
Gen: A High-Level Programming Platform for Probabilistic
Inference

by

Marco Francis Cusumano-Towner
B.S., University of California, Berkeley (2011)

M.S., Stanford University (2013)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 28, 2020

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vikash K. Mansinghka

Principal Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Gen: A High-Level Programming Platform for Probabilistic Inference
by

Marco Francis Cusumano-Towner

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Probabilistic inference provides a powerful theoretical framework for engineering intelligent
systems. However, diverse modeling approaches and inference algorithms are needed to nav-
igate engineering tradeoffs between robustness, adaptability, accuracy, safety, interpretabil-
ity, data efficiency, and computational efficiency. Structured generative models represented
as symbolic programs provide interpretability. Structure learning of these models provides
data-efficient adaptability. Uncertainty quantification is needed for safety. Bottom-up,
discriminative inference provides computational efficiency. Iterative “model-in-the-loop”
algorithms can improve accuracy by fine-tuning inferences and improve robustness to out-
of-distribution data. Recent probabilistic programming systems fully or partially automate
inference, but are too restrictive for many applications. Differentiable programming sys-
tems are also inadequate: they do not support structure learning of generative models
or hybrids of “model-in-the-loop” and discriminative inference. Therefore, probabilistic
inference is still often implemented by translating tedious mathematical derivations into
low-level numerical programs, which are error-prone and difficult to modify and maintain.

This thesis presents the design and implementation of the Gen programming platform
for probabilistic inference. Gen automates the low-level implementation of probabilistic
inference algorithms while remaining flexible enough to support heterogeneous algorithmic
approaches and extensible enough for practical inference engineering. Gen users define their
models explicitly using probabilistic programs, but instead of compiling the model directly
into an inference algorithm implementation, Gen compiles the model into data types that
encapsulate low-level inference operations whose semantics are derived from the model, like
sampling, density evaluation, and gradients. Users write their inference application in a
general-purpose programming language using Gen’s abstract data types as primitives. This
thesis defines Gen’s data types and shows that they can be used to compose a variety of
inference techniques including sophisticated Monte Carlo algorithms and hybrids of Monte
Carlo, variational, and discriminative techniques. The same data types can be generated
from multiple probabilistic programming languages that strike different expressiveness and
performance tradeoffs. By decoupling probabilistic programming language implementations
from inference algorithm design, Gen enables more flexible specialization of both, leading
to performance improvements over existing probabilistic programming systems.

Thesis Supervisor: Vikash K. Mansinghka
Title: Principal Research Scientist

3



4



Acknowledgments
My primary thesis advisor, Vikash Mansinghka, planted the seeds for the research described
in this thesis and created an environment in which this work was possible. In the beginning
of my PhD, he directed me to pull at research threads that seemed to never end, resulting in
the most intellectually rewarding phase of my life. The research problem and the approach
of this thesis build directly on his earlier work, and are a product of a new probabilistic
programming research paradigm that he has persistently worked to shape. I am also grateful
for his example of independent thinking and entrepreneurial attitude, his conscientiousness
as an advisor, and his efforts to support his students in non-technical challenges. The past
five years would have been much harder without knowing that I could count on him.

Several other advisors and mentors have played roles in my graduate school journey.
Josh Tenenbaum has inspired me for years with his insightful work; and led me into prob-
abilistic programming. I am grateful for his approachable demeanor, encouragment, and
continuing inspiration over the past five years. I am also grateful to Martin Rinard and
Michael Carbin for being on my thesis committee and helping me to communicate this work
more effectively. Martin Rinard gave valuable advice on the core terminology, framing, and
exposition in this document. Martin Vechev gave helpful mentorship and advice during our
collaboration, which built the foundation for the ‘trace translator’ construct in this thesis.
I also thank Sam Gershman for his advice and mentorship and support as I started my
graduate career at MIT, Sivan Bercovici for supporting my transition back into graduate
school, and Pieter Abbeel for providing my first exposure to computer science research.

The first few years of graduate school would not have been the same without the friend-
ship and support of my cohort of fellow PhD students and researchers, including Feras
Saad, Alex Lew, and Ulrich Schaechtle. Feras has been a good friend and ally during the
ups and downs of the past five years. Alex has been a constant source of encouragement,
and late night white board discussions with him helped to clarify many of the ideas in this
thesis. Feras and Alex were crucial in helping to push the Gen PLDI paper over the finish
line, and in various other efforts. The research in this thesis was also aided by discussions
with many other current and former affiliates of the MIT Probabilistic Computing Project,
including Alexey Radul and Anthony Lu, and with support from Amanda Brower, Rachel
Paiste, and many others. Several people contributed to the applications of Gen described
in this thesis. Ben Zinberg, Austin Garrett, and Javier Felip Leon contributed to the scene
graph inference application; Ulrich Schaechtle and Feras Saad devised the algorithm used
in the Gaussian process structure learning application. Since Gen was released, many peo-
ple including Alex Lew, Ben Zinberg, Tan Zhi-Xuan, George Matheos, and Sam Witty
have helped to improve it and their contributions and use of Gen have been incredibly
encouraging. Alex contributed syntax improvements that are reflected in this thesis.

This thesis would not have been possible without the support of my parents Maria
Cusumano and Mark Towner who consistently put me before themselves and did everything
in their power help me succeed. Finally, I would not have embarked on this PhD journey
without Lisa Bashkirova, who has been a constant source of good advice for the past decade.

5



6



Contents

1 Introduction 15
1.1 A new approach to implementing probabilistic inference . . . . . . . . . . . 16
1.2 Overview of programming languages concepts in Gen . . . . . . . . . . . . . 21

1.2.1 Generative probabilistic models and probabilistic inference . . . . . 22
1.2.2 Using probabilistic programming languages to express generative prob-

abilistic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Abstract data types for generative functions and traces . . . . . . . 28
1.2.4 Generating implementations of the abstract data types from the source

code of probabilistic programs . . . . . . . . . . . . . . . . . . . . . 30
1.2.5 Approximate probabilistic inference algorithms . . . . . . . . . . . . 35
1.2.6 Implementing inference algorithms with abstract data types . . . . . 38

2 Abstract Data Types for Inference: Generative Functions and Traces 45
2.1 An abstract formal representation for generative models . . . . . . . . . . . 46

2.1.1 Random choices, addresses, and choice dictionaries . . . . . . . . . . 46
2.1.2 Probability distributions on choice dictionaries . . . . . . . . . . . . 48
2.1.3 Marginal likelihood, conditioning, and expectation . . . . . . . . . . 50
2.1.4 Generalizing beyond discrete random choices . . . . . . . . . . . . . 52
2.1.5 Generative functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Languages for defining generative functions . . . . . . . . . . . . . . . . . . 59
2.2.1 Gen Dynamic Modeling Language . . . . . . . . . . . . . . . . . . . 60
2.2.2 Formal semantics of a toy modeling language . . . . . . . . . . . . . 64

2.3 Abstract data types for probabilistic inference . . . . . . . . . . . . . . . . . 67
2.3.1 Generative function and trace ADTs . . . . . . . . . . . . . . . . . . 67
2.3.2 Implementing the ADT operations compositionally . . . . . . . . . . 73

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Implementing Inference Using Generative Functions and Traces 75
3.1 Simple Monte Carlo with traces . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Importance sampling with traces . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Regular importance sampling . . . . . . . . . . . . . . . . . . . . . . 79
3.2.2 Self-normalized importance sampling . . . . . . . . . . . . . . . . . . 81

3.3 Training proposal distributions on simulated data . . . . . . . . . . . . . . . 86

7



3.4 Markov chain Monte Carlo with traces . . . . . . . . . . . . . . . . . . . . . 89
3.4.1 MCMC with the trace abstract data type . . . . . . . . . . . . . . . 90
3.4.2 Metropolis-Hastings using generative functions as proposals . . . . . 91
3.4.3 Hamiltonian Monte Carlo with traces . . . . . . . . . . . . . . . . . 96
3.4.4 A language for composing MCMC kernels . . . . . . . . . . . . . . . 98

3.5 Resample-move particle filtering with traces . . . . . . . . . . . . . . . . . . 102
3.5.1 Trace-based particle filtering with rejuvenation kernels . . . . . . . . 103
3.5.2 Annealed importance sampling with traces . . . . . . . . . . . . . . 108

3.6 Bridging between models with trace translators . . . . . . . . . . . . . . . . 109
3.6.1 Trace translators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6.2 Sparsity-aware Jacobian computation . . . . . . . . . . . . . . . . . 111
3.6.3 A differentiable programming language for trace transforms . . . . . 112
3.6.4 Sequential Monte Carlo with trace translators . . . . . . . . . . . . . 117

3.7 Involutive MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.7.1 Symmetric trace translators . . . . . . . . . . . . . . . . . . . . . . . 120
3.7.2 Incremental computation for symmetric trace translators . . . . . . 122
3.7.3 Involutive MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.7.4 Implementing reversible jump MCMC using involutive MCMC . . . 124
3.7.5 State-dependent mixture kernels and involutive MCMC . . . . . . . 133

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 Encapsulating Inference Logic in Generative Functions and Traces 141
4.1 Generative functions with internal proposals . . . . . . . . . . . . . . . . . . 142

4.1.1 Extending the generate operation using the internal proposal . . . . 142
4.1.2 The regenerate trace operation . . . . . . . . . . . . . . . . . . . . . 143
4.1.3 Example internal proposal families . . . . . . . . . . . . . . . . . . . 144

4.2 Importance sampling with the internal proposal . . . . . . . . . . . . . . . . 146
4.3 Selection Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4 A combinator for overriding the internal proposal . . . . . . . . . . . . . . . 151
4.5 Encapsulated randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5.1 Extending the data type operations with encapsulated randomness . 156
4.5.2 Untraced random choices . . . . . . . . . . . . . . . . . . . . . . . . 158
4.5.3 Pseudo-marginal Monte Carlo methods and encapsulation . . . . . . 159
4.5.4 Using encapsulated randomness inside proposal distributions . . . . 160

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Compiling Generative Function and Trace Data Types from Probabilistic
Modeling Code 165
5.1 The Dynamic Modeling Language compiler . . . . . . . . . . . . . . . . . . 165

5.1.1 Implementing generative functions and traces via effect handlers . . 167
5.1.2 Invoking generative functions . . . . . . . . . . . . . . . . . . . . . . 171

5.2 The Static Modeling Language compiler . . . . . . . . . . . . . . . . . . . . 172
5.3 Generative function combinators for control flow . . . . . . . . . . . . . . . 175
5.4 Domain-specific generative functions . . . . . . . . . . . . . . . . . . . . . . 180

8



5.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6 Applications 187
6.1 Inference in generative models of intelligent behavior . . . . . . . . . . . . . 187

6.1.1 An algorithmic generative model of goal-directed movement . . . . . 187
6.1.2 A simple and generic inference implementation . . . . . . . . . . . . 189
6.1.3 Adding uncertainty about structure and stochastic control flow . . . 190
6.1.4 A sequential Monte Carlo inference algorithm . . . . . . . . . . . . . 192
6.1.5 Symbolic reasoning from noisy data via probabilistic inference . . . 198

6.2 Inferring object pose and existence from point clouds . . . . . . . . . . . . . 200
6.3 Real-time camera pose estimation . . . . . . . . . . . . . . . . . . . . . . . . 204
6.4 Inferring the dynamic geometric structure of a 3D scene . . . . . . . . . . . 206
6.5 Gaussian process structure learning for time series . . . . . . . . . . . . . . 210

7 Conclusion 213
7.1 Tradeoffs in probabilistic inference systems architecture . . . . . . . . . . . 213
7.2 Generative and discriminative models and heuristics . . . . . . . . . . . . . 216
7.3 Towards a mature inference engineering methodology . . . . . . . . . . . . . 217

9



10



List of Figures

1-1 The high-level inference implementation approach proposed in this thesis . 16
1-2 Illustrations of selected Gen applications from Table 1.1 . . . . . . . . . . . 18
1-3 Notation used in this introductory section . . . . . . . . . . . . . . . . . . . 27
1-4 Illustration of the ‘update’ operation of the trace ADT . . . . . . . . . . . . 30
1-5 Approximation error of self-normalized importance sampling algorithms . . 42

2-1 Syntax and denotational semantics of toy probabilistic modeling language . 66

3-1 Convergence of simple Monte Carlo implemented with traces . . . . . . . . 78
3-2 Comparing accuracy of importance sampling and simple Monte Carlo . . . 81
3-3 Comparing self-normalized importance sampling using different proposals . 86
3-4 Training the parameters of a data-driven importance-sampling proposal . . 89
3-5 Metropolis-Hastings using generative functions as proposal distributions . . 96
3-6 Iterates produced by a composite MCMC kernel in a polynomial curve model 103
3-7 A state space model used to illustrate particle filtering with traces . . . . . 106
3-8 Generative functions for proposal distributions in particle filtering . . . . . 107
3-9 Resample-move particle filtering using generative functions and traces . . . 107
3-10 Trace translators allow translation between arbitrary latent representations 115
3-11 Efficiency of coarse-to-fine sequential Monte Carlo using trace translators . 120
3-12 Visualization of samples from a model with stochastic control flow . . . . . 126
3-13 Involutive MCMC can express efficient structure-changing moves . . . . . . 128
3-14 Split-merge reversible jump MCMC in an infinite Gaussian mixture model . 128
3-15 Generative function for an infinite Gaussian mixture model . . . . . . . . . 129
3-16 Auxiliary generative function for a split-merge reversible jump MCMC move 129
3-17 Involution trace transform for a split-merge reversible MCMC move . . . . 131
3-18 Schematic of the involution trace transform for a split-merge MCMC move 132
3-19 A Gaussian process model with a nonparametric prior on covariance functions136
3-20 Auxiliary generative function for a state-dependent mixture MCMC kernel . 137
3-21 Trace transform for a state-dependent mixture MCMC kernel . . . . . . . . 138

4-1 Schematic of internal proposal family for a simple generative function . . . 142

5-1 Lifecycle of probabilistic source code, generative functions, and traces . . . 166
5-2 SML intermediate representation for a generative model . . . . . . . . . . . 174
5-3 Generative function combinators for common control flow patterns . . . . . 176

11



6-1 A prior sample from a generative model of goal-directed intelligent behavior 188
6-2 Inferences about a person’s destination from their observed movement . . . 190
6-3 Samples from a model of intelligent behavior with stochastic structure . . . 191
6-4 Prior samples from alternate models of a person’s activity and motion . . . 193
6-5 Gen implementation of an SMC algorithm for inferring a person’s destination 194
6-6 A composite MCMC kernel that combines several types of primitive kernels 195
6-7 Contrasting generic and specialized MCMC moves for changing control flow 195
6-8 A Gen trace transform that switches control flow branches . . . . . . . . . . 196
6-9 A data-driven proposal based on a heuristic . . . . . . . . . . . . . . . . . . 197
6-10 Using a coarse-grained surrogate model to aid inference in a fine-grained model198
6-11 Inferring past events, and predicting future events and trajectories with Gen 199
6-12 Using MCMC for Bayesian inference of 6DoF object pose from point clouds 202
6-13 Inferring the presence, absence, and pose of multiple objects from point clouds203
6-14 Tracking camera pose using online Monte Carlo in a generative model . . . 204
6-15 Comparing bottom-up and top-down inference approaches for pose estimation205
6-16 Probabilistic inference of scene graphs makes pose estimation more robust . 206
6-17 Using Gen to model the symbolic structure of a 3D scene with multiple objects208
6-18 A transition kernel on scene graph structures . . . . . . . . . . . . . . . . . 209
6-19 Experimenting with different MCMC schedules using Gen . . . . . . . . . . 210

12



List of Tables

1.1 Selected Gen applications that use diverse modeling and inference approaches 18
1.2 Performance of different implementations of the same trace ADT . . . . . . 33

5.1 Performance of different implementations of an MCMC inference algorithm 175
5.2 Performance comparison of particle filtering implementations . . . . . . . . 178
5.3 Performance of different implementations of a trans-dimensional MCMC kernel179
5.4 Performance comparison of inference operations for Bayesian robust regression180
5.5 Performance comparison of MCMC algorithms for Bayesian robust regression 180

13



14



Chapter 1

Introduction

Probabilistic inference in generative models is a core part of the modern toolkit for auto-
mated reasoning from data. Probabilistic inference plays a central role in Bayesian statistics,
machine learning, and signal processing and enables applications in various fields where un-
certainty is important, from robotics and autonomous vehicles [43] to biomedicine [106],
natural sciences [57] and data analysis [39]. However, implementing probabilistic inference
algorithms from scratch involves error-prone and tedious mathematical derivations and nu-
merical programming. As a result, many software tools in recent decades have attempted
to automate probabilistic inference [49]. Some tools have been widely adopted within cer-
tain fields [20], but are restricted in the type of inference problems they solve and their
performance characteristics. Deep learning, which overlaps with probabilistic inference, is
well-supported by differentiable programming languages [11, 1, 94], but these languages
have limited support for inference in structured generative models, which can be more
robust, interpretable, and data-efficient than deep learning.1

This thesis describes a new approach to implementing probabilistic inference in genera-
tive models (Figure 1-1), and a system called Gen [32] that implements the approach. As in
many recent probabilistic programming systems, users of Gen explicitly define their genera-
tive model by writing a probabilistic program. However, instead of attempting to solve the
inference problem for the user, Gen automatically generates data types from the probabilis-
tic program that can be used to compose inference algorithms. The user implements their
inference application using the generated data types. The current Gen implementation gen-
erates Julia [12] data types for implementing inference algorithms, but a similar approach
can be implemented in other languages. The data types automate the low-level details of
inference algorithm implementations, resulting in shorter and more maintainable inference
code relative to implementations written from scratch, while maintaining the user’s freedom
to specialize the algorithm to their model and to flexibly integrate the algorithm into their
application. This thesis describes abstract data types for probabilistic inference, a number
of inference recipes that use the data types, how the data types are implemented by the
compilers of modeling languages, and several applications of the resulting system.

1The approach proposed in this thesis complements existing programming languages and software tools
for deep learning. The current Gen implementation is interoperable with TensorFlow [1] and PyTorch [94].

15



Data Types
Generative functions
Traces

Probabilistic Programs
Generative models
Discriminative models
Proposal distributions
Variational approximations
Auxiliary distributions

Inference Code
Sequential Monte Carlo
MCMC
Optimization
Variational inference
Discriminative inference
Heuristics
Hybrid algorithms

Compilers User

Figure 1-1: The high-level inference implementation approach proposed in this thesis

1.1 A new approach to implementing probabilistic inference

A defining feature of probabilistic modeling and inference is the use of a declarative math-
ematical representation for uncertain knowledge in the form of a probabilistic model that
is distinct from inference queries made on that model and the algorithms that are used
to answer them [66]. However, while the model is separate from the inference algorithm
in the mind of the inference practitioner as they devise the algorithm, the separation is
often lost during implementation. The algorithm is often first specialized to the model on
pencil and paper and then implemented in a way that obscures the original model and
makes it difficult to modify the model or the algorithm. For example, the data structures
used to store the latent state may be specialized to the structure of the model, making it
challenging to change the modeling approach without rewriting the implementation; or the
implementation might exploit cancellations of factors that make it unclear how a change in
the model that invalidates the cancellation should be reflected in the inference code.

Since probabilistic models are mathematically well-defined objects (probability distri-
butions), it is in principle possible to address these issues using inference ‘solvers’ that
take as input a machine-readable formal representation of a model and observed data, and
automate inference using general-purpose inference algorithms. This is the approach taken
by many probabilistic programming systems [49, 95, 51, 20]. While this approach can be
effective for specialized classes of inference problems and applications, probabilistic infer-
ence encompasses a very broad set of problems ranging from real-time object tracking to
program synthesis to Bayesian statistics. No fixed set of solution strategies is sufficient to
meet the requirements of such a diverse range of applications, and manual specialization of
the algorithm to the model is important for acceptable performance in many applications.
As a result, despite the invention of many probabilistic programming systems in recent
years, probabilistic inference algorithms are still often implemented from scratch.

Probabilistic programming researchers have begun to explore the design space in be-
tween solver-oriented probabilistic programming and hand-coded probabilistic inference
implementations by extending probabilistic programming languages with frameworks and
domain-specific languages for customizing inference algorithms. This approach has been
called programmable inference [80], in contrast to solver-oriented probabilistic programming
systems that use built-in algorithms. The resulting systems can be more flexible than solver-
oriented systems, while automating the low-level details of the algorithm’s implementation.
However these systems remain too rigid for many inference applications because they force

16



the user to write their inference application in a framework that takes control over the flow
of the application away from the user. Domain-specific languages for describing inference
algorithms can also be restrictive and difficult to extend.

This thesis builds on research in probabilistic programming systems and programmable
inference, but employs a different approach that favors flexibility and extensibility over
automation. The approach is based on the observation that many Monte Carlo and varia-
tional inference techniques can be implemented using a core set of primitive data types and
low-level operations. The key idea is to automatically generate code for these data types
and operations from an explicit machine-readable representation of the user’s model, such
as a probabilistic program. The role of the operations is analogous to the role of automatic
differentiation in deep learning algorithms, but for probabilistic inference algorithms. After
defining the model, users implement an inference algorithm in a general-purpose program-
ming language using the data types and operations that were generated from the model.
This approach to implementing inference algorithms enjoys many of the benefits of existing
probabilistic programming systems, including the presence of an explicit definitive represen-
tation of the user’s probabilistic model, automation of low-level computations associated
with the model, and the ability to easily use models that possess structure uncertainty.
However, the approach avoids the algorithmic rigidity of existing probabilistic program-
ming systems, and is better suited for integration into inference applications. Table 1.1
lists several applications that exercise the modeling and inference flexibility afforded by
this approach and have been implemented using Gen, either by the author or others.

New data types for probabilistic inference: generative functions and traces The
approach of this thesis is based on two new data types. The first data type the generative
function and the second data type is the trace.2 A generative function is an object that
represents a generative probabilistic model. A trace is an object that represents a sample
from a generative probabilistic model that includes assignments to all latent and observed
variables. Generative functions support operations that generate traces in different ways,
including by unconditional sampling (e.g. from the prior distribution), and by stochastically
filling in a trace given values for some subset of the random variables. Traces support
operations that include computing the log density of the model, taking gradients of the
log density, and updating the values of some subset of the random variables. Generative
functions and traces are abstract data types [75], which means that the user of these data
types does not need to know about the data structures that are used internally to store the
latent and observed variables or how the operations are implemented. Generative function
and trace data types are often implemented by compiling a probabilistic program that
encodes a model, but they can be implemented in other ways as well, and the inference
code that uses them will run independently of how they are implemented. Chapter 2
gives a mathematical definition of generative functions and traces based on probability
distributions on dictionaries that is flexible enough to represent generative models with
structure uncertainty including models defined as programs with stochastic control flow.

2The word ‘trace’ has been used in probabilistic programming before. In this thesis a ‘trace’ is an instance
of the trace abstract data type, which has specific mathematical content and a set of supported operations.

17



Application of Gen Modeling approach Inference approach
Estimating causal effects in
the presence of latent con-
founders [129]

Hierarchical latent variable
Gaussian process model

Elliptical slice sampling [88]
and Metropolis-Hastings

(A) Inferring cell signaling path-
ways from time series [81]

Dynamic Bayesian network
with prior on edge presence

Custom Metropolis-Hastings
moves on network structure

(B) Time series interpretation
and forecasting (Section 6.5)

Probabilistic context-free
grammar prior on GP
covariance functions [113]

Reversible jump MCMC [53]

(C) Human activity under-
standing and trajectory predic-
tion (Section 6.1)

Generative simulator-based
models of rational behavior
using rapidly exploring ran-
dom trees [31]

SMC [33]; reversible jump
MCMC; surrogate models
trained on simulated data;
dynamic programming

(D) Inferring goals of bound-
edly rational agents for compo-
sitional tasks [133]

General-purpose planners;
priors on reward functions;
dynamic Bayesian networks

SMC; rejuvenation MCMC
kernels with heuristic-based
data-driven proposals

(E) Inferring physical relation-
ships between objects from
RGB-D video [134] (Section 6.4)

Dynamic Bayesian networks
over scene graph structure
and 6DoF poses; robust like-
lihood models

Deep neural network pose esti-
mator [124]; particle filtering;
reversible jump MCMC

(F) Inferring articulated 3D hu-
man body pose from depth im-
ages

Prior on articulated body
pose; 3D rendering of artic-
ulated body model [67]

Deep neural network proposal
trained on simulated data; im-
portance sampling

Table 1.1: Selected Gen applications that use diverse modeling and inference approaches

(Image adapted from [82])

A B C

(Image adapted from [133])

D E F

Figure 1-2: Illustrations of selected Gen applications from Table 1.1

18



Efficient inference over symbolic structures Because generative functions and traces
support models with structure uncertainty, they can be used to implement probabilistic
inference in nonparametric Bayesian models and inference over compositional symbolic
structures like the source code of programs. Section 3.7 presents an interface for specifying
custom trans-dimensional Markov chain Monte Carlo (MCMC) kernels including arbitrary
reversible jump [53] kernels and a procedure that uses generative functions and traces
to automate the low-level implementation of these kernels, including computation of the
acceptance probability. This interface is significantly more flexible than existing interfaces
for specifying MCMC kernels in probabilistic programming systems, and can be used to
construct algorithms that explore the space of structures more efficiently than the generic
MCMC kernels used in many prior probabilistic programming systems [51, 130, 52, 79].

Robust hybrids of Monte Carlo and deep learning inference techniques Dis-
criminative models and generative models have complementary strengths. Discriminative
approaches are often relatively fast but require training time and data. Inference that
uses the generative model “in the loop” is often able to more robustly generalize to unlikely
observations, and structured generative models can be more easily modified. In Gen, gener-
ative functions and traces can be constructed for either generative models or discriminative
models, and used together in inference code. It is therefore straightforward to implement
hybrid inference algorithms using generative functions and traces that take advantage of
the best aspects of both approaches. Section 3.2 and Section 3.4.2 and Section 3.5 de-
scribe procedures based on generative functions and traces for implementing importance
sampling, MCMC, and sequential Monte Carlo algorithms respectively using arbitrary pro-
posal distributions that can be based on discriminative models like deep neural networks
or hand-crafted heuristics. Section 3.3 shows how generative functions that represent dis-
criminative models can be trained using traces simulated from a generative model, which
is a form of amortized variational inference [58, 118, 16].

Surrogate modeling and bridging multiple latent representations Unlike in
solver-oriented probabilistic programming systems, there is no single probabilistic model in
a Gen inference application. Instead, generative models are simply a type of data, and like
for the combinations of discriminative and generative models described above, it is possible
to construct inference algorithms that make use of multiple generative models. Section 3.6
describes a construct called trace translators that allows traces of one generative model to
be translated into traces of another generative model, even when the models use different
latent representations. Section 3.6.4 shows a sequential Monte Carlo algorithm based on
trace translators, and includes an example that first performs inference in a coarse-grained
surrogate model that was trained offline on data from a fine-grained model, and then trans-
lates traces of the surrogate model into traces of the fine-grained model.

Modularity and reuse via internal proposals Chapter 4 extends the generative func-
tion and trace data types with the ability to encapsulate internal proposal distributions
that generate values for some random variables given values for others. Because inter-
nal proposals are encapsulated with the model and implement a common specification, a

19



user’s inference code can use the internal proposal without knowing its details. Modeling
languages automatically implement default internal proposals, but users can also override
internal proposal distributions with more efficient custom distributions, and inference code
that uses the model will automatically benefit from the improved proposal.

Extensibility and performance Because generative functions and traces are abstract
data types, they can be implemented in a variety of ways. Gen includes multiple proba-
bilistic modeling languages with different strengths and weaknesses that all compile into
generative function and trace data types (Chapter 5). Users can choose the modeling lan-
guage that best suits their model. For example, if the model includes stochastic control
flow and black-box simulators, then a Turing-universal modeling language can be used.
If the model does not require these features then a more specialized modeling language
can be used that gives better performance. The system is also straightforward to extend
with new modeling languages. Gen has already been extended with plugins that allow
generative functions to be constructed from TensorFlow [1] and PyTorch [94] models. It is
also possible to hand-code optimized implementations of the generative function and trace
data types later in the development lifecycle to improve performance, without modifying
the inference code. Finally, generative functions are composable—so generative functions
written in different modeling languages can invoke one another, and the user can choose
the appropriate modeling language for different parts of their model.

A platform for investigating probabilistic computational rationality Studies in
computational rationality [46] aim to understanding how natural and artificially intelligent
agents can make decisions while accounting for the costs and feasibility of computation.
Gen and the approach to implementing probabilistic inference described in this thesis are
natural tools for studying computational rationality because of the flexible support for
bottom-up, heuristic, model-free, and discriminative inference techniques and top-down
model-based techniques, and hybrids of these approaches. The ability to write inference
code in a general-purpose language allows for open exploration of heterogeneous inference
architectures that may be necessary for optimal resource-constrained decision-making [107],
while still using probabilistic knowledge representations (generative functions).

Open-source implementation and modeling and inference ecosystem The ideas
in this thesis are the basis for an open-source implementation3 of Gen that is embed-
ded in the Julia language [12]. The Julia implementation of Gen is itself the basis for a
set of libraries for probabilistic modeling and inference that use Gen’s core data types of
generative functions and traces. Examples include plugins for wrapping TensorFlow and
PyTorch models in generative functions, and modeling and inference libraries for proba-
bilistic reasoning about three-dimensional objects and scenes. Implementations of Gen in
other languages are in progress. Chapter 6 describes selected applications using the Ju-
lia implementation, and the other chapters of the thesis give pedagogical code examples
that also use the syntax of this implementation. The Julia implementation has been used

3https://gen.dev

20



to teach probabilistic inference by groups at multiple universities, has an active commu-
nity of users and enthusiastic contributors, and has already been used in several research
projects [81, 133, 14, 128, 129, 134].

1.2 Overview of programming languages concepts in Gen

This section gives an overview of some of the key ideas in Gen’s design from a programming
languages perspective using pedagogical examples to introduce new concepts when possible.

As described above, Gen’s design is based on new abstract data types (ADTs) for
probabilistic programs (the generative function ADT) and execution traces of probabilistic
programs (the trace ADT). These ADTs provide a set of primitive operations for imple-
menting inference algorithms that include generating execution traces, querying execution
traces for the value of random choices and their gradients, and updating execution traces.
Implementations of these ADTs are typically automatically generated from the source code
of a probabilistic program. Gen also provides multiple probabilistic programming lan-
guages that all generate the same ADTs but strike different tradeoffs between ease-of-use
and performance. Furthermore, these languages are interoperable so that different parts
of a model can be described in different languages, and users can also hand-implement the
ADTs for performance-critical parts of their model. While Gen is already a practical tool
for prototyping probabilistic inference algorithms, Gen’s design provides fertile ground for
future research on new probabilistic programming languages with more efficient implemen-
tations of Gen’s ADTs, and in analyzing, compiling, optimizing, and verifying high-level
user inference code that is expressed in terms of Gen’s ADTs.

As mentioned above, Gen builds on the programmable inference paradigm in proba-
bilistic programming [80] as exemplified by Venture [79, 78]. However, Gen’s design differs
significantly from that of Venture, which does not provide comparable ADTs for proba-
bilistic models and execution traces. For example, while the runtime systems of other
probabilistic programming languages including Venture perform automatic differentiation,
they do not expose an operation to users that is analogous to Gen’s ‘gradient’ trace ADT
operation, which encapsulates the details of how automatic differentiation is performed,
and presents a simple interface for obtaining gradients associated with an execution trace.
Similarly, while Venture’s runtime system internally performs incremental computation, it
does not expose an operation to users that is analogous to Gen’s ‘update’ trace ADT op-
eration, which presents a simple interface for making incremental updates to a trace. The
same is true of Gen’s other core trace operations. Also Venture does not support multiple
interoperable probabilistic programming languages, used a restricted domain-specific lan-
guage for inference, and does not support many of the inference techniques supported by
Gen that are important for efficient inference, including custom proposal distributions.

While this thesis gives mathematical descriptions of Gen’s ADTs and shows how vari-
ous inference algorithms can be decomposed into operations for the ADTs, it does not give
formal semantics for Gen’s probabilistic programming languages, or attempt to statically
verify probabilistic inference code. Lew et al. [73] give the formal semantics for, and de-
scribes static verification of, a more restricted probabilistic modeling and inference system

21



that is embedded in Haskell and was based in part on Gen. Gen uses dynamic checks for
some invariants in certain inference operations to detect user errors, but allows for arbi-
trary user code to be combined with Gen inference code, and allows users to use custom
implementations of Gen’s ADTs that would be difficult to verify.

The main programming languages contributions of this thesis include:

1. The design of Gen, which combines probabilistic programming languages for specify-
ing models with data types for implementing inference algorithms in a general-purpose
programming language.

2. New abstract data types for probabilistic programs and their execution traces that en-
capsulate the interpretation and compilation of probabilistic programming languages,
and are sufficient for implementing a broad array of flexible Monte Carlo and varia-
tional inference algorithms.

3. The first probabilistic programming system with multiple interoperable probabilistic
programming languages that use different compilers and strike different expressiveness-
performance tradeoffs.

4. The first probabilistic programming system to support several inference techniques
that are routinely used in practice including arbitrary reversible jump MCMC sam-
plers and custom data-driven MCMC proposals expressed as probabilistic programs.

5. The first probabilistic programming language to support encapsulation of inference
logic within modeling components via a novel construct called internal proposals.

6. An inference programming construct called trace translators that allows for inference
programs to use multiple models of the same domain using a differentiable program-
ming language for bijections between spaces of traces of two probabilistic programs.

This section introduces the key concepts behind some of these contributions for pro-
gramming language researchers, and provides necessary background in probabilistic mod-
eling and inference as needed.

1.2.1 Generative probabilistic models and probabilistic inference

First, we give an overview of the mathematical formalism that the thesis uses to describe
probabilistic models and probabilistic inference. The full formalism is given in Chapter 2.

Probability distributions on dictionaries This thesis defines probabilistic inference
as conditional probabilistic inference in a generative probabilistic model. We define a
probabilistic model as a probability distribution 𝑝 on dictionaries (i.e. finite associative
arrays), denoted 𝜎 or 𝜏 or 𝜐, from some set of ‘addresses’ (i.e. keys) to values. We denote
a literal dictionary that contains two addresses a and b with (Boolean) values T and F
respectively, by 𝜏 = {a ↦→ T, b ↦→ F}. Each entry in one of these dictionaries encodes some
piece of information about the state of the domain being modeled. The model 𝑝 expresses
our assumptions about the probable states of the domain, prior to observing any data.

22



Dictionaries form a flexible sample space because a given piece of information (a given
address) may be present in some states but not in others. For example consider the model
𝑝 defined below, which is a probability distribution over a set of six possible states:

𝜏 𝑝(𝜏 )
{a ↦→ F, c ↦→ F} 0.45
{a ↦→ F, c ↦→ T} 0.05

{a ↦→ T, b ↦→ F, c ↦→ F} 0.05
{a ↦→ T, b ↦→ F, c ↦→ T} 0.2
{a ↦→ T, b ↦→ T, c ↦→ F} 0.125
{a ↦→ T, b ↦→ T, c ↦→ T} 0.125

The left column lists the possible states, and the right column contains the probabilities
for each state, which sum to one.4 For this model the states contain entries with Boolean
values (T or F). Four of the states contain an entry for address b and two do not.

Generative probabilistic models and conditioning The probabilistic models 𝑝 con-
sidered in this thesis are generative because they specify normalized probability distribu-
tions on dictionaries that contain both observable and non-observable (or ‘latent’) entries.
Observed data takes the form of a dictionary 𝜌 that assigns values to some subset of the
addresses. For example, we might obtain observed data 𝜌 = {c ↦→ T}. The goal of prob-
abilistic inference is to answer queries about the probable values of unobserved addresses,
in light of the observed data 𝜌 and the model 𝑝 that specifies how they are related. This
is made precise by the conditional distribution, a probability distribution over unobserved
dictionaries that is denoted 𝜎. The conditional distribution 𝑝(·|𝜌) is defined by (i) marking
each state 𝜏 with whether it matches the observed data or not, and (ii) normalizing the
probability over the unobserved part of all states that do match the observed data. We
assume the observed addresses are present in all states, so for example, the address b could
not be observed for the example model 𝑝 defined earlier. For this 𝑝 and 𝜌 = { c ↦→ T }, the
conditional distribution is computed as follows:

𝜏 𝑝(𝜏 ) 𝜏 matches 𝜌

{a ↦→ F, c ↦→ F} 0.45 7

{ a ↦→ T , c ↦→ T } 0.05 3

{a ↦→ F, b ↦→ F, c ↦→ F} 0.05 7

{{ a ↦→ T, b ↦→ F , c ↦→ T } 0.2 3

{a ↦→ T, b ↦→ T, c ↦→ F} 0.125 7

{ a ↦→ T, b ↦→ T , c ↦→ T } 0.125 3

−→

𝜎 𝑝(𝜎|𝜌)
{ a ↦→ F } 0.05/0.375

{ a ↦→ T, b ↦→ F } 0.2/0.35
{ a ↦→ T, b ↦→ T } 0.125/0.375

There are a number of queries that we may want to make given a probabilistic model 𝑝
and the observed data 𝜌. We may want to know the expected value, under the conditional
distribution, of some test function 𝑔 on the set of unobserved states (

∑︀
𝜎 𝑔(𝜎)𝑝(𝜎|𝜌)). For

4 The thesis includes a measure-theoretic mathematical framework, but in this section we assume that
probability distributions are discrete to simplify the notation and make it more broadly accessible.

23



example, when 𝑔 is an indicator function of an event, its expected value is the conditional
probability of the event. For the conditional distribution defined above, and 𝑔(𝜎) := [𝜎[a] =
T], the expected value is:

𝑝({a ↦→ T, b ↦→ F}|{c ↦→ T}) + 𝑝({a ↦→ T, b ↦→ T}|{c ↦→ T}) = 0.325/0.375 = 0.866̄

So the conditional probability that a is true, given that c is true, is about 0.87. Another
common task is computing the marginal likelihood of the data, which is the sum of the
probabilities of all states 𝜏 that match the observed data. This is a quantitative measure
of how well the model explains the data. For our example, the marginal likelihood is

𝑝({a ↦→ F, c ↦→ T}) + 𝑝({a ↦→ T, b ↦→ F, c ↦→ T}) + 𝑝({a ↦→ T, b ↦→ T, c ↦→ T}) = 0.375

Gen can help users solve these two types of tasks (and others), but for the remainder of this
introduction we will define probabilistic inference as the process of evaluating the expected
value of a test function 𝑔 under the conditional distribution induced by a probabilistic
model 𝑝 and observed data 𝜌.

1.2.2 Using probabilistic programming languages to express generative
probabilistic models

The previous section introduced generative probabilistic models and conditioning using
probability distributions represented as tables, but probability tables are an impractical
medium for expressing probabilistic models because they scale exponentially in the number
of addresses, and cannot represent continuous probability distributions. This thesis builds
on prior work on probabilistic programming languages, and uses general-purpose executable
programming languages with random choice to encode probabilistic models.

A probabilistic programming language Gen provides a probabilistic programming
language called the Dynamic Modeling Language that extends the syntax of the Julia
language [12]. The major syntactic extension to Julia is the addition of an extra expression
type, called a labeled random choice expression, which has the form:

{address} ∼ bernoulli(0.5)

The part of the expression to the left of ∼ and inside the braces encodes a dynamically
computed address for a randomly chosen value, and the part of the expression to the right of
∼ encodes a probability distribution from which the value should be sampled. For example
‘{:a} ∼ bernoulli(0.5)’ samples a Boolean-valued Bernoulli random choice at address5 a
and ‘{5} ∼ bernoulli(0.5)’ samples a random choice from the same distribution, but at
address 5. There is a syntactic sugar that also assigns the value of the random choice to a
variable in the program, and uses the variable name as the address:

a ∼ bernoulli(0.5) is equivalent to a = ({:a} ∼ bernoulli(0.5))

5The colon syntax is (e.g. :a) is syntax for a Julia symbol, or interned string.

24



Users construct a probabilistic program that defines their probabilistic model using a com-
bination of these random choice expressions, Julia expressions, and Julia control flow. For
example, consider the Dynamic Modeling Language program below:

1 @gen function burglary_model()
2 burglary ∼ bernoulli(0.01)
3 if burglary
4 disabled ∼ bernoulli(0.1)
5 else
6 disabled = false
7 end
8 if !disabled
9 alarm ∼ bernoulli(if burglary 0.94 else 0.01 end)

10 else
11 alarm = false
12 end
13 calls ∼ bernoulli(if alarm 0.70 else 0.05 end)
14 return nothing
15 end

This program defines a simple probabilistic model of a scenario in which a burglar may be
breaking in to one’s home when one is away. There is a low probability (0.01) that there
is a burglary. If there is a burglary, then the burglar may have disabled the alarm, with
probability 0.1. If the alarm was not disabled, then there is some probability (0.94) that
it is triggered. But there is also a small probability (0.01) that the alarm is triggered via
a false positive when there is no burglary. If the alarm sounds, then there is a probability
(0.70) that a neighbor calls you on the phone. But there is also a small probability (0.05)
that the neighbor calls even if the alarm does not sound.

Trace-based semantics and generative functions The semantics of a program p in
this language is denoted JpK and has two parts. The first part is the probability distri-
bution 𝑝 on dictionaries from which the following process samples: Execute the program,
but intercept random choice expressions, and record the randomly sampled value for each
random choice in a dictionary 𝜏 (called a trace) that maps addresses of random choices to
their values; when the program finishes executing, return the dictionary 𝜏 . To be valid,
the program must never attempt to record a value at the same address twice in an exe-
cution, and the program must finish executing with probability 1. The second part of the
semantics is the function 𝑓 that maps 𝜏 to the return value of the program. In Gen, the
return values of probabilistic programs exist to allow probabilistic programs to be composed
by calling other probabilistic programs (e.g. via sequencing). In summary, probabilistic
programs in Gen encode a mathematical object that contains a probability distribution 𝑝
on dictionaries, and a function 𝑓 from dictionaries to a return value.6. We call this type
of mathematical object a generative function, denoted 𝒫 = (𝑝, 𝑓). Therefore, the semantic
function J·K of a probabilistic programming language in Gen maps the source code of a
probabilistic program to a generative function. This thesis does not formally define the

6This is a simplified definition. It defined first in Chapter 2 and then extended in Chapter 4.

25



semantic function for Gen’s probabilistic programming languages, which extend the Julia
language. Instead, we define the semantic function for a simple toy language, and refer the
interested reader to prior works on trace-based semantics for an understanding of how to
define trace-based semantics for more complex languages [15, 73].

For probabilistic program source code given in this thesis, the name that is assigned
to the function in the source code will denote the generative function that is derived from
the source code via the semantic function. So, the semantics of the program above is a
generative function burglary_model = (𝑝, 𝑓) where (nothing is a built-in Julia ‘null’ value):

𝜏 𝑝(𝜏 ) 𝑓(𝜏 )
{burglary ↦→ F, alarm ↦→ F, calls ↦→ F} 0.99 · 0.99 · 0.95 nothing
{burglary ↦→ F, alarm ↦→ F, calls ↦→ T} 0.99 · 0.99 · 0.05 nothing
{burglary ↦→ F, alarm ↦→ T, calls ↦→ F} 0.99 · 0.01 · 0.30 nothing
{burglary ↦→ F, alarm ↦→ T, calls ↦→ T} 0.99 · 0.01 · 0.70 nothing

{burglary ↦→ T, disabled ↦→ F, alarm ↦→ F, calls ↦→ F} 0.01 · 0.9 · 0.06 · 0.95 nothing
{burglary ↦→ T, disabled ↦→ F, alarm ↦→ F, calls ↦→ T} 0.01 · 0.9 · 0.06 · 0.05 nothing
{burglary ↦→ T, disabled ↦→ F, alarm ↦→ T, calls ↦→ F} 0.01 · 0.9 · 0.94 · 0.30 nothing
{burglary ↦→ T, disabled ↦→ F, alarm ↦→ T, calls ↦→ T} 0.01 · 0.9 · 0.94 · 0.70 nothing

{burglary ↦→ T, disabled ↦→ T, calls ↦→ F} 0.01 · 0.1 · 0.95 nothing
{burglary ↦→ T, disabled ↦→ T, calls ↦→ T} 0.01 · 0.1 · 0.05 nothing

Note that probabilistic programs in this language can also take arguments, in which case
their probability distribution on dictionaries is parametrized by possible values of their ar-
guments 𝑥 (denoted 𝑝(·; 𝑥)), and the function 𝑓 maps arguments 𝑥 and dictionaries 𝜏 to
return values. The approach to defining semantics via a probability distribution on traces
is called trace semantics, and is well-covered formally in the probabilistic programming lit-
erature. The most important difference between the probabilistic programming languages
used in Gen and most other probabilistic programming languages with trace-based se-
mantics is that Gen’s probabilistic programming languages use user-defined addresses for
random choices (instead of the address being determined by its order in the execution [15]
or its structural location in the abstract syntax tree [127]). It is important that the ad-
dresses of random choices in Gen are intuitive for the user, because in Gen, users write
inference code that refers to specific random choices by their addresses.

Observed data and test functions are external to the probabilistic program
Another departure from many recent probabilistic programming languages is that Gen’s
probabilistic programming languages do not include observe or factor statements. There-
fore, programs always define normalized probability distributions 𝑝 from which it is trivial
to sample by running the program. Only by pairing a program with a dictionary 𝜌 contain-
ing observed data can we define a conditional distribution. For example, we can represent
the observation that we did received a phone call from a neighbor with the dictionary
𝜌 = {calls ↦→ T}. The conditional distribution induced by burglary_model together with

26



the observed data 𝜌 is shown in the table below:

𝜎 𝑝(𝜎|𝜌)
{burglary ↦→ F, alarm ↦→ F} 0.7912
{burglary ↦→ F, alarm ↦→ T} 0.1119

{burglary ↦→ T, disabled ↦→ F, alarm ↦→ F} 0.0004
{burglary ↦→ T, disabled ↦→ F, alarm ↦→ T} 0.0956

{burglary ↦→ T, disabled ↦→ T} 0.0008

Note that in addition to the observed data, the test function 𝑔 is also separate from the pro-
gram that defines the generative model. For example, if we are interested in the conditional
probability that there was a burglary, given that we received a phone call, the test function
is 𝑔(𝜎) = [𝜎[burglary]], which evaluates to 0 if 𝜎[burglary] = F and 1 if 𝜎[burglary] = T.
For this choice of 𝑔 and 𝜌 = {calls ↦→ T}, the expected value is:∑︁

𝜎

𝑔(𝜎)𝑝(𝜎|𝜌) = 𝑝({burglary ↦→ T, disabled ↦→ F, alarm ↦→ F}|𝜌) +
+𝑝({burglary ↦→ T, disabled ↦→ F, alarm ↦→ T}|𝜌) +
+𝑝({burglary ↦→ T, disabled ↦→ T}|𝜌)

= 0.097

The choices to define the observed data 𝜌 and the test function 𝑔 separately from the
probabilistic program are motivated by modularity—the observed data and the test function
frequently change for a given fixed model, and it is preferable to not have to modify the
model code when the observed data or test function changes. Also, as we will see later,
generative functions can be used to express auxiliary probability distributions that must
support straightforward sampling, and Gen opts to use the same probabilistic programming
languages for models and for these auxiliary distributions. Finally, Gen also uses data that
is simulated from generative models as part of training components of inference algorithms.
Excluding observe and factor statements from the modeling language ensures that it is
always possible to generate simulated observed data simply by running the program.

Dictionaries 𝜌, 𝜎, 𝜏 , 𝜐
Literal dictionaries {burglary ↦→ F, alarm ↦→ F}
Probability distributions 𝑝, 𝑞
Instances of generative function ADT 𝒫 = (𝑝, 𝑓),𝒬 = (𝑞, 𝑓)
Map from probabilistic programs to generative functions J·K
Generative function ADT operations simulate, generate
Instances of trace ADT t = (𝒫, 𝑥, 𝜏 ), s = (𝒬, 𝑥, 𝜎)
Trace ADT operations logpdf, choices, update

Figure 1-3: Notation used in this introductory section

27



1.2.3 Abstract data types for generative functions and traces

This thesis is concerned largely with the design and implementation of an API for im-
plementing Monte Carlo and variational probabilistic inference algorithms (Monte Carlo
algorithms are the focus of the thesis). The design of Gen’s API is based on the obser-
vation that these algorithms can be broken down into a small set of primitive operations
whose semantics are derived from the trace-based semantics of probabilistic programs. The
API consists of two abstract data types (ADTs)—one for generative functions and one for
execution traces of generative functions. These ADTs encapsulate and automate low-level
computations in inference algorithms, so that code that uses these ADTs is relatively high-
level, abstract, resembles algorithm pseudocode, and has reduced surface area for bugs. The
ADTs also provide a clean abstraction barrier that separates probabilistic programming lan-
guage implementation and compiler architecture (which are internal to the implementation
of the ADTs) from probabilistic inference algorithms (which are specified using the ADTs).

This section describes a simplified version of the generative function and trace ADTs,
and the next section introduces how they can be used to perform probabilistic inference.
The body of the thesis describes the full set of ADTs operations, and shows how they can
be used for a broad set of inference algorithms. Note that it is not necessary to understand
approximate inference algorithms in order to understand and implement these ADTs. This
an important benefit of Gen’s design, because it allows probabilistic programming language
design and implementation to be decoupled from the design of inference algorithms.

In Gen, the compiler for a probabilistic programming language generates special gen-
erative function and trace ADTs for each probabilistic program. The data stored in a
generative function ADT is a generative function 𝒫 = (𝑝, 𝑓), as defined above. The data
stored in a trace ADT is a tuple t = (𝒫, 𝑥, 𝜏 ) where 𝒫 is a generative function, 𝑥 are
arguments to the function, and the dictionary 𝜏 stores the value of each random choice
made during a possible execution of the generative function (i.e. 𝜏 such that 𝑝(𝜏 ; 𝑥) > 0).
We now introduce a subset of the operations supported by these ADTs.

Simulate operation The first operation supported by the generative function ADT is
𝒫.simulate(𝑥), which takes arguments 𝑥 to the generative function, samples a dictio-
nary of random choices 𝜏 according to the distribution 𝑝, and returns the resulting trace
t = (𝒫, 𝑥, 𝜏 ). This operation allows us to sample execution traces from generative functions.

Example: For 𝒫 = burglary_model a call to 𝒫.simulate(𝑥) returns one of its 10 possible
traces. It returns the trace t = (𝒫, 𝑥, {burglary ↦→ F, alarm ↦→ F, calls ↦→ F}) with probabil-
ity 0.99 ·0.99 ·0.95, and returns the trace t = (𝒫, 𝑥, {burglary ↦→ F, alarm ↦→ F, calls ↦→ T})
with probability 0.99 · 0.99 · 0.05, and so on.

Generate operation The second generative function ADT operation, 𝒫.generate(𝑥, 𝜏 ),
also returns an execution trace t = (𝒫, 𝑥, 𝜏 ), but instead of sampling the random choices 𝜏
according to 𝑝, it takes them as input. This operation may seem overly simple. It will be
extended in the thesis with the ability to take a partial dictionary that only contains some
of the choices and fill in the rest stochastically. We do not formalize this here to keep the

28



introduction accessible.

Example: For 𝒫 = burglary_model, the call 𝒫.generate(𝑥, {burglary ↦→ F, alarm ↦→
F, calls ↦→ F}) returns the trace t = (𝒫, 𝑥, {burglary ↦→ F, alarm ↦→ F, calls ↦→ F}).

Logpdf operation The first operation supported by the trace ADT is t.logpdf(), which
returns the log probability log 𝑝(𝜏 ; 𝑥) that the random choices in the trace would have been
sampled if 𝑥 were the arguments to the generative function. This is typically the sum of
log-probabilities for each random choice made.

Example: For 𝒫 = burglary_model and t = (𝒫, 𝑥,{burglary ↦→ F, alarm ↦→ F, calls ↦→ F}),
we have t.logpdf() = log(0.99 · 0.99 · 0.95).

Choices operation The second operation supported by the trace ADT is t.choices(),
which for t = (𝒫, 𝑥, 𝜏 ) returns the dictionary 𝜏 .

Example: For t = (𝒫, 𝑥,{burglary ↦→ F, alarm ↦→ F, calls ↦→ F}) we have t.choices() =
{burglary ↦→ F, alarm ↦→ F, calls ↦→ F}.

Update operation The third trace ADT operation is t.update(𝑥′, 𝛿𝑋 , 𝜐). This oper-
ation is more complex—it allows the arguments to, and the random choices made by, an
execution trace to be modified. Suppose t = (𝒫, 𝑥, 𝜏 ). The first argument to this opera-
tion (𝑥′) provides new arguments to the generative function, which may be different from
the arguments 𝑥 that are stored in the initial execution trace t. The second argument
is a change hint 𝛿𝑋 that provides optional information about the difference between the
original arguments 𝑥 and the new arguments 𝑥′ that allows an implementation to perform
the operation more efficiently via incremental computation. The third argument 𝜐 is a
dictionary that contains entries for any addresses that are included in the previous trace
but whose value should be changed, as well as entries for any addresses that were not in-
cluded in the previous trace but should be included in the new trace. The operation returns
(t′, 𝜐′, log 𝑤, 𝛿𝑌 ) where t′ = (𝒫, 𝑥′, 𝜏 ′) is a new trace with choices 𝜏 ′ constructed from 𝜏 and
𝜐. The other arguments are metadata about the change from t to t′. In particular, log 𝑤, is
the log ratio of the new probability to the previous probability (log(𝑝(𝜏 ′; 𝑥′)/𝑝(𝜏 ; 𝑥))), and
𝜐′ is the dictionary, that if passed to the update operation on t′ would reverse the update
and result in trace t. Note that this operation does not mutate t. Traces are immutable.

Example: Figure 1-4 illustrates the application of the update operation to a trace t =
(𝒫, 𝑥, 𝜏 ) where 𝒫 = burglary_model and 𝜏 = {burglary ↦→ T, disabled ↦→ T, calls ↦→ T}.
Note that this generative function takes no arguments, so both 𝑥 and 𝑥′ are the empty
tuple. We will focus on how 𝜐 determines the change in the choices from 𝜏 to 𝜏 ′, and the
log weight log 𝑤. On the left of the figure is the initial trace t, and the argument 𝜐 that
specifies the change to the choices. The left side also shows the lines of code in probabilistic
program that defines burglary_model, with lines that are visited and sample random choices

29



shown black. The dictionary 𝜐 indicates that the value at address disabled should be set to
false. As shown on the code listing on the right, this causes the control flow in the program
to change, and there is now a random choice sampled at address alarm. Therefore, the
dictionary 𝜐 also contains an entry for address alarm. The resulting dictionary 𝜏 ′ is shown
on the right. The ratio 𝑝(𝜏 ′; 𝑥′)/𝑝(𝜏 ; 𝑥) is also shown at the bottom. Because only some of
the random choices were changed from 𝜏 to 𝜏 , two of the factors cancel in this ratio.

t = (burglary_model, 𝑥, 𝜏 )

𝜏 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
burglary ↦→ T,
disabled ↦→ T ,

calls ↦→ T

⎫⎪⎪⎪⎬⎪⎪⎪⎭
𝜐 =

{︃
disabled ↦→ F ,
alarm ↦→ F ,

}︃

1 @gen function burglary_model()
2 burglary ∼ bernoulli(0.01)
3 if burglary
4 disabled ∼ bernoulli(0.1)
5 else
6 disabled = false
7 end
8 if !disabled
9 alarm ∼ bernoulli(..)

10 else
11 alarm = false
12 end
13 call ∼ bernoulli(..)
14 end

update−−−−−−−→ t′ = (burglary_model, 𝑥′, 𝜏 ′)

𝜏 ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
burglary ↦→ T,
disabled ↦→ F ,
alarm ↦→ F ,

calls ↦→ T

⎫⎪⎪⎪⎬⎪⎪⎪⎭
𝜐′ =

{︃
disabled = T

}︃

1 @gen function burglary_model()
2 burglary ∼ bernoulli(0.01)
3 if burglary
4 disabled ∼ bernoulli(0.1)
5 else
6 disabled = false
7 end
8 if !disabled
9 alarm ∼ bernoulli(..)

10 else
11 alarm = false
12 end
13 call ∼ bernoulli(..)
14 end

𝑝(𝜏 ′; 𝑥′)
𝑝(𝜏 ; 𝑥) =

�
��

0.01
0.01 ·

0.9
0.1 · 0.06 ·

�
��

0.05
0.05

Figure 1-4: Illustration of the ‘update’ operation of the trace ADT

1.2.4 Generating implementations of the abstract data types from the
source code of probabilistic programs

Implementations of the generative function and trace ADTs in the previous section are
statically compiled from probabilistic programs. Because the data types are abstract, their
implementations can be changed without requiring a change to the inference that uses them
(we will introduce inference code that uses these ADTs shortly in Section 1.2.6). Chap-
ter 5 describes several approaches for generating generative function and trace ADTs. In

30



particular, it presents two probabilistic programming languages that are part of Gen—the
Dynamic Modeling Language (DML) that we saw earlier, and the Static Modeling Language
(SML). These two languages strike different tradeoffs between expressiveness and perfor-
mance of their ADT implementations. The syntax of DML includes most of Julia’s syntax,
and supports standard Julia control flow constructs including recursion. But the high ex-
pressiveness of this language makes generating efficient implementations of the ADTs more
difficult because statically analyzing arbitrary general-purpose Julia code is difficult. In
contrast, SML uses a restricted set of control flow constructs, and is amenable to straight-
forward static analysis that is used to statically specialize the implementation of the ADT
and achieve better performance. But while SML has better performance, it is less natural
to learn for users that are accustomed to programming in languages like Julia and Python.
Because DML and SML produce the same ADT, the same user inference code can be ap-
plied to a models defined in either language. This allows users to start using the more
familiar DML probabilistic programming language for their model, and then migrate to the
more complex SML language if and when they need better performance, without modifying
their inference code. Gen has also been extended with domain-specific modeling languages
that implement the generative function and trace ADTs, and are more restrictive and more
performant than even SML. Decoupling the probabilistic programming language compiler
from user inference code is a distinctive feature of Gen’s design that defines new directions
for future work on compiling probabilistic programs.

