities y and z are
exponentials that must be positive to be physical. As indicated above, for this
system both y and 2 are negative for all temperatures so we must conclude that
this system cannot be used. If we associate a mask with energy j =lor j = 2,
instead of j = 3, we get the same result that both y and z are negative. Hence
these solutions are also unusable. Finally, if we set up a linear relationship between
two of the masks of the moving energies, such as r, = arz where a is a positive
constant, the solutions are still unphysical for all values of the temperature, T,
and constant a. There is no way to remove all the artifacts within a system that

has only four speeds. Once again, we are forced to add a higher speed.

5.4.3 Five Speed System

There are 24 energy j = 4 directions per lattice node, d; = 24 which come from
the velocity vector (2,2,0,0) and its permutations. We first solve the set of four
equations for the energy moments by setting r; = r, = r; = 1, and retain r4.
Since the equations are starting to get a little cumbersome, we will outline the
process we went through to solve these equations. Starting with the second energy
moment equation in eqn. (5.81), solve for y in terms of z,r4,n and T. Plug this
expression into the first energy moment equation and solve for r4 in terms of z,n

and T. Plug this back into the expression for y to get the fugacity as a function
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of only these three parameters. Plugging these two expressions into the zeroth
moment of energy {the density equation) allows r; to be solved in terms of z,n
and T as well. Now take y and r4 and plug them into the third energy moment
equation (which is independent of ro) and solve for z(n,T). Finally, substitute
this expression back into the other three terms to get the complete solution in

terms of the density and temperature only.

When we solve this system using the above procedure, we get a positive solu-
tion for all four unknowns in the range .39 < T < .82. This range allows a doubling
of T', about the same range that we found for the low-density three speed systern.
The problem with this system is that the expressions for the unknowns are quite
complicated functions of T, involving fractional as well as very high powers of
T. Raising a number tc a fractional power is computationally intensive. This
becomes a preblem when we wish to update the masks dynamically throughout
the simulation where constant recalculation of the mask is necessary. The mask
calculations then become a computational bottle-neck. A further disadvantage of
this method is that both 7 and r, differ considerably from their natural value
of 1 with ry > 10 and ry < .7 for all values of the temperature. This may make
the system potentially, unstable as small changes in the temperature may require
significant changes in the masks (especially for r, which is quite large) to keep
the lattice invisible. For the first time, we have found a physical system that
allows the removal of all lattice artifacts for an appreciable range of temperature.
Unfortunately, it is undesireable to implement this solution in practice due to
computational problems that cannot be alleviated. We will attempt to find ar-

other solution that has the same range in T' but without the problems described
above.
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If we put the mask in front of a different speed, we find that we get physical
solutions but we still have the same problem with fractional roots and the value
of mask becomes larger as we associate it with a lower speed. This indicates that
the system is less perturbed by a mask associated with high speed particles. This
is understandable since the number of particles decreases with higher speeds (the
distribution is now Maxwellian) so that perturbing the higher speed particles has
a smaller effect on the total system. We attempt to graduate the effect of the
mask by giving two masks to the higher speeds but make them linearly related,
Le. r3 = ary where once again ¢ is positive. With this scenario, the system once
again becomes unsolvable with 2 < 0 for all @ and T. When we put r, = ar,
and r; = r3 = 1, however, we find physical solutions again but only for the range
.37 < T < .53 which is only about one-half the range of the previously calculated
system which makes it unattractive.

The next logical step is to add three masks and have them all linearly related,

r; = bry and r3 = ar, where @ and b are positive constants. With this system, a

number of interesting results become apparent. First of all, it becomes possible

to re-scale the four equations of eqn. (5.81) so that instead of two separate pa-

rameters, a and b, appearing in the equations, they only appecar in a particular
combination, K, where

K= 5 (5.87)

a?’
The re-scaled variables, denoted by primes, are related to the original variables

using
Z = az
y = ay
dorl) = %@ (5.88)



r 3

The series of equations to solve is the same as eqn. (5.81) but we use an expression

for N; in terms of primed variables
N; = y'rjz"™ (5.89)

where r; = 1, r§ = 7, and v, = Kr| with K given by eqn. (5.87). With one
parameter instead of two, the analysis of the solution to these equations becomes
easier. Using the procedure outlined at the beginning of this subsection, the above

system can be solved giving

s = [_ 14 1-3T
- 4 — 15T + 1277
- -1
+.L | Z24K(2 - 9T +197%) (36 — 14T + 144T2)2
12 4 — 15T + 1277 (4 — 15T + 12T2)?
v (=182 — 82 — 2K 2P + 18T 27 + 6T + 3K T2")
v=mn 144z — 72 — 12K 27 (5-90)
dor! = 120122/ +6+ K2 — 305" — 15T — 3KT:” + 24T?%2' 4 9T? 4 3KT?27?)
! =

T2(—182 — 8 — 9K 2% 1 1877 + 6T + 3KT27)
' (1-3T)2"R
—362' — 16 — 4K z? + 36T2' + 12T + 6K T2

The above solutions are positive in the range .386 < T < .807 with the lower
limit being a numerical approximation to the lowest positive root 4 — 15T + 12T
which appears in the numerator of 2’ and the upper limit is needed to keep ro
positive. We once again have an appreciable temperature range, slightly more
than a factor of two in T, but 2 requires a square root in its calculation. As
previously mentioned, this is computationally undesireable. Unlike the previous
case, there is still freedom in the solutions as illustrated by the presence of the

factor K. This allows us to see if there a value of K that will make the expression
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under the root sign in 2’ a perfect square so that the square root can be removed.
A bit of algebra shows that if X = 6 then the expression under the root sign in
the equation for 2’ becomes

(12 — 36T)?
(4 — 15T + 12T%)

(5.91)

In fact, K = 6 is the only value that will allow this convenient simplification to

happen. The solutions are now merely rational functions of polynomials in T

' 4 - 15T + 127
T TITor T (5.92)
yr - nT (4 - 15T + 12T2)(40 —234T + 4T1T? — 43273 + 144T4) (5 09)
144 (3T - 1)(2— 9T + 1217) :
o = _5(2=9T+12T%)(24 — 164T +444T% — 6577° + 5047 — L44T%)

T (4-15T +12T2)(40 — 234T + 471T2 — 43273 4 144T%) ©

o (4 — 15T +12T?)3 (5.95)
* 7 4(2-9T + 12T2)(40 — 234T + 47177 — 43213 + 14474 ’

which shows that the solutions are functions of only five different polynomials
in T. By only calculating these five polynomials, and then combining them to
calculate the above parameters using only basic arithmetic procedures, we have
minimized the amount of computational work needed to update the solution in a
dynamical system. As in the three speed low density model, dy does not alter the
allowable dynamical range of this system and so we may set it to the ideal value

dp = 1. The expression for z' can be inverted to solve for T in terms of z’

_ 15492' + 33 — 1827 — 1527
B 24(1 + 2')

T (5.96)

where the negative root is taken when .386 < 7' < .5 and the positive root when
5 £ T < .807 although, as we will show subsequently, it is possible to sense T

directly in a low density system so that the conversion to 2’ is not necessary for

the feedback procedure.
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The next step in the optimization process was to find a value of a that mini-
mized the deviance of the masks from their natural values, which is 1. This was
done by calculating the root-mean-square difference of the masks ro and r, from
the value 1 over the allowable range of T for a wide range of the parameter a
(eqn. (5.88) is used to return to the original variables from the primed ones). The
value of a that minimized the product of the RMS errors in the two masks was

a = .22, Since K = -a-b-; = 6, we find that b ~ .29.

The solution is now complete. We have found a low density system that re-
moves all of the artifacts while requiring only the basic arithmetic operations
to calculate the solutions of this system. Furthermore, we have minimized the
deviance of the masks from the value 1, their natural v»'ie. Graphical represen-
tations of this solution are shown in Figures 5.18, 5.19, 5.20 and 5.21 where 2z,
y/n, doro and r, are shown, vespectively. The factor n was incorporated into the
defintion of y since it appears trivially in that expression. From Figure 5.26 we
see that when dp = 1, as it should be, there is a wide range of T where r has a
value very close to the value 1. Similarly, alihough not as flat as ro, 74 does not
differ considerably from the value 1 for a significant range of T. Again, it is not
necessary that the value of the masks be close to 1 in order for the solution to
work, it is expected, however, that the flatter the expression for the mask, the bet-
ter the stability of the system when undergoing dynamical alterations. With the
solutions for the four variables as functions of temperature and density, the zeroth

order particle density for each species can now be calculated vsing eqn. (5.82).

In Section 5.1, we demonstrated a feedback system for the arbitrary density
three speed model that sensed z from the averaged zero-order distribution func-

tions (N;) and then corrected for second order in velocity effects. In the low
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Figure 5.18: Variable z(T) = e® as a function of temperature T in the range

0.386 < T < 0.807 which permits all three artifacts to be removed in the five

speed low density model.
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Figure 5.19: Variable y/n(T) = ¢~ /n as a function of temperature T in the

range 0.386 < T < 0.807.
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Figure 5.20: Rate Coefficient ro(T) as a function of temperature T in the range
0386 < T < 0.807. TLe large flat region where ry is close to ! allows for a

dynamically stable regime of operation.
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Figure 5.21: Rate Coefficient r4(T') as a function of temperature T in the range
0.386 < T < 0.807. This mask's magnitude also is centred around the natural

value of 1.
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density system, however, it is possible to sense the temperature itself so that the
procedure for first measuring the indirect temperature z and then correcting this
measurement for velocity effects is not necessary. Once we have measured T, we
can then calculate an updated value for the masks using eqns. (5.94) and (5.95).
There may be many regions of the flow where the temperature varies significantly
and where we would like to have local values of the masks. Furthermore, this
updating procedure will have to be repeated many times throughout the course
of the simulation. For these reasons, it was desirable to reduce the computational
effort required for calculating the masks (by removing the calculation of fractional
powers by tuning the value of K). To measure T we begin by measuring three

local macroscopic properties of the flow, the density, momentum and energy

p = Y miN;=n (5.97)
Ji

pe = Z m_,-cj.-Nj; (598)
Js

U = Y eN;i=U,+ tpu? = 20T + Inu?. (5.99)
Je

Once we know p and pu we can calculate the quantity 3pu®. Subtracting this
from U, which gives U, and then dividing the result by two times the density will

give us the temperature

U - 1pu-ou
2
2p

exactly since U, = 2nT in a ) = 4 system.

T = (5.100)

Low density solutions are only valid when N; < 1. In order to find the limit
in particle density to which the low density results still effectively remove the
artifacts, the full Fermi-Dirac arbitrary density artifact relations were calculated
using the five-speed low density model solution. Figure 5.22 shows the error in the

Galilean invariance factor g — 1 as a function of tex'perature and particie number
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at a site. n. Similar plots for v — 1.5 and ¢’ — 1 show that the errors in these values
also increase sharply at low temperature and high density where v — 1.5 is positive
while g’ — 1 is negative. Keeping in mind that an error equal to 1 represents a
100% error in g, which is totally untenable, we see that the low density system
loses its viability for appreciable density as the temperature is decreased. In order
for the errors in the artifacts to be less than 0.1, the density must satisfy the
following inequality

n < 240T?% — 188T + 40.8 (5.101)

which gives a limit of n = 4 at T = Landn = 20at T = 65. In a five
speed system with one stopped particle the total possible number of particles
at a site is 1_}_od; = 169. This result agrees with the theoretical result that
the classical limit, where the Fermi-Dirac distribution reduces to the Maxwell-
Boltzmann relation, occurs in systems with sufficiently low densities or sufficiently

high temperatures([48].

In this Chapter, we have outlined a series of potential lattice gas models that
remove the lattice artifacts to varying degrees. In arbitary density systems, we
found that a three speed model was required to remove the g artifact and this
was done by implementing one rate coefficient, ro, associated with the stopped
particle distribution. A feedback procedure was cutlined that will allow the rate
coefficient to be updated dynamically to maintain g = 1. Exteusive validation of
this model is presented in Chapter 7. Although the second artifact, +, has the
correct vaiue, y = 233, to leading order in the density when ¢ = 1, it is impossible
to remove the higher order errors in low speed models. For a four speed model, we
found that these two artifacts could be removed to an accuracy of better than 1%

for a large range of temperature and density by associating one rate coefficient,
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Figure 5.22: The error in the Galilean invariance artifact ¢ — 1 when the low

density five-speed model solution is use’ ‘n calculate the arbitrary density value

of g, eqn. (3.70). The error is sufficiently small at low densities and high energies.
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ro, with the stopped particles and anoiher, ry, with the energy j = 3 distribution,
To remove all three artifacts in an arbitrary density system it is anticipated that
a system with a significantly larger number of particles, perhaps one with seven
or eight speeds, would have to be used. Since the g’ appears as a coefficient of a
third order quantity in the energy conservation equation while v is a first order
quantity, it is essential that ¥ has the continuum value if «orrect heat transfer
is to be simulated while g’ is a higher order effect. In the ciassical limit where
the density becomes very small, the Fermi-Dirac distribution becomes Maxwell-
Boltzmann. In this limit, the g and « artifacts collapse into the same requirement.
For a low density system, we once again find a three speed system that removes
both g and v but it is necessary to go to a five speed model to remove all three
artifacts. The five speed model presented here has the usual ro rate coefficient
as well as another coefficient r4 that has been spread out over the highest three
energies. This system has been optimized so as to ininimize the computational

effort required to update these coefficients in a dynamical simulation.
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Chapter 6

Absence of Noise Effects on

Lattice Gas Mean Dynamics

The lattice gas algorithm is a discrete Boolean algorithm. At any instant in time,
a particular lattice site is either occupied by a particle or it is unoccupied. Despite
this, the equilibrium distribution function is a continuous distribution function of
Fermi-Dirac form, eqn. (2.31). As a result, at any particular time step of the
simulation, the local macroscopic properties of the flow might vary significantly
from the theoretical mean since the difference between the actual site density
and mean theoretical density is of order unity. Consequently, we might feel that
these significant fluctuations would have an adverse effect on the system’s mean
dynamics, preventing hydrodynamic results even when the lattice artifacts have
been removed. Fortunately this is not true. In this Chapter, we demonstrate
that lattice gas algorithms have the property that their mean statistical dynamics
are unaffected by shot noise fluctuations, which can be quite large in lattice gas

systems of practical interest. Furthermore all correlation functions between any
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two non-equal states are negligible in comparison with the mean dynamics. This
result justifies the Boltzmann approximation that we used to ensemble-average
the lattice gas collision operator in Section 2.4. This result is demonstrated ex-
perimentally in the simulation results of Chapter 7 where we show that in systems
where the Galilean invariance artifact has been removed, hydrodynamic behaviour

is reproduced precisely.

6.1 Fluctuation and Nonlinear Effects in Sim-

ulation Methods

The computational efficiency of any particle simulation method depends on being
able to accurately represent the macroscopic dynamics without explicitly follow-
ing the dynamics of every molecule. Thus, in the lattice gas method, the particles
represent macro-molecules of artificially large mass and are not intended to repre-
sent the precise gas microdynamics but are designed with the dynamics necessary
to give the correct macroscopic behaviour. Intuition would say that good hydro-
dynamic bchaviour cannot be obtained unless the number of these particles is so
large that the averages taken at every time step accurately provide the hydrody-
namic variables. Thus, it would seem that many lattice sites would be required

per accurate hydrodynamic cell and the computational work would be prohibitive
(49].

This intuition is in fact flawed - for both real fluids and lattice gases. What
really counts for achieving accurate hydrodynamic behaviour is the shortness of
the mean free path, not the statistical noise level. It is here that the discreteness

of the lattice gas dynamics, so essential to the computational efficiency, confers
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a key advantage. The lattice restriction forces many particles to reside on a
lattice point at a given time (on the average, about 10 particles are resident, on
a lattice site) and they collide there very efficiently. We have found that in a
typical lattice system, about 70% of the particles collide every time step. In fact,
the inferred mean free path from the observed viscosity is actually less than the
lattice length!. Thus, the lattice gas has an extreme statistical noisiness but very
efficient collisionality. This is in marked contrast to a real gas which has extremely
good statistical accuracy, but very inefficient collisionality. Because of the short
range of the intermolecular force. molecules “miss” each other most of the time
in air.

It is the size of the mean free path relative to the physical scale that determines
the accuracy of the hydrodynamic behaviour in both the lattice gas and real air.
Statistical fluctuations are irrelevant to the mean (hydrodynamic) behaviour of

both, as we will show in the forthcoming sections of this Chapter.

The main reason for this is that lattice gases have a unique property which
imbues them with a special immunity to shot noise fluctuations. This is a con-
sequence of the logical - Boolean - character of the algorithm, and the ezact con-
servation of the fundamental invariants, mass, momentum and energy. The mean
dynamics of a lattice gas are completely independent of shot noise fluctuations
(or self-correlations)- which are quite large in these Boolean systems. This is
a property special to lattice gases, that more conventional particle simulation
methods [50] do not possess. This means that the mean dynamics of small scale,
very noisy, structures in the flow will obey hydrodynamics (or whatever the ki-

netic theory predicts for the mean behaviour if the lattice gas in question con-

!see Chapter 7 for description of viscosity measurement in a lattice gas system
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tains discreteness artifacts), even if they are completely obscured by shot noise.
signal/noise < 1. This counter-intuitive behaviour was first observed in the
simulations of Molvig et al.[39]. This result can be explained by a Shot Noise
Theorem that exists for lattice gasses, that demonstrates explicitly the absence of

shot-noise effects on the mean dynamics.

Large scale structures and eddies, and quantities of practical interest such as
lift, drag, and net heat flux, will have s/n > 1 and be clearly observable, of
course. What the Shot Noise Theorem provides is a kind of guarantee that the
smaller scale eddies that may not be visible are in fact providing precisely the

correct? accumulated statistical effect on these larger scales.

In Section 2.3, we derived the form of the complete lattice gas microdynamical
update equation, eqn. (2.8). There are two simple but profound properties of the
microdynamical equation that are the basis of the extraordinary accuracy of these
systems. Firstly, the advection of particles that will ultimately account for the
fluid advection, is both linear and exact. All the nonlinearities in the dynamics are
in the collision term. Secondly, the moments of the conserved quantities exactly
annihilate the collision function on the right hand side of eqn. (2.8), as shown in
Section 2.3.1. It is essentially these two properties that account for the accuracy

and noise independence features of lattice gases that we develop in this Chapter.

The mean properties of the dynamics of equation (2.8) are obtained fron en-
semble averages. For the Boolean field nj, which represents the particle occupancy

per site in the lattice gas algorithm, we can write,

<nj) = ]Vj (61)

2As predicted by kinetic theory for the mean dynamics.
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where NNj is the (assumed continuous) distribution function. Fluctuations, én; can

now be identified as the deviation of nj from this mean value,

The exact ensemble averaged microdynamics are obtained by averaging equa-
tion (2.8). The macrodynamics are obtained by taking the moments of this av-
eraged equation with respect to the conserved quantities: mass, momentum, and
energy. Since the fluctuations average to zero, (¢n3) = 0, by definition, it is only
through the non-linear terms that fluctuations can effect the mean dynamics. But
when moments of the conserved quantities are taken to generate the macrodynam-
ics, 2ll the nonlinear terms, which are in the collision operator, vanish identically!
The role of the collision operator (and all the nonlinearities in lattice gas algo-
rithms) is to drive the system to local thermodynamic equilibrium, so that the
moment equations can be closed in verms of the hydrodynamic variables alone.
The nonlinear advection term of hydrodynamics, u - Vu, arises from this local

thermodynamic property - not from any nonlinearities in the advection dynamics.

This situation can be contrasted with other numerical methods. such as finite
element approximations to Navier-Stokes® or direct particle simulation methods
as used in Plasma Physics. In CFD, the incompressible Navier-Stokes equations,

p (gt-u +V. uu) =-VP +pVu (6.3)

are discretized somehow, and when processed numerically give some approxima-
tion to the true hydrodynamics. We can represent thie by writing the true fluid

velocity, u, as, u = (u) + éu, where (u) is the numerical fluid velocity and éu

3aiso known as Computational Fluid Dynamics - CFD
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represents the fluctuation from the actual fluid velocity caused by the numeri-
cal approximation. The effect of the numerical approximations on the dynamics
can be obtained by averaging the Navier-Stokes equation (6.3). The fluctuations
contribute via the nonlinear terms, specifically the nonlinear advection term?.

Averzging this term gives,
V- (uu) = V- (u)(u) + V- (6ubu) (6.4)

where the second term on the right hand side of equation (6.4) gives the “numer-
ical” Reynolds Stress. This is the source of a variety of well known numerical

artifacts such as numerical viscosity [51].

Similarly in plasma particle simulation, one solves the Viasov equation,

%t'f-+v-Vf+a-g+£-=0 (6.5)

by numerical means. By identifying the fluctuating parts oi both the acceleration,
&, and the distribution function, f, due 1o the simulation discreteness, one obtains

a numerical discreteness terrmn,
56"—(6116 f) (6.6)

with well known consequences on the simulations[50].

Thus the lattice gas method does not produce either the discreteness Reynolds

stresses of CFD, or the discreteness forces of particle simulation methods.

6.2 Shot Noise Theorem

For Boolean systems like the lattice gas, the shot noise, or self-correlation fluc-

tuation level, can be calculated directly, and is usually quite large. Using, n; =

“Which dominates the dynamics of practical high Reynolds number fluids.
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(nj) + énj, we can square nj, and use the Boolean relation.
nd = ng (6.7)

to find,

(nf) = (n5) = (my)” + (énf) (6.8)
which gives the fluctuation level. (én}), explicitly. The relative size of the fluctu-
ations,

(6nf) 1

(n5)*  (n3)’

-1 (6.9)
is order unity or greater.

However, the mean kinetic theory dynamics of the lattice gas, obtained from

averaging the microdynamical equation (2.8),
Nj(t. + 1,5 + ¢5) — Nj(ta,r.) = (A;) (6.10)

are independent of the shot noise, self-correlation level, (6n?). This is true to all

orders and is in fact a theorem,

Theorem 1 (Shot Neise Theorem) The mean kinetic theory dynamics of a
lattice gas are independent of the shot noise fluctuation level. This result is true
to all orders in the fluctuations. No dynamical dependence on (6nf) ezists in the

kinstic equation.

This theorem will be demonstrated in detail in section (6.3).

Here we give the heuristic basis of the result, showing that it is a consequence
of the Boolean nature of the algorithm. The collision operator is a sum of logical
products, each of which tests for the existence of particles and their hole states,

to determine if a transition will occur, eqn. (2.11). An example of a logical truth
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condition which tests whether the transition of two particles in states ¢ and ¢ to

the resuiting states i, and ¢’ - i.7' — 1.4’ - is allowed, is,
0 * 01rYp
RNy - ﬁ,‘o . fl,‘a (611)

where the overbar denotes logical complement, 72 = 1 — n. Holes must be present
in the out-state for the transition to occur. In no case does a particle appear
logically ANDed with itself, for even if such terms arose from combinations of
rules, the resulting product term. n; - n;, would collapse to n; anyway because of
the Boolean relation (6.7). Since n; - #; = 0. no self product terms can arise from

combinations of this type either.

6.3 The Collision Operator Expansion and Sym-

metries

The theory and formalism for single speed lattice gas systems has been developed
in some detail by Hasslacher et. al. [14] This formalism was also used in Chapters 2
and 3 to develop 2 muitiple speed lattice gas model that was free of discreteness
artifacts. We continue using this formalism here in order to formulate a theory
of fluctuations in lattice gases. The collision operator for the lattice gas system
was written in terms of quasi-particles that contained rate coeffcients for energy
exchange collisions which allowed the lattice artifacts to be removed eqn. (2.21).
By doing this, detailed balance was restored to the multiple speed system, and a
H-Theorem was proved for the general lattice gas model. We rewrite this collision

operator here for convenience

Ai(ng) = Y25} — 6w [[ni5 (6.12)
3,8 i
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where 7; and 7; are related to the actual particle and hole fields by
5 = Fym (6.13)
T, = Ijn; (6.14)
where ; = 1 —n; but 7, # 1 — ; and F; and I; are rate coefficients defined
in Section 2.3.2. For lattice gases without this freedom, 7 and the density, n,
are equal. The variables s and s’ are strings of binary values corresponding to
the input and output state, respectively, of the system. Furthermore, ¢,, is a

matrix that indicates when a transition from state s to state &' is allowed. It is

statistically independent of the 7;.

In order to see the effect of fluctuations in the density on the mean dynamics

we insert, nj = Nj + 6nj, where Vj is the mean value of nj

(r) =Ny 5 (bng) =0 (6.15)
inte the collision operator, Ai({nj}), in the exact kinetic equation (6.10) and then

expand the collision opertor about the mean value of nj.

Ai(ng) = Ai(Nj + ény)
BA

+} Z}:&lz&!m )|+ (6.16)

where the sums are over all veloaty vectors in the model. Now the equation for

mean dynamics is easily found by averaging eqn. (2.8) which gives

Nifta + L, va + ) = Ny(ta, r.) = (Ai(ny)) (6.17)

(8str)) = (M) + 3 2 omn) (G h )
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calculated from eqn. (6.16). The only fluctuating quantity in A;(.V j) that is af-
fected by the averaging process is €,, such that (Ess) = A(s — '), eqn. (2.22),
the transition probability of going from state s to s’. Furthermore. the average

of the second order term may be split up into two terms as shown. since o 18

independent of the density fluctuations.

Since we have an exact expression for Aq(nj) it is possible to calculate the

expansion derivatives exactly. A straightforward series of differentiations on

(A(N)) = 3! — 5:)A(s — s')HN (6.19)

s.a'

eqn. (2.29), shows that
(PBe b)) = 0= s = TP
IIN’ Ny [s,N,""'V, - 5Ny (6.20)

'l
NTEAT 1
= g(si - 8.‘)A(8 - 8 )l}MzJN;:(S[ - .'V{)'-ATJ_V.—I

From eqn. (6.21), the only possible dependence on N} is in the square bracketed

term
[s:NP 1 — NN =1 ifs=1
[N W — s TN =-1 fm=1 (6.21)
Thus eqn. (6.21) is independent of N;. This illustrates that the collision operator

i8 a multilinear function of the microscopic densities N;. This is a result of the

Boolean character of the n;’s.

The second derivative is

<82A|(nj) lﬂj=1\{j> Z(S /’(8 — 8 HN'JNs’J (8[ JVI) (Sm =1 )

Bnman, 7 1V1N1 Vm Nm
(6.22)
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and
0%Ai(n;)
—— lng=ny ) =0
621'!( J j
since the collision operator, as just shown, is multilinear. Thus there are no
contributions to the mean collision operator, eqn. (6.18), by self-correlations of
the form (§nf). This proves the Shot Noise Theorem, stated in the last section,

for this class of lattice gas algorithms.

The only remaining noise quantity left in the mean equation is the non-self
correlation term (6n6nm), | # m, in (6.18). We calculate this quantity explicitly
in the next section with the goal of showing that it contributes negligibly to the

mean dynamics.

In the remainder of this section, we examine the symmetry properties of the
expanded coiiision operator. First of all, there is a distinction to be made between

the equilibrium and non-equilibrium state of the system. In equilibrium
(AdN)) = 0 (6.23)

which we know results in the Fermi-Dirac equilibrium distribution function for

Nj, see Appendix A. Another consequence of equilibrium is that
[INSH; = TINPR™ e (6.24)
J J

which is a result of detailed balance, A(s — ') = A(s' — 3).

This relation permits us to show that the first order collision operator is sym-
metric, or equivalently, parity invariant and microscopically reversible. Moving

the preduct of particle and holes to the other side of eqn. (6.21) we see that

aAt n ' i ’_’v' ‘—’J
C,'] = <71‘E(—j.)- ’nj=1\{i.cqm>MNl = g(si - 3€)A(3 -3 ).E[ij'cqm’:vj'.cqm's’
(6.25)
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where the term proportional to N} in eqn. (6.21) is now zero due to the zeroth
order equilibrium relation. If we reverse the direction of this collision, we simply

interchange primed and unprimed s's and utilize the detailed balance condition

and eqn. (6.24):

C“ = Z(S, - st)A(s - 3)H 3! eqm‘ ] eqmsl
= Z(s. s)A(s — s')H.N', cq,,‘b;
3,8

= —-;-Z(s — 8;)A(s — 3/)1'1,/\[,“,". eqm(8; — 81) (6.26)

8,8
where we have added up the two expressions for C;; and divided by two. The final
expression for Cy explicitly shows the invariance of the collision operator under
exchange of i,[ particles and exchange of forward and inverse collision processes
for a given particle pair in equilibrium. This is the expression that becomes the
linearized collision operator of lattice gas transport theory, and can be used to
calculate the transport coefficients explicitly (see Chapter 5 of Molvig et al.[39]).
Because of this symmetry, the mornentum moment of this term in the collision
operator expansion vanishes. We know, of course, that the momentum moment
of the entire collision operator expansion must vanish, eqn. (2.13). Finally, the
first order collision operater vanishes from eqn. (6.16) once the ensemble average

is taken since it is a coefficient of single fluctuating quantities, (6n;).

In a non-equilibrium state C;; cannot be shown to be symmetric in this way

since we cannot employ egn. (6.24) upon reversing the direction of the collision.

The second-order operator may be written as

) _ 3’A;(n,~)
Clml = <m In,~=N,>NlNINmNm (6'27)
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D8t = 9i)A(s — NI N X7 (81 = V)8 — Npn)  (6.28)
9,8’ J!

whick is symmetric for interchange of m and ! indices but not for 7 paired with
either m or [, regardless of whether the system is in equilibrium or not. Further-
more, although we have shown that Cj; = 0. this does not generalize to all triplets
of coordinates. Thus, althougli the shot noise self-correlations do not enter at all
into the mean dynamics, the correlations between differing particles are non-zero,
generally. We must examine the correlations (6nibny,) in order to account for all

the noise effects on the mean dynamics.

6.4 Calculation of the Lattice-Gas Correlation

Function

In this section, we develop techniques that will allow us to estimate the correlation
function (6nién,,) between two state variables. The shot-noise or self-correlation

fluctuation level is known « priori, however, for Boolean systems. We calculated

this value in eqn. (6.8), (6n?) = (n;)(1 — (n,)).

The shot noise contril:ution to the mean dynamics would be large if it weren’t
for the multilinear property of the collision operator which completely eliminates
this effect. We can embody this in our expression for (Ai(n;)) explicitly by rewrit-
ing eqn. (6.18)

3 Ai(n
(B4(ms)) = (M) + 32 3 (o) G D ey, (629

m<l
where we have ignored higher order contrlbutlons since they have only non-shot

noise terms. We now calculate (6n6n,n) theoretically which will give us a closed-

form differential equation for the correlation functions, Because this resuli is

180



not very amenable to practical calculation. we will use an approximate treatment
from equilibrium statistical mechanics to calculate explicitly the behaviour of the

non-shot noise fluctuations as the size of the svstem increases.

6.4.1 Hierarchy of Correlation Functions
In this secticn, we proceed formally to calculate the first two terms of the BBKGY
hierarchy[53] for lattice gas models. This follows the analysis of Chopard[52].
We begin by restating the microdynamical equation
ny(te + 1,r. +¢) = nj(t.,ra) + Ai(n;) (6.30)

where n; has a mean and fluctuating part eqn. (6.15). If we ensemble average

eqn. {6.20) we find

Nyt + Lea 4 ¢) - Ni(ta,r) = (A4(n)) (6.31)
_ e , 62A;(r¢j)
= A;(Ny) +;§“Clm(m) 'nj:Nj +...

where Nj is the mean value of nj and
Cim(r., 10, 1) = (Sni(r., t)dnm(rl, 1)) (6.32)

the non-self correlation function. To derive an equation for Cj,, we begin by

multiplying eqn. (6.30) by the same equation for n;(¢,r’) to obtain

Ryt + Lr+o)ni(t + 1,7 + ) = nj(t,r)ni(t,r') + njt, r)Ai(a(t, ) (6.33)
+ Aj(n(t,r))ni(r, t) + Aj(n(r, 1) Ai(n(r, )

Doing the same to eqn. (6.32) results in

Nj (l' +¢5,t + I)N,' (r' +eo,t+1) = Nj(r,t)N.-(r',t) 4 Nj(l’,t)(L\;(n(t,l‘,)»

(6.34)

+ (B(n(t,0))Nil®',2) + (Aj(n(t, ) {Ai(n(t, 1))
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If we now av-.age eqn. (6.34) and then subtract eqn. (6.35) we find that
Cii (7" +ejr’ + et +1) = Ciilr,r', ) + (6nj(r, ) Ai(r', 1))
+ (Q(r, 1)ni(r', 1)) + (A5(r, ) Ay(r', 1))
= (Aj(r ) (A(r', ) (6.35)
To get everything in terms of correlation functions we expand the collision operator

in terms of the density fluctuations up to second order. This results in a closed

form expression for the time evolution of the second order correlation function

Cii(r+cjt' +ciyt +1) — Cji(r.r',t) =
N(r t))]

‘ o OA(N(r, t)) ' 0A( :
; [CJI (l’,l‘ wt) T +ctl——'—a7l';—_‘-

OAi(N(r,1)) DA(N(T',1)) ,
+ Z [ ank 6"1 -

Equations (6.32) and (6.36) represent the first two equations of a BBKGY hier-

archy for lattice-gas models since the left-hand sides of both equations are differ-

w (P, 1, t)}6.36)
kI

ential operators on the unknown. The first and second order collision operators
are known explicitly as functions of Nj. Thus, equs. (6.32) and (6.36) represent
two coupled non-linear partial differential equations for the nonequilibriura den-
sity Nj and correlation function Ci;. Rather than struggle with this formidable
analytical problem we will examine the more tractable problem of calculating C;;

in equilibrium where explicit calculation is possible.
6.4.2 Microcanonical Distribution and the Equilibrium
Fluctuations

In equilibrium statistical mechanics, the probability distribution in phase space is

given by the so-called microcanonical distribution. This distribution assumes that
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when equilibrium has been reached all microscopic configurations of the particles
that have the equilibrium energy, U. occur with the same probability(31]. Armed
with this hypothesis it is now possible to estimate the equilibrium values of density

correlations.

The method will be demonstrated using the three speed model we discussed
in Section 5.1 that removed the Galilean invariance artifact, g. Let N0, N1, and
N2 be respectively the total number of stationary, energy=1. and energy=2 parti-
cles, and let  be the number of sites in the lattice. Furthermore. the microscopic
Boolean variables n0;(r;), n1;(r,) and n2;( r,) indicate. respectively, whether a sta-
tionary, speed 1 or speed 2 particle exists at lattice site r; in direction :. The num-
ber of possible “directions” at any lattice site for a particular speed is indicated,
as usual, by do,d; and d, respectively. Now our hypothesis states that all config-
urations with N1+ N1+ N2=F particles and a given energy, N1 +2N2 = U,
are equiprobable. Call this probability p. All other ~>nfigurations cannot occur in
this system. A configuration of the lattice is determined by the set of all Boolean
quantities n0;, nl; and n2; for i = 1 to d0,dl or d2 and ¥ = 1 to . Thus
the probability of a certain configuration P(n0,n1,n2) occuring in this system is

given by

22-1 Z?:l n0;(r;) + Z?’él Z?:l nly(r;) + Z:‘:’:l ZI?:I n2y(r;) = F
pif

P(n0,nl,n2) = {
Eg;l EE:n nli(r;) + 2 E:'i;x Z?—:: n2(r;) = U

‘ 0 otherwise
(6.37)
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where the configuration (n0, n1.n2) is defined by
(r0,n1,n2) = (n0y(ry),...n04 (1), nly(ry),. ol (ry),n2y(ry),. .. n24,(rq)).

To find the value of p, we now must find the number of ways we can arrange

NO0,N1,N2 on do2, d,Q, d,Q lattice sites respectively such that

F = NO+ N1+ N2 (6.38)
U = N1+2N2 (6.39)

for each realization. The probahility of any one of these arrangements is then
merely 1/p due to the microcanonical hypothesis. A straightforward combinatoric

calculation shows that

vz d d, 0 dof
- 3 2l ! 0 . (6.40)
N2=ma:[O,U—F] N2 U-~2N2 F-U + N2

We allow the energy=2 density, N2, to vary and define the other two energies in

-

terms of N2 and the two constant quantities using eqns. (6.38) and (6.39). The
upper bound on the value of N2 is to ensure that N1 is positive while the lower

bound ensures that N0 is positive. We use the usual combinatoric notation

A Al
( 5 ) = BA =By (6.41)

From this result, we can calculate (n2i(r)), the average type 2 density travelling

in direction : in equilibrium

(n2i(r)) = Zn2.-P(n0,n1,n2) (6.42)

0-p-3 d)f) -1 d;Q dof)
- lpc
N2 N2 U-2N2 F-U+ N2



d)) — 1 d 2 dofd
+ l'p.z 2 1 0
N2\ N2-] U-2N2 F-U+ N2

uiz d) — 1 d,§2 dof2
= > ' p
N2=maz(1,U~F} N2 -1 U-2N2 ) F—-U+ N2

where the above sum is over all configurations (n0,n1,n2) but only the configu-
rations with a particle in n2; that also satisfy F and U contribute. Note that the
lower limit of the sum has now moved up to at least 1 to ensure that configurations

without V2 particles do not contribute to (n24(r)).

We may now calculate the quantity (n2i(r)n2;(r)) at equilibrium in a similar
manner. We already know the result when i = jandr =r', eqn. (6.8), so we will

only do the non-self-correlation calculation:

(n2i(r)n2;(r')) = 3 n2n2,P(n0,nl,n2) (6.43)

vz d2) — 2 di dof?
> p
N2=maz2-F]\ N2 -2 U-—2N2 F-U+ N2

where now we put two N2 particles in specific sites and rearrange all the other

particles in all possible arrangements. Again the lower bound of the sum has been

raised to assure that there are at least two N2 particles in the configuration.

These results, although explicit, are not that amenable to calculation. To

facilitate this we first notice the identities
N-1 n| N
n-—1 N n
N-2 1—l
(_";) :) , (6.44)
n—2 N 1 - ‘1!v')
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Thus for notational purposes. we may write

N2=maz(1,U~F] > N2 U-2N2 F-U4+ N2

?Z/f &0 4,0 40
N2=meaz{0,U-F) N2 U-2N2 F—-U+ N2

> (22) f(w2)
N2 (Zdz;lg,vm PZ (dgﬂ) (N2)
N2

( N2
d,9

{n2i(r)) =

(6.45)
since p~! = Zf(N2), eqn. (6.40). Similarly, we may rewrite eqn. (6.44)
N2
- o _ [ 1= [ N2\? 1 (N2) 1 N2>
(n2i(xjn2;(x) = <1 — (d,n) T4 \\&0) [ Tz <d29

(6.46)

and we note that the bottom bound of the summations for the numerator and

denominator may be different.

We now may calculate the correlation function for this case since
(6n2(1)6n2;(")) = (n2i()n2i(r)) ~ (n2(r)) (n2y(x'))
= () - 22 (3] - (&) e
~ «l—é) )~ () +am(GR)) - (22)]

to first order in 1/d,Q. Since Q is the number of lattice sites, which is typically

on the order of 10° to 108 in simulations, .his is a good expansion parameter. As
well, d; = 24 is also large. If we can show that the terms in the square brackets

are order unity or smaller with respect to the lattice volume and that the first
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two terms combine to leave a term of order 1/d22, thet®the two point correlation
function is inversely related to the volume and so becomes vanishingly small as the
volume Q — co. Thus, in large enough systems, the non-self correlation functions

can be made negligibly small.

The rest of the correlation functions can be calculated in a similar manner.