Two probabilistic programs with the same semantics Consider the DML program
below, that defines a generative function hmm_dynamic that describes a Hidden Markov
Model (HMM), a classic generative probabilistic model:

1 @gen function hmm_dynamic()
2 z = 1
3 for i in 1:1000
4 z = ({:steps=>i=>:z} ∼ categorical(A[z,:])
5 {:steps=>i=>:y} ∼ categorical(B[z,:])
6 end
7 end

The variables A and B are the ‘transition matrix’ A ∈ R100×100 and ‘emission matrix’
B ∈ R100×50 of the HMM, with entries denoted 𝑎𝑖,𝑗 and 𝑏𝑖,𝑗 . Each row of A (denoted
A[i,:]) and each row of B (denoted A[i,:]) are vectors that sum to one, and represent
probability distributions on ‘hidden states’ and ‘observed states’, respectively. There are
100 possible values of each hidden state, 50 possible values for each observed state, and
1000 time steps. The addresses of the random choices representing the hidden states are
(:steps=>i=>:z) for each i ranging from 1 to 1000, and the addresses of the random choices
representing the observable states are (:steps=>i=>:y) for each i ranging from 1 to 1000.
Therefore, this program makes a total of 2000 random choices. Note that => is Julia syntax
for constructing a pair (i.e. ‘cons’), so these addresses are linked lists with three entries.
Any Julia value can be used as an address in a DML program. This program uses Julia’s for
loop to iterate through the time steps and consecutively (i) sample the current hidden state

31



from a discrete probability distribution (using categorical) that depends on the previous
hidden state and (ii) sample the current observed state from a discrete distribution that
depends on the current hidden state.

The SML probabilistic program below defines a generative function called hmm_static
that is semantically equivalent to hmm_dynamic. That is, it defines the same probability
distribution on dictionaries, and the same return value function (both programs do not
have a return value and therefore return nothing).

1 @gen (static) function hmm_static()
2 steps ∼ Unfold(step)(1000, 1)
3 end
4
5 @gen (static) function step(i, z_prev)
6 z ∼ categorical(A[z_prev,:])
7 y ∼ categorical(B[z,:])
8 return z
9 end

We defer an explanation of the syntax of SML to Chapter 5. But briefly, SML does not
permit use of Julia for loops. Instead, this program uses a special construct called Unfold to
express the sequence over steps. The program is also factored into two parts—an inner part
that expresses what happens during each step (step) and the outer part that applies step
sequentially using Unfold. Like the DML program, this program samples random choices at
addresses (:steps=>i=>:z) and (:steps=>i=>:z) for each i ranging from 1 to 1000. Indeed,
we used addresses of this form in the DML version of the program specifically so that the
two programs would sample at the same addresses.

Dynamic Modeling Language compiler The DML compiler handles a very expres-
sive language, but generates ADT implementations that are asymptotically inefficient. This
compiler uses a generic Julia dictionary data type to store the random choices in the the
trace. Most of the trace ADT operations, including update, are implemented by trans-
forming the body of the program into an executable Julia function by replacing each random
choice expression with a call to an effect handler. This is a very simple compilation strat-
egy that makes it straightforward for DML to support all of Julia’s control flow operations.
However, this approach means that running an update operation involves performing an
end-to-end execution of the transformed probabilistic program. Therefore, all update op-
erations scale linearly in the number of addresses in the input trace, even when the optimal
scaling behavior is sublinear. In particular, for updates to traces that only modify the
values of a few addresses at a time (i.e. 𝜐 has only a few entries), the generated ADT
implementations are asymptotically inefficient relative to an optimal implementation.

Static Modeling Language compiler The SML compiler first translates the probabilis-
tic program into an intermediate representation based on static directed acyclic dependency
graphs, and generates a Julia record type that is specialized to the specific random choices
made by the program to store the the random choices in the trace. The code for the up-
date trace operation is generated via static analysis of the intermediate representation.

32



Specifically, static analysis of the conditional independence properties, which can be read
off the static dependence graph, is used to avoid unnecessary re-execution of fragments of
the probabilistic program that are executed in the code generated by the DML compiler.
The resulting implementations of the ADT operations are asymptotically efficient and have
lower constant-factor overhead because they use a more efficient underlying data structure
for the trace that is specialized to the probabilistic model.

Hand-compiling implementations of the ADTs It is also possible to implement the
generative function and trace ADTs directly for a probabilistic model, without using a
probabilistic programming language or compiler. This is more involved, but allows the
implementation to be more heavily specialized to the model, which can result in better per-
formance than with an ADT generated from a probabilistic program using a compiler. The
ability to migrate one’s model from a probabilistic program based ADT implementation to
a hand-coded ADT implementation is a useful affordance for performance optimization of
inference code, especially in performance-constrained application settings. Note that the in-
ference code that uses the ADT does not need to be modified when migrating from an ADT
implementation based on probabilistic programs to a hand-coded ADT implementation.

Trace ADT implementation Time per operation
Compiled from Dynamic Modeling Language 6.78ms
Compiled from Static Modeling Language 15.4𝜇s
Hand-coded 1.65𝜇s

Table 1.2: Performance of different implementations of the same trace ADT

Performance of different ADT implementations We now illustrate the potential for
performance differences between different implementations of the trace ADT. Suppose we
are given a trace t of 𝒫 = hmm_dynamic or 𝒫 = hmm_static containing the following choices:

𝜏 =
{︃

(:steps=>1=>:z) ↦→ 𝑧1, . . . , (:steps=>1000=>:z) ↦→ 𝑧1000,
(:steps=>1=>:y) ↦→ 𝑦1, . . . , (:steps=>1000=>:y) ↦→ 𝑦1000

}︃

For this model, the probability of a trace is: 𝑝(𝜏 ) =
∏︀1000

𝑖=1 𝑎𝑧𝑖−1,𝑧𝑖𝑏𝑧𝑖,𝑦𝑖 where 𝑧0 := 1.
Suppose we want to run an update operation on this trace, where we update the value of
the 346th hidden state from 𝑧346 to 𝑧′

346. That is:

t.update(𝑧′, 𝛿𝑋 , 𝜐) where 𝜐 = {(:steps=>346=>:z) ↦→ 𝑧′
346}

the resulting trace t′ = (𝒫, 𝑥′, 𝜏 ′) has choices:

𝜏 ′ =
{︃

(:steps=>1=>:z) ↦→ 𝑧′
1, . . . , (:steps=>1000=>:z) ↦→ 𝑧′

1000,
(:steps=>1=>:y) ↦→ 𝑦′

1, . . . , (:steps=>1000=>:y) ↦→ 𝑦′
1000

}︃

33



where 𝑧′
𝑖 = 𝑧𝑖 for all 𝑖 ̸= 346, and 𝑦′

𝑖 = 𝑦𝑖 for all 𝑖. Recall that one of the outputs of the
update operation is log 𝑤, which is:

log 𝑤 = log(𝑝(𝜏 ′)/𝑝(𝜏 )) =
(︃1000∑︁

𝑖=1
log 𝑎𝑧′

𝑖−1,𝑧′
𝑖
+ log 𝑏𝑧′

𝑖,𝑦
′
𝑖

)︃
−
(︃1000∑︁

𝑖=1
log 𝑎𝑧𝑖−1,𝑧𝑖 + log 𝑏𝑧𝑖,𝑦𝑖

)︃

The code for this operation that is generated by the DML Language compiler computes
log 𝑤 by computing each of the individual terms and summing. However, for this model
and this particular call to update, most terms in the left-hand sum cancel with a term in
the right-hand sum, because most of the 𝑧𝑖 and 𝑧′

𝑖 are equal, and all of the 𝑦𝑖 and 𝑦′
𝑖 are

equal. Therefore, the log weight can be simplified to:

log 𝑤 = log 𝑎𝑧𝑡+1,𝑧′
𝑡
− log 𝑎𝑧𝑡+1,𝑧𝑡 + log 𝑏𝑦𝑡,𝑧′

𝑡
− log 𝑏𝑦𝑡,𝑧𝑡

The implementation of the update operation that is generated by the SML compiler only
computes the four necessary terms because it uses static analysis to identify the opportu-
nity for cancellation. The implementation of the operation for a reasonable hand-coded
implementation of the ADT has the same asymptotic scaling behavior of the SML imple-
mentation, but can have lower constant-factor overhead because it is manually specialized
to the model. Table 1.2 shows a comparison of the performance of the different ADT
implementations for this update operation, measured by taking the median running time
across 1000 runs. The ADT implementation generated by the SML compiler is almost 500x
faster than the implementation from the DML compiler. The hand-coded implementation
is approximately 8x faster than the implementation generated by the SML compiler.

Interoperable probabilistic programming languages Gen’s ADTs for generative
functions and execution traces are compositional in the following sense. Consider a gen-
erative function that is constructed by sequencing two other generative functions. The
ADT for the composite generative function can be implemented using the ADT operations
of the two respective constituent generative functions, without needing the source code
of the constituent functions. Gen’s probabilistic programming languages have a language
construct for invoking generative functions, which may have been compiled from the same,
or different, probabilistic programming language, or hand-compiled. The resulting data
structures used to implement trace ADTs store instances of the trace ADTs for the callee
generative functions, called subtraces. The compositionality of Gen’s ADTs allows the user
to write a complex model that uses different probabilistic programming languages for dif-
ferent parts of the model. Also, users can implement specialized instances of the ADTs
themselves for highly performance-sensitive parts of the model, if necessary. The interop-
erability between multiple probabilistic programming languages, and the interoperability
with hand-coded implementations of the ADTs, gives users flexible routes to incremen-
tal performance optimization, which is important for (typically computationally intensive)
probabilistic inference implementations.

34



1.2.5 Approximate probabilistic inference algorithms

Before discussing how the generative function and trace ADTs can be used to implement
inference algorithms, we first provide background on inference algorithms, using our math-
ematical framework of probability distributions on dictionaries. Recall that we defined
probabilistic inference as the task of evaluating the conditional expectation of a test func-
tion under the conditional distribution induced by a model and observed data. For this
task, the answer is a real number. To perform this type of task some systems use symbolic
analysis and simplification to try to simplify the symbolic expression down to a number
(e.g. [42]). Although this approach is exact, it suffers from a major limitation—it may not
always be possible to simplify fully, and systems based on this approach often take a long
and unpredictable time to return an answer, or they time-out, or they return expressions
that are not fully simplified, and therefore are not directly useful. This is problematic
for many applications of probabilistic inference, including in performance-constrained and
online settings, where timeouts or failures are not acceptable.

Monte Carlo approximate inference algorithms The challenges with exact prob-
abilistic inference explain why most recent algorithmic work in probabilistic inference is
concerned with approximation algorithms, with Monte Carlo and variational inference be-
ing the primary approaches, each with an extensive literature spanning decades [104, 126].
Gen supports both Monte Carlo and variational inference approaches, but this thesis will fo-
cus on Gen’s support for Monte Carlo probabilistic inference algorithms. The Monte Carlo
algorithms supported by Gen are randomized algorithms that return an approximation to
the conditional distribution in the form of a collection of weighted samples of unobserved
dictionaries 𝜎1, . . . , 𝜎𝑛 with weights 𝑤1, . . . , 𝑤𝑛. These collections of samples can then be
used to estimate the expected value of a test function 𝑔 by taking a weighted average:

𝑛∑︁
𝑖=1

𝑤𝑖𝑔(𝜎𝑖) ≈
∑︁
𝜎

𝑝(𝜎|𝜌)𝑔(𝜎) (1.1)

The estimate is on the left-hand side of ≈, and the true value is on the right-hand side. For
example, suppose we are using model burglary_model and we observe 𝜌 = {calls ↦→ T},
and we want to know the probability of a burglary. That is, the expected value of the test
function 𝑔(𝜎) = [𝜎[burglary]] under the conditional distribution 𝑝(·|𝜌). Suppose we ran a
Monte Carlo algorithm that returned the following data:

𝜎1 = {burglary ↦→ F, alarm ↦→ F} 𝑤1 = 0.83
𝜎2 = {burglary ↦→ T, disabled ↦→ F, alarm ↦→ F} 𝑤2 = 0.06
𝜎3 = {burglary ↦→ T, disabled ↦→ F, alarm ↦→ F} 𝑤3 = 0.06
𝜎4 = {burglary ↦→ T, disabled ↦→ T} 𝑤4 = 0.05

Then, the estimate would be:
𝑛∑︁

𝑖=1
𝑤𝑖𝑔(𝜎𝑖) = 0 · 0.83 + 1 · 0.06 + 1 · 0.06 + 1 · 0.05 = 0.17

35



Note that the estimate is stochastic—if we run the algorithm again, we will get a different
estimate. There are two ways that such approximate inference algorithms can be evaluated,
which focus on the asymptotic and non-asymptotic properties of the algorithm, respectively.

Asymptotically exact Monte Carlo inference algorithms First, we can ask whether
the algorithm is asymptotically exact. That is, does the output of the algorithm converge
almost-surely to the true value, as the computation budget 𝑛 is increased to infinity (there
may be other parameters of the algorithm that factor into the computation budget, but the
number of samples 𝑛 is the parameter that is used to characterize the asymptotic behavior):

𝑛∑︁
𝑖=1

𝑤𝑖𝑔(𝜎𝑖)
a.s.−−→

∑︁
𝜎

𝑝(𝜎|𝜌)𝑔(𝜎) (1.2)

Monte Carlo inference algorithms are often designed by construction to be asymptotically
exact, as this provides some degree of confidence in the algorithm, and reduces questions of
its correctness to questions of computation budget. There are several standard templates
for constructing asymptotically exact Monte Carlo inference algorithms, including Markov
chain Monte Carlo [121], importance sampling, and sequential Monte Carlo [33]. Whether
or not an algorithm is indeed asymptotically exact depends on how these templates are
instantiated, but the necessary conditions can be reasoned about statically. This reasoning
is currently typically done manually by practitioners, but automatic static verification that
the implementation of an approximate inference algorithm is asymptotically exact is a
promising and active area of research [55, 7, 112, 73]. Dynamic statistical tests for detecting
bugs that cause a failure to be asymptotically exact are widely used [47]. The emphasis
on the asymptotic exactness of algorithms in the Monte Carlo literature is not surprising
since much of the probabilistic inference methodology was developed for use in statistics,
which is often not heavily performance constrained. For example, in statistics, practitioners
often aim to (i) write asymptotically exact inference implementations, and to (ii) use a
large enough computation budget so that the algorithm has (hopefully) converged to the
asymptote (e.g. “overnight” [17]). Heuristic statistical tests can be used to detect lack of
convergence in some cases [23].

Non-asymptotic approximation error of Monte Carlo inference algorithms In
more performance-constrained applications of probabilistic inference like robotics, it is nat-
ural to ask about the non-asymptotic approximation error of the algorithm for some finite
computation budget. In these settings, an approximate algorithm is run on a test problem
for some computation budget and the results are compared with a reference value 𝑣, which
ideally is the true value but is more often an estimate produced by an algorithm with large
computation budget (the ‘gold-standard’). Evaluation involves computing the difference
between the reference value and the values produced by an algorithm being evaluated,
which is run 𝑚 times to account for its variability because it is a randomized algorithm.

36



The average error across 𝑚 runs is one numeric summary of the algorithm’s error:

1
𝑚

𝑚∑︁
𝑗=1

⃒⃒⃒⃒
⃒
(︃

𝑛∑︁
𝑖=1

𝑔(𝜎𝑖,𝑗)𝑤𝑖,𝑗

)︃
− 𝑣

⃒⃒⃒⃒
⃒ (1.3)

Here 𝜎𝑖,𝑗 and 𝑤𝑖,𝑗 are the 𝑖th sample and weight from the 𝑗th run of the algorithm. This
approach relies on having trust in the gold-standard algorithm and its implementation,
and trust that the evaluation results can be extrapolated from the test problem(s) to the
real-world problem(s). This approach also depends on the function 𝑔: An algorithm that
is accurate for one choice of 𝑔 may be inaccurate for another. Developing more rigorous
methods for estimating the non-asymptotic approximation error of probabilistic inference
algorithms is an important area of ongoing research [26, 61].

One approach to implementing probabilistic inference is to use the asymptotically exact
algorithm templates listed above, but set the computation budget to trade off computa-
tional cost with non-asymptotic approximation error. How these algorithm templates are
parametrized determines the relationship between computation cost and approximation er-
ror. For example, while it is not difficult to construct an asymptotically exact Markov chain
Monte Carlo (MCMC) algorithm based on a simple generic MCMC kernel, constructing one
that has low approximation error when only run for 100 steps is much more challenging,
and usually requires customizing the MCMC kernel to match the problem characteristics.
Similarly, in importance sampling, any proposal distribution subject to mild conditions re-
sults in an asymptotically exact sampler, but poor choices of proposal distribution require
an enormous and impractical number of samples for accurate results, while other choices
require only modest numbers of samples [21]. Therefore, customizing Monte Carlo algo-
rithm templates with elements like custom proposal distributions and custom kernels is
essential to writing efficient inference algorithms, and practitioners of inference routinely
employ these customizations.

Example: Self-normalized importance sampling One standard Monte Carlo al-
gorithm template for approximate inference is self-normalized importance sampling [104].
This algorithm template is parametrized by (i) a probabilistic model 𝑝, (ii) observed data
𝜌, (iii) a test function 𝑔, (iv) an auxiliary probability distribution 𝑞 that is called the pro-
posal distribution, and (v) a number of samples 𝑛 to produce. Many other Monte Carlo
inference algorithms also make use of auxiliary probability distributions. We now briefly
describe how self-normalized importance sampling works, using probability distributions
and test functions on dictionaries, as introduced in Section 1.2.1. Self-normalized impor-
tance sampling produces a weighted collection of samples 𝜎1, . . . , 𝜎𝑛 of the unobserved
random choices, with weights 𝑤1, . . . , 𝑤𝑛. Each sample 𝜎𝑖 is sampled independently from
the proposal distribution (𝜎𝑖 ∼ 𝑞). After all the samples are collected, the weight for each
sample is computed using the following formula:

𝑤𝑖 := 𝑝(𝜎𝑖 ⊕ 𝜌)/𝑞(𝜎𝑖)∑︀𝑛
𝑗=1 𝑝(𝜎𝑗 ⊕ 𝜌)/𝑞(𝜎𝑗) (1.4)

37



where 𝜎 ⊕ 𝜌 denotes the dictionary formed by merging two dictionaries 𝜎 with 𝜌 with
disjoint sets of addresses. The weighted collection can then used to estimate the expected
value of a test function using Equation (1.1). The proposal distribution 𝑞 must satisfy one
property: For every unobserved dictionary 𝜎 that has some nonzero probability under the
conditional distribution, there needs to be a nonzero probability that it will be sampled
from the proposal. That is,

𝑝(𝜎|𝜌) > 0 =⇒ 𝑞(𝜎) > 0 (1.5)

If this condition holds then the strong law of large numbers can be used to show that
self-normalized importance sampling is asymptotically exact as 𝑛 increases to infinity as
in Equation (1.2). The intuition behind this algorithm is that if we could sample each 𝜎𝑖

from the conditional distribution 𝑝(·|𝜌), then the samples could all be equally weighted
with 𝑤𝑖 = 1/𝑛 (this is called simple Monte Carlo, but is not typically possible because
we cannot example exactly from the conditional distribution in practice). The weights
in Equation (1.4) correct for the fact that the the proposal distribution is not the same
as the conditional distribution, by giving less weight to samples that are over-sampled by
the proposal distribution relative to the conditional distribution and giving more weight to
samples that are under-sampled by the proposal distribution. Because the probabilities used
in the weight calculation are often very small for numerical stability, the weight calculation
is typically performed in ‘log-space’ as follows:

𝑚← max
𝑖
{log 𝑝(𝜎𝑖 ⊕ 𝜌)− log 𝑞(𝜎𝑖)} (1.6)

ℓ← 𝑚 + log
(︃

𝑛∑︁
𝑖=1

exp (log 𝑝(𝜎𝑖 ⊕ 𝜌)− log 𝑞(𝜎𝑖)−𝑚)
)︃

(1.7)

𝑤𝑖 ← exp (log 𝑝(𝜎𝑖 ⊕ 𝜌)− log 𝑞(𝜎𝑖)− ℓ) for 𝑖 = 1, . . . , 𝑛 (1.8)

The next section will illustrate how self-normalized importance sampling can be imple-
mented using the abstract data types from earlier using inference in burglary_model as
an example, and how the choice of proposal distribution 𝑞 affects the efficiency of self-
normalized importance sampling algorithms.

1.2.6 Implementing inference algorithms with abstract data types

Users of Gen implement inference algorithms in a general-purpose host language using the
abstract data types (ADTs) that were introduced in Section 1.2.3. In the Gen implemen-
tation described in this thesis, the host language is Julia. Users can implement inference
algorithms that are either exact (in rare cases when this is feasible), asymptotically ex-
act, or asymptotically inexact. Users can implement approximate algorithms that have
either high or low non-asymptotic error. Gen does not perform any analysis of the user’s
Julia code that implements their inference algorithm. However, Gen does assist users in
implementing asymptotically exact algorithms in several ways: Gen includes a library of
Julia implementations of the asymptotically exact algorithm templates listed above (e.g.
self-normalized importance sampling). While the properties of the algorithm depend on

38



how these templates are instantiated, implementing the templates for users reduces the
surface area for bugs in user code. Gen also includes library functions for construct prim-
itive MCMC kernels that have certain properties that are necessary (but not sufficient)
for asymptotic exactness of MCMC algorithms, as well as a DSL for constructing compos-
ite kernels that are automatically instrumented with dynamic checks that detect common
bugs in composite MCMC kernels. Finally, Gen’s ADTs automate and encapsulate the low-
level computations of probabilities, probability densities, derivatives, and samplers, which
significantly reduces the code size and, as a result, the surface area for bugs in user code.

Implementing the self-normalized importance sampling template using Gen
We now illustrate Gen’s programming model using an example. The Julia code below
implements the self-normalized importance sampling template using Gen’s ADTs:

1 function importance_sampling(model::Gen.GenerativeFunction, observations,
2 proposal::Gen.GenerativeFunction, n::Int)
3 traces = [nothing for i in 1:n]
4 log_weights = [NaN for i in 1:n]
5 for i in 1:n
6 proposal_trace = Gen.simulate(proposal)
7 all_choices = merge(observations, Gen.get_choices(proposal_trace))
8 (traces[i], _) = Gen.generate(model, all_choices)
9 log_weights[i] = Gen.logpdf(traces[i]) - Gen.logpdf(proposal_trace)

10 end
11 weights = exp.(log_weights .- Gen.logsumexp(log_weights))
12 return (traces, weights)
13 end

This implementation is adapted from an implementation in Gen’s Julia library, but there is
no difference between inference code in Gen’s library and code that users write—both make
use of the same generative function and trace ADTs introduced in Section 1.2.3. We will
now walk through this code, describing how it behaves when run on the generative model
burglary_model to estimate the probability that there was a burglary (𝜎[burglary] = T)
given the observed data that a phone call was received (𝜌 = {calls ↦→ T}). The true answer
to this inference query was computed in Section 1.2.2.

First, consider the arguments to the function. The first argument is an instance of the
generative function ADT, and defines the generative model:

model::Gen.GenerativeFunction

We will pass the the generative function burglary_model for this argument. The second
argument is a dictionary containing the observed data:

observations

We will pass the dictionary 𝜌 := {calls ↦→ T} for this argument. In the Julia implementa-
tion of Gen, we can construct this dictionary using the following code:

observations = Gen.choicemap()
observations[:calls] = true

39



The third argument is another instance of the generative function ADT that describes the
proposal distribution:

proposal::Gen.GenerativeFunction

Recall that the proposal distribution is an auxiliary probability distribution (𝑞) that is used
by self-normalized importance sampling. Gen uses the same representation for generative
models and auxiliary probability distributions like proposal distributions. That is, proposal
distributions are expressed in the same probabilistic programming languages as generative
models. For example, consider the probabilistic program below, which defines a generative
function proposal1 = (𝑞, 𝑓):

1 @gen function proposal1()
2 burglary ∼ bernoulli(0.01)
3 if burglary
4 disabled ∼ bernoulli(0.1)
5 else
6 disabled = false
7 end
8 if !disabled
9 alarm ∼ bernoulli(if burglary 0.94 else 0.01 end)

10 end
11 return nothing
12 end

where 𝑞 and 𝑓 are given by:

𝜎 𝑞(𝜎) 𝑓(𝜎)
{burglary ↦→ F, alarm ↦→ F} 0.99 · 0.99 nothing
{burglary ↦→ F, alarm ↦→ T} 0.99 · 0.01 nothing

{burglary ↦→ T, disabled ↦→ F, alarm ↦→ F} 0.01 · 0.9 · 0.06 nothing
{burglary ↦→ T, disabled ↦→ F, alarm ↦→ T} 0.01 · 0.9 · 0.94 nothing

{burglary ↦→ T, disabled ↦→ T} 0.01 · 0.1 nothing

By comparing with the distribution 𝑝 for burglary_alarm, we can verify that the distribution
𝑞 satisfies the requirement for validity of importance sampling in Equation 1.5). The fourth
and final argument to the importance sampling function is the number of samples (𝑛). Now,
examine the body of importance_sampling. Lines 3 and 4 initialize arrays to store traces
of model and log weights log 𝑤𝑖 for each of the 𝑛 samples:

traces = [nothing for i in 1:n]
log_weights = [NaN for i in 1:n]

Next, we loop over each sample and populate these arrays. Line 6 samples a trace of the
generative function proposal using the generative function ADT operation simulate:

proposal_trace = Gen.simulate(proposal, ())

This line implements the ADT call proposal.simulate(𝑥) where 𝑥 = (). The empty tuple is
passed for 𝑥 because the proposal takes no arguments. The resulting value proposal_trace
is an instance of Gen’s trace ADT that contains data (proposal, (), 𝜎), where 𝜎 was sampled

40



from the proposal distribution (𝜎 ∼ 𝑞). Line 7 first retrieves the dictionary 𝜎 from this
trace via the choices ADT operation, which is implemented in Julia with:

Gen.get_choices(proposal_choices)

Then, Line 7 merges the resulting dictionary with the observations dictionary to produce
a dictionary called all_choices:

all_choices = merge(observations, Gen.get_choices(proposal_trace))

This corresponds to the mathematical operation 𝜎 ⊕ 𝜌. Next, Line 8 uses the generate
ADT operation on the generative function model, passing in the dictionary (𝜎 ⊕ 𝜌) as 𝜏 :

(traces[i], _) = Gen.generate(model, all_choices)

The next line uses the trace ADT operation logpdf separately on the model trace and the
proposal trace to compute log 𝑝(𝜎 ⊕ 𝜌)− log 𝑞(𝜎):

log_weights[i] = Gen.logpdf(traces[i]) - Gen.logpdf(proposal_trace)

After the for loop has completed, the array traces contains traces of the model t𝑖 =
(model, (), 𝜏𝑖) where 𝜏𝑖 = 𝜎𝑖 ⊕ 𝜌 for each 𝑖 = 1, . . . , 𝑛. Next, Line 11 implements Equa-
tions (1.6-1.8).

weights = exp.(log_weights .- Gen.logsumexp(log_weights))

In particular, Gen.logsumexp implements Equations (1.7-1.8). Finally, on Line 12, the
function returns the array of traces [t1, . . . , t2] and the array of weights [𝑤1, . . . , 𝑤𝑛]:

return (traces, weights)

Applying self-normalized importance sampling in Gen Having defined the algo-
rithm template for self-normalized importance sampling, we now apply it our inference
problem involving burglary_model using the following Julia code. First, we implement the
test function 𝑔, which indicates whether there was a burglary or not, in Julia:

g(trace) = trace[:burglary]

Then, we run the importance sampling algorithm template, passing burglary_model as
model and proposal1 as proposal. This generates the weighted collection of traces, which
we use to estimate of the expected value of the test function:

observations = Gen.choicemap()
observations[:calls] = true
n = 100
(traces, weights) = importance_sampling(burglary_model, observations, proposal1, n)
estimate = sum([g(trace) for trace in traces] .* weights)

This run uses 𝑛 = 100 samples. Using the ground truth value computed earlier, we can
evaluate the non-asymptotic approximation error of this algorithm. The algorithm was
run 𝑚 = 1000 times for each of 21 different values of 𝑛 ranging from 𝑛 = 10 to 𝑛 =
3000. Histograms of the estimates for each value of 𝑛 are shown in Figure 1-5a. They
converge on the true value as expected from an asymptotically exact algorithm. The mean

41



approximation error (Equation 1.3) as a function of running time is shown in the blue curve
in Figure 1-5c. The running time for each 𝑛 is the median across all 𝑚 replicates.

0.00 0.25 0.50

n = 10

0.00 0.25 0.50

n = 100

0.00 0.25 0.50

n = 1000

0.00 0.25 0.50

n = 10000

(a) Histograms of estimates of the conditional probability of burglary via self-normalized importance
sampling. The ground truth probability shown in red.

0.00 0.25 0.50

n = 10

0.00 0.25 0.50

n = 100

0.00 0.25 0.50

n = 1000

0.00 0.25 0.50

n = 10000

(b) Estimates of the conditional probability using an alternative proposal (proposal2).

10−4 10−3 10−2 10−1

Running time (seconds)

0.000

0.025

0.050

0.075

0.100

0.125

A
ve

ra
ge

er
ro

r

proposal1

proposal2

(c) Average approximation error of self-normalized importance sampling using two different proposal
distributions to estimated a conditional probability.

Figure 1-5: Approximation error of self-normalized importance sampling algorithms

Effect of proposal distribution on non-asymptotic approximation error Recall
that the choice of proposal distribution 𝑞 determines how many samples 𝑛 are needed to
achieve a given approximation error. We now illustrate this for our running example, by
defining an alternative proposal distribution:

42



1 @gen function proposal2()
2 burglary ∼ bernoulli(0.5)
3 if burglary
4 disabled ∼ bernoulli(0.5)
5 else
6 disabled = false
7 end
8 if !disabled
9 alarm ∼ bernoulli(if burglary 0.5 else 0.5 end)

10 end
11 end

Figure 1-5b shows estimates from self-normalized importance sampling with this proposal
distribution with different numbers of samples, and Figure 1-5c compares the approxima-
tion error to that of the algorithm using proposal1. Both proposals result in asymptotically
exact algorithms but the non-asymptotic error decreases much more rapidly for the algo-
rithm that uses proposal2 than the algorithm that uses proposal1 (note the log-scale on the
x-axis). The number of samples in self-normalized importance sampling needed to achieve
a given level of error depends on how close the proposal distribution is to the conditional
distribution of interest [21], which is why practitioners of inference routinely employ cus-
tom proposals. The proposal distributions used for the running example are simple, but
proposal distributions for real inference problems often use neural networks, heuristics, or
even probabilistic inference in other models, with important consequences efficiency of the
inference algorithm. The importance of the choice of proposal distributions and other aux-
iliary probability distributions motivates the use of expressive probabilistic programming
languages to specify them. In addition to the self-normalized importance sampling con-
struct introduced here, the thesis presents constructs that allow users to express custom
proposal distributions within MCMC and sequential Monte Carlo algorithms, and to train
proposal distributions to be more efficient using machine learning.

43



44



Chapter 2

Abstract Data Types for Inference:
Generative Functions and Traces

This chapter proposes that algorithms for inference in generative models be implemented
using an explicit software representation for generative models. We introduce two abstract
data types for inference called generative functions and traces. Generative functions rep-
resent models and traces represent the values of latent and observed random variables in
models. Representing models explicitly, and defining fixed data types for models and the
values of their variables affords advantages that broaden the accessibility of probabilis-
tic inference, improve productivity of users of probabilistic inference, and help to manage
the complexity of inference algorithm implementations. First, explicitly writing the model
makes modeling assumptions explicit and more easily checked and modified than if the
algorithm is implemented by translating the model and algorithm directly into low-level
numerical code. Second, the same common low-level computations on models are used
for various inference algorithms and for various models, which presents an opportunity for
these operations to be implemented once as part of a system and reused, reducing user
implementation burden and frequency of bugs. Finally, by abstracting away the generation
of data structures, density and gradient computations, incremental computation, and other
implementation details of inference algorithms, the data types let users to focus on using
their knowledge of the problem to design efficient inference strategies.

Generative functions are an abstract mathematical representation of probabilistic mod-
els that is expressive enough to permit models with random structures. Each random
variable (or random choice) in a model is assigned a unique name (or address) by the
modeler. To a first approximation, a generative function is a probability distribution on
dictionaries that map addresses to their values. Users define generative functions using
modeling languages like Gen’s Dynamic Modeling Language (DML), which allow code in
a general-purpose language (e.g. Julia) to be interleaved with sampling statements where
random choices are made and labeled with an address. An important feature of generative
functions is that they are composable—it is possible to construct generative functions from
other generative functions using regular function-call syntax in a modeling language. To
support such compositions, generative functions have arguments and a return value in addi-

45



tion to their random choices, and modeling languages allow users to construct a hierarchical
address namespace for random choices that mirrors the call tree of generative functions.

Generative functions and traces expose a core set of operations that are sufficient for
implementing a broad array of inference algorithms. This chapter introduces operations
including simulating traces from a generative function (simulate), generating a trace from
arguments and values of random choices (generate), making an incremental update to a
trace (update), evaluating the probability of a trace (logpdf), and computing gradients
of the probability of a trace with respect to the values of random choices and the arguments
to the generative function (gradients). This chapter gives examples of generative func-
tions expressed mathematically, as well as with corresponding Gen DML code. Chapter 3
shows how the operations provided by generative functions and traces can be used to imple-
ment inference algorithms at a high level of abstraction. Chapter 4 extends the generative
function and trace data types with additional capabilities, and Chapter 5 discusses how
generative functions are compiled from modeling language code.

2.1 An abstract formal representation for generative models

This section describes a mathematical representation for generative models called the gen-
erative function. The design of the generative function representation is based on several
desiderata: First, the representation should be flexible enough to represent models that
employ discrete and continuous random variables and structure uncertainty (i.e. the set
of random variables sampled is itself random). Therefore, a representation based on joint
distributions over a vector of random variables will not suffice. Second, the representation
should be sufficient for implementing a wide variety of Monte Carlo and variational infer-
ence approaches to inference. Third, the representation should be minimal—it should not
contain additional features than are needed to implement these algorithms. In Chapter 4,
we will extend generative functions with the ability to encapsulate some limited inference
logic within themselves. (Incrementally extending generative functions characterizing the
added expressiveness introduced at each stage is intended to motivate each aspect of Gen’s
design, and to illuminate the type of tradeoffs between complexity, expressiveness, and per-
formance that are inherent in probabilistic programming platform design more broadly.)
Finally, it should be possible to translate from programs written in probabilistic modeling
languages into their mathematical representation as generative functions. In this chapter, I
show examples of models written in Gen’s Dynamic Modeling Language (DML) alongside
their mathematical representation as generative functions.

2.1.1 Random choices, addresses, and choice dictionaries

Probabilistic generative models encode a joint probability distribution over a set of random
variables. Because we seek to represent generative models where the set of random variables
is itself random, care in identifying these random variables is needed. To distinguish between
the standard notion of random variable and the notion used in generative functions (and
adopting nomenclature from probabilistic programming), we use the phrase random choice
instead of ‘random variable’. Random choices are identified by their address. We first

46



formalize the setting where random choices take values from a finite or countably infinite
set (like discrete random variables), and relax this restriction later in the section.

Definition 2.1.1 (Address universe). Let 𝐴 be a finite or countably infinite set of addresses.
For each 𝑎 ∈ 𝐴, let 𝑉𝑎 denote the domain of 𝑎, where 𝑉𝑎 is finite or countably finite. A pair
(𝐴, 𝑉 ), which defines a set of addresses and their domains, is called an address universe.

Example: Suppose 𝐴 = {𝑎, 𝑏}, and 𝑉𝑎 = 𝑉𝑏 = {0, 1}. Then address universe (𝐴, 𝑉 )
contains two addresses, and the domain of both addresses is {0, 1}.

Example: Suppose 𝐴 = N, 𝑉1 = N and 𝑉𝑖 = {T, F} for 𝑖 ∈ {2, 3, . . .}. Then address uni-
verse (𝐴, 𝑉 ) contains a countably infinite number of addresses, where address 1 has domain
N and other addresses (2, 3, . . .) have domain {T, F}.

A probabilistic generative model is traditionally defined as a probability distribution on
𝑛-tuples (𝑥1, . . . , 𝑥𝑛) ∈ (𝑉1, . . . , 𝑉𝑛) called a joint probability distribution for some fixed set
of 𝑛 random variables with domains 𝑉1, . . . , 𝑉𝑛. But joint probability distributions cannot
represent models where the set of random variables is itself random. Therefore, we define
a probabilistic generative models as a probability distributions on a richer class of objects,
namely associative arrays or dictionaries. We call these objects choice dictionaries.

Definition 2.1.2 (Choice dictionary). A choice dictionary in address universe (𝐴, 𝑉 ) is
a map 𝜎 : 𝐴𝜎 → ∪𝑎∈𝐴𝑉𝑎 where 𝐴𝜎 is a finite subset of 𝐴 and where 𝜎(𝑎) ∈ 𝑉𝑎 for all
𝑎 ∈ 𝐴𝜎. Equivalently, 𝜎 is a finite set of pairs {(𝑎1, 𝑣1), . . . , (𝑎𝑘, 𝑣𝑘)} such that each 𝑎𝑖 ∈ 𝐴
appears once and 𝑣𝑖 ∈ 𝑉𝑎𝑖 for each 𝑖.

We will use bold lowercase Greek letters (usually 𝜌, 𝜎, 𝜏 and 𝜐) to denote choice dic-
tionaries. We will use the syntax 𝜎[𝑎] := 𝜎(𝑎) to denote the value stored at address 𝑎. We
will sometimes represent choice dictionaries using the notation {𝑎1 ↦→ 𝑣1, 𝑎2 ↦→ 𝑣2, · · · }. For
example, the choice dictionary 𝜎 with 𝜎[𝑎1] = 0 and 𝜎[𝑎2] = 1 is denoted {𝑎1 ↦→ 0, 𝑎2 ↦→ 1}.
Assume that there exists some address universe (𝐴, 𝑉 ). For a set 𝐵 ⊆ 𝐴 let 𝜎|𝐵 denote the
restriction of 𝜎 to the set 𝐵; that is, the dictionary obtained by removing entries for all
addresses not in 𝐵. We say that two choice dictionaries 𝜎 and 𝜏 agree (denoted 𝜎 ∼ 𝜏 ) if
𝜎[𝑎] = 𝜏 [𝑎] for all 𝑎 ∈ 𝐴𝜎∩𝐴𝜏 . For two disjoint choice dictionaries 𝜎 and 𝜏 (|𝐴𝜎∩𝐴𝜏 | = 0),
let 𝜎 ⊕ 𝜏 denote the merge of 𝜎 and 𝜏 . That is, 𝜌 = 𝜎 ⊕ 𝜏 is a choice dictionary where
𝐴𝜌 = 𝐴𝜎 ∪𝐴𝜏 and 𝜌[𝑎] = 𝜎[𝑎] for all 𝑎 ∈ 𝐴𝜌 and 𝜌[𝑎] = 𝜏 [𝑎] for all 𝑎 ∈ 𝐴𝜏 .

For a finite set 𝐵 ⊆ 𝐴 let 𝒯𝐵 denote the set of all choice dictionaries 𝜎 such that
𝐴𝜎 = 𝐵; that is, the set of all choice dictionaries that contain an entry for each address in
𝐵 and only addresses in 𝐵. For a set 𝐵 ⊆ 𝐴, let 𝒯 ⋆

𝐵 denote the set of all choice dictionaries
that contain entries for some subset of the addresses in 𝐵:

𝒯 ⋆
𝐵 :=

⋃︁
𝐶⊆𝐵

|𝐶|<∞

𝒯𝐶

47



Example: For 𝐴 = {𝑎, 𝑏} and 𝑉𝑎 = 𝑉𝑏 = {0, 1}, 𝒯 ⋆
𝐴 contains nine choice dictionaries:

𝒯 ⋆
𝐴 =

⎧⎪⎨⎪⎩
{},
{𝑎 ↦→ 0}, {𝑎 ↦→ 1}, {𝑏 ↦→ 0}, {𝑏 ↦→ 1},
{𝑎 ↦→ 0, 𝑏 ↦→ 0}, {𝑎 ↦→ 0, 𝑏 ↦→ 1}, {𝑎 ↦→ 1, 𝑏 ↦→ 0}, {𝑎 ↦→ 1, 𝑏 ↦→ 1}

⎫⎪⎬⎪⎭
Note that choice dictionaries are always finite, but there may be no upper bound on the

number of addresses they may contain. For example, for 𝐴 = N and 𝑉𝑛 = {1} for all 𝑛 ∈ N,
there is a choice dictionary {1 ↦→ 1, 2 ↦→ 1, . . . , 𝑘 ↦→ 1} ∈ 𝒯 ⋆

𝐴 for each 𝑘 ∈ N. However, if
each address has a countable domain, then the set of all choice dictionaries is countable.

Proposition 2.1.1. 𝒯 ⋆
𝐴 is countable for all address universes (𝐴, 𝑉 ).

Proof. Recall that 𝐴 is countable. Let 𝐶 be a finite subset of 𝐴. Then, 𝒯𝐶 is countable
because it is isomorphic to the Cartesian product of a finite set of countable sets (𝑉𝑎 for
each 𝑎 ∈ 𝐶). Then, 𝒯 ⋆

𝐴 is countable because it is the countable union of countable sets
𝒯𝐶 .

2.1.2 Probability distributions on choice dictionaries

Given an address universe (𝐴, 𝑉 ) we denote probability distributions on choice dictionaries
in 𝒯 ⋆

𝐴 by 𝑝, where 𝑝(𝜏 ) denotes the probability of choice dictionary 𝜏 ∈ 𝒯 ⋆
𝐴 . Formally

𝑝 is a map 𝑝 : 𝒯 ⋆
𝐴 → [0, 1] such that

∑︀
𝜏∈𝒯 ⋆

𝐴
𝑝(𝜏 ) = 1. We denote the support of 𝑝 by

supp(𝑝) := {𝜏 ∈ 𝒯 ⋆
𝐴 : 𝑝(𝜏 ) > 0}. We will sometimes denote probability distributions on

choice dictionaries using tables, with a row for each dictionary in the support.

Example: Making a single random choice The table below defines a probability
distribution 𝑝 on choice dictionaries for 𝐴 = {𝑎} and 𝑉1 = {T, F}.

𝜏 𝑝(𝜏 )
{𝑎 ↦→ T} 0.3
{𝑎 ↦→ F} 0.7

Example: Making either one or two random choices For 𝐴 = {𝑎, 𝑏} and 𝑉𝑎 =
𝑉𝑏 = {T, F}, the following probability distribution 𝑝 cannot be expressed as a standard joint
distribution. With probability 0.3 there is a single random choice with address 𝑎 and with
probability 0.7 there are two random choices, with addresses 𝑎 and 𝑏:

𝜏 𝑝(𝜏 )
{𝑎 ↦→ T, 𝑏 ↦→ T} 0.42
{𝑎 ↦→ T, 𝑏 ↦→ F} 0.28
{𝑎 ↦→ F} 0.3

48



Example: Making an unbounded number of random choices Probability dis-
tributions on choice dictionaries can have countably infinite support, due to making an
unbounded number of random choices and/or due to individual random choices having
a countably infinite domain. For example, consider the distribution 𝑝1 for 𝐴 = N and
𝑉𝑛 = {T, F} for all 𝑛 ∈ N, and the distribution 𝑝2 for 𝐴 = {1} and 𝑉𝑎 = N:

𝜏 𝑝1(𝜏 )
{1 ↦→ F} 0.5

{1 ↦→ T, 2 ↦→ F} 0.52

{1 ↦→ T, 2 ↦→ T, 3 ↦→ F} 0.53

. . . . . .

𝜏 𝑝2(𝜏 )
{1 ↦→ 1} 0.5
{1 ↦→ 2} 0.52

{1 ↦→ 3} 0.53

. . . . . .

Each of the example distributions given above satisfies the following property:

Definition 2.1.3 (Structured probability distribution on choice dictionaries). A probability
distribution 𝑝 on choice dictionaries is called structured if for all 𝜏 , 𝜏 ′ ∈ supp(𝑝) either
𝜏 = 𝜏 ′ or 𝜏 [𝑎] ̸= 𝜏 ′[𝑎] for some 𝑎 ∈ 𝐴𝜏 ∩ 𝐴𝜏 ′. Equivalently, 𝜏 , 𝜏 ′ ∈ supp(𝑝) and 𝜏 ∼ 𝜏 ′

implies that 𝜏 = 𝜏 ′.

Example: Probability distribution on choice dictionaries that is not structured
Let 𝐴 = {𝑎} and 𝑉𝑎 = {T, F}. The distribution 𝑝 on choice dictionaries defined below is
not structured. For 𝜏1 = {} and 𝜏2 = {𝑎 ↦→ T} we have 𝐴𝜏1 = ∅ ̸= {𝑎} = 𝐴𝜏2 , and 𝜏1 and
𝜏2 have no addresses in common to which they assign different values.

𝜏 𝑝(𝜏 )
{} 0.5

{𝑎 ↦→ T} 0.25
{𝑎 ↦→ F} 0.25

Example: Probability distribution on choice dictionaries that is not structured
Let 𝐴 = N and 𝑉𝑖 = {1} for all 𝑖 ∈ N. The following is also not a structured probability
distribution on choice dictionaries, because e.g. for 𝜏1 = {1 ↦→ 1} and 𝜏2 = {1 ↦→ 1, 2 ↦→ 1}
we have 𝐴𝜏1 = {1} ≠ {1, 2} = 𝐴𝜏2 but 𝜏1[1] = 𝜏2[1]:

𝜏 𝑝(𝜏 )
{1 ↦→ 1} 0.5

{1 ↦→ 1, 2 ↦→ 1} 0.25
{1 ↦→ 1, 2 ↦→ 1, 3 ↦→ 1} 0.125

. . . . . .

The structured property allows differences in structure (the set of addresses) between
two choice dictionaries in the support of a distribution 𝑝 to be associated with a difference
in the value of some shared random choice. We will use this property in Section 1.2.3.

49



2.1.3 Marginal likelihood, conditioning, and expectation

In standard generative model representations, a joint probability distribution on latent and
observed random variables is conditioned on the observed values of the observed random
variables to obtain a conditional distribution on the latent random variables. This section
defines an analogous notion for conditioning for probability distributions on choice dictio-
naries. We assume that observed data is represented as a choice dictionary 𝜌 ∈ 𝒯 ⋆

𝐴 . There
are two types of events associated with a choice dictionary 𝜌, denoted 𝐸𝜌 and 𝐸′

𝜌, that
result in two different notions of conditioning on 𝜌:

𝐸𝜌 = {𝜏 ∈ 𝒯 ⋆
𝐴 : 𝜏 ∼ 𝜌} and 𝐸′

𝜌 = {𝜏 ∈ 𝒯 ⋆
𝐴 : (𝐴𝜏 ⊇ 𝐴𝜌) ∧ (𝜏 ∼ 𝜌)} (2.1)

𝐸𝜌 requires that 𝜏 agrees with 𝜌 on all addresses that it shares with 𝜌 but does not require
that 𝜏 contains all addresses in 𝜌. 𝐸′

𝜌 does require that 𝜏 contains all addresses in 𝜌.

Example: Two types of events associated with an observed choice dictionary
For 𝜌 = {2 ↦→ T}, compare 𝐸𝜌 and 𝐸′

𝜌 for the following collection of choice dictionaries 𝜏 :

𝜏 𝜏 ∈ 𝐸𝜌 𝜏 ∈ 𝐸′
𝜌

{1 ↦→ F} 3 7

{1 ↦→ T, 2 ↦→ F} 7 7

{1 ↦→ T, 2 ↦→ T, 3 ↦→ F} 3 3

Note that the two events 𝐸𝜌 and 𝐸′
𝜌 are equivalent if 𝜌 has the following property.

Definition 2.1.4 (Existentially sound choice dictionary). A choice dictionary 𝜌 ∈ 𝒯 ⋆
𝐴 is

existentially sound under distribution 𝑝 if 𝜏 ∈ supp(𝑝) implies 𝐴𝜌 ⊆ 𝐴𝜏 .

We will proceed with defining conditioning using the first type of event (𝐸𝜌) because it
simplifies the formalism of internal proposals that will be introduced in Chapter 4. Through-
out the thesis we assume that dictionaries 𝜌 representing observed data are existentially
sound, so there is no distinction between 𝐸𝜌 and 𝐸′

𝜌. First we define the marginal likelihood
of a choice dictionary 𝜎 as the probability of the event 𝐸𝜎.

Definition 2.1.5 (Marginal likelihood of a choice dictionary). For a probability distribution
𝑝 on choice dictionaries and some 𝜎 ∈ 𝒯 ⋆

𝐴 the marginal likelihood of 𝜎 under 𝑝 is:

𝑝(𝜎) :=
∑︁

𝜏∈𝒯 ⋆
𝐴

𝑝(𝜏 )[𝜏 ∈ 𝐸𝜎] =
∑︁

𝜏∈𝒯 ⋆
𝐴

𝑝(𝜏 )[𝜏 ∼ 𝜎] =
∑︁

𝐵⊆𝐴𝜎

∑︁
𝜐∈𝒯 ⋆

𝐴∖𝐴𝜎

𝑝(𝜐 ⊕ (𝜎|𝐵)) (2.2)

where [·] denotes the indicator function.

If the distribution 𝑝 is structured, then there is only one 𝐵 with a nonzero term in
Equation (2.2). If 𝑝 is structured and 𝜎 is existentially sound under 𝑝, then the nonzero

50



term has 𝐵 = 𝐴𝜎 and Equation (2.2) simplifies to:

𝑝(𝜎) =
∑︁

𝜐∈𝒯 ⋆
𝐴∖𝐴𝜐

𝑝(𝜐 ⊕ 𝜎) (2.3)

Definition 2.1.6 (Conditional distribution on choice dictionaries). For a probability distri-
bution on choice dictionaries 𝑝 and a choice dictionary 𝜎 ∈ 𝒯 ⋆

𝐴 such that 𝑝(𝜎) > 0, the con-
ditional distribution induced by 𝑝 and 𝜎 is the probability distribution 𝑝(·|𝜎) : 𝒯 ⋆

𝐴∖𝐴𝜎
→ [0, 1]

given by:
𝑝(𝜐|𝜎) :=

∑︁
𝐵⊆𝐴𝜎

𝑝(𝜐 ⊕ (𝜎|𝐵))
𝑝(𝜎) (2.4)

If 𝑝 is structured then only one term in this sum is nonzero. If 𝑝 is structured and 𝜎 is
existentially sound, then this term has 𝐵 = 𝐴𝜎 and Equation (2.4) simplifies to:

𝑝(𝜐|𝜎) = 𝑝(𝜐 ⊕ 𝜎)
𝑝(𝜎) (2.5)

Example: Consider the distribution 𝑝 given by 𝑝({𝑛 ↦→ 1, 𝑎 ↦→ T}) := 0.5 ·0.2 and 𝑝({𝑛 ↦→
1, 𝑎 ↦→ F}) := 0.5 · 0.8 and 𝑝({𝑛 ↦→ 𝑖, 𝑎 ↦→ T}) := 0.5𝑖 · 0.9 and 𝑝({𝑛 ↦→ 𝑖, 𝑎 ↦→ F}) := 0.5𝑖 · 0.1
for 𝑖 > 1, and 𝑝(𝜏 ) = 0 otherwise. Let 𝜎1 := {𝑎 ↦→ T} and 𝜎2 := {𝑎 ↦→ F}. Then
𝑝(𝜎1) = 0.55 and 𝑝(𝜎2) = 0.45, and the respective conditional distributions are:

𝜏 𝑝(𝜏 ) 𝜏 ∈ 𝐸𝜎1 𝜏 ∈ 𝐸𝜎2

{𝑛 ↦→ 1, 𝑎 ↦→ T} 0.5 · 0.2 3 7

{𝑛 ↦→ 1, 𝑎 ↦→ F} 0.5 · 0.8 7 3

{𝑛 ↦→ 2, 𝑎 ↦→ T} 0.52 · 0.9 3 7

{𝑛 ↦→ 2, 𝑎 ↦→ F} 0.52 · 0.1 7 3

{𝑛 ↦→ 3, 𝑎 ↦→ T} 0.53 · 0.9 3 7

{𝑛 ↦→ 3, 𝑎 ↦→ F} 0.53 · 0.1 7 3

. . . . . . . . . . . .

𝜐 𝑝(𝜐|𝜎1) 𝑝(𝜐|𝜎2)
{𝑛 ↦→ 1} 0.1818 0.8888
{𝑛 ↦→ 2} 0.40909 0.05555
{𝑛 ↦→ 3} 0.204545 0.027777

. . . . . . . . .

Example: Consider the distribution 𝑝 below, and the conditional distribution 𝑝(·|𝜎) for
𝜎 := {2 ↦→ T}. The marginal likelihood is 𝑝(𝜎) = 0.5 +

∑︀∞
𝑖=3 0.5𝑖 = 0.75. Note that 𝜎 is

not existentially sound. In particular, the address 2 is not in 𝜏 = {1 ↦→ F} ∈ supp(𝑝).

𝜏 𝑝(𝜏 ) 𝜏 ∈ 𝐸𝜎

{1 ↦→ F} 0.5 3

{1 ↦→ T, 2 ↦→ F} 0.52 7

{1 ↦→ T, 2 ↦→ T, 3 ↦→ F} 0.53 3

{1 ↦→ T, 2 ↦→ T, 3 ↦→ T, 4 ↦→ F} 0.54 3

. . . . . .

𝜐 𝑝(𝜐|𝜎)
{1 ↦→ F} 0.66̄
{1 ↦→ T} 0

{1 ↦→ T, 3 ↦→ F} 0.16̄
{1 ↦→ T, 3 ↦→ T, 4 ↦→ F} 0.083̄

. . . . . .

51



Recall that the conditional distribution 𝑝(·|𝜎) is not defined if 𝑝(𝜎) = 0. The following
property guarantees that the conditional distribution is defined for any 𝜎 ∈ 𝒯 ⋆

𝐴 .

Definition 2.1.7 (Supportive probability distribution on choice dictionaries). For an ad-
dress universe (𝐴, 𝑉 ), a probability distribution on choice dictionaries 𝑝 is called supportive
if 𝑝(𝜎) > 0 for all 𝜎 ∈ 𝒯 ⋆

𝐴 .

Example: A non-supportive probability distribution on choice dictionaries Let
𝐴 = {𝑎}. The following 𝑝 is not supportive if 𝑉𝑎 = {T, F}, but it is supportive if 𝑉𝑎 = {T}.

𝜏 𝑝(𝜏 )
{𝑎 ↦→ T} 1

Definition 2.1.8 (Expectation of a function of a choice dictionary). We denote the expec-
tation of a function 𝑔 : 𝒯 ⋆

𝐴 → R with respect to a probability distribution 𝑝 on 𝒯 ⋆
𝐴 by:

E𝜏∼𝑝[𝑔(𝜏 )] :=
∑︁

𝜏∈𝒯 ⋆
𝐴

𝑝(𝜏 )𝑔(𝜏 )

when the value of this sum is well-defined.

Note that even when the when the expectation is well-defined, it may be infinite.

2.1.4 Generalizing beyond discrete random choices

The previous section described discrete probability distributions on choice dictionaries.
However, it is common to use continuous probability distributions (e.g. normal, beta) to
construct generative models, which necessitates domains 𝑉𝑎 for random choices that are
uncountably infinite (e.g. R or [0, 1]). This section generalizes the notion of a probabil-
ity distribution on choice dictionaries, replacing the probability mass function 𝑝 with a
probability density function with respect to an appropriate reference measure.

Definition 2.1.9 (Measure-theoretic address universe). A measure-theoretic address uni-
verse is a tuple (𝐴, 𝑉, 𝑀) where 𝐴 is a finite or countably infinite set of addresses and for
each 𝑎 ∈ 𝐴, 𝑉𝑎 is a set called the domain of 𝑎 that may be finite, countably infinite, or
uncountably infinite, and 𝑀𝑎 = (Σ𝑎, 𝜇𝑎) where (𝑉𝑎, Σ𝑎, 𝜇𝑎) is a measure space and 𝜇𝑎 is a
𝜎-finite measure.

The sets of dictionaries 𝒯𝐵 and 𝒯 ⋆
𝐵 for sets 𝐵 ⊆ 𝐴 are defined analogously to how

they were defined for the discrete address universes above. However, these are no longer
necessarily countable sets.

Definition 2.1.10 (Reference measure on choice dictionaries). Let (𝐴, 𝑉, 𝑀) be a measure-
theoretic address universe. For each finite 𝐵 ⊆ 𝐴, let (𝒯𝐵, Σ𝐵) denote the product mea-
surable space where 𝒯𝐵 := {(𝐵, v) : v ∈ ×𝑎∈𝐵𝑉𝑎)} and Σ𝐵 is the 𝜎-algebra generated
by {{(𝐵,×𝑎∈𝐵𝐶𝑎)} : 𝐶𝑎 ∈ Σ𝑎 for all 𝑎 ∈ 𝐵}. Let 𝜇𝐵 denote the (unique, 𝜎-finite)
measure with 𝜇𝐵({(𝐵,×𝑎∈𝐵𝐶𝑎)}) =

∏︀
𝑎∈𝐵 𝜇𝑎(𝐶𝑎). Let 𝒯 ⋆

𝐴 := ∪𝐵⊆𝐴,|𝐵|<∞𝒯𝐵, and let

52



Σ⋆
𝐴 := {∪𝐵⊆𝐴,|𝐵|<∞𝐶𝐵 : 𝐶𝐵 ∈ Σ𝐵 for all 𝐵}. The reference measure induced by (𝐴, 𝑉, 𝑀)

is the measure 𝜇⋆
𝐴 on the measurable space (𝒯 ⋆

𝐴 , Σ⋆
𝐴), defined by:

𝜇⋆
𝐴(𝐶) :=

∑︁
𝐵⊆𝐴

|𝐵|<∞

𝜇𝐵(𝐶𝐵) for 𝐶 =
⋃︁

𝐵⊆𝐴
|𝐵|<∞

𝐶𝐵

Example: Let 𝐴 := {n, y} ∪ {(x, 1), (x, 2), . . .} where n, y, and x are (single-character)
strings1, and 𝑉n := {1, 2, . . .}, and 𝑉y := R, and 𝑉(x,𝑖) := R for 𝑖 ∈ {1, 2, . . .}. Let
Σn be the set of all subsets of 𝑉n and 𝜇n(𝐶) := |𝐶| (the counting measure). For 𝑎 ∈
{y}∪{(x, 1), (x, 2), . . .}, let Σ𝑎 and 𝜇𝑎 denote the Borel 𝜎-algebra and Lebesgue measure on
R, respectively. Let 𝐶1 := {{n ↦→ 1, (x, 1) ↦→ 𝑥1} : 𝑥1 ∈ [𝛼11, 𝛽11]}, 𝐶2 := {{n ↦→ 2, (x, 1) ↦→
𝑥1, (x, 2) ↦→ 𝑥2} : 𝑥1 ∈ [𝛼21, 𝛽21], 𝑥2 ∈ [𝛼22, 𝛽22]}, and 𝐶3 := {{n ↦→ 3, (x, 1) ↦→ 𝑥1, (x, 2) ↦→
𝑥2} : 𝑥1 ∈ [𝛼31, 𝛽31], 𝑥2 ∈ [𝛼32, 𝛽32]}. Consider the set 𝐶 := 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∈ Σ⋆

𝐴. The
reference measure of this set is:

𝜇⋆
𝐴(𝐶) = 𝜇{n,(x,1)}(𝐶1) + 𝜇{n,(x,1),(x,2)}(𝐶2) + 𝜇{n,(x,1),(x,2)}(𝐶3)

= 1 · (𝛽11 − 𝛼11) + 1 · (𝛽21 − 𝛼21) · (𝛽22 − 𝛼22) + 1 · (𝛽31 − 𝛼31) · (𝛽32 − 𝛼32)

For a measure-theoretic address universe (𝐴, 𝑉, 𝑀), we denote probability densities
with respect to the reference measure 𝜇⋆

𝐴 by 𝑝. Formally, 𝑝 is a 𝜇⋆
𝐴-measurable function

𝑝 : 𝒯 ⋆
𝐴 → [0,∞) such that

∫︀
𝒯 ⋆

𝐴
𝑝(𝜏 )𝜇⋆

𝐴(𝑑𝜏 ) = 1. We denote the set of dictionaries with
nonzero density under 𝑝 by supp(𝑝).