Written in the above notation, they are

v = (S8 - L) L
(n0i(r)) = <N2+F U> F U 2(n...(r))
(6n0:(r)6n0;(r')) = 2;,__ [<(F *(;:’;2“‘ >_ d,,lrz(F +;Z;2"E>]
-<ﬁa;%~—>
' - 2 —2N
{6nli(r)énl;(r')) = 1_1‘_&5[ (U a',?lN:!) >—dllﬂ<Ude 2)]
( v ;j)zvzy (6.48)
neon, () = B () (a2)] - (22 (2
(6n2i(r)én6;(x')) = %:‘ K (dL:r;-i) > + (Fd;—QU) < dj:[;Z >J
()

. o _ UWF-U) @U-=-2F)/N, d N2 \2
nti(ean0(e)) = =)+ 2 a,n>“2d‘§<(m)>

To calculate the moments of the form <£%>, we use the result from statistical

mechanics that
N 2" [ (n - (n))?
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as [V — oo where

(n) = N/2
o = i ot = N/4. (6.50)

Furthermore, in the limit of large N

5 ( N ) ~ [~ Pu(n)an. (6.51)

n=0\ n
Since the indicated integrals over Maxwellians are analytically calculable, it be-
comes possible to calculate explicit values for the above N2 moments. The large
parameter N in eqn. (6.51) corresponds to the volume quantity d2Q in our analy-
sis. This is the parameter we want to make very large to examine the behaviour
of the correlation functions in the limit of large number of lattice sites. With
the substitution indicated by eqn. (6.51), the expression for the probabilty P,
eqn. (6.40), becomes an integral over a product of three Maxwellians which itself

is a Maxwellian. Thus, this integral can be performed,

SIN) ~ [T j(N2an
N2 e

o Qldotdr+d) (N; —48)2 (U — 48 _y N9y
~ -/—oo (2m)3%030103 xp {_ 2057 207"
— 40 2
_(N2 2 [{+F)]dN2
209

o —(N; — %)
~ K‘/ 2KT7 | 4N 6.52

[ exp [ s a, (6.5

_/21r

2 _ ng/4
o}’ = T—1/g0 x O()

where
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1 4 1 1
K, = - t-—=T ;0(0(—')
o2 o1 %

0 U - 24,9 doQ+7U 2F

K, = - + = ; x O(1)
O2 oy Oy
2
LOE  (U— 48y (B2 gp_F)
PR U N ST N
02 oy 0

and
9(do+d1+d2)Q —-K; K%

k= (27)3/2030} 03 ea:p[ 5t 8Kl] '
Some straightforward, but cumbersome, manipulations of Maxwellian integrals

give expressione for the moments in eqn. (6.48)

< Ny > 3 ?ma%f(Nz)dNQ_ 1 A,
Y/ T [Z f(N)AN, 402K,

() - G ()] (2 <o

«3%)) ) Gvﬂ) - d:ﬂ (Kl(:i,n)) =0 (dzﬂ) (6.54)

Plugging these results into egn. (6.48), we conclude that (6n2;6n2;) x O (Rfﬁ)’

x O(1) (6.53)

or

which is exactly the result we anticipated. Such calculations are possibie for all

the other correlation functions of eqns. (6.49). The results are summarized below:

(6n2ién2;) =~ d,ln ;Kl(tligﬂ) "(d,ﬂ)( "(2?‘))]
(bnlidnl;) ~ d,ln _K,(:I,Q)—<Ud,2N2>( < d,?)NQ»] (6:55)

(6n0;6n0;) =~ d;ﬂ Kl(:loﬂ)_<N2—(U F)> (1 < F)>)]

where the directions are different, : # j. In all three terms, the second term in

the square brackets is the shot noise expression (61k?) = (nk;) (ﬂ.) where k is
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the particle energy, k = 0,1 or 2. Since the moment of a constant is the constant
itself, (A) = A, the only moment that requires calculation in the above results is

< dzﬂ) The cross speed correlation functions are

(6n2iénl;) =~ T;f'ﬁ(h—iﬁ)
(Gn2idnd) = ﬁﬁ (F:ﬁ) (6.56)
(6nlién0;) = ﬁ)’(f’}ﬁ)
where 4 4184
Kiﬂ T ;1“ . ((?: ‘?:: ?{)) 7+ () o
il o T

The above six non-shot noise correlation functions can be condensed into one
summarising equation

(bnkibnl;) ~ (-133[1 ~3(80 + 63,)] [ETIJ,Q_) ~ (énk?) 5,,,] (6.58)

where the energy parameters k.l are any combination of the speeds 0,1,2 while
the two particle speeds are not equal, ¢ # j. The function 64 is the Kroenecker
delta which has the value unity when k£ = ! and zero otherwise and 03y is defined
as, Oy = 6kabiy + 61a6ks, a function that is equal tooneifa # b, k =a and [ = b
or vice-versa, equals two if a = band k = | = ¢, and zero otherwise. Since
1/Ky o« O(Q) , we see that non-self correlations zre smaller than self correlations

by a factor proportional to the inverse number of lattice sites in the model.

There are two main sources of error that we have introduced by switching
from combinatoric expressions to Maxwellian distributions. First of all, we have
gone from a discrete distribution to 2 continuous one and secondly, whereas the

discrete distribution only allowed contributions from a finite range of N2 (from
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max[0,U-F] to U/2), we are integrating the Maxwellian distribution for values of
N2 from —oo to oo. For a broad yet strongly peaked distribution the difference
between the two should be small since the contribution outside the denied range

of N2 will be negligible.

To see the effect of these assumptions, numerical results using equations (6.45)
and (6.46) to calculate the value of (§n2;(r)én2;(r')) for specific values of U and
F have been calculated and compared with the approximate theoretical analysis
of equations (6.53) and (6.55). For these calculations, we take U = 120 and
F = 109, which are typical values used in actual simulations, where , the
number of latiice sites, ranges from 1 to 20. These values of Q are at least four
orders of magnitude smaller than what would be used in an actual simulation.
Since the purpose of this exercise is simply to demonstrate the 1/ scaling of
the non-self correlations, small values of Q2 are ideal. Later we will calculate the
sum of all the non-self correlation functions in an actual lattice gas model with a
large number of sites tu demonstrate the negligibilty of these terms. We also take
do = 6,d;,= 24,d, = 24, the values that correspond to the three speed model we
discussed in Section 5.1. Even in these calculations, although € itself may not be
large, 3’15 is still small. Table 6.1 shows a comparison between the approximate
and directly calculated values of (n2;) and (6n2;6n2;) for a range of Q. These
results snow that the approximate analysis agrees quite well (<~ 15% error) and
improves as the number of lattice sites, 2, increases. The most impertant result is
that both calculations of the correlation function, (§n2;6n2;}, show the expected
1/ dependence, as illustrated in the last two columns of Table 6.1. Table 6.2
compares exact, equs. (6.49), and theoretical, eqns. (6.58), results for the rest
of the correlation functions at @ = 1. Even though the number of sites is not

extremely large, we still see good qualitative agreement of the approximate method
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EXACT THEORY EXACT | THEOR.
Q eqn. (6.45) | eqn.(6.53) | ERROR | CORR. | CORR.
eqn. (6.46) | eqn. (6.55) RATIO | RATIO
1| (n2) 0.1467 0.1445 1.5 %
(6n2:6n2;) | —4.565 x 10~ | —3.869 x 10~% | 15 %
51  (n2) 0.1499 0.1475 1.0 %
(n2:6n2;) | —9.055 x 1074 | —8.118 x 10~* | 16% | 5.04 477
10| (n2) 0.1492 0.1478 0.94 %
(6n2ién2;) | ~4.522 x 104 | -4.079x 104 | 9.8% | 2.00 1.99
20 (n2) 0.1494 0.1480 0.94 %
(6n2:6n2;) [ —2.260 x 104 | -2.045x 10~ | 95% | 2.00 1.99

Table 6.1: Calculation of average energy=2 density (n2;) and energy=2 correlation
function (6n2;6n2;) using both the exact, eqns. (6.45) and (6.46) and approximate
theoretical, eqns. (6.53) and (6.55) methods for many different lattice sizes, (2.
The total number of particles in the system is F = 100 while the total energy is
U = 129. The ratios in column 6 and 7 for a lattice of size Q) are found by dividing
the value of the correlation function of next lower size to the current correlation
value. That is, the ratio for Q2 = 3 is calculated from 2,/Qs. In column 6, we use
the exact results and in column 7 we use the theoretical results. The ratios of the

correlation functions for two different lattices, Q; to 25, are in the ratio gf-
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Correlation EXACT THEORY | ERROR
Function eqn. (6.49) eqn. (6.58)

(5nl.~5n1j) —3.610 x 1073 | —5.654 x 10~3 57%
(6n0:6n0;) | —2.169 x 102 | —2.096 x 10~2 | 3.4%
(5n2.~5n1j> —1.684 x 1673 | —-2.564 x 10~3 50%
(6n2;6n0;) | 3.368 x 10~3 | 5.129 x 10-3 52%
(6nlién0;) | —1.188 x 102 | —1.026 x 10~2 | 13%

Table 6.2: Calculation of the rest of the correlation functions using eqns. (6.49) to
calculate numerical values and eqns. (6.58) for the approximate values with only
one lattice site, 2 = 1. The total number of particles in the system is F' = 10Q
while the total energy is U = 12Q. The agreement between the two methods

improves as ) increases while the numerical values decrease as ;‘;

-~ with the numerical results. In fact, we see that although most of the correlation
functions are negative, there is one that is positive, (6n2;6r0,). The approximate
method captures this result as well. As the number of lattice sites, {1, is increased,
the values of these correlations functions also decrease inversely with Q while the
quantitative ezrors in the approximate method decreases, similar to the way it does
for <6n2,.5n2,.>. Thus we find that although our approximate analysis introduces
quantitative errors (<~ 50% at smallest § possible) the desired behaviour with

increasing (2 is captured by our theoretical analysis.

Now that we have established that our approximate expressions for the correla-
tien functions, eqns. (6.58), behave qualitatively the same as the exact eqns. (6.49),

we can use the approximate expressions to compare the size of total contribution
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of ncn-self correlation functions to the mean dvnamics using eqn. (6.32). The ze-
roth order collision operator, eqn. (6.19), and the second order collision operator,
eqn. (6.22), are of the same order of magnitude. Assume that theyv are both less
than a quantity L. Then the two terms on the right-hand side of eqn. (6.32) can
be combined

AN +E T (bména) < %ﬁéﬁ» oo~ L (1 ATy (6n,6nm)) - (6.59)

mel nmdny ’ ! mcl

In the three-speed model for which our simulations have been carried out there
are dy + d, + d, = 54 directions per lattice site. Writing eqn. (6.59) out explicitly

in terms of the correlation functions, which are independent of direction. we find

54 i-1
( +3. z (énén,, ) = L(1 +{158(6n0;6n0;) + 24 - 6 (6n1,6n0;)
=2 m=1
+ 276 (dnl;énl;) + (6n2;6n2,) 276
+ 24 (6n2ibnl;) +24-6 (6n2i6n0;)})  (6.60)

where the numerical coefficient of each correlation function indicates the number
of times it appears in the sum over { and m. We now calculate the values of the
correlation functions using eqns. {6 .58) in a system with U = 12Q, F = 10Q and

Q = 643, typical system parameters in the simulations of Chapt~: 7

L (1 5> (6"15%)) ~ L (1 - %)

=2 m=1
~ L(1-107%). (6.61)

We see that the contribution due to non-shot noise correlations is down by 5
orders of magnitude and so is completely negligible in comparison with the mean
collision operator contribution. Higher order non-shot noise correlations, which

also scale inve:sely with the number of lattice sites, are even smaller. We have
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justified that the equation for mean dynamics in a large lattice gas system is

effectively

Nilte + 1,ra + ¢j) — Vi(ta,1.) = A;(Nj) (6.62)

which is equivalent to the equation obtained when assuming the Boltzmann ap-
proximation and ensemble-averaging the microdynamical equation, eqn. ( 2.8). We
have verified that this assumption is valid in lattice gas systems of large enough

size to be of practical interest.

6.5 Summary - Why the Mean Dynamics are

Correct

This Chapter has been so awash in complex correlation function notation and
mathematical gymnastics that the purpose of this exercise may have been lost. We
restate the conclusions here. Intially, it was conjectured that the mean dynamics
of lattice gas methods may be contaminated by the large inherent shot noise
associated with any Boolean method. It turns out that this is not the case because
the Boolean nature of the lattice advection term and collision operator results in
a Shot Noise Theorem that states that the mean kinetic theory dynamics of a
lattice gas are independent of the shot noise fluctuation level to all orders in the
fluctuations. This remarkable result is due to the absence of non-linear terms in
the lattice advection term® and the fact that the collision operator is multi-linear
in the particle densities and so its second derivative with respect to any density

is zero. While the shot-noise correlation functions are of the same order as the

Sunlike the Navier-Stokes equations for fluid dynamics or the equations of plasma physics

where the advection term is non-linear
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densities themselves, all non-shot noise correlation functions decrease in a manner
inversely proportional to the total state-space volume, and so become negligible

at lattice volumes of practical interest.

The mean dynamics are correct despite the large statistical noise fluctuation
level. This is because what is really needed to obtain accurate hydrodynamic
behaviour is the ability to achieve and maintain a very tight thermodynamic
equilibrium. This property depends on the existence of an abundance of collisions
amongst the microscopic particles. In a lattice gas, at any instant in time the
discreteness of the dynamics allows many particles travelling in different directions
to occupy a particular lattice site which assures that they will collide e‘ficiently
there. It is not necessary to have an excessively large number of particles at
each site as even with only 10 particles per site on average, the mean free path for
collisions is actually less than the lattice length which assures that thermodynamic
equilibrium is being held practically down to lattice site scales. Of course, another
property of the microdynamics that is required to assure correct hydrodynamic
behavicur is the exact conservation of mass, momentum, and energy, a property

that lattice gas systems have precisely.

Consequently, we find that although macroscopic flow properties in a lattice
gas may change significantly from time-step to time-step, the mean-value of these
fluctuations is identical to the correct hydrodynamic values, if the lattice artifacts
have been otherwise removed. All that needs to be done to observe th. correct
mean dynamics in a noisy lattice system is to average either over time, or if
the system is changing quickly in time, over some spatial volume, to bring the
signal to noise down to an acceptabie level for which the averaged signal is the

correct hydrodynamic result. This result will be repeatedly demonstrated in the
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sirnulations of the next Chapter.
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Chapter 7

Validation of Correct

Hydrodynamic Behaviour in a

Three-Speed Lattice Gas Model

In this Chapter, we verify some of the theoretical predictions we have made con-
cerning the lattice gas algorithm and show by simulation that the lattice gas
algorithm can be made to accurately reproduce hydrodynamics in low Mach num-
ber and Reynolds number flows. A computer code utilizing the three-speed lattice
gas model that removes all lattice artifacts in the momentum equation! was de-
veloped for implementation on the CRAY-2 supercomputer. This code, from here
on called the Lattice Gas Algorithm or LGA code, was used to confirm key pre-
dictions of the three speed model such as the absence of the Galilean invariance,

g, and pressure anomaly artifacts for a large range of pressure and densities. The

The medel developed in Section 5.1
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absence of these artifacts is the first reason that the lattice gas model can be
used to accurately reproduce fluid dynamics. Although, in theory the simulations
should be limited to low Mach number flows. 3f < 12, we have found that even
for flows with Mach numbers approaching unity, where the small Mach number
expansi~n and hence the underlying theory of the rnethod breaks down, the pres-
sure anomaly remains a small fraction of the dynamic pressure. Furthermore,the
Galilean invariance factor, g, can be maintained at a value very close to the desired
value of unity at Mach numbers up to M = .4 with non-hydrodynamic effects not
becoming visible until M = .5. We also demonstrate that the model can maintain
the proper hydrodynamic behaviour when disturbed by periurbations as small as
two lattice sites in extent which shows the tightness of the lattice thermodynamic
equilibrium - a consequence of small mean free path and effective collisionality at

the lattice sites.

By simulating certain standard fluid dynamics experiments, such as flow be-
tween parallel plates and flow past a circular cylinder, where quantitative compari-
son of various flow properties with experimental results is possible, we demonstrate
the second reason that the algorithm behaves accurately; tie mean dynamics are
independent of the high shot noise fluctuations. The pipe flow simulations demon-
strate the development of the analytically calculable equilibrium parabolic profiles
in the mean, despite the fact that the mean velocity signal was a small fraction
of the velocity fluctuations from time-step to time-step. Also using pipe flow, we
demonstrate that the force imparted to the walls by the fluid is equivalent to the
stress transmitted by the pressure drop down the length of the pipe. This allows

two independent calculations of the flow kinematic viscosity which can be com-

2See Chapter 3
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pared with another independent measurement using the decay of a shear wave in
an open system. We demonstrate that all three of these measurements agree with

each other within 1% for systems with the same density and temperature.

The cylinder flow experiments tests the ability of the lattice gas model to
reproduce very complex flow behaviour in a regime where analytical calculation
is not possible for the most part, which it does accurately in the mean. The only
important parameter in flows which are effectively incompressible is the Reynolds
number, Re. We examine the flow around a circular cylinder as Re is increased
from zero to about Re = 65 where many interesting and complex phenomena
occur. In this range, recirculating eddies become apparent behind the object at
Re ~ 5 and then grow steadily with a characteristic length until Re ~ 45 where
the eddies become unstable and start to shed with a characteristic frequency
which, when expressed non-dimensionally, is known as the Strouhal number. This
frequency then increases as Re increases. We find that the LGA code correctly
reproduces this phenomena with measured drag coefficients and eddy lengths for
the examined range of Re being in agreement with experimental observations
within the error of those observations. This is in contrast with recent CFD results
which do not match the observations within the experimental error(56). In fact,
the CFD results for eddy length are significantly in error, probably attributable
to discretization errors in the non-linear Navier-Stokes equations which can not

be completely eliminated.
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7.1 Brief Description of the LGA Code

Before describing the results of simulations done by the LGA code, we briefly
describe the code itself. For a thorough, subroutine by subroutine explanation of

the code’s workings, see the master’s thesis by F. Mujica[54].

The fiow of the LGA code can be grouped into three main sections, the intial-
ization routines, the routines that update the lattice from time-step fo time-step
and form the ‘engine’ of the algorithm, and the output or visualization routines.
The way these groups flow together is demonstrated in Figure 7.1. The key to
making this algorithm efficient is the fact that the entire lattice gas engine may be
reduced to logical operations, the basic language of digital computers. Instead of
representing flow parameters like fluid density or velocity as floating point num-

bers at each lattice site, we represent particles as bits in a computer ‘word’.

On the CRAY computer, the word length is 64 bits long. Thus with one integer
number, we can represent 64 particles. In the three-speed lattice gas model,
the state-space has 54 elements: 6 stopped particle sites, 24 energy=1 particle
sites and 24 energy=2 particle sites, at each lattice site for which the elements
may be numbered 1-6 for the stopped particles, etc. Thus, we could let a single
CRAY word represent an entire lattice site with ten bits left over as overhead.
Because all collisions only happen amongst particles at a particular lattice site,
this data structure is convenient for dealing with collisicns as each lattice word
is independent in this process. In other words, the collision process is a highly
parallel operation. On the other hand, moving the particles is a complicated
process in this notation because each particle must move in a different ‘direction’ to

a different word which requires a fairly complicated sequence of bit manipulations
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Figure 7.1: Flow chart demonstrating the interaction of the three groups of rou-
tines in the LGA code. The middle routines which are repeated once a time-step,

form the ‘engine’ of the algorithm.

involving the state words of neighbouring sites.

Alternatively, we may think of each bit in a word as a different lattice site
for a particular member of the state-space vector. With this structure. each 64
bit, word represents a 3D subvolume of 4 x 4 x 4 = 64 lattice sites in physical
three-dimensional space. This means that for the three-speed model the complete
state of this subvolume would be represented by a set of fifty-four 64-bit words.
A particle is at a physical lattice site moving with a particular direction in the

state-space if the bit corresponding to that site in the subvolume is turned on.
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If the particle is not there, the bit is off. We then form the entire lattice out
of as many subvolumes as the memory of the computer we are running LGA on

permits.

The intialization routines set up the geometry on the entire lattice according
to a user-specified function. Each subvolume has an additional word in the state-
space vector that indicates whether the lattice sites of that subvolume are situated
in the fluid or are part of some solid boundary, consistent with the user-specified
geometry. Each of the bits in this additional word corresponds to a particular site
in the subvolume. By setting the bits in this additional word, we can indicate
whether a site is part of the fluid or is in a solid boundary. This information
is needed to ensure that particles will not propagate through solid boundaries.
Oefining the way particles react when hitting a site marked as solid is how we set
the boundary conditions in the LGA code. Once the geometry is set up, we pro-
ceed to seed all the lattice sites in a way that produces macroscopic flow properties
such as density, temperature and flow velocity consistent with user-specified input
parameters. This is done by seeding the particles with the probabilites equal to
the equilibrium Fermi-Dirac distribution function calculated in Section 5.1. This
ensures not only that the conserved quantities of mass, mementum and energy
are as specified by the user, but that the Galilean invariant factor has been set to

=1 as well. Since this is a Boolean system, the particle structure at any one
site may be quite different from the theoretical distribution function. But, if we
to were seed many lattices and then average over all of them, the resulting lattice
would have a site population that would converge to the theoretical density. This
procedure is a lengthy process since we must choose a random number between 0
and 1 for every lattice site and every member of the state-space vector and turn

that site on if this number is less than the theoretical probability for that site and
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leave it off if the opposite is true. Since it is only done once at the beginning of the
simulation, it is not part of the actual engine. At this time, we also create a series
of words corresponding to the forward and backward masks that effect the energy
exchange collisions and force g = 1. Again, each word represents a subvolume and
each bit a lattice site. If both the forward and backward mask bit at a particular
site has been turned on, energy exchange collisions will be allowed at that site.
The mask bits are set with the theoretical probabilty as calculated in Section 5.1
using the same method as was done for seeding the particles themselves. These
series of mask words are then shuffled around the lattice at each time step to allow
each site to sample a different mask vector. Once again, the average mask value

at any site will be very close to the theoretical value.

We denote the :** member of the fifty-four state-space vector at a particular site
with n;(x), some of whose bits are turned on to indicate the presence of particles
at this site. All the particles in this subvolume move in the same direction by

virtue of being part of the same word
ni(x) — ni(x + ¢;) (7.1)

where 1 X ¢; is the distance the particles moving in direction ¢ move in cne time-
step. As a result, unlike the word-per-site data structure, the word-per-state
structure allows the move operation to be done in parallel for many different sites
and subvolumes. The only complication is rmoving particles from one subvolume to
the next but this is a straightforward sequence of buffering and rotations which is
done only on the surface area of the subvolume, rather than throughout the whole
subvolume. We move particles in each direction, +z, —z, +y, —y, +z, —z, in turn,
only moving the state-space vectors that have a component in the direction into

which we are currently moving. The underlying ‘attice is the 4D FCHC lattice,
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necessary for an isotropic stress tensor in three dimensions. Although each vector
of the state-space may or may not have a component of velocity in the fourth
direction, we only move particles in the first three. This corresponds to taking

the three-dimensional projection of the four-D lattice, as described in Section 2.2.

We now describe the collision algorithm ernployed in the code. The theory
considered in Chapter 2, utilized a collision function for the binary algorithm
based on the binary function, &,,:, which explicitly states the transition probabilty
for any b-length state vector to any other b-length state vector. With b = 54 in
our case, the literal implementation of this procedure would be a lookup table
consisting of (2*)? > 10% elements! This is clearly unfeasible for any useful
applications and is the main reason why most researchers in the lattice gas field
have shied away from multiple-speed models[13, 11, 14]. Instead we will implement
the collision function using a logical series of operations on the particles in which

elemental collision types are called in sequence to accumulate a total state change.

Each collision is a binary collision occuring between two sets of paired particies
taken from tke state vector. If we denote this quadruplet as (z,7,k,1), where
each letter represents some particular element of the 54 element state-space, this
collision checks to see if particles ¢ and j can collide to form output vectors in
states k and I. We also check the inverse of this; k and ! going to ¢ and j. Of
the over 8 000 000 possible quadruplets that can be chosen from fifty-four items,
only 408(57] of these are unique collisions for which the input state is different
from the output state and mass, momentumn and epergy are conserved by the
collision on the FCHC lattice. This is now a manageable number which can be
explicitly written out in the code and cycled through. In fact, there may be several

realizations of this set in different order and at any time-step we choose one of
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the realizations to use so as to randomize the collisicn sequence. Of these 408
collisions, 276 were chosen to implement into the code. It was determined that
these 276 did just as good a job in colliding all the bits as the complete set of
408[58). Let (7,j,k,l) be one of these 276 allowable collision where, for now, we
stipulate that it is not an energy exchange collision. Thus all of the particles ~re
either of energy=1 or energy=2. It is possible to outline the collision procedure
completely in logic. We defiae the annihilation operator for particle ¢, A;, and the

creation operator for particle ¢, C;, as

Ai = ni-n;-mp-m (7.2)

C: = M rng-ny (73)

which state that a particle in state : will be annihilated by the above collision
if both input particles are present and the two cutput states are empty (so that
the forward collision can occur) and that a particle in state ¢ will be created if
itself and site j are empty with the other two sites occupied (the reverse collision).
The dot indicates the logical AND operation while the overbar indicates the NOT

operation. The collision operation can be represented as

ni - A + 75+ C;

ni(t+e)

This equation has a simple physical interpretation which can be read as follows.
A bit is set after collision if it is set prior to collision and not annihilated or if it
is not set before collision and created. All possible collisions can be described in

this manner. Equation (7.4) can be written compactly,
ni(t+e)=(A+C)Dn; (7.5)
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where 7 now indicates any of the four particles in the quadruplet and the ¢ subscript
has been dropped from the A and C operators because they are the same for all
four particles, as defined in eqns. (7.2) and (7.3). The logical operator ‘&’ is an

‘exclusive or’, the behaviour of which is described in Table 7.1.

* X{Y|xeY]|
T|T| F
T|F| T
FlT| T
FIF| F

Table 7.1: All possible outputs of the exclusive-or operator, @, for given inpu¢s.

To apply a collision rule, we perform the logic expression eqn. (7.5), using
four 64-bit words. Thus, a single rule application updates sixty-four sites at once,

again exhibiting a form of parallelism that can be utilized in the LGA code.

Because conventional computer processors provide word-oriented logical oper-
ations, the word-per-state representation is much more efficient on these machines
when compared to the bit manipulation implied by the word-per-site representa-

tion.

Ii the collision quadruplet involves an energy exchange collision where the
forward collision is masked by the Boolean variable F? and the reverse collision
by ¥/, as introduced in Section 2.3.2, we simply tack them onto the definitions of
the annihilation and creation operators. For example, in the three-speed model we

are examining we have associated the masks with the stopped particle distribution.
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Therefore, for an energy exchange collision we have

A = F.ng.ng- iy iy (7.6)

= 1% nyg ey - Ao - g (7.7)

where ¢ now indicates a direction within a particular energy. We now use eqn. (7.5)
as before to update all four sites involved in the collision. The only difference be-
tween mono-energy collisions and energy exchange collisions is that the quadru-
plets asscciated with energy exchange have two extra words. corresponding to for-
ward and backward masks, associated with them. The complete collision routine
amounts to cycling through some order of the 276 collisions for each subvolume in
the lattice, using eqn.(7.5) to update cli sites. Because the collision operator is ab-
solutely site independent, it is completely parallel and requires no interprocessor

communication.

The only sther collisior process that may occur is when a particle collides
with a solid boundary. In the real world, no matter how machined and polished
an inierface may be, at the microscopic level the boundary appears irregular so
that incident particles bounce back in a seemingly random fashion. Since the
lattice gas algorithm has neither the continuum of the fluid or the atomic scale
resoluticn of the microscopic world, rules need to be created to define the way
lattice particles will interact with solid matter. We of course require that the
boundary does not create or destroy particles and that particles cannot propagate
through the boundary. A further requirement is that for stationary boundaries,
we require that the fluid velocity at the boundary be zero. An easy way to do this
is to invoke a boundary ‘bounce-back’ rule. That is, particles that arrive at a site
marked as a solid poin simply reverse their direction. This operation can also be

coded in logic and is facilitated by ordering the 54-element state vector in such a
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way that parity directions are always a constant distance away from each other
in the numbering scheme. This will clearly force the velocity at the boundary to

be zero if we average over the before and after collision states.

In our simulations, we took a number of measurements, such as drag force,
right on the surface of an object, in order to give us information about the buik
flow. This implicitly assumes that the behaviour of the fluid in the boundary layer
is still hydrodynamic. However, it is known that near a solid-fluid interface there
may exist a thin layer, with thickness on the order of the mean free path, in which
the steady state is different from the bulk state[32). This layer is known as the
Knudsen layer and requires kinetic theory rather than hydrodynamics to describe
it. If this were the case in our lattice gas algorithm, measurements near the wall
would not be a good indication of bulk flow properties. Fortunately, it has been
shown by Cornubert et 21.[59] that reflection rules that combine bounce-back and
specular reflection in any combination (which includes only bounce-back) do not
build any Knudsen layer near the wall. While this result was done on the 2D FHP
lattice, they suggest that it can be generalized to other lattices and we in fact,
find it to be the case since we have found experimentally that measurements at
the wall of the model do accurately describe bulk flow behaviour (for exaiuple, in
Section 7.3 we compare the measurement of the force at the wall in a flow between
two parallel plates to the force derived from the pressure drop down the length of
the pipe and find them to agree to better than 1%).

The final routine that is performed every time step is the so-called ‘refresh’
routine. What this routine does is to update the boundaries of the physical lattice

space. In some simulations, we may want all particles to wrap around toroidally®

3particles leaving one side of the lattice reappear at the opposite side, i.e. a particle exiting
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so that the refresh routine does nothing. In other cases we may allow wrap-around
on two sets of boundaries, top and bottom perhaps, and specify the boundary tlow
at the left and right boundaries. This situation is necessary if we wish to attain
a steady flow in lattices that contain objects so that there is a pressure drop
across the object. If we simply allow wrap-around, the flow will continuously lose
momentum as it passes by the object and a steady-state will never be reached. If
we continually replace the left- and right-most edges of the lattice with a particular
flow , much the same way the end conditions in a wind tunnel are set by a fan at
one end and suction at the other. we can acquire a steady-state situation. This
is the way lattice-gas 'boundary conditions' are employed and again is in sharp
contrast with differential equation methods that require macroscopic conditions at
the boundaries. We will have more to say about lattice gas boundaryv conditions
in the coming Sections but suffice it to say that the refresh routine simply, once
a time step, replaces edges of the lattice that we do not want to toroidally wrap
with some user-specified distribution function in order to attain a steady-state

flow in the finite lattice volume.

The final step in the entire algorithm, a step that can be moved out of the
lattice engine process if we accumulate particle statistices time- step to time-step,
is the calculation of macroscopic properties of the flow and visualization thereof.
At any site, the local value of fluid density, momentum, or any other macroscopic
flow variable can be calculated by taking appropriate moments of the microscopic

distribution. For example

o) = Y mix)

from the top reappears at the bottom travelling upwards
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pux) = 3 cini(x) (78)

i=1

S = ic;c;n;(x)

i=1
calculates the local values of density, momentum and the stress tensor respectively
accumulated over an subvolume. We would have to divide by the size of the
subvolume (64 sites) if we wished to get an average quantity per lattice site. Note
that the sum over the Boolean variables involves counting the number of bits
that are ‘on’ in each word, not the integer sum of their values. This operation,
usually denoted as a ‘popcount’ is a standard operation on computers that allow
word-oriented logical operations, such as the CRAY. The macroscopic variables
caiculated above can then be averaged over space and time and displayed using
a graphics package. It is the instantaneous values of these quantities that may

be very noisy but whose mean we have proved follows the correct mean dynamics

(Chapter 6).

7.2 Validation of Artifact Removal

In this Section we demonstrate that the three-speed lattice gas model with one
rate coefficient for energy exchange collisions can remove the Galilean invariance
artifact, g, which also removes the pressure anomaly, if the average rate coefficient
equals the value calculated in eqn. (5.12) of Section 5.1. We do this by examining
the relaxation of a shear wave with transverse velacity in an open system. That
is, we seed the system with a particular density and temperature and an initial

velocity field given by
ug(x,t = 0) = ure, + upsin(ky)e, (7.9)
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where k is the wavenumber of the perturbation. Having a non-zero streaming
speed in the direction of the perturbation will allow g to be measured directly
from the evolution of the perturbation. There is no flow velocity in the = direction.
The evolution of this perturbation in time is given by the lattice Navier-Stokes
equation,

%u +gu-Vu =vVi (7.10)

for incompressible, constant density and temperature flows. This equation comes
from taking the momentum moment of the expansion of the lattice kinetic equa-
tion, eqn. (2.32), to second order in the small Knudsen number. x. This quantity
is the ratio of the mean free path to a relevant physical scale length and must be
small for a valid transport theory to occur. The first order in « term of the expan-
sion gives the momentum Euler equation, eqn. (3.22). The left-side of eqn. (7.10)
is simply this equation simplified for the incompressible, no pressure gradient open
system we are using. The right-hand side shows the viscosity term resulting from
the second-order expansion term. This term appears in a manner identical to
the hydrodynamic incompressible viscosity term but the viscosity for the lattice
model contains two contributions, the usual viscosity due to collisions and shear
and another term due to the lattice itself - the so-called lattice viscosity. The
sum of these two contributions can be shown to be positive-definite so that the
total viscosity is always positive. All of the above results concerning the viscosity

term in the lattice gas transport equations can be found in the work of Molvig et
al.[39).

The solution for this equation with the initial conditions eqn. (7.9) can be
calculated analytically by assuming that the spatial dependence of the solution

is the same as the intial conditions and that only the magnitude of the velocity
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changes. The solution is

u(x, t) = ure, + uge T tsinky)e, (7.11)

where we see that the time evolution of the phase and modulus of u(t) directly
measure the g-factor and the kinematic viscosity v. The presence of viscosity in
the flow causes the shear to be destroyed. Eventually only the transverse flow

remains.

Simulations were run on a 64 x 64 x 64 lattice! for various values of density
and temperature at low Mach number and for a low wavenumber perturbation.
The values of g and v were measured from the decay of the magnitude of the
x-corponent of velocity. The robustness of the theory was tested by examining
higher Mach number and perturbation wavenumber flows and noting when the
algorithm was no longer able to keep g = 1. As a test of the validity of the H-
Theorem derived for this lattice gas model in Section 2.4, some simulations were
seeded with a distribution different from the derived equilibrium, eqn. (2.31).
Such a system quickly alterred itself to the correct equilibrium in a few time
steps which demonstrated the strong tendency of the model towards an unique
H-Theorem based equilibrium state. Since we will be measuring the decay of the
flow from ¢ = 0 in these experiments, it is important that the intial relaxation
phase is hydredynamic and so we need to seed the bits correctly at ¢ = 0. When
seeded correctly, the total species populations remzined constant to within the

shot noise fluctuations during the decay®.

“This required 54 « 642 64-bit CRAY words to represent the whole state-space
80f course, TOTAL particle number, momentum and energy remained constant throughout

the simulation
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7.2.1 Galilean Invariance and Absence of Pressure Anomaly

These basic validation runs were done with ur = u; = 0.1 and a wavenumber of
k= 27 /64 which corresponds to one wavelengih of the perturbation exactly fitting
into the lattice volume. All macroscopic flow velocities are in units of number of
lattice sites travelled per time step where a time step is the time required to update
the entire state-space volume. The component of momentum in the x-direction
was measured at every time step using eqn. (7.8) and then averaged over the y-
and z- directions to reduce noise. This signal was then fourier transformed and
the component with wavenumber k was extracted. all other fourier components
being noise. This result was divided by u; and then the phase and modulus of
the remainder was calculated. When this was done for a large number of ¢ime
steps, but smaller than the number of time steps it took for the perturbation to
decay to noise after which there is no further decay, the slope of the modulus as a
function of time was equal to to —vk? while the slope of the phase evolution was
equal to gkur. Since k and ur are input parameters, it was possible to calculate

g and v from these slopes.

Representative plots of the phase and modulus for the first 500 time steps after
perturbation for a run where the average number of particles per site was p = 8
and the temperature variable was z = 5 are shown in Figures 7.2 and 7.3 where
the g factor and viscosity, v can be measured respectively. A fit to the curves are
shown but the accuracy of the model in reproducing the predicted linear decay

makes the fiuctuations almost imperceptible.

Observation of the exponential time dependence for the decay of both the
modulus and phase of this perturbation is 2 good indicator of genuine hydro-

dynamic behaviour. Very small modifications to the microscopic rules, such as
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Figure 7.2: Phase of a decaying shear wave as a function of time for the case z=3,
p=8. The slope of this line is equal to kurg where k = £ is the wavenumber and
ur = .1 the transverse velocity. A best fit to the slope results in the measurement

g = 1.006 % 0.005
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Figure 7.3: Modulus of a decaying shear wave as a function of time for the same
run as in Figure 7.2. As predicted theoretically, the modulus decay is linear,
corresponding to exponential decrease of the velocity amplitude from which the
viscosity was measured. A best fit to the slope gives v = 0.330 4 .003. Note that
for t > 380, the phase becomes ragged indicating that the noise level has nearly
been reached.
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allowing particles to be created or destroved, will destroy this characteristic time
dependence. The results of calculating the Galilean factor. g, in this manner for
a series of density and temperatures are collected in Table 7.2. We see that g = 1

to within 1% or better in all of these runs.

Similarly, we can demonstrate the absence of the pressure anomaly by calcu-
lating the stress tensor using eqns. (7.8). The value of the lattice stress tensor is
given by eqn. (3.21)

2
S = D-[U,, + pu*(1 - g)| I+ gpuu (7.12)

where the extra portion of the isotropic pressure proportional to the hydrodynamic
flow energy %pu2 is the pressure anomaly. If g = 1, the lattice stress becomes S =
UL + puu, the correct hydrodynamic expression. We calculate the component
of the stress tensor S;., the momentum vector pu, the total energy, U®, and the

density, p from the microscopic distribution. We calculate the flow energy using

=pu’ = 5 (7.13)
and then U, from
U,=U- %mﬂ. (7.14)
Subtracting this from S;., using eqn. (7.12), gives
Ssr — EUP = gpusus + mpui(1 - g) (7.15)
D D

where D = 4 for the FCHC lattice. If g = 1 then S, — £U, = pusu,, the same
result as in hydrodynamics. We compare the volume averaged measurement in

eqn. (7.15) with the volume averaged theoretical result for pu,u, from eqn. (7.11)

U =302, eini(x).
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g Pressure RMS Shot
p | z{+0.065| Anomaly spu? Press. Noise
Fluc. Level

5 |2 1.012 |0.026 x10-2 | 5.0 x10-2 | 0.30 x10~2 | 0.29 x10~2
55| 0988 | 0.006 5.0 0.27 0.29

58| 1.003 | 0.024 5.0 0.25 029 |
8 (2| 1000 | 0035 3.0 0.35 0.36
8 |5| 1.006 | 0.004 8.0 0.31 0.36
8 |8 1.001 0.018 8.0 0.28 0.36
Hm 2| 1004 | 0.005 10 0.39 0.39
105 o992 | 0.020 10 0.33 0.39
10!8] 6995 | 0.025 10 0.30 0.39
12 2| 1005 | 0.5 12 0.49 0.42
12 |5 1001 0.043 12 0.37 0.42
12{8] 1005 | o017 12 0.32 0.42

Table 7.2: Measured values of the Galilean invariance factor g and the preasure
anomaly for various densities, p, and temperatures, z using k = 2, ur = u = 0.1,
For all of the runs we find that ¢ = 1 to better than 1% and that the pressure
anomaly is much smaller than the dynamic pressure. In fact, the RMS fluctuations

in the pressure anomaly is at the same level as the shot noise.
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over time. Of course, if we average u, over volume we get zero due to the sinusoidal
dependence of u,. Instead we calculate (pu.)?/p at each site and then average
tkis quantity. Doing this, we get a factor of % from the volume averaged value of

sin(k y) so that the theoretical result for the advected term is

pusu;) = ‘lpu2 exp(—2vk*t). (7.16)
) L

In Figure 7.4, we compare the theoretical value of pu,u. to the measured value
of Szz — $U, for the case p = 8 and z = 5 with ur = uz, = .1 as before. We
see that the theoretical term, illustrated by the dotted line. delineates the mean
of the fluctuations in the measured quantity precisely which clearly demonstrates
the absence of any anomalous pressure term. At ¢t = 0, pu.u, = -;-pu% = (.04 for
this case, which the measured value agrees with. If we now subtract pu,u, from
the S;; — %U,, measurement as shown in eqn. (7.15) only terms proportional to
(9 — 1) remain. With g = 1, as we have forced, this residual pressure anomaly
should be no more than noise. The rest of the columns in Table 7.2 illustrate that
this is true in our simulations. The residual pressure anomalies were accumulated
for the first 500 time steps and then averaged to get the value in the Table.
The residual pressure anomaly is less than .2% of the dynamical flow energy,
3pv?, while the root mean square fluctnations of the residual pressure values are
essentially equivalent to the shot noise we expect in the pu,u, measurement. The
shot noise for Boolean variables is known, as shown in Section 6.2, to have the
value \/ (n?) = \/ (ni)(1 — (n;)). The density is a Boolean variable with a mean
value of p divided by the state-space size, in this case fifty-four. Thus, the shot

SNL ~ 2 VPB4 2P (7.17)

54
and if we plug in u = .1 and p = 5 we get SNL ~ .0029 as shown in Table 7.2.

noise level, SNL, is
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The other components of the stress tensor were likewise examined and they all

also displayed the predicted, hydrodynamic behaviour.

In contrast to the correct hydrodynamic behaviour of the multiple-speed model,
when we ran the LGA code as a single-speed code 7 for the shear wave problem
and performed the same comparison of Sz — £U, (where now U, = p in the
single-speed case) with pu.u, we find a pressure anomaly far in excess of the
noise fluctuations, as demonstrated in Figure 7.5. That this must be so can be
shown by subtracting the required isotropic pressure, 23U, from the lattice stress
tensor, eqn. (3.21) using the single speed P, expression. eqn. (3.23) so that

2 1
Sz:a: - BUP = gp(uf: + 'D'uz) (718)

which is always non-zero for a flow with non-zero flow velocity.