Example: Let (𝐴, 𝑉, 𝑀) be the measure-theoretic address universe defined in the previous
example. Consider the following density 𝑝 with respect to 𝜇⋆

𝐴:

𝑝(𝜏 ) :=
{︃

𝑝geom(0.5)(𝜏 [n])
∏︀𝜏 [n]

𝑖=1 𝑝norm(0,1)(𝜏 [(x, 𝑖)]) if 𝐴𝜏 = {n, (x, 1), . . . , (x, 𝜏 [n])}
0 otherwise

where 𝑝geom(0.5) is the probability mass function for a geometric distribution with success
probability parameter 0.5, and 𝑝norm(0,1) is the probability density function for a normal
distribution with mean 0 and standard deviation 1. A natural procedure for sampling a
choice dictionary from the measure encoded the density 𝑝 is to (i) first sample 𝑛 from the
geometric distribution, and then (ii) sample 𝑛 times from the standard normal distribution.

Definition 2.1.11 (Well-behaved probability density on choice dictionaries). Note that
for every 𝐵 ⊆ 𝐴 there is a measure-theoretic address universe (𝐴 ∖ 𝐵, 𝑉, 𝑀), consisting
of choice dictionaries 𝜐 ∈ 𝒯 ⋆

𝐴∖𝐵, with reference measure 𝜇⋆
𝐴∖𝐵. A probability density 𝑝 on

choice dictionaries is well-behaved if for every 𝜎 ∈ 𝒯 ⋆
𝐴 , the function 𝜐 ↦→ 𝑝(𝜐 ⊕ 𝜎) is

measurable with respect to 𝜇⋆
𝐴∖𝐴𝜎

and
∫︀

𝒯 ⋆
𝐴∖𝐴𝜎

𝑝(𝜐 ⊕ 𝜎)𝜇⋆
𝐴∖𝐴𝜎

(𝑑𝜐) <∞.

1We allow addresses to take any type of value. We will denote strings using fixed-width font. For
example, foo is a string. The address (x, 2) is a tuple of a string and an integer.

53



We also define structured probability densities on choice dictionaries, and existentially
sound choice dictionaries, using the earlier definitions for the discrete case without modifi-
cation (Definition 2.1.3 and Definition 2.1.4), but where 𝑝 is a probability density function
instead of a probability mass function. We now define measure-theoretic notions of marginal
likelihood and conditioning.

Definition 2.1.12 (Measure-theoretic marginal likelihood of a choice dictionary). For a
well-behaved probability density on choice dictionaries 𝑝 and a choice dictionary 𝜎 ∈ 𝒯 ⋆

𝐴

the marginal likelihood of 𝜎 under 𝑝 is:

𝑝(𝜎) :=
∑︁

𝐵⊆𝐴𝜎

∫︁
𝒯 ⋆

𝐴∖𝐴𝜎

𝑝(𝜐 ⊕ (𝜎|𝐵))𝜇⋆
𝐴∖𝐴𝜎

(𝑑𝜐) (2.6)

In the special case when all of the random choices are discrete, this is equivalent to the
definition of the marginal likelihood given in the previous section. However, unlike in the
case of discrete choices only, the measure-theoretic marginal likelihood is not a probability
and may be greater than 1. If 𝜎 is existentially sound and 𝑝 is structured, then there
is at most one nonzero term in Equation (2.6), with 𝐵 = 𝐴𝜎, and the measure-theoretic
marginal likelihood of 𝜎 is:

𝑝(𝜎) =
∫︁

𝒯 ⋆
𝐴∖𝐴𝜎

𝑝(𝜐 ⊕ 𝜎)𝜇⋆
𝐴∖𝐴𝜎

(𝑑𝜐) (2.7)

Example: Consider an address universe with 𝐴 := {n}∪∞
𝑖=1{(x, 𝑖)}, where 𝑉n := {1, 2, . . .}

and 𝑉(x,𝑖) := R for all 𝑖 ∈ {1, 2, . . .}. Now consider the density 𝑝(𝜏 ) that is zero if n ̸∈ 𝐴𝜏

or if 𝐴𝜏 ̸= {n, (x, 1), . . . , (x, 𝜏 [n])}, and is otherwise

𝑝geom(0.5)(𝜏 [n]) ·

⎛⎝𝜏 [n]∏︁
𝑖=1

𝑝norm(0,1)(𝜏 [(x, 𝑖)])

⎞⎠ · 𝑝norm(𝑚(𝜏 ),1)(𝜏 [y]) where 𝑚(𝜏 ) :=
𝜏 [n]∑︁
𝑖=1

𝜏 [(x, 𝑖)]

That is, there is a geometrically-distributed number of random choices (x, 𝑖) that are each
independently and identically distributed, and a normally distributed random choice y
whose mean is the sum of these. For 𝜎 := {y ↦→ 1.5}, the marginal likelihood is, where
𝐵𝑛 := {n, (x, 1), . . . , (x, 𝑛)}:

𝑝(𝜎) =
∞∑︁

𝑛=1

∫︁
𝒯𝐵𝑛

𝑝geom(0.5)(𝜐[n])
𝜐[n]∏︁
𝑖=1

𝑝norm(0,1)(𝜐[(x, 𝑖)])𝑝norm(𝑚(𝜐),1)(𝜎[y])𝜇𝐵𝑛(𝑑𝜐)

=
∞∑︁

𝑛=1
𝑝geom(0.5)(𝑛)

∫︁
R𝑛

𝑛∏︁
𝑖=1

𝑝norm(0,1)(𝑥𝑖) · 𝑝norm(
∑︀𝑛

𝑖=1 𝑥𝑖,1)(𝜎[y])𝑑x

=
∞∑︁

𝑛=1
0.5𝑛 1√

2𝜋
√︀

(𝑛 + 1) exp(0.5𝜎[y]2/(𝑛 + 1))
≈ 0.15573434

Definition 2.1.13 (Measure-theoretic conditional density). For a well-behaved probability
density on choice dictionaries 𝑝 and a choice dictionary 𝜎 ∈ 𝒯 ⋆

𝐴 where 𝑝(𝜎) > 0, the

54



conditional density induced by 𝑝 and 𝜎 is the following probability density on 𝜐, with respect
to the reference measure 𝜇⋆

𝐴∖𝐴𝜎
:

𝑝(𝜐|𝜎) :=
∑︁

𝐵⊆𝐴𝜎

𝑝(𝜐 ⊕ (𝜎|𝐵))
𝑝(𝜎) (2.8)

When 𝐴 only contains discrete random choices, this simplifies to Definition 2.1.6. If 𝜎
is existentially sound under 𝑝 and 𝑝 is structured, then the conditional density simplifies:

𝑝(𝜐|𝜎) = 𝑝(𝜐 ⊕ 𝜎)
𝑝(𝜎) (2.9)

Example: For the previous example, the conditional density 𝑝(·|𝜎) where 𝐴𝜎 = {y} (that
is, where only the address y is observed), is:

𝑝(𝜐|𝜎) =
0.5𝜐[n] ·

∏︀𝜐[n]
𝑖=1 𝑝norm(0,1)(𝜐[(x, 𝑖)]) · 𝑝norm(𝑚(𝜐),1)(𝜎[y])∑︀∞

𝑛=1 0.5𝑛(2𝜋)−1/2(𝑛 + 1)−1/2 exp(−0.5𝜎[y]2/(𝑛 + 1))

if 𝐴𝜐 = {n, (x, 1), . . . , (x, 𝜐[n])}, and 𝑝(𝜐|𝜎) = 0 otherwise.

Proposition 2.1.2. If 𝑝 is a structured density on choice dictionaries, then for any 𝜎 such
that 𝑝(𝜎) > 0, the density 𝑝(·|𝜎) is also structured.

Proof. Suppose 𝑝(·|𝜎) is not structured. Then, there exists 𝜐1, 𝜐2 ∈ 𝒯 ⋆
𝐴∖𝐴𝜎

such that
𝜐1 ̸= 𝜐2 and 𝜐1 ∼ 𝜐2 and 𝑝(𝜐1|𝜎) > 0 and 𝑝(𝜐2|𝜎) > 0. This implies that 𝑝(𝜐1⊕(𝜎|𝐵1)) > 0
and 𝑝(𝜐2⊕(𝜎|𝐵2)) > 0 for some 𝐵1 and 𝐵2. But then 𝜏1 := 𝜐1⊕(𝜎|𝐵1) and 𝜏2 := 𝜐2⊕(𝜎|𝐵2)
satisfy 𝜏1 ̸= 𝜏2 and 𝜏1 ∼ 𝜏2 and 𝑝(𝜏1) > 0 and 𝑝(𝜏2) > 0, which is a contradiction since 𝑝
is structured.

Proposition 2.1.3. For a structured probability density 𝑝 on choice dictionaries, and some
𝜎 ∈ 𝒯 ⋆

𝐴 , if 𝜏1 = 𝜎|𝐵1 ∈ supp(𝑝) and 𝜏2 = 𝜎|𝐵2 ∈ supp(𝑝) for some 𝐵1, 𝐵2 then 𝜏1 = 𝜏2.

Proof. Suppose that 𝜏1, 𝜏2 ∈ supp(𝑝) and 𝜏1 = 𝜎|𝐵1 and 𝜏2 = 𝜎|𝐵2 , where 𝜏1 ̸= 𝜏2. Note
that 𝜏1 ∼ 𝜏2. If 𝐴𝜏1 = 𝐴𝜏2 then there must exist 𝑎 such that 𝜏1[𝑎] ̸= 𝜏2[𝑎], which is a
contradiction because 𝜏1 ∼ 𝜏2. If 𝐴𝜏1 ̸= 𝐴𝜏2 then because 𝑝 is structured, there must exist
𝑎 such that 𝜏1[𝑎] ̸= 𝜏2[𝑎], which is a contradiction because 𝜏1 ∼ 𝜏2.

Now we adapt a few more definitions to the measure-theoretic setting.

Definition 2.1.14 (Supportive probability density on choice dictionaries). A well-behaved
probability density 𝑝 on choice dictionaries is supportive if 𝑝(𝜎) > 0 for all 𝜎 ∈ 𝒯 ⋆

𝐴 .

Definition 2.1.15 (Expectation with respect to a probability density on choice dictio-
naries). For measure-theoretic address universe (𝐴, 𝑉, 𝑀), we denote the expectation of a

55



𝜇⋆
𝐴-measurable function 𝑔 : 𝒯 ⋆

𝐴 → R with respect to a probability density 𝑝 on 𝒯 ⋆
𝐴 by:

E𝜏∼𝑝[𝑔(𝜏 )] :=
∫︁

𝒯 ⋆
𝐴

𝑔(𝜏 )𝑝(𝜏 )𝜇⋆
𝐴(𝑑𝜏 )

when the value of the integral is well-defined.

2.1.5 Generative functions

Well-behaved and structured probability distributions on choice dictionaries will be the
basis for our representation of generative models. However, we want our representation for
generative models to be composable. That is, given two generative models, it should be
possible to construct a third generative model that includes the random variables in both
models. For example, we would like to sequence the two generative models, so that the
distribution of the second generative model can depend on the values of random choices
made by the first. To achieve this, we add a notion of input and output to our notion
of well-behaved probability distribution on choice dictionaries. This gives us our initial
definition of a generative function:

Definition 2.1.16 (Generative function). A generative function 𝒫 in address universe
(𝐴, 𝑉, 𝑀) is a tuple 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓), with components as follows. 𝑋 is the argument
type. 𝑌 is the return type. For each 𝑥 ∈ 𝑋, 𝑝(·; 𝑥) : 𝒯 ⋆

𝐴 → [0, 1] is a family of structured
(Definition 2.1.3) and well-behaved (Definition 2.1.11) probability densities on 𝒯 ⋆

𝐴 . Finally,
𝑓 : {(𝑥, 𝜏 ) : 𝜏 ∈ supp(𝑝(·; 𝑥))} → 𝑌 is the return value function.

Example: A deterministic function A generative function can be built from a regular
function by choosing 𝑝 such that 𝑝({}; 𝑥) = 1 for all 𝑥. For example, for 𝑥 ↦→ 2𝑥:

𝜏 𝑝(𝜏 ; 𝑥) 𝑓(𝑥, 𝜏 )
{} 1 2𝑥

Example: The distribution depends on the argument Let 𝑋 = (0, 1) ⊂ R and
𝑌 = [0, 1) ⊂ R. Then (𝑋, 𝑌, 𝑝, 𝑓) is a generative function where 𝑝 and 𝑓 are given by:

𝜏 𝑝(𝜏 ; 𝑥) 𝑓(𝑥, 𝜏 )
{𝑎 ↦→ T} 𝑥 𝑥
{𝑎 ↦→ F} 1− 𝑥 0

Example: Making different random choices depending on the argument Let
𝑋 = {T, F} and 𝑌 = {0, 1, 2, . . . , }. Then (𝑋, 𝑌, 𝑝, 𝑓) is a generative function that only

56



makes random choices for input 𝑥 = T when 𝑝 and 𝑓 are given by:

𝜏 𝑝(𝜏 ; F) 𝑓(F, 𝜏 )
{} 1 0
{} 1 0
{} 1 0
.. .. ..

𝜏 𝑝(𝜏 ; T) 𝑓(T, 𝜏 )
{𝑛 ↦→ 0} 0.5 0
{𝑛 ↦→ 1} 0.52 0
{𝑛 ↦→ 2} 0.53 0

.. .. ..

Composing generative functions by sequencing Consider two generative functions
𝒫1 = (𝑋1, 𝑌1, 𝑝1, 𝑓1) and 𝒫2 = (𝑋2, 𝑌2, 𝑝2, 𝑓2). Suppose that the return type of the first
generative function matches the argument type of the second generative function (𝑌1 = 𝑋2).
Can we produce a third generative function 𝒫3 from 𝒫1 and 𝒫2 that samples from 𝒫1
and then samples from 𝒫2 given the return value of 𝒫1? This is straightforward if we
can have two disjoint sets 𝐴1, 𝐴2 ⊂ 𝐴 such that 𝒫1 only ever makes random choices at
addresses in 𝐴1 and 𝒫2 only ever makes random choices at addresses in 𝐴2. That is, if
for all 𝑥1 ∈ 𝑋1, {𝑎 : ∃𝜏 ∈ supp(𝑝1(·; 𝑥1)) s.t. 𝑎 ∈ 𝐴𝜏} ∩ 𝐴2 = ∅ and for all 𝑥2 ∈ 𝑋2,
{𝑎 : ∃𝜏 ∈ supp(𝑝2(·; 𝑥2)) : 𝑎 ∈ 𝐴𝜏} ∩ 𝐴1 = ∅. Then we can construct a third generative
function 𝒫3 = (𝑋3, 𝑌3, 𝑝3, 𝑓3) defined by:

𝑋3 := 𝑋1
𝑌3 := 𝑌2
𝑓3(𝑥, 𝜏 ) := 𝑓2(𝑓1(𝑥, 𝜏 |𝐴1), 𝜏 |𝐴2)
𝑝3(𝜏 ; 𝑥) := 𝑝1(𝜏 |𝐴1 ; 𝑥)𝑝2(𝜏 |𝐴2 ; 𝑓1(𝑥, 𝜏 |𝐴1))

Example: Sequencing generative functions with disjoint addresses Given two
generative functions 𝒫1 and 𝒫2 given on the left, we construct 𝒫3 on the right using the
construction above with 𝐴1 = {𝑛} and 𝐴2 = {𝑥}:

𝜏 𝑝1(𝜏 ) 𝑓1(𝜏 )
{𝑛 ↦→ 0} 0.5 1
{𝑛 ↦→ 1} 0.52 2
{𝑛 ↦→ 2} 0.53 3

.. .. ..

𝜏 𝑝2(𝜏 ; 𝑥) 𝑓2(𝑥, 𝜏 )
{𝑥 ↦→ T} 𝑥/(𝑥 + 1) 0
{𝑥 ↦→ F} 1/(𝑥 + 1) 0

𝜏 𝑝3(𝜏 ) 𝑓3(𝜏 )
{𝑛 ↦→ 0, 𝑥 ↦→ T} 0.5 · (1/2) 0
{𝑛 ↦→ 0, 𝑥 ↦→ F} 0.5 · (1/2) 0
{𝑛 ↦→ 1, 𝑥 ↦→ T} 0.52 · (2/3) 0
{𝑛 ↦→ 1, 𝑥 ↦→ F} 0.52 · (1/3) 0
{𝑛 ↦→ 2, 𝑥 ↦→ T} 0.53 · (3/4) 0
{𝑛 ↦→ 2, 𝑥 ↦→ F} 0.53 · (1/4) 0

.. .. ..

57



Example: Generative functions with overlapping addresses However, if genera-
tive functions 𝒫1 and 𝒫2 have overlapping addresses (𝑥), then the construction fails:

𝜏 𝑝1(𝜏 ) 𝑓1(𝜏 )
{𝑥 ↦→ 0} 0.5 1
{𝑥 ↦→ 1} 0.52 2

.. .. ..

𝜏 𝑝2(𝜏 ; 𝑥) 𝑓2(𝑥, 𝜏 )
{𝑥 ↦→ T} 𝑥/(𝑥 + 1) 0
{𝑥 ↦→ F} 1/(𝑥 + 1) 0

Address namespaces Like composition of regular functions and procedures in program-
ming, composition of generative functions is most useful when it can be done safely without
knowledge of the internals of the two generative functions. One general approach to guar-
anteeing that two generative functions 𝒫1 and 𝒫2 use disjoint addresses is to wrap them
in generative functions 𝒫 ′

1 and 𝒫 ′
2 for which we can guarantee the disjoint address prop-

erty. Specifically, given two distinct tokens 𝑘1 and 𝑘2, we construct 𝒫 ′
1 by modifying each

address 𝑎 used by 𝒫1 into the tuple address (𝑘1, 𝑎). Let namespace(𝜏 , 𝑘) denote the dic-
tionary 𝜏 ′ with 𝜏 ′[(𝑘, 𝑎)] = 𝜏 [𝑎] for each 𝑎 ∈ 𝐴𝜏 , and no other entries. Then we define
𝒫 ′

1 := (𝑋1, 𝑌1, 𝑝′
1, 𝑓 ′

1) and 𝒫 ′
2 := (𝑋2, 𝑌2, 𝑝′

2, 𝑓 ′
2) where:

𝑝′
1(𝜏 ; 𝑥) := 𝑝1(namespace(𝜏 , 𝑘1); 𝑥)

𝑝′
2(𝜏 ; 𝑥) := 𝑝2(namespace(𝜏 , 𝑘2); 𝑥)

𝑓 ′
1(𝑥, 𝜏 ) := 𝑓1(𝑥, {𝑎 ↦→ 𝜏 [(𝑘1, 𝑎)] : (𝑘1, 𝑎) ∈ 𝐴𝜏})

𝑓 ′
2(𝑥, 𝜏 ) := 𝑓2(𝑥, {𝑎 ↦→ 𝜏 [(𝑘2, 𝑎)] : (𝑘2, 𝑎) ∈ 𝐴𝜏})

Then, 𝒫 ′
1 and 𝒫 ′

2 can be safely composed because they use addresses in disjoint sets 𝐴1 =
{(𝑘1, 𝑎) : 𝑎 ∈ 𝐴} and 𝐴2 = {(𝑘2, 𝑎) : 𝑎 ∈ 𝐴}.

Example: Applying address namespaces 𝑘1 and 𝑘2 to the generative functions 𝒫1 and 𝒫2
defined above with overlapping address 𝑥 allows them to be sequenced:

𝜏 𝑝′
1(𝜏 ) 𝑓 ′

1(𝜏 )
{(𝑘1, 𝑥) ↦→ 0} 0.5 1
{(𝑘1, 𝑥) ↦→ 1} 0.52 2
{(𝑘1, 𝑥) ↦→ 2} 0.53 3

.. .. ..

𝜏 𝑝′
2(𝜏 ; 𝑥) 𝑓 ′

2(𝑥, 𝜏 )
{(𝑘2, 𝑥) ↦→ T} 𝑥/(𝑥 + 1) 0
{(𝑘2, 𝑥) ↦→ F} 1/(𝑥 + 1) 0

𝜏 𝑝3(𝜏 ) 𝑓3(𝜏 )
{(𝑘1, 𝑥) ↦→ 0, (𝑘2, 𝑥) ↦→ T} 0.5 · (1/2) 0
{(𝑘1, 𝑥) ↦→ 0, (𝑘2, 𝑥) ↦→ F} 0.5 · (1/2) 0
{(𝑘1, 𝑥) ↦→ 1, (𝑘2, 𝑥) ↦→ T} 0.52 · (2/3) 0
{(𝑘1, 𝑥) ↦→ 1, (𝑘2, 𝑥) ↦→ F} 0.52 · (1/3) 0
{(𝑘1, 𝑥) ↦→ 2, (𝑘2, 𝑥) ↦→ T} 0.53 · (3/4) 0
{(𝑘1, 𝑥) ↦→ 2, (𝑘2, 𝑥) ↦→ F} 0.53 · (1/4) 0

.. .. ..

Composing generative functions by branching We can also compose two generative
functions 𝒫1 and 𝒫2 into a third generative function 𝒫3 = (𝑋3, 𝑌3, 𝑝3, 𝑓3) that, depending
on its argument, delegates to either 𝒫1 or 𝒫2. Note that unlike sequencing, this does not
require that 𝒫1 and 𝒫2 use disjoint addresses. We define a new generative function 𝒫3 that
takes three arguments (𝑏, 𝑥1, 𝑥2) where if 𝑏 = 1 then the distribution and return value will

58



match those of generative function 𝒫1, and if 𝑏 = 2 then the distribution and return value
will match those of 𝒫2:

𝑋3 := {1, 2} ×𝑋1 ×𝑋2
𝑌3 := 𝑌1 ∪ 𝑌2

𝑝3(𝜏 ; (𝑏, 𝑥1, 𝑥2)) :=
{︃

𝑝1(𝜏 ; 𝑥1) if 𝑏 = 1
𝑝2(𝜏 ; 𝑥2) if 𝑏 = 2

𝑓3((𝑏, 𝑥1, 𝑥2), 𝜏 ) :=
{︃

𝑓1(𝑥1, 𝜏 ) if 𝑏 = 1
𝑓2(𝑥2, 𝜏 ) if 𝑏 = 2

These two types of composition (sequencing and conditional delegation) are just two of
the myriad ways that generative functions can be composed into more complex generative
functions. Indeed, generative functions can be composed in all the ways that regular func-
tions are routinely composed in functional programming languages. This is one motivation
for using probabilistic modeling languages, like the one introduced in the next section.

2.2 Languages for defining generative functions

The previous section introduced a formal mathematical representation for generative models
called generative functions. However, the probability distributions were described using ei-
ther tables of choice dictionaries and associated probabilities, or expressions for the density.
Often much more compact and intuitive representations of these probability distributions
are available. We call these more compact representations probabilistic modeling languages,
or ‘modeling languages’ for short. Modeling languages allow generative functions to be
specified compactly in a way that makes the inherent structure in the generative function
explicit to the modeler. Modeling languages also allow generative functions to be easily
composed into more complex generative functions. This section describes one modeling lan-
guage that is provided in the Julia implementation of Gen, called the Dynamic Modeling
Language (DML), which is embedded in the Julia programming language. Other modeling
languages will be introduced in Chapter 5, which shows how the clear separation between
the generic mathematical representation of generative functions and how they are defined
in specific modeling languages affords Gen extensibility that is important for performance.

Formally, a program in a modeling language (or any programming language) is a string
p. Each Gen modeling language has a semantic function that maps programs p to gen-
erative functions 𝒫. Following convention from programming language theory, we denote
application of the semantic function with J.K instead of (.), so that JpK = 𝒫. The semantic
functions for practical modeling languages like DML are very complex, and this chapter
does not define a formal semantics for DML. Instead this chapter includes selected instruc-
tive DML programs p alongside their corresponding generative function 𝒫 = JpK. To make
the relationship between modeling language programs and their mathematical meaning as
generative functions more concrete, this chapter does define a toy modeling language and
its semantic function.

59



2.2.1 Gen Dynamic Modeling Language

The DML is a language for defining generative functions that is embedded in the Julia
programming language. DML generative functions are defined using syntax based on Julia’s
own function definition syntax. For example, a generative function whose argument 𝑥 is a
pair 𝑥 = (𝑥1, 𝑥2) is represented as:

@gen function (x1, x2)
<body>

end

A deterministic generative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓) is one that makes no random choices
(i.e. for which supp(𝑝(·; 𝑥)) = {} for all 𝑥 ∈ 𝑋). A DML function with no random choice
expressions (described below) represents a regular (deterministic) function. For example,
we can encode the deterministic generative function with 𝑓(𝑥) = 2𝑥1 + 𝑥2 as:

@gen function (x1, x2)
return 2 * x1 + x2

end

𝜏 𝑝(𝜏 ; 𝑥) 𝑓(𝑥, 𝜏 )
{} 1 2𝑥1 + 𝑥2

p 𝒫 := JpK

Random choice expressions In order to represent generative functions with choice
dictionary distributions other than 𝑝({}; 𝑥) = 1, DML functions use labeled random choice
expressions, which are a syntax construct not present in the Julia language. Random
choice expressions contain two sub-expressions: an address expression, and an expression
that specifies a probability distribution, separated by ‘∼’:

{<address>} ∼ <distribution>

Probability distribution expressions in DML take the form of a function application of a
distribution family to arguments, which are Julia expressions that specify the parameters
of the probability distribution. For example, the probability distribution expression below
defines a geometric discrete probability distribution with success probability 0.5:

{<address>} ∼ geometric(0.5)

The address expression a Julia expression that can depend on any variables in scope. We
often use Julia symbols (interned strings) for addresses, which begin with a colon (e.g. :a),
although other Julia values including e.g. integers, tuples, and strings, can be used as well:

{:a} ∼ geometric(0.5)

The expression evaluates to the sampled value of the random choice. For example, the
expression above evaluates to an integer that is greater than or equal to zero. We can then
use this expression in other expressions. For example, the expression below evaluates to an
integer that is greater than or equal to one:

({:a} ∼ geometric(0.5)) + 1

60



Often, we want to assign a random choice directly to a variable in the program. There is a
syntactic sugar for this case that automatically generates the address based on the variable
name:

a ∼ geometric(0.5) is equivalent to a = ({:a} ∼ geometric(0.5))

We build the probability distribution 𝑝 of the generative function by making several random
choices, where the distribution of the later choices depends on the random value obtained
for the earlier choices, e.g.:

a ∼ geometric(0.5)
{:b} ∼ bernoulli(a/(a+1))

Defining a generative function The definition of a generative function in DML includes
the @gen macro, the arguments to the function, and the body of the function. Consider the
following DML code p on the left, and the generative function 𝒫 := JpK that it defines, on
the right:

@gen function (x)
a ∼ geometric(x)
prob = (a+1)/(a+2)
return ({:b} ∼ bernoulli(prob))

end

𝜏 𝑝(𝜏 ; 𝑥) 𝑓(𝑥, 𝜏 )
{a ↦→ 0, b ↦→ T} (1− 𝑥)0𝑥 · 1

2 T
{a ↦→ 0, b ↦→ F} (1− 𝑥)0𝑥 · 1

2 F
{a ↦→ 1, b ↦→ T} (1− 𝑥)1𝑥 · 2

3 T
{a ↦→ 1, b ↦→ F} (1− 𝑥)1𝑥 · 1

3 F
.. .. ..

p 𝒫 := JpK

Note that Julia symbol addresses of the form :a are denoted mathematically as a. The code
above defines an anonymous generative function. We also can assign generative function
to a variable, as shown below:

@gen function foo(x)
a ∼ geometric(x)
return ({:b} ∼ bernoulli(a/(a+1)))

end

Now, foo := 𝒫 where 𝒫 is defined in the table above.

The density on choice dictionaries Informally, a choice dictionary 𝜏 has 𝑝(𝜏 ; 𝑥) > 0
if there exists a returning execution of the DML function in which each random choice
expression with address 𝑎 is replaced with the value 𝜏 [𝑎] from the choice dictionary, and
such that for every random choice expression encountered in the execution with address 𝑎,
the probability that the expression evaluates to the value 𝜏 [𝑎] is nonzero. For such a choice
dictionary, the probability 𝑝(𝜏 ; 𝑥) is the product of the probabilities of each of the random
choices encountered in the execution.

61



Control flow The language allows many of Julia’s control flow constructs to be used in
the body of DML functions. This includes including branches and loops. These constructs
can be combined with random choice expressions:

if ({:a} ∼ bernoulli(0.7))
{:b} ∼ bernoulli(0.6)

end

i = 1
while ({i} ∼ bernoulli(0.5))

i = i + 1
end

Invoking other generative functions DML generative functions can invoke other DML
generative functions (as well as generative functions constructed via other means, as we will
see later). Recall that in Section 2.1.5 we found that we could safely compose generative
functions using sequencing by wrapping the generative functions in address namespaces,
so that all addresses had the form (𝑘, 𝑎) for some token 𝑘. DML functions can invoke
other generative functions using this construction, using a syntax is similar to the random
choice expression syntax. In place of the address expression, we place an address namespace
expression that encodes the token 𝑘. Below is an example of a recursive DML function that
uses this construct to make two calls, one with token 𝑘1 = L and the other with token
𝑘2 = R. The generative function that it represents is shown on the right.

@gen function g()
if ({:go} ∼ bernoulli(0.2))

n1 = ({:L} ∼ g())
n2 = ({:R} ∼ g())
return n1 + n2 + 1

else
return 1

end
end

𝜏 𝑝(𝜏 ; 𝑥) 𝑓(𝑥, 𝜏 )
{go ↦→ F} 0.8 1{︃
go ↦→ T,

(L, go) ↦→ F, (R, go) ↦→ F

}︃
0.2 · 0.82 3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
go ↦→ T,

(L, go) ↦→ T, (R, go) ↦→ F,
(L, (L, go)) ↦→ F,
(L, (R, go)) ↦→ F

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 0.22 · 0.83 5

.. .. ..

It is also possible to invoke other DML without introducing an address namespace, although
this is discouraged. This is done using the same syntax, with the token * for the namespace
expression. Below is an example DML function that has the same probability distribution
on return values as the recursive DML function above, but uses different addresses:

62



@gen function g(i)
if ({(i, :go)} ∼ bernoulli(0.2))

n1 = ({*} ∼ g(i*2))
n2 = ({*} ∼ g(i*2+1))
return n1 + n2 + 1

else
return 1

end
end

𝜏 𝑝(𝜏 ; 𝑥) 𝑓(𝑥, 𝜏 )
{(1, go) ↦→ F} 0.8 1⎧⎪⎨⎪⎩
(1, go) ↦→ T,
(2, go) ↦→ F,
(3, go) ↦→ F

⎫⎪⎬⎪⎭ 0.2 · 0.82 3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, go) ↦→ T,
(2, go) ↦→ T,
(3, go) ↦→ F,
(4, go) ↦→ F,
(5, go) ↦→ F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
0.22 · 0.83 5

.. .. ..

Restrictions There are several properties of DML code that must be satisfied in order
for the code to represent a generative function.

1. Halts with probability 1. For all values of its arguments, the function must halt
with probability 1. For example, infinite while loops and infinite recursion are not
permitted. Note that loops of unbounded length and recursion of unbounded depth
are permitted (the recursive DML functions shown above are examples). Note that
this property is not decidable in general. However, it can often be easily checked for
the types of DML programs that are used in probabilistic modeling.2

2. Addresses must be unique. The function must never sample a random choice at the
same address twice. This is possible to check statically in common cases.

3. Restricted use of randomness outside of random choice expressions. Random choices
that are not part of a random choice expression (e.g. from calling Julia’s rand()
function directly) are valid only if they do not effect control flow or the support of
future random choices. This requirement rules out cases that can cause generative
functions to not have structured probability distributions (Definition 2.1.3).

4. Restricted use of mutation. The function may not mutate its arguments or any vari-
ables in its lexical scope that are not private to the function.

5. DML functions cannot be passed to Julia higher-order functions. Note that it is pos-
sible to implement higher-order functions using recursion (although in a later chapter
we will discuss modeling constructs that play the role of higher-order functions, that
are specialized for use with generative functions and provide better performance).

2For certain recursive programs like those above, simple linear algebra analyses [41] can be used to
determine if the program satisfies this property.

63



Note that satisfying this list of restrictions does not alone guarantee that DML code does de-
fine a valid generative function. For example, the well-behaved property (Definition 2.1.11)
does not necessarily hold.

An illustrative generative model The DML code below defines a generative model
that uses an random number of random choices. We will use this model in the next chapter
to illustrate inference procedures.

@gen function poly_model(x_coordinates)
degree ∼ uniform_discrete(0, 4)
var ∼ inv_gamma(1, 1)
coefficients = [({(:c, i)} ∼ normal(0, 1)) for i in 0:degree]
for i=1:length(x_coordinates)

x = x_coordinates[i]
mu = coefficients’ * x.∧(0:degree)
{(:y, i)} ∼ normal(mu, sqrt(var))

end
end

This generative function encodes a generative model of y-coordinates given a fixed vector
of x-coordinates. The model assumes that there is a polynomial of unknown degree that
maps x-coordinates to their corresponding y-coordinates, and that normally-distributed
noise is added to the y-coordinates. The variance of the y-coordinates is unknown and has
an inverse-gamma prior. The function first samples a random degree for a polynomial from
a geometric distribution, at address degree. The degree takes values from Z≥0. Then, the
function samples a value from an inverse gamma distribution at address var, taking values
from R≥0. Then, the function samples values for each of the coefficients from a normal prior,
at addresses of the form (c, 𝑖). Finally, the function samples the y-coordinates by looping
over the x-coordinates, computing the value of the polynomial at each point, and adding
normally-distributed noise. The y-coordinates are random choices with addresses of the
form (:y, 𝑖). The addresses used by this generative function are 𝐴 = {var, degree}∪{(c, 𝑖) :
𝑖 ∈ Z≥0} ∪ {(y, 𝑖) : 𝑖 ∈ Z>0}. The random choice with address degree is discrete with
𝑉𝑎 = Z≥0 and the other choices are continuous. The address 𝑎 = var has 𝑉𝑎 = R>0 and
𝑎 = (c, 𝑖) and 𝑎 = (y, 𝑖) have 𝑉𝑎 = R, and all of these use the Borel 𝜎-algebra and Lebesgue
measure. The density with respect to the reference measure 𝜇⋆

𝐴 is:

𝑝(𝜏 ; 𝑥) =

⎛⎜⎜⎜⎝
𝑝geom(0.5)(𝜏 [degree])·
𝑝invgamma(1,1)(𝜏 [var]))·∏︀𝜏 [degree]

𝑗=1 𝑝norm(0,1)(𝜏 [(c, 𝑗)])·∏︀𝑛
𝑖=1 𝑝norm(𝑚(𝜏 ,𝑖,𝑥),1)(𝜏 [(y, 𝑖)])

⎞⎟⎟⎟⎠ where 𝑚(𝜏 , 𝑖, 𝑥) :=
𝜏 [degree]∑︁

𝑗=0
𝑥𝑗

𝑖 · 𝜏 [(c, 𝑗)]

2.2.2 Formal semantics of a toy modeling language

Figure 2-1 defines a toy modeling language, and defines a semantic function that maps
programs p in this language to generative functions 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓). The language is
a heavily restricted version of DML that does not permit mutation in the body of the

64



function, does not have loops, cannot call other generative functions, and only samples
random choices from discrete distributions. Also, the addresses used in random choice
expressions in programs must be literal Julia symbols, instead of arbitrary dynamic Julia
values as in Gen’s DML. The language includes ‘if-else’ expressions and ‘let’ expressions.

65



Constants 𝑐 ∈ R
Variables 𝑥

Address literals 𝑎
Primitive distributions 𝑑 ::= bernoulli | geometric, ..

Primitive real-valued fns. 𝑓 ::= ..
Primitive Boolean-valued fns. 𝑔 ::= ..

Expressions 𝐸 ::= 𝑐 | 𝑥 |
{𝑎} ∼ 𝑑(𝐸) |
let 𝑥 = 𝐸1 in 𝐸2 end |
if 𝐸1 then 𝐸2 else 𝐸3

Function definition 𝐹 ::= @gen function(𝑥1, 𝑥2, ..) 𝐸 end
(a) Syntax

AddrsJ𝑐K = ∅
AddrsJ𝑥K = ∅

AddrsJ{𝑎} ∼ 𝑑(𝐸)K = {𝑎} ∪AddrsJ𝐸K (where 𝑎 ̸∈ AddrsJ𝐸K)
AddrsJ let 𝑥 = 𝐸1 in 𝐸2 end K = AddrsJ𝐸1K ∪AddrsJ𝐸2K
AddrsJ if 𝐸1 then 𝐸2 else 𝐸3K = AddrsJ𝐸1K ∪AddrsJ𝐸2K ∪AddrsJ𝐸3K

ValJ𝑐K(𝜎)(𝜏 ) = 𝑐
ValJ𝑥K(𝜎)(𝜏 ) = 𝜎[𝑥]

ValJ{𝑎} ∼ 𝑑(𝐸)K(𝜎)(𝜏 ) = 𝜏 [𝑎]
ValJ let 𝑥 = 𝐸1 in 𝐸2 end K(𝜎)(𝜏 ) = ValJ𝐸2K(𝜎[𝑥 ↦→ ValJ𝐸1K(𝜎)(𝜏 )])(𝜏 )

ValJ if 𝐸1 then 𝐸2 else 𝐸3K(𝜎)(𝜏 ) =
{︂

ValJ𝐸2K(𝜎)(𝜏 ) if ValJ𝐸1K(𝜎)(𝜏 )
ValJ𝐸3K(𝜎)(𝜏 ) if ¬ValJ𝐸1K(𝜎)(𝜏 )

DistJ𝑐K(𝜎)(𝜏 ) = [𝜏 = {}]
DistJ𝑥K(𝜎)(𝜏 ) = [𝜏 = {}]

DistJ{𝑎} ∼ 𝑑(𝐸)K(𝜎)(𝑡) =
{︃

𝑝𝑑(ValJ𝐸K(𝜎)(𝜏 ))(𝑣) if 𝜏 = {𝑎 ↦→ 𝑣} for some 𝑣

0 otherwise
DistJ let 𝑥 = 𝐸1 in 𝐸2 end K(𝜎)(𝜏 ) = DistJ𝐸1K(𝜎)(𝜏 |AddrsJ𝐸1K)

·DistJ𝐸2K(𝜎[𝑥 ↦→ ValJ𝐸1K(𝜎)(𝜏 )])(𝜏 |AddrsJ𝐸2K)
DistJ if 𝐸1 then 𝐸2 else 𝐸3K(𝜎)(𝜏 ) = DistJ𝐸1K(𝜎)(𝜏 |AddrsJ𝐸1K)

·

{︃
DistJ𝐸2K(𝜎)(𝜏 |AddrsJ𝐸2K) if ValJ𝐸1K(𝜎)(𝜏 )
DistJ𝐸3K(𝜎)(𝜏 |AddrsJ𝐸3K) if ¬ValJ𝐸1K(𝜎)(𝜏 )

J@gen function(𝑋1, . . . , 𝑋𝑛) 𝐸 endK = (R𝑛,R, 𝜆𝑥, 𝜏 .DistJ𝐸K([𝑋1 ↦→ 𝑥1, . . . , 𝑋𝑛 ↦→ 𝑥𝑛], 𝜏 ),
𝜆𝑥, 𝜏 .ValJ𝐸K([𝑋1 ↦→ 𝑥1, . . . , 𝑋𝑛 ↦→ 𝑥𝑛])(𝜏 ))

(b) Denotational semantics. Three auxiliary semantic functions (AddrsJ·K, ValJ·K and DistJ·K) are
used to define the main semantic function J·K, which maps modeling language source code to a
generative function tuple. The AddrsJ·K function defines the set of addresses of random choices
used in the source code. The ValJ·K function defines the value of an expression, evaluated using an
environment 𝜎 and choice dictionary 𝜏 . The DistJ·K function defines the probability distribution on
choice dictionaries represented by an expression in environment 𝜎.

Figure 2-1: Syntax and denotational semantics of toy probabilistic modeling language

66



2.3 Abstract data types for probabilistic inference

The previous section described an abstract mathematical representation for generative prob-
abilistic models, called generative functions. This section bridges this abstract mathemat-
ical representation of generative models with the implementation of inference algorithms
for these models. The key idea is that probabilistic inference algorithms can be broken
down into a set of primitive operations whose semantics are based on the semantics of
programs written in probabilistic modeling languages. In particular, given a generative
function representing a generative probabilistic model, it is possible to implement a large
array of algorithms for inference in that model using only a handful of operations whose
mathematical meaning is derived from the generative function. In particular, we elevate
generative functions into an abstract data type [75] (ADT). An ADT is a class of objects
that stores data and supports operations that are defined abstractly and independently
of what data structures are used internally to store the data or how the operations are
implemented. The section also defines a second ADT called a trace that stores the latent
state and observed data for a generative function.

Together, the generative function and trace ADTs encapsulate and automate the low-
level computations in Monte Carlo and variational inference algorithms, including sampling,
density evaluation, incremental updates, and gradients. As a result, the inference code that
uses these ADTs is high-level, abstract, resembles algorithm pseudocode, and has reduced
surface area for bugs. The ADTs also provide an abstraction barrier that separates the
design and implementation of inference algorithms (which is done by the user) from the
low-level computations (which are within the purview of the modeling language compiler).

This section describes a basic version of the generative function and trace ADTs. Then,
Chapter 3 shows show a number of inference techniques can be implemented using these
ADTs. Chapter 4 then extends the ADTs with additional features that allow more complex
logic to be encapsulated within generative functions and traces. Chapter 5 describes tech-
niques that modeling language compilers can use to implement these ADTs. These ADTs
form the core of the Gen system [32, 25].

2.3.1 Generative function and trace ADTs

Recall that a generative function (Definition 2.1.16) is a tuple 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓). The tuple
(𝑋, 𝑌, 𝑝, 𝑓) is the data stored in an instance of the generative function ADT, which is also
denoted 𝒫 (𝒬 is also used). The data stored in an instance of the trace ADT is a tuple
(𝒫, 𝑥, 𝜏 ) where 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓) is a generative function, 𝑥 ∈ 𝑋 are valid arguments to
the generative function, and the 𝜏 is a choice dictionary that stores the value of each
random choice made during a possible execution of the generative function (that is, 𝜏 ∈
supp(𝑝(·; 𝑥))). Instances of the trace ADT are denoted t or s, so e.g. t = (𝒫, 𝑥, 𝜏 ). We
now describe the operations supported by these ADTs. We will illustrate several of these
operations using the following generative function burglary_model:

67



1 @gen function burglary_model()
2 burglary ∼ bernoulli(0.01)
3 if burglary
4 disabled ∼ bernoulli(0.1)
5 else
6 disabled = false
7 end
8 if !disabled
9 alarm ∼ bernoulli(if burglary 0.94 else 0.01 end)

10 else
11 alarm = false
12 end
13 calls ∼ bernoulli(if alarm 0.70 else 0.05 end)
14 return nothing
15 end

Note that this generative function takes no arguments, so the argument value 𝑥 is an empty
tuple in the examples below.

Simulate operation The first operation supported by the generative function ADT is
𝒫.simulate(𝑥), which takes arguments 𝑥 ∈ 𝑋 to the generative function, then samples
a dictionary of random choices 𝜏 according to the distribution 𝑝(·; 𝑥), and returns the re-
sulting trace t = (𝒫, 𝑥, 𝜏 ). This operation can be used to simulate paired unobservable
and observable data from the prior distribution of a generative model. As will be shown in
Chapter 3, it can also be used to sample from a proposal distribution, inference model, or
variational approximation that is represented as a generative function.

Example: For 𝒫 = burglary_model a call to 𝒫.simulate(𝑥) returns one of the 10 possible
traces of 𝒫. For example, it returns the trace t = (𝒫, 𝑥, {burglary ↦→ F, alarm ↦→ F, call ↦→
F}) with probability 0.99·0.99·0.95, and returns the trace t = (𝒫, 𝑥, {burglary ↦→ F, alarm ↦→
F, call ↦→ T}) with probability 0.99 · 0.99 · 0.05, and so on.

Generate operation The second generative function ADT operation, 𝒫.generate(𝑥, 𝜎),
is defined for 𝑥 ∈ 𝑋 and 𝜎 ∈ 𝒯 ⋆

𝐴 . Like simulate, this operation also returns an execution
trace t = (𝒫, 𝑥, 𝜏 ), but instead of sampling the random choices 𝜏 according to 𝑝, it con-
structs 𝜏 deterministically via 𝜏 := 𝜎|𝐵 for some 𝐵 (this 𝜏 is unique by Proposition 2.1.3
since 𝑝(·; 𝑥) is structured). This operation serves as a deterministic constructor for traces.
This operation is used in Chapter 3 to initialize Markov chains and compute importance
weights. This operation is extended in Chapter 4 with the ability to take a partial dictio-
nary that only contains some of the choices, filling in the rest stochastically.

Example: For 𝒫 = burglary_model, the call 𝒫.generate(𝑥, {burglary ↦→ F, alarm ↦→
F, call ↦→ F}) returns the trace t = (𝒫, 𝑥, {burglary ↦→ F, alarm ↦→ F, call ↦→ F}). A

68



call 𝒫.generate(𝑥, {burglary ↦→ F, alarm ↦→ F, call ↦→ F, foo ↦→ F}) that passes an extra
random choice foo results in the same output as when the entry for foo is not provided.

Logpdf operation The first operation supported by the trace ADT is t.logpdf() for
t = (𝒫, 𝑥, 𝜏 ) and returns the log probability log 𝑝(𝜏 ; 𝑥) that the random choices in the
trace would have been sampled if 𝑥 ∈ 𝑋 were the arguments to the generative function.
Note that since all traces t have 𝑝(𝜏 ; 𝑥) > 0, the value returned by logpdf is never −∞.
Chapter 3 uses this operation to compute importance weights and acceptance probabilities
in various Monte Carlo inference algorithms. As will be described in Chapter 5, the value
is typically precomputed and stored within the implementation of t.

Example: For 𝒫 = burglary_model and t = (𝒫, 𝑥,{burglary ↦→ F, alarm ↦→ F, call ↦→ F}),
we have t.logpdf() = log(0.99 · 0.99 · 0.95).

Choices operation The second operation supported by the trace ADT is t.choices(),
which for t = (𝒫, 𝑥, 𝜏 ) returns the dictionary 𝜏 . This operation highlights the important
difference between the traces and choice dictionaries—choice dictionaries are a simple data
type that does not support any operations whose semantics is derived from a particular
probabilistic model. Note that in the Gen implementation, syntactic sugar allows for the
value at an address in 𝜏 to be read from t concisely with t[𝑎] instead of t.choices()[𝑎].

Example: For t = (𝒫, 𝑥,{burglary ↦→ F, alarm ↦→ F, call ↦→ F}) we have t.choices() =
{burglary ↦→ F, alarm ↦→ F, call ↦→ F}.

The third operation supported by the trace ADT allows for a new trace to be con-
structed from a previous trace by changing the values of some of its random choices and its
arguments. We now introduce definitions that form the basis of this operation’s semantics.

Definition 2.3.1. For structured probability density 𝑝 on choice dictionaries, let ℎupdate :
supp(𝑝)×𝒯 ⋆

𝐴 → (supp(𝑝)× 𝒯 ⋆
𝐴)∪{⊥} be defined by: ℎupdate(𝜏 , 𝜎) := (𝜏 ′, 𝜏 |𝐶) where 𝜏 ′ :=

(𝜏 |𝐵)⊕𝜎 and 𝐶 := 𝐴c
𝜏 ′ ∪𝐴𝜎 if there exists 𝐵 such that 𝜏 ′ ∈ supp(𝑝) (by Proposition 2.1.3

𝜏 ′ is unique) and ℎupdate(𝜏 , 𝜎) := ⊥ if there exists no such 𝐵.

Example For the structured probability density 𝑝 below, for 𝜏 = {𝑎 ↦→ T, 𝑏 ↦→ F} and
𝜎 = {𝑎 ↦→ F}, we have ℎupdate(𝜏 , 𝜎) = (𝜏 ′, 𝜎′) where 𝜏 ′ = (𝜏 |𝐵)⊕ 𝜎 = {𝑎 ↦→ F} ∈ supp(𝑝)
(with 𝐵 = {}) and 𝜎′ = {𝑎 ↦→ T, 𝑏 ↦→ F}. For 𝜏 = {𝑎 ↦→ T, 𝑏 ↦→ F} and 𝜎 = {𝑏 ↦→ T}, we
have 𝜏 ′ = (𝜏 |𝐵)⊕ 𝜎 = {𝑎 ↦→ T, 𝑏 ↦→ T} ∈ supp(𝑝) (with 𝐵 = {𝑎}) and 𝜎′ = {𝑏 ↦→ F}.

𝜏 𝑝(𝜏 )
{𝑎 ↦→ T, 𝑏 ↦→ T} 0.42
{𝑎 ↦→ T, 𝑏 ↦→ F} 0.28
{𝑎 ↦→ F} 0.3

69



Proposition 2.3.1. If, for some pair of structured probability densities 𝑝1 and 𝑝2 on choice
dictionaries, (𝜏 ′, 𝜎′) = ℎ

(1)
update(𝜏 , 𝜎) then (𝜏 , 𝜎) = ℎ

(2)
update(𝜏 ′, 𝜎′), where ℎ

(1)
update and ℎ

(2)
update

are defined with respect to 𝑝1 and 𝑝2 respectively.

Proof. To show that ((𝜏 ′⊕𝜎)|𝐵2)⊕𝜎′ = 𝜏 for some 𝐵2, use 𝐵2 := (𝐴𝜏 ′ ∩𝐴𝜏 ) ∖𝐴𝜎. Next,
𝐴𝜏 ′ ∩𝐴𝜎′ = 𝐴𝜏 ′ ∩(𝐴𝜏 ∩(𝐴c

𝜏 ′ ∪𝐴𝜎)) = 𝐴𝜏 ∩(𝐴𝜏 ′ ∩(𝐴c
𝜏 ′ ∪𝐴𝜎)) = 𝐴𝜏 ∩(𝐴𝜏 ′ ∩𝐴𝜎) = 𝐴𝜏 ∩𝐴𝜎.

Then, 𝜏 ′|𝐴c
𝜏 ∪𝐴𝜎′ = 𝜏 ′|(𝐴𝜏 ′ ∖𝐴𝜏 )∪(𝐴𝜏 ′ ∩𝐴𝜎′ ) = 𝜏 ′|(𝐴𝜎∖𝐴𝜏 )∪(𝐴𝜏 ∪𝐴𝜎) = 𝜏 ′|𝐴𝜎 = 𝜎.

The relationships between the sets of addresses involved in ℎupdate(𝜏 , 𝜎) = (𝜏 ′, 𝜎′) are
shown below, where each set is shaded in gray.

 

The utility of ℎupdate is that it lets us specify a new choice dictionary 𝜏 ′ ∈ supp(𝑝) by
specifying only an incremental change 𝜎 from the previous choice dictionary 𝜏 . Note
that ℎupdate(𝜏 , 𝜏 ′) = (𝜏 ′, 𝜏 ) for all 𝜏 ′ ∈ supp(𝑝). While we could always specify 𝜎 = 𝜏 ′,
specifying only the parts of 𝜏 ′ that are actually different from 𝜏 makes it possible to
incrementally compute quantities associated with the change from 𝜏 to 𝜏 ′.

Example Consider the probability density 𝑝(𝜏 ) := 𝑝norm(0,1)(𝜏 [1])
∏︀100

𝑖=2 𝑝norm(𝜏 [𝑖−1],1)(𝜏 [𝑖])
if 𝐴𝜏 = {1, . . . , 100} and 0 otherwise. For 𝜎 := {55 ↦→ 𝛽} for some 𝛽 ∈ R, ℎupdate(𝜏 , 𝜎) =
(𝜏 ′, 𝜎′) where 𝜏 ′ = {1 ↦→ 𝜏 [1], . . . , 54 ↦→ 𝜏 [54], 55 ↦→ 𝛽, 56 ↦→ 𝜏 [56], . . . , 100 ↦→ 𝜏 [100]},
and 𝜎′ = {55 ↦→ 𝜏 [55]}. Consider the function 𝑓(𝜏 ) :=

∑︀100
𝑖=1 𝜏 [𝑖]. Note that 𝑓(𝜏 ′) =

𝑓(𝜏 ) + 𝜎[55]− 𝜏 [55]. More generally, for (𝜏 ′, 𝜎′) = ℎupdate(𝜏 , 𝜎), and given a precomputed
value for 𝑓(𝜏 ) it is possible to compute 𝑓(𝜏 ′) in 2|𝐴𝜎| arithmetic operations with 𝑓(𝜏 ′) =
𝑓(𝜏 )+

∑︀
𝑖∈𝐴𝜎

𝜎[𝑖]−
∑︀

𝑖∈𝐴𝜎
𝜏 [𝑖]. While we could specify 𝜎 = 𝜏 ′, that would result in 200 op-

erations whereas specifying 𝜎 = {55 ↦→ 𝛽} results in just 2 arithmetic operations. Similarly,
consider computing the density ratio 𝑝(𝜏 ′)/𝑝(𝜏 ). For 𝜎 = {𝑖 ↦→ 𝛽} for some 1 < 𝑖 < 100,
𝑝(𝜏 ′)/𝑝(𝜏 ) = (𝑝norm(𝜏 [𝑖−1],1)(𝜎[𝑖])𝑝norm(𝜎[𝑖],1)(𝜏 [𝑖+1]))/(𝑝norm(𝜏 [𝑖−1],1)(𝜏 [𝑖])𝑝norm(𝜏 [𝑖],1)(𝜏 [𝑖+
1])), which uses 4 evaluations of the normal distribution density function, whereas comput-
ing 𝑝(𝜏 ′) from scratch alone requires 100 evaluations.

Recall that the densities 𝑝(·; 𝑥) of generative functions are structured for all 𝑥 ∈ 𝑋.
Therefore ℎupdate is well-defined for all 𝑝(·; 𝑥). We will use ℎupdate to define an operation
that incrementally modifies a trace of a generative function. However, recall that a trace
t = (𝒫, 𝑥, 𝜏 ) contains arguments 𝑥 in addition to the choice dictionary 𝜏 . To allow for
incremental computation in a setting when both the random choices and the arguments
undergo an incremental modification, we introduce a notion of change hint.

Definition 2.3.2 (Change hint). For a set 𝑋 and a set Δ𝑋 containing at least elements
⊤ and ⊥, let ⊙𝑋 : 𝑋 ×Δ𝑋 → 2𝑋 be a function where 2𝑋 is the power set of 𝑋, and with

70



values denoted 𝑥 ⊙𝑋 𝛿𝑋 for 𝛿𝑋 ∈ Δ𝑋 . Let (𝑥 ⊙𝑋 ⊥) := 𝑋 and (𝑥 ⊙𝑋 ⊤) := {𝑥} for all
𝑥 ∈ 𝑋. Then each element 𝛿𝑋 ∈ Δ𝑋 is called a change hint.

Intuitively, a change hint 𝛿𝑋 may provide information about how a given value 𝑥 ∈ 𝑋
has changed. Specifically, 𝛿𝑋 = ⊥ provides no information about the new value, and
𝛿𝑋 = ⊤ indicates that there was no change, uniquely determining the new value.

Example Consider the set 𝑋 = ∪∞
𝑖=0{(𝑖, x) : x ∈ R𝑛} of real-valued vectors. Let Δ𝑋 :=

{𝐵 : |𝐵| < ∞, 𝐵 ⊆ {1, 2, . . . , }}. For each length-𝑛 vector 𝑥 ∈ R𝑛, and each 𝐵 ∈ Δ𝑋 such
that 𝐵 ⊆ {1, . . . , 𝑛} let 𝑥⊙𝑋 𝐵 := {𝑥′ ∈ R𝑚 : 𝑥′[𝑖] = 𝑥[𝑖] for all 𝑖 ∈ {1, . . . , min(𝑚, 𝑛)}∖𝐵}.
For 𝑥 = [4.2, 5.3, 3.1, 1.1] and 𝐵 = {2}, 𝑥⊙𝑋 𝐵 includes the vectors [4.2,−5.3, 3.1, 1.1, 1.0]
and [4.2] but not the vector [−4.2, 5.3, 3.1, 1.1].