7.2.2 Viscosity Measurements

We also measured the kinematic viscosity in this series of measurements, an ex-
ample of which is shown in Figure 7.3. The values of the measured kinematic
viscosity for the series of runs shown in Table 7.2 are shown in Table 7.3. The
temperature variable z is related to the actual system temperature inversely in the
three-speed model, see Figure (5.14). We see that as the temperature is increased
(z is decreased) the kinematic viscosity also increases which is the same irend
observed for gases such as air. Furthermore, the density dependence of the vis-
cosity measurements, illustrated graphically in Figure 7.6, also demonstrates the

correct behaviour for gases with kinematic viscosity decreasing monotonically as

by not seeding any paiticles in the energy=0 or =2 states and removing energy exchanging

collisions from the collision rule lisi
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Figure 7.4: Stress component, S, — 5U, compared to pu.u. for the multi-speed
case. The equivalence of these two quantities demonstrates that g = 1 and that

there is no anomalous pressure contribution. Same run as in Figure 7.2.

221



1
S. —t
~ of
- -
-
4. - —
Ly ) '- | 1
» N b
» ] ] -~ 1
[ 3. N
o -
-
A f. -4
oI o
[ -
[ 3
G ™ - -
2.
b ’ Thell
I IRREENR
€=2 -
- <
8. -
- J
e xwh 5 | L I | 1 1 L | " 1
- o~ e o - 3
L]
TIME

Figure 7.5: Stress component, S, — %U,, compared to pu.u, for the single-speed
case showing the anomalous pressure contribution as in eqn. (7.18). Parameters

have the same values as the run in Figure 7.2.
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Kinematic
f |z Viscosity | R® = c,/v
+0.003

0.208 { 2 0.502 1.72
0.208 | 5 0.450 1.78 H
0.208 | 8 0.422 1.84
0.333 12 0.376 2.30
0333 (5| 0.330 243 |
0.333 | 8 0.311 2.49
04172 0.340 2.55
04175 0.299 2.68
0417 |8 0.285 2.72

05 |2 0.341 2.54

05 |5 0.281 2.85

05 |8 0.275 2.54

Table 7.3: Measured values of the kinematic viscosity, v for various densities,
p, and temperatures, z using k = %}, ur = ur = 0.1. We observe that viscosity
increases with temperature and decreases with density, as it does in a real gas (the
temperature variable z is inversely related to the temperature T'). The quantity R*

is the lattice local Reynolds number while the sound speed is c, = 1/7-—]‘, o~ ,/;‘ -'-lp .
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the density is increased. Best-fitting a relationship to the viscosity-density curve

at z = 5 results in

n 1.1
Vaba.(fgz = 0) >~ F (7.19)

essentially an inverse square root relationship. The kinematic viscosity of a fluid

scales with collisional properties in the following way[16]
2

Y~ eoh ~ 2 (7.20)
Ve

where ¢, is the sound speed. A is the mean free path and v, is the collisional
frequency. In a lattice gas, the sound speed is of order 1 since particles. or: average,
move one lattice site per time step in the three-speed model. Equation (3.39) gave
us an equation for the lattice gas sound speed when the energy equation artifacts
have not been removed. From this equation, we find that for flows where the
Mach number is small, the sound speed is given by ¢, ~ \/'-'-pi'- = /7T, where the
thermodynamic temperature is defined in the usual way, P, = nT (p = n since all
particles have unit mass). The ratio of specific heats, 7, equals the correct ideal
gas value to first order in the density (eqn. (5.19)) so that ¢, ~ 2T. Thus on
an isotherm, the sound speed is constant and eqn. (7.20) states that the viscosity
goes like v ~ 1/v.. If we compare this with the observed dependence, eyn. (7.19),
we find that

Ve ~ p%. (7.21)

This scaling happens to be the same behaviour we would expect in the shot noise
of the Boolean variable density, eqn. {7.17) without the squared velocity term.
The collision process reshuffles the particles at a lattice site by turning some bits
‘on’ and other bits ‘off” while keeping the total density, momentum and energy
at the site constant. This effectively causes fluctuations in the Boolean variables

about the mean, the level of which is the known shot noise relation. Since higher
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Figure 7.6: Measured value of kinematic viscosity as a function of density for

- . 1.1
a number of different temperatures. At z = 3, a best fit results in v = 47,

essentially an inverse square root relationship.
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densities mean more chance for a collision and hence higher collision frequency,
more bits are shuffled in the process so that the collision frequency scales with
deansity in the same way fluctuations scale. On the other hand, if the density
becomes too large, then collisions are actually inhibited because hole sites are
needed for a collision to occur. We see evidence of this in Figure 7.6 for the high
z - low temperature flow where the viscosity has started to flatten out at high
densities. At low temperatures most of the particles reside in the low speed sites

which inhibits energy exchange collisions into or out of these energies.

The measured viscosity results also imply a further important property of
lattice gases. From Table 7.3 we see that the measured viscosity is aiways less
than 1. Since the sound speed is of order 1 we can use the viscosity scaling
relationship eqn. (7.20) to deduce that the mean free path is also less than 1.
This illustrates that the transport theory expansion is valid since (\/L) < 1 and
that a very tight equilibrium will be established since each lattice site will be in

equilibrium with its neighbours.

As in a real fluid, the flow is completely characterized by the combination of

flow parameters known as the Reynolds number where
Re = — (7.22)

where L is a characteristic length in terms of lattice spacings. Previous lattice gas
treatments(14, 26] have rewritten this expression in terms of the Mach number,

M = = and a local model dependent Reynolds number so that

Re=MLR, (7.23)
where
R=24 (7.24)
v



and the Galilean artifact, g, is included in this definition. In our simulations,
g = 1 so that R. = %. The values of R. shown in Table 7.3 establish contact
with previous viscesity measurements on the FCHC lattice. specifically the one-
speed measurements of Hénon(27] where he found that R™* = 2 for collisions
chosen to preserve momentum using his so-called isometric algorithm. Our val-
ues of R. are also in this range. It is desirable computationally to maximize the
value of R, to gaiz higher Reynolds numbers without having to increase resolu-
tion. To this end, improvement in this value for singie-speed models has been
made by choosing output states from a given input state in the collision process
that minimizes viscosity. Using this technique. Hénon[60] later found that R.
could be improved to RT** = 7.57. Still later, Dubrulle et al.[38] experimented
with the single-speed FCHC lattice model by adding rest-particles and attempted
to maximize the Galilean g factor to raise R., eqn. (7.24), with the result that a
value of R]*** = 13.5 has been reported. While encouraging from a comnputational
efficiency standpoint, these moagels stiil suffer from artifacts that make them un-
usable for accurate hydrodynamic experimentation. By adding rest-particles to
their model, they have destroyed the semi-detailed balance condition that ensured
a monotenic approach to equilibrium in the original single-speed model. Further-
more, by treating the Galilean factor as a free parameter that may be alterred
to maximize R., rather than an artifact that must be removed by setting it to
g = 1, they ensure that their model will continue to exhibit anomalous behaviour
in comparison with actual fluid behaviour as predicted theoretically in Section 3.1
and shown experimentally in Section 7.2.1. The theory that Hénon developed
for minimizing the viscosity in the single-speed case[26] has been generalized to
multiple-speed models to some extent by Molvig et al.[39). It appears that the

viscosity minimization condition that appears in single-speed treatments does not
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appear in such a straight-forward way in the multiple-speed case. making it dif-
ficult to create a set of optimal, viscosity minimizing collisions, in the multiple.

speed case. Research in this area is ongoing.

Still, we have found experimentally that the set of 276 quadruplets that were
chosen for the collsion operator in the three-speed model essentially ininimized
the attainable viscosity in our simulations. Using a longer string of collisions
reduced the viscosity by only a few percent, making it not worth the additional
computational effort to include them in the algorithm. The values of viscosity

calculated here will be used in later simulations of flows around bluff objecta.

7.2.3 Wavenumber Dependence — Scale Resolution

It is of interest to determine the wavenumber, or k, dependence of the phase and
modulus in the decaying shear wave experiment. This has a bearing on the im-
portant issue of scale reselution in lattice gases. As the wavelengths approach the
lattice spacing, one will lose hydrodynamic behavior, of course. The large k shear
wave decay will show exactly how hydrodynamic behaviour is lost. This is one
of the more demanding tests of small scale behaviour, since the free shear wave
is unsupported by any driving effects and decays very rapidly at large k (for 16
period waves in the lattice volume, k = 16 x 27 /64, the decay to noise takes less
than 10 times steps for kinematic viscosity v ~ .5). Thus the time scale separa-
tion, between the phenomenon of collisional relaxation to local equilibrium and
hydredyramic behavior, is marginal at best. For eddies that are sustained against
viscous decay by driving forces that increase the eddy lifetime, the accuracy of

hydrodynamic behaviour would be much better.
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We studied the k dependence by using a series of values of k in the intial
seeding of the velocity shear field with p = 8, z = 5 and ur = u; = 0.1 as
before. What the k dependence studies show, as reflected in Figs. (7.7) and (7.8)
is that good hydrodynamic behavior of the shear wave persists up to normalized
wavenumbers® of 16 (or 2 lattice sites per half wavelength). For larger k, there are
not enough lattice points to represent even a crude approximation to a sine wave,
and the behaviour observed is essentially that of noise. Notice, in particular, for
the Galilean factor plotted in Fig. (7.7) that g remains essentially at unity up to
k = 16, although the phase “signal” has become more noisy, making the slope
measurement {and hence the value of g) more uncertain. An example of this is
shown in the k = 12 phase plot of Figure (7.9). Note that the initial slope is very
close to unity, but then drops off and starts to fluctuate rapidly as the amplitude
approaches the shot noise level. The phase does begin to depart from the ¢ = 1
line while the wave amplitude is still somewhat above the noise level. Comparisons
with the spectrum of velocity fluctuations at other wavenumbers (not shown here)
confirm this. This characteristic behaviour is seen in all the large k cases. We
believe this departure from g = 1 behaviour is a failure to hold the equilibrium
precisely at large k due to the weakness of the time scale separation. This would
account for the correct behavicur initially since the equilibrium is properly seeded
at this point. If the correct explanation, it also implies that either for increased
collisionality (although it seems we have done about as best as we can in this
area), or for slower evolution of the large k eddies (supported by driving effects)
that the high k, small scale resolution would be improved.

8k / (2% /64)
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Figure 7.7: The value of g shown is calculated from the intial slope of the phase
decay in the shear wave experiment for the case z = 3, p = 8. We see that Galilean
invariance is being maintained intially, g = 1. despite the large uncertainities in the
measurement (illustrated by the error bars) as the wavenumber increases causing

the physical scale length to approach the lattice spacing.
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Figure 7.8: Viscosity measurements in the k£ dependence experiment. same runs
as in Figure 7.7. Viscosity maintains the same value, within the region of uncer-

tainity, for all values of the wavenumber.
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Figure 7.9: Phase of a decaying shear wave, from which we measure g, as a
function of time for the wavenumber & = 12. Although the mean fit to this deacy,
the dotted line, does not give good results. the value of g measured from the intial
slope, ¢ < 30, gives g = 1. The slope then drops below this level and fluctuates
rapidly as the amplitude approaches the shot noise level.

7.2.4 Mach Number Behaviour

The final experiment we de with the shear wave is to examine the behaviour of
the system at Mach numbers approaching unity by increasing the values of ug
and uy. Since the relations for the artifacts were calculated using an expansion in
Mach number, this is the regime where the theory breaks down. Even if the Mach
number expansion for the Euler equations were carried beyond 3rd erder, it is not
known if the tensors generated by the FCHC basis vectors are isotropic beyond
the 4th rank tensor of lattice velocities, eqn. (3.47). This means that we might

expect that some high order graininess. reflecting the underlying lattice. would
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Initial | Mach | ¢ v Pressure 3o’ R* = & | Shot Noise
ur = uy, Anomaly Level
0.1 [0.163 | 1.000 | 0.376 [ 0.035 x10~2 | 8.0 x10-2 | 2.30 | .36 x10-2
02 |0.327 0985|0368 | 0.092 32 2.36 .36
0.3 {0490 {0964 |0340| 0.384 72 2.55 36
l{ 0.4 |[0.653]0933|0307| 1.479 1300 | 2.82 36
| o5 [o0816]0s91 0280] 4440 2000 | 3.10 .36
| o6 |o9s0[0s24[0260| 12508 288.0 | 3.33 .36

Table 7.4: Mlustration of loss of g = 1 condition as the theory breaks down at high
Mach number. We still see that g = 1 within 2% at values of Mach number up
to M ~ .4 and does not become unacceptable until M > .65 where the pressure

anomaly becomes significantly larger than the shot noise level.

start to appear at higher Mach numbers. Whether this would have a significant
impact on the fluid behaviour is unclear, but the question is unlikely to have
a satisfactory theoretical explanation. The best one can do here is explore the
behaviour experimentally, with simulations, for indications of non-hydrodynamic
behaviour. The results of such a study for increasing values of up = uj, and

p =8,z =2 are compiled in Table 7.4.

What one sees from the table is that, remarkably, reasonable hydrodynamic
behavior persists to M = .5, well beyond what the underlying theory would give
one any right to expect. At Mach numbers lower than this, even though g may vary
from 1 by a few percent, the value of the pressure anomaly, as calculated in the

inital validation experiments, is still at the shot noise level or less indicating that
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deviations from hydrodynamics are indistinguishable from noise. Even for Mach
numbers, M = .98, where the formulas for the rate coefficients would be expected
to contain substantial errors, the Galilean factor is maintained reasonably close to
unity, g = .82. The dynamic pressure anomaly does increase, so that by M ~ .3, it
exceeds the noise fluctuations and becomes visible in the pressure plots. However,
the dynamic pressure, %puz, also increases, so that the anomaly remains at 1%
of the dynamic pressure at M = .65, and stays below 5% throughout the range
indicated in the table, up to M = .98.

The results clearly suggest that our lattice model describes fluid dynamical
behaviour correctly to about M = .3 in these low fluid velocity simulations. This
corresponds to flow velocities up to u ~ .5 since ¢, ~ 1. In Section 4.3, we showed
that it was possible to rescale the equilibrium, and hence dynamical equations,
of the lattice equilibrium expression for any flow velocity u. This was done by
finding the closest lattice vector, c;; to the velocity u in a multiple- speed system
and transforming the lattice by that velocity. This results in a residual velocity of
6u = u — ¢;; with magnitude necessarily less than or equal to 0.5. It was shown
that this transformation is possible when the lattice exhibits discrete microscopic
Galilean invariance, a property that the FCHC lattice attains naturally as higher
speeds are added to the model. The result from the low Mach number exper.ments
that indicate good hydrodynamical behaviour for u < .5 and the fact that we can
rescale the model to any velocity as higher speeds are added where the residual
velocity is always fu < .5, indicates that the model can be used io accurately

simulate high Mach number flows as higher speeds are added.
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7.3 Poiseuille Flow

Now that we have established that the three-speed LGA code correctly simulates
hydrodynamic behaviour for a wide range of density, temperatures and velocities
we examine some tradtional fluid dynamics experiments with the goal of further
demonstrating the accuracy of our method. The first flow we will exarine is
unidirectional flow betweer. iwo parallel plates. known as Poiseuille flow. This
will allow us to examine the behaviour of the model in the presence of a pressure
gradient. With the x-direction being aligned down the length of the pipe, the

Navier-Stokes equation for this flow simplifies to

) 10

57l = —;Ezp + 11-87241r (7.25)

with the other two spatial componeats of the equation being irivially satisfied. In
steady state, with the conditions that the flow is zero at the walls and reaches a

maximum in the centre, the solution is

1 a®dp y?
) = T (1 - —)
y2
= U, (1 -— ;5) (7.26)

where a is the half-height of the channel centred around y = 0. Thus, in equilib-
rium, the velocity should attain a parabolic profile throughout the channel. From
this result, a viscosity measurement can be obtained in two separate ways. The

simplified Navier-Stokes equation for this steady-state problem is

ot i
- pva—yz-u,_. =3P (7.27)

where now each term is in units of force per volume. The term on the left-hand

side represents the force deposited to the upper and lower walls and the term
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on the right-hand side represents the force imparted to the system through the
open cnds and dissipated due to the pressure gradient. In equilibrium. these two
terms must balance. Since we can measure both the total force on the walls and
the pressure gradient down the pipe directly in our simulations. we can use the
integrated form of eqn. (7.27) to calculate viscosity from both measurements since

both the density and theoretical velocity profile are known.

The force deposited to the wall by one particle is simiply the amount of mo-
raentum imparted to the wall by the particle over the duration of the collision. As
described in Section 7.1. particles interact with solid boundaries by “bouncing-
back” from them. This means that a particle imparts twice the value of its mo-
mentum directed into the wall. This is done over one time step, the smallest unit
of time on the lattice. To find the total force on the wall, we simply take twice
the value of the component of momentum directed into the wall for particles that

collide with the wall. Thus the total force is
Foan =2 (E cini(x) | wp €, — Zc.-n,-(x) | bor -ey) (7.28)
i wall i wa,

summed over the entire upper and lower walls. To measure a value of viscosity
from this, we also need to calulate the left side of eqn. (7.27). Plugging the

solution, eqn. (7.26) into this relation gives
2
F = vpUo— X Volume (7.29)

where u, is the velocity down the centre of the pipe. To increase the accuracy of
the centre velocity measurement, we measure the normalized momentum of the

entire lattice volume and relate it to the momentum at y =0

a _ 2 2
Lopwll — G)dyAadz 2 (7.30)

(pu) = IINTY 3
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so that a much less noisy value of the median momertum is pu, = %(pu). The
total volumme of the lattice is 2aAzAz. We find a value of viscosity from the wall

force measurement using eqn. (7.29)

Foat a
Vyall = 5——

(pu) 6ATAZ’ (7.31)

Similarly, we can measure the pressure at all sites on the lattice, average over
the y- and z- directions to find p(z). Fitting a negatively sloped line to this
measurement will give the pressure gradient, —%p and then the pressure drop
down the length of the pipe, AP = 2p x Az. Multipiying this value by the
surface area of the outlet region gives us the total force imparted to the system
by the flow. Using eqn. (7.29), another value of viscosity may be calculated

Vpress = %g‘gg (7.32)
If the system is transmitting momentum correctly, the two calculated values of
viscosity should be the same since the force imparted to the volume through the
inlet channel should be deposited on the walls. To cross-test these results, we
compare these viscosity results with the viscosity calculated from the shear wave

experiment using the same input parameters.

The simulation was started with the fluid at rest. Fluid was then in jected at the
entrance of the lattice at a particular velocity and the parabolic velocity profile
evolved as predicted in about 1500 time steps. This profile evolved due to the
effects of shear stresses near the wall (caused by the no-slip boundary conditions
there) which resulted in the conversion of the normal pressure drop to tangential
shear stress at the wall. This shear is absorbed as momentum into the wall. Once
equilibrium was reached data was accumulated for another 1500 ti.ne steps to

asgure clean profiles and measurements. The results of a number of experiments
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are shown in Table 7.5 where we see that the two different viscosity measurements
agree with each other and also with the independent shear wave viscosity to within
1% for all cases. This is further strong evidence that the algorithm is behaving
hydrodynamically in the mean. In all of these cases, the number of lattice sites
down the length of the tube was Az = 352, the total height was 56 so that a = 28
and the extent in the third dimension was just Az = 4 for a total of about 80 600
lattice sites. This is a considerably smaller lattice than the 643 lattice we used in
Section 7.2 because in this case we want to run the simulations for a very large
number of time-steps to demonstrate the constancy of the mean flow quantities
in equilibrium.

These cases were run at very slow speeds, M ~ .05, so that the noise level was
extremely high. In fact, the instantaneous fluctuations in the velocity field at a
lattice site were about 5 times the signal, or mean flow velocity, value. F igure 7.10
compares the instantaneous velocity profile in a single cross section of the pipe to

the 1500 time step averaged value.

It is difficult to recognize any sensible mean flow from the instantaneous data.
In fact, numerous points appear to exhibit “backflow” in the pipe. This is to
be expected when the noise level is so high. On the other hand, it might seem
that such an instantaneous flow field would not be able to accurately transmit the
shear stress appropriate to a parabolic profile, which, of course, depends on the
local gradients of the velocity field. But, as the data in Table 7.5 indicate, the
accuracy with which the algorithm transmits the correct hydrodynamic stress —
as though the profile were a very accurate parabola — is extremely good. The
parabolic profile does eventually appear in the mean as statistics are accumulated

over larger volumes of time and space.
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Drag | Pressure Viscosity
p z Norml | Wall | Shear l
Force | Drop | Press. | Force | Wave
5 |50} 163 | 0.073 | 0.301 | 0.301 | 0.305
£.002 | £.003 | £.003 |
8 (20292 | 0130 |0.448 | 0.450 | 0.450 |
£.003 | £.004 | +.003
106 |48 29.5 | 0.133 | 0.346 | 0.343 | 0.345
+.002 | +.003 | £.003
106160 260 | ©0.116 | 0.302 | 0.303 | 0.300
+.002 | £.002 | £.003

Tablc 7.5: Comparison of Viscosity measurements for various densities, p, and

temperatures 2 (inversely related to T') for a low Mach number flow. Two mea-

surements are from the pipe flow and they are compared with an independent

measurement from the shear wave experiment. All three agree within the uncer-

tainities for all cases.
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Figure 7.10: Comparison of jagged instantaneous velocity profile for a cross section

of the pipe compared to the statistical mean value (over 1500 time steps).