Update operation The third trace ADT operation is t.update(𝑥′, 𝛿𝑋 , 𝜎). This oper-
ation allows the arguments to, and the random choices made by, an execution trace to
be modified. Suppose t = (𝒫, 𝑥, 𝜏 ) and 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓). The first argument (𝑥′ ∈ 𝑋)
provides new arguments, which may be different from the arguments 𝑥 ∈ 𝑋 that are
stored in the initial execution trace t. The second argument is a change hint 𝛿𝑋 ∈ Δ𝑋

such that 𝑥′ ∈ (𝑥 ⊙𝑋 𝛿𝑋). The third argument 𝜎 is a dictionary that must satisfy
ℎupdate(𝜏 , 𝜎) ̸= ⊥ for ℎupdate defined with respect to 𝑝(·; 𝑥). The operation computes
𝜏 ′ and 𝜎′ using (𝜏 ′, 𝜎′) := ℎupdate(𝜎, 𝜏 ) and returns (t′, 𝜎′, log 𝑤, 𝛿𝑌 ) where t′ = (𝒫, 𝑥′, 𝜏 ′)
is a new trace with choices 𝜏 ′ constructed from 𝜏 and 𝜎, and the remaining values
are as follows: log 𝑤 is the log ratio of the new probability to the previous probability
(log(𝑝(𝜏 ′; 𝑥′)/𝑝(𝜏 ; 𝑥))), 𝛿𝑌 is a change hint for the return value of the generative function,
where 𝑓(𝑥′, 𝜏 ′) ∈ (𝑓(𝑥, 𝜏 )⊙𝑌 𝛿𝑌 ). Note that by Proposition 2.3.1, 𝜎′ is the dictionary, that
if passed to the update operation on t′ would reverse the update and result in trace t.

Example: See Figure 1-4 in Section 1.2.3 for an example that involves changing the
structure of the choice dictionary for the generative function burglary_model.

Example: A generative function that appends to a vector Consider a gener-
ative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓) where 𝑋, 𝑌 := ∪∞

𝑖=0{(𝑖, x) : x ∈ R𝑛} (the set of real-
valued vectors) and 𝑝({𝑎 ↦→ 𝛽}; 𝑥) := 𝑝norm(0,1)(𝛽) for all 𝑥 ∈ 𝑋 and 𝑓((𝑖, x), 𝜏 ) :=
(𝑖, [𝑥1, . . . , 𝑥𝑛, 𝜏 [𝑎]]). This generative function samples a value 𝛽 from a standard nor-
mal distribution and appends it to the input vector to produce the output vector. Con-
sider Δ𝑋 = Δ𝑌 and ⊙𝑋 = ⊙𝑌 for the set of real vectors as defined above. Consider
𝑥 = [4.2, 5.3, 3.3, 1.1] and 𝑥′ = [4.2,−5.3, 3.3, 1.1] and 𝛿𝑋 = {2} and 𝜎 = {}. Then,
t.update(𝑥′, 𝛿𝑋 , 𝜎) returns (t′, 𝜎′, 0, 𝛿𝑌 ) where t′ = (𝒫, 𝑥′, {}), and 𝜎′ = {} and where
𝛿𝑌 satisfies (𝑖, [𝑥1, . . . , 𝑥𝑛, 𝛽]) ∈ ((𝑖, [𝑥′

1, . . . , 𝑥′
𝑛, 𝛽]) ⊙𝑌 𝛿𝑌 ). Examples of valid 𝛿𝑌 include

𝛿𝑌 = {2} and 𝛿𝑌 = ⊥.

Example: Using update with a generative function that has fixed structure
Consider the special case when the generative function has fixed structure; that is, for
some 𝐵 ⊆ 𝐴, 𝑝(𝜏 ; 𝑥) > 0 implies 𝐴𝜏 = 𝐵 for all 𝑥 ∈ 𝑋. Then, 𝜎 simply contains new

71



values for some subset 𝐴𝜎 ⊆ 𝐵, and 𝜎′ contains the previous values (𝜎′ = 𝜏 |𝐴𝜎 ).

Many probabilistic inference algorithms make use of gradients of probability densities
with respect to parameter values. Consider the class of generative functions 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓)
with real-valued arguments 𝑋 = R𝑛 where for all 𝑥 and 𝜏 where the support of the density
on choice dictionaries does not change with 𝑥 (supp(𝑝(·; 𝑥)) = supp(𝑝(·; 𝑥′)) for all 𝑥, 𝑥′ ∈
𝑋), and where for all 𝜏 in the support, the function 𝑥 ↦→ log 𝑝(𝜏 ; 𝑥) from R𝑛 to R is
differentiable. Suppose also that 𝑌 = R𝑚 for some 𝑚 and for each 𝜏 in the support of
the density, the function 𝑥 ↦→ 𝑓(𝑥, 𝜏 ) from R𝑛 to R𝑚 is differentiable. Let the gradient
of log 𝑝(𝜏 ; 𝑥) with respect to 𝑥 be denoted ∇𝑥 log 𝑝(𝜏 ; 𝑥) ∈ R𝑛 and let the Jacobian of
𝑥 ↦→ 𝑓(𝑥, 𝜏 ) be denoted J(𝑥, 𝜏 ) ∈ R𝑛×𝑚. Then consider a function

𝑔(𝑥, 𝜏 ) := log 𝑝(𝜏 ; 𝑥) + ℓ(𝑓(𝑥, 𝜏 )) (2.10)

where ℓ : R𝑚 → R is some differentiable function. Then, the gradient of 𝑔 with respect to
𝑥 is, by the chain rule:

∇𝑥𝑔(𝑥, 𝜏 ) = ∇𝑥 log 𝑝(𝜏 ; 𝑥) + (J(𝑥, 𝜏 ))v (2.11)

where v ∈ R𝑛 is ∇𝑦ℓ(𝑦) evaluated at 𝑦 = 𝑓(𝑥, 𝜏 ). For generative functions satisfying
the properties listed above, we can define an operation for the trace ADT that computes
∇𝑥𝑔(𝑥, 𝜏 ) given a trace t = (𝒫, 𝑥, 𝜏 ) and given a vector v ∈ R𝑛.

However, many inference algorithms also make use of gradients of probability densities
with respect to the values of random choices. Consider generative functions satisfying the
above requirements, as well as additional requirements for each 𝑥 ∈ 𝑋: There must exist
some set ℬ𝑥 ∈ 2𝐴 such that for each 𝐵 ∈ ℬ𝑥, each address 𝑎 ∈ 𝐵 is continuous (that is,
𝑉𝑎 = R and 𝜇𝑎 is the Lebesgue measure). The function from the set supp(𝑝(·; 𝑥)) ∩ {𝜏 ∈
𝒯 ⋆

𝐴 : 𝐵 ⊆ 𝐴𝜏} to R given by 𝜏 ↦→ log 𝑝(𝜏 ; 𝑥) must be differentiable with respect to 𝜏 [𝑎]
for each 𝑎 ∈ 𝐵. For each 𝐵 ∈ ℬ𝑥 the function from supp(𝑝(·; 𝑥)) ∩ {𝜏 ∈ 𝒯 ⋆

𝐴 : 𝐵 ⊆ 𝐴𝜏} to
𝑌 given by 𝜏 ↦→ 𝑓(𝑥, 𝜏 ) must be differentiable with respect to 𝜏 [𝑎] for each 𝑎 ∈ 𝐵. Then,
the partial derivative of 𝑔(𝑥, 𝜏 ) with respect to the value of a random choice in 𝜏 for which
𝑎 ∈ 𝐵 is:

𝜕𝑔(𝑥, 𝜏 )
𝜕𝜏 [𝑎] = 𝜕 log 𝑝(𝜏 ; 𝑥)

𝜕𝜏 [𝑎] +
𝑚∑︁

𝑖=1

𝜕𝑓(𝑥, 𝜏 )𝑖

𝜕𝜏 [𝑎] 𝑣𝑖 (2.12)

where v ∈ R𝑛 is ∇𝑦ℓ(𝑦) evaluated at 𝑦 = 𝑓(𝑥, 𝜏 ). Note that this formalism can be easily
extended to handle multidimensional continuous random choices with 𝑉𝑎 = R𝑘 for 𝑘 > 1,
in which case 𝜕𝑔(𝑥, 𝜏 )/𝜕𝜏 [𝑎] is replaced with a gradient ∇𝜏 [𝑎]𝑔(𝑥, 𝜏 ) ∈ R𝑘.

Gradients The fourth trace ADT operation is t.gradient(𝐵, v) where t = (𝒫, 𝑥, 𝜏 ),
𝒫 is a generative function satisfying the requirements above for 𝑛 and 𝑚, 𝐵 ∈ ℬ𝑥 and
v ∈ R𝑚. The operation returns a tuple: (u, 𝛾) where u := ∇𝑥 log 𝑝(𝜏 ; 𝑥) + (J(𝑥, 𝜏 ))v ∈
R𝑛 and where 𝛾 is a choice dictionary with 𝐴𝛾 = 𝐵 and 𝛾[𝑎] = (𝜕 log 𝑝(𝜏 ; 𝑥)/𝜕𝜏 [𝑎]) +∑︀𝑚

𝑖=1(𝜕𝑓(𝑥, 𝜏 )𝑖/𝜕𝜏 [𝑎])𝑣𝑖 for each 𝑎 ∈ 𝐵. The set 𝐵 is called the selection. This operation
computes gradients of the log-density with respect to arguments and the value of selected

72



random choices. The input v is included to allow for compositional implementations of this
operation that use reverse-mode automatic differentiation.

2.3.2 Implementing the ADT operations compositionally

The ADT operations listed above were designed so that each could be implemented com-
positionally. This allows an ADT for a generative function that is composed from other
generative functions to be implemented using the ADT operations of the two respective con-
stituent generative functions, without needing the source code of the constituent functions.
We now demonstrate this compositionality of for one of the trace ADT operations.

Recall the construction from Section 2.1.5 of a generative function 𝒫3 = (𝑋3, 𝑌3, 𝑝3, 𝑓3)
from two other generative functions 𝒫1 = (𝑋1, 𝑌1, 𝑝1, 𝑓1) and 𝒫2 = (𝑋2, 𝑌2, 𝑝2, 𝑓2) by
sequencing 𝒫1 followed by 𝒫2:

𝑋3 := 𝑋1
𝑌3 := 𝑌2
𝑓3(𝑥, 𝜏 ) := 𝑓2(𝑓1(𝑥, 𝜏 |𝐴1), 𝜏 |𝐴2)
𝑝3(𝜏 ; 𝑥) := 𝑝1(𝜏 |𝐴1 ; 𝑥)𝑝2(𝜏 |𝐴2 ; 𝑓1(𝑥, 𝜏 |𝐴1))

Consider a trace t3 = (𝒫3, 𝑥3, 𝜏3) and the trace t1 := (𝒫1, 𝑥1, 𝜏1) defined by 𝑥1 := 𝑥3
and 𝜏1 := (𝜏3)|𝐴1 and the trace t2 := (𝒫2, 𝑥2, 𝜏2) defined by 𝑥2 := 𝑓1(𝑥3, (𝜏3)|𝐴1) and
𝜏2 := (𝜏3)|𝐴2 . Consider 𝑥′

3 ∈ 𝑋3 and 𝛿𝑋 3 ∈ Δ𝑋 such that 𝑥′
3 ∈ (𝑥3⊙ 𝛿𝑋 3) and 𝜎3 such that

ℎ
(3)
update(𝜏3, 𝜎3) ̸= ⊥, where ℎ

(3)
update is defined with respect to the density 𝑝(·; 𝑥′

3). Then the
behavior of t3.update(𝑥′

3, 𝛿𝑋 3, 𝜎3) is defined. Consider t′
2, log 𝑤2, 𝜎′

2, 𝛿𝑌 2, t′
2, log 𝑤2, 𝜎′

2, 𝛿𝑌 2
given by:

(t′
1, log 𝑤1, 𝜎′

1, 𝛿𝑌 1) = t1.update(𝑥′
3, 𝛿𝑋 3, (𝜎3)|𝐴1) where t′

1 = (𝒫1, 𝑥′
1, 𝜏 ′

1)
(t′

2, log 𝑤2, 𝜎′
2, 𝛿𝑌 2) = t2.update(𝑓1(𝑥′

3, (𝜏3)|𝐴1), 𝛿𝑌 1, (𝜎3)|𝐴2) where t′
2 = (𝒫2, 𝑥′

2, 𝜏 ′
2)

Proposition 2.3.2. Given the conditions above, a valid value of t3.update(𝑥′
3, 𝛿𝑋 3, 𝜎3) is

(t′
3, log 𝑤3, 𝜎′

3, 𝛿𝑌 3) where t′
3 = (𝒫3, 𝑥′

1, 𝜏 ′
1 ⊕ 𝜏 ′

2), log 𝑤3 = log 𝑤1 + log 𝑤2, 𝜎′
3 = 𝜎′

1 ⊕ 𝜎′
2,

and 𝛿𝑌 3 = 𝛿𝑌 2. Note that the valid value of t3.update(𝑥′
3, 𝛿𝑋 3, 𝜎3) would be unique, except

for the change hint that is returned, for which there may be multiple valid values (e.g. ⊥ is
always a valid change hint to return).

Proof. We prove the claim log 𝑤3 = log 𝑤1 +log 𝑤2. log 𝑤3 = log 𝑝3(𝜏 ′
1⊕𝜏 ′

2; 𝑥′
3)− log 𝑝3(𝜏1⊕

𝜏2; 𝑥′
3) = log 𝑝1(𝜏 ′

1; 𝑥′
1) + log 𝑝2(𝜏 ′

2; 𝑥′
2) − log 𝑝1(𝜏1; 𝑥1) − log 𝑝2(𝜏2; 𝑥2) = (log 𝑝1(𝜏 ′

1; 𝑥′
1) −

log 𝑝1(𝜏1; 𝑥1))− (log 𝑝2(𝜏 ′
2; 𝑥′

2)− log 𝑝2(𝜏2; 𝑥2)) = log 𝑤1 + log 𝑤2.

Chapter 5 discusses implementing the generative function and trace ADTs in more de-
tail. In particular Chapter 5 discusses how implementations of these ADTs can be generated
from modeling language source code.

73



2.4 Related work
Semantics of probabilistic programming languages. Numerous efforts have been
made to define semantics for universal probabilistic programming languages and inference
algorithms for these languages [15, 55, 115]. We do not define the denotational semantics
for Gen’s modeling languages. Instead, we provide a definition of an abstract mathematical
object (generative functions) that makes the addresses of random choices explicit, on top
of which Gen’s trace data type is built. The probability densities and reference measures
used in the definition of a generative function are similar to those used in prior work [15],
except that we use arbitrary addresses that have individual base measures.

Incremental computation and change hints The update trace operation is designed
to be implemented using compositional incremental computation schemes via change hints.
Note that update requires computation of not just the new return value (as in tradi-
tional deterministic computation) but also the ratio of probability densities of the new and
old random choices and the new choice dictionary. Incremental computation has a long
history [97, 2]. Change hints in Gen are similar to over-approximations of change struc-
tures [18]. The addresses of the random choices passed in as constraints to update play a
similar role as the memory addresses in self-adjusting computation based on memory loca-
tions [2]. Gen does not prescribe how modeling language implementations use or compute
change hints; different approaches may be better suited for different modeling languages.
Automatically generating code that computes change hints for code in general-purpose
programming languages is an interesting area of future work.

Compositional automatic differentiation Numerous systems support compositional
automatic differentiation, where users write custom operators and provide gradient compu-
tations designed for reverse-mode automatic differentiation based on the chain rule [1, 94].
The gradient operator is Gen is unique because it distinguishes between differentiation
with respect to arguments to the computation, and differentiation with respect to the val-
ues of random choices in the trace based on a dynamic selection including over addresses
that may only exist dynamically, depending on control flow.

Addresses for random choices and generative function calls Unlike the model-
ing languages of Church [51], Venture [79] and most other probabilistic programming sys-
tems, Gen’s dynamic modeling language allows users to assign specific addresses to random
choices for fine-grained control over traces when implementing inference algorithms. The
Pyro system [13] also introduced individual addresses to random choices independently
and concurrently, although the entire execution uses the same address namespace in Pyro,
whereas Gen allows users to assign an address for a function call. This reflects a difference
in architecture—Gen’s modeling languages can invoke any generative function that imple-
ments Gen’s abstract data types; the implementation details of the callee and the random
choices that is makes are encapsulated.

74



Chapter 3

Implementing Inference Using
Generative Functions and Traces

A variety of algorithms for probabilistic inference and learning can be implemented us-
ing the tools of the previous chapter—generative functions and traces. This chapter gives
procedures in pseudocode for implementing inference algorithms and building blocks for
inference algorithms using generative functions and traces. Despite the fact that these pro-
cedures operate on flexible model representations derived from probabilistic programs, they
are short and lay bare the mathematical structure of inference algorithms because the im-
plementation details are abstracted away by the generative function and trace abstract data
types. Such details include how the trace data structure is implemented, how probabilities
or gradients are computed, and how conditional independence in the model is exploited by
the modeling language compiler to make the abstract data type operations more efficient.

Users of Gen implement their own inference algorithms in a general-purpose program-
ming language using a Gen API that provides generative function and trace data types,
together with embedded probabilistic modeling languages for defining generative functions.
At the time of this writing, the Gen implementation uses Julia as the general-purpose host
language, but Gen’s architecture and the inference pseudocode given in this chapter could
be implemented in other host languages as well. The pseudocode procedures provided in
this chapter can be implemented by users in Julia. In some cases these procedures have
also been implemented within Gen’s inference library, which contains reusable inference
logic built on top of the abstract data types. The chapter includes pedagogical examples
that are implemented in Julia. The examples use Gen’s probabilistic modeling languages
to express generative functions, Gen’s Julia API, and in some cases Gen’s inference library.

The inference procedures defined in this chapter are in many cases composable with one
another. Examples of composability include (i) composing MCMC kernels together into
more complex MCMC kernels, (ii) composing particle filtering with MCMC kernels (where
the MCMC kernels play the role of rejuvenation moves), and (iii) composing learning and
inference by training proposal distributions for use in Monte Carlo inference algorithms on
data simulated from a generative model. The composability is due in part to the fact that
all of the procedures are implemented with the same abstract data types. The ability to

75



implement an open-ended set of inference algorithms from primitive building blocks in a
general-purpose programming language while using probabilistic programming languages
to explicitly express probabilistic models is a distinctive feature of Gen.

The chapter also introduces several new programming constructs for Monte Carlo al-
gorithms, including domain-specific languages for composing MCMC kernels and for ex-
pressing deterministic transformations of traces. One construct, called a trace translator,
is a versatile building block for implementing inference algorithms based on two or more
probabilistic models of the same domain that use different latent representations.

3.1 Simple Monte Carlo with traces
Monte Carlo inference algorithms [104] are randomized approximation algorithms that are
used to estimate properties of probability distributions that are difficult to compute sym-
bolically. The most basic Monte Carlo algorithm, sometimes called simple Monte Carlo,
involves (i) approximating a probability distribution by a collection of samples drawn from
the distribution, and (ii) using this approximation to estimate expectations of test functions.

Consider a probability distribution 𝑝 on choice dictionaries, and a test function 𝑔 :
𝒯 ⋆

𝐴 → R whose expectation (E𝜏∼𝑝[𝑔(𝜏 )], assuming it exists) we want to estimate. Simple
Monte Carlo approximates the distribution by a collection (𝜏 (1), . . . 𝜏 (𝑛)) where each 𝜏 (𝑖)

is independently and identically distributed according to 𝑝, and averages the value of the
test function across the samples in the collection:

E𝜏∼𝑝[𝑔(𝜏 )] ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑔(𝜏 (𝑖)) for 𝜏 (𝑖) 𝑖𝑖𝑑∼ 𝑝 (3.1)

In particular, the estimate converges almost surely to the expectation as 𝑛 increases. When
the function takes the form 𝑔(𝜏 ) := [𝜏 ∈ 𝐸] for some event 𝐸 ⊆ 𝒯 ⋆

𝐴 , Equation (3.1)
estimates the probability of the event 𝐸. Note that simple Monte Carlo requires the ability
to sample from the probability distribution, which is often not possible for the conditional
distributions arising in probabilistic inference. The subsequent sections in this chapter give
more sophisticated approximation algorithms that do support conditional distributions.

Simple Monte Carlo with traces As described in the previous chapter, a generative
function 𝒫 defines a probability distribution 𝑝 on choice dictionaries 𝜏 . The first step
in employing simple Monte Carlo to infer an expectation under a probability distribution
𝑝 is to construct a generative function 𝒫 called the ‘model’ whose distribution on choice
dictionaries is 𝑝, typically by writing a program in a probabilistic modeling language. To
sample from this distribution we use 𝒫.simulate, which returns a trace t that wraps the
sampled choice dictionary 𝜏 ∼ 𝑝 with additional metadata and operations that are useful for
implementing more sophisticated inference algorithms. The simple Monte Carlo procedure
(Algorithm 1) does not make use of these additional features of traces, and just retrieves the
sampled choice dictionary with t.choices(). The extra capabilities of traces are important
for the more sophisticated algorithms appearing later in this chapter. In this chapter, the
arguments to the generative function 𝒫 that represents the model often play no role in the

76



algorithm and can be treated as constant. To reduce complexity of the notation, in such
cases we denote the arguments to 𝒫 with an underscore (_). For example, 𝒫.simulate(_)
invokes simulate on 𝒫, which may or may not take arguments.

Algorithm 1 Simple Monte Carlo with traces
procedure simple-monte-carlo(𝒫, 𝑔, 𝑛)

for 𝑖← 1 . . . 𝑛 do
t(𝑖) ← 𝒫.simulate(_)

end for
return 1

𝑛

∑︀𝑛
𝑖=1 𝑔(t(𝑖).choices())

end procedure

Example: Estimating the probability of an event Consider the generative function
𝒫 := poly_model defined below that encodes a generative model of y-coordinates generated
from a random polynomial of random degree:

@gen function poly_model(x_coordinates)
degree ∼ uniform_discrete(0, 4)
var ∼ inv_gamma(1, 1)
coefficients = [({(:c, i)} ∼ normal(0, 1)) for i in 0:degree]
for i=1:length(x_coordinates)

x = x_coordinates[i]
mu = coefficients’ * x.∧(0:degree)
{(:y, i)} ∼ normal(mu, sqrt(var))

end
end

Suppose we want to estimate the probability that the second y-coordinate is greater than
the first y-coordinate, for some given x-coordinates. Then 𝑔(𝜏 ) := [𝜏 [(y, 2)] > 𝜏 [(y, 1)]. To
estimate this probability using Algorithm 1, we first assemble the collection of (𝑛 = 100)
traces by simulating from the generative function. Julia code to do this, using the version
of Gen at time of this writing, is shown below:

x_coordinates = [0.0, 1.0, 2.0, 3.0]
n = 100
traces = [Gen.simulate(poly_model, (x_coordinates,)) for i in 1:n]

The Julia function call ‘Gen.simulate(poly_model, (xs,))’ implements 𝒫.simulate(𝑥) where
𝑥 is the tuple of arguments to the generative function (which in this case contains a single
element x_coordinates). Then, we implement the test function as a Julia function and
compute its average value across the traces:

g(trace) = trace[(:y, 1)] > trace[(:y, 2)]
estimate = sum([g(trace) for trace in traces]) / n

Note that as a syntactic sugar, traces in Gen allow direct access to the values of random
choices by their address, using square brackets. That is, the syntax trace[𝑎] where trace
represents trace t evaluates to t.choices()[𝑎]. For example in the code above, each value

77



trace represents t(𝑖) = (𝒫, 𝑥, 𝜏 (𝑖)) where 𝜏 (𝑖) is a choice dictionary, and trace[(y, 1)]
evaluates to 𝜏 (𝑖)[(y, 1)]. Running the Julia code above gives a simple Monte Carlo estimate
of the desired probability. Figure 3-1 shows histograms of estimate collected from 1000
executions of this code, for different settings of 𝑛. The true probability is ≈ 0.5. Increasing
𝑛 reduces the variance in the estimates as expected.

0.0 0.5 1.0

n = 10

0.0 0.5 1.0

n = 100

0.0 0.5 1.0

n = 1000

0.0 0.5 1.0

n = 10000

Figure 3-1: Convergence of simple Monte Carlo implemented with traces

Note that the test function whose expectation we estimate is defined externally to the
generative function 𝒫. It is also possible to define the return value of 𝒫 to be 𝑔(𝜏 ), in which
case the values 𝑔(𝜏 (𝑖)) in Algorithm 1 are computed during simulate, and are accessible
from each trace via the retval trace operation. However, this is undesirable because it
reduces modularity of the code—modifying the test function would require modifying the
model code. Also, encoding the test function separately from the model code allows the
same collection of traces to be reused with many test functions.

3.2 Importance sampling with traces

Using simple Monte Carlo we estimated a property of a distribution 𝑝 using samples from
that distribution. More sophisticated Monte Carlo methods involve sampling from other
probability distributions called proposal distributions that are denoted 𝑞. Importance sam-
pling [104] is the simplest class of Monte Carlo methods that uses proposal distributions.

This section describes how to implement importance sampling algorithms using gener-
ative functions and traces. A key idea is that proposal distributions are represented in the
same way as model distributions—as generative functions. Users write their proposal dis-
tributions using the same probabilistic modeling languages used to write generative models.
Because proposals are defined using expressive modeling languages, a variety of different
types of proposals are possible, including proposals based on the prior distribution, data-
driven proposals, algorithmic proposals, simulator-based proposals, and proposals based on
neural networks that are fully or partially learned from data. Proposal generative functions
can be used for models with stochastic structure. In this section, generative functions rep-
resenting a model are denoted 𝒫, generative functions representing a proposal are denoted
𝒬, and the probability density on choice dictionaries for 𝒬 is denoted 𝑞.

The two design parameters of an importance sampling algorithm are the number of
samples 𝑛 and the proposal distribution 𝑞. Increasing 𝑛 reduces error while increasing
computational cost, and the choice of proposal distribution determines the efficiency of
the algorithm (i.e. the error for a given 𝑛). Tailoring the proposal distribution to the

78



inference problem can vastly improve the efficiency of the algorithm. This motivates our
use of flexible probabilistic modeling languages to express proposal distributions.

3.2.1 Regular importance sampling

Like simple Monte Carlo, regular importance sampling [104] is used to estimate expectations
of a test function 𝑔 under a distribution 𝑝. However, instead of sampling each 𝜏 (𝑖) from
𝑝, we sample each 𝜏 (𝑖) from 𝑞, and correct the estimate by ‘weighting’ each sample by
an importance weight 𝑝(𝜏 (𝑖))/𝑞(𝜏 (𝑖)), and then averaging the weighted values of the test
function:

E𝜏∼𝑝[𝑔(𝜏 )] ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑔(𝜏 (𝑖))𝑤(𝑖) where 𝑤(𝑖) := 𝑝(𝜏 (𝑖))
𝑞(𝜏 (𝑖))

for 𝜏 (𝑖) 𝑖𝑖𝑑∼ 𝑞 (3.2)

Like simple Monte Carlo, this estimator is unbiased and converges to the desired expectation
as 𝑛 increases. This procedure is often used when it is possible to sample from 𝑝, but simple
Monte Carlo would give a high-variance estimate because 𝑔 has large magnitude in regions
of the state space that have low probability under 𝑝. For example, 𝑔 may be the indicator
function for an event that has low probability under 𝑝. In this setting, it is possible to
choose 𝑞 that reduces the variance of the estimator below that of simple Monte Carlo.

Algorithm 2 Regular importance sampling with traces
procedure importance-sampling(𝒫, 𝒬, 𝑔, 𝑛)

for 𝑖← 1 . . . 𝑛 do
s← 𝒬.simulate(_)
𝜎 ← s.choices()
t(𝑖) ← 𝒫.generate(_, 𝜎)
𝑤(𝑖) ← exp(t(𝑖).logpdf()− s.logpdf())

end for
return 1

𝑛

∑︀𝑛
𝑖=1 𝑤(𝑖) · 𝑔(t(𝑖).choices())

end procedure

Algorithm 2 shows an implementation of regular importance sampling using a generative
function 𝒫 that encodes the distribution 𝑝, and a generative function 𝒬 that encodes the
proposal distribution 𝑞. This algorithm associates each random choice sampled in 𝒬 with
the random choice sampled in 𝒫 that has the same address. In order to be a valid proposal
distribution for use with 𝒫, 𝒬 must use the same address universe as 𝒫. In the measure-
theoretic setting, this implies that 𝒫 and 𝒬 must use the same reference measure for each
address. For example, 𝒫 cannot sample a discrete random choice at some address 𝑎 while
𝒬 samples a continuous random choice. 𝒬 and 𝒫 must also satisfy the following condition:

𝑝(𝜏 ) > 0 =⇒ 𝑞(𝜏 ) > 0 (3.3)

In particular, if 𝒫 employs stochastic control flow, then 𝒬 must also employ stochastic
control flow (although the Julia language constructs used to implement the control flow

79



need not be the same). Users of Gen must reason about the relationships between the sets
of possible choice dictionaries 𝜏 for the two generative functions when designing proposals.
The current Gen implementation does not automatically verify that Equation (3.3) holds.

Example: Importance sampling and stochastic structure Consider the model
𝒫 := p_inf_squares below, and the function 𝑔(𝜏 ) :=

∑︀∞
𝑖=1([𝜏 [(go, 𝑖)]] · 𝜏 [(x, 𝑖)]2). We

use Algorithm 2 to estimate the value of the expectation:

E𝜏∼𝑝[𝑔(𝜏 )] =
∞∑︁

𝑖=1
(0.5)𝑖

𝑖−1∑︁
𝑗=1

(1 + 𝑗2) = 7.0

(This example is chosen because it is possible to compute the expectation symbolically; in
general this is not possible). We use proposal distribution 𝒬 := q_inf_squares below:

@gen function p_inf_squares()
i = 1; xtot = 0
while ({(:go, i)} ∼ bernoulli(0.5))

xtot += ({(:x, i)} ∼ normal(i, 1))∧2
i += 1

end
return xtot

end

@gen function q_inf_squares()
i = 1
while ({(:go, i)} ∼ bernoulli(0.7))

{(:x, i)} ∼ normal(i, 1)
i += 1

end
end

Julia code implementing this estimator using the current version of Gen is:

n = 1000
estimate = 0.0
for i in 1:n

q_trace = Gen.simulate(q_inf_squares, ())
(p_trace, _) = Gen.generate(p_inf_squares, (), Gen.get_choices(q_trace))
w = exp(Gen.get_score(p_trace) - Gen.get_score(q_trace))
estimate += w * Gen.get_retval(p_trace) # or estimate += g(p_trace)

end
estimate = estimate / n

Note that in this code, the test function 𝑔 is computed within the body of the gener-
ative function 𝒫, and stored in the return value of its trace t, which is accessed using
Gen.get_retval. It is also possible to instead implement the the test function separately in
a Julia function g that reads the trace:

80



@gen function p_inf_squares()
i = 1
while ({(:go, i)} ∼ bernoulli(0.5))

{(:x, i)} ∼ normal(i, 1)
i += 1

end
end

function g(trace)
i = 1; xtot = 0
while trace[(:go, i)]

xtot += (trace[(:x, i)])∧2
i += 1

end
return xtot

end

Specifying 𝑔 as part of the generative function has the benefit of reducing the total amount
of code, but has the downside of tying the test function to the model code, so that the model
code needs to be modified if the test function is modified. Figure 3-2 shows the results of
running this code 1000 times, for different settings of 𝑛, and compares the results to those
of a simple Monte Carlo estimator. The true value of the expectation (7.0) is shown in red.
Increasing 𝑛 reduces the variance in the estimates as expected. The importance sampling
estimator is more accurate for a given 𝑛 than the simple Monte Carlo estimator. Intuitively,
this is because 𝒬 allocates more probability mass than 𝒫 to traces for which 𝑔(𝜏 ) is large
by increasing the likelihood that larger 𝑖 are sampled.

4 6 8 10

n = 100

4 6 8 10

n = 1000

4 6 8 10

n = 10000

(a) Simple Monte Carlo (Algorithm 1)

4 6 8 10

n = 100

4 6 8 10

n = 1000

4 6 8 10

n = 10000

(b) Importance sampling (Algorithm 2)

Figure 3-2: Comparing accuracy of importance sampling and simple Monte Carlo

3.2.2 Self-normalized importance sampling

Regular importance sampling (Algorithm 2) can be used when distribution of interest 𝑝 is
the unconditioned distribution on choice dictionaries of a generative function. But typi-
cally in probabilistic inference the distribution of interest is a conditional distribution 𝑝(·|𝜌)
arising from conditioning such a distribution on observed data 𝜌. In this chapter, we will
assume that the observed data 𝜌 are existentially sound and have nonzero marginal likeli-

81



hood (𝑝(𝜌) > 0). We will denote the latent choice dictionary by 𝜎. In this setting it is not
typically possible to evaluate the target density 𝑝(𝜎|𝜌) := 𝑝(𝜎 ⊕ 𝜌)/𝑝(𝜌), and therefore it
is not possible to use Algorithm 2. However, it is possible to evaluate 𝑝(𝜎 ⊕ 𝜌) and use
an estimate of the marginal likelihood 𝑝(𝜌) to approximate the importance weight used
by regular importance sampling. This is the approach taken by self-normalized impor-
tance sampling [104], which uses a collection of samples from the proposal 𝑞 to construct
an estimate of the marginal likelihood, and weights these same samples by approximate
importance weights obtained using the estimated marginal likelihood instead of 𝑝(𝜌):

E𝜎∼𝑝(·|𝜌)[𝑔(𝜏 )] ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑔(𝜎(𝑖))𝑤(𝑖) for 𝑤(𝑖) := 𝑝(𝜎(𝑖) ⊕ 𝜌)/𝑧

𝑞(𝜎(𝑖))
, 𝜎(𝑖) 𝑖𝑖𝑑∼ 𝑞 (3.4)

where the estimate of the marginal likelihood is:

𝑧 := 1
𝑛

𝑛∑︁
𝑗=1

𝑝(𝜎(𝑗) ⊕ 𝜌)
𝑞(𝜎(𝑗))

(3.5)

Unlike regular importance sampling, this procedure is not in general unbiased, but it still
converges asymptotically to the correct value. Note that self-normalized importance sam-
pling can actually be more accurate than regular importance sampling even in the absence
of conditioning [104] (e.g. with 𝜌 = {}).

Algorithm 3 shows an implementation of self-normalized importance sampling using
generative functions and traces. Note that the sum of weights 𝑤(𝑖) is 1. It is convenient
to treat the weighted collection of traces {(t(𝑖), 𝑤(𝑖))}𝑛𝑖=1 as an approximation to the con-
ditional distribution 𝑝(·|𝜌), independently of the test function we are trying to estimate.
For example, we can use the same weighted collection to estimate expectations of various
test functions. Also, as we will see in Section 3.5, the weighted collection of traces can be
subjected to further inference operations within an inference algorithm. Therefore, instead
of taking a test function 𝑔 as input and returning the estimated expectation as output,
Algorithm 3 returns a weighted collection of traces that approximates a given conditional
distribution 𝑝(·|𝜌). It also returns the log marginal likelihood estimate log 𝑧, because this
quantity is of intrinsic interest for model comparison. Note that each trace t(𝑖) contains
both the latent choices 𝜎(𝑖) and the observed choices 𝜌, which are the same across all traces.

Since Algorithm 3 produces an approximation to the conditional distribution 𝑝(·|𝜌)
instead of an estimate of an expectation of some test function 𝑔, the proposal 𝒬 should be
chosen to be accurate for various test functions. A general design principle for proposals
that are not specialized to some test function 𝑔 is to make the proposal distribution 𝑞
as close as possible to the conditional distribution 𝑝(·|𝜌). In particular, the number of
samples that is necessary and sufficient to achieve a particular expected estimation error
grows exponentially in the difference between target and proposal distributions, as measured
by Kullback-Leibler divergence from target to proposal [21].

The requirement on the proposal generative function 𝒬 to be valid for self-normalized
importance sampling is similar to that for regular importance sampling, but instead of

82



Algorithm 3 Self-normalized importance sampling with traces
procedure self-norm-importance-sampling(𝒫, 𝒬, 𝜌, 𝑛)

for 𝑖← 1 . . . 𝑛 do
s← 𝒬.simulate(_)
𝜏 ← s.choices()⊕ 𝜌
t(𝑖) ← 𝒫.generate(_, 𝜏 )
log �̃�(𝑖) ← t(𝑖).logpdf()− s.logpdf()

end for
((𝑤(1), . . . , 𝑤(𝑛)), log ̂︀𝑧)← normalize(log �̃�(1), . . . , log �̃�(𝑛))
return

(︁
{(t(1), 𝑤(1)), . . . , (t(𝑛), 𝑤(𝑛))}, log ̂︀𝑧)︁

end procedure
procedure normalize(ℓ(1), . . . , ℓ(𝑛))

ℓ̄← max𝑗 ℓ(𝑗) + log
(︁∑︀𝑛

𝑖=1 exp(ℓ(𝑖) −max𝑗 ℓ(𝑗))
)︁

for 𝑖← 1 . . . 𝑛 do
𝑤(𝑖) ← exp(ℓ(𝑖) − ℓ̄)

end for
return

(︁
[𝑤(1), . . . , 𝑤(𝑛)], ℓ̄

)︁
end procedure

covering the support of 𝑝, the support of the 𝑞 must cover the support of 𝑝(·|𝜌):

𝑝(𝜎 ⊕ 𝜌) > 0 =⇒ 𝑞(𝜎) > 0 (3.6)

Intuitively, the proposal ‘fills in’ values for the latent random choices in the model’s trace
by sampling its own random choices 𝜎 at the same addresses that are sampled in the model.
These choices are then merged with the observed data 𝜌 to construct the choice dictionary
for the model 𝜏 . Note that if 𝑝(𝜎(𝑖) ⊕ 𝜌) = 0 where 𝜎(𝑖) := s.choices() for all 𝑖 in
Algorithm 3 then log �̃�(𝑖) = −∞ for all 𝑖, and it is not possible to compute a log marginal
likelihood estimate or normalized weights 𝑤(𝑖), and the procedure will error. While the
probability of this event decreases to zero as 𝑛 increases, to ensure the algorithm always
successfully returns, the following converse support requirement is added:

𝑞(𝜎) > 0 =⇒ 𝑝(𝜎 ⊕ 𝜌) > 0 (3.7)

Example: Potential proposals for self-normalized importance sampling Con-
sider the generative function 𝒫 := p_self_norm defined below, and two generative functions
𝒬1 := q1_self_norm and 𝒬2 := q2_self_norm that encode potential proposals for use in
Algorithm 3. For observations 𝜌 := {c ↦→ T}, 𝒬1 is a valid importance sampling proposal
for 𝒫 and 𝜎 but 𝒬2 is not because it never produces choice dictionaries containing address
b. For example, for 𝜎 := {a ↦→ T, b ↦→ F} we have 𝑝(𝜎 ⊕ 𝜌) > 0 but 𝑞2(𝜎) = 0.

83



@gen function p_self_norm()
a ∼ bernoulli(0.1)
b ∼ bernoulli(0.2)
c ∼ bernoulli((a && b) ? 0.9 : 0.1)

end

@gen function q1_self_norm()
a ∼ bernoulli(0.5)
b ∼ bernoulli(0.5)

end

@gen function q2_self_norm()
a ∼ bernoulli(0.5)

end

Example: Using the prior distribution as a proposal A simple way of constructing
a generative function 𝒬 that is a valid proposal some pair of model 𝒫 and observed data 𝜌
is to write 𝒬 so that it samples from the prior distribution on the latent random choices.
When 𝒫 is written in a probabilistic modeling language like Gen’s DML, it is often possible
to obtain such a 𝒬 by simply removing the lines of code that sample the observed data from
the model code. For example the following generative function 𝒬 := q_is_prior defines
a valid proposal for the polynomial curve model 𝒫 := poly_model (with lines for observed
random choices commented out):

@gen function q_is_prior(x_coordinates)
degree ∼ uniform_discrete(0, 4)
var ∼ inv_gamma(1, 1)
coefficients = [({(:c, i)} ∼ normal(0, 1)) for i in 0:degree]
# deleted lines that sample observed addresses (:y, i)
# ..

end

Note that if the proposal instead iterated over ‘i in 1:degree’ (skipping the constant-term
coefficient at i = 0), then it would become invalid because all choice dictionaries 𝜎 that
contain address (c, 0) would have 𝑞(𝜎) = 0. Chapter 4 shows how the generative function
and trace abstract data types can be extended so that simple proposals like this can be
automatically generated by the modeling language compiler.

Example: A data-driven proposal distribution Although a proposal based on the
prior distribution is easy to construct it is unlikely to result in an efficient importance
sampling algorithm, because the prior distribution is usually not similar to the target
distribution 𝑝(·|𝜌). In order to better match the target distribution, it is necessary for the
proposal to take into account the observed data 𝜌. Such proposals are sometimes called
data-driven [125]. One way of constructing data-driven proposals is to use a heuristic
to estimate the mode of the target distribution (or one of its conditional distributions)
and to sample values near the estimate of the mode, but with noise added. For example,
consider conditional inference in 𝒫 := poly_model given observations of the form 𝜌 =
{(y, 1) ↦→ 𝑦1, . . . (y, 5) ↦→ 𝑦5} where the length of x_coordinates is 5. If we knew the
degree of the polynomial, then we could use the least squares fit of a polynomial of that

84



degree as a heuristic estimate of the mode of the distribution on coefficients given data
and degree. The generative function 𝒬 := q_is_data_driven below defines a proposal
distribution that samples the degree and noise from their prior distributions, but runs least
squares consecutively to estimate each coefficient in sequence. We propose each coefficient
from a Cauchy distributions centered at the least squares estimate, with scale parameters
that have been tuned for this model (see Section 3.3 for techniques for tuning parameters
of proposal distributions).

@gen function q_is_data_driven(x_coords, y_coords)
scales = [0.395, 0.242, 0.088, 0.020, 0.007]
n = length(x_coords)
@assert n == length(y_coords)
degree ∼ uniform_discrete(0, 4)
coeffs = [NaN for i in 0:degree]
predicted = [0.0 for i in 1:n]
for i in 0:degree

residuals = y_coords .- predicted # elementwise subtraction
# fit a polynomial to residuals with coefficients 0..i-1 fixed to zero
est_coeffs = least_squares(x_coords, residuals, degree, min_degree=i)
coeffs[i+1] = ({(:c, i)} ∼ cauchy(est_coeffs[1], scales[i+1]))
predicted = [coeffs’ * x.∧(0:i) for x in x_coords]

end
residuals = y_coords .- predicted
var ∼ inv_gamma(1 + n/2, 1 + 0.5 * residuals’ * residuals)

end

Note that this proposal takes both the input data (x_coords) and the observed data
y_coords) as arguments. In general, proposal generative functions are allowed to take
arbitrary arguments. Also, crucially, the proposal is able to run least-squares Julia code.
The ability to run general-purpose code as part of a proposal distribution is a key motivator
for Gen’s use of flexible probabilistic modeling languages to express proposal distributions.
The proposal finishes by sampling the variance from its conditional distribution, which was
derived using conjugate analysis.

Suppose our goal is to estimate the conditional probability that the degree is three for
some data set. The Julia code below uses Gen’s inference library implementation of Algo-
rithm 3, with the data-driven proposal 𝒬. Note that the inference library implementation
returns log-weights log 𝑤(𝑖) instead of 𝑤(𝑖).

observations = Gen.choicemap() # initialize empty choice dictionary
for i in 1:length(y_coords)

observations[(:y, i)] = y_coords[i]
end
(traces, log_weights) = Gen.importance_sampling(

poly_model, (x_coords,), observations,
q_is_data_driven, (x_coords, y_coords), n)

weights = exp.(log_weights)
estimate = sum(weights .* map(g, traces))

Figure 3-3 shows the results of running this code 100 times, for different settings of 𝑛,

85



and compares the results with that of the same code, but with the less efficient proposal
q_is_prior. Increasing 𝑛 reduces the variance in the estimates as expected. The importance
sampling estimator that uses the data-driven proposal is much more accurate for given 𝑛
than the estimator using the prior as the proposal (the true value is near 0.9). Note
that many other probabilistic programming systems with universal modeling languages
exclusively support importance sampling proposals based on the prior distribution [130, 40].

0.0 0.5 1.0

n = 102

0.0 0.5 1.0

n = 103

0.0 0.5 1.0

n = 104

0.0 0.5 1.0

n = 105

(a) Estimates from self-normalized importance sampling with a prior proposal.

0.0 0.5 1.0

n = 102

0.0 0.5 1.0

n = 103

0.0 0.5 1.0

n = 104

0.0 0.5 1.0

n = 105

(b) Estimates from self-normalized importance sampling with a data-driven proposal.

Figure 3-3: Comparing self-normalized importance sampling using different proposals

3.3 Training proposal distributions on simulated data

Manually devising efficient proposal distributions for use in self-normalized importance
sampling and other Monte Carlo algorithms can be difficult. The process of constructing
an efficient proposal generative function 𝒬 can be partially automated by training numer-
ical parameters in 𝒬 using supervised learning on training data that is generated from the
generative model 𝒫. The general strategy of training an proposal or inference computation
on data simulated from a generative model has a long history in the machine learning and
inference literature [58, 87]. The strategy can be motivated by mathematical relationship
between maximum likelihood learning of discriminative models and Kullback-Leibler (KL)
divergence. Consider a generative model distribution 𝑝(𝜎 ⊕ 𝜌) where 𝜎 contains latent
choices and 𝜌 contains observed random choices. We can train a family of proposals distri-
butions 𝑞(·; 𝜌, 𝜃), where 𝜌 is observed data, and 𝜃 are numerical parameters of the proposal
program, to maximize the expectation of the log-likelihood log 𝑞(𝜎; 𝜌, 𝜃), where the latent
and observed data 𝜎 and 𝜌 are jointly sampled from 𝑝:

max
𝜃

E(𝜎⊕𝜌)∼𝑝 [log 𝑞(𝜎; 𝜌, 𝜃)] (3.8)

86



This is equivalent to solving the following optimization problem:

min
𝜃

E𝜌∼𝑝 [DKL(𝑝(·|𝜌)||𝑞(·; 𝜌, 𝜃)] (3.9)

The equivalence has been noted several times in recent literature [16, 70, 31, 71]. Be-
cause the KL divergence DKL(𝑝(·|𝜌)||𝑞(·; 𝜌, 𝜃)) governs the efficiency of a proposal distri-
bution [21], the equivalence between Equation (3.8) and Equation (3.9) implies that Monte
Carlo proposals can be tuned using supervised learning on data simulated from the gen-
erative model. The optimization problem in Equation (3.8) can be solved using stochastic
gradient techniques with gradient estimates obtained from minibatches of simulated data.

This training procedure is implemented naturally using Gen’s abstract data types for
generative functions and traces. Algorithm 4 gives a procedure for training numerical
parameters 𝜃 of a generative function 𝒬 that encodes a proposal distribution, on data
generated from a generative function 𝒫 that encodes a generative model. The procedure
assumes that the numerical parameters 𝜃 are arguments to the generative function 𝒬, and
it obtains gradients of log 𝑞(𝜎; 𝜌, 𝜃) with respect to 𝜃 using the gradients trace operation.
The same procedure can be used to train parameters of generative functions for use as
proposals within the Metropolis-Hastings algorithms that will be described in Section 3.4.2
and the particle filtering algorithms that will be described in Section 3.5. Also note that
with small adjustments this procedure can be used for learning of discriminative generative
functions 𝒬 directly from real data, or from combinations of real and simulated data.

Algorithm 4 Training parameters of a proposal on data generated from a model
procedure simulated-data-train-sgd(𝒫, 𝒬, 𝜃0, 𝛼, 𝑘, 𝑚)

for 𝑖← 1 . . . 𝑘 do
u← 0
for 𝑗 ← 1 . . . 𝑚 do

t← 𝒫.simulate(_)
(𝜎 ⊕ 𝜌)← t.choices() ◁ Separate out latents 𝜎 and observations 𝜌
s← 𝒬.generate((𝜌, 𝜃𝑖−1), 𝜎)
((_, v), _)← s.gradient({}, 0) ◁ v = ∇𝜃 log 𝑞(𝜎; 𝜌, 𝜃) at 𝜃 = 𝜃𝑖−1
u← u + (1/𝑚) · v

end for
𝜃𝑖 ← 𝜃𝑖−1 + 𝛼 · u

end for
return 𝜃𝑘

end procedure

Example: Automatically tuning the stochasticity of a heuristic-based proposal
Consider the proposal 𝒬 := q_is_data_driven above. This data-driven proposal uses least-
squares to determine the mode of the (Cauchy) sampling distribution for each coefficient.
The numerical parameters ‘scales’ govern how stochastic the sampling distribution of each
coefficient should be. Intuitively, if the scale parameters are too large, then the proposal

87



will often propose samples with very low posterior probability, and the importance sampling
algorithm will require many particles in order for an significant number to lie in regions
of appreciable posterior probability. The algorithm may give overly uncertain estimates
unless the number of particles is very large. If the scale parameters are too small, then the
regions of the parameter space will not be sampled frequently enough, and the algorithm
may give overconfident estimates. The code below implements Algorithm 4 in Julia, using
the version of Gen at the time of this writing:

n = length(x_coords)
theta = [10.0, 10.0, 10.0, 10.0, 10.0]
for iter in 1:500 # iterations of stochastic gradient descent

grad_accumulator = [0.0, 0.0, 0.0, 0.0, 0.0]
for i in 1:100 # minibatch size

p_trace = Gen.simulate(poly_model, (x_coords,))
q_args = (x_coords, [p_trace[(:y, i)] for i in 1:n], log_scales)
latents = Gen.complement(Gen.select([(:y, i) for i in 1:n]...))
latent_choices = Gen.get_selected(Gen.get_choices(p_trace), latents)
(q_trace, _) = Gen.generate(q_is_data_driven, q_args, latent_choices)
((_,_,grad),_) = Gen.choice_gradients(q_trace, Gen.select())
grad_accumulator .+= grad / 100

end
theta .+= (grad_accumulator * 0.1)

end

This algorithm uses Gen.choice_gradients, which implements the gradient abstract data
type operation. Note that the program q_is_data_driven was modified to add a third argu-
ment log_scales. We use the log of the scale vector as the argument so that optimization
can be performed over an unconstrained space. Also, we label the argument with ‘grad’ to
indicate that gradients with respect to this argument will be required:

@gen function q_is_data_driven(xs, ys, (grad)(log_scales))
scales = exp.(log_scales)
..

end

Not that Gen also has more specialized gradient operations that can be used when opti-
mizing large parameter arrays. The code above is chosen for simplicity, and to use only the
subset of Gen’s abstract data type operations that were introduced in Chapter 2.3.

Figure 3-4a shows the estimated objective function over the course of training these
parameters using Algorithm 4, where data is simulated from the generative model 𝒫 :=
poly_model. Figure 3-4b shows the estimates of the conditional probability that the de-
gree of the polynomial is three, obtained using self-normalized importance sampling with
proposal q_is_data_driven without training (all scale parameters were set heuristically
to 0.5 for all coefficients based on qualitative accuracy on some simulated data sets)
and after training (the values for the trained scale parameters are shown in the body
of q_is_data_driven. Each of the two algorithms was run 100 times each for four different
numbers of particles ranging from 𝑛 = 102 to 𝑛 = 105 and the estimated probabilities from
the 100 runs were aggregated histograms. While both algorithms appear to converge to

88



the same value as 𝑛 grows, the algorithm after training requires orders of magnitude fewer
particles to achieve comparable levels of accuracy.

0 100 200 300 400 500

Iterations of stochastic gradient descent

−40

−30

−20

−10

O
b

je
ct

iv
e

fu
n

ct
io

n
es

ti
m

at
e

(a) Objective function estimates over the course of parameter training.

0.8 0.9 1.0

n = 102

0.8 0.9 1.0

n = 103

0.8 0.9 1.0

n = 104

0.8 0.9 1.0

n = 105

(b) Conditional probability estimates using self-normalized importance sampling with a data-driven
proposal, with heuristically chosen scale parameters, for different numbers of particles 𝑛.

0.8 0.9 1.0

n = 102

0.8 0.9 1.0

n = 103

0.8 0.9 1.0

n = 104

0.8 0.9 1.0

n = 105

(c) Conditional probability estimates using self-normalized importance sampling with a data-driven
proposal, after training the scale parameters on simulated data, for different numbers of particles 𝑛.

Figure 3-4: Training the parameters of a data-driven importance-sampling proposal

3.4 Markov chain Monte Carlo with traces

Markov chain Monte Carlo (MCMC) is a flexible framework for constructing algorithms that
sample approximately from target probability distributions that are defined by an unnor-
malized density function [104], and conditional distributions induced by generative models
in particular. In the setting of generative models, MCMC algorithms initialize a state that
contains the values of latent random variables, and then repeatedly apply a stochastic kernel
to this state, producing a new state. This section shows how to implement MCMC algo-
rithms using Gen’s generative function and trace abstract data types. The section includes
(i) a programming construct for primitive MCMC kernels based on Metropolis-Hastings

89



with arbitrary proposal distributions encoded as generative functions, (ii) a programming
construct for Hamiltonian Monte Carlo, and (iii) a language for composing MCMC kernels
into more complex kernels. This section focuses primarily on constructing kernels that are
stationary with respect to the target distribution; Gen does not aid users in evaluating the
ergodicity of their MCMC kernels.

3.4.1 MCMC with the trace abstract data type

MCMC is implemented in Gen using traces (Section 2.3) to store the state of the latent
and observed random choices. In this framework, an MCMC kernel is a procedure kern
takes as input a trace t of the model 𝒫 and returns as output a new trace t′ of 𝒫. Let
𝜌 denote an existentially sound choice dictionary of observed data with positive marginal
likelihood (𝑝(𝜌) > 0), so that the conditional distribution 𝑝(·|𝜌) is well-defined. An MCMC
algorithm targeting 𝑝(·|𝜌) generates a sequence of traces t0, t1, . . . , t𝑛 such that each trace
contains the observed choices 𝜌 (which are the same across all iterations 𝑖) as well as the
latent choices (𝜐𝑖, which change across iterations):

t𝑖.choices() = 𝜐𝑖 ⊕ 𝜌 for all 𝑖 = 1, . . . , 𝑛

This thesis describes several constructions for MCMC kernels that are stationary with
respect to a given distribution 𝑝(·|𝜌), but the following template for constructing MCMC
algorithms is the same regardless of the kernel used. First, we obtain the initial trace t0
for an MCMC chain using

t0 ← 𝒫.generate(_, 𝜐0 ⊕ 𝜌)

where 𝜐0 is some choice dictionary such that 𝑝(𝜐0|𝜌) > 0 (recall that ‘_’ denotes the
arguments to 𝒫, which are treated as constant for the purposes of this section). Here, 𝜐0
encodes the initial values for the latent random choices. We may obtain 𝜐0 by simulating
from a generative function 𝒬0:

s← 𝒬0.simulate()
𝜐0 ← s.choices()

After the initial trace t0 is obtained, an MCMC kernel kern is repeatedly applied to the
trace 𝑛 times to generate the MCMC chain (where in general, kern is stochastic):

for 𝑖← 1 . . . 𝑛 do
t𝑖 ← kern(t𝑖−1)

end for
Then, the collection of traces {t𝑖}𝑛𝑖=𝑏 after some number of ‘burn-in’ iterations 𝑏 can be
treated as a particle approximation to 𝑝(·|𝜌), assuming that kern is ergodic and 𝑛 is
large. Users of Gen implement MCMC algorithms by writing code in a general-purpose
programming language (Julia) that implements the simple template above. Other proba-
bilistic programming systems that support MCMC place the initialization and loop over
iterations within their internal inference engine implementation. Gen’s approach makes

90



the algorithm’s high-level structure explicit in user code, which allows users to debug and
instrument the algorithm without having to understand the inference engine or compiler
architecture of a probabilistic programming system.

The remainder of this section gives constructions for kernels kern that are stationary
with respect to the target distribution 𝑝(·|𝜌), including a class of primitive kernels based on
Metropolis-Hastings and a class of composite kernels that combine other kernels using loops,
branching, and random mixtures. Section 3.7 gives another more general class construction
for MCMC kernels on traces that can express any kernel in the reversible jump MCMC
framework [53].

3.4.2 Metropolis-Hastings using generative functions as proposals

Metropolis-Hastings (MH) [22] is a general technique for constructing kernels with the
correct stationary distribution that involves first constructing a proposal kernel, which is
a transition kernel that does not in general have the correct stationary distribution. The
MH kernel invokes the proposal kernel and either returns the proposed state (this is called
accepting) or returns the previous state (this is called rejecting). The decision to accept or
reject is stochastic. The probability of accepting a proposed state is constructed using a
standard formula to ensure the correct stationary distribution for the MH kernel.

Implementing a Metropolis-Hastings kernel from scratch requires (i) a data structure
to store the latent state, (ii) a sampler for the proposal, (iii) an evaluator for the density
of the proposal, and (iv) an evaluator for the density of the unnormalized target distribu-
tion. Gen’s construct for Metropolis-Hastings (mh-kernel, Algorithm 5) automates these
implementation details, while still allowing the user to hand-design their proposal. The
construct is expressive enough to allow for kernels that change the structure (e.g. control
flow) of the model’s trace. This construct is based on the following key ideas:

1. A Metropolis-Hastings proposal is represented as a generative function 𝒬 that takes
in the current trace t of the model generative function 𝒫 as an argument. Like
the model generative function, the proposal generative function 𝒬 is defined using a
probabilistic modeling language like Gen’s Dynamic Modeling Language.

2. 𝒬 determines how the trace of the model should be changed by making random choices
at the same addresses used by the model 𝒫. The proposal’s choices 𝜎 are used to
replace the values at some addresses in the previous model trace and may change the
structure (control flow) of the model trace, in which case the choices are also used to
fill in values for any newly introduced addresses.

3. Any choices in the previous model trace t that are not replaced by choices in 𝜎, and
are not removed from the trace as a result of control flow changes, are automatically
retained in the new model trace t′.

In particular, for a current model trace t, the proposal 𝒬 is simulated (simulate), and
the resulting choices 𝜎 are passed as constraints to t.update, which returns the proposed
trace t′ and metadata (log 𝑤 and 𝜎′) that is used to compute the acceptance probability.

91



Algorithm 5 Metropolis-Hastings kernel using a generative function as the proposal
procedure mh-kernel𝒬,𝜌(t)

s← 𝒬.simulate(t)
𝜎 ← s.choices()
(t′, log 𝑤, 𝜎′, _)← t.update(_,⊤, 𝜎)
assert |𝐴𝜌 ∩𝐴𝜎′ | = 0
s′ ← 𝒬.generate(t′, 𝜎′)
𝛼← min {1, exp(log 𝑤 − s′.logpdf() + s.logpdf())}
𝑟 ∼ Uniform(0, 1)
if 𝑟 ≤ 𝛼 then return t′ else return t

end procedure

In order for mh-kernel𝒬,𝜌 to be stationary with respect to the target distribution
𝑝(·|𝜌), the proposal generative function 𝒬 must satisfy certain requirements with respect
to the model generative function 𝒫 and the observations 𝜌. First, it must take an argument
of the form t, where t is a trace of 𝒫. Second, it must never make a random choice at an
observed address 𝑎 ∈ 𝐴𝜌:

𝑞(𝜎; t) > 0 =⇒ |𝐴𝜎 ∩𝐴𝜌| = 0

Third, for all (t, 𝜐, 𝜎) where 𝑝(𝜐|𝜌) > 0 and t.choices() = 𝜐⊕𝜌 and 𝑞(𝜎; t) > 0, there must
exist some t′ and 𝐵 ⊆ 𝐴𝜐 such that t′.choices() = 𝜎⊕ (𝜐|𝐵)⊕𝜌 and 𝑝(𝜎⊕ (𝜐|𝐵)⊕𝜌) > 0
and 𝑞(𝜎′; t′) > 0 where 𝜎′ := 𝜐|𝐵c . The third requirement means that (i) every choice
dictionary 𝜎 that can be sampled from 𝒬 given input t can be used to construct a new
choice dictionary (𝜎 ⊕ (𝜐|𝐵) ⊕ 𝜌) that has nonzero density under the model, by merging
𝜎 with some subset 𝐵 of the previous latent choices (𝜐|𝐵) and the observations (𝜌), and
that (ii) for every possible proposed transition from 𝜐 to 𝜐′, it is possible to reverse this
transition using some proposed choices 𝜎′ that could be sampled from 𝒬 given the new
trace t′ as input.

Example: Invalid Metropolis-Hastings proposals Consider the model 𝒫 := p_mh
below, and 𝜌 := {𝑐 ↦→ T}. The conditional distribution 𝑝(·|𝜌) is shown to the right.

@gen function p_mh()
z = ({:a} ∼ bernoulli(0.5))
if z

z = z && ({:b} ∼ bernoulli(0.5))
end
c ∼ bernoulli(z ? 0.9 : 0.1)

end

𝜐 𝑝(𝜐|𝜌)
{a ↦→ F} 0.167

{a ↦→ T, b ↦→ F} 0.083
{a ↦→ T, b ↦→ T} 0.750

Consider three potential proposals 𝒬1 := q1_mh, 𝒬2 := q2_mh and 𝒬3 := q3_mh defined
below. Each is invalid for a different reason. 𝒬1 violates the second requirement because
it samples at address c. 𝒬2 violates the third requirement because for 𝜐 = {a ↦→ F}
and 𝜎 = {a ↦→ T}, there is no new trace t′ of 𝒫 that can be constructed, because a
value for address b is not included in 𝜎. 𝒬3 violates the third requirement because for

92



𝜐 = {a ↦→ T, b ↦→ F} and 𝜎 = {a ↦→ F}, the proposed choices that would reverse the move
are 𝜎′ = {a ↦→ T, b ↦→ F} but 𝑞(𝜎′; t′) = 0.

@gen function q1_mh(t)
c ∼ bernoulli(0.5)

end

@gen function q2_mh(t)
a ∼ bernoulli(0.5)

end

@gen function q3_mh(t)
a ∼ bernoulli(0.0)

end

Example: Valid Metropolis-Hastings proposal Consider generative function 𝒬 :=
q4_mh below. 𝒬 is a valid proposal for the conditional distribution above. The proposal
proposes to switch branches (from a ↦→ T to a ↦→ F or vice-versa) with probability 0.9. If
the previous model trace t had a ↦→ T and it does not switch branches, then it retains the
previous value for b. If the previous model trace had a ↦→ F and it does switch branches
(setting a ↦→ T) then it samples a fresh value for b.

@gen function q4_mh(t)
if t[:a]

a ∼ bernoulli(0.1)
else

if ({:a} ∼ bernoulli(0.9))
b ∼ bernoulli(0.5)

end
end

end

Below, for every possible previous latent choice dictionary 𝜐 and every possible proposed
choice dictionary 𝜎, we show the set of retained choices 𝐵 and the resulting proposed latent
choice dictionary 𝜐′ and the proposed choice dictionary 𝜎′ that would reverse the move:

𝜐 𝜎 𝐵 𝜐′ 𝜎′

{a ↦→ F} {a ↦→ F} {} {a ↦→ F} {a ↦→ F}
{a ↦→ F} {a ↦→ T, b ↦→ F} {} {a ↦→ T, b ↦→ F} {a ↦→ F}
{a ↦→ F} {a ↦→ T, b ↦→ T} {} {a ↦→ T, b ↦→ T} {a ↦→ F}

𝜐 𝜎 𝐵 𝜐′ 𝜎′

{a ↦→ T, b ↦→ F} {a ↦→ T} {b} {a ↦→ T, b ↦→ F} {a ↦→ T}
{a ↦→ T, b ↦→ F} {a ↦→ F} {} {a ↦→ F} {a ↦→ T, b ↦→ F}

𝜐 𝜎 𝐵 𝜐′ 𝜎′

{a ↦→ T, b ↦→ T} {a ↦→ T} {b} {a ↦→ T, b ↦→ T} {a ↦→ T}
{a ↦→ T, b ↦→ T} {a ↦→ F} {} {a ↦→ F} {a ↦→ T, b ↦→ T}

Example: Random walk proposal Proposals based on applying a random walk to
a single random variable are a simple and common (but generally inefficient) type of
Metropolis-Hastings proposal. This is a simple class of proposals that never alters the
structure of the trace. Recall the generative model 𝒫 := poly_model. The proposal
𝒬 := q_mh_random_walk below performs a random walk on one of the coefficients of the

93



polynomial in this model. The proposal reads the previous value of the coefficient from the
model trace at address (c, 𝑖), and then samples the new value from a normal distribution
centered at the previous value, at the same address.

@gen function q_mh_random_walk(trace, i::Int)
{(:c, i)} ∼ normal(trace[(:c, i)], 0.05)

end

Note that the generative function 𝒬 takes a second argument (i) in addition to the model
trace (t). The second argument indicates which coefficient should be proposed to. Proposal
generative functions 𝒬 that take additional arguments besides the previous model trace
actually determine a parametrized family of kernels {mh-kernel𝒬,𝜌,𝑥}𝑥∈𝑋 , where 𝑥 indexes
the possible values of the additional arguments to 𝒬.

Example: Data-driven proposal Random walk proposals on individual random choices
are relatively inefficient because they only operate on one choice at a time, and they can
take a long time to move to regions of higher probability (especially if the standard devia-
tion of the random walk is too small or too large). Random walk proposals are not informed
by the the observed data. Instead of proposing a new value for the 𝑖th coefficient from a
random walk around its previous value, we can estimate the value of the coefficient using
a least-squares fit to the residuals resulting from setting the 𝑖th coefficient to zero:

min
𝑐𝑖

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎛⎝y−

∑︁
𝑗 ̸=𝑖

𝑐𝑗 [𝑥𝑗
1, . . . , 𝑥𝑗

𝑛]⊤
⎞⎠− 𝑐𝑖[𝑥𝑖

1, . . . , 𝑥𝑖
𝑛]⊤
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
2

where x and y are the input x-coordinates and the observed y-coordinates, respectively.
The data-driven proposal below solves the optimization problem above to find ̂︀𝑐𝑖 and then
proposes a new value at address (c, 𝑖) by sampling from a Cauchy distribution centered at̂︀𝑐𝑖. Unlike the random walk proposal, this proposal is capable of proposing large jumps in
the latent space.

@gen function q_mh_data_driven(trace, x_coords, y_coords, i)
n = length(x_coords)
degree = trace[:degree]
coeffs = [trace[(:c, i)] for i in 0:degree]

# least-squares for coefficient i with other coefficients fixed
coeffs[i+1] = 0.0
residuals = y_coords .- [coeffs’ * x.∧(0:degree) for x in x_coords]
x_vec = [x∧i for x in x_coords]
coefficient_guess = (x_vec’ * residuals) / sqrt(x_vec’ * x_vec)

# sample around the estimated coefficient
{(:c, i)} ∼ cauchy(coefficient_guess, 0.5)

end

94



Example: Gibbs sampling Gibbs sampling is equivalent to a Metropolis-Hastings ker-
nel where the proposal is the conditional distribution on the proposed-to addresses. In
particular, the MH kernel constructed from the proposal below is equivalent to Gibbs sam-
pling move on the variance:

@gen function q_var_gibbs(trace, x_coords, y_coords)
n = length(x_coords)
coeffs = [trace[(:c, i)] for i in 0:trace[:degree]]
residuals = y_coords .- [coeffs’ * x.∧(0:trace[:degree]) for x in x_coords]
var ∼ inv_gamma(1 + n/2, 1 + 0.5 * residuals’ * residuals)

end

Note that this move will always be accepted. The conditional distribution was derived by
hand, which is possible because the inverse-gamma distribution is the conjugate prior on
the variance for a normal likelihood.

Example: Structure-changing proposal The previous two proposals did not alter the
structure of the model trace. For the polynomial curve model, the structure of the trace
is determined by the value at address degree. The proposal below samples a new degree.
If the new degree is less than or equal to the previous degree, then it does not sample any
additional random choices— it simply removes coefficients from the polynomial. If the new
degree is greater than the previous degree, then it samples values for the newly introduced
coefficients near zero.

@gen function q_mh_structure(trace)
prev_degree = trace[:degree]
new_degree = ({:degree} ∼ uniform_discrete(0, 4))
for i in prev_degree+1:new_degree

{(:c, i)} ∼ cauchy(0.0, 0.4)
end

end

Note that if the proposal did not sample values for the newly introduced coefficients, then
it would not be a valid proposal, because it would not be possible to construct the new
trace t′ without an assignment to these addresses.

Using the Gen inference library implementation of Metropolis-Hastings The
Gen inference library contains an implementation of mh-kernel in the Julia function
Gen.mh. This function returns a tuple containing the trace and metadata. The code below
shows how to implement an MCMC algorithm in Julia using Gen’s inference library. In
particular, we construct a MCMC chain that repeatedly samples the MH kernel constructed
from the proposal 𝒬 := q_mh_structure.

traces = []
kernel(trace) = Gen.mh(trace, q_mh_structure, ())[1]
trace = init_trace
for i=1:n

trace = kernel(trace)
push!(traces, trace)

end

95



Figure 3-5shows the results of running this code with each of the different proposal gen-
erative functions 𝒬 defined above, starting with the same initial trace of 𝒫 := poly_model.
The results emphasize that none of these kernels is individually sufficient for an efficient
MCMC algorithm. The values at five addresses are plotted for the first 100 iterations.
The kernel constructed from q_mh_random_walk with i = 0 makes small perturbations to
the constant-term coefficient. The kernel constructed from q_mh_data_driven with i = 0
makes larger perturbations to the constant-term coefficient. The kernel constructed from
q_var_gibbs samples from the conditional distribution on variance with other parameters
fixed. The kernel constructed from q_mh_structure makes changes to the degree. Only the
kernel based on the structure-changing move is ergodic, but it is very inefficient because
its proposals for new coefficient values are uninformed by both the data and the previous
values. In contrast, the data-driven proposal gives a kernel that can give rough estimates
of the coefficients for a fixed degree, but cannot estimate the degree itself, and cannot ef-
ficiently fine-tune the value of any given coefficient. The kernel based on the random walk
proposal is capable of fine-tuning the value of individual coefficients, but cannot estimate
the degree or the value of the other coefficients. Section 3.4.4 will show how to compose
kernels like these into more powerful kernels that result in practical MCMC algorithms.

0 100

Iteration

0

2

4

Random walk (i=0)

0 100

Iteration

0

2

4

Data-driven (i=0)

0 100

Iteration

0

2

4

Gibbs (var)

0 100

Iteration

0

2

4

Structure

:degree

(:c, 0)

(:c, 1)

(:c, 2)

var

Figure 3-5: Metropolis-Hastings using generative functions as proposal distributions

3.4.3 Hamiltonian Monte Carlo with traces

The Metropolis-Hastings kernel construct of the previous section is highly flexible because
the proposal distribution is defined in a probabilistic modeling language. This flexibility
allows for specialization of the kernel to the model and in principle improved efficiency, but
writing effective specialized proposals requires work and domain knowledge. Hamiltonian
Monte Carlo (HMC [92]) is a class of MCMC kernels that can be applied to generic models
without as much customization. Gen includes a class of HMC kernels (hmc-kernel in
Algorithm 6) that can be applied to any model with continuous random variables for which
the log density function is differentiable with respect to the values of these variables. The
kernel internally uses the following generative function 𝒬HMC := q_hmc:

@gen function q_hmc(addresses)
for address in addresses

{address} ∼ normal(0, 1)
end

end

96



The kernel is parametrized by a set of addresses 𝐴. Each 𝑎 ∈ 𝐴 must be a continuous
random choice, and the log joint density function 𝜏 ↦→ log 𝑝(𝜏 ) must be differentiable with
respect to 𝜏 [𝑎]. Like mh-kernel, hmc-kernel uses the update operation of the trace
data type. It also uses the gradients operation, which computes the necessary partial
derivatives of the log density with respect to the value at each address 𝑎. This kernel is one
example of selection-based inference operators that act on traces. Selection-based operators
only require the user to specify a set of addresses on which to act, and strike a balance
between ease-of-use and customizability that favors ease-of-use more than the Metropolis-
Hastings construct presented in Section 3.4.2. Other examples of selection-based operators
supported by Gen include MAP optimization and elliptical slice sampling [88].

Algorithm 6 Hamiltonian Monte Carlo with address selections and traces
procedure hmc-kernel𝐴,𝑘,𝜖,𝜌(t)

assert |𝐴𝜌 ∩𝐴| = 0
𝜏 ← t.choices()
(_, 𝛾)← t.gradient(𝐴, 0)
s← 𝒬HMC.simulate(𝐴) ◁ Sample momenta
𝜎 ← s.choices()
t0 ← t
for 𝑖← 1 . . . 𝑘 do

for 𝑎 ∈ 𝐴 do
𝜎[𝑎]← 𝜎[𝑎] + (𝜖/2)𝛾[𝑎] ◁ Half-step on momenta
𝜏 [𝑎]← 𝜏 [𝑎] + 𝜖𝜎[𝑎] ◁ Full step on positions

end for
(t𝑖, _, _, _)← t𝑖−1.update(_, _, 𝜏 )
(_, 𝛾)← t𝑖.gradient(𝐴, 0)
for 𝑎 ∈ 𝐴 do

𝜎[𝑎]← 𝜎[𝑎] + (𝜖/2)𝛾[𝑎] ◁ Half-step on momenta
end for

end for
𝜎′ ← {𝑎 ↦→ −𝜎[𝑎]}𝑎∈𝐴 ◁ Negate momenta
s′ ← 𝒬HMC.generate(𝐴, 𝜎′)
𝛼← min {1, exp(t𝑘.logpdf()− t0.logpdf()− s.logpdf() + s′.logpdf())}
𝑟 ∼ Uniform(0, 1)
if 𝑟 ≤ 𝛼 then return t′ else return t

end procedure

97



3.4.4 A language for composing MCMC kernels

This section defines constructs for composing more sophisticated kernels from simpler prim-
itive kernels like the Metropolis-Hastings kernels with custom proposals and Hamiltonian
Monte Carlo kernels defined in the previous two sections. In particular, we describe suf-
ficient conditions for three types of composite kernel to be stationary with respect to the
target distribution: (i) conditional application of a kernel, (ii) applying a collection of ker-
nels in sequence, and (iii) applying a kernel randomly chosen from a set of kernels. We
prove the validity of these compositions for the setting of a discrete random choices. Al-
though each of these three types of composite kernels can be easily implemented in Julia,
we also introduce a composite kernel DSL that makes it easier to write stationary kernels
by using a restricted syntax and built-in dynamic checks that detect common programming
errors that invalidate the sufficient conditions for stationarity for each composition. We
show example code in an implementation of the DSL that is embedded in Julia.

Constructing stationary composite kernels from stationary primitive kernels

We now describe a set of compositions of MCMC kernels that are stationary with respect
to some target distribution, and give sufficient conditions for the resulting composite kernel
to be stationary with respect to the same target distribution.

Sequencing kernels Given two kernels kern1 and kern2 that are stationary for some
target distribution, the kernel 𝑘 constructed by sequencing the two kernels is itself station-
ary. This is a standard result in the MCMC literature [5]. The procedure seq-kernel
below shows how to construct a kernel that sequences two kernels using traces.

procedure seq-kernelkern1,kern2(t0)
t1 ← kern1(t0)
t2 ← kern2(t1)
return t2

end procedure

Dependent mixture of kernels Given an indexed collection of kernels {kern𝑖}𝑖∈𝐼 ,
and a probability distribution on the kernels (𝜃𝑖 ≥ 0 for

∑︀
𝑖∈𝐼 𝜃𝑖 = 1), we can construct a

mixture kernel that randomly samples an index 𝑖 according to 𝜃 and then applies kernel
kern𝑖. If the component kernels kern𝑖 each are stationary with respect to the target
distribution, then it is a standard result that the mixture kernel is also stationary with
respect to the target distribution [5]. But what if the mixture probabilities change as a
function of the current trace? That is 𝜃𝑖(t) ∈ [0, 1] and

∑︀
𝑖 𝜃𝑖(t) = 1 for each input trace

t of the model such that t.choices() agrees with the observations 𝜌. A composite kernel
(dependent-mixture-kernel) that implements this construction is shown below:

procedure dependent-mixture-kernel{kern𝑖},𝜃(t)
𝑖 ∼ 𝜃(t) ◁ Sample 𝑖 ∈ 𝐼 from discrete distribution 𝜃(t)
t′ ← kern𝑖(t)
return t′

end procedure

98



Although this composite kernel is not in general stationary with respect to the tar-
get distribution for stationary kern𝑖, the following gives a sufficient condition relating
{kern𝑖}𝑖∈𝐼 and 𝜃 that does guarantee stationarity of the composite kernel.

Proposition 3.4.1 (Sufficient condition for stationary dependent mixture kernel). Let
𝑘𝑖(𝜐′; 𝜐) denote the probability that kernel kern𝑖 returns a trace with latent state 𝜐′ given
latent state 𝜐. If kern𝑖 for each 𝑖 ∈ 𝐼 is stationary with respect to a target distribution 𝑝(·|𝜌)
and if 𝜃𝑖(t) = 𝜃𝑖(t′)for each (t, 𝑖, t′) such that t.choices() = 𝜐⊕𝜌 and t′.choices() = 𝜐′⊕𝜌
and 𝑘𝑖(𝜐′; 𝜐) > 0, then dependent-mixture-kernel{kern𝑖},𝜃 is stationary with respect to
𝑝(·|𝜌).

Proof. The dependence of 𝜃𝑖 on t is simplified to a function of the latent choices only (𝜃𝑖(𝜐))
because the other elements of the trace t are constant. dependent-mixture-kernelkern𝑖,𝜃

has distribution:
𝑘(𝜐′; 𝜐) =

∑︁
𝑖∈𝐼

𝜃𝑖(𝜐)𝑘𝑖(𝜐′; 𝜐)

It suffices to show that∑︁
𝜐:𝑝(𝜐⊕𝜌)>0

∑︁
𝑖∈𝐼

𝜃𝑖(𝜐)𝑘𝑖(𝜐′; 𝜐)𝑝(𝜐|𝜌) = 𝑝(𝜐′|𝜌) for all 𝜐′ s.t. 𝑝(𝜐′ ⊕ 𝜌) > 0

Switching the order of summation and using the requirement on 𝑘 and 𝜃 to substitute
𝜃𝑖(𝜐′)𝑘𝑖(𝜐′; 𝜐) for 𝜃𝑖(𝜐)𝑘𝑖(𝜐′; 𝜐) gives:(︃∑︁

𝑖∈𝐼

𝜃𝑖(𝜐′)
)︃

𝑝(𝜐′|𝜌) = 𝑝(𝜐′|𝜌) for all 𝜐′ s.t. 𝑝(𝜐′|𝜌) > 0

Note that the requirement that 𝜃𝑖(𝜐) = 𝜃𝑖(𝜐′) when 𝑘𝑖(𝜐′; 𝜐) > 0 can be interpreted as
an invariant on each of the kernels 𝑘𝑖: For each kernel 𝑘𝑖 for 𝑖 ∈ 𝐼, and for any input 𝜐
such that 𝑝(𝜐⊕𝜌) > 0 and any execution of 𝑘𝑖 resulting in output trace with latent choices
𝜐′, the mixture probability must be unchanged (𝜃𝑖(𝜐) = 𝜃𝑖(𝜐′)).

Conditionally applying a kernel The procedure below applies a stationary MCMC
kernel kern only if some predicate 𝑔(t) ∈ {0, 1} of the current model trace holds, and
otherwise deterministically returns the previous trace.

procedure cond-kernelkern,𝑔(t)
if 𝑔(t) = 1 then

t′ ← kern(t)
else

t′ ← t
end if
return t′

end procedure

99



This is a special case of a dependent mixture, as follows. For kernel kern and predicate 𝑔, let
kern1 := kern and let kern2(t) := t. Let 𝜃1(t) := 𝑔(t) and 𝜃2(t) := 1−𝑔(t). Consider the
sufficient condition for stationarity. It holds trivially for kern2 because t′ = t. Therefore,
the condition reduces to 𝑔(t) = 𝑔(t′) for all t, t′ such that such that there is some nonzero
probability that t′ is produced by kern on input t. That is, the value of the predicate 𝑔
must be invariant under all executions of the kernel kern.

Dependent looping over kernels Consider a collection of kernels {kern𝑖}𝑖∈𝐼 that are
stationary with respect to 𝑝(·|𝜌) and a function 𝑟(t) ∈ ∪∞

𝑛=0 ×𝑛
𝑖=1 𝐼. that selects a finite

list of kernels kern𝑗1 , . . . , kern𝑗𝑛 (where 𝑗ℓ ∈ 𝐼) given input trace t of the model (𝑟 stands
for ‘range’). Consider the class of composite kernels that compute the kernel sequence, and
then applies each kernel in turn:

procedure dependent-loop-kernelkern,𝑟(t)
(𝑗1, . . . 𝑗𝑛)← 𝑟(t) ◁ Compute kernel sequence
t0 ← t
for 𝑖 ∈ 1 . . . 𝑛 do

t𝑖 ← kern𝑗𝑖(t𝑖−1)
end for
return t𝑛

end procedure

Under what conditions will dependent-loop-kernelkern,𝑟 be stationary with respect to
𝑝|𝑠? It s equivalent to the composition of dependent-mixture-kernel with seq-kernel
as follows. For each value of 𝑅 := (𝑗1, . . . , 𝑗𝑛), denote the kernel composed by sequenc-
ing kern𝑗1 , . . . , kern𝑗𝑛 by kern𝑅. Then, kern𝑅 is stationary with respect to 𝑝(·|𝜌) be-
cause sequencing preserves stationarity. Then, consider a set of (degenerate) probability
distributions on elements 𝑅, parametrized by t, given by 𝜃𝑅(t) := [𝑟(t) = 𝑅]. Then,
dependent-loop-kernelkern,𝑟 is equivalent to dependent-mixture-kernel{kern𝑅},𝜃

(where the indexed family of kernels is indexed by 𝑅). Therefore, a sufficient condition
for stationarity is that 𝑟(t) = 𝑟(t′) for all t, t′ such that t′ is produced from kern𝑅 with
nonzero probability, for all 𝑅. This is equivalent to the invariant that 𝑟(t) cannot change
under any execution of the kernel sequence kern𝑗1 , . . . , kern𝑗𝑛 , beginning from any input
trace of the model t.

A domain specific inference language for composing stationary MCMC kernels

Recall that users of Gen can construct primitive Metropolis-Hastings MCMC kernels using
Gen.mh, which implements the Metropolis-Hastings construct of Section 3.4.2. Since user
inference code in Gen is regular Julia code, users can easily compose these primitive kernels
into more complex kernels by implementing the types of compositions introduced above
in Julia code. For example, seq-kernel can be implemented simply by sequencing Julia
statements, dependent-mixture can be implemented by making random choices and
applying a different kernel depending on these choices, and cond-kernel and dependent-
loop-kernel can be implemented using Julia’s control branching and looping constructs.

100



However it can be difficult to reason about the stationarity of general kernels composed
this way in Julia, because Julia’s flexibility makes it easy to accidentally write kernels that
are not stationary with respect to the desired target distribution.

To address this issue, Gen includes a domain specific language (DSL) for composing
stationary MCMC kernels called the Composite Kernel DSL. The DSL, which is embedded
in Julia, allows for safer composition of MCMC kernels, by using a restricted syntax that
syntactically eliminates the possibility for some types of errors that can lead to unsoundness.
As described previously, sufficient conditions for the soundness of various MCMC kernel
compositions reduce to invariants. Although the DSL does not statically verify that these
invariants hold, the DSL compiler generates code for dynamic checks for these invariants.
The dynamic checks can be enabled and disabled as needed (e.g. enabled during testing
and prototyping and disabled during deployment for higher performance).

The DSL uses syntax similar to Julia function definition syntax, but with a @kern macro
in front of the function definition expression, and with a distinct set of language constructs
that can be used in the function body. The first argument to the function represents the
trace of the model to which the constituent kernels will be applied. The set of supported
language constructs are:

∙ Applying a stationary kernel. To apply a kernel, the syntax trace ∼ k(trace,
args..) is used. k must be a kernel constructed using the composite kernel DSL,
a Gen primitive kernel (e.g. Gen.mh), or a Julia function that has been declared as
stationary by the user.

∙ For loops. For loops are based on regular Julia for loops. The range of the loop
(which in general may be a function of the trace) must be invariant under all pos-
sible executions of the body of the for loop. A dynamic check for this invariant is
automatically inserted by the DSL compiler.

∙ If-end expressions. If-end expressions are based on Julia if-end expressions. The
branching condition may be a deterministic function of the trace, but it also must also
remain true under all possible executions of the body of the true branch. A dynamic
check for this invariant is automatically inserted by the DSL compiler.

∙ Deterministic pure let expressions. It is possible to bind a value to a variable
using let but the expression on the right-hand-side must be deterministic function of
its free variables, its value must be invariant under all possible executions of the body.
A dynamic check for this invariant is automatically inserted by the DSL compiler.

∙ Stochastic pure let expressions. It is possible to make random choices, using the
syntax let x ∼ dist(args..) .. end. The expression on the right-hand-side of the
‘∼’ must be the application of a Gen probability distribution to arguments, and the
choice of distribution and all of its arguments must be invariant under all possible
executions of the body of the let expression. A dynamic check for this invariant is
automatically inserted by the DSL compiler.

Julia language features that do not have analogues include while loops, reassignment, and
mutation. Arbitrary deterministic pure Julia expressions may appear in (i) the arguments

101



to stationary kernel application, (ii) the range expression for for loops, (iii) the branching
condition for if-end expressions, (iv) the right-hand-side of deterministic let expressions,
(v) the arguments to distributions on the right-hand-side of stochastic let expressions.

Example: Composing MCMC kernels for Bayesian polynomial regression Re-
call the model 𝒫 := poly_model, and the Metropolis-Hastings proposals constructed for
use with this model in Section 3.4.2. No one of these kernels was individually sufficient for
accurate inference. The code below, written in Gen’s Composite Kernel DSL, constructs an
MCMC kernel called ‘composite_kernel’ from these individual Metropolis-hastings kernels.

@kern function composite_kernel(trace, xs, ys)

for i in 0:trace[:degree]
trace ∼ Gen.mh(trace, q_mh_random_walk, (i,))

end

let do_structure ∼ bernoulli(0.1)
if do_structure

trace ∼ Gen.mh(trace, q_mh_structure, ())
end

end

for i in 0:trace[:degree]
trace ∼ Gen.mh(trace, q_mh_data_driven, (xs, ys, i))

end

trace ∼ Gen.mh(trace, q_var_gibbs, (xs, ys))
end

The composite kernel can be decomposed into a sequence of four kernels: (i) a loop kernel
that loops over the coefficients, and applies a random walk MH kernel to each one in
turn; (ii) a mixture kernel that passes through the previous trace with probability 0.9 and
otherwise applies a structure-changing MH kernel; (iii) a loop kernel that loops over the
coefficients, and applies a data-driven MH kernel to each one in turn; (iv) a primitive MH
kernel that is equivalent to a Gibbs-sampling kernel on the variance. Figure 3-6 shows a
history of the values of random choices in the model trace, over the course of iterations of
this kernel. The values at four addresses are plotted for the first 400 iterations. The effect
of each of the constituent MH kernels is visible in this plot: The changes to degree are due
to the structure kernel (which is constructed from q_structure). The sudden changes to the
coefficients are due to the data-driven kernel (which is constructed from q_data_driven).
The small adjustments to the coefficients are due to the random walk kernels (which are
constructed from q_random_walk).

3.5 Resample-move particle filtering with traces
Particle filtering [35] is a class of Monte Carlo techniques for inference in probabilistic mod-
els where observed data accumulates over time. Each new piece of observed data leads to

102



0 50 100 150 200 250 300 350 400

Iteration

0

2

4

Composite kernel
:degree

(:c, 0)

(:c, 1)

(:c, 2)

var

Figure 3-6: Iterates produced by a composite MCMC kernel in a polynomial curve model

a new target distribution. Particle filters maintain a weighted particle approximation to
the current target distribution by evolving the collection of particles over time to approxi-
mate successive target distributions. Particle filtering has been widely applied in tracking
and online parameter estimation in computer vision, robotics, finance, and other fields.
A popular variant of particle filtering, called resample-move [50], uses a resampling step
where some particles are replicated and others are culled in proportion to their weight,
and applies ‘rejuvenation’ MCMC kernels that are stationary with respect to the current
target distribution to each particle at each time step. This section shows how to implement
resample-move particle filtering using the generative function and trace abstract data types.
Each particle is represented by a trace of a generative function that represents the model.
Traces are extended from one time step to the next using the update operation. The
MCMC kernels constructed in Section 3.4.2 can be used directly as rejuvenation MCMC
kernels, because they are also based on same the trace abstract data type.

The section also shows how generative functions and traces can be used to implement
annealed importance sampling (AIS) [91], a gold-standard technique for marginal likelihood
estimation in probabilistic models. AIS evolves a single particle over a fine-grained sequence
of target distributions that interpolates from a simple distribution for which sampling is
trivial to the distribution whose marginal likelihood is required, by gradually changing a
parameter like temperature or stochasticity. Like the resample-move particle filter, MCMC
moves are applied in between each distribution transition. The marginal likelihood estimate
is computed by accumulating incremental importance weights over all time steps. We
implement AIS with traces using a construction similar to that used for resample-move
particle filtering. update is used to implement the incremental transition from one target
distribution to the next, and the weight returned by update is precisely the incremental
importance weight used in AIS to compute the marginal likelihood estimate.

3.5.1 Trace-based particle filtering with rejuvenation kernels

This section introduces an inference programming construct for implementing resample-
move particle filters [50] using the generative function and trace abstract data types. This
construct can be used with generative models represented as a generative function 𝒫 that
takes arguments (𝑗, 𝜃) where 𝑗 is an integer argument indicating the time step (ranging
from 0 to 𝑚), and 𝜃 represents any other arguments. The other arguments 𝜃 are constant

103



for the purposes of this algorithm, and therefore we omit them from the density notation
in this section, using 𝑝(·; 𝑗) in place of 𝑝(·; (𝑗, 𝜃)). Each time step is associated with its own
set of latent addresses 𝑆𝑗 ⊂ 𝐴 and its own set of observed addresses 𝑅𝑗 ⊂ 𝐴 such that
𝑆𝑗1 and 𝑆𝑗2 are disjoint and 𝑅𝑗1 and 𝑅𝑗2 are disjoint for all 𝑗1 ̸= 𝑗2, and 𝑅𝑗1 and 𝑆𝑗2 are
disjoint for all 𝑗1, 𝑗2. We denote latent choice dictionaries and observed choice dictionaries
for time step 𝑗 by 𝜎𝑗 and 𝜌𝑗 respectively (where 𝐴𝜎𝑗 ⊆ 𝑆𝑗 and 𝐴𝜌𝑗 ⊆ 𝑅𝑗). The sequence
of observed data is an input to the algorithm, and takes the form 𝜌0, . . . , 𝜌𝑚.

The model generative function must satisfy additional properties that relate the dis-
tributions on choice dictionaries 𝑝(·; 𝑗) for different 𝑗: First, every choice dictionary with
nonzero density must decompose into latent and observed choice dictionaries. That is:

𝜏 = (𝜎0 ⊕ · · · ⊕ 𝜎𝑗)⊕ (𝜌0 ⊕ · · · ⊕ 𝜌𝑗) for all 𝜏 s.t. 𝑝(𝜏 ; 𝑗) > 0 for all 𝑗 = 0, . . . , 𝑚

where 𝐴𝜎𝑘
⊆ 𝑆𝑘 and 𝐴𝜌𝑘

⊆ 𝑅𝑘 for all 𝑘 = 0, . . . , 𝑗. Second, the distributions for each
𝑗 − 1 and 𝑗 must agree on the marginal density of choice dictionaries.1 That is, for all
𝑗 = 1, . . . , 𝑚 and all 𝜏 such that 𝑝(𝜏 ; 𝑘) > 0:

𝑝(𝜎0 ⊕ · · · ⊕ 𝜎𝑗−1 ⊕ 𝜌0 ⊕ · · · ⊕ 𝜌𝑗−1; 𝑗) = 𝑝(𝜎0 ⊕ · · · ⊕ 𝜎𝑗−1 ⊕ 𝜌0 ⊕ · · · ⊕ 𝜌𝑗−1; 𝑗 − 1)

In addition to 𝒫 and the observed data, the construction uses a sequence of generative
functions𝒬0, . . . ,𝒬𝑚 that encode proposal distributions for each time step. 𝒬0 is equivalent
to a self-normalized importance sampling proposal (Section 3.2). For 𝑗 > 0, 𝒬𝑗 takes as
input a trace t𝑗−1 of 𝒫 on arguments (𝑗 − 1, 𝜃). The model and the proposals must satisfy
the following requirement:

𝑝(𝜎0 ⊕ · · · ⊕ 𝜎𝑗 ⊕ 𝜌0 ⊕ · · · ⊕ 𝜌𝑗 ; 𝑗) > 0 =⇒ 𝑞𝑘(𝜎𝑘; 𝜎0 ⊕ · · · ⊕ 𝜎𝑘−1) > 0 ∀ 𝑘 = 1, . . . , 𝑗

where 𝜎0, . . . , 𝜎𝑘−1 denote the latent choices in the trace t𝑘−1 that is input to 𝒬𝑘 for each
𝑘 (the proposal distributions may depend on the observations in the trace as well, but this
is omitted from the notation since the observations are treated as a constant).

Given such 𝒫, 𝜌0, . . . , 𝜌𝑚, and 𝒬0, . . . ,𝒬𝑚, the particle filtering procedure (Algo-
rithm 7) sequentially produces a weighted collection of particles at each time step 𝑗 =
0, . . . , 𝑚, where each particle is represented by a trace t(𝑖)

𝑗 of 𝒫 for 𝑖 = 1, . . . , 𝑛. At each
time step, each trace is extended by first sampling new latent choices 𝜎

(𝑖)
𝑗 ∼ 𝑞𝑗(·; t(𝑖)

𝑗−1) by
invoking simulate on 𝒬𝑗 and then invoking update on the previous trace t(𝑖)

𝑗−1. The call
to update passes new arguments (𝑗, 𝜃), where (𝑗 − 1, 𝜃) were the arguments for trace t(𝑖)

𝑗−1,
as well as a change hint for these arguments, 𝛿𝑋 = (⊥,⊤), which indicates that the first
argument 𝑗 may have changed, and the second argument 𝜃 is not changed. Knowledge
that 𝜃 has not changed allows an implementation of update to more efficiently compute
its weight, which due to the second requirement on 𝒫 above, simplifies and can typically

1Technically this requirement can be removed, but it is necessary to recover the asymptotic scaling
properties typically associated with particle filtering (linearity in the total number of time steps 𝑚).

104



be computed in a number of operations that is constant, instead of linear, in 𝑗:

𝑝(𝜎0 ⊕ · · · ⊕ 𝜎𝑗 ⊕ 𝜌0 ⊕ · · · ⊕ 𝜌𝑗 ; 𝑗)
𝑝(𝜎0 ⊕ · · · ⊕ 𝜎𝑗−1 ⊕ 𝜌0 ⊕ · · · ⊕ 𝜌𝑗−1; 𝑗 − 1) = 𝑝(𝜎𝑗 , 𝜌𝑗 |𝜎0 ⊕ · · · ⊕ 𝜎𝑗 ⊕ 𝜌0 ⊕ · · · ⊕ 𝜌𝑗−1; 𝑗)

The call to update also passes the new observations 𝜌𝑗 and the newly sampled latent
choices 𝜎

(𝑖)
𝑗 , which, together with the accumulated observations 𝜌0 ⊕ · · · ⊕ 𝜌𝑗−1 and the

previous latent choices 𝜐
(𝑖)
𝑗−1, uniquely determine the new trace t(𝑖)

𝑗 via the semantics of
update. Before extending the trace, the particle filter runs a rejuvenation MCMC kernel
kern𝑗−1 that must be stationary with respect to the target distribution 𝑝(·|𝜌0 ⊕ · · · ⊕
𝜌𝑗−1; (𝑗 − 1, 𝜃)). This kernel is constructed using the techniques of Section 3.4. Note that
the kernel can modify the value of any latent choice, including latent choices that were
originally introduced at any time step.

Algorithm 7 Resample-move particle filtering with traces
procedure resample(𝑤(1), . . . , 𝑤(𝑛))

for 𝑖← 1, . . . , 𝑛 do
𝑏(𝑖) ∼ Categorical(𝑤(1), . . . , 𝑤(𝑛))

end for
return [𝑏(1), . . . , 𝑏(𝑛)]

end procedure
procedure resample-move-particle-filter(𝒫, 𝜃, 𝑛, {(𝜌𝑗 ,𝒬𝑗)}𝑚𝑗=0, {kern𝑗}𝑚−1

𝑗=0 )
for 𝑖← 1 . . . 𝑛 do

s(𝑖)
0 ← 𝒬0.simulate(_)

t(𝑖)
0 ← 𝒫.generate((0, 𝜃), s(𝑖)

0 .choices()⊕ 𝜌0)
log �̃�(𝑖) ← t(𝑖)

0 .logpdf()− s(𝑖)
0 .logpdf()

end for
((𝑤(1), . . . , 𝑤(𝑛)), ℓ̄)← normalize(log �̃�(1), . . . , log �̃�(𝑛))̂︀𝑧0 ← ℓ̄
for 𝑗 ← 1 . . . 𝑚 do

[𝑏(1), . . . , 𝑏(𝑛)]← resample(𝑤(1), . . . , 𝑤(𝑛))
for 𝑖← 1 . . . 𝑛 do

t(𝑖)
𝑗−1 ← kern𝑗−1(t(𝑏𝑖)

𝑗−1)
s(𝑖)

𝑗 ← 𝒬𝑗 .simulate(t(𝑖)
𝑗−1)

(t(𝑖)
𝑗 , log �̃�(𝑖), 𝜐, _)← t(𝑖)

𝑗−1.update((𝑗, 𝜃), (⊥,⊤), s(𝑖)
𝑗 .choices()⊕ 𝜌𝑗)

assert |𝐴𝜐| = 0
end for
((𝑤(1), . . . , 𝑤(𝑛)), ℓ̄)← normalize(log �̃�(1), . . . , log �̃�(𝑛))̂︀𝑧𝑗 ← ̂︀𝑧𝑗−1 + ℓ̄

end for
return

(︁
{(t(1)

𝑚 , 𝑤(1)), . . . , (t(𝑛)
𝑚 , 𝑤(𝑛))}, ̂︀𝑧𝑚

)︁
end procedure

105



Example: A resample-move particle particle filter for a state space model Fig-
ure 3-7 shows a generative function that describes a state space model 𝒫 = bearing_model
adapted from Gilks and Berzuini [50]. 𝒫 models the motion of an object in a two-
dimensional coordinate system over a sequence of time steps and noisy measurements (z)
of the bearing of the object, relative to the origin. In this model, the latent addresses
and observed addresses at each time step are 𝑆0 = {x0, y0, vx0, vy0}, 𝑅0 = {z0}, and
𝑆𝑗 = {(vx, 𝑗), (vy, 𝑡)} and 𝑅𝑗 = {(z, 𝑗)} for each 𝑗 > 0. Given a sequence of noisy bear-
ing measurements 𝜌𝑗 = {(z, 𝑗) ↦→ 𝑧𝑗} for each time step 𝑗, we use Algorithm 7 to infer
the trajectory of the object over time. A Julia implementation using the version of Gen
at the time of this writing is shown in Figure 3-9a. The code uses functions from Gen’s
built-in inference library for some of the key operations in Algorithm 7. In particular,
particle_filter_step! performs the calls to 𝒬𝑗 .simulate(t(𝑖)

𝑗−1) and t(𝑖)
𝑗−1.update for each

particle. The proposals 𝒬0 = q_init_bearing and 𝒬𝑗 := q_bearing are defined in Fig-
ure 3-8. In addition to the proposals, the implementation also makes use of a family of
composite rejuvenation MCMC kernels (bearing_kernel, not shown), which apply a se-
quence of Metropolis-Hastings moves to the latent variables for the five most recent time
steps. The value (Gen.UnknownChange(),) represents the change hint (⊥, ), which indicates
that no information is given about the change to the index. There are no other arguments to
this model. If the model did take additional arguments, then the tuple would be extended
with Gen.NoChange(), which represents the change hint ⊤.

@gen function bearing_model(num_steps::Int)

# prior on initial conditions
x = ({:x0} ∼ normal(0.01, 0.01))
y = ({:y0} ∼ normal(0.95, 0.01))
vx = ({:vx0} ∼ normal(0.002, 0.01))
vy = ({:vy0} ∼ normal(-0.013, 0.01))

# initial bearing measurement
z0 ∼ normal(atan(y, x), 0.005)

# generate successive states and measurements
for t in 1:num_steps

# update the state of the point
vx = ({(:vx, t)} ∼ normal(vx, sqrt(1.0/1e6)))
vy = ({(:vy, t)} ∼ normal(vy, sqrt(1.0/1e6)))
x += vx; y += vy

# bearing measurement
{(:z, t)} ∼ normal(atan(y, x), 0.005)

end
end

Figure 3-7: A state space model used to illustrate particle filtering with traces

106



@gen function q_init_bearing()
x0 ∼ normal(0.01, 0.01)
y0 ∼ normal(0.95, 0.01)
vx0 ∼ normal(0.002, 0.01)
vy0 ∼ normal(-0.013, 0.01)

end

@gen function q_bearing(trace, t::Int)
{(:vx, t)} ∼ normal(trace[(:vx, t-1)], sqrt(1.0/1e6))
{(:vy, t)} ∼ normal(trace[(:vy, t-1)], sqrt(1.0/1e6))

end

Figure 3-8: Generative functions for proposal distributions in particle filtering

init_obs = Gen.choicemap((:z0, zs[1]))
state = Gen.initialize_particle_filter(

model, (0,), init_obs, q_init_bearing, (), n)
for t=1:length(zs)-1

# apply rejuvenation MCMC moves to each particle in parallel
Threads.@threads for i in 1:n

state.traces[i] = bearing_kernel(state.traces[i], max(1, t-5), t-1)
end

# resample if the effective sample size is low
Gen.maybe_resample!(state, ess_threshold=n/2)

# extend particles to the next time step
obs = Gen.choicemap(((:z, t), zs[t+1]))
arg_change = (UnknownChange(),)
Gen.particle_filter_step!(state, (t,), arg_change, obs, q_bearing, (t,))

end

(a) An implementation of a resample-move particle filter in Julia using Gen.

(b) Left: Ground truth trajectory (blue) and observed bearing measurements relative to the origin
(red). Right: Trajectories inferred using a resample-move particle filter implemented in Gen.

Figure 3-9: Resample-move particle filtering using generative functions and traces

107



3.5.2 Annealed importance sampling with traces

A small modification to the particle filtering procedure above recovers a procedure for an-
nealed importance sampling (AIS) [91] using generative functions and traces (Algorithm 8).
This AIS procedure applies to models 𝒫 that take an argument 𝑥 for which gradually ad-
justing 𝑥 from an initial value 𝑥0 to a final value 𝑥𝑚 causes the conditional distribution
𝑝(·|𝜌; 𝑥𝑗) to evolve gradually from a distribution that is easy to sample from (e.g. uni-
modal) to the more complex target distribution 𝑝(·|𝜌; 𝑥𝑚), for some observed data 𝜌. The
procedure computes an estimate ̂︀𝑧𝑚 of the log marginal likelihood log 𝑝(𝜌; 𝑥𝑚) under the
final setting of 𝑥 = 𝑥𝑚. To apply Algorithm 8, 𝒫 must be such that incrementing 𝑥𝑗 does
not change the set of random choices that are sampled. More precisely, we require that:

𝑝(𝜏 ; 𝑥𝑗−1) > 0 ⇐⇒ 𝑝(𝜏 ; 𝑥𝑗) > 0 for all 𝑗 = 1, . . . , 𝑚

The procedure repeatedly interleaves an application of an MCMC kernel kern𝑗−1 that
must be stationary with respect to 𝑝(·|𝜌; 𝑥𝑗−1) with a call to update, which performs each
change of the argument from 𝑥𝑗−1 to 𝑥𝑗 . The procedure passes a change hint 𝛿𝑋 to update
that provides information about the change from 𝑥𝑗−1 to 𝑥𝑗 . If the argument 𝑥 is complex,
but only a single scalar parameter is changed from 𝑥𝑗−1 to 𝑥𝑗 , the information in the change
hint may allow update to use asymptotically fewer operations, depending on how the trace
abstract data type for 𝒫 is implemented.

Algorithm 8 Annealed importance sampling with traces
procedure annealed-is(𝒫, 𝜌, 𝒬, 𝛿𝑋 , {𝑥𝑗}𝑚𝑗=0, {kern𝑗}𝑚−1

𝑗=0 )
s← 𝒬.simulate(_)
𝜎 ← s.choices()
t0 ← 𝒫.generate(𝑥0, 𝜎 ⊕ 𝜌)
log �̃� ← t0.logpdf()− s0.logpdf()̂︀𝑧0 ← log �̃�
for 𝑗 ← 1 . . . 𝑚 do

t𝑗 ← kern𝑗−1(t𝑗−1)
(t𝑗 , log �̃�, 𝜐, _)← t𝑗 .update(𝑥𝑗 , 𝛿𝑋 , {})
assert |𝐴𝜐| = 0̂︀𝑧𝑗 ← ̂︀𝑧𝑗−1 + log �̃�

end for
return (t𝑚, ̂︀𝑧𝑚)

end procedure

108



3.6 Bridging between models with trace translators

This section defines a new probabilistic programming inference construct called trace trans-
lators that allows a trace of one generative function to be used as a proposal for another
generative function, even when there is no one-to-one correspondence between the sets of
traces of the two generative functions, and no correspondence between the addresses in
the two generative functions. Trace translators significantly expand the expressiveness of
Monte Carlo inference with probabilistic programs. Trace translators are inspired by the
general sequential Monte Carlo sampler of Del Moral et al. [33], but are adapted to the
probabilistic programming setting, can employ deterministic differentiable transformations,
and can be used in settings other than sequential Monte Carlo (a special case is used for
MCMC in the next section). This section also shows how a combination of probabilis-
tic programming and differentiable programming techniques can be used to automate the
low-level implementation of trace translators.

3.6.1 Trace translators

Consider two generative functions 𝒫1 and 𝒫2 representing two generative models of a do-
main. Without loss of generality we assume the generative functions take no arguments to
simplify notation. Suppose that 𝒫1 and 𝒫2 both use an address universe containing only dis-
crete (counting measure) addresses. Consider observation dictionaries 𝜌1 and 𝜌2 for these
two generative models (note that if 𝒫1 and 𝒫2 use the same representation for observed data,
then 𝜌1 and 𝜌2 may be the same, but this is not necessary). Let 𝒵1 := {𝜐1 : 𝑝1(𝜐1⊕𝜌1) > 0}
and 𝒵2 := {𝜐2 : 𝑝2(𝜐2 ⊕ 𝜌2) > 0}. Suppose that there is a bijection ℎ between 𝒵1 and
𝒵2. Consider the process where we obtain a trace t1 of 𝒫1 with t1.choices() = 𝜐1 ⊕ 𝜌1
via exact conditional sampling from 𝒫1 conditioned on 𝜌1 (i.e. 𝜐1 ∼ 𝑝1(·|𝜌1)), and then
compute 𝜐2 = ℎ(𝜐1), and return t2 = 𝒫2.generate(_, 𝜐2⊕𝜌2). The probability that this
process returns some t2 where t2.choices() = 𝜐2⊕𝜌2 is simply 𝑝1(ℎ−1(𝜐2)|𝜌1). Therefore,
an importance weight if we are targeting the conditional distribution 𝑝2(·|𝜌2), is:

𝑝2(𝜐2 ⊕ 𝜌2)
𝑝1(ℎ−1(𝜐2)⊕ 𝜌1) = 𝑝2(ℎ(𝜐1)⊕ 𝜌2)

𝑝1(𝜐1 ⊕ 𝜌1) (3.10)

If 𝜌1 := {} then by repeatedly sampling 𝜐1 ∼ 𝑝1(·|𝜌) = 𝑝1 and weighing samples according
to the above weight, we can construct a self-normalized importance sampling algorithm
where 𝒫1 plays the role of the proposal. This algorithm is more flexible than Algorithm 3
because this procedure 𝜐1 and 𝜐2 need not share the same addresses, whereas Algorithm 3
assumes that the model and proposal sample at the same latent addresses (and therefore,
the same latent representation). Trace translators generalize this idea along two additional
dimensions—permitting continuous addresses to be used, and permitting extension of one
or both state spaces with auxiliary random variables (which is necessary when there is no
one-to-one correspondence between the two sets 𝒵1 and 𝒵2).

Consider an address universe with discrete addresses 𝐷 (𝜇𝑎 is the counting measure
for 𝑎 ∈ 𝐷) and continuous addresses 𝐶 (𝜇𝑎 is the Lebesgue measure on R𝑛𝑎 for 𝑎 ∈ 𝐶),
with 𝐴 = 𝐷 ∪ 𝐶. To extend to handle continuous addresses in 𝒫1 and 𝒫2, we require

109



that there are countable partitions of 𝒵1 and 𝒵2 into {𝒵1,𝑒 : 𝑒 ∈ 𝐸1} and {𝒵2,𝑒 : 𝑒 ∈ 𝐸2}
respectively such that if 𝜐, 𝜐′ ∈ 𝒵1,𝑒 for some 𝑒 then 𝜐[𝑎] = 𝜐′[𝑎] for all discrete addresses
𝑎, and similarly for each 𝒵2,𝑒. Then, each set 𝒵1,𝑒 and 𝒵2,𝑒 is isomorphic to a subset of a
Euclidean space of assignments to continuous addresses. Let 𝑒1(𝜐) ∈ 𝐸1 denote the element
of the partition that a dictionary 𝜐 ∈ 𝒵1 belongs to, and similarly for 𝑒2. One example of
a valid partition is given by equivalence classes of the following equivalence relation:

𝜐 ∼ 𝜐′ ⇐⇒ (𝐴𝜐 = 𝐴𝜐′) ∧ (𝜐[𝑎] = 𝜐′[𝑎]∀𝑎 ∈ 𝐴𝜐 ∩𝐷) (3.11)

Suppose there exists a bijection 𝑔 : 𝐸1 → 𝐸2, and a family of continuously differentiable
bijections ℎ𝑒 : 𝒵1,𝑒 → 𝒵2,𝑔(𝑒). Then, ℎ : 𝒵1 → 𝒵2 given by ℎ(𝜐1) = ℎ𝑒1(𝜐1)(𝜐1) is a bijection,
with inverse ℎ−1 : 𝒵2 → 𝒵1 given by ℎ−1(𝜐2) = ℎ−1

𝑔−1(𝑒2(𝜐2))(𝜐2). Let |Jℎ|(𝜐1) denote the
absolute value of the determinant of the Jacobian of ℎ𝑒1(𝜐1), evaluated at 𝜐1. Then, an
importance weight and sampling process for target distribution 𝑝2(·|𝜌2) is:

𝑝2(ℎ(𝜐1)⊕ 𝜌2)
𝑝1(𝜐1 ⊕ 𝜌1) |Jℎ|(𝜐1) for 𝜐1 ∼ 𝑝1(·|𝜌1) (3.12)

If there is no bijection between 𝒵1 and 𝒵2, then we extend the two state spaces in such a
way that there is a bijection. This is done using a pair of auxiliary generative functions 𝒬1
and 𝒬2, which we use to extend the generative functions 𝒫1 and 𝒫2 respectively. Let 𝒬1 and
𝒬2 be generative functions taking arguments 𝜏1 ∈ supp(𝑝1) and 𝜏2 ∈ supp(𝑝2) respectively.
Without loss of generality, assume that 𝒫1 and 𝒬1 use disjoints sets of addresses, and
similarly for 𝒫2 and 𝒬2.2 let 𝒵1 := {𝜐 ⊕ 𝜎 : 𝑝1(𝜐 ⊕ 𝜌1)𝑞1(𝜎; 𝜐 ⊕ 𝜌1) > 0} and 𝒵2 :=
{𝜐⊕𝜎 : 𝑝2(𝜐⊕𝜌2)𝑞2(𝜎; 𝜐⊕𝜌2) > 0}. Suppose that 𝒵1 and 𝒵2 can be partitioned as above,
with a bijection 𝑔 and a family of continuously differentiable bijections ℎ𝑒1 . Then, we can
construct a proposal process and an importance weight for an unnormalized target density
�̃�(𝜐2 ⊕ 𝜎2) := 𝑝2(𝜐2 ⊕ 𝜌2)𝑞2(𝜎2; 𝜐2 ⊕ 𝜌2) on the extended state space 𝒵2 of dictionaries of
the form 𝜐2 ⊕ 𝜎2. The importance weight is equivalent to Equation (3.12), but with the
unnormalized target density �̃� in place of the unnormalized target density 𝑝2(𝜐 ⊕ 𝜌):

𝑝2(𝜐2 ⊕ 𝜌2)𝑞2(𝜎2; 𝜐2 ⊕ 𝜌2)
𝑝1(𝜐1 ⊕ 𝜌1)𝑞1(𝜎1; 𝜐1 ⊕ 𝜌1) |Jℎ|(𝜐1 ⊕ 𝜎1) for

𝜐1 ∼ 𝑝1(·|𝜌1)
𝜎1|𝜐1 ∼ 𝑞1(·; 𝜐1 ⊕ 𝜌1)
(𝜐2 ⊕ 𝜎2) = ℎ(𝜐1 ⊕ 𝜎1)

(3.13)

Definition 3.6.1 (Trace translator and trace transform). A trace translator is a tuple
(𝒫1, 𝜌1,𝒫2, 𝜌2,𝒬1,𝒬2, ℎ) of elements that satisfy the conditions above. A trace transform
is a bijection ℎ between spaces of choice dictionaries.

The importance weight in Equation 3.13 is a valid importance weight in the context
when 𝜐1 ∼ 𝑝1(·|𝜌1), but the same weight computation is useful in other settings when 𝜐1 is
not necessarily sampled from 𝑝1(·|𝜌1). In particular, Section 3.6.4 gives an algorithm that
uses this weight function as an incremental importance weight within a sequential Monte

2If the sets of addresses sampled by the two generative functions are not disjoint, they can be made so
by adding a different prefix to the addresses of each set.

110



Carlo scheme, and Section 3.7 gives an MCMC algorithm that uses a special case of this
weight function as the basis of an acceptance probability. To support these and other uses,
we associate a procedure (translate in Algorithm 9) with every trace translator that
takes a trace of 𝒫1 as input and returns a trace of 𝒫2 as output (along with a weight). The
procedure (i) takes as input a trace t1 of 𝒫1 with t1.choices() = 𝜐1 ⊕ 𝜌1 for some 𝜐1, (ii)
samples 𝜎1|𝜐1 ∼ 𝑞1(·; 𝜐⊕𝜌1), (iii) computes (𝜐2⊕𝜎2) = ℎ(𝜐1⊕𝜎1) and (iv) returns a trace
t2 of 𝒫2 with t2.choices() = 𝜐2 ⊕ 𝜌2, along with the importance weight of Equation 3.13.

Algorithm 9 Trace translator procedure
procedure transform(t, 𝜌, 𝒫 ′, 𝜌′, ℎ, 𝜎)

𝜏 ← t.choices()
𝐵 ← 𝐴c

𝜌

𝜐 ← 𝜏 |𝐵
(𝜐′ ⊕ 𝜎′)← ℎ(𝜎 ⊕ 𝜐)
t′ ← 𝒫 ′.generate(_, 𝜐′ ⊕ 𝜌′)
𝐼𝜎 ← {𝐴𝜎 ∩ 𝐶} ∖ {𝑎 ∈ 𝐴𝜎 : (∃𝑏 ∈ 𝐴𝜎′ 𝜎′[𝑏] = 𝜎[𝑎]) ∨ (∃𝑏 ∈ 𝐴𝜐′ 𝜐′[𝑏] = 𝜎[𝑎])}
𝐼𝜐 ← {𝐴𝜐 ∩ 𝐶} ∖ {𝑎 ∈ 𝐴𝜐 : (∃𝑏 ∈ 𝐴𝜎′ 𝜎′[𝑏] = 𝜐[𝑎]) ∨ (∃𝑏 ∈ 𝐴𝜐′ 𝜐′[𝑏] = 𝜐[𝑎])}
𝑂𝜎′ = {𝐴𝜎′ ∩ 𝐶} ∖ {𝑏 ∈ 𝐴𝜎′ : (∃𝑎 ∈ 𝐴𝜎 𝜎[𝑎] = 𝜎′[𝑏]) ∨ (∃𝑎 ∈ 𝐴𝜐 𝜐[𝑎] = 𝜎′[𝑏])}
𝑂𝜐′ = {𝐴𝜐′ ∩ 𝐶} ∖ {𝑏 ∈ 𝐴𝜐′ : (∃𝑎 ∈ 𝐴𝜎 𝜎[𝑎] = 𝜐′[𝑏]) ∨ (∃𝑎 ∈ 𝐴𝜐 𝜐[𝑎] = 𝜐′[𝑏])}
J11 ←

[︁
𝜕𝜎′[𝑏]
𝜕𝜎[𝑎]

]︁𝑏∈𝑂𝜎′

𝑎∈𝐼𝜎

; J12 ←
[︁

𝜕𝜐′[𝑏]
𝜕𝜎[𝑎]

]︁𝑏∈𝑂𝜐′

𝑎∈𝐼𝜎

; J21 ←
[︁

𝜕𝜎′[𝑏]
𝜕𝜐[𝑎]

]︁𝑏∈𝑂𝜎′

𝑎∈𝐼𝜐

; J22 ←
[︁

𝜕𝜐′[𝑏]
𝜕𝜐[𝑎]

]︁𝑏∈𝑂𝜐′

𝑎∈𝐼𝜐

𝛼← t′.logpdf()− t.logpdf() + log
⃒⃒⃒⃒
⃒
[︃

J11 J12
J21 J22

]︃⃒⃒⃒⃒
⃒

return (t′, 𝜎′, 𝛼)
end procedure
procedure translate(t1, 𝜌1, 𝒫2, 𝜌2, 𝒬1, 𝒬2, ℎ)

s1 ← 𝒬1.simulate(t1)
𝜎1 ← s1.choices()
(t2, 𝜎2, 𝛼)← transform(t1, 𝜌1,𝒫2, 𝜌2, ℎ, 𝜎1)
s2 ← 𝒬2.generate(t2, 𝜎2)
𝛼← 𝛼 + s2.logpdf()− s1.logpdf()
return (t2, 𝛼)

end procedure

The procedure translate uses the trace abstract data type operations to sample 𝜎
and compute the various probability densities used in Equation 3.13. The bijection ℎ and
its Jacobian determinant are evaluated by the deterministic subroutine transform. We
now describe a differentiable programming language for writing the bijections ℎ and an
interpreter for that language that uses a general-purpose implementation of transform.