Evidence of a persistent mean despite large shot noise flucutations was also
seen in the wall force measurements. Although the mean value of the wall force
was quite small (typically around 20 - 30 for a wall length of 352 lattice sites) due
to the small velocity in the simulations, and hence quite noisy®. the mean value
from the accumulation of 1500 time steps of data remained constant within 2%
over concurrent runs when equilibrium had been reached. The expected variation
in a series of 1500 values that vary from their mean due to shot noise is 1//1500 =
2.5 % so that our observed variation in the mean is within shot noise levels. This

repeatability is a result of momentum being an exact invariant in our system.

The fact that the mean dynamics reproduces the expected results of hydrody-

%Signal / Noise = 3
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namics despite the high levels of noise is guaranteed by the shot noise theorem and
subsequent conclusions of the absence of all noise effects on the mean dvnamics
derived in Chapter 6. If the instantan~ous flow field shown in Figure (7.10) were
that of a fluid obeying differential equations, or some numerical approximation to
Navier-Stokes, the results would be much different and substantial errors would
result as noise would have a significant effect on the mean dynamics in these

methods, as shown in Section 6.1.

This experiment also revealed an interesting realism feature of the system
in the way external boundaries behave. Boundary conditions in the differential
equation sense do not occur. Rather one specifies the distribution of entering
particles on the boundary®®. The exiting particles — and thus all the net fluxes
— are determined by the total system response. Even if external conditions are
set inconsistently, the main flow will achieve correct hydrodynamic behaviour,
forming very narrow boundary layers at the cnd to counteract the inconsistencies.
The tendency to obtain thermal equilibrium is so strong that, for example, if flow
is forced through the system without an imposed pressure gradient. the correct
gradient will form naturally because hydrodynamics demands it. This is strikingly
analogous to the way a real wind tunnel is driven — by a fan forcing particles

through the tunnel — not by setting mathematical boundary conditions.

7.4 Flow Past a Circular Cylinder

The final flow experiment that was performed with the three-speed model was
by far the most complex physically but was trivial to set up with the LGA code.

1%using the Refresh portion of the LGA code in our case
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Flow past a circular cylinder of a particular diameter was simulated by simply
setting the fluid bits within a circular region of lattice sites to zero which ensured
that all particles would be reflected at the surface of the cylinder in such a way as
to keep the velocity zero there. By setting an initial density, temperature and flow
velocity perpendicular to the axis of the cylinder, we could observe the evolution
of the flow as it interacted with the solid cylinder for Reynolds numbers in the
range 0 < Re < 65. The Reynolds number is

ud

Re = (7.33)

14

where d is the diameter of the cylinder in lattice sites, u is the speed of the
flow far from the cylinder and v is the kinematic viscosity of the fluid near to
the cylinder. As we increase Re by increasing both the initial flow velocity and
cylinder diameter, a number of interesting pheromena occur that our model must
accurately reproduce in order to verify its hydrodynamic behaviour. We will
quantitatively perform this comparison by measuring flow properties such as drag
and wake length in the range of Re where steady flow is maintained (Re < 45) and
the frequency of shed eddies when the flow becomes unstable (Re > 45). We will
compare our results with established experimental results for the same Reynolds

number flows as well as results from recent CFD simulations.

There are two important geometrical issues that we must understand if we are
to quantitatively compare our results to actual fluid experiments. These are the
influence of surface roughness and blockage on the values of properties measured
at the solid surface. The first issue concerns the degree to which we can delineate
a continuously curving cylinder on a discrete lattice. It might appear that the
surface of a simulation cylinder of relatively small diameter is significantly rougher
than a true cylindrical surface, since it is restricted to be defined by the lattice
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sites. Actually the scale of this roughness corresponds to a characteristic mean
free path of a lattice gas particle. Thus, as long as the desired true surface
has a scale length long compared to the mean free path. we would expect the
lattice gas dynamics to effectively smooth this surface to become very close to the
ideal shape as far as the macroscopic flow is concerned. However, this potential
roughness phenomenon is difficult to analyze theoretically, and needs study by

direct simulation to determine its importance.

The surface roughness of the lattice was found to be a very small effect, that
we estimate to be below 1% for the radius 20 site cylinder we studied. This wae
the smallest radius that was used in the cylinder experiments and so it represents
the case with the largest surface roughness effect. To make the effect extreme,
we simulated flow using a pathologically “rough” cylinder (obtained by rotating
the blocks in the data structure so as to create a distorted surface), as shown in
Figure (7.11) where we compare it to the smoothest cylinder allowed by the lattice
resolution. In spite of this extreme surface roughness — variations on the order of
10% of the radius — flow parameters such as drag and wake length, were affected
very little. The drag measured using the pathologically “rough” cylinder was only
4% higher than the smooth case , at a Reynolds number of Re ~- 30. This result is

another example of the continuum nature of the statistically averaged dynamics.

The second key geometrical consideration, which is also of vital importance in
wind tunnel experiments, is the “blockage” or the ratio of the frontal projection
area of the object to the total cross section area of the tunnel. Without extremely
small blockages, the observations of drag, lift and so forth are affected by a variety
of Venturi type effects, and differ significantly from free stream values. Even for

blockages below 5%, which is a rule of thumb for accurate wind tunnel operatien,
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Figure 7.11: Comparison of smooth and pathologically rough cylinder cross sec-
tions used in the investigation of the effect of surface roughness on surface drag.
At Re=30, the rough cylinder’s drag was only 4% higher than the smooth result,

a small effect.

corrections to the measured drag values need to be made. Even though the fluid in
regions far from the object follows 2 fairly featureless potential type flow. it does

succeed in transmiting significant stresses io the objeci which must be accounted

for to obtain accurate results.

In CFD simulations this outer region can often be partiallv accounted for by
so-called “potential flow boundary conditions”. This does require some knowlege

of the flow near the object, and can cause significant differences in answers if
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not done correctly, but it does save significantly on computational work. For a
previously untried flow object where the flow behaviour near the object is not
known, this method requires many iterations to acquire this information before
a stable result is found. Clearly, a simulation technique that dces not require
a priori information about the flow would be better suited to fluid dynamics

research.

In the lattice gas method, boundary conditions of the differential equation type
do not exist. A physical conditicn which accounts for the microscopic physics must
be specified. In the present case. free slip walls are modelled by wrapping particles
toroidally from the tunnel top to bottom, thereby forcing the flow to be parallel
to a defined boundary without imparting any momentum to it. The only effective
way to reduce blockage is to actually simulate a larger physical volume. This
can be accomplished efficiently using the multigrid scheme that was developed by
our research group and is described elsewhere[55] although we will describe its

important features here.

The multigrid lattice that we are using is similar in concept to the multiple grid
systems commonly used ir CFD. An important difference is that while in CFD
a grid may be tailored to conform with the expected geometry of the flow([51],
we maintain a rectangular grid everywhere. By maintaining a higher resolution
of lattice sites around an object we can be sure of capturing all the relevant
phenomena there. Furthermore, by placing a coarse grid in regions far away from
objects we wish to investigate, we reduce the computing power needed as well
as create distance between the important object and the edge of the simulation
volume. The multigrid we are using basically reduces the resolution by a factor

of 2 in all three directions at a grid interface. The main requirement of the grid
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interface is that all physical parameters (mass. momentum. energy) are continuous
across the interface. The key to doing this is to keep the microscopic particle
velocities, ¢;, unchanged. Particles have the same set of directions and speeds in all
lattices. To counteract the eightfold change in lattice site density, we simply assign
8x the mass to particles in the coarse region and move them only half as much
as the particles in the fine lattice to maintain the fundamental unit of time. This
makes the microscopic dynamics completely continuous. Mass, momentum. and
energy density are trivially continuous, and since the thermodynamics is identical,
the sound speed is continuous as well. It has been theoretically asserted and
verified by simulation that the multigrid algorithm we are using[35] preserves the
Euler stresses continuously (effectively providing an Euler dynamics that is scale
independent), and produces a discontinuity in the viscous stress corresponding
to the increased mean free path in the coarser outer regions. As long as this
viscosity change occurs in a region of potential flow, it will not change the results,
a property that we verified directly by simulation. Of course, it is possible to
have many multigrid stages with all the elements of the interface described above
holding at each interface. In fact the only difference between the various lattices
besides the aforementioned viscosity is the sampling accuracy per unit volume.
The coarser regions are noisier which deesn’t matter as long as the phenomena
are resolved, the mean dynamics of all regions being unaffected by noise (see
Chapter 6).

In the runs described here, a very simple multigrid geometry was used. A
rectangular volume of fine grid cells ( 8 sites deep in the third dimension), was

enclosed in a larger rectangle of coarse cells with twice the spacing between sites.

In fact extra viscoeity in the outer regions is helpful in damping transients there and allowing
the system to come to steady state much quicker
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Figure 7.12: Geometry of the variable resolution lattice for the cylinder runs,
showing cylinder placement iu the fine grid. One fine grid surrounded by one

coarse grid was used in these runs.
Some cases were run without multigridding and had no coarse region at all. The
geometry is depicted in Figure 7.12.

By using the multigrid lattice. the blockage at higher Reynolds number flows
was reduced significantly. Still. standard corrections for blockage had to be applied

to reduce our values to the zero blockage results.
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7.4.1 Attached Eddies, Re < 45: Run Conditions

Simulations were first run on 2 uniform grid lattice of height 256 sites and length
384 sites with a cylinder of radius 20 situated one-third of the way downstream.
The depth of the simulation along the cylinder axis is 8 sites although the flow
i3 constant in this direction. This direction was used to accumulate statistics of
the flow and served to reduce the amount of time steps we had to average over to
obtain a clean flow property profile. Once a simulation reached steady-state, the
final averaged density and temperature were used to calculate the viscosity of the
fluid from the shear wave results. Since the flow velocity far from the cylinder is an
input parameter as well, the Reynolds numaber for the flow can then be calculated.
The system could be started either from rest with significant injected mass, or
from initially moving flow filling the tunnel everywhere except in the wake region.
The final state was found to be independent of the startup scenario, even though
the ‘at-rest’ start typically caused the mean fluid density to increase by about a
factor of two. The ‘initially-flowing’ startup saved substantially on runtimec and
was used predominantly in the data presented below.

The main flow property that was varied to get different Reynolds numbers was
the initial flow velocity although the cylinder diameter was sometimes alterred
slightly. A list of the simmlations we performed, outlining the Reynolds number,
Mach number and system geometry for each case, is given in Table 7.6. The system
geometry is given in units of lattice sites. The y- direction is the length of the
simulation volume (the direction in which the flow is travelling), the z-direction is
the height and the x- direction is the width (length of cylinder). The single grid
system was used for Re= 9.6, 11.8, 28.8 where there are about 8 x 10° lattice sites
in total. The Re=23.6 case illustrates an early multi-gridding geometry where the
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Re | Mach | Lattice Size | Radius | Block.

No. Y z |z R s
9.6 | 0.12 | 384 |256 18| 20 |15.6%
11.8) 0.15 | 384 | 256 |8 20 | 15.6%
236 025 | 384 |344 (8| 20 |11.6%
26.0] 025 [ 1280 [ 51218 | 22 | 8.6% |
288 0.30 | 384 | 256 18| 20 |156%
36.7] 038 1280|5128 21 | 8.2%
42.6] 0.38 [1280 {5128 | 24 | 9.4% |

Table 7.6: Summary of flow parameters for cylinder runs with Re < 45. Distances
are measured in lattice spacings where the y-direction is down the length of the
volume (the direction of flow), z- is the height and x- the width or length of the
cylinder.

height and length of the volume were about the same with about 1 x 16¢ total sites.
The final multi-gridded lattice was used for runs Re=26.0, 36.7, 42.6 where about
5x 10° total sites were simulated. We compare the results for these three different
lattice structures in order to show that the results are correct independent of the
lattice size used. Of course, with a larger system, the blockage ratio is smaller

and so the reliability of the relation that corrects for this factor is higher.

When steady-state had been reached!?, statistices were accumulated for a fur-
ther 1000 time steps so that a time and space (x-direction) average produced
clean flow results. The streamlines for steady-state flow past a cylinder for the

12Gteady-state flow exists for Re < 45
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Re = 28.8 case are shown in Figure (7.13) and Figure (7.14).

Recirculating eddics of equal size are clearly visible behind the cylinder. The
drag on the cylinder was calculated by simply summing the force individual par-
ticles impasted to the cylinder upon colliding with it (this was twice the momen-
tum in one time siep), the same calculation we used for the force on the walls
in Poiseuille flow. The ratio of the eddy length to cylinder diameter was also
measured. This was also an easy measurement as we simply found the number of
lattice sites directly behind the cylinder that had a negative (recirculating) veloc-
ity. To verify that the force measured on the solid was equal to the force lost by
the fluid when passing the cylinder, the normal element of the stress tensor was

measured down the length of the simulation, see Figure (7.15).

If we measure the drop in pressure across the cylind.er integrated over the cross-
section, which in the Re = 28.8 case is 256 x 8 = 2048 sites?, we find essentially
the same force as measured on the cylinder (225.2 for stress drop while drag force
on cylinder is 225.3). This further illustrates what we had validated from the pipe
flow experiments — the system is correctly transmitting stress. The “bump” in
the stress around the cylinder is due to the Venturi effect in a constrained system.
This is a result of blockage that must be corrected for in the data as discussed

below.

Correct hydrodynamic behaviour is possible only when the flow does not allow
the lattice to become manifest macroscopically. In Section 5.1 we showed how
the three-speed lattice gas model can be made Galilean invariant through a chem-
istry trick which maintained the factor g(p,T) at unity by alterring the energy
exchange collision rate. As the flow develops around the cylinder, the propertics

of the fluid readjust themselves from the initial values to satisy the constrainis

250



Figure 7.13: Streamlines in steady state at Re = 28.8. The entire lattice is shown.
Streamlines originating from inside the cylinder are artifacts of the graphics pro-

gram.

251



Figure 7.14: Close-up of streamlines in trailing wake behind cylinder at He =
28.8 illustrating the steady, closed structure of the attached eddies. Streamlines

originating from inside the cylinder are artifacts of the graphics program.
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Figure 7.15: The drop in Sy, stress across the cylinder at Re=28.8 AS,, = 0.11.
Units of position down the volume are in lattice sites divided by four, actual length
is 384 sites. Cylinder is located between sites 108 and 148. When multiplied by
the cross-sectional area of the model (236 x 8 = 2048). this gives a force loss of
225.3. The measured force on the cylinder was 225.2. Note: The ‘bump’ in stress

around the cylinder is due to the Venturi effect.
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of hydrodynamics. Since g can depend on these parameters'?, a feedback system
was incorporated into the model that senses the fluid properties and then alters
the collision mask in order to maintain g at 1. We do this by measuring the
temperature and density of the systerh and then recalculating the rate coefficient.
The technique for accomplishig this was developed in Section 5.1 and the equation
that allows us to calculate the system temperature from measured flow properties
i3 given in eqn. (5.16). This allowed us to inject mass at high rates into a tunnel
configuration with the fluid initially at rest and build up the density by a factor

of two or more while still maintaining g = 1.

The results of Section 7.2.4 demonstrated that the model is able to maintain
g = 1 to within an acceptable level so that anomalies in the pressure were not
observable un to a value of Mach number, M ~ .3. In Figure 7.16, we show the
measured value of g averaged over the lattice cross-section at steady-state where
the values of density and temperature have changed by about 25% from their
intially seeded values for the Re = 28.8 simulation. In this case, we are near the
limit of acceptable Mach number since M = .3 here. Still we see that Galilean
invariance has been maintained to good accuracy. Note that the jaggedness in the
value of g occurs around the cylinder and it is attributable to the cylinder extent
not filling up an entire subvolume height (of 4 lattice sities)** on the surface. Since
we have averaged over the height in total subvolumes, there is a slight error in
our normalization in the cylinder region. Furthermore, the measured value of ¢
has a second-order Mach number dependence that should not be present in the

actual g calculation. This is the same effect that we corrected for in the feedback

Balthough insensitively for the range of density and temperatures we used, sce Figure 5.3

4Section 7.1 describes the 4 x 4 x 4 subvolume data structure
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Figure 7.16: Feedback maintained cross-section-averaged Galilean invariance fac-
tor, g ~ 1, as a function of distance downstream for the steady-state Re = 28.8
case. Jaggedness around the cylinder is due to a slight error in the cross-section

normalization there and is not physical.

system. This correction for the g calculation is not shown in Figure 7.16.

Note the jumps in g observed at the ends of the tunnel. They are quite small
in absolute terms, of course. These are characteristic of the boundary layers
that form at the ends of the tunnel to bring the user specified incoming particle

distributions into equilibriurn with the syster determined fluid response.



7.4.2 Attached Eddies, Re < 45: Results

For Reynolds numbers much smaller than five. the flow around a cylinder appears
symmetric as the dominant viscosity effect diffuses the vorticity generated at the
cylinder surface symmetrically away from the surface. At Re ~ 3, fore-aft symme-
try becomes discernible as the vorticity at the surface is preferentially advected
behind the cylinder. For Re > 5, closed streamlines appear at the rear of the
cylinder. The length of these recirculating eddies grow with Re in a way that has
been determined experimentally (Taneda[63] in 1956 whose results are reported
in the classic fluid dynamics text by Batchelor[65], further examinations of the
phenomenology of the attached circulating eddy have been carried out more re-
cently by Acrivos et al.[66] in 1968 for many objects and by Coutanceau et al.[67)
in 1977 specifically for the circular cylinder, which confirmed Taneda's results) up
to a value of Re =~ 45 where the eddies then become unstable.

Simulations were carried out for the several Reynolds numbers indicated in
Table 7.6 spanning the range of attached eddies. As described in Section 7.4,
blockage was reduced by utilizing multigridding. Eddy lengths were measured
from both the streamlines and the centerline axial velocity. The drag force was
measured along with the fluid properties in steady state to determine the drag
coefficient,

Eyl

Ci= s T (7.34)

where F.,; is the total force on the cylinder and Acs is the frontal cross-section
of the cylinder, equal to twice the radius multiplied by the cylinder length. The

free stream dynamic pressure is measured at the entrance channel of the tunnel.

The measured wake lengths are displayed and compared to the careful observa-
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Figure 7.17: Wake length (s/d) as a function of Reynolds number (Re) for our
results compared to observation and recent CFD results. The size of the data

points represents the measurement error.

tions of Taneda [63] and recent results from a CFD spectral code simulation [56)
in Figure 7.17. This figure is essentially a reproduction of the presentation of
Taneda’s data in Batchelor's book. Baichelor’s figure displayed the data explic-
itly, which we have not done here since it fits the straight line so well and would

clutter the figure unneccessarily.

Note that no discrepancies can be found between the lattice gas observations

and those for a real fluid in the laboratory. The measurement errors at the two
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smallest Reynolds numbers are large, owing to the poor sampling statisics over
the small volumes occupied by the eddies!®. At the other Reynolds numbers the

lattice gas and laboratory measurement errors are comparable (~ 6 %).

Substantial discrepancies are apparent for the state-of-the-art CFD code, NEK-
TON, however, as evident from the published data of Karniadakis [56]. We
attribute this discrepancy to remaining discretization errors that persist in the
CFD approximation. Karniadakis seemed to believe that a subsequent set of ex-
periments by Honji and Taneda [64] involving the transient formation of vortices
under impulsive starting conditions might be more appropriate to his simulations.
The Karniadakis paper [56] made no reference to the original Taneda work, and
gave no explanation for why the nonsteady state results from the second Taneda
paper (which showed significantly higher wake lengths for a given Re compared to
his earlier steady results) should apply to his case, even though Taneda [64] never
claimed that the second expermiments should supercede the first for the steady

state case.