3.6.2 Sparsity-aware Jacobian computation

Recall the Jacobian determinant |Jℎ| in Equation (3.13). While it is possible to compute the
entire 𝑚-by-𝑚 Jacobian matrix first where 𝑚 is the total number of continuous addresses

111



in 𝜐1⊕𝜎1 (𝜐2⊕𝜎2 also has 𝑚 continuous addresses), and then compute the absolute value
of its determinant, the Jacobian matrix may have sparse structure that we can exploit
to reduce unnecessary computation. In many applications of trace translators, the values
at some continuous addresses in the input traces are directly copied to addresses in the
output traces. Copied addresses result in columns in the Jacobian matrix that have a
single 1 entry and remaining entries equal to 0. For example, for the function (𝑢, 𝑣, 𝑥, 𝑦) ↦→
(𝑢, 2𝑢 − 𝑣, 𝑦, 𝑥) = (𝑢′, 𝑣′, 𝑥′, 𝑦′), where the first, third, and fourth elements are copied, the
Jacobian is (with columns corresponding to 𝑢′, 𝑣′, 𝑥′, and 𝑦′):⎡⎢⎢⎢⎣

1 2 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎦
𝑢
𝑣
𝑥
𝑦

Using the cofactor expansion of the determinant, we observe that for any ‘copy’ column in
an 𝑚-by-𝑚 Jacobian matrix (a column with a single 1 and all other entries 0), the abso-
lute value of the determinant is equivalent to that of the (𝑚 − 1)-by-(𝑚 − 1) sub-matrix
with the corresponding column and row omitted (even if that would remove other nonzero
entries from the matrix). By applying this rule recursively, we can instead compute the
determinant of a much smaller matrix; for the example above with 𝑚 = 4, the absolute
value of the determinant simplifies to the absolute value of a single entry (| − 1|). Indeed,
if some input address is copied to some output address, then we can entirely avoid com-
puting its row (and corresponding column) of the Jacobian. Therefore, assuming an LU
decomposition is used for the determinant, the number of operations (which is dominated
by the determinant), reduces from 𝑚3 to (𝑚− 𝑐)3 where 𝑐 is the number of input addresses
that were copied to some output address. The procedure transform implements this logic
by checking for copied columns and only computing the determinant of the sub-matrix of
the Jacobian matrix that excludes these columns (and their corresponding rows). For an
efficient implementation we would like that the copied addresses are immediately available
without requiring a quadratic scan of all pairs of addresses. The differentiable programming
language of Section 3.6.3 uses a language construct to make the set of copied addresses im-
mediately available to the interpreter, and uses automatic differentiation to fully automate
the computation of the sub-matrix of the Jacobian that excludes the copied addresses.

3.6.3 A differentiable programming language for trace transforms

Algorithm 9 shows how the densities used in the weight of Equation 3.13 can be computed
via the operations of the generative function and trace abstract data types, but it does not
describe how to implement the transformation ℎ or how to compute derivatives required for
|Jℎ|. This section describes a differentiable programming language in which users specify
the transformation ℎ, and an interpreter for this language that evaluates the transformation
((𝜐′⊕𝜎′) = ℎ(𝜐⊕𝜎)) and also automatically computes the absolute value of the Jacobian
determinant (|Jℎ|(𝜐 ⊕ 𝜎)) using automatic differentiation.

The language extends the Julia language [12] with special syntax for reading from an
address in the input 𝜐⊕𝜎 ∈ 𝒵1, and writing to an address in the output 𝜐′⊕𝜎′ ∈ 𝒵2. The

112



logic of the function ℎ is implemented using regular Julia code. The language also includes
a construct for copying a value directly from some address in the input to some address in
the output. Users read from addresses in the input with the @read keyword:

value = @read(<address>, <type>)

The first argument is the address 𝑎 and the second argument is a type tag that is either
:disc or :cont, and informs the interpreter whether the random choice at that address is
drawn from a discrete or continuous distribution (this information will be used to support
automatic differentiation). Recall that 𝜐 is the choice dictionary of the model generative
function 𝒫1, and 𝜎 is the choice dictionary of the auxiliary generative function 𝒬1. Each
address 𝑎 therefore needs to specify which of these two choice dictionaries to read from,
and the address within that dictionary. The dictionaries are given names in the function
signature, has the following syntax:

@transform h (model_in, aux_in) to (model_out, aux_out) begin
..
end

Here, 𝜐, 𝜎, 𝜐′ and 𝜎′ have been assigned user-defined names model_in, aux_in, model_out,
and aux_out, respectively. The inputs also support reading the value of derived quantities
including the return values of 𝒫1 and 𝒬1 (if any), and additional context information like
the observations 𝜌, and the arguments to 𝒫1 and 𝒬1 (if any). Because derived quantities
and context information are not part of the input choice dictionaries, but are part of the
traces t and s, we refer to the inputs and outputs as traces in the remainder of this section.
The syntax for address a within the choice dictionary of trace trace is trace[a]. For
example, to read the value of a continuous address a from the input model trace t (that is,
either a value 𝜐[a] or 𝜌[a]):

val = @read(model_in[a], :cont)

and similarly for reading from the input auxiliary trace s (that is, a value 𝜎[a]):

val = @read(aux_in[a], :cont)

The syntax for writing to an address in 𝜐′⊕𝜎′ ∈ 𝒵2 is similar. For example, the expressions
for writing a discrete value val to 𝜐′[a] and 𝜎′[a] respectively are:

@write(model_out[a], val, :disc)
@write(aux_out[a], val, :disc)

The inputs 𝜐 and 𝜎 can only be read from, and the outputs 𝜐′ and 𝜎′ can only be written
to. For example, it is not possible to write a value to 𝜐′ with @write and then read the
value back with @read later.

Often, a user intends to simply copy the value from some address in the input traces to
some address in the output traces. While this is possible via a @read followed by a @write,
the language provides a special syntax:

@copy(<source-address>, <destination-address>)

113



For example, to copy the value from address a in 𝜐 to address b in 𝜐′, we use:

@copy(model_in[a], model_out[b])

Of course, it is also possible to copy from 𝜐 to 𝜎′, from 𝜎 to 𝜐′ and from 𝜎 to 𝜎′. It is
preferable to use @copy when possible instead of reading and then writing, as this informs
the interpreter of the special sparse structure in the Jacobian that the copy introduces, as
discussed in Section 3.6.2.

The interpreter for the differentiable programming language uses automatic differentia-
tion (AD) to compute the necessary submatrix of the Jacobian as defined in transform in
Algorithm 9. Forward-mode, reverse-mode, or other approaches to AD can be used, but the
current Gen implementation of this language uses forward-mode AD. The interpreter runs
the body of the transform function several times. The first run computes the output 𝜐′⊕𝜎′

and records any addresses that were copied. There is one run for each input address that
was read but not copied, and this run computes the row of the submatrix of the Jacobian
corresponding to its input address. Note that only the continuous addresses are involved
in the Jacobian calculation, but that the language offers a unified syntax for specifying the
action of the bijection ℎ for both the discrete and continuous addresses.

Example: A deterministic change-of-variables trace translator Consider the gen-
erative functions given by 𝒫1 := cartesian and 𝒫2 := polar for the following code:

@gen function cartesian()
x ∼ normal(0, 1)
y ∼ normal(0, 1)
obsx ∼ normal(x, 0.1)
obsy ∼ normal(y, 0.1)

end

@gen function polar()
r ∼ gamma(1, 1)
theta ∼ uniform(-pi, pi)
obsr ∼ normal(r, 1.)

end

Assume that obsx and obsy are observed for the first model (𝐴𝜌1 = {obsx, obsy}), and that
obsr is observed for the second model (𝐴𝜌2 = {obsr}). Then the latent spaces for both
(the sets of 𝜐1 and 𝜐2 with positive density, respectively) are isomorphic to R2, but they
parametrize R2 differently (cartesian versus polar coordinates). We can translate between
(the latent parts of) traces of these two models using the pair of trace transform programs
expressed in the differentiable programming language of this section:

@transform h_cart_to_polar (t1) to (t2)
x = @read(t1[:x], :cont)
y = @read(t1[:y], :cont)
r = sqrt(x*x + y*y)
theta = atan(y, x)
@write(t2[:r], r, :cont)
@write(t2[:theta], theta, :cont)

end

@transform h_polar_to_cart (t2) to (t1)
r = @read(t2[:r], :cont)
theta = @read(t2[:theta], :cont)
x = r * cos(theta)
y = r * sin(theta)
@write(t1[:x], x, :cont)
@write(t1[:y], y, :cont)

end

114



There is no need to extend the spaces with auxiliary choice dictionaries 𝜎 and 𝜎′, so 𝒬1 and
𝒬2 are both empty generative functions that sample no random choices, and the transforms
ℎ and ℎ−1 simply read and write to traces of 𝒫1 or 𝒫2.

Example: A coarse-to-fine and discrete-to-continuous trace translator This ex-
ample describes a trace translator that does employ auxiliary generative functions. Consider
the following pair of generative models (𝒫1 := disc_model and 𝒫2 := cont_model):

@gen function disc_model(start_cell, num_time_steps)
destination_cell ∼ uniform_discrete(1, num_cells)
observed_cells ∼ disc_likelihood_model(start_cell, destination_cell, n)

end

@gen function cont_model(start_loc, n)
x ∼ uniform(0, 1)
y ∼ uniform(0, 1)
destination_loc = (x, y)
observed_locs ∼ cont_likelihood_model(start_loc, destination_loc, n)

end

Both model the observed movement of a person throughout a space over a set of n time
steps using a combination of their starting location (which is known a-priori) and their
destination location (which is a latent variable). 𝒫1 uses a parametrization of the space
in terms of a discretization of the space into a set of 20 ‘cells’, identified by integers and
𝒫2 uses a continuous parametrization of the space in terms of (x, y) coordinates (see Fig-
ure 3-10). In addition to the different latent representations (address destination_cell
for 𝒫1 and addresses x and y for 𝒫2) the two generative functions also use different ob-
served representations: We assume that the likelihood models disc_likelihood_model and
cont_likelihood_model are generative functions that only sample at addresses 1 through
n for each observed data point (i.e. the likelihood models do not include any latent vari-
ables). Each address of the form ‘observed_cells => i’ is integer-valued and each address
of the form ‘observed_locs => i’ takes values in [0, 1]2. (The details of the likelihood
models are not shown.) The semantic relationship between these two models is clear (Fig-

(𝑥, 𝑦)
𝒬1, ℎ (stochastic)

𝒬2, ℎ−1 (deterministic)

Figure 3-10: Trace translators allow translation between arbitrary latent representations

ure 3-10). To translate a trace of the coarse and discrete model to a trace of the con-
tinuous model, recall that we need to translate between the latent parts of these traces

115



𝜐1 and 𝜐2 (containing addresses {destination_cell} and {x, y} respectively) and not the
observed parts 𝜌1 and 𝜌2 (containing addresses {observed_cells => 𝑖 : 𝑖 = 1 . . . n} and
{observed_locs => 𝑖 : 𝑖 = 1 . . . n} respectively). However, the space of all 𝜐2 is uncount-
ably infinite (isomorphic to [0, 1]2) and the space of all 𝜐1 is finite (containing just 20
elements). Therefore, no bijection is possible, and we generate additional randomness as
part of 𝒬1 := q_disc_to_cont shown below.

@gen function q_disc_to_cont(trace)
(xmin, xmax, ymin, ymax) = get_bounds(trace[:destination_cell])
x ∼ uniform(xmin, xmax)
y ∼ uniform(ymin, xmax)

end

The generative function takes as an argument a trace (trace) of the discrete model 𝒫1,
reads the value of the destination cell from this trace, and looks up the bounds of the
rectangular region that this cell represents. Then, it samples the x and y coordinates of a
random point within the region at addresses x and y. It is now straightforward to write a
transform ℎ; it simply copies the continuous destination location from the trace of 𝒬1 to
the output model trace:

@transform h_disc_to_cont (model_in, aux_in) to (model_out)
@copy(aux_in[:x], model_out[:x])
@copy(aux_in[:y], model_out[:y])

end

The backward auxiliary distribution (𝒬2 := q_cont_to_disc) samples no random choices:

@gen function q_cont_to_disc(trace)
end

Given observed data 𝜌1 and 𝜌2 for the two models, we can then compose a trace translator
(𝒫1, 𝜌1,𝒫2, 𝜌2,𝒬1,𝒬2, ℎ) from these elements, which is able to translate from traces of the
discrete model to traces of the continuous model.

To translate from a trace of the continuous model into a trace of the coarse and discrete
model, we can use the same 𝒬1 and 𝒬2, but with their roles reversed. For the transform
we can use ℎ−1, which computes the destination cell (using get_cell) and populates the
discrete model trace with this value:

@transform function h_cont_to_disc (model_in) to (model_out, aux_out)
x = @read(model_in[:x], :cont)
y = @read(model_in[:y], :cont)
@copy(model_in[:x], aux_out[:x])
@copy(model_in[:y], aux_out[:y])
@write(model_out[:destination_cell], get_cell((x, y)), :disc)

end

Note that ℎ−1 also copies the value of the destination location into the trace of 𝒬1. Intu-
itively, the invertibility requirement on ℎ means that neither direction of the bijection can

116



discard information— information must be preserved either in the new model trace or the
new proposal trace. The resulting trace translator is (𝒫2, 𝜌2,𝒫1, 𝜌1,𝒬2,𝒬1, ℎ−1).

Note that while our pair of trace translators from the discrete to continuous model and
vice versa are constructed from the same elements (swapping the role of 𝒬1 and 𝒬2 and
using ℎ and ℎ−1 for the transforms), this is not required—there is an infinite set of valid
trace translators from any inference problem (𝒫1, 𝜌1) to any other problem (𝒫2, 𝜌2).

3.6.4 Sequential Monte Carlo with trace translators

Sequential Monte Carlo (SMC) samplers [33] are a flexible template for constructing Monte
Carlo inference algorithms that consecutively approximate the target distribution for a se-
quence of inference problems. SMC is most commonly applied using a sequence of inference
problems that incrementally extend the state space of one model, but the framework is sig-
nificantly more general, and can be used with arbitrary sequences of inference problems.
For each step in the sequence, the approximation for the previous inference problem is used
as a starting point for the next inference problem. This is done by sampling a particle for
the new inference problem conditioned on each particle in the approximation for the pre-
vious inference problem, and incrementing an importance weight so that the new particle
and its weight constitute a ‘properly weighted’ sample [76]. Trace translators, implemented
using Gen’s abstract data types, are a general-purpose construct for sampling the new par-
ticle given the previous particle, and can be used as the basis of a general SMC procedure,
shown in Algorithm 10. The previous particle is represented by the previous trace (t(𝑖)

𝑗−1),
the new particle is represented by the new trace (t(𝑖)

𝑗 ), and the log weight returned by
translate is the incremental importance weight required by SMC. Note that the SMC
sampler framework also allows these transitions from one inference problem to the next
to be interleaved with application of MCMC kernels (kern𝑗) that are stationary for each
target distribution (𝑝𝑗−1(·|𝜌𝑗−1)) in the sequence. Note that SMC construction generalizes
particle filtering (Algorithm 7) and annealed importance sampling (Algorithm 8).

While trace translators are very flexible, and the asymptotic properties of SMC hold
for any valid trace translator, the efficiency of the resulting SMC algorithm depends on
the details of the trace translator. Cusumano-Towner et al. [27] includes a more detailed
discussion of the properties of a trace translator that make SMC efficient. Briefly, the
distribution on (𝜐2, 𝜎2) associated with sampling 𝜐1 ∼ 𝑝1(·; 𝜌1) and 𝜎2|𝜐2 ∼ 𝑞2(·; 𝜐1) and
applying (𝜐2, 𝜎2) = ℎ(𝜐1, 𝜎1) should be close in Kullback-Leibler (KL) divergence to the
distribution associated with sampling 𝜐2 ∼ 𝑝2(·|𝜌2) and then 𝜎2|𝜐2 ∼ 𝑞2(·; 𝜐2). Specifically,
the following KL divergence, from the distribution induced by 𝑝2 and 𝑞2 to the distribution
induced by 𝑝1, 𝑞1, and ℎ, should be small, where (𝜐1, 𝜎1) := ℎ−1(𝜐2 ⊕ 𝜎2):∫︁

𝑝2(𝜐2|𝜌2)𝑞2(𝜎2; 𝜐2) log
(︂

𝑝2(𝜐2|𝜌2)𝑞2(𝜎2; 𝜐2)
𝑝1(𝜐1|𝜌1)𝑞1(𝜎1; 𝜐1) |Jℎ|(𝜐1 ⊕ 𝜎1)

)︂
𝜇⋆

𝐴(𝑑(𝜐2 ⊕ 𝜎2)) (3.14)

SMC with trace translators is likely to be an effective inference strategy when the initial
target distribution (induced by conditioning 𝒫0 on data 𝜌) is trivial or straightforward to
sample from efficiently, and the sequence of inference problems and trace translators is such
that each instance of Equation 3.14 is small.

117



Algorithm 10 Sequential Monte Carlo with Trace Translators
procedure trace-translator-smc(𝒬0, {(𝒫𝑗 , 𝜌𝑗)}𝑚𝑗=0, {(𝒬𝑗,1,𝒬𝑗,2, ℎ𝑗 , kern𝑗−1)}𝑚𝑗=1)

for 𝑖← 1 . . . 𝑛 do
s(𝑖)

0 ← 𝒬0.simulate(_)
𝜏 ← s(𝑖)

0 .choices()⊕ 𝜌0

t(𝑖)
0 ← 𝒫0.generate(_, 𝜏 )

log �̃�(𝑖) ← t(0)
𝑖 .logpdf()− s(0)

𝑖 .logpdf()
end for
((𝑤(1), . . . , 𝑤(𝑛)), ℓ̄)← normalize(log �̃�(1), . . . , log �̃�(𝑛))
𝛽 ← ℓ̄
for 𝑗 ← 1 . . . 𝑚 do

[𝑏(1), . . . , 𝑏(𝑛)]← resample(𝑤(1), . . . , 𝑤(𝑛))
for 𝑖← 1 . . . 𝑛 do

t(𝑖)
𝑗−1 ← kern𝑗−1(t(𝑏(𝑖))

𝑗−1 )(︁
t(𝑖)
𝑗 , log �̃�(𝑖)

)︁
← translate(t(𝑖)

𝑗−1, 𝜌𝑗−1,𝒫𝑗 , 𝜌𝑗 ,𝒬𝑗,1,𝒬𝑗,2, ℎ𝑗)
end for
((𝑤(1), . . . , 𝑤(𝑛)), ℓ̄)← normalize(log �̃�(1), . . . , log �̃�(𝑛))
𝛽 ← 𝛽 + ℓ̄

end for
return

(︁
{(t(1)

𝑚 , 𝑤(1)), . . . , (t(𝑛)
𝑚 , 𝑤(𝑛))}, 𝛽

)︁
end procedure

Example: Coarse-to-fine and discrete-to-continuous SMC Recall the trace trans-
lator described above for translating between 𝒫1 := disc_model and 𝒫2 := cont_model.
Because disc_model is a discrete model with a modest-size latent state space, we can per-
form exact inference in this model conditioned on the observed cells by enumerating over
the discrete states destination_cell, computing the log joint density for each state, and
normalizing. Julia code for this, using the current version of Gen, is given below:

function compute_disc_posterior(start_cell::Int, observed_cells::Vector{Int})
n = length(observed_cells)
constraints = Gen.choicemap()
for (i, v) in enumerate(observed_cells)

constraints[:observed_cells => i] = v
end
log_probs = [NaN for destination_cell in 1:20]
for destination_cell in 1:20

constraints[:destination_cell] = destination_cell
(trace, _) = Gen.generate(disc_model, (start_cell, n), constraints)
log_probs[destination_cell] = Gen.get_score(trace)

end
destination_cell_probs = exp.(log_probs .- Gen.logsumexp(log_probs))
return destination_cell_probs

end

118



We compute this distribution for the observed data (observed_cells) and other contextual
information (start_cell), whose definitions are not shown. Then, we define a generative
function disc_model_proposal that samples from this distribution:

destination_cell_probs = compute_disc_posterior(start_cell, observed_cells)

@gen function disc_model_proposal()
destination_cell ∼ categorical(destination_cell_probs)

end

We use trace translator SMC (Algorithm 10) to do inference in the continuous model
(cont_model) conditioned on data {(observed_locs => 𝑖) ↦→ (𝑥𝑖, 𝑦𝑖)}10

𝑖=1. We set:

𝑚 := 1
𝒫0 := disc_model

𝒬0 := disc_model_proposal

𝒫1 := cont_model

𝜌1 := {(observed_locs => 𝑖) ↦→ (𝑥𝑖, 𝑦𝑖)}10
𝑖=1

𝜌0 := {(observed_cells => 𝑖) ↦→ get_cell((𝑥𝑖, 𝑦𝑖))}10
𝑖=1

𝒬1,1 := q_disc_to_cont

𝒬1,2 := q_cont_to_disc

ℎ1 := as defined by h_disc_to_cont

kern0 := t ↦→ t

Because 𝒬0 := disc_model_proposal samples exactly from the conditional distribution
𝑝1(·|𝜌1), we have satisfied one of our desiderata for an efficient SMC algorithm—the first
inference problem in our sequence can be solved efficiently. Since 𝒬0 samples from the con-
ditional distribution, we do not need to employ an MCMC kernel, so we set kern1 := t→ t
(i.e. it returns its input). The efficiency of the resulting algorithm depends on the discrete
model being an accurate approximation to the continuous model, in the sense of having
small Equation (3.14). For this experiment, the likelihood function of the discrete model
was trained using maximum likelihood on data simulated from the continuous model. This
technique for training a surrogate model for use as an intermediate target distribution SMC
is closely related to the technique of training a proposal from Section 3.3.

Figure 3-11 shows estimates of the accuracy of the resulting ‘coarse-to-fine’ SMC al-
gorithm, as the number of particles is increased, and compares these estimates to those
obtained with importance sampling using the prior as the proposal distribution in the con-
tinuous model. For each setting of the number of particles (𝑛), accuracy was measured
by averaging the log marginal-likelihood estimate over 200 independent runs of the two
algorithms with 𝑛 particles. (The average log marginal likelihood estimate is a common
metric of accuracy for importance sampling and sequential Monte Carlo algorithms that
is closely related to KL divergence [26]). Also for each 𝑛, the median running time of the
algorithms over all replicates was measured. These running time and accuracy estimates
were then computed for 29 different values of 𝑛 from 𝑛 = 1 to 𝑛 = 2000, and plotted. Note

119



that for the SMC algorithm, the distribution destination_cell_probs was precomputed
instead of computing it within each run of the proposal 𝒬0. The trace translator SMC
algorithm is much more efficient than importance sampling in the continuous model. Cru-

0 50 100 150 200

Running time (ms)

−400

−200

0

L
og

m
ar

gi
n

al
lik

el
ih

o
o

d
es

t.

Importance Sampling

Coarse-to-fine SMC

Figure 3-11: Efficiency of coarse-to-fine sequential Monte Carlo using trace translators

cially, the greater efficiency is obtained without requiring us to tailor an MCMC algorithm
for the continuous model, which possesses a complex likelihood model that is prone to local
minima, making efficient MCMC inference in the continuous model difficult.

3.7 Involutive MCMC
Markov chain Monte Carlo (MCMC) algorithms are powerful tools for approximate sam-
pling from probability distributions, but designing and deriving efficient MCMC algorithms
is mathematically involved, and implementing MCMC kernels is tedious and notoriously
error-prone. These challenges are especially pronounced when sampling from probability
distributions on complex state spaces that combine symbolic, numeric, and structural un-
certainty. This section introduces a very general class of MCMC kernels called involutive
MCMC kernels that can be used to construct efficient structure-changing moves, and a
programming construct for implementing involutive MCMC kernels using a combination
of generative functions and transforms implemented in the differentiable programming lan-
guage of Section 3.6.3. This construct is implemented in Gen. The section ends with
examples of involutive MCMC kernels implemented using Gen for (i) a split-merge re-
versible jump [53] move in an infinite mixture model, and (ii) a state-dependent mixture
of Metropolis-Hastings proposals on an infinite combinatorial space of covariance functions
for a Gaussian process.

3.7.1 Symmetric trace translators

Recall that trace translators are a general construct for generating a trace of one model
given a trace of another model while computing an appropriate importance weight that can
be used in importance sampling or sequential Monte Carlo. This section discusses a special
case of trace translators, called symmetric trace translators, that will form the basis for

120



involutive MCMC kernels. Symmetric trace translators are a type of trace translator from
a conditional distribution 𝑝1(·|𝜌1) to itself :

Definition 3.7.1 (Symmetric trace translator). A symmetric trace translator is trace
translator (𝒫1, 𝜌1,𝒫2, 𝜌2,𝒬1,𝒬2, ℎ) where 𝒫1 = 𝒫2, 𝜌1 = 𝜌2, 𝒬1 = 𝒬2 and ℎ is an invo-
lution (that is, ℎ = ℎ−1). A symmetric trace translator is denoted by the tuple (𝒫, 𝜌,𝒬, ℎ)
with 𝒫 = 𝒫1 = 𝒫2, 𝜌 = 𝜌1 = 𝜌2 and 𝒬 = 𝒬1 = 𝒬2.

The importance weight (Equation 3.13) for a symmetric trace translator simplifies to:

𝑝(𝜐′ ⊕ 𝜌)𝑞(𝜎′; 𝜐′)
𝑝(𝜐 ⊕ 𝜌)𝑞(𝜎; 𝜐) |Jℎ|(𝜐 ⊕ 𝜎) for 𝜎 ∼ 𝑞(·; 𝜐) and ℎ(𝜐 ⊕ 𝜎) = (𝜐′ ⊕ 𝜎′) (3.15)

Below are some simple pedagogical examples of symmetric trace translators. More realistic
symmetric trace translators will be defined in the next section.

Example: Identity symmetric trace translator The simplest type of symmetric trace
translator has 𝒬 sample no random choices (so that 𝜎1 = 𝜎2 = {}), and ℎ is simply the
identity function (ℎ(𝜐, 𝜎) = (𝜐, 𝜎)). The importance weight for this translator is always 1.

Example: A deterministic symmetric trace translator Consider a generative func-
tion 𝒫1 that makes a single latent random choice at address a taking values in (0,∞),
sampled from a Gamma(1, 1) distribution, and where 𝒬 makes no random choices. Con-
sider the function ℎ(𝜐, {}) = ({a ↦→ 𝜐[a]−1}, {}). The importance weight for this translator
and for 𝜐 = {a ↦→ 𝑥} is:

𝑝gamma(1,1)(𝑥−1)
𝑝gamma(1,1)(𝑥) ·

1
𝑥2

Example: Conditional sample and swap symmetric trace translator Consider
the class of symmetric trace translators where 𝑞 := 𝑝(·|𝜌) and ℎ(𝜐, 𝜎) = (𝜎, 𝜐) (that is, ℎ
swaps 𝜐 and 𝜎). The importance weight for this translator is always 1. This symmetric
trace translator returns a trace that is sampled from the conditional distribution, but
such a trace translator is not typically feasible to implement because it requires writing a
generative function 𝒬 that samples exactly from the conditional distribution 𝑝(·|𝜌).

Example: Propose and swap symmetric trace translator Consider a trace trans-
lator where ℎ(𝜐, 𝜎) = (𝜎, 𝜐), but where 𝑞 ̸= 𝑝(·|𝜌). The importance weight is:

𝑝(𝜐′ ⊕ 𝜌)𝑞(𝜐)
𝑝(𝜐 ⊕ 𝜌)𝑞(𝜐′) for 𝜐′ ∼ 𝑞(·) (3.16)

This expression is closely related to the acceptance probability in the Metropolis-Hastings
algorithm, where 𝑞(·) is the proposal distribution and 𝑝(·|𝜌) is the target distribution. As
we will see in the next section, this is not a coincidence—symmetric trace translators can
be used to construct MCMC kernels that include Metropolis-Hastings kernels and their
generalizations including reversible jump MCMC kernels.

121



3.7.2 Incremental computation for symmetric trace translators

Consider running translate (Algorithm 9) for a symmetric trace translator on an input
trace t of 𝒫 with t.choices() = 𝜐⊕𝜌, sampling auxiliary trace s of𝒬 with s.choices() = 𝜎,
and applying the involution (ℎ(𝜐⊕𝜎) = (𝜐′⊕𝜎′)). Let 𝑛1 := |𝐴𝜐|, 𝑛2 := |𝐴𝜎|, 𝑛′

1 := |𝐴𝜐′ |
and 𝑛′

2 := |𝐴𝜎′ |, and 𝑛 := 𝑛1 + 𝑛2 and 𝑛′ := 𝑛′
1 + 𝑛′

2. Suppose that 𝑛1 + 𝑛′
1 ≫ 𝑛2 + 𝑛′

2.
Assuming the involution ℎ is specified using the differentiable programming language of
Section 3.6.3, translate runs the program for ℎ and writes the value for each element of
𝜐′⊕𝜎′, requiring 𝑛′ = 𝑛′

1 + 𝑛′
2 ≈ 𝑛′

1 @write or @copy operations. It also uses approximately
𝑛′

1 operations to evaluate the log-densities required for the importance weight, because
running generate on 𝜐′ must visit each random choice in 𝜐′ (we assume the log-density
t.logpdf() was already computed and cached inside t).

If the involution ℎ has sparse structure and the model density 𝑝 has conditional indepen-
dence structure, it is possible to improve the asymptotic efficiency of trace translation for a
symmetric trace translator to become sub-linear or even constant in 𝑛1 + 𝑛′

1. The key idea
is to modify the program specifying ℎ so that it only specifies the subset of the addresses 𝑎
in the output 𝜐′ for which 𝜐′[𝑎] ̸= 𝜐[𝑎] or for which 𝑎 ̸∈ 𝐴𝜐, and use t.update (Section 2.3)
to efficiently generate the new trace t′ and compute the density ratio 𝑝(𝜐′ ⊕ 𝜌)/𝑝(𝜐 ⊕ 𝜌)
that is required for the importance weight. Let �̃�′ denote the restriction of 𝜐′ to the set of
addresses that are either not in 𝜐 or are in 𝜐 but have different values, and let ℎ̃ denote
the function that is equivalent to ℎ but maps 𝜐 ⊕ 𝜎 to �̃�′ ⊕ 𝜎 instead of 𝜐′ ⊕ 𝜎. Then,
assuming 𝑝 is a structured density, t.update(_, _, �̃�′) is well-defined, and results in the
same trace t′ that would be returned by the call to 𝒫.generate in translate. But un-
like the call to 𝒫.generate, t.update is able to exploit cancellation in the density ratio
𝑝(𝜐′⊕𝜌)/𝑝(𝜐⊕𝜌) due to conditional independence in 𝑝, and can use efficient functional data
structures to produce t′ from t in logarithmic or effectively constant time. Algorithm 11
shows a specialized procedure for symmetric trace translators that makes use of update.

3.7.3 Involutive MCMC

Consider a model generative function 𝒫 with density 𝑝 and observed data 𝜌 for which
𝑝(𝜌) > 0. Every symmetric trace translator (𝒫, 𝜌,𝒬, ℎ) for some 𝒬 and ℎ defines an
involutive MCMC kernel shown in Algorithm 12 that is stationary with respect to the target
distribution 𝑝(·|𝜌). The kernel takes a trace t of 𝒫 as input where t.choices() = 𝜐 ⊕ 𝜌
for some 𝜐, and returns a new trace t′ of 𝒫 where t′.choices() = 𝜐′ ⊕ 𝜌 for some 𝜐′. The
kernel is parametrized by 𝜌, 𝒬, and ℎ̃, and depends on the model generative function 𝒫
through the input trace t. The kernel is parametrized by ℎ̃ instead of ℎ so that we can use
the symmetric-translate procedure to exploit incremental computation, as described
above.

Cusumano-Towner et al. [28] give a proof that involutive MCMC kernels are stationary
with respect to 𝑝(·|𝜌), which is summarized here: Briefly, Tierney [122] defines a construc-
tion for a class of deterministic involutive MCMC kernels based on accepting or rejecting
the state proposed via an involution. The construction is shown to satisfy detailed balance
(and therefore stationarity) with respect to a target distribution. It is possible to instanti-
ate this construction for the involution ℎ on the space {(𝜐 ⊕ 𝜎) ∈ 𝒯 ⋆

𝐴 : 𝑝(𝜐|𝜌)𝑞(𝜎; 𝜐) > 0}

122



Algorithm 11 Symmetric trace translator procedure
procedure symmetric-transform(t, 𝜌, ℎ̃, 𝜎)

𝜏 ← t.choices()
assert 𝜏 [𝑎] = 𝜌[𝑎] for all 𝑎 ∈ 𝐴𝜌

𝜐 ← 𝜏 |𝐴𝜌
c

(�̃�′, 𝜎′)← ℎ̃(𝜎, 𝜐)
(t′, log 𝑤, �̃�, _)← t.update(_, _, �̃�′)
𝜏 ′ ← t′.choices()
assert 𝜏 ′[𝑎] = 𝜌[𝑎] for all 𝑎 ∈ 𝐴𝜌

𝐼𝜎 ← {𝐴𝜎 ∩ 𝐶} ∖ {𝑎 ∈ 𝐴𝜎 : (∃𝑏 ∈ 𝐴𝜎′ 𝜎′[𝑏] = 𝜎[𝑎]) ∨ (∃𝑏 ∈ 𝐴𝜐′ �̃�′[𝑏] = 𝜎[𝑎])}
𝐼𝜐 ← {𝐴𝜐 ∩ 𝐶} ∖ {𝑎 ∈ 𝐴𝜐 : (∃𝑏 ∈ 𝐴𝜎′ 𝜎′[𝑏] = 𝜐[𝑎]) ∨ (∃𝑏 ∈ 𝐴𝜐′ �̃�′[𝑏] = 𝜐[𝑎])}
𝑂𝜎′ = {𝐴𝜎′ ∩ 𝐶} ∖ {𝑏 ∈ 𝐴𝜎′ : (∃𝑎 ∈ 𝐴𝜎 𝜎[𝑎] = 𝜎′[𝑏]) ∨ (∃𝑎 ∈ 𝐴𝜐 𝜐[𝑎] = 𝜎′[𝑏])}
𝑂𝜐′ = {𝐴𝜐′ ∩ 𝐶} ∖ {𝑏 ∈ 𝐴𝜐′ : (∃𝑎 ∈ 𝐴𝜎 𝜎[𝑎] = �̃�′[𝑏]) ∨ (∃𝑎 ∈ 𝐴𝜐 𝜐[𝑎] = �̃�′[𝑏])}
J11 ←

[︁
𝜕𝜎′[𝑏]
𝜕𝜎[𝑎]

]︁𝑏∈𝑂

𝑎∈𝐼
; J12 ←

[︁
𝜕𝜐′[𝑏]
𝜕𝜎[𝑎]

]︁𝑏∈𝑂�̃�′

𝑎∈𝐼𝜎

; J21 ←
[︁

𝜕𝜎′[𝑏]
𝜕𝜐[𝑎]

]︁𝑏∈𝑂𝜎′

𝑎∈𝐼𝜐

; J22 ←
[︁

𝜕𝜐′[𝑏]
𝜕𝜐[𝑎]

]︁𝑏∈𝑂�̃�′

𝑎∈𝐼𝜐

return
(︃

t′, 𝜎′, log 𝑤 + log
⃒⃒⃒⃒
⃒
[︃

J11 J12
J21 J22

]︃⃒⃒⃒⃒
⃒
)︃

end procedure
procedure symmetric-translate(t, 𝜌, 𝒬, ℎ̃)

s← 𝒬.simulate(t)
𝜎 ← s.choices()
(t′, 𝜎′, 𝛼)← symmetric-transform(t, 𝜌, ℎ̃, 𝜎)
s′ ← 𝒬.generate(t′, 𝜎′)
𝛼← 𝛼 + s′.logpdf()− s.logpdf()
return (t′, 𝛼)

end procedure

with the target distribution 𝜋(𝜐 ⊕ 𝜎) := 𝑝(𝜐|𝜌)𝑞(𝜎|𝜐) and with acceptance probability
where (𝜐′ ⊕ 𝜎′) = ℎ(𝜐 ⊕ 𝜎):

min
{︂

1,
𝑝(𝜐′ ⊕ 𝜌)𝑞(𝜎′; 𝜐′)
𝑝(𝜐 ⊕ 𝜌)𝑞(𝜎; 𝜐) |Jℎ|(𝜐 ⊕ 𝜎)

}︂
(3.17)

Stationarity of the kernel involutive-mcmc-kernel on the space {𝜐 ∈ 𝒯 ⋆
𝐴 : 𝑝(𝜐|𝜌) >

0} then follows from the fact that if 𝜐 ∼ 𝑝(·|𝜌) then the joint distribution of 𝜐 and 𝜎
resulting from sampling 𝜎|𝜐 ∼ 𝑞(·|𝜐) in symmetric-translate is precisely the stationary
distribution 𝜋 of the deterministic involutive kernel on the joint space. By stationarity of the
deterministic involutive kernel, (𝜐′ ⊕ 𝜎′) ∼ 𝜋. Marginalizing out 𝜎′ then gives 𝜐′ ∼ 𝑝(·|𝜌).

Involutive MCMC is a very flexible family of kernels, due to the flexibility of the sym-
metric trace translator construction. The next section describe two classes of kernels that
are special cases, and show examples of these implemented using probabilistic and differ-
entiable programs in Gen.

123



Algorithm 12 Involutive MCMC
procedure involutive-mcmc-kernel𝜌,𝒬,ℎ̃(t)

(t′, 𝛼)← symmetric-translate(t, 𝜌,𝒬, ℎ̃)
𝑟 ∼ Uniform(0, 1)
if 𝑟 ≤ 𝛼 then return t′ else return t

end procedure

3.7.4 Implementing reversible jump MCMC using involutive MCMC

Reversible jump MCMC [53, 56] is a special case of involutive MCMC, and the implemen-
tation of reversible jump MCMC kernels can be simplified using Algorithm 12, which uses
probabilistic modeling languages and a differentiable programming language to automate
the acceptance probability calculation. We first review reversible jump MCMC, then show
how it can be implemented with generative functions and differentiable programs using the
involutive MCMC inference construct.

The reversible jump MCMC framework uses a set of ‘models’ 𝑘 ∈ 𝒦, and a prior distri-
bution on models 𝑝(𝑘). For each model, there is a latent parameter vector 𝜃𝑘 ∈ R𝑛(𝑘)

where 𝑛(𝑘) is the dimension of model ℎ, and a likelihood function ℓ𝑘(𝜃𝑘) for each 𝑘.
The latent state 𝑥 is a pair (𝑘, 𝜃𝑘) of model and continuous parameter. There is a set
of move types ℳ. Each move type 𝑚 ∈ ℳ is associated with an unordered pair of
models (𝑘1, 𝑘2) and a dimensionality 𝑑(𝑚) such that 𝑑(𝑚) ≥ 𝑛(𝑘1) and 𝑑(𝑚) ≥ 𝑛(𝑘2)
(zero, one, or more than one move types may be associated with a given pair of mod-
els). For each latent state 𝑥 = (𝑘, 𝜃𝑘), there is a probability distribution 𝑞𝑥(𝑚) on move
types such that 𝑞𝑥(𝑚) > 0 implies that ℎ is one of the models for move type 𝑚. For
each move type 𝑚 ∈ ℳ between 𝑘1 and 𝑘2 there is a pair of continuously differen-
tiable bijections 𝑔𝑚,𝑘1→𝑘2 : R𝑑(𝑚) → R𝑑(𝑚) and 𝑔𝑚,𝑘2→𝑘1 := 𝑔−1

𝑚,𝑘1→𝑘2
, and a pair of pro-

posal densities 𝑞𝑚,𝑘1→𝑘2(𝑢𝑘1→𝑘2) and 𝑞𝑚,𝑘2→𝑘1(𝑢𝑘2→𝑘1) where 𝑢𝑘1→𝑘2 ∈ R𝑑(𝑚)−𝑛(𝑘1) and
𝑢𝑘2→𝑘1 ∈ R𝑑(𝑚)−𝑛(𝑘2). A proposal is made from state 𝑥 = (𝑘, 𝜃𝑘) by (i) sampling a move
type 𝑚 ∼ 𝑞𝑥(·), and (ii) sampling continuous variable 𝑢 ∼ 𝑞𝑚,𝑘→𝑘′(·) for (𝑘, 𝑘′) associated
with 𝑚, and (iii) computing (𝜃′

ℎ, 𝑢′) := 𝑔𝑚,𝑘→𝑘′(𝜃𝑘, 𝑢), and proposing new state 𝑥′ = (𝑘′, 𝜃′
𝑘).

The move is accepted with probability:

min
{︃

1,
𝑝(𝑘′)
𝑝(ℎ)

𝑝𝑘′(𝜃𝑘′)
𝑝𝑘(𝜃𝑘)

ℓ𝑘′(𝜃′
𝑘)

ℓ𝑘(𝜃𝑘)
𝑞𝑥′(𝑚)
𝑞𝑥(𝑚)

𝑞𝑚,𝑘′→ℎ(𝑢′)
𝑞𝑚,𝑘→𝑘′(𝑢) |J𝑔𝑚,ℎ→𝑘′ |(𝜃𝑘, 𝑢)

}︃

To encode reversible jump MCMC in our framework, we use a generative function 𝒫
that encodes the space of models 𝒦, the prior distribution on models, 𝑝(𝑘), the per-model
priors 𝑝𝑘(𝜃𝑘) and the per-model likelihoods ℓ𝑘(𝜃𝑘). Each choice dictionary 𝜏 with 𝑝(𝜏 ) > 0
decomposes into 𝜏 = 𝜐d ⊕ 𝜐c ⊕ 𝜌 where 𝜐d are discrete latent choices, 𝜐c are continuous
latent choices, and 𝜌 are observations. The set 𝒦 of all models is encoded by the set of
all pairs {(𝐴𝜐, 𝜐d) : 𝜐d ∈ 𝒯 ⋆

𝐷,∃𝜐c ∈ 𝒯 ⋆
𝐶 𝑝(𝜐d ⊕ 𝜐c ⊕ 𝜌) > 0}}. That is, the the set of

possible trace structures (i.e. control-flow paths through the program encoding 𝒫) and
latent discrete choices. The per-model continuous parameters 𝜃 are encoded as 𝜐c. The

124



likelihood is encoded as 𝑝(𝜌|𝜐c ⊕ 𝜐d). The auxiliary generative function 𝒬 encodes both
the probability distribution on moves types using discrete random choices and possibly
stochastic control flow, and the per-move-type probability densities on 𝑢 using continuous
random choices. The involution ℎ factors into an (i) involution 𝑔 on the set of dictionaries
of discrete choices 𝑖 = (𝜐d⊕𝜎d) made by 𝒫 or 𝒬 that defines the association between move
typesℳ and the model pairs (𝑘1, 𝑘2); and (ii) a family of bijections ℎ𝑖 on the space of pairs
𝜐c ⊕ 𝜎c of continuous random choices for made by 𝒫 or 𝒬, indexed by fixed values of the
discrete random choices.

Example: Improving model-switching acceptance rates We now give a simple ex-
ample of a reversible jump MCMC move encoded using involutive MCMC with a symmetric
trace translator (𝒫, 𝜌,𝒬, ℎ), where 𝒫 and 𝒬 are specified using Gen’s dynamic modeling
language, and where ℎ is specified using Gen’s trace transform language. The example
motivates the added expressiveness of involutive MCMC over the Metropolis-Hastings con-
struct of Section 3.4.2. The generative model is 𝒫 = branching_model, and the observed
data are 𝜌 = {y1 ↦→ 1.0, y2 ↦→ 1.3}:

@gen function branching_model()
if ({:z} ∼ bernoulli(0.5))

m1 ∼ gamma(1, 1))
m2 ∼ gamma(1, 1))

else
m ∼ gamma(1, 1))
(m1, m2) = (m, m)

end
y1 ∼ normal(m1, 0.1)
y2 ∼ normal(m2, 0.1)

end

Because this model has stochastic control flow, it represents two distinct structural hy-
potheses about how observed data are generated: If z is true then we enter the first branch,
and we hypothesize that the two data points were generated from separate means, sampled
at addresses m1 and m2. If z is false then we enter the second branch, and we hypothesize
that there is a single mean that explains both data points, sampled at address m.

Figure 3-12a shows 10 traces of this model sampled using 𝒫.simulate, rendered using
black dots to represent the two y-values (y1 on the left and y2 on the right) and using a
blue line to represent a latent sample for which z = F and red and orange lines to represent
a sample fro which z = T. Figure 3-12b shows approximate posterior samples for given
observed data that exhibit uncertainty about the value of z.

We want to construct an MCMC kernel that is able to transition between these two dis-
tinct structural hypotheses. We could construct a Metropolis-Hastings kernel (Section 3.4.2)
mh-kernel𝒬switch,𝜌 with 𝒬switch := q_mh_switch that switches between the two branches
and proposes new values for each branch; and we could interleave this kernel with another
kernel mh-kernel𝒬walk,𝜌 where 𝒬walk := q_mh_walk performs a random walk on the values
within each branch:

125



(a) Prior samples from branching_model.

(b) Approximate conditional samples from branching_model given data {y1 ↦→ 1.0, y2 ↦→ 1.3}.

Figure 3-12: Visualization of samples from a model with stochastic control flow

@gen function q_mh_switch(trace)
z ∼ bernoulli(trace[:z] ? 0.0 : 1.0)
if z

m1 ∼ gamma(1, 1)
m2 ∼ gamma(1, 1)

else
m ∼ gamma(1, 1)

end
end

@gen function q_mh_walk(trace)
if trace[:z]

m1 ∼ normal(trace[:m1], 0.1)
m2 ∼ normal(trace[:m2], 0.1)

else
m ∼ normal(trace[:m], 0.1)

end
end

Sequencing these two kernels together gives a composite kernel that is stationary with
respect to the target distribution 𝑝(·|𝜌) (and ergodic). However, this kernel will not be very
efficient, because the branch-switching proposals from 𝒬switch are unlikely to be accepted.
When switching from the branch with a single mean to the branch with two means, the
values of the new addresses m1 and m2 are proposed from the prior distribution. This is
inefficient, since if we have inferred an accurate value for m, we expect the values for m1
and m2 to be near this value. The same is true when proposing a structure change in the
opposite direction. That means it will take many iterations of the composite kernel to get
an accurate estimate of the posterior probability distribution on the two structures.

We would like to use inferred values for m1 and m2 to inform our proposal for the value
of m. For example, we could take the geometric mean (m = sqrt(m1 * m2)). However, there
are many combinations of m1 and m2 that have the same geometric mean. In other words,

126



the geometric mean is not invertible. However, if we return the additional degree of freedom
alongside the geometric mean (dof), then we do have an invertible function (merge_means
with inverse split_means):

function merge_means(m1, m2)
m = sqrt(m1 * m2)
dof = m1 / (m1 + m2)
(m, dof)

end

function split_mean(m, dof)
m1 = m * sqrt((dof / (1 - dof)))
m2 = m * sqrt(((1 - dof) / dof))
(m1, m2)

end

We use these two functions to construct an involution ℎ, and we use this involution to
construct an involutive MCMC kernel that we call a ‘split/merge’ kernel, because it either
splits a parameter value, or merges two parameter values. The auxiliary distribution 𝒬 :=
q_branch_inv of the symmetric trace translator is responsible for generating the extra degree
of freedom when splitting:

@gen function q_branch_inv(trace)
if trace[:z]

# currently two segments, switch to one
else

# currently one segment, switch to two
{:dof} ∼ uniform_continuous(0, 1)

end
end

The transform ℎ, written in Gen’s trace transform language, invokes either merge_means or
split_means, depending on the current branch in the input model trace t (model_in):

@transform h (model_in, aux_in) to (model_out, aux_out) begin
if @read(model_in[:z], :disc)

# currently two segments, switch to one
@write(model_out[:z], false)
m1 = @read(model_in[:m1], :cont)
m2 = @read(model_in[:m2], :cont)
(m, dof) = merge_means(m1, m2)
@write(model_out[:m], m, :cont)
@write(aux_out[:dof], dof, :cont)

else
# currently one segment, switch to two
@write(model_out[:z], true, :disc)
m = @read(model_in[:m], :cont)
dof = @read(aux_in[:dof], :cont)
(m1, m2) = split_mean(m, dof)
@write(model_out[:m1], m1, :cont)
@write(model_out[:m2], m2, :cont)

end
end

The Julia code below shows how to construct the involutive MCMC kernel using 𝒬 and ℎ
and apply it in a cycle with the random-walk Metropolis-Hastings kernel, using the version
of Gen at time of this writing:

127



branch_inv_kernel(trace) = Gen.involutive_mcmc(trace, q_branch_inv, (), h)[1]
random_walk_kernel(trace) = Gen.metropolis_hastings(trace, q_mh_walk, ())[1]
(y1, y2) = (1.0, 1.3)
constraints = Gen.choicemap((:y1, y1), (:y2, y2), (:z, false), (:m, 1.))
trace, = Gen.generate(model, (), constraints)
for iter in 1:100

trace = branch_inv_kernel(trace)
trace = random_walk_kernel(trace)

end

Figure 3-13 compares the results of this algorithm, which uses the involutive MCMC kernel
to switch branches, with results of the algorithm that uses the Metropolis-Hastings kernel
to switch branches. The added expressiveness afforded by involutive MCMC allows users
to construct efficient reversible jump MCMC kernels that transform the state of random
choices in the previous control-flow path into values of random choices in the new control-
flow path, leading to higher acceptance rates. Proposals from the Metropolis-Hastings
structure-changing kernel are rarely accepted.

0 25 50 75 100
0.5

1.0

1.5
Involutive MCMC (RJMCMC)

m

m1

m2

0 25 50 75 100

# kernel applications

F

T

z

0 25 50 75 100
0.5

1.0

1.5
Metropolis-Hastings

m

m1

m2

0 25 50 75 100

# kernel applications

F

T

z

Figure 3-13: Involutive MCMC can express efficient structure-changing moves

k=2 k=3
Split

Merge

Figure 3-14: Split-merge reversible jump MCMC in an infinite Gaussian mixture model

128



@gen function infinite_mixture(n::Int)
k ∼ poisson_plus_one(1)
means = [({(:mu, j)} ∼ normal(0, 10)) for j in 1:k]
vars = [({(:var, j)} ∼ inv_gamma(1, 10)) for j in 1:k]
weights ∼ dirichlet([2.0 for j in 1:k])
for i in 1:n

{(:x, i)} ∼ mixture_of_normals(weights, means, vars)
end

end

Figure 3-15: Generative function for an infinite Gaussian mixture model

@gen function q_split_merge(trace)
k = trace[:k] # current number of clusters
split = (k == 1) ? true : ({:split} ∼ bernoulli(0.5))
if split

cluster_to_split ∼ uniform_discrete(1, k)
u1 ∼ beta(2, 2); u2 ∼ beta(2, 2); u3 ∼ beta(1, 1)

else
cluster_to_merge ∼ uniform_discrete(1, k-1)

end
end

Figure 3-16: Auxiliary generative function for a split-merge reversible jump MCMC move

Example: Split-merge reversible jump MCMC in an infinite mixture model
One common application of reversible jump MCMC is the construction of ‘split-merge’
kernels in infinite mixture models [102] (Figure 3-14). Figure 3-15 shows a generative
function (𝒫 := infinite_mixture) that expresses an infinite univariate Gaussian mix-
ture model, defined using Gen’s dynamic modeling language. We construct an involutive
MCMC kernel that implements the a split-merge move from an auxiliary generative func-
tion (𝒬 := q_split_merge) defined using Gen’s dynamic modeling language (Figure 3-16)
and an involutive trace transform (ℎ, Figure 3-17) defined using Gen’s trace transform lan-
guage. The model generative function 𝒫 takes the number of data points as input, then
samples the number of clusters from a Poisson distribution, then samples cluster parame-
ters and mixture proportions, and finally samples the data points from the resulting finite
mixture. The auxiliary generative function 𝒬 takes a trace of the model program as input,
and randomly decides whether to split a cluster and increase the number of clusters by
one or merge two clusters and decrease the number of clusters by one. Then, the program
randomly picks which cluster to split, or which clusters to merge.3 If a split is chosen,
then the program also samples the three degrees of freedom necessary to generate the new
parameters for the clusters in an invertible manner. Figure 3-18 shows graphically how the
involutive trace transform defined in Figure 3-17 acts on pairs of model traces and auxiliary

3This kernel always merges the last cluster with a random other cluster; for ergodicity the kernel can be
composed with a kernel (that is always accepted) that swaps a random cluster with the last cluster.

129



traces. The yellow section (1) defines an involution 𝑔 on the discrete random choices that
specifies that (i) the split choice should be flipped (so that split moves are always mapped
to merge moves and vice versa) and that (ii) the number of clusters should be increased by
one for a split move and decreased by one for a merge move, and (iii) which merged cluster
corresponds to which split clusters. The green section (2) specifies the continuous bijections
that govern the transformation of continuous random choices during split moves and the
purple section (3) specifies the inverses of these bijections, which govern the transformation
of continuous choices during merge moves.

130



@transform h_split_merge (model_in, aux_in) to (model_out, aux_out) begin

1

k = @read(model_in[:k], :discrete)
split = (k == 1) ? true : @read(aux_in[:split], :discrete)
if split

cluster_to_split = @read(aux_in[:cluster_to_split], :discrete)
@write(model_out[:k], k+1, :discrete)
@copy(aux_in[:cluster_to_split], aux_out[:cluster_to_merge])
@write(aux_out[:split], false, :discrete)

else
cluster_to_merge = @read(aux_in[:cluster_to_merge], :discrete)
@write(p_out, :k, k-1, :discrete)
@copy(aux_in[:cluster_to_merge], aux_out[:cluster_to_split])
if (k > 2) @write(aux_in[:split], true, :discrete) end

end
if split

2

u1 = @read(aux_in[:u1], :cont)
u2 = @read(aux_in[:u2], :cont)
u3 = @read(aux_in[:u3], :cont)
weights = @read(model_in[:weights], :cont)
mu = @read(model_in[(:mu, cluster_to_split)], :cont)
var = @read(model_in[(:var, cluster_to_split)], :cont)
new_weights = split_weights(weights, cluster_to_split, u1, k)
w1 = new_weights[cluster_to_split]; w2 = new_weights[k+1]
(mu1, mu2, var1, var2) = split_params(mu, var, u2, u3, w1, w2)
@write(model_out[:weights, new_weights, :cont)
@write(model_out[(:mu, cluster_to_split), mu1, :cont)
@write(model_out[(:mu, k+1), mu2, :cont)
@write(model_out[(:var, cluster_to_split), var1, :cont)
@write(model_out[(:var, k+1), var2, :cont)

else

3

mu1 = @read(model_in[(:mu, cluster_to_merge)], :cont)
mu2 = @read(model_in[(:mu, k)], :cont)
var1 = @read(model_in[(:var, cluster_to_merge)], :cont)
var2 = @read(model_in[(:var, k)], :cont)
weights = @read(model_in[:weights], :cont)
w1 = weights[cluster_to_merge]; w2 = weights[k]
(new_weights, u1) = merge_weights(weights, cluster_to_merge, k)
w = new_weights[cluster_to_merge]
(mu, var, u2, u3) = merge_params(mu1, mu2, var1, var2, w1, w2, w)
@write(model_out[:weights], new_weights, :cont)
@write(model_out[(:mu, cluster_to_merge)], mu, :cont)
@write(model_out[(:var, cluster_to_merge)], var, :cont)
@write(model_out[(:u1, u1)], :cont)
@write(model_out[(:u2, u2)], :cont)
@write(model_out[(:u3, u3)], :cont)

end
end

Figure 3-17: Involution trace transform for a split-merge reversible MCMC move

131



@copy_proposal_to_proposal(:path_from_root, :path_from_root)

   @copy_model_to_proposal(model_subtree_address, :subtree)

   @copy_model_to_proposal(model_subtree_address, :subtree)

@copy_proposal_to_proposal(:path_from_root, :path_from_root)

k=2

k=3

k=2

split
=false

split
=true

cluster_to_merge

cluster_to_split

(mu, 1)
(var, 1)

= model traces (traces of p) = auxiliary traces (traces of q)

(x, 1)..
(x, 2)

(mu, 1)
(var, 1)

(mu, 1)
(var, 1)

(mu, 2)
(var, 2)

(mu, 3)
(var, 3)

(mu, 2)
(var, 2)

(mu, 2)
(var, 2)

(mu, 3)
(var, 3)

2

3

u1 u2 u3

1

1

weights

weights

weights
(x, 1)..
(x, 2)

(x, 1)..
(x, 2)

(f)  Schematic of the involution f being applied twice in succession to a model trace and auxiliary proposal trace. The first application 
merges cluster 2 with the last cluster (cluster 3); the second application splits the resulting cluster, and returns the original pair of traces.

h

split
=false

cluster_to_merge

h

=

Figure 3-18: Schematic of the involution trace transform for a split-merge MCMC move

132



3.7.5 State-dependent mixture kernels and involutive MCMC

A common tactic for composing MCMC algorithms is to randomly select an MCMC kernel
to apply [121]. As shown in Section 3.4.4, the mixture probabilities cancel out in the
Metropolis-Hastings acceptance probability when they are independent of the state (as in
e.g. a 0.4 probability of applying one kernel and a 0.6 probability of applying another
kernel). But in general, the mixture probabilities may depend on the state. In this case,
the mixture probabilities must be accounted for in the acceptance probability. Involutive
MCMC allows users to express state-dependent mixture kernels using generative functions
and trace transforms, and automates the computation of the acceptance probability for the
entire composite mixture kernel, including the mixture probabilities. The pattern for this
construction is:

1. The auxiliary generative function 𝒬 is partitioned into two segments with choices
𝜎 = 𝜎1 ⊕ 𝜎2. The random choices 𝜎1 made in the first segment are all discrete, and
represent the mixture distribution. Since 𝒬 takes the model trace t as input, this
distribution depends on the current state of the model. For every possible 𝜎1, there
is a set of random choices in the model for which new values will be proposed. The
random choices 𝜎2 in the second segment, which may be discrete and continuous, are
the proposed values to these choices in the model.