An examination of Coutanceau et al.’s [68] work on the unsteady development
of eddies behind cylinders resolves this discrepancy and clearly shows that the
Karniadakis results are in error. In Coutanceau’s work we find that as the flow
past a cylinder increases, the eddy length increases until steady-state is reached
where the final eddy length ratio is equal to the results of the first steady flow
Taneda results, as reporied in Batchelor, as we would expect. They also show
experimentally that as the eddy length is increasing in the unsteady portion of
the flow that in certain cases it is possible for the measured eddy length ratio

13These measurement errors could easily be reduced by accurmilating better statistics and

resolving finer spatial scales in the near wake region.
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to ezceed the steady-state value for awhile before decreasing to the final value.
Coutanceau explicitly demonstrates, by comparing the unsteady Taneda results
to their own, that in Taneda’s work on unsteady flows, they did not continue their
experiments long enough to observe the decline to the steady-state result. Their
work quotes the maximum, higher than steady-state, value. Jt is this value that
Karniadakis compares his CFD results to, finding his results to be even higher
than Taneda’s already anomalously high resuits.

Drag measurements obtained from this set of runs are summarized in Table 7.7.

Notice that the blockage correcied drag coefficients agree quite well with the
experimental observations of Tritton [62], who reported an uncertainity in his
results of £6%. With 8% blockage, these corrections are right at the boundary of
where they would be considered trustworthy in wind tunnel measurements. The
blockage correction was performed using a relation that is used in industry for
low-speed wind tunnel testing as reported in Rae & Pope[61]. The relation. which
calculates a zero-blockage drag coefficient'® from the measured drag coefficient for
a known blockage is given by

Ca =Cyy [1 — €4 — 2643 (7.35)
where
2
€y = 1l"2-;;-2-
2r
€wp = C"“ﬁ'

16Tritton’s results were obtained with cylindrical fibres with dizmeters in the micrometer

range while the wslls were about a meter distant so that the effective blockage is zero
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Lattice Gas | Exp Force

Re | Mach Cp Cp |Drag| Shot | s/n s/d s/d

# |Raw | Adj | 6% | Diff. | Noise | Macro| LG | OBS
96 | 0.12 14081277 |3.00|7.7% | 10% | 045 |04 +2]| 03
1181 0.12 }3.72 | 259 | 264 |1.9% | 7.5% | 060 |0.7+.2] 0.5
236| 025 | 241 | 2.06 | 2.00 | 29% | 25% | 1.79 [114+.1] 1.1
2631 025 1223|198 |191|3.7%|28% | 157 {1.2+.1] 1.3
288 030 | 252|190 | 185 {2.7% | 21% | 2.16 [1.5+1] 15
36.7| 0.38 | 1.91 | 1.73 | 1.72 | 06% | 1.1% | 3.14 |19+.1} 1.9
426 038 | 188|167 | 158 |5.7% | 1.1% | 326 |23+.1| 23

Table 7.7: Summary of Lattice Gas Data for the steady eddy cylinder runs showing
that our blockage corrected drag coefficient data, column 4 (using Rae & Pope[61]),
agrees with the experimental data, column 5 (from Trittoi:[62] 1959), to within the
experimental error of 6%. Also shows the agreement of wake length to diameter

ratio measurements for the lattice gas, column 9, and the observed results, column

10 (Batchelor[65]).
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Cuy is the measured drag while C; is the corrected drag, r is the cylinder radius

and h is the volume height so that 2r/h is the blockage.

A more direct indication of the reliability of the lattice drag results may be
inferred from two sets of observations at Re = 26.0, and Re = 28.8, which are
comparable except for the blockages used. Although the corrections were signif-
icantly bigger for the high blockage run, the net corrected drag coefficients were
very close to the observed zero-blockage drag coefficient for both runs, and well
within the measurement errors of the experimental observations. Future refine-
ments in the multigridding configuration will reduce the blockage even further to
make the blockage correction superfluous.

Aiso displayed in the table are several measurements of the noise levels. The
observed difference between experimental and lattice gas results are within the
shot noise level — or statistical error -— in the measured force in the simulations.
This force shot noise could be further reduced by collecting better statistics, but is
already within the experimental errors for the most part. Perhaps more significant,
in connection with the effects of shot noise on the mean dynamics, is the colurnn
in the table labeled “s/n Macro”. This is the instantaneous signal to noise ratio
of the macroscopic force. For the low Reynolds number cases this was aciually
less than 1. This means the instantaneous ferce was fluctuating wildly, time step
to time step, with a s/n ratio of at most 3.26 for the Re = 42.6 run. There
was hardly any evidence of hydrodynamic behavior on the individual time steps.
Nonetheless, upor accumulating good statistics (in the present case this was done
by time averaging and spatial averaging over the 8-site deep third dimension), the
correct hydrodynamic behavior was observed to very high accuracy both in the
force and the shape of the streamlines.
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As a final point, we compare our drag data with CFD results. Karniadakis
reports only one measured drag value for the steady eddy range of Re < 45. At
Re = 26, he gets the result C; = 2.2. The experimental result from Tritton is
C4 = 1.9 at this Reynolds number indicating that the CFD result is 16 % in error,

beyond the experimental error in the actual measurements.

7.4.3 Vortex Shedding, Re > 45

At Reynolds numbers above about 45. it is known that the two recirculating eddies
do not remain steady, but alternately oscillate in size, shedding vortices that form
a regular vortez street which propagates downstream. The frequency at which this
happens is known as the Strouhal frequency and is dependent on the Reynolds
number of the flow. What is not known precisely is the cause of this instability.
Gresho et al.[69] reports that some researchers believe this phenomena to be a
result of an {nstability in the wake, independent of the cylinder while others argue
that the separation point on the trailing edge of the cylinder itself (upper and lower
peint behind the cylinder where the eddy is still attached) becomes unstable and

its oscillatory motion causes the trailing waves.

By further increasing the cylinder diameter and number of lattice sites, the
lattice gas code was run in a configuration that resulted in a Reynolds number
of about 65 with a Mach number of M = .3. This also required elongating the
inner, fine scale region, geometry in order to contain all the dynamics of shedding
within a constant resolution (i.e. constant viscosity) region. The geometry of this
simulation was a width of 8 sites, a height of 384 sites and a length of 2560 sites

resulting in about 8 million sites total. The radius of the contained cylinder was
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Figure 7.18: Streamline evolution during shedding at the beginning of a period.

t=5600, for Re = 65. Two upper eddies. one shed and one still attached to the
cylinder, are visible. The lower eddy is about to be shed and the remiuant of the

previously shed lower eddy is visible at the right.

34 lattice sites. This resulted in an 18% blockage situation!”.

Observation of the simulations showed the development of elongating eddies
that became unstable and eventually set up an oscilliatory pattern with resulting
shedding as would be expected for Re > 45. Once the simulation had reached the
point of constant oscillatory period. ‘snapshots’ of the flow were taken at intervals
throughout one period. Streamline evolution during a full period of the oscillation
is displayed in figures (7.18) through (7.21). The period shown began at ¢t = 5600

and ended at ¢t = 6800 so that the time for one period of oscialltion was 7 = 1200.

"Essentially a limitation of software. not . ailable memory, that can be improved in the

future.
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Figure 7.19: Streamline evolution during shedding one-third of the way through

a period, t=6000. The lower eddv has been shed.

Figure 7.20: Streamline evolution during shedding two-thirds of the way through

a period. t=6400. The upper eddv has been shed.
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The dimensionless shedding frequency, or Strouhal number. is defined as

nd

St = (7.36)

u
where d is the cylinder diameter, u is the free stream velocity and n is the frequency
at which the vortices are being shed. This is the inverse of ihe period of oscillation,
n= -11: Thus for our case, the Strouhal number is St ~ .17. The observed value
at Re = 65 (with negligable blockage), due to Gerrard[70], is 5t = .14. Our
obzervation of a Strouhal number about 20% higher than experimental observation
is of the order of what would be expected from a blockage of 18%, siuce the
Venturi acceleration of the flow past the cylinder would be expected to increase
the frequency. Unlike the blockage correction for drag coefficient, there does not

seem to be a standard technique for correcting for blockage in the Strouhal number
calculation.

Simulations done with a single speed lattice gas[71] (using vhe hexagonal lot-
tice in two dimensions), found that the frequency of shedding decreased by about
15% as the blockage was decreased from 30% to 20% at Re = 108. This qualita-
tively shows that the decrease in Strouhal number scales with blockage. However,
the Strouhal number in the one-speed case was about a factor of 2 higher than
observations at a comparable Reynolds number. This descrepancy is expected
because of the lattice discreteness artifacts inherent in that model which prevents

accurate hydrodynamic behaviour.

The reported values of the Strouhal number for Re ~ 65 from CFD simulations
are in the range St = .15 — .16[56, 69, 72]. However, the resolution in the vortex
street in these results are such that only two eddies may be observed at any
instant, the eddy that is attached to the cylinder and the eddy that has just been

shed [69, 72] whereas the lattice gas model results presented here enables us to see

265



Figure 7.21: Streamline evolution during shedding after a completion of a period,
t=68)0. The flow here is identical to the flow at ¢t = 5600, the beginning of the

period.
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three eddies at all times. Perhaps the most revealing statement of the inherently
empirical nature of present CFD methods was given by Wang et al.[72] in his 1991
paper where he stated that their numerical solutions produced symmetric wakes
at Reynolds numbers greater than those for which vortex shedding is ezpected to
occur. It was necessary for them to perturb the flow numerically to stimulate wake
asyminetry and vortex shedding when they expected that it should occur in order
to produce their Strouhal number results. This is standard procedure in CFD
simulation(51]. In striking contrast to this, all of the behaviour described here for
the lattice gas cylinder experiment happened naturally, no artificial perturbation
of the flow was needed to quantitatively reproduce the plethora of hydrodynamic

behaviour observed in the cylinder experiment.

7.5 Summary of Lattice Simulations

We have demonstrated via computer simulation that the three-speed lattice gas
model accurately describes hydrodynamic behaviour once the Galilean invariance

artifact g has been removed in the way described in Section 5.1.

Shear wave decay experiments illustrated the removal of both the effeci of
the lattice on the advection of momentum and the anomalous dynamic pressure
contribution when g=1. This is not possible in the single speed lattice case. Fur-
thermore, accurate hydrodynamic behaviour was observed for Mach numbers up
to .4 and for perturbations with half wavelengths as small as two lattice spacings,
beyond the limits of what the theory would seem to allow. Simulation of flow
between two flat plates illustrated that the momentum lost in the pressure drop

down the tunnel was being accurately transferred to the walls in the form of shear
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stresses. Finally the cylinder results demonstrated quantitative agreement with
experimental results in measurements of the drag coefficient and wake length to

diameter ratio for a wide array of Reynolds numbers.

The significance of these results is that they were obtained from an absolutely
stable, exactly conserving algorithm with no adjustable parameters. It was not
necessary to tailor the grid to the flow, modify the approximation scheme or adjust
the boundary conditions to replicate actual flow results, and no discrepancies
with experiment were observed. The system was simply driven by forcing mass
through the configuration of an established size and shape, and it responded
in accurate reproduction of fluid dynamic behavior, as the fundamental kinetic

theory developed in Chapters 3 through 6 predicts that it must.

Although the cylinder experiment examined here was a very simple shape and
we only examined low Reynolds number flow, the phenomena displayed, namely
flow separation and vortex shedding, are among the most difficult to predict.
Complex fluid dynamic design most often hinges on the ability to predict and
control precisely these phenomena. Computational Fiuid Dynamics codes either
are substantially in error in comparison with experimental results in this range of
Re, or must massage their simulations in the right way to get close to expected

behaviour.

The accurate prediction of these features by the lattice gas method (an algo-
rithm without adjustable convergence and smoothing parameters), is a compelling
demonstration that the the lattice artifacts have been removed from the dynamics,

and that the algorithm in fact behaves like a true continuum fluid.
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Chapter 8

Comparison of Lattice Gas and

CFD Computational Efficiency

The multiple-speed Boolear lattice gas algorithm is an inherer ly stable, precise
physical system that can be used to directly and ideally model sub- and transonic
fluid flow on a digital computer. Because the entire computational engine of the
algorithm can be reduced to logic, the method is inherently stable; the primary
units of computation in the lattice gas algorithm are bits which means that round-
off error and other issues of numerical ill-conditioning are simply not an issue. The
algorithm can be made precise because the discreteness artifacts associated with
the underlying lattice can be erased from the system macrodynamics leaving the
mean dynamics described exactly by the equations of hydrodynamics. Moreover,
the lattice gas algorithm is comprised of two highly parallel suboperations: the
collision operation which is site independent and the movement of particles along
the lattice. This has resulted in the lattice gas algorithm becoming known as “em-

barrassingly parallel” 73] as only nearest-neighbour interprocessor communication
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is required.

On the other hand, computational methods for description of fluid dynamics
(CFD) approximate the elliptical (or sometimes hyperbolic for supersonic flow)
partial differential equations that describe macroscopic fluid dynamics. This pro-
cedure is rife with potential pitfalls in the guise of stability concerns due to numer-
ical round-off error and discretization step sizes, artificial or numerical viscosity
and problems of uniqueness[51]. This has led to an inability of CFD to accurately
predict complex fluid phenomena without having some prior knowledge of the
flow being simulated. As a result. CFD has not been accepted as an alternative to
actual fluid experimentation in wind tunnels nor does it seem it will ever become

a general purpose substitute[l].

These properties alone point out the inherent superiority of the lattice gas
algorithm over CFD as a method of fluid flow simulation. In this Chapter, we
examine the computational requirements of the two methods. We will show that
a lattice gas algorithm running on conventional computers actually is about as
computationally efficient as current CFD methods. What makes the new algo-
rithm truly revolutionary is the fact that it is possible to make the lattice gas
algorithm execute about 1000 times faster than current CFD codes[73] by tailor-
ing an arithmetic processing uait, of similar complexity to the floating point units

found in most computers, to the needs of the Boolean lattice collision process.

The basic quantity that dictates the range of observed fluid behaviour is the
Reynolds number, Re. The way that this is achieved in a simulation is through
system resolution. In fact, Re and linear resolution are roughly equivalent num-

bers. The Reynolds number for a real gas can be written

ul L
RC—TNM:\-, (81)

270



since ¥ ~ ¢,\[16], where M is the Mach number. M = =, L is the macroscopic
length scale of the flow, and X is the molecular mean free path. The Reynolds
numbers encountered in practical flows are of the order of thousands to billions.
All these high Reynolds number fluids are characterized by the generation of
large scale vortices or eddies spawned by the flow around objects and spatial
inhomogeneities. These eddies in turn nonlinearly spawn a cascade of ever de-
creasing eddies until eventually being dissipated by viscosity into thermal heat
energy at the so-called dissipation scale length. It has been argued by Orszag and
Yakhot[49] that because of the discrete nature of the particle velocities in lattice
gas algorithms, the noise that accompanies the average fluid velocity is large and
an inordinate number of lattice sites must be used to resolve the fluid velocity
at the dissipation scale. If true, this would make the computaticnal work for the
lattice algorithm scale very unfavourably with Reynolds number and inverse Mach
number as compared to floating point methods. From the theory of Chapter 6
and the simulation results of Sections 7.2.3 and 7.2.4 we find that this conclusion

is not valid for lattice gas algorithms.

In Chapter 6, we showed that the mean dynamics of the lattice gas algorithm
iy independent of noise sc that it is not necessary to have enough lattice sites
within the dissipation scale length to ensure correct behaviour at every time step.
All that is needed is adequate time and spatial averaging to suppress the noise
about the mean. Furthermore, the signal to noise ratio is almost independent of
wavenumber so that one does not require an inordinate number of lattice sites per
wavelength to resolve the large wavenumber fluctuations needed in the simulation
of turbulence. This indicates that the resolution in a lattice gas is of order the
lattice spacing, not some high Reynolds number-dependent multiple thereof, and,

in fact, is about at the same level as is necessary in floating point methods. As
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well, we have seen that the practical validity of the method is not limited to
extremely small Mach numbers -Section 7.2.4-so that unfavourable Mach number

scaling is not an issue.

The distance between two grid points, Az, in the discretization of fluid dy-
namics will determine the effective mean free path in the simulated fluid. In
Section 7.2.2 we found that the mean free path for the three-speed lattice gas
model was actually less than 1 lattice spacing. Thus for the simulation, A\ ~ Az
and Re ~ M4, This applies for both the conventional finite element approxima-
tions of CFD and the lattice gas method we have described. Using M = .3. the
limit of incompressibility, and A\ = .3Az, we have the rough relation that

L
~ — 8.2
Re s (8.2)

or that the Reynolds number scales like the number of resolved points in one di-
rection. Therefore, in th.ee dimensions, roughly Re? simulation cells are required.
For example, accurate simulation of a car moving at a few kilometers an hour with
Re ~ 100 000 requires 10'® cells. This is vastly beyond the limits of present day
computer resolution, which has a current lirait of about 1 million cells of resolution

(Re ~ 100) [16, 3], nine orders of magnitude too small for accurate resolution of
this problem.

Since both CFD and the lattice gas algorithm are bound by this resolution
requirement, the dominant deciding factor between the two is the computational
cost of evaluating 2 single fluid dynamical cell. There are two areas we must
consider when attempting an efficiency comparison, the space requirements of
either algorithm (the amount of storage required for each site) and the total
time required to update each site, which includes the collision and translation

processes. We will make these comparisons for the two algorithms running on a
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CRAY supercomputer that has 64-bit words and supports word-oriented logical

operations.

First of all, concerning space requirements, a typical CFD code must store
all non-derivable thermodynamic quantities such as the velocity vector (three
components), density and temperature as well as information about the local grid
structure(51]. If one 64-tit word is used {o store each of these variables plus a
couple words for the grid structure we find that CFD requires on the order of 10
storage words per site. On the other hard. the lattice gas algorithm only needs
to store the state vector for each sice. In the three-speed model, this is a vector of
length 54 bits to store the status of an entire site. If we say there is an additional
bit required fo indicate whether a site is solid or fluid and add a few bits as
overhead we see that the lattice algorithm requires about 1 64-bit word to store
ali the necessary information for the method. From the microscopic distribution
function, all macroscopic properties may be derived but this is done outside of the
main engine of the method. We conclude that the lattice gas algorithm consumes

about one-tenth the storage of the CFD code.

We now investigate time requirements, or equivalently, the work required to
update a single cell completely. A standard rule of thumb for modern CFD algo-
rithms is to allocate about 200 floating point operations to update a single grid
point per time step{75). For the lattice gas algorithm, we described in Section 7.1
that there are about 400 quadruplets of collisions we would like to test at each lat-
tice site. This collision process may be performed entirely using CRAY supported
logical operations in about 20 logical operations[57], ignoring register loads and
steres. Since a single 64-bit word may be used to represent a three-dimensional

subvolume of four lattice points on a side and we may perform logical operations
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on the entire word with only one set of instructions. about 8000 instructions are re-
quired to perform the collision operations for all 64 sites. This works out to about
125 operations per site. Factoring in move operations, ! statistics gathering and
boundary reflections, about 200 instructions are required per site per timestep.
We conclude that if the number of lattice sites in the two simulation methods are
roughly the same, then the lattice gas and CFD codes should execute in similar
amounts of time. A similar comparison of the computational work required for

floating-point methods and lattice gas methods has been made by Zaleski[74].

The principle reason why a CFD code keeps up with a lattice gas code is the
heavy hardware investment made in high performance processors for floating point
operations. Because a lattice gas engine uses no floating point, the lattice code
gains no advantage from hardware which one might view as highly specialized
support for the numerical solution of partial differential equations. If we could
run a CFD code on a processor with no hardware-supported floating point op-
erations we would find that its performance would be a disaster. Since all the
previously supported complex floating operations would now be reduced to their
many step logical equivalents, each grid update would now take tens of thousands
of instructions(76). It would seem that an equally spectacular speed-up of the
lattice gas update procedure could be accomplished if a specialized arithmetical
processor could be discovered for the collsion update procedure that the lattice
gas algorithm is repeatedly performing. In fact, it is trivial to specify a pipelined
collision logic, with a design complexity equivalent to traditional pipelined float-
ing point multiplier units, that achieves a throughput of about one lattice site

updated per clock or operation|73]. This represents an improvement in computa-

'Which has computational requirer.ents that scale like the ratio of surface area to the volume

of the subvolume in comparison with the collisional requirements{57).
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tional efficiency of over 100 times in comparison with the moderately parallelized

word-per-state lattice gas formulation on a 64-bit processor!