2. The involution ℎ swaps the previous values of the proposed-to random choices with
their new values 𝜎2, by swapping data between the model trace and the auxiliary
trace. The involution program also copies the random choices 𝜎1 that determined
what subset of random choices to propose to from the input auxiliary trace to the
output auxiliary trace.

Example: Mixture kernel for Bayesian inference of Gaussian process structure
Figure 3-19 shows a generative function 𝒫 := gp_model written in Gen’s dynamic modeling
language that defines a generative model of univariate time series data based on a Gaussian
process that uses a prior on covariance functions of the Gaussian process that is based
on a probabilistic context-free grammar. The prior posits a compositional and combinato-
rial space of covariance functions that is based on the set of parse trees of a context-free
grammar. The generative function 𝒫 samples from the prior by invoking the generative
function cov_function_prior, which is itself recursive. Therefore, traces of 𝒫 have a hier-
archical address structure that mirrors the structure of the parse trees. One example trace
is depicted in Figure 3-19b. We will construct an MCMC kernel that (i) randomly picks a
subtree of the parse tree that should be modified, and (ii) randomly samples a new subtree
to replace the previous subtree by sampling from cov_function_prior. The kernel is a mix-
ture distribution over the set of all nodes in the parse tree, which depends on the current
state. Related inference algorithms were previously studied in [113, 109] based on a model
of Grosse et al. [54]. We express this kernel using an involutive MCMC construction that
includes an auxiliary generative function 𝒬 := q_mixture (Figure 3-20) and the involution
ℎ defined by h_mixture in Figure 3-21.

133



When the resulting involutive MCMC kernel is applied, the auxiliary generative function
𝒬 first picks a random node in the parse tree of the covariance function, by doing a stochastic
walk of the existing parse tree that terminates at the chosen node:

prev_cov_function = trace[:cov_function]
path ∼ walk_tree(prev_cov_function, ..)

The code walks the tree using the following recursion, which results in a probability distri-
bution that assigns exponentially lower probability to nodes that are deeper in the tree:

if ({:done} ∼ bernoulli(0.5))
return path

elseif ({:recurse_left} ∼ bernoulli(0.5))
path = (path..., :left_node)
return ({:left} ∼ walk_tree(node.left, path))

else
path = (path..., :right_node)
return ({:right} ∼ walk_tree(node.right, path))

end

The resulting distributions on selected nodes for two possible input trees are shown below:

1/2

1/4 1/8

1/16 1/16

1/2

1/4 1/8

1/32 1/16
1/128 1/64

1/2561/256

1/5

1/5 1/5

1/5 1/5

1/9

1/9 1/9

1/9 1/9
1/9 1/9

1/91/9

Each node in the tree represents a different proposal that will be applied. The mixture
distribution over possible nodes in the tree is state-dependent (and even the support of this
mixture distribution is state-dependent, because the set of nodes in the tree can change
from one state to the next). The rest of the auxiliary generative function 𝒬 proposes a new
subtree by sampling from the same process used to recursively define the prior distribution:

new_subtree ∼ cov_function_prior()

The first part of the involution (Figure 3-21, Lines 4-5) swaps the newly proposed random
choices for the subtree with the existing choices for that subtree in the model trace:

@copy(model_in[subtree_address], aux_out[:new_subtree])
@copy(aux_in[:new_subtree], model_out[subtree_address)

The second part of the involution (Line 6) copies the random choices made during this walk
from the input auxiliary trace to the output auxiliary trace:

@copy(aux_in[:path], aux_out[:path])

134



Note that in both of these instances, @copy is being used to copy the entire set of random
choices from the namespace :path in aux_in to the namespace :path in aux_out.

Because the mixture distribution is specified using a probabilistic program, it is straight-
forward to modify the program p to define a different mixture distribution. The code below
specifies a mixture distribution that is uniform over all nodes in the tree.

n1 = size(node.left); n2 = size(node.right)
if ({:done} ∼ bernoulli(1 / (1 + n1 + n2)))

return path
elseif ({:recurse_left} ∼ bernoulli(n1 / (n1+n2))

path = (path..., :left_node)
return ({:left} ∼ walk_tree(node.left, path))

else
path = (path..., :right_node)
return ({:right} ∼ walk_tree(node.right, path))

end

The resulting distributions, for two possible input trees, are:

1/5

1/5 1/5

1/5 1/5

1/9

1/9 1/9

1/9 1/9
1/9 1/9

1/91/9

1/5

1/5 1/5

1/5 1/5

1/9

1/9 1/9

1/9 1/9
1/9 1/9

1/91/9

Note that the probability of choosing a given subtree to propose to is itself changed when
the subtree changes. Therefore, the mixture probabilities do not in general cancel in the
the acceptance probability calculation, and must be accounted for. For the original mixture
distribution, the ratio of mixture probabilities is either 1, 0.5, or 2 depending on whether
the previous and new subtrees are leaf or internal nodes. For this alternative mixture
distribution, the ratio of mixture probabilities is the ratio of sizes of the two trees (e.g. 9/5
or 5/9 for the trees above). In both cases, involutive MCMC (Algorithm 12) automatically
computes the acceptance probability.

135



1 @gen function gp_model(x_values::Vector)
2 cov_function ∼ cov_function_prior()
3 cov_matrix = compute_cov_matrix(cov_function, x_values)
4 n = length(xs)
5 y_values ∼ mvnormal(zeros(n), cov_matrix .+ 0.01*I(n))
6 end
7
8 @gen function cov_function_prior()
9 node_type ∼ categorical(production_rule_probs))

10 if node_type == CONSTANT
11 param ∼ uniform(0, 1)
12 return ConstantNode(param)
13 elseif node_type == LINEAR
14 param ∼ uniform(0, 1)
15 return LinearNode(param)
16 elseif node_type == SQUARED_EXP
17 length_scale ∼ uniform(0, 1)
18 return SquaredExponentialNode(length_scale)
19 elseif node_type == PERIODIC
20 ..
21 elseif node_type == PLUS
22 left_node ∼ cov_function_prior()
23 right_node ∼ cov_function_prior()
24 return PlusNode(left_node, right_node)
25 elseif node_type == TIMES
26 left_node ∼ cov_function_prior()
27 right_node ∼ cov_function_prior()
28 return TimesNode(left_node, right_node)
29 end
30 end

(a) Generative function encoding the generative model.

node_type
PLUS

left_node right_node

cov_function
y_values

[1.1, 2.5, 3.7, ..]

param
0.45

node_type
TIMES

left_node right_node
node_type
CONSTANT

length_scale
0.13

node_type
SQUARED_EXP

param
0.08

node_type
LINEAR

(b) A trace of the generative function in (a).

𝑘(𝑥,𝑥′)=0.45+𝑒(𝑥−𝑥′)2/0.13(𝑥−0.08)(𝑥′−0.08)

(c) A sampled covariance function and data.

Figure 3-19: A Gaussian process model with a nonparametric prior on covariance functions

136



1 @gen function q_mixture(trace)
2 prev_cov_function = trace[:cov_function]
3 path ∼ walk_tree(prev_cov_function, (:cov_function,))
4 new_subtree ∼ cov_function_prior()
5 return path
6 end
7
8 @gen function walk_tree(node::Node, path)
9 if isa(node, LeafNode)

10 done ∼ bernoulli(1)
11 return path
12 elseif ({:done} ∼ bernoulli(0.5))
13 return path
14 elseif ({:recurse_left} ∼ bernoulli(0.5))
15 path = (path..., :left_node)
16 return ({:left} ∼ walk_tree(node.left, path))
17 else
18 path = (path..., :right_node)
19 return ({:right} ∼ walk_tree(node.right, path))
20 end
21 end

Figure 3-20: Auxiliary generative function for a state-dependent mixture MCMC kernel

137



1 @transform h_mixture (model_in, aux_in) to (model_out, aux_out) begin
2 path = @read(aux_in[], :discrete)
3 subtree_address = foldr(=>, path))
4 @copy(model_in[ subtree_address ], aux_out[ :new_subtree ])
5 @copy(aux_in[ :new_subtree ], model_out[ subtree_address ])
6 @copy(aux_in[ :path ], aux_out[ :path ])
7 end

(a) The trace transform encoded in Gen’s trace transform language.

1.1  2.5  3.7  ..

= Model Traces

pathnew_subtreecov_functiony_values

1.1  2.5  3.7  ..

1.1  2.5  3.7  ..

Line 4

Line 4

Line 5

Line 5

Line 6

Line 6

h

h

= Auxiliary Traces

(b) Schematic of the trace transform.

Figure 3-21: Trace transform for a state-dependent mixture MCMC kernel

138



3.8 Related work

Composing Monte Carlo inference algorithms using probabilistic programs Some
other probabilistic programming systems also support importance sampling using propos-
als expressed in probabilistic programming languages [13] and Hamiltonian Monte Carlo
over selected sets of random choices [79]. However, to our knowledge no other probabilis-
tic programming system supports a Metropolis-Hastings construct analogous to that of
Section 3.4.2, particle filtering and annealed importance sampling constructs analogous to
those of Section 3.5, involutive MCMC construct analogous to that of Section 3.7, or general
sequential Monte Carlo that bridges arbitrary pairs of models (Section 3.6).

Involutive MCMC The involutive MCMC construction was implemented [24] as part of
the inference library of the Gen probabilistic programming system [32]. The construction
was motivated in part by a desire for a simple interface that automated the implementation
of reversible jump MCMC samplers [53], state-dependent mixtures of proposals on complex
state spaces, and data-driven neural proposals. Gen’s involutive MCMC construction has
since been used by a number of researchers to design and implement MCMC algorithms in
diverse domains, including computational biology [81] and artificial intelligence [133]. Nek-
lyudov et al. [93] independently identified the involutive MCMC construction as a unifying
framework for MCMC algorithms, and showed how more than a dozen classic and recent
MCMC algorithms can be cast within this framework. Neklyudov et al. [93] also identified
design principles for developing new MCMC algorithms using the involutive MCMC con-
struction, and showed that the framework aids in the derivation of novel efficient MCMC al-
gorithms. The involutive MCMC construction encompasses many existing classes of MCMC
kernels, some of which explicitly make use of bijective or involutive deterministic maps. In
particular, the reversible jump framework [53, 56] employs a family of continuously differen-
tiable bijections between the parameter spaces of different models. Tierney [122] described
a family of deterministic proposals based on a deterministic involution that is equivalent to
involutive MCMC but without the auxiliary probability distribution. More recently, Span-
bauer et al. [116] defined a class of deep generative models based on differentiable invo-
lutions and trained these models to serve as efficient proposal distributions on continuous
state spaces; the resulting algorithm is an instance of involutive MCMC. Other probabilistic
programming system besides Gen support some custom reversible jump samplers: Roberts
et al. [105] present a system embedded in Haskell that generates the implementation of
some reversible jump MCMC kernels from a high-level specification. Narayanan and Shan
[90] give a technique that automatically computes Metropolis-Hastings acceptance proba-
bilities in some settings; however, these approaches do not handle many kernels that can
be handled by our involutive MCMC construct.

Sequential Monte Carlo in probabilistic programs While many probabilistic pro-
gramming systems implement generic sequential Monte Carlo (SMC) schemes based on
incremental extension of the model with additional state [130, 79, 40, 89], to our knowledge
Gen is the only system that supports more general SMC schemes that involve doing infer-
ence in an arbitrary sequence of models represented as probabilistic models that may use

139



different representations. Gen’s more flexible variant of SMC is based on a general template
for SMC algorithms [33] that includes annealed importance sampling [91] as a special case.
An more restricted version of Gen’s support for inference across multiple models, that does
not use an arbitrary bijection to map between states, was described by Cusumano-Towner
et al. [27]. Stuhlmüller et al. [119] devised a sequential Monte Carlo scheme involving
coarsening the domain of random choices incrementally, and implemented in a probabilistic
programming language via a program transformation that generated a larger model that
included all other models as sub models, which was then processed by the generic sequential
Monte Carlo inference engine. However, it is much more restrictive because only handles a
limited class of models, does not inter-operate well with rejuvenation moves, and can only
use sequences of the same models with coarsened domains for random choices.

Differentiable programming languages for transforming random choices Other
systems support computing probability density functions of random variables that result
from deterministic transformations of other random variables written in differentiable pro-
gramming languages [34]. However, these systems do not support distributions on objects
with stochastic structure like choice dictionaries. Incorporating performance optimizations
from these systems into Gen’s trace transform DSL is an interesting area for future work.

Checking validity of inference procedures Gen performs dynamic checks that can
detect some violations of the assumptions and is able to find many bugs in practice. Gen
does not statically verify the asymptotic soundness of inference algorithms. Although Gen
encourages use of asymptotically sound inference algorithm templates, Gen does not enforce
this—users are free to use Gen’s primitives however they please. However, it is possible
to statically verify the validity of proposals for the types of constructs used by Gen. A
natural approach for reasoning about the validity of proposals is to introduce a type sys-
tem that describes the support of the probability distributions on choice dictionaries. For
example, Lew et al. [73] builds on the inference programming constructs introduced by Gen
and describes a restricted modeling language and type system for models and proposals,
and shows that automatic type checking and type inference can detect invalid proposals.
Lee et al. [72] demonstrated verification of stochastic variational inference in probabilistic
programs via static analysis. Adding type systems that express the ‘shape’ (i.e. set of
domains of choice dictionaries with nonzero density) and support of random choices (i.e.
the address universes they are valid in) for generative functions to Gen, and providing
users with optional automatic verification of soundness is a promising area of future work.
Atkinson et al. [7] introduce a language for hand-coded inference implementations and a
compiler that checks the validity of these implementations and generates an optimized im-
plementation. While the inference language used is significantly different from that of Gen
(which is based on explicit manipulation of traces), it is possible that ideas from the MCMC
verification approach could be applied to analyze loops of Gen inference MCMC kernels.

140



Chapter 4

Encapsulating Inference Logic in
Generative Functions and Traces

A system with a modular design is more easily changed than one with highly coupled com-
ponents, because changes can be made to one module without requiring knowledge of how
the other modules function. Modules with clearly defined interfaces are also more likely
to be reusable across multiple applications. More modular systems are also more easily
debugged and explained than less modular systems. How can we support modular proba-
bilistic inference implementations? The abstract data types defined in Chapter 2 provide
one type of modularity—they separate the low-level implementation details of inference
algorithms from the high-level algorithm strategies described in Chapter 3. The designer of
an inference algorithm does not need to understand how a trace data type is implemented in
order to use traces, and the trace implementation for a model can be improved, resulting in
speedups of any inference code that uses it, without requiring the inference code to change.

Many other probabilistic programming systems have focused on a more ambitious type
of modularity in which modeling is completely decoupled from the inference algorithm using
an ‘inference engine’ based on generic, built-in, probabilistic inference algorithms. This is an
appealing goal, but can be ineffective because many inference problems require specializa-
tion to the model that is not readily automated. This chapter explores an intermediate level
of modularity in inference implementations that is based on extending generative functions
and their traces with built-in inference capabilities called internal proposals. These built-in
inference capabilities have well-defined interfaces, so that users can use them without know-
ing about how they are implemented, like the user of an inference engine. However, this
design differs from the ‘inference engine’ architecture in three key respects: First, users are
not restricted to using the built-in inference capabilities—they can freely combine their own
custom inference logic with the built-in inference logic (e.g. by combining custom proposal
distributions with the internal proposals). Second, because generative functions are com-
posed from other generative functions, built-in inference capabilities can be used for only
selected parts the model. Third, the built-in capabilities themselves have flexibility. For
example, with selection Metropolis-Hastings (Section 4.3), users can apply MCMC moves
based on the internal proposal to arbitrary subsets of random choices of their choosing.

141



𝑥

a

b

𝜔

𝑝(𝜏 ; 𝑥)
�̊�(𝜔; 𝑥, 𝜏 )

𝑥

a

b

𝜔

𝑞(𝜐; 𝑥, {})
�̊�(𝜔; 𝑥, 𝜏 )

𝑥

a

b

𝜔

𝑞(𝜐; 𝑥, {a ↦→ 𝑎})
�̊�(𝜔; 𝑥, 𝜏 )

𝑥

a

b

𝜔

𝑞(𝜐; 𝑥, {b ↦→ 𝑏})
�̊�(𝜔; 𝑥, 𝜏 )

𝑥

a

b

𝜔

𝑞(𝜐; 𝑥, {a ↦→ 𝑎, b ↦→ 𝑏})
�̊�(𝜔; 𝑥, 𝜏 )

Figure 4-1: Schematic of internal proposal family for a simple generative function

4.1 Generative functions with internal proposals
This section extends the generative function and trace data types with a notion of in-
ternal proposal, which allows generative functions to encapsulate reusable inference logic.
Generative functions with internal proposals can be used with the inference procedures of
Chapter 3, but also serve as the basis for additional inference procedures described later in
this chapter. Internal proposals enable reuse of inference logic—the internal proposal of a
generative function can be used by any inference implementation for any model that invokes
the generative function. The consumer of a generative function with an internal proposal
does not need to know about what the internal proposal is in order to write asymptotically
exact inference procedures that use the proposal.

A generative function 𝒫 with an internal proposal is a tuple of five elements (𝒫 =
(𝑋, 𝑌, 𝑝, 𝑓, 𝑞)), where 𝑞 is the internal proposal family. Briefly, 𝑞 is a family of probability
densities on choice dictionaries that, like 𝑝, is parametrized by the arguments 𝑥. But unlike
𝑝, 𝑞 is also parametrized by a choice dictionary 𝜎 that represents a partial assignment to
the random choices in a trace. The internal proposal family maps partial assignments 𝜎 to
probability distributions that ‘fill in’ the rest of the random choices. Figure 4-1 diagrams
these distributions for a generative function that makes two random choices at addresses a
and b (𝜔 is encapsulated randomness and will be introduced in Section 4.5).

Definition 4.1.1 (Internal proposal). A generative function 𝒫 with an internal proposal
is a tuple 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞), where 𝑋, 𝑌, 𝑝, 𝑓 are as in Definition 2.1.16, and where for
each (𝑥, 𝜎) such that 𝑥 ∈ 𝑋 and 𝑝(𝜎; 𝑥) > 0, 𝑞(·; 𝑥, 𝜎) : 𝒯 ⋆

𝐴∖𝐴𝜎
→ [0,∞) is a probability

density on 𝒯 ⋆
𝐴∖𝐴𝜎

. In the discrete setting, this means that
∑︀

𝜐∈𝒯 ⋆
𝐴∖𝐴𝜎

𝑞(𝜐; 𝑥, 𝜎) = 1. In
the general setting, this means that 𝑞(·; 𝑥, 𝜎) is a 𝜇⋆

𝐴∖𝐴𝜎
-measurable function such that∫︀

𝒯 ⋆
𝐴∖𝐴𝜎

𝑞(𝜐; 𝑥, 𝜎)𝜇⋆
𝐴∖𝐴𝜎

(𝑑𝜐) = 1. Finally, 𝑞 must satisfy 𝑞(𝜐; 𝑥, 𝜎) > 0 ⇐⇒ 𝑝(𝜐|𝜎; 𝑥) > 0
for all 𝑥 and 𝜎 where 𝑥 ∈ 𝑋 and 𝑝(𝜎; 𝑥) > 0.

Although the internal proposal is only defined for 𝑥 and 𝜎 such that 𝑝(𝜎; 𝑥) > 0, if 𝑝(·; 𝑥)
is supportive (Definition 2.1.7) for all 𝑥 ∈ 𝑋 then 𝑞(·; 𝑥, 𝜎) is defined for all (𝑥, 𝜎) ∈ 𝑋×𝒯 ⋆

𝐴 .

4.1.1 Extending the generate operation using the internal proposal

Recall the generate operation from Chapter 2.3, defined by 𝒫.generate(𝑥, 𝜎) := t =
(𝒫, 𝑥, 𝜏 ) for a generative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓) where 𝑥 ∈ 𝑋 and 𝜏 = 𝜎|𝐵 ∈ supp(𝑝(·; 𝑥))

142



for some 𝐵. A limitation of generate as defined earlier is that it may be hard to construct
a choice dictionary 𝜎 satisfying the requirements. We now describe a generalization of
the operation that allows it to accept essentially any choice dictionary (denoted 𝜎) and
automatically construct a valid choice dictionary 𝜏 that agrees with 𝜎 using the internal
proposal. Intuitively, the operation is able to ‘fill in’ the choices required to construct a
choice that are not provided in the choice dictionary 𝜎. Furthermore, the operation returns
a log importance weight that relates the internal proposal density to the model density 𝑝
that can be used in various inference algorithms.

Extended generate operation The new operation input signature is 𝒫.generate(𝑥, 𝜎)
where 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞) and 𝑥 ∈ 𝑋 and 𝑝(𝜎; 𝑥) > 0. It returns a pair (t, log 𝑤) where
t = (𝒫, 𝑥, 𝜏 ) and 𝜏 and log 𝑤 are defined as follows. First, 𝜐 ∼ 𝑞(·; 𝑥, 𝜎). Next, let 𝐵 ⊆ 𝐴𝜎

be such that 𝜏 := 𝜐 ⊕ (𝜎|𝐵) ∈ supp(𝑝(·; 𝑥)). Such a 𝐵 is guaranteed to exist because (i)
𝑞(𝜐; 𝑥, 𝜎) > 0 implies 𝑝(𝜐|𝜎; 𝑥) > 0, and (ii) by the definition of 𝑝(𝜐|𝜎; 𝑥) in Equation (2.8).
The resulting dictionary 𝜏 is unique by Proposition 2.1.3 because 𝑝(·; 𝑥) is structured. Let
log 𝑤 ← 𝑝(𝜏 ; 𝑥)/𝑞(𝜐; 𝑥, 𝜎).

Example: Consider the generative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞) that takes no arguments
and has return value nothing, but where 𝑝 and 𝑞(·; 𝑥, 𝜎) for 𝜎1 = {c ↦→ T} and 𝜎2 = {b ↦→ F}
are defined below, along with the 𝜏 = 𝜐 ⊕ (𝜎|𝐵) that results from each combination of 𝜎
and 𝜐. Note that defining 𝑞 for all 𝜎 would require many probability tables.

𝜏 𝑝(𝜏 )
{a ↦→ F, c ↦→ F} 0.45
{a ↦→ F, c ↦→ T} 0.05

{a ↦→ T, b ↦→ F, c ↦→ F} 0.05
{a ↦→ T, b ↦→ F, c ↦→ T} 0.2
{a ↦→ T, b ↦→ T, c ↦→ F} 0.125
{a ↦→ T, b ↦→ T, c ↦→ T} 0.125

𝜐 𝑞(𝜐; 𝑥, 𝜎1) 𝜏

{a ↦→ F} 0.4 {a ↦→ F, c ↦→ T}
{a ↦→ T, b ↦→ F} 0.3 {a ↦→ T, b ↦→ F, c ↦→ T}
{a ↦→ T, b ↦→ T} 0.3 {a ↦→ T, b ↦→ T, c ↦→ T}

𝜐 𝑞(𝜐; 𝑥, 𝜎2) 𝜏

{a ↦→ F, c ↦→ F} 0.2 {a ↦→ F, c ↦→ F}
{a ↦→ F, c ↦→ T} 0.2 {a ↦→ F, c ↦→ T}
{a ↦→ T, c ↦→ F} 0.3 {a ↦→ T, b ↦→ F, c ↦→ F}
{a ↦→ T, c ↦→ T} 0.3 {a ↦→ T, b ↦→ F, c ↦→ T}

Suppose we called 𝒫.generate(𝑥, 𝜎1) and sampled 𝜐 = {a ↦→ F} from 𝑞(·; 𝑥, 𝜎1). Then,
𝐵 = {c} and 𝜏 = {a ↦→ F, c ↦→ T}, and log 𝑤 = log 𝑝(𝜏 )− log 𝑞(𝜐; 𝑥, 𝜎1) = log 0.05− log 0.4.

4.1.2 The regenerate trace operation

Recall the update operation of the trace ADT from Chapter 2.3, t.update(𝑥′, 𝛿𝑋 , 𝜎).
This operation returned a new trace t′ that with new choices 𝜏 ′ that are constructed from
a combination of the previous choices 𝜏 and the newly provided choices 𝜎. This section
describes an additional operation that can be used to obtain a modified trace t′ from an
input trace t. But instead of taking the new values 𝜎 as an input, this new operation,
which is called regenerate, samples new choices from the internal proposal distribution,

143



and the caller only needs to specify which addresses should have new values sampled, not
what the values should be.

Regenerate operation This operation is only defined for traces t = (𝒫, 𝑥, 𝜏 ) and 𝒫 =
(𝑋, 𝑌, 𝑝, 𝑓, 𝑞) where 𝑝(·; 𝑥) is supportive (Definition 2.1.7) for all 𝑥 ∈ 𝑋. The input signature
of the operation is t.regenerate(𝑥′, 𝛿𝑋 , 𝑆) where t = (𝒫, 𝑥, 𝜏 ). Like for the update
operation, the first and second inputs 𝑥′ and 𝛿𝑋 are new arguments 𝑥′ ∈ 𝑋 and a change
hint 𝛿𝑋 from 𝑥 to 𝑥′, respectively. The third argument 𝑆 ⊆ 𝐴 is a set of addresses (𝐴
is the set of all addresses in the address universe) called the selection. The operation
returns a tuple (t′, log 𝑤, 𝛿𝑌 ) where t′ = (𝒫, 𝑥′, 𝜏 ′) with 𝜏 ′ and log 𝑤 defined as follows.
Let 𝜎 := 𝜏 |𝑆c (the dictionary resulting from removing all addresses in 𝑆 from 𝜏 ). The
operation samples from the internal proposal as follows: 𝜐 ∼ 𝑞(·; 𝑥′, 𝜎). Let 𝐵 ⊆ 𝐴𝜎 be
such that 𝜏 ′ := 𝜐⊕(𝜎|𝐵) ∈ supp(𝑝(·; 𝑥′)). Such a 𝐵 is guaranteed to exist and the resulting
𝜏 ′ is guaranteed to be unique by the same argument used for the generate operation above.
Let t′ := (𝒫, 𝑥′, 𝜏 ′). Let 𝜎′ = 𝜏 ′|𝑆c and let 𝜐′ := 𝜏 |((𝐴𝜏 ∩𝐴𝜏 ′ )∖𝑆)c . Then, define log 𝑤 to be:

log 𝑤 := log 𝑝(𝜏 ′; 𝑥′)𝑞(𝜐′; 𝑥, 𝜎′)
𝑝(𝜏 ; 𝑥)𝑞(𝜐; 𝑥′, 𝜎) (4.1)

Finally set 𝛿𝑌 to a change hint from 𝑓(𝑥, 𝜏 ) to 𝑓(𝑥′, 𝜏 ′). The supportive requirement
ensures that 𝑝(𝜎; 𝑥) > 0 for all 𝑥 and all 𝜎. In particular, it ensures that 𝑝(𝜏 |𝑆c ; 𝑥′) > 0 and
𝑝(𝜏 ′|𝑆c ; 𝑥) > 0, for all 𝑆, which ensures that the internal proposal is defined as necessary for
all 𝑆. While the regenerate operation could be defined for generative functions where
𝑝(·; 𝑥) is not supportive for all 𝑥, the set of valid selections 𝑆 would be complicated to
characterize.

Example: Consider the generative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞) defined in immediately
preceding example. Consider an input trace t = (𝒫, 𝑥, 𝜏 ) where 𝜏 = {a ↦→ T, b ↦→ F, c ↦→ T}.
Consider applying regenerate with selection 𝑆 = {a, b} (the inputs 𝑥 and 𝛿𝑋 do not
matter here because 𝒫 takes no arguments). This choice of selection indicates that new
values should be proposed using the internal proposal for a and b and/or the addresses
may be removed. Specifically, we have 𝜎 := 𝜏 |𝑆c = {c ↦→ T}. The set of possible 𝜐 that
could be sampled from 𝑞(·; 𝑥, {c ↦→ T}) are {𝑎 ↦→ F}, {𝑎 ↦→ T, 𝑏 ↦→ F}, and {𝑎 ↦→ T, 𝑏 ↦→ T}
with probabilities 0.4, 0.3, and 0.3 respectively. Suppose we sample 𝜐 = {𝑎 ↦→ F}. Then,
𝜏 ′ := 𝜐 ⊕ (𝜎|𝐵) = {a ↦→ F, c ↦→ T} where 𝐵 = {c}. Then, 𝜐′ := 𝜏 |{c}c = {a ↦→ T, b ↦→ F}.
The log weight is:

log 𝑤 := log 𝑝(𝜏 ′; 𝑥′)𝑞(𝜐′; 𝑥, 𝜎′)
𝑝(𝜏 ; 𝑥)𝑞(𝜐; 𝑥′, 𝜎) = log 0.05 · 0.3

0.2 · 0.4

4.1.3 Example internal proposal families

There is a great deal of flexibility in the internal proposal family of a generative function.
We now describe two classes of internal proposal families and how the ADT operations
generate and regenerate behave for these classes.

144



Example: Forward sampling in Bayesian networks Suppose that 𝑋 and 𝑝 are such
that 𝜏 ∈ supp(𝑝(·; 𝑥)) implies 𝐴𝜏 = {𝑎1, . . . , 𝑎𝑛} for all 𝑥 ∈ 𝑋. Let 𝐴1:𝑖 := {𝑎1, . . . , 𝑎𝑖} for
each 𝑖. Suppose that for all 𝜏 ∈ supp(𝑝(·; 𝑥)):

𝑝(𝜏 ; 𝑥) =
𝑛∏︁

𝑖=1
𝑝({𝑎𝑖 ↦→ 𝜏 [𝑎𝑖]}|(𝜏 |𝐴1:𝑖−1); 𝑥)

Consider the internal proposal family defined by:

𝑞(𝜐; 𝑥, 𝜎) :=
𝑛∏︁

𝑖=1

(︀
𝑝({𝑎𝑖 ↦→ 𝜐[𝑎𝑖]}|(𝜎|𝐴1:𝑖−1 ⊕ 𝜐|𝐴1:𝑖−1); 𝑥)

)︀[𝑎𝑖 ̸∈𝐴𝜎 ]

for each 𝜐 such that 𝜐 ⊕ (𝜎|{𝑎1,...,𝑎𝑛}) ∈ supp(𝑝(·; 𝑥)) and zero otherwise. The log weight
log 𝑤 returned by the extended generate operation is:

log 𝑤 =
𝑛∑︁

𝑖=1
[𝑎𝑖 ∈ 𝐴𝜎] log 𝑝({𝑎𝑖 ↦→ 𝜐[𝑎𝑖]}|(𝜎|𝐴1:𝑖−1 ⊕ 𝜐|𝐴1:𝑖−1); 𝑥)

The log weight returned by regenerate is, due to cancellation of factors:

log 𝑤 =
𝑛∑︁

𝑖=1
[𝑎𝑖 ∈ 𝐴𝜎]

(︃
log 𝑝({𝑎𝑖 ↦→ 𝜐[𝑎𝑖]}|(𝜎|𝐴1:𝑖−1 ⊕ 𝜐|𝐴1:𝑖−1); 𝑥)
− log 𝑝({𝑎𝑖 ↦→ 𝜐′[𝑎𝑖]}|(𝜎|𝐴1:𝑖−1 ⊕ 𝜐′|𝐴1:𝑖−1); 𝑥)

)︃

Note that the behavior of generate and regenerate is different depending on the or-
dering of the addresses 𝑎1, . . . , 𝑎𝑛 used. A similar construction is possible for more general
𝑝 for which the set of address is not fixed. Chapter 5 discusses how proposal families
based on forward sampling can be compiled for flexible probabilistic modeling languages
that include stochastic control flow. Briefly, the we sample from the internal proposal by
executing the source code of the generative function, but we intercept each random choice
expression and look up its address 𝑎 in 𝜎. If 𝑎 ̸∈ 𝐴𝜎 then the value of the random choice is
randomly sampled as in a regular execution; if 𝑎 ∈ 𝐴𝜎 then the value of the random choice
is deterministically set to 𝜎[𝑎].

Example: The optimal internal proposal family For a given 𝑋 and 𝑝 the optimal
internal proposal family 𝑞 is given by 𝑞(𝜐; 𝑥, 𝜎) := 𝑝(𝜐|𝜎; 𝑥) for all 𝜎 such that 𝑝(𝜎; 𝑥) > 0
and all 𝑥 ∈ 𝑋 and all 𝜐. For a generative function with such 𝑞, the log weight log 𝑤 returned
by the extended generate operation is:

log 𝑤 = log 𝑝(𝜐 ⊕ 𝜎|𝐵; 𝑥)
𝑝(𝜐|𝜎; 𝑥) = log

(︃
𝑝(𝜎; 𝑥) 𝑝(𝜐 ⊕ 𝜎|𝐵; 𝑥)∑︀

𝐶⊆𝐴𝜎
𝑝(𝜐 ⊕ (𝜎|𝐶); 𝑥)

)︃
= log 𝑝(𝜎; 𝑥)

145



That is, the log weight is deterministic and gives the log marginal likelihood. For the
regenerate operation, the log weight when using the optimal internal proposal family is:

log 𝑤 = log 𝑝(𝜏 ′; 𝑥′)
𝑝(𝜐|𝜎; 𝑥′)

𝑝(𝜐′|𝜎′; 𝑥)
𝑝(𝜏 ; 𝑥) = log 𝑝(𝜎; 𝑥′)

𝑝(𝜎′; 𝑥) = log 𝑝(𝜏 |𝑆c ; 𝑥′)
𝑝(𝜏 ′|𝑆c ; 𝑥)

In the special case when 𝐴𝜏 Δ𝐴𝜏 ′ ⊆ 𝑆 and 𝑥 = 𝑥′, 𝜏 |𝑆c = 𝜏 ′|𝑆c so log 𝑤 = 1 (where Δ
denotes symmetric difference of sets). By further specializing to 𝐴𝜏 = 𝐴𝜏 ′ the regenerate
operation with the optimal proposal family recovers Gibbs sampling [44]. Section 4.3 shows
how regenerate can be used to construct MCMC kernels, including when when 𝑞 is
not the optimal proposal family. Chapter 5 discusses how optimal proposal families can
be constructed automatically for generative functions specified in specialized probabilistic
modeling languages.

4.2 Importance sampling with the internal proposal
Internal proposal families are a mechanism for inference logic to be encapsulated inside
generative functions and traces. Internal proposal families, like the other aspects of the
generative function and trace ADTs are automatically generated from probabilistic mod-
eling code by the modeling language compiler. Users can choose to employ the internal
proposal for their model instead of writing a proposal generative function by hand. Many
of the inference operations described in Chapter 3 have analogues that are based in internal
proposals and require much less work by the user.

For example, consider the the self-normalized importance sampling construct in Algo-
rithm 3, for which the user writes a generative function 𝒬 to serve as a proposal distribution
for a model 𝒫. Algorithm 13 gives an analogous procedure for self-normalized importance
sampling that uses the internal proposal family instead and is much simpler, requiring the
user to specify the generative model (𝒫), the observed data (𝜌) and the number of samples
(𝑛). Gen’s inference library includes an implementation of this procedure, which is the
simplest entry-point for new users to Gen because of the simplicity of its interface.

Algorithm 13 Self-normalized importance sampling using the internal proposal
procedure self-norm-importance-sampling-internal(𝒫, 𝜌, 𝑛)

for 𝑖← 1 . . . 𝑛 do
(t(𝑖), log �̃�𝑖)← 𝒫.generate(_, 𝜌)

end for
((𝑤(1), . . . , 𝑤(𝑛)), log ̂︀𝑧)← normalize(log �̃�(1), . . . , log �̃�(𝑛))
return

(︁
{(t(1), 𝑤(1)), . . . , (t(𝑛), 𝑤(𝑛))}, log ̂︀𝑧)︁

end procedure

It is also possible to adapt the Algorithm 3 for use with generative functions 𝒫 that have
internal proposal families. Algorithm 14 shows the modified procedure. In this procedure,
if the external proposal 𝒬 does not sample all random choices visited in the model, the
remaining choices will be sampled by the internal proposal, resulting in an importance sam-

146



Algorithm 14 Self-normalized importance sampling with an internal and external proposal
procedure self-norm-importance-sampling-mixed(𝒫, 𝒬, 𝜌, 𝑛)

for 𝑖← 1 . . . 𝑛 do
s← 𝒬.simulate()
𝜎 ← s.choices()⊕ 𝜌
(t(𝑖), log �̃�(𝑖))← 𝒫.generate(_, 𝜎)
log �̃�(𝑖) ← log �̃�(𝑖) − s.logpdf()

end for
((𝑤(1), . . . , 𝑤(𝑛)), log ̂︀𝑧)← normalize(log �̃�(1), . . . , log �̃�(𝑛))
return

(︁
{(t(1), 𝑤(1)), . . . , (t(𝑛), 𝑤(𝑛))}, log ̂︀𝑧)︁

end procedure

pling algorithm whose proposal is a combination of the internal proposal and the external
proposal. Such an external proposal would result in an error if 𝒫 was not equipped with an
internal proposal, because intuitively generate would not be able to fill in the choices that
were not provided by the external proposal. Therefore, the presence of internal proposals
greatly relaxes the constraints on inference programmers—they are able to incrementally
increase the complexity and efficiency of their inference algorithms by gradually increasing
the purview of their external proposals. This can be understood as interpolating between
the approach of systems like Church [51], Venture [79], Anglican [130], and Turing [40]
which are based on default proposals, and the inference programming approach of Chap-
ter 3, which required external proposals to sample all relevant random choices in the model
in the context of importance sampling and particle filtering.

4.3 Selection Metropolis-Hastings

The Markov chain Monte Carlo (MCMC) kernel constructs that were described in Chapter 3
are flexible enough to permit a wide class of custom Metropolis-Hastings and reversible
jump MCMC kernels, including custom trans-dimensional moves, while automating the
sampling and acceptance probability calculation. However, these constructs require the
user to understand the semantics of the model and in some cases, write significant code
specifying the kernel. Selection Metropolis-Hastings (selection MH) is a novel construct for
MCMC kernels that allows the user to only select the set of random choices that should
be updated, in the form of an address selection 𝐵 ⊆ 𝐴 where 𝐴 is the set of all addresses.
The construct uses the internal proposal family of the model instead of requiring the user
to specify a custom external proposal. Selection MH kernels can be applied in cycles or
mixtures with different selections, or with other kernel types. With selection MH the user
maintains significant control over the inference algorithm—the user chooses how the random
choices should be partitioned for updates.

Using the new regenerate operation, the procedure for selection MH is quite simple,
and is shown in Algorithm 15. Note that it is simply a wrapper around a call to regener-
ate that accepts or rejects the resulting trace according to the log weight log 𝑤. The first

147



Algorithm 15 Selection Metropolis-Hastings
procedure selection-mh-kernel𝐵(t)

(t′, log 𝑤, _)← t.regenerate(t.args(),⊤, 𝐵)
𝑟 ∼ Uniform(0, 1)
if 𝑟 ≤ log 𝑤 then return t′ else return t

end procedure

argument to regenerate passes the arguments from the input trace (𝑥′ = 𝑥), and the second
argument is the change hint 𝛿𝑋 = ⊤ that indicates that the new arguments are the same
as the previous arguments. The third argument indicates the set of addresses for which
new values should be sampled. Note that regenerate, and this algorithm, only support
models 𝒫 whose densities are supportive (Definition 2.1.7). For models expressed in DML,
it is possible construct a model with a supportive density by guaranteeing that, for each
address sampled in any execution, the support of the distribution at that distribution is
constant across all executions (see Chapter 5 for details).

Selection MH in Gen’s inference library This construct is provided in Gen’s inference
library as a variant of the Gen.mh function:

(new_trace, _) = Gen.mh(trace, selection)

Note that this construct requires very little code to use, because it leverages the encapsu-
lated inference capabilities of the internal proposal. Gen includes various ways of con-
structing address selections that include selecting individual addresses, selecting whole
namespaces, and set operations on selections. For example, to construct the selection
𝐵 = {foo, bar}, we use Gen.select(:foo, :bar), and to select all addresses except for foo
and bar we use Gen.complement(Gen.select(:foo, :bar)).

Example: Selection MH and stochastic control flow Consider the (anonymous)
model generative function 𝒫 defined below, which has stochastic structure.

@gen function ()
val = true
if ({:a} ∼ bernoulli(0.3))

b ∼ bernoulli(0.6)) && val
end
p = val ? 0.9 : 0.2
c ∼ bernoulli(p)

end

𝜏 𝑝(𝜏 )
{𝑎 ↦→ T, 𝑏 ↦→ T, 𝑐 ↦→ T} 0.3 · 0.6 · 0.9
{𝑎 ↦→ T, 𝑏 ↦→ T, 𝑐 ↦→ F} 0.3 · 0.6 · 0.1
{𝑎 ↦→ T, 𝑏 ↦→ F, 𝑐 ↦→ T} 0.3 · 0.4 · 0.2
{𝑎 ↦→ T, 𝑏 ↦→ F, 𝑐 ↦→ F} 0.3 · 0.4 · 0.8
{𝑎 ↦→ F, 𝑐 ↦→ T} 0.7 · 0.9
{𝑎 ↦→ F, 𝑐 ↦→ F} 0.7 · 0.1

Suppose the internal proposal uses forward sampling, and that the previous trace contains
𝜏 = {𝑎 ↦→ T, 𝑏 ↦→ T, 𝑐 ↦→ T}. Suppose we apply selection-mh with the selection 𝐵 = {𝑎}.
Then, 𝜎 is the restriction of 𝜏 to the complement of {𝑎}, giving 𝜎 = {𝑏 ↦→ T, 𝑐 ↦→ T}.
The possible samples from the internal proposal for this 𝜎 are listed below, along with the

148



resulting 𝜏 ′ and the acceptance probability:

𝜐 𝑞(𝜐; 𝑥, 𝜎) 𝜏 ′ 𝜎′ Acceptance probability
{𝑎 ↦→ T} 0.3 {𝑎 ↦→ T, 𝑏 ↦→ T, 𝑐 ↦→ T} {𝑏 ↦→ T, 𝑐 ↦→ T} 1
{𝑎 ↦→ F} 0.7 {𝑎 ↦→ F, 𝑐 ↦→ T} {𝑐 ↦→ T} 0.6

Note that it is possible to use selection MH with an arbitrary set of selected addresses,
including addresses that may not exist in the current trace.

Example: Selection MH in a Dirichlet process mixture model Consider modeling
a collection of 𝑛 real-valued data points 𝑦𝑖 ∈ R for 𝑖 ∈ {1, . . . , 𝑛} using a mixture model in
which there are 𝑘 mixture components. For each 𝑖, the variable 𝑧𝑖 ∈ {1, . . . , 𝑘} gives the
component to which data point 𝑖 is assigned. Each mixture component 𝑗 for 𝑗 ∈ {1, . . . , 𝑘}
has a mean parameter 𝜇𝑗 ∈ R with a prior distribution that is a normal distribution with
large variance. All data points 𝑦𝑖 for which 𝑧𝑖 = 𝑗 are modeled as independently and
identically distributed according to a normal distribution with mean 𝜇𝑗 and variance 𝜎2.
The generative function 𝒫1 = mixture_data below implements this model. It takes as input
the cluster assignments (the vector [𝑧1, 𝑧2, . . . , 𝑧𝑛]) and the variance 𝜎2, and proceeds to
sample the cluster mean 𝜇𝑗 at address (mu, 𝑗) for each 𝑗 ∈ {1, . . . , 𝑛}. Next it samples each
data point 𝑦𝑖 at address (y, 𝑖) for 𝑖 ∈ {1, . . . , 𝑛} from the respective normal distribution.

@gen function mixture_data(z, var)
n = length(z)
k = maximum(clusters_assignments)

# sample the cluster parameters from the prior
cluster_means = Dict()
for j in 1:k

cluster_means[j] = ({(:mu, j)} ∼ normal(0.0, 10.0))
end

# sample the data points
for i in 1:n

{(:y, i)} ∼ normal(cluster_means[z[i]], sqrt(var))
end

end

The generative function 𝒫2 = dpmm below defines a Dirichlet process mixture model, using
mixture_data as a subroutine. The code takes as arguments the number of data points
(𝑛) and the alpha parameter for the Chinese restaurant process [3] (CRP) prior on the
cluster assignments. The code then loops through the data points, and samples the cluster
assignments (z) from the CRP prior using a parametrization based on a random choice
(new_cluster, 𝑖) for each data point. If the data point does not form a new cluster, then
it samples the index of a ‘friend’, which is one of the previous data points, and joins the
cluster assignment of the friend. This parametrization of the CRP prior was designed so that
the density is supportive—the support at each (friend, 𝑖) address is always {1, . . . , 𝑖− 1}.
Note that the number of clusters is random, and can vary between 1 and 𝑛. The variance

149



(var) is shared for all clusters, and has an inverse-gamma prior distribution. Given the
cluster assignments and the variance, we invoke mixture_data from above, which samples
parameters for each cluster, and then samples each data point. The function then returns
the number of clusters 𝑘 so that this derived value is easily accessible from inference code
with t.retval() and does not need to be recomputed from the values of the random choices.

@gen function dpmm(n, alpha)
z = Dict()
k = 0
for i in 1:n

prob_new_cluster = alpha / (i - 1 + alpha)
if ({(:new_cluster, i)} ∼ bernoulli(prob_new_cluster))

z[i] = k + 1
k += 1

else
friend = ({(:friend, i)} ∼ uniform_discrete(1, i-1))
z[i] = z[friend]

end
end
var ∼ inv_gamma(1, 1)
{:data} ∼ mixture_data(z, var)
return k

end

Suppose we are given observed data of the form 𝜌 = {(y, 1) ↦→ 𝑦1, . . . , (y, 𝑛) ↦→ 𝑦𝑛}. Con-
sider the following composite MCMC kernel, constructed using the composite kernel DSL
of Section 3.4.4 primitive MCMC kernels that are each constructed using selection-mh:

@kern function dpmm_kernel(trace)
for j in 1:5

trace ∼ Gen.mh(trace, Gen.select(:var))
end
let n = Gen.get_args(trace)[1]

for i in 1:n
let k = Gen.get_retval(trace)

selection = Gen.select([:data => (:mu, j) for j=1:k]...,
(:new_cluster, j), (:friend, j)))

trace ∼ Gen.mh(trace, selection)
ends

end
end

end

Each application of this kernel beings by applying selection MH to just update the variance
random choice in repetitions. Then, it loops through all the data points, and applies
selection MH where the selection is a block of random choices that includes the cluster
assignment choices for one data point, as well as the per-cluster parameters (in this example,
just the cluster means) for all clusters. Using the current version of Gen, we apply this
kernel in the code below, which reads the data from a variable y (definition not shown).

150



observations = Gen.choicemap()
for i in 1:length(xs)

observations[:data => (:y, i)] = y[i]
end
trace, = Gen.generate(dpmm, (length(y), 1.0), observations)
for iter in 1:1000

trace, = dpmm_kernel(trace)
end

The inference program beings by initializing a trace that contains the observed data, and
then repeatedly applying the composite kernel. Note that what MCMC kernel is being
applied by this code depends on the internal proposal used by dpmm. Since dpmm is written
in DML, it uses forward sampling for its internal proposal by default. This means that
the selection MH kernels for the variance will be independence MH moves that use the
prior distribution as the proposal. However, note that dpmm invokes the separate generative
function mixture_data to sample the cluster parameters and the data, and the internal
proposal of that generative function will be invoked as part of the internal proposal of dpmm.
If mixture_data is implemented in DML as above, then it will also use forward sampling
for its internal proposal, but mixture_data could also have been implemented in a different
modeling language, or with a custom ADT implementation that uses a different internal
proposal family. The next section shows how to implement a version of mixture_data that
uses a more efficient internal proposal family.

4.4 A combinator for overriding the internal proposal

In Chapter 5 we will discuss how internal proposal families can be implemented as part
of modeling language compilers, which generate the generative function and trace abstract
data types (ADTs). However, it is also possible to override the internal proposal family
of a generative function 𝒫 after it has already been constructed, using another generative
function 𝒬 to define the internal proposal family. This section defines a combinator that
implements the generative function and trace ADTs for a new generative function ℛ using
generative functions and traces of the original generative function 𝒫 and the generative
function 𝒬. The resulting generative function ℛ has the same probability distribution
on choice dictionaries as 𝒫 but a different internal proposal family. This combinator is
intended to be used to optimize the inference algorithm implementation for a model, by
replacing a generic internal proposal family that is automatically generated from a compiler
with a more efficient specialized internal proposal family.

Consider a generative function 𝒫 = (𝑋1, 𝑌1, 𝑝, 𝑓, 𝑞) where 𝑞 is the original internal
proposal family. Suppose there exists another generative function 𝒬 = (𝑋2, 𝑌2, 𝑞, 𝑓2, 𝑟)
where 𝑋2 = 𝑋1 × 𝒯 ⋆

𝐴 and for each 𝑥 ∈ 𝑋 and 𝜎 ∈ 𝒯 ⋆
𝐴 , 𝑞(𝜐; 𝑥, 𝜎) > 0 if and only if

𝑝(𝜐|𝜎) > 0. Consider the generative function ℛ := (𝑋1, 𝑌1, 𝑝, 𝑓, 𝑞). Algorithm 16 shows
how to implement each of the operations for the generative function and trace ADTs, using
only operations of the generative function and trace ADTs of 𝒫 and 𝒬.

151



Algorithm 16 Combinator for overriding the internal proposal
procedure ℛ.simulate(𝑥)

t← 𝒫.simulate(𝑥)
u← (ℛ, 𝑥, t.choices())
return u

end procedure

procedure ℛ.generate(𝑥, 𝜎)
s← 𝒬.simulate((𝑥, 𝜎))
𝜐 ← s.choices()
(t, _)← 𝒫.generate(𝑥, 𝜐 ⊕ 𝜎)
log 𝑤 ← t.logpdf()− s.logpdf()
u← (ℛ, 𝑥, t.choices())
return (u, log 𝑤)

end procedure

Require: u = (ℛ, 𝑥, 𝜏 )

procedure u.logpdf()
t← (𝒫, 𝑥, 𝜏 )
return t.logpdf()

end procedure

procedure u.regenerate(𝑥′, 𝛿𝑋 , 𝑆)
𝜏 ← u.choices()
𝜎 ← 𝜏 |𝑆c
(u′, log 𝑤1)← ℛ.generate(𝑥′, 𝜎)
𝜎′ ← u′.choices()|𝑆c
s← 𝒬.generate((𝑥′, 𝜎′), 𝜏 )
log 𝑤2 ← u.logpdf()− s.logpdf()
return (u′, log 𝑤1 − log 𝑤2,⊥)

end procedure

procedure u.choices()
return 𝜏

end procedure

procedure u.args()
return 𝑥

end procedure

procedure u.retval()
t← (𝒫, 𝑥, 𝜏 )
return t.retval()

end procedure

Example: Rao-Blackwellizing mixture model parameters The generative function
mixture_data above was implemented using Gen’s Dynamic Modeling Language (DML).
At the time of writing, Gen’s DML compiler constructs an internal proposal based on
forward sampling. In particular, given only the vector of data points 𝜎 = {(y, 1) ↦→
𝑦1, . . . , (y, 𝑛) ↦→ 𝑦𝑛}, the internal proposal distribution samples the cluster means from
their prior distribution:

𝑞(𝜐; 𝑥, 𝜎) =
𝑘(𝑥)∏︁
𝑗=1

𝑝norm(0,10)(𝜐[(mu, 𝑗)])

Here, 𝑥 is the tuple ([𝑧1, . . . , 𝑧𝑘], 𝜎2) and 𝑘(𝑥) extracts length of the cluster assignment
vector. Note that this distribution does not depend on the values in 𝜎. This is an inefficient
proposal distribution because the prior distribution on the parameters is very different from
the posterior for typical values of 𝜎2 and 𝑛. Because the normal distribution is the conjugate
prior for a normal likelihood, the optimal internal proposal family for the density 𝑝 of this

152



generative function can be analytically derived, and is:

𝑝(𝜐; 𝑥, 𝜎) :=
∏︀𝑘(𝑥)

𝑗=1 𝑝norm
(︀

𝑚𝑗(𝑥,𝜎),
√

𝑣𝑗(𝑥,𝜎)
)︀(𝜐[(mu, 𝑗)])

𝑣𝑗(𝑥, 𝜎) :=
(︂∑︀𝑛

𝑖=1[𝑧𝑖 = 𝑗]
𝜎2 + 1

102

)︂−1
𝑚𝑗(𝑥, 𝜎) := 𝑣𝑗(𝑥, 𝜐)

(︂
0

102 +
∑︀𝑛

𝑖=1[𝑧𝑖 = 𝑗]𝜎[(y, 𝑖)]
𝜎2

)︂
when 𝐴𝜐 = {(mu, 1), . . . , (mu, 𝑛)} and zero otherwise. While we could aim to improve Gen’s
DML compiler so that it can automatically derive and generate this optimal internal pro-
posal family, improving modeling language compilers is an ongoing (and promising) re-
search challenge, and it is likely that there remain large classes of models that are difficult
to automatically analyze. Therefore, a user of Gen can use the combinator defined in
Algorithm 16 to override the internal proposal of mixture_data with the optimal internal
proposal expressed in DML. The combinator is provided in Gen. The generative function
𝒬 = mixture_proposal below defines the optimal proposal family described above.

@gen function mixture_proposal(z, var, constraints)
n = length(z)
k = maximum(z)

# compute sufficient statistics for each cluster
sums = [0.0 for j in 1:k]
counts = [0.0 for j in 1:k]
for i=1:n

if Gen.has_value(constraints, (:x, i))
sums[z[i]] += constraints[(:x, i)]
counts[z[i]] += 1

end
end

# sample cluster parameters from the conditional distribution
cluster_means = Dict()
for j in 1:k

if Gen.has_value(constraints, (:mu, j))
cluster_means[j] = constraints[(:mu, j)]

else
cond_mu, cond_sigma = cond_params(var, sums[j], counts[j])
cluster_means[j] = ((:mu, j) ∼ normal(cond_mu, cond_sigma))

end
end

# sample the data points that were not included in constraints
for i=1:n

if !Gen.has_value(constraints, (:x, i))
{(:x, i)} ∼ normal(cluster_means[z[i]], sqrt(var))

end
end

end

153



The arguments to this generative function consist of (i) the arguments to the original gen-
erative function (z and var, which encode [𝑧1, . . . , 𝑧𝑘] and 𝜎2 respectively) and (ii) a choice
dictionary constraints (which encodes 𝜎). Note that to represent a valid internal proposal
family, the code must be capable of handling any possible 𝜎. Therefore, it checks whether
addresses are present in 𝜎 using Gen.has_value, and changes its behavior accordingly—if
only a subset of the data points (with addresses (x, 𝑖)) for a given cluster are provided in
𝜎, then the sufficient statistics used to compute the conditional distribution on the cluster
parameter only accumulates over the subset that is available, and the data points that are
not provided in 𝜎 are sampled at the end, conditioned on the cluster parameters. Similarly,
some subset of the cluster means (with addresses (mu, 𝑗)) may be provided, in which case
a value is not sampled. For cluster means that are not provided, the parameters of the
conditional distribution (𝑚𝑗 and 𝑣𝑗 in the equation) are computed by cond_params and the
cluster mean is sampled.

To construct the new generative function ℛ from the original generative function 𝒫 =
mixture_data and the proposal generative function 𝒬 = mixture_proposal, we invoke the
following Julia function, which returns a new generative function whose ADTs are imple-
mented using Algorithm 16.

mixture_data = Gen.override_internal_proposal(mixture_data, mixture_proposal)

We call this function a combinator because it combines two generative functions and returns
a new generative function. We will see other examples of generative function combinators
in Chapter 5. After running this code, the new generative function mixture_data has the
same probability distribution 𝑝 as the original generative function but it uses the optimal
internal proposal family. Now, in the MCMC algorithm for dpmm in the previous section, the
selection MH kernels that propose new values for both the cluster assignments and the clus-
ter parameters use a combination of forward sampling (for the new cluster assignment) and
conditional sampling (for the cluster parameters). The resulting kernel can be understood
as an MH kernel that uses a naive proposal for the cluster assignment, but marginalizes
out the cluster parameters when computing the acceptance probability.

Encapsulation and modularity via overriding internal proposals Note that a user
could have written an efficient proposal distribution that exploited conjugacy as a generative
function, and used it with the original model with the inference constructs from Chapter 3,
which do not require internal proposal families. However, after replacing the internal pro-
posal in the example above, now any model generative function that invokes mixture_data
will make use of its more efficient internal proposal distribution for the random choices
made by mixture_data. Furthermore, any inference algorithm that uses generate or re-
generate will function without a code change, and will benefit automatically from the
efficiency gain due to this change, because the new capability has been encapsulated. Com-
posing reusable components of generative models (generative functions) and encapsulating
custom inference logic (internal proposal families) inside these components is a promising
approach to achieving more modularity in inference algorithm implementations.

154



4.5 Encapsulated randomness
The internal proposal family presented above allows us to encapsulate proposal distributions
within generative functions and traces, but the resulting random choices are always included
in 𝜏 and accessible via the data type operations. This section extends generative functions
and traces with the ability to encapsulate random choices themselves, which makes these
data types significantly more flexible.

When we have a sampler for a probability distribution, together with the ability to
evaluate its probability mass (or density) pointwise, we can use the distribution in a variety
of ways, including in priors, likelihoods, proposals, and variational approximations. This is
why software libraries for probability distributions typically provide routines for pointwise
evaluation of the probability. However, evaluating a probability distribution pointwise is
often intractable when sampling from it is not. Probabilistic generative models provide
good examples of this—sampling from a generative model’s prior distribution on data is
trivial, whereas computing the marginal probability of some observed data is the difficult
(and typically intractable) problem of evaluating the marginal likelihood. The generative
function and trace data types we have introduced so far require that log 𝑝(𝜏 ; 𝑥) can be eval-
uated. This section extends the data types by allowing them to use estimates of log 𝑝(𝜏 ; 𝑥)
in place of log 𝑝(𝜏 ; 𝑥). The estimates are obtained using encapsulated randomness 𝜔 ∈ Ω
that is used internally by the data type operations but is not part of the choice dictionary
𝜏 and cannot be read from the trace directly.