We conclude that although the computational work reqrizzd for current CFD
codes and the lattice gas three-speed algorithm is about the sarie on the CRAY
64-bit processor, specialization resulting in a dedicated collision logic unit for the
lattice gas algorithm, of comparable complexity to the floating point processor
in conventional computers, would result in a storage x efficiency win for the
lattice algorithm over the CFD code operating on the CRAY of about three orders
of magnitude. If this 1000-fold increase in computational power was translated
into lattice sites, this would allow the lattice algorithm to simulate flows with
Re = 2000 — 5000. While this result is a huge improvent over present limitations
for accurately resolved flow, Re ~ 100, these values are still well below the range
of most practical flow phenomena. In order to get to large Reynolds numbers, a
truly B/G machine would have to be designed. It is estimated[73] that a computer
with 10 million chips, using a highly specialized collision update processor, with
1 million lattice sites per chip could attain a Reyuolds number of about 1 million,
which would allow adequate resolution of the atmosphere to a lattice spacing
equivalent to 100 meters. Such a machine would consume about 100 MegaWatts

of power and cost about the same as a large wind tunnel.

Alternatively, for large Reynolds number flows where the width of the bound-
ary layer scales with the inverse square root of the Reynolds number[5] the relevant
scaling is that the square root of the Reynolds number scales with the number
of linear sites in the boundary layer. Consequently, in this regime the lattice gas
algorithm could reach Reynolds numbers in the 100 000 to one million range which

would allow for the zimulation of many practical flows.
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Chapter 9

Conclusions

Multiple speed lattice gas methods can be made to accurately and efficiently
model 2 true cootinuum fluid. In this thesis, we have developed the general
theory for multiple speed lattice gas algorithms employed on the 4D face-centred
hypercube lattice, where previously only a theory for single speed models existed,
and specifically have found a series of low-speed models that remove the artifacts
inherent to the lattice gas method. For one of the methods, the three-speed model
tnat removes the Galilean invariance factor from the momentum equation, we have
demonstrated for the first time the ability of lattice gas algorithms® to reproduce
quantitatively correct hydrodynamic behaviour through simulation and accurate
reproduction of important flow properties of a few basic fluid experiments such as

flow between flat plates and flow around a circular cylinder.

The two main advantages of using multiple speed lattice gas algorithms to

simulate fluid flow are its algorithmic accuracy and its computational efficiency,

lan algorithm based entirely on logical operations
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as we have demonstrated in this work.

Algorithmic accuracy is a result of having completely removed the discreteness
artifacts from the macroscopic dynamics and maintaining mean dynamics that
are unaffected by shot noise. In the limit of an infinite discrete continuum of
speeds, the 4D FCHC lattice gas has the property that the artifacts converge
naturally to their continuum values. The 4D FCHC lattice, the enly regular lattice
that permits this to happen, has the following characteristics: 1) It permits all
integral energies to be represented, 2) The set of velocity vectors for each energy
have sufficient symmetry to allow for an isotropic stress tensor at each energy
individually, 3) All energies may interact via energy exchange collisions, and 4)
Discrete microacopic Galilean invariance. All of these properties are required of the
underlying lattice if we are to extend the LGA concept to infinite speeds. In finite
multiple speed systems, the artifacts can be removed by adjusting an added degrec
of freedom which allows the rates of energy exchange collisions between particles
to be alterred. Since each added rate coefficient adds enough freedom to the
system to set one artifact equal to its correct continuum value, to remove all three
artifacts we need a system with three rate coefficients or in the low-de:sity limit
where there are only two artifacts, two rate coeflicients. Besides the three-speed
model for accurately describing momertum transfer, the four-speed model derived
here will allow accurate simulation of heat transfer problems at low to moderate
Mach numbers (M < .15) while the low density five-speed model removes all
lattice artifacts from the conservation equations. The mean dynamics remains
true despite large fluctuations in instantanecus flow characteristics because the
Boolean nature of the lattice advection term and collision operator results in
a Shot Noise Thecvem that states that the mean Linetic theory dynamics of a

lattice gas are independent of the shot noise fluctuation level to all orders in the
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fluctuations. All non shot noise fluctuations were negligible in the simulations we

performed due to the large number of lattice sites in the models simulated.

The computational efficiency of the algorithm stems from the inherent sim-
plicity of the logical operations that fully describe the dynamics together with the
very high collisional efficiency that comes from the discretization. In contrast with
a real fluid that requires a large number of particles to overcome the short range
nature of the intermolecular forces to ensure effective collisionality, the discrete
property of the lattice algorithm coupled with the possibility of multiple residency
of a site at a given time permits a very short mean free path for collisions. Thus.
very efficient collisionality is possible in the lattice algorithm. This condition,
plus the conservation of mass, momentum. and energy, are necessary ingredients
for hydrodynamics. With reference to computational work requirements, this re-
sult ensures that there is no computational effort wasted on resolving cells where

interaction does not occur.

The significance of our simulation results is that they were obtained from an
absolutely stable, exactly conserving algo:ithm with no adjustable parameters.
It was not necessary to tailor the grid to the flow, modify the approximation
scheme or adjust the boundary conditions to replicate actual flow results, and no
discrepancies with experiment were obsexved. The system was simply driven by
forcing mass through the configuration of an establiched size and shape, and it
responded in accurate reproduction of fluid dynamic behavior, as the fundamental

kinetic theory developed in this work predicts that it must.

Cleatly, the next step is to validate the ability of lattice gas models to repli-
cate heat transfer in the continuum accurately. The four-speed model developed

here removes the Galilean invariance artifact, g, and the ratio of specific heats
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artifact, 7, which should result in accurate heat and momentum transfer in low
Mach number fluids, M < 0.15. Thus this model is the ideal candidate for such
tests. Essentially all that is needed is the extension of the state-space vector from
fifty-four to 150 elements (there are ninety-six possible directions for energy=3
particles) and the extension of the current list of 276 collisions to include en-
ergy=3 parti_les in the collisions. Because the largest component in the energy=3
vector is the same as in the energy=2 vectors that are already present in the LGA
code?, no additional support is needed in the ‘move-particle’ portion of the code.
This is also true of the low-density no-artifact five-speed model that requires a

state-space of 169 elements (only one stopped particle).

Lattice Gas models are not constrained to simulate only the behaviour of
single phase ideal gases. Gunstensen & Rothman(36) have demonstrated how at-
taching the notion of “colour” to lattice particles allows the simulation of different
phases and immiscible fluids. These researchers also found that it was necessary
to remove the Galilean invariance factor artifact to get even qualitatively accurate
hydrodynamic behaviour. By introducing nearest-neighbour interaction poten-
tials for particles on a two-dimensional FHP lattice, Chen et al.[77] have shown
how a lattice gas can have a nonideal gas equation of state. Unfortunately, this
model does not remove the Galilean invariance artifact and it does not seem that
the multiple-speed theory developed here will aliow easy removal of this artifact
once potential energy has been added to the model[39). New research is also
continuing in the application of lattice gas models to simulate other diverse phe-
nomena such as flow through porous media, chemical reactions, diffusion and even

magnetohydrodynamics.

Energy =2: (1,1,1,1) or (2,0,0,0) Energy :=3: (2,1,1,0)
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A necessary prerequisite for accurate simulation of any of these applications
is the removal of the discretness artifacts from the basic conservation equations
of lattice gas methods. It is only then that the promise of ~ 1000 times compu-
tational efficiency improvement over CFD becomes meaningful. With the models

developed in this work, this step has been accomplished.
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Appendix A

Equilibrium Solution for Lattice

Gases

In this appendix, we prove that the following two statements are equivalent:

@ The Nj; ’s are a solution of the set of equations
Cy(ng) = 3_(s§ — spA(s = N [INF (1 = M) =0 v (AD)
8,8 ¥

o The Nj; ’s are given by a generalized Fermi-Dirac distribution

T'j
r;+ ea:p(amj + ym;cy; - u + ﬂe,-)

Niji = (A2)

. where r; = (I')/(F?), is the rate coefficient factor, o, are arbitrary
real numbers, and u, is an arbitrary D-dimensional vector. The quantities,
m;j, €ji, and €; = -;-m,-cf, are the microscopic mass velocity and energy,

respectively.
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In Section 2 we defined average hole and quasi-particle densities as follows:
N = (F®) Ny (A.3)

and

Nii = (I°) Ny (A.4)

We then have an equation identical to eqn. (A.1) for the quasi-particle densities

except Nj is replaced with A,

Ci(NG) = Y (s4 — 55)Als — &) H.vj’, ‘(1 - V) (A.5)
5.8 J
We define "
o ——.-‘— .
fi= = (4.6)
and
=1 -Mm) (A.7)
i
Equation (A.5) may now be written
G/ TT = 2o (sp — o) Als - s')ljf[!\'{,’." =0. (A8)

Break this into two sums

2 oAl = sp) [T - L sjd(sy = sp) TN =0, (A9)
] ]

2,0 2,8

In the first sum, interchange the primed variables (sj & )
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ZsjA(sj—»Sj)HA‘f., ZSJA(Sj-ﬂ»SJH./\G, = 0. (A.10)

5,8 J’ s.s!

The main reason for introducing these script variables was that the transition

probability now obeys the detailed balance condition

A(si — 3j) = A(sj — sj) (A.11)

Thus we may replace A in the first sum of eqn. (A.10) and combine the two

terms into one,

3 sjAlsh — 35 )Ij'[ (A“f;,j' - A‘f'?’) =0. (A.12)

s,

For this to vanish, we must have

HN}. = H./(/; ', whenever A(s — s') # 0 (A.13)

If we take the logarithm of both sides we find that this is equivalent to

3 In(Nj)(sj —sp) =0 Vs, s’ (A.14)
[

This equation indicates that ln(.AA/}) is a collision invariant. Because there are
1o spurious invariants, ln(./\:f-:) must be a linear combination of the three known

invariants — mass, momentum, and energy,

ln(J\?}:) = —(amj + 1micji - + ﬂéj) (A.15)
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Using the fact that eqn. (A.6) implies

Ll I3

'A‘/:i = 'vih— = .(}? )l\rj = AG
1 —,% (IJ)(]. - .Vj) I‘j(l - .Vj)

since r; = (1) /{FJ), we solve for Nj,

rj/'v':‘ rj
N; = fop— = .
] 1+ rj./\fj rj+ l/.N.'i

Plugging in for J\fj from eqn. (A.15) gives the final result

ri
rj + exp(am; + ymjcj; - u + Je;)’

Ny =

(A.16)

(A.17)

(A.18)

Thus we have an H-theorem that assures the Fermi-Dirac distribution function

when thermal equilibrium is reached.

284



Appendix B

The Second Root that Makes

¢ =1 in the Continuum

In Section 4.1 we calculated an expression for the third lattice artifact, ¢/, in the
continuum (eqn. (4.10))
' n+42
(D+2)(n+1)2
where K(n,a) was a function with the following form
n_ (EM)(E)
n+l1  (En)?

g [n(DK(n,a} +2)+(P2:—D)(1—K(n,a))+‘2 (B.1)

K(n,a) = (B.2)

where N is the distribution function and c is a constant, the value of which is not

important for this analysis. Although we know that N has Fermi-Dirac form for

a lattice gas,
1

N = T aenED (B4
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we begin by examining the result for V being Maxwellian
N= éexp(—E/T) (B.5)

which is the limit of the Fermi-Dirac expression for large values of a. It is possible

to calculate K(n,a) since for N Maxwellian and n > 0

(E™YY = n(n+1)T2(E™") (B.6)
(E™) = nT(E™). (B.7)

Plugging this into eqn.(B.2) we find that

K(n,a)=1 (B.8)
so that eqn.(B.1) reduces to
, n+2
= D+2)+2]. B.9
When we require that ¢’ = 1 in order to remove this artifact, there is only one
solution for n
-9
n= D‘Z - (B.10)

the one we expect.

Returning to the Fermi-Dirac distribution, the expression for K(n,a) does not
simplify and when we solve eqn.(B.1) with ¢’ = 1 we get two solutions, the desired
n= D—;Z and the implicit equation

2

(n+2)(1 - K(n,a)) - 5= 0. (B.11)

We expect that for large values of a, where Fermi-Dirac approaches Maxwellian,
that K(n,a) — 1 and there is no solution to the above relation. When N is Fermi-

Dirac, it is no: possible to do the integration indicated in eqn. (B.3) in closed form
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but for @ > 1 we can represent this integral as an infinite sum

n_ [©_ EME &1\ (=)
(E7) —/o 1 +aexp(E/T) T ,cz___:; (E) kntl - (B.12)

The sum does not converge for a < 1. The expression for K(n,a) when a > 1 can

then be written as
[ (] [E ()5
[T

so that K(n,a) is independent of temperature. The expression K(n.,a) was calcu-

K(n,a) = (B.13)

lated numerically for the range 0 < n < 8.0 and 0 < a < 10., see Figure B.1.
For a given value of a, K(n,a) increases monotonically with n to asymptotically
approach the value 1. This is because as n becomes large, the numerator and
denominator of K(n,a) become equal as can be seen in equ. (B.13). For fixed n,
raising a causes N to approach a Maxwellian. Thus we would expect K(n,a) to

approach the value 1., as observed.

With these values of K(n,a) we may investigate eqn.(B.11), with D=4 since
our model is 4-dimensional, to see if there are any roots to this implicit equa-
tion. We split the analysis of this equation into two regions. @ > 1 and a << 1
for convenience. We wish to find values of n that make eqn.(B.11) equal zero.

Figure B.2 shows this equation plotted for values of a greater than one. We find
thatthete a.reno roots -.Bf:-;ause K(n,a) is close enough to 1.0 in this range that 2
solution is not possible. When we investigate values of a considerably less than
one, however, we find that solutions are possible since for small a, K(n,a) may be
appreciably less than the value one (see Figure B.3). There are values of n and a
that make eqn.(B.11) equal zero in this range. Figure B.4 shows that for a < .3,

there are values of n that will make ¢’ = 1.
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Figure B.1: The quantity K(n,a) used to calculate the second root for the ¢’ = 1
equation for the range 0< n < 8 and 0< a < 10. This quantity approaches the

Mexwellian value of 1 when either n or a becomes large.
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Figure B.2: Plot of the implicit second root for ¢’ = 1 for the range 0< n < 8

and 1. < a < 10. For the inverse fugacity, a > 1, there is no solution as the root

equation cannot be satisfied.
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Figure B.3: Plot of the implicit second root for g’ = 1 for the range 0< n < 8 and

0.0 < a < 0.3. We see for a value of the inverse fugacity much less than 1, the
equation may be satisifed. The solution is the locus of points that gives the value

zero in the above graph.

290



Solution CZ Implic:t Second Root

—~

0.05 0.1 0.15 0.2 0.25

[

Figure B.4: The locus of points. n(a), that makes g’ = 1. For a given value of a <
-3, there is a .alue of n that will rnake ¢’ = 1. Although a solution exists. it has

no physical significance.

When interpreting thie result. we must remember that this analysis was based
ot conjecturing a form of the lattice property, d; - the number of directicns for
a specific species j - that was linearly related to energy raised ‘o some power n.
We have found twe solutions. one that depends only on the dimensional space of
the system and one that depends on the dimension as well as a property of the
fluid, namely the inverse fugacity, a. Since it does not make physical sense that a
lattice property should depend on the fluid it is trying to simulate. we are forced

to conclude thit the second solution is extraneous and should be ignored.
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Appendix C

Proof of Fourth-Order
Synimetry Relation

In Section 4.1.1 we proved that the 4D FCHC lattice has sufficient symmetry
to ensure that both the second and fourth order stress tensor is symmetric for
every energy individually. In fact, we found that this was the only regular lattice
that had this remarkable property. The fact that the fourth-order tensor was

symmetric hinged on a series of classical results from the theory of numbers that

we will restate here.

First of all, let Ry(n) be the number of ways the non-negative integer n can
be represented as the sum of four squares; i.e. R4(n) is the number of different

integral solutions (z,,z,, 73, 2,) of the equation
B+l +aitai=n (C.1)
where the sign and order of the z; matter. The first result is that
Ry(n) >0 (C.2)
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for all n. This was proved by Lagrange, with some help from Euler. in 1770(41].
Secondly, the value of R4(n) for all n is known and is given by
Ry(n) = 8o(n) if n is odd (C.3)
Ry(n) = 240°(n) if n is even (C4)
which was discovered and proved by Jacobi in 1828(44]. The function o(n) is the
sum of the divisors of n and 0°(n) is the sum of only the odd divisors of n. Note

that in our notation Ry(n) = d; and n = <? where the latter is always even due

to the nature of the FCHC lattice.

The third result, which we used for the fourth-order symmetry proof. is
(21 + 3 + 23 + 23) = §n*Ry(n) (C.5)

where n is any even integer. The summation takes place over all R4(n) quadruples
that satisfy eqn. (C.1). This result was stated by Liouville but first proved by
Stern[45] in 1889. Unlike the first two results, which are found in most elementary
textbooks on number theory, this third result seems to have remained obscure with
only a paper by Rankin[47] in 1945 making reference to it. For this reason, a proof
of eqn.(C.5) based on Stern’s method is provided here.

Stern derived this result by observing that every representation
m =z} + 23 + 23 + 13 where m is odd (C.6)
gives rise, in general, to three representations of the even number n = 22+1m,
where [ is a non-negative integer, namely
n=2%y, - o [(:cl + :1:2)2 + (21 — ;1:2)2 + (z3 + :1:4)2 + (z3 — .134)2]
= 2% [(9«'1 +23)? + (€1 — £3)* + (22 + 74)7 + (22 - 134)2] (C.7)
2% [(1'1 +24) 4 (21 — 24)* + (02 + £3)° + (22 — 173)2]
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and also three representations of the even number n = 22**!)m where [ is again

integral and non-negative. namely

n =2+, _ o2 .(2.7:1)2 +(229)% + (223)° + (21:4)2]
= 2% i(Il + 22+ 23+ 24)? 4+ (21 — 22 + 73 — 14)°

H(z1 + 22 — 23 — 14)* + (1) —I2*$3+1'4)2] (C.8)

= 2% r(1131 + Ty + T3 — 4)* + (21 — T2 + T3 + 1,4)?

+(z1 + 22 — 23 +l'4)2 + (1 — 22— 13— -1‘4)2] .

Even though these representations need not all be different (e.g. if zo2 = z3) we
know from eqn. (C.4) that the number of representations R4(n) for n even only
depends on the odd divisors of n. Thus, factors of 2 in n do not affect the value

of Ry(n). Using eqn. (C.3) we may conclude that
Ry(2"*'m) = Ry(2"+Vm) = 3Ry(m) (C.9)

where m is odd and ! is 2 non-negative integer. Since there are three times as many
representations of the even number n as the odd number m where n = 2*m, k
being integral and non-negative, and we have expressions ifor three representations
of n using the components of the solutions for representing m, eqns. (C.7) and

(C.8), we find that a sum over the solutions of
n=y+yr 4+ + ol where n is even (C.10)

of some function of the quantities (y;, y3, ya, Ys) is equal to a sum over the solutions
of the ways of representing m, eqn. (C.6), of the same function of the z; in the
combinations represented on the right side of either eqn. (C.7T) or (C.8), depending

on whether n is an odd multiple of 2 or an even multiple of 2 multiplied by m.
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In particular, the function may be the sum of the fourth powers of the com-

ponents of the solutions. In this case. there are two identities that we use to aid

us in the proof

6(z? + 2% + 22 + -733)2 = (z1+z2)' + (21— 1 (z3 + z4)*

)+

+ (23— z4)' + (1 + 23)* + (21 — 23)*

+ (172 + .1'4)4 .'Bz - I4) .'L'| + 14)4 (C.ll)
+ )+

(.171 —1,‘4) +(.1?2+133 1‘2—.1,‘3)4

and

(2 +zy + 23+ 23)° = (200) + (222)* + (225)* + (224)° (C.12)

+

(z1 + 22+ z3 -i-l‘-t)4 + (z) — 12 + 73 — 14)*
(T1 4+ 22— 13 — 1) + (21 — 5 — 23 + 14)*

(Z14+ 23+ 23 — 1) + (27 — 22 + 73 + 14)*

+ + +

(21422 — 23+ 4)* + (21 — 23 — 13 — ).

Thus for n = 2%+1y

Z(yi4 +yrtus+ i) = 22“ {(iBl +o) H(z —2) o+ (2 — 1‘3)4}
= 6x2%3 (a2 + 22 + 2% + 22)?
2 R
= 6x 2“m2R4(m) -6 24123“ 4; n)
= %nzm(n) (C.13)

the final result. Similarly, for n = 22040
2 +vatyitul) = N 2Y{(2e0) + 2z0)' 4+ (21— 22— 12— 24)'}
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= 24 x 2% S (2} + 22 4 22 + £2)?

2
= 24 % 2'm’Ry(m) = 24 x 24‘-2%;-@"%
= 1n?Ry(n). (C.14)

We have now completed the proof of eqn. (C.5) for n even, a relation that
allows us to prove that the fourth-order stress tensor is completely symmetric for

all energies individually in the 4D FCHC lattice.
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