Using auxiliary variable and pseudo-marginal Monte Carlo arguments, it is possible to
show that the resulting generative functions can be used within inference algorithms in the
same ways that generative functions that compute log 𝑝(𝜏 ; 𝑥) exactly can be used, without
invalidating the asymptotic properties of the algorithms. This includes as components in
generative models and as components in proposal distributions. The construction given in
this section allows Gen users to express, in a modular and compositional way, a wide array
of pseudo-marginal Monte Carlo inference algorithms.

Definition 4.5.1 (Encapsulated randomness). A generative function 𝒫 with encapsulated
randomness is a tuple 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞, Ω, �̊�, �̊�); where (𝑋, 𝑌, 𝑝, 𝑓, 𝑞) is a generative function
with an internal proposal family1, �̊� and �̊� are families of probability densities on 𝜔 ∈ Ω
(with respect to some 𝜎-finite reference measure 𝜈 on Ω) such that �̊�(𝜔; 𝑥, 𝜏 ) > 0 if and
only if �̊�(𝜔; 𝑥, 𝜏 ) > 0 for all 𝑥, 𝜏 such that 𝑝(𝜏 ; 𝑥) > 0. A trace t of such a generative
function is a tuple (𝒫, 𝑥, 𝜏 , 𝜔) where (𝒫, 𝑥, 𝜏 ) are as defined earlier, and where 𝜔 ∈ Ω
satisfies �̊�(𝜔; 𝑥, 𝜏 ) > 0.

Generative functions with encapsulated randomness behave like generative functions
without encapsulated randomness, except that in each of their operations, the density on
choice dictionaries 𝑝(𝜏 ; 𝑥) is replaced with an estimate 𝜉(𝑥, 𝜏 , 𝜔) where 𝜔 ∈ Ω is a value of
the encapsulated randomness.

Definition 4.5.2 (Choice density estimate). For a generative function 𝒫 with encapsulated
randomness, the choice density estimate is a function 𝜉 of 𝑥, 𝜏 and 𝜔 such that 𝑝(𝜏 ; 𝑥) > 0

1Except that here, that 𝑓 is a function of 𝑥, 𝜏 , and 𝜔 for 𝜔 ∈ Ω instead of just 𝑥 and 𝜏 .

155



and �̊�(𝜔; 𝑥, 𝜏 ) > 0 and is given by:

𝜉(𝑥, 𝜏 , 𝜔) := 𝑝(𝜏 ; 𝑥)�̊�(𝜔; 𝑥, 𝜏 )
�̊�(𝜔; 𝑥, 𝜏 ) (4.2)

Example: Encapsulated randomness is a generalization A generative function
without encapsulated randomness is equivalent to a generative function with encapsulated
randomness that has a trivial set of possible values for encapsulated randomness Ω = {⊥}
and �̊�(⊥; 𝑥, 𝜏 ) = �̊�(⊥; 𝑥, 𝜏 ) = 1.

Encapsulated randomness and unbiased estimators We can gain some intuition
about Ω, �̊� and �̊� by interpreting them as components of estimators of the choice density
𝑝(𝜏 ; 𝑥) that satisfy certain properties. In particular, note that sampling the encapsulated
randomness 𝜔 from �̊� and evaluating the choice density estimate gives an unbiased estimate
of the choice density 𝑝(𝜏 ; 𝑥):

E𝜔∼�̊�(·;𝑥,𝜏 ) [𝜉(𝑥, 𝜏 , 𝜔)] = 𝑝(𝜏 ; 𝑥) (4.3)

Similarly, sampling the encapsulated randomness 𝜔 from �̊�, and evaluating the reciprocal
of the choice density estimate gives an unbiased estimate of the reciprocal of the choice
density 𝑝(𝜏 ; 𝑥):

E𝜔∼�̊�(·;𝑥,𝜏 )

[︂ 1
𝜉(𝑥, 𝜏 , 𝜔)

]︂
= 1

𝑝(𝜏 ; 𝑥) (4.4)

Indeed, any non-negative and unbiased estimator of 𝑝(𝜏 ; 𝑥) can be used as the basis of
an encapsulated randomness construction. The inputs to the estimator are 𝑥 and 𝜏 . The
internal randomness used in the estimator is 𝜔 and �̊�(·; 𝑥, 𝜏 ) is the distribution on this
randomness, and 𝜉(𝑥, 𝜏 , 𝜔) ≥ 0 is the estimate returned for randomness 𝜔. Then, the
density �̊� in the encapsulated randomness construction is:

�̊�(𝜔; 𝑥, 𝜏 ) := 𝜉(𝑥, 𝜏 , 𝜔)�̊�(𝜔; 𝑥, 𝜏 )/𝑝(𝜏 ; 𝑥) (4.5)

which is a normalized probability density because∫︁
Ω

�̊�(𝜔; 𝑥, 𝜏 )𝜈(𝑑𝜔) =
∫︁

Ω
𝜉(𝑥, 𝜏 , 𝜔)�̊�(𝜔; 𝑥, 𝜏 )/𝑝(𝜏 ; 𝑥)𝜈(𝑑𝜔) = 𝑝(𝜏 ; 𝑥)/𝑝(𝜏 ; 𝑥) = 1 (4.6)

4.5.1 Extending the data type operations with encapsulated randomness

We now define the data type operations for generative functions with extended randomness.

Simulate Sample 𝜏 ∼ 𝑝(·; 𝑥) and 𝜔 ∼ �̊�(·; 𝑥, 𝜏 ). Return the trace t := (𝒫, 𝑥, 𝜏 , 𝜔)

Generate Sample 𝜐 ∼ 𝑞(·; 𝑥, 𝜎) and then set 𝜏 := 𝜐⊕(𝜎|𝐵) and 𝑝(𝜏 ; 𝑥) > 0 then sample
𝜔 ∼ �̊�(·; 𝑥, 𝜏 ). Return the trace t := (𝒫, 𝑥, 𝜏 , 𝜔) and log 𝑤 := log(𝜉(𝑥, 𝜏 , 𝜔)/𝑞(𝜐; 𝑥, 𝜎)).

156



Logpdf Given trace t = (𝒫, 𝑥, 𝜏 , 𝜔), return log 𝜉(𝑥, 𝜏 , 𝜔).

Update Given t = (𝒫, 𝑥, 𝜏 , 𝜔), compute (𝜏 ′, 𝜎′) = ℎupdate(𝜏 , 𝜎) as before, then sam-
ple 𝜔′ ∼ �̊�(·; 𝑥′, 𝜏 ′). Return a new trace t′ = (𝒫, 𝑥′, 𝜏 , 𝜔′) and the log weight log 𝑤 :=
log(𝜉(𝑥′, 𝜏 ′, 𝜔′)/𝜉(𝑥, 𝜏 , 𝜔)) The other return values are the same as previously.

Regenerate Given t = (𝒫, 𝑥, 𝜏 , 𝜔). As before let 𝜎 := 𝜏 |𝑆c and sample 𝜐 ∼ 𝑞(·; 𝑥′, 𝜎)
and let 𝜏 ′ := 𝜐 ⊕ (𝜎|𝐵) for some 𝐵 such that 𝑝(𝜏 ′; 𝑥′) > 0; and let 𝜎′ := 𝜏 ′|𝑆c . But also
sample 𝜔′ ∼ �̊�(·; 𝑥, 𝜏 ′). Return a new trace t′ = (𝒫, 𝑥′, 𝜏 , 𝜔′) and the log weight

log 𝑤 := log 𝜉(𝑥′, 𝜏 ′, 𝜔′)𝑞(𝜐′; 𝑥, 𝜎′)
𝜉(𝑥, 𝜏 , 𝜔)𝑞(𝜐; 𝑥′, 𝜎) (4.7)

The other return values are the same as previously.

Example: A mixture of normal distributions Consider a generative function that
makes a single random choice at address 𝑎, which is distributed according to a mixture of an
countably infinite collection of normal distributions with means 𝜇𝑖 and standard deviations
𝜎𝑖 and proportions 𝜋𝑖 such that

∑︀∞
𝑖=1 𝜋𝑖 = 1:

𝑝(𝜏 ) :=
∞∑︁

𝑖=1
𝜋𝑖 · 𝑝norm(𝜇𝑖,𝜎𝑖)(𝑦) for 𝜏 = {𝑎 ↦→ 𝑦} and zero otherwise (4.8)

(there are no arguments 𝑥). Consider Ω := {1, 2, . . . , } and �̊� given by:

�̊�(𝜔; 𝜏 ) :=
𝜋𝜔 · 𝑝norm(𝜇𝜔 ,𝜎𝜔)(𝜏 [𝑎])∑︀∞
𝑖=1 𝜋𝑖 · 𝑝norm(𝜇𝑖,𝜎𝑖)(𝜏 [𝑎]) (4.9)

and any proposal distribution �̊�(𝜔; 𝜏 ) such that �̊�(𝜔; 𝜏 ) > 0 for all 𝜔 ∈ Ω. Then, the choice
density estimate is:

𝜉(𝑥, 𝜏 , 𝜔) := 𝑝(𝜏 ; 𝑥)�̊�(𝜔; 𝑥, 𝜏 )
�̊�(𝜔; 𝑥, 𝜏 ) =

𝜋𝜔𝑝norm(𝜇𝜔 ,𝜎𝜔)(𝜏 [𝑎])
�̊�(𝜔; 𝑥, 𝜏 ) (4.10)

For example, for �̊�(𝜔; 𝑥, 𝜏 ) := 𝜋𝜔 the choice density estimate simplifies to 𝑝norm(𝜇𝜔 ,𝜎𝜔)(𝜏 [𝑎]).
Within 𝒫.generate(𝑥, 𝜏 ) where 𝜏 = {𝑎→ 𝑦}, this generative function will sample an in-
dex 𝜔 from the distribution 𝜋𝜔, resulting in trace t = (𝒫, 𝑥, 𝜏 , 𝜔). Subsequently, t.logpdf()
will return log 𝑝norm(𝜇𝜔 ,𝜎𝜔)(𝑦). Within 𝒫.simulate(𝑥), we sample 𝜔 from a discrete prob-
ability distribution with probability 𝜋𝜔 and then we sample 𝑦 ∼ 𝑝norm(𝜇𝜔 ,𝜎𝜔)(·), and set
𝜏 := {𝑎 ↦→ 𝑦}. Note that this is observationally equivalent to sampling 𝜏 ∼ 𝑝(·; 𝑥) and
then 𝜔 ∼ �̊�(·; 𝑥, 𝜏 ). A subsequent call to t.logpdf() will also return log 𝑝norm(𝜇𝜔 ,𝜎𝜔)(𝑦).

Observational equivalence for sampling encapsulated randomness in simulate
Typically we construct generative functions with encapsulated randomness such that it is
possible to sample 𝜔 ∼ �̊�(·; 𝑥, 𝜏 ) efficiently but where it is not possible to sample 𝜔 ∼

157



�̊�(·; 𝑥, 𝜏 ) efficiently. The example above illustrates this—sampling from �̊� using a standard
approach of computing the normalizing constant in Equation (4.9) is not possible in general
because it requires summing over an infinite set of 𝜔. While it is not possible to sample 𝜔
from �̊� for a specific value of 𝜏 , it is often possible to efficiently sample (𝜏 , 𝜔) jointly such
that their joint distribution is identical to that of 𝜏 ∼ 𝑝(·; 𝑥) and 𝜔|𝜏 ∼ �̊�(·; 𝑥, 𝜏 ). As in the
example above, this is often achieved by sampling 𝜔 first from the marginal distribution,
and then sampling 𝜏 from its conditional distribution given 𝜔.

The encapsulated randomness densities need not be individually evaluable Note
that it is not required to efficiently evaluate either �̊�(𝜔; 𝑥, 𝜏 ) or �̊�(𝜔, 𝑥, 𝜏 ) and implemen-
tations of the data types often do not compute these values internally. Instead, they only
need to compute the choice density estimate in Equation (4.2) efficiently, which due to can-
cellation of factors, can be straightforward when evaluating �̊�(𝜔; 𝑥, 𝜏 ) and �̊�(𝜔, 𝑥, 𝜏 ) is not.
This property gives the data types substantial flexibility that is exercised in the following
construction.

4.5.2 Untraced random choices

Modeling languages like Gen’s DML can run general-purpose code, including code for which
the source code is not available and is not analyzed or instrumented by the modeling lan-
guage compiler (for example, calling a Julia function). What if this black-box code code
is stochastic? Encapsulated randomness can be used to formally model this setting. We
call random choices that are made by a probabilistic program but not annotated with a
choice dictionary address untraced random choices. Probabilistic programs in languages
like Gen’s DML can still define valid generative functions, even in the presence of untraced
randomness choices, by modeling all of the untraced random choices as part of the encap-
sulated randomness 𝜔, and by using forward sampling to define �̊�(·; 𝑥, 𝜏 ). For example,
consider a generative function composed of (i) sampling a random choice at address 𝑎 from
a distribution 𝑝1(·), (ii) passing the value for 𝑎 into a call to stochastic black-box code
that makes untraced random choices 𝜔 sampled from 𝑝2(·; 𝜏 [𝑎]), and (iii) sampling another
random choice at address 𝑏 from a distribution 𝑝3(·; 𝜏 [𝑎], 𝜔) that depends on the result of
the black-box code and the value for 𝑎:

𝑎 𝜔 𝑏

Suppose, for the sake of simpler notation, that 𝑎, 𝜔, and 𝑏 are discrete. Then, the probability
distribution on choice dictionaries for the resulting generative function is:

𝑝(𝜏 ; 𝑥) := 𝑝1(𝜏 [𝑎])
∑︁
𝜔∈Ω

𝑝2(𝜔; 𝜏 [𝑎])𝑝3(𝜏 [𝑏]; 𝑎, 𝜔) (4.11)

Let �̊� be the conditional distribution of 𝜔 given 𝑎 and 𝑏:

�̊�(𝜔; 𝑥, 𝜏 ) := 𝑝2(𝜔; 𝜏 [𝑎])𝑝3(𝜏 [𝑏]; 𝑎, 𝜔)∑︀
𝜔′∈Ω 𝑝2(𝜔′; 𝜏 [𝑎])𝑝3(𝜏 [𝑏]; 𝑎, 𝜔′) (4.12)

158



Let �̊� be the distribution of forward sampling 𝜔:

�̊�(𝜔; 𝑥, 𝜏 ) := 𝑝2(𝜔; 𝜏 [𝑎]) (4.13)

Then, the choice density estimate (Equation (4.2)) simplifies to:

𝜉(𝑥, 𝜏 , 𝜔) = 𝑝1(𝜏 [𝑎])𝑝3(𝜏 [𝑏]; 𝜏 [𝑎], 𝜔) (4.14)

The DML source code below shows an example of this pattern, when foo_simulator is a
black-box stochastic Julia function.

@gen function with_untraced()
a ∼ bernoulli(0.5)
result = foo_simulator(a)
b ∼ bernoulli(if (result > 0.6) 0.1 else 0.9)

end

Note that for DML code to define a valid generative function, untraced random choices
cannot influence control flow, because this can result in densities on choice dictionaries
that are not structured (Definition 2.1.3).

4.5.3 Pseudo-marginal Monte Carlo methods and encapsulation

The encapsulated randomness of a generative function can be constructed from estimators
of 𝑝(𝜏 ; 𝑥), including Monte Carlo methods like importance sampling, annealed importance
sampling, and more generally sequential Monte Carlo. When the resulting generative func-
tion is used as a generative model (or a component in a generative model) with the inference
procedures of Section 3, Section 4.2, and Section 4.3, we recover many pseudo-marginal
Monte Carlo algorithms [4] from the computational statistics literature, including parti-
cle Markov chain Monte Carlo [6]. These algorithms retain the asymptotic guarantees of
regular Monte Carlo algorithms, but can be more efficient. Also, Gen’s encapsulated ran-
domness construction makes the auxiliary variable arguments that form the basis of these
algorithms readily apparent.

Example: Pseudo-marginal Metropolis-Hastings The class of Metropolis-Hastings
kernels can be generalized into the class of pseudo-marginal Metropolis-Hastings kernels,
by using unbiased estimates of the data likelihood in place of the true data likelihood when
computing the acceptance probability in the Metropolis-Hastings algorithm. Implementing
Metropolis-Hastings (Section 3.4.2) using a generative function (𝒫) for the model that
employs encapsulated randomness results in a pseudo-marginal Metropolis-Hastings kernel.
Recall the acceptance probability from the Metropolis-Hastings procedure in Algorithm 5:

min
{︀
1, exp(log 𝑤 − s′.logpdf() + s.logpdf())

}︀
(4.15)

where log 𝑤 is the log weight returned by update and s and s′ are the forward and back-
ward proposal traces, respectively. When the model generative function uses encapsulated

159



randomness, the acceptance probability is:

min
{︂

1,
𝜉(𝑥, 𝜏 ′, 𝜔′)𝑞(𝜎; 𝑥, 𝜏 ′)
𝜉(𝑥, 𝜏 , 𝜔)𝑞(𝜎′; 𝑥, 𝜏 )

}︂
= min

{︂
1,

𝑝(𝜏 ′; 𝑥)�̊�(𝜔′; 𝑥, 𝜏 ′)𝑞(𝜎; 𝑥, 𝜏 ′)�̊�(𝜔; 𝑥, 𝜏 )
𝑝(𝜏 ; 𝑥)�̊�(𝜔; 𝑥, 𝜏 )𝑞(𝜎′; 𝑥, 𝜏 )�̊�(𝜔′; 𝑥, 𝜏 ′)

}︂
(4.16)

(here, 𝑝 is the density on choice dictionaries 𝜏 for the model generative function 𝒫, 𝑞 is
the density on choice dictionaries 𝜎 for the proposal generative function 𝒬 and �̊� is the
density on encapsulated randomness for 𝒫). It is straightforward to see that this is a
regular Metropolis-Hasting kernel but on an extended state space that includes 𝜏 as well
as auxiliary variables 𝜔. Similar auxiliary variable arguments can be used to justify various
Monte Carlo algorithms. When the estimator of 𝑝(𝜏 ; 𝑥) is constructed from a sequential
Monte Carlo (SMC) algorithm, pseudo-marginal Metropolis-Hastings reduces to the particle
marginal Metropolis-Hastings [6] (PMMH) algorithm. The encapsulated randomness 𝜔
then contains a particle system of a sequential Monte Carlo algorithm, which includes all
particles at all time steps and all of the ancestor choices, and 𝜉(𝑥, 𝜏 , 𝜔) is the (unbiased)
SMC estimate of 𝑝(𝜏 ; 𝑥) that results from a particle system 𝜔, �̊�(·; 𝑥, 𝜏 ) is the distribution
on the particle system that represents the sampling process within SMC, and �̊�(·; 𝑥, 𝜏 ) is
the distribution on the particle system that is sampled from during the conditional SMC
update [6] given retained particle 𝜏 .

It is possible to implement PMMH using Gen by (i) implementing the SMC estimator
using Gen’s inference procedures for SMC (e.g. Section 3.5), and then (ii) constructing a
generative function representing part of the generative model that internally uses the result-
ing SMC estimator, and (iii) applying the Metropolis-Hastings procedure (Section 3.4.2) to
the generative function for the resulting generative model.

4.5.4 Using encapsulated randomness inside proposal distributions

The pseudo-marginal constructions introduced in the previous section use encapsulated ran-
domness within the generative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞, �̊�, �̊�) that represents the model.
These algorithms invoke the operations 𝒫.generate, 𝒫.update, and 𝒫.regenerate
which all sample the encapsulated randomness from �̊�, and do not invoke 𝒫.simulate,
which samples the encapsulated randomness from �̊�. Consider instead the setting when 𝒫
is used as a proposal and not the model. It is also possible to employ encapsulated ran-
domness in a generative function that is used as a proposal within importance sampling,
SMC, or MCMC algorithms. These algorithms internally invoke 𝒫.simulate when 𝒫 is the
proposal, which involves sampling from �̊� and not �̊�. Like pseudo-marginal algorithms, the
resulting algorithms can also be justified as instances of the original algorithm templates,
but on an extended space of auxiliary variables [30]. Note that the desiderata for �̊� and �̊� are
somewhat modified in this setting. For example, in importance sampling when the model
uses an encapsulated randomness with densities �̊� and �̊�, the the efficiency of the resulting
algorithms depends on DKL(�̊�(·; 𝑥, 𝜏 )||̊𝑞(·; 𝑥, 𝜏 )) because �̊� extends the model density and �̊�
extends the proposal density, and because importance sampling efficiency depends on the
KL divergence from the model to the proposal [21]. When the proposal in importance sam-
pling uses encapsulated randomness with densities �̊� and �̊�, the efficiency of the resulting
algorithms depends on DKL(�̊�(·; 𝑥, 𝜏 )||�̊�(·; 𝑥, 𝜏 )), because �̊� extends the proposal density

160



and �̊� extends the model density.

4.6 Related Work

Selection MH and blocked Gibbs sampling The interface presented by selection
MH, where users select a set of variables to be updated conditioned on the values of other
variables, is similar to that of Gibbs sampling. The convenience of Gibbs sampling as
a mathematical framework for constructing samplers popularized the use of MCMC for
Bayesian networks [59] and motivated the development of the BUGS probabilistic pro-
gramming system [48]. The utility of Gibbs sampling is furthered by use of blocking [63], in
which groups of random variables are updated jointly, either to improve mixing, or to ex-
ploit parallelism. However, selection MH is more general than blocked Gibbs sampling—it
is well-defined for models with stochastic structure, and the internal proposal may or may
not sample from the exact conditional distribution. Note that selection MH does not itself
perform Gibbs sampling—it relies on either the modeling language implementation or the
user to derive and implement the conditional distributions, when possible.

Selection MH and subproblem MCMC in Venture The inference language of Ven-
ture [79] also includes an operator that applies a Metropolis-Hastings kernel based on
forward simulation, and an operator for Gibbs sampling, to a subset of random choices
defined by a subproblem selection [80]. Later work carefully formalized a more general
notion of subproblem MCMC [55] and characterized conditions for which compositional
MCMC algorithms based on subproblem selections are asymptotically sound. While these
works use a representation of a trace that includes dependency structure, and defines a
subproblem as the extent of a change including random choices that may go out of ex-
istence, Gen is formalized using probability distributions on choice dictionaries without
dependence structure, and the selection includes the set of random choices that the user
wants to change, corresponding to the ‘minimal subproblem’ in Venture. The encapsulation
of these details within the trace data type allows for the internal proposal distribution to be
overridden, generating heterogeneous proposal distributions that combine generic elements
like forward simulation with elements that specialize to structure in sub-models. This is
not supported by Venture. It may be possible to use implementations and analyses based
on traces with dependence structure in the implementation of specific modeling languages
that are complementary to Gen’s existing general-purpose modeling languages.

Forward sampling as an automatic proposal Forward sampling has long been used
in Bayesian networks as a default proposal mechanism within importance sampling, which
results in the likelihood weighting inference algorithm [66]. A likelihood weighting algo-
rithm for a more flexible class of open-universe generative models was later introduced for
the BLOG system [84]. The use of forward sampling as a generic proposal mechanism
for Monte Carlo algorithms in universal probabilistic programming systems dates at least
to Church [51], and has been the central MCMC proposal mechanism for all universal
sampling-based probabilistic programming systems since [52, 79, 130, 40], and the only

161



trans-dimensional MCMC mechanism in these systems. While Gen’s SML and DML mod-
eling languages use forward simulation for their generic internal proposal mechanisms, this
proposal is only provided as a default for users of Gen—users are able to replace forward
simulation with their own custom proposals as more performance is needed. Furthermore,
Gen allows users to seamlessly combine a combination of forward simulation and other
more efficient proposal mechanisms, either by implementing custom internal proposals for
fragments of generative models, or by combining external with internal proposals (within
sequential Monte Carlo and importance sampling). Finally, Gen is intended to be extended
with new modeling languages in which fragments of models with specialized structure im-
plement their more efficient internal proposals.

Encapsulation of inference logic with models in probabilistic programming There
is relatively little prior work on encapsulation of inference capabilities within components
of generative models in the context of probabilistic programming systems. The implemen-
tation of the Venture system [79] included a foreign function interface (FFI) for procedures
used in models. Although the intent of Venture’s FFI is similar to that of Gen’s abstract
trace data type (and served as an inspiration for Gen), Venture’s FFI provides a relatively
weak form of encapsulation. Foreign functions pass expressions to Venture’s main inter-
preter for evaluation, and changes to control flow within a foreign function require passing
data back to the Venture interpreter. Venture’s FFI is also significantly more complex—
even forward execution requires back-and-forth communication between Venture’s inter-
preter and the foreign function; in Gen the inference code simply calls simulate. Also,
whereas Venture allows a foreign function to possess an encapsulated ergodic MCMC ker-
nel that can only be applied atomically, Gen allows generative functions to possess internal
proposals, which can be combined seamlessly with the internal proposals from other parts
of the model or the user’s external proposals; and these proposals can be used in the context
of both MCMC and SMC algorithms.

Encapsulated randomness and pseudo-marginal methods Cusumano-Towner and
Mansinghka [29] described an early version of the encapsulated randomness construction
of Section 4.5, and in a later paper [30] we applied it to using probabilistic programs as
proposal distributions within Monte Carlo algorithms. We also applied a simplified version
of the encapsulated randomness construction to estimating the KL divergence between the
output distribution of two probabilistic programs (the paper introduces the algorithm as
a technique for estimating the divergence between KL two inference samplers, but it is
applicable to estimating the KL divergence between any two generative functions) [26].
The MetaPPL language [74] elaborates on the internal proposal family construction of this
chapter and distinguishes between two classes of internal proposals—one for use when the
generative function is used as a proposal and the other for use when the generative function
is used as a model.

The encapsulated randomness construction allows a number of auxiliary variable algo-
rithms described in the computational statistics literature to be implemented in a modular
and compositional manner using probabilistic programming languages. Pseudo-marginal

162



MCMC [4] is a broad family of MCMC algorithms that use unbiased estimates of likeli-
hoods in place of intractable likelihoods within acceptance probability calculations. Storvik
[117] describe a general family of auxiliary variable constructions for Metropolis-Hastings
that includes many that can be represented using encapsulated randomness and generative
functions. Particle marginal Metropolis-Hastings [6] is a class of pseudo-marginal MCMC
methods that use sequential Monte Carlo algorithms to estimate intractable densities or
likelihoods within the acceptance probability.

163



164



Chapter 5

Compiling Generative Function
and Trace Data Types from
Probabilistic Modeling Code

The previous chapters have shown that a wide variety of inference algorithms can be imple-
mented at a high-level of abstraction using generative functions and traces. This chapter
focuses on how traces and generative functions are implemented. Generative functions are
typically compiled from a modeling language so this chapter is primarily concerned with
language design and implementation (although as we will see, generative functions can be
constructed in other ways as well). Gen contains two built-in modeling languages that
strike different tradeoffs between ease-of-use and performance: Gen’s Dynamic Modeling
Language (DML) is simple to implement and easy for users to learn, but is inefficient.
Gen’s Static Modeling Language (SML) has a more complex implementation, and is more
complex to use, but enables significant asymptotic and constant-factor speedups for trace
operations relative to DML. Note that generative functions expressed in both DML and
SML can call arbitrary generative functions, including those compiled from other modeling
languages. More specialized and domain-specific modeling languages allow for even further
specialization and improved performance over SML. This chapter also introduces generative
function combinators that express common patterns of repeated computation and condi-
tional independence in models. The chapter ends with a discussion of how programmers
can hand-implement generative functions and traces that are specialized to their model for
further improvements in performance. Because each of these approaches to defining models
generates the same abstract data types, programmers can easily move between approaches
and dynamically adjust their balance between ease-of-use and performance. The lifecycle
of modeling code, generative functions, and traces is shown figure 5-1.

5.1 The Dynamic Modeling Language compiler

The dynamic modeling language (DML) that was introduced in Section 2.2.1 is a Turing-
universal probabilistic modeling language that is embedded in the Julia programming lan-

165



Probabilistic
Program

Generative Function and Trace Data Types
𝒫 .simulate 𝒫 .generate
t.update t.regenerateCompiler

(a) Compile-time
Generative
Function
𝒫

Trace
t

Trace
t′

𝒫 .simulate
𝒫 .generate

t.update
t.regenerate

(b) Run-time

Figure 5-1: Lifecycle of probabilistic source code, generative functions, and traces

guage [12]. It includes all the control flow features of Julia itself, such as while loops and
recursion. This section describes the implementations of the generative function and trace
ADTs produced by the DML compiler. The compiler does not attempt to specialize the
implementations of the data types to a particular model: The trace data structure is generic
and based on Julia dictionaries, where keys are addresses of random choices or calls to other
generative functions. All operations for the generative function and trace data types are
implemented via non-standard interpretations of the Julia code in the body of the function
definition. The non-standard interpretations are implemented by transforming the body of
the generative function and replacing random choice expressions and generative function
call expressions with calls to an effect handler that is specific to the operation being imple-
mented. The language implementation performs no static dependency analysis or dynamic
dependency tracking—every operation involves a full end-to-end execution of the body of
the generative function. With the exception of random choice expressions, the body of the
function is not instrumented, so the performance characteristics of the underlying Julia code
are preserved (Julia type inference and Julia JIT compilation is performed on the trans-
formed code). Therefore, its performance is asymptotically suboptimal for trace operations
that involve only a subset of the random choices in the trace (e.g. updating the value of a
small number of random choices, or requesting the gradient with respect to a small num-
ber of random choices). However, the DML is valuable because of (i) it provides a simple
readable reference implementation of the generative function and trace data types, (ii) its
similarity to Julia makes it very easy to learn and gives it predictable performance for new
users of Gen, and (iii) it is expressive in that complex stochastic control flow can be spec-
ified more concisely than using the more performant modeling languages and constructs
discussed later in this chapter. Finally, note that DML functions can invoke generative
function compiled from other modeling languages, and vice versa, so the tradeoffs that it
makes can be applied by users selectively to parts of their model.

166



5.1.1 Implementing generative functions and traces via effect handlers

The trace data type for DML generative functions is based on a dictionary that maps
addresses to records that either contain a value and log probability density (for random
choices), or an opaque trace data structure called a ‘subtrace’ (for calls to other generative
functions, discussed in Section 5.1.2). The trace also contains the arguments, return value,
and the log densities for each random choice and the total log densities for all the random
choices made under each generative function call, and the total log density across all random
choices. Each generative function and trace data type operation is implemented via a
non-standard interpretation of the body of the function with effect handlers that perform
specialized modifications to state depending on which operation is implemented.

Implementing the simulate and update operations Pseudocode for the DML im-
plementations of the simulate operation and the update operation are shown in Algo-
rithm 17. This code does not show the the effect handlers for calling other generative
functions, which will be discussed in Section 5.1.2. Each operation is implemented us-
ing two auxiliary procedures—one that initializes the state of the non-standard interpreter
(simulate-init, update-init) and another that implements an effect handler for random
choices expressions (simulate-handler, update-handler). The handlers take as input
the state of the interpreter (state), the address of a random choice (𝑎), and a probability
distribution of a random choice (dist), do some computation and update the state of the
interpreter, and then return a value for the random choice. The handlers are invoked when
executing the body of the code with 𝒫.exec, which takes the arguments to the generative
function (𝑥), the initial state of the interpreter (so it can be passed to handlers), and the
handler that should be used. Running 𝒫.exec serves to update the interpreter state, and
also produces the return value of the generative function body (ret). Next, a trace of the
generative function is constructed based on the state of the interpreter.

The state of the interpreter for simulate includes a dictionary of random choice values
(𝜏 ) and a dictionary of log probability densities (𝜆). The effect handler for simulate is
straightforward—it simply samples the value of the random choice from the given distri-
bution, stores the value in the dictionary 𝜏 , computes the log density and stores it in 𝜆,
and then returns the value back to the running program. When constructing the trace, we
use the notation t← (𝒫, 𝑥, 𝜏 ) to denote the assignment of abstract semantics to the trace
t (which, as defined in Section 2.3, consists of the generative function 𝒫, the arguments 𝑥,
and the dictionary of choices 𝜏 ). We denote implementation-specific information that is
recorded in the trace data structure using notation of the form t.𝜆← state.𝜆. This means
that we store the dictionary of per-choice log densities in the trace. Similarly we store the
return value of the generative function (t.𝑦 ← ret); the implementation of t.retval simply
returns the recorded value t.𝑦 and does not re-run the body of the function.

The interpreter for update is more complex. The state includes the dictionary that
will contain all choices in the new trace after exec returns (𝜏 ′), the new dictionary of log
densities (𝜆′), the dictionary of new random choice values (𝜎), and a dictionary that will
be the dictionary 𝜎′ that is the third return value of update after exec returns. The effect
handler update-handler first checks if there is an entry in 𝜎 for the address 𝑎. If there is,

167



then the value for the choice is set to 𝜎[𝑎]; otherwise the value is taken from the previous
trace (𝜏 [𝑎]). If neither 𝜎 nor 𝜏 contains an entry for 𝑎, then there is an error, because there
is no dictionary 𝜏 ′ = 𝜎 ⊕ (𝜏 |𝐵) for any 𝐵 for which 𝑝(𝜏 ′; 𝑥′) > 0 and update is undefined
(ℎupdate(𝜏 , 𝜎) = ⊥). (If there were such a 𝜏 ′ then the execution of the program that draws
values for random choices from 𝜏 ′ would result in the same sequence of program states as
an execution that draws values from 𝜎 ⊕ 𝜏 .) If there is a new value (𝜎[𝑎]) and a previous
value (𝜏 [𝑎]), then the previous value is stored in 𝜎′[𝑎]. After exec returns, we add the old
values (𝜏 [𝑎]) for any addresses that were not visited during the execution to 𝜎′. Intuitively,
these addresses are removed from the trace. Finally, we compute the previous and new
total log densities and the difference is log 𝑤 (the actual implementation stores the total log
density in the trace, but we omit this for simplicity). Note that the DML implementation
of update does not use the change hint 𝛿𝑋 for the change from 𝑥 and 𝑥′, and returns the
non-informative change hint 𝛿𝑌 = ⊥ for the change from the previous return value (t.𝑦) to
the new return value (t′.𝑦).

Algorithm 17 Pseudocode for DML implementations of simulate and update operations
procedure simulate-init( )

𝜏 ← {} ◁ Initialize dictionary for choices
𝜆← {} ◁ Initialize dictionary for log densities
state← (𝜏 , 𝜆)
return state

end procedure

procedure update-init(t = (𝒫, 𝑥, 𝜏 ), 𝜎)
𝜎′ ← {}; 𝜏 ′ ← {} ◁ Initialize dictionaries
𝜆′ ← {} ◁ Init. dictionary for new log densities
state← (𝜏 , 𝜏 ′, 𝜆′, 𝜎, 𝜎′)
return state

end procedure

procedure simulate-handler(state, 𝑎, dist)
val ∼ dist
state.𝜏 [𝑎]← val
state.𝜆[𝑎]← log 𝑝dist(val)
return val

end procedure

procedure update-handler(state, 𝑎, dist)
if 𝑎 ∈ 𝐴state.𝜎 then

val← state.𝜎[𝑎]
if 𝑎 ∈ 𝐴state.𝜏 then

state.𝜎′[𝑎]← state.𝜏 [𝑎]
end if

else if 𝑎 ∈ 𝐴state.𝜏 then
val← state.𝜏 [𝑎]

else
error ◁ ℎupdate(state.𝜏 , state.𝜎) = ⊥

end if
state.𝜆′[𝑎]← log 𝑝dist(val)
return val

end procedure

procedure 𝒫.simulate(𝑥)
state← simulate-init()
ret← 𝒫.exec(𝑥, state, simulate-handler)
t← (𝒫, 𝑥, state.𝜏 )
t.𝜆← state.𝜆
t.𝑦 ← ret
return t

end procedure

procedure (t = (𝒫, 𝑥, 𝜏 )).update(𝑥′, 𝛿𝑋 , 𝜎)
state← update-init(t, 𝜎)
ret← 𝒫.exec(𝑥′, state, update-handler)
t′ ← (𝒫, 𝑥′, state.𝜏 ′); t′.𝜆′ ← state.𝜆′

t′.𝑦 ← ret
for 𝑎 ∈ 𝐴state.𝜏 ∖𝐴state.𝜏 ′ do

state.𝜎′[𝑎]← state.𝜏 [𝑎]
end for
ℓ1 ←

∑︀
𝑎 ∈ 𝐴t.𝜆

(t.𝜆[𝑎])
ℓ2 ←

∑︀
𝑎 ∈ 𝐴state.𝜆′ (state.𝜆′[𝑎])

return (t′, ℓ2 − ℓ1, state.𝜎′,⊥)
end procedure

168



Implementing an internal proposal family using forward sampling Recall that
the internal proposal family of a generative function (Section 4.1) is a family of probability
distributions on choice dictionaries 𝜐 (with densities 𝑞(𝜐; 𝑥, 𝜎)) that ‘fill in’ a partially
specified set of random choices 𝜎 to form a complete trace. That is, merging 𝜐 with
some subset of 𝜎 results in a dictionary 𝜏 ′ = 𝜐 ⊕ (𝜎|𝐵) that encodes a possible complete
execution of the generative function (𝑝(𝜏 ′; 𝑥) > 0). The DML uses forward sampling for its
internal proposal family. In particular, the DML implementations of the generate and
regenerate (Algorithm 18) perform forward sampling.

First, consider generate, which is a more straightforward implementation of forward
sampling. The state for the interpreter for this operation stores the values and log densities
for each choice (𝜏 and 𝜆), and an accumulator (ℓ) for the log weight (log 𝑤). The handler
for random choices (generate-handler) first checks if address is provided in the input
dictionary 𝜎. If it is, it retrieves the value 𝜎[𝑎] and increments the log weight. Otherwise,
it samples the value from the given distribution, and does not increment the log weight.

The DML implementation of regenerate is more complex. The dictionary 𝜎 used
by the internal proposal is never explicitly constructed. Recall that it is derived from the
previous trace via 𝜎 = 𝜏 |𝐵c (that is, the set of all entries in the previous trace, less those
in the selection 𝐵). Note that 𝐴𝜎 = 𝐴𝜏 ∩ 𝐵c and therefore 𝐴c

𝜎 = 𝐴c
𝜏 ∪ 𝐵. The handler

(regenerate-handler) checks if the address is in 𝐴c
𝜏 ∪ 𝐵. If it is, then it samples the

value. Otherwise, it retrieves the value from 𝜏 and increments the log weight, using the
value of the log density for the address from the previous trace (state.𝜆). Note that
although the value of the choice is the same in the previous and new trace, its density
may be different because the distribution (dist) may have changed. Note that unlike in
the implementation of update, after the execution 𝒫.exec is finished, the set of choices
that were not visited is not referenced when computing the log weight. This is possible
because the contributions of the terms for these choices in log 𝑝(𝜏 ; 𝑥) and log 𝑞(𝜐′; 𝑥, 𝜎′) in
Equation (4.1) cancel.

Constructing generative functions with supportive probability densities Recall
that regenerate is only supported for generative functions whose probability densities
are supportive (Definition 2.1.7). It is possible to guarantee that the probability densities
𝑝(·; 𝑥) for generative functions defined in DML (and SML) are supportive by ensuring that
the support of the probability density at each address 𝑎 is 𝑉𝑎 for all executions that sample a
choice at the address. For example, consider the following two DML generative functions:

@gen function not_supportive(b)
a ∼ uniform_discrete(1, 10)
b ∼ uniform_discrete(1, a)

end

@gen function supportive()
a ∼ uniform_discrete(1, 10)
p = [if (i <= a) 0.9/a else 0.1/(10-a) end

for i in 1:10]
b ∼ categorical(p)

end

The distribution uniform_discrete(𝑙, 𝑢) where 𝑙 ≤ 𝑢 are integers is a discrete probability
distribution on the integers {𝑙, . . . , 𝑢}. The distribution categorical(p) where p ∈ R𝑘

is a normalized vector of probabilities is a discrete probability distributions on integers
{1, . . . , 𝑘}. The generative function defined on the left is not supportive because the support

169



at address b is not constant (e.g. the support is {1, 2} for 𝜏1 = {𝑎 ↦→ 2, 𝑏 ↦→ 2} and is
{1, 2, 3} for 𝜏2 = {𝑎 ↦→ 3, 𝑏 ↦→ 2} and 𝑝(𝜏1) > 0 and 𝑝(𝜏2) > 0. The generative function
on the right is supportive, because the support at address 𝑎 is {1, . . . , 10} and the support
at address 𝑏 is {1, . . . , 10} for all possible executions. Note that as in this example we can
approximate a non-supportive generative function by a supportive one by extending the
support but placing low probability mass on regions of the space that had zero support.
Intuitively, to see the relationship between supportive densities on choice dictionaries and
constant support for each address, consider running the implementation of generate in
Algorithm 18 for a generative function where the support of each address 𝑎 is constant (𝑉𝑎)
in all executions, and producing a trace with choices 𝜏 . Then 𝜏 has 𝜏 ∼ 𝜎 and positive
density (𝑝(𝜏 ) > 0) since the density is the product of individual densities 𝑝dist(val), which
are all necessarily positive.

Algorithm 18 Pseudocode for DML generate and regenerate operations
procedure generate-init(𝜎)

𝜏 ← {} ◁ Initialize dictionary for choices
𝜆← {} ◁ Initialize dictionary for log densities
ℓ← 0 ◁ Initialize log weight
state← (𝜏 , 𝜆, 𝜎, log 𝑤)
return state

end procedure

procedure regenerate-init(t = (𝒫, 𝑥, 𝜏 ), 𝐵)
𝜏 ′ ← {} ◁ Init. dictionary for new choices
𝜆′ ← {} ◁ Init. dictionary for new log densities
𝜆← t.𝜆 ◁ Previous log densities of choices
ℓ← 0 ◁ Initialize log weight
state← (𝜏 , 𝜏 ′, 𝜆, 𝜆′, ℓ)
return state

end procedure

procedure generate-handler(state, 𝑎, dist)
if 𝑎 ∈ 𝐴state.𝜎 then

val← state.𝜎[𝑎]
state.ℓ← state.ℓ + log 𝑝dist(val)

else
val ∼ dist

end if
state.𝜏 [𝑎]← val
state.𝜆[𝑎]← log 𝑝dist(val)
return val

end procedure

procedure regenerate-handler(state, 𝑎, dist)
if (𝑎 ̸∈ state.𝜏 ) ∨ (𝑎 ∈ state.𝐵) then

val ∼ dist
else

val← state.𝜏 [𝑎]
state.ℓ← state.ℓ+log 𝑝dist(val)−state.𝜆[𝑎]

end if
state.𝜏 ′[𝑎]← val
state.𝜆′[𝑎]← log 𝑝dist(val)
return val

end procedure

procedure 𝒫.generate(𝑥, 𝜎)
state← generate-init(𝜎)
ret← 𝒫.exec(𝑥, state, generate-handler)
t← (𝒫, 𝑥, state.𝜏 )
t.𝜆← state.𝜆
t.𝑦 ← ret
log 𝑤 ← state.ℓ
return (t, log 𝑤)

end procedure

procedure (t = (𝒫, 𝑥, 𝜏 )).regenerate(𝑥′, 𝛿𝑋 , 𝐵)
state← regenerate-init(t, 𝐵)
ret← 𝒫.exec(𝑥′, state, regenerate-handler)
t′ ← (𝒫, 𝑥′, state.𝜏 ′)
t′.𝜆← state.𝜆′

t′.𝑦 ← ret
log 𝑤 ← state.ℓ
return (t′, log 𝑤,⊥)

end procedure

Implementing the gradient operation using automatic differentiation Recall
that the gradient trace operation (Section 2.3) computes gradients of the log probabil-
ity density of all of the random choices (log 𝑝(𝜏 ; 𝑥)) with respect to the arguments to the
generative function and the values 𝜏 [𝑎] of a selected subset (𝑎 ∈ 𝐵) of the continuous

170



random choices. The DML implementation of this operation uses reverse-mode automatic
differentiation of the Julia code that forms the body of the function. Note that the deriva-
tive with respect to the value of a random choice at address 𝑎 has two additive terms—the
first is the gradient due to the probability density of the choice’s own distribution, and
the second is the gradient of any other choices (occurring later in the execution) whose
distribution parameters depend on the value at 𝑎. The gradient operation also accepts an
input gradient with respect to the return value, which enables gradient to be implemented
compositionally, as described next.

5.1.2 Invoking generative functions

A DML generative can invoke other generative functions, regardless of how the generative
function and trace data types for the other generative function were implemented. Recall
that like random choices, generative function calls are also associated with an address 𝑎.
Following the sequencing composition of generative functions in Section 2.1.5, all random
choices made by the callee are given addresses by the caller that are based on 𝑎 (in particular,
of the form (𝑎, 𝑏) where 𝑏 is the address of the choice according to the callee generative
function). The DML trace data structure stores the trace for each callee generative function
and the address 𝑎 for the call. These stored traces for callees are called subtraces. Each
of the data type operations for the caller DML generative function have an effect handler
that is analogous to the handlers in Algorithm 17 and Algorithm 18 but is invoked at
generative function call sites instead of at random choice call sites. The effect handlers for
most of the operations recursively invoke the same operation, but on the callee generative
function or subtrace. For example, suppose we invoke 𝒫.generate(𝑥, 𝜎) for a generative
function 𝒫 that invokes another generative function ℛ. Suppose the generate effect
handler encounters a call to generative function ℛ at address 𝑎 with arguments 𝑧. Then
the effect handler invokes ℛ.generate(𝑧, 𝜎|𝐵) where 𝐵 contains all addresses of the form
(𝑎, 𝑏) for some 𝑏.

Example: Calling an SML generative function Consider the DML generative func-
tion foo, which invokes the SML generative function bar at address c:

@gen function foo()
a ∼ normal(0, 1)
b ∼ normal(a, 1)
c ∼ bar(b)
d ∼ normal(c, 1)
e ∼ normal(d, 1)

end

@gen (static) function bar(b)
w ∼ normal(b, 1)
x ∼ normal(w, 1)
y ∼ normal(x, 1)
z ∼ normal(z, 1)
return z

end

All traces of bar contain dictionaries 𝜏 with address {w, x, y, z} and all traces of foo contain
dictionaries 𝜏 with addresses {a, b, (c, w), (c, x), (c, y), (c, z), d, e}. Consider the operation

foo.generate(_, {(c, y) ↦→ 1.2, e ↦→ −4.3})

Suppose the execution of the body of foo reaches the third line with value 𝑏. Then the

171



effect handler for the call to bar at address m invokes bar.generate(𝑏, {y ↦→ 1.2}).

Sharing a trace with callee DML generative function To avoid collisions between
addresses of random choices, DML generative functions typically supply a distinct address
namespace for each call to a generative function as above. However, it is sometimes conve-
nient to use a ‘flat’ address space. This is permitted only for calls to other DML generative
functions, in which case there is no trace associated with the called generative functions—
its random choices and generative function calls are record in the same trace as the caller,
making this a type of trace inlining. This makes it possible to write recursive DML gener-
ative functions that walk data structures using a custom flat addressing schemes for nodes
in these data structures (e.g. associating an integer with each node in a binary tree), and
avoid excessively hierarchical addresses (the recurse combinator, discussed later in this sec-
tion automates this construction). Note that the user is responsible for indicating whether
or not a call to another DML function should result in a new trace or should share the
caller’s trace, based on whether they provide an address or not.

Gradients and compositional automatic differentiation The DML implementation
of gradient first executes a (deterministic) forward pass of the function, reading values
of random choices from the trace instead of sampling them, and recording deterministic
values and random choices. During the forward pass, at each generative function call site,
the gradient operation is invoked for the trace of the callee, and the result is recorded
for use by a later backward pass. Note that this result includes gradients with respect to
the arguments to the callee, but may also include gradients with respect to random choices
made by the callee. Finally, a backward pass is performed and the results of gradient for
each callee are used. Note that because gradient is an abstract trace data type operation,
the callee’s implementation can use a completely different runtime system. For example,
the callee may use the TensorFlow runtime to implement gradient, whereas the caller
may be written in DML and use automatic differentiation of Julia code.

5.2 The Static Modeling Language compiler

Static Modeling Language Bayesian networks are a classical graphical modeling for-
malism based on directed acyclic graph where nodes are random variables, where the edges
in the graph indicate the static conditional independencies that hold for the model’s joint
distribution [66]. Like Bayesian networks, Gen’s Static Modeling Language (SML) uses
directed acyclic graphs, but generalizes Bayesian networks along several dimensions: (i)
random variables can be sampled from discrete and/or continuous distributions, (ii) de-
terministic nodes that compute arbitrary functions are supported, (iii) nodes in the graph
can represent generative functions (which themselves encode a joint distribution over a col-
lection of random variables, including distributions where the number of variables is itself
random). SML can also be seen as a subset of DML designed to support straightforward
static analysis. The central restriction of SML relative to DML is that function bodies must
be static single assignment basic blocks, and addresses must be literal symbols and not ar-

172



bitrary dynamically computed values as in DML. These restrictions enable static inference
of the address space of random choices, which supports the generation of faster specialized
trace data structures; as well as static information flow and conditional independence anal-
ysis that supports efficient implementations of update and other trace operations. SML
is implemented in Julia but similar modeling languages can be implemented in other host
languages as well.

Consider the example SML generative function below, which models the destination of
an intelligent agent as they move around an environment with fixed obstacles. There a
uniform prior distribution (random_location) on the destination location, and the speed of
the agent is also unknown. The agent’s trajectory is modeled in two stages: First, a Julia
function (plan_path) is used to plan a path from the starting location of the agent (which
is an argument and is assumed known) to the destination. Then, a generative function
(noise_model) generates the trajectory of the agent given the agent’s speed and the amount
of noise in the trajectory, which are both latent variables. The (static) annotation in the
function signature indicates that the SML compiler should be used.

@gen (static) function agent_model(start_location, num_time_steps)
destination ∼ random_location()
path = plan_path(start_loc, destination)
speed ∼ uniform(0, 1)
noise ∼ uniform(0, 0.1)
trajectory ∼ noise_model(path, num_time_steps, speed, noise)

end

Graph-based intermediate representation The SML compiler generates an interme-
diate representation (IR) based on a directed acyclic graph with different nodes types for (i)
arguments to the generative function, (ii) random choices, (iii) Julia expressions, and (iv)
calls to generative functions. Random choice nodes include the distribution family, address,
and references to other nodes that are parameters to the distribution family. Julia expres-
sion nodes include an anonymous Julia function that computes their value, and references
to other nodes that represent the unbound symbols in the expression. Generative function
call nodes include a reference to the generative function being called and the address under
which the callee’s random choices will be placed. Figure 5-2 diagrams the intermediate
representation for the SML function agent_model above. The intermediate representation
is used at compile-time to generate a trace data structure specialized to the SML generative
function, using a Julia record type (struct) with entries for each random choice and entries
that contain the subtrace for each callee generative function.

Implementing the generative function and trace operations Code for each of the
generative function and trace operations is generated from the graph-based intermediate
representation. While code for some of the operations is generated statically, exploiting the
conditional independence structure that is recorded in the graph when implementing an
operation requires analyzing the graph in the context of the arguments to the operation.
Consider the update operation, which takes as inputs new arguments 𝑥′, a change hint
𝛿𝑋 for the arguments, and a dictionary 𝜎 of new values for random choices. The set of

173



start_location
(Argument)

num_time_steps
(Argument)

destination
(Random choice)

path
(Julia function call)

speed
(Random choice)

noise
(Random choice)

trajectory
(Generative function call)

Figure 5-2: SML intermediate representation for a generative model

keys in 𝜎 and the change hint 𝛿𝑋 determine, together with the static graph structure,
which statements in the program need to be re-evaluated and which do not. For example,
for agent_model, if 𝛿𝑋 = ⊤ (indicating that the arguments have not changed) and if 𝜎 =
{noise ↦→ 0.5}, it is not necessary to re-evaluate the Julia function plan_path because none
of its inputs changed, but it is necessary to recursively invoke update on the subtrace of
noise_model because one of its inputs changed. But if 𝛿𝑋 = ⊥, indicating that there may
be an arbitrary change to the arguments, then both plan_path and noise_model need to be
revisited. Determining what code is necessary to re-execute based on a joint analysis of the
static graph, 𝛿𝑋 , and 𝐴𝜎,must happen dynamically. To reduce the overhead, we use a type
system for 𝛿𝑋 and 𝐴𝜎 and only perform the analysis and code generation once for each
operation applied to each unique combination of types. The types include the information
that is necessary to perform the analysis—for 𝛿𝑋 the type indicates whether each argument
may have changed or not. For 𝐴𝜎 the type indicates which subset of the the top-level
addresses (in the example destination, speed, noise, or trajectory) are represented in
𝐴𝜎. The function caching and lookup based on these types are performed by Julia’s JIT
compiler, and the code generation is implemented using an extension to Julia’s JIT compiler.

Example: Exploiting static model structure to avoid recomputation Consider an
MCMC algorithm for inference over the destination given the observed trajectory, using the
generative model agent_model. The algorithm uses a composite MCMC kernel that cycles
through three Metropolis-Hastings MCMC kernels, each of which updates the value of one
of the latent random choices (destination, noise, and speed respectively). The SML trace
implementation, which is specialized to the conditional independence pattern of the model,
avoids an unnecessary re-evaluation of the plan_path function when either the noise or
speed variables are update (c). Table 5.1 shows a comparison of different implementations
of this algorithm, for 1000 iterations of the composite cycle kernel. The plan_path procedure

174



is computationally intensive and dominates the running time of the algorithm. The SML
implementation only re-executes plan_path during one of the three constituent kernels (the
kernel for destination), whereas a DML implementation and a Turing [40] re-execute it
within all three kernels because they do not exploit the independence of speed and path or
noise and path. The SML gives a roughly threefold speedup over the DML implementation,
and both implementations outperform the Turing implementation.

Implementation Running time (for 1000 steps)
Gen (DML) 0.73s (±0.01)
Gen (SML) 2.50s (±0.08)
Turing 4.21s (±0.13)

Table 5.1: Performance of different implementations of an MCMC inference algorithm

Propagating change hints through Julia code Recall that the change hint 𝛿𝑋 pro-
vides information about how the arguments of a generative function changed (from 𝑥 to 𝑥′)
to the trace operations update and regenerate. As described above, the SML compiler
uses an over-approximation of the change hint at compile time to help statically identify
parts of the body that do not need to be re-executed. But the code that SML generates
also propagates change hints themselves dynamically through the body of the function.
For calls to generative functions, this is straightforward, because the trace operations of
the callee consume a change hint and return a change hint for their return value, which can
be propagated forward. Propagating change hints through Julia code requires performing
a non-standard abstract interpretation of the Julia code. This is currently implemented via
function overloading, but other implementation techniques are also possible. The ability
to propagate change hints through Julia code to the inputs of callee generative functions
is important for achieving asymptotically efficient updates using the generative function
combinators described in the next section.

5.3 Generative function combinators for control flow

Probabilistic models with large numbers of random variables often arise in practice from
patterns of repeating computation that possess conditional independencies that can be char-
acterized statically and used to devise efficient inference algorithms. This fact is reflected in
existing template-based representations like ‘plates’, which represent mutually conditionally
independent groups of random variables and dynamic Bayesian networks, which represent
repeated application of a fragment of a probabilistic model [66]. This section shows how
generative functions for models with large numbers of random choices can be constructed
from other generative functions via generative function combinators—functions that, given
one or more input generative functions, return a generative function. The generative func-
tion combinators introduced in this section describe common patterns of structured control
flow. Each combinator uses its own implementation of the generative function and trace
data types that is specialized to the static pattern of conditional independence in the

175



probability distributions that it represents. This section gives three examples, shown in
Figure 5-3: (i) a generative function that maps another generative function independently
across a vector of inputs (appropriate for modeling independently distributed data), (ii)
a generative function that ‘unfolds’ another generative function (appropriate for modeling
sequential processes like dynamic Bayesian networks), and (iii) a generative function that
implements a basic pattern of recursion (appropriate for modeling processes like proba-
bilistic context free grammars). Note that although these combinators share names with
familiar higher-order functions from functional programming in some cases (e.g. ‘map’,
‘unfold’), they are not generative functions themselves.

input output

𝑥2𝑋

𝑥1𝑋

𝑥3𝑋

𝑦2 𝑌

𝑦1 𝑌

𝑦3 𝑌

𝒫

𝒫

𝒫

(a) Map generative function combinator

input

𝑦0𝑌

𝑧𝑍

𝑛𝑁

(𝑛 = 3)

output

𝑦2𝑌𝑦1𝑌 𝑦3𝑌

𝒫 𝒫 𝒫

(b) Unfold generative function combinator

𝑥 𝑋

𝒫p

𝑋 𝑋𝑉

𝒫p 𝒫p

𝑋 𝑋𝑉 𝑉

𝒫p 𝒫p

𝑉 𝑉

input

𝑦 𝑌

𝒫r

𝑌 𝑌𝑉

𝒫r 𝒫r

𝑌 𝑌𝑉 𝑉

𝒫r 𝒫r

𝑉 𝑉

output

(c) Recurse generative function combinator

Figure 5-3: Generative function combinators for common control flow patterns

Map combinator The Map combinator (Figure 5-3a) constructs a generative function
𝒫 ′ = (𝑋 ′, 𝑌 ′, 𝑝′, 𝑓 ′, 𝑞′) that independently applies a generative function 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞)
to each element of a vector of inputs (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 ′ := ⊔∞

𝑚=0𝑋𝑚 and returns a vector
of outputs (𝑦1, . . . , 𝑦𝑛) ∈ 𝑌 ′ := ⊔∞

𝑚=0𝑌 𝑚 where ⊔ denotes disjoint union. Each application
of 𝒫 is assigned an address namespace 𝑖 ∈ {1 . . . 𝑛}. The trace data structure of the
resulting generative function 𝒫 stores a vector of subtraces, one for each application of 𝒫.
The implementation of update for 𝒫 ′ only makes recursive calls to trace operations for
the inner generative function 𝒫 for those applications 𝑖 for which the choice dictionary 𝜎
contains addresses under namespace 𝑖, or for which 𝑥𝑖 ̸= 𝑥′

𝑖. Similarly, the implementation
of regenerate recursively only invokes regenerate on subtraces for which there exists
an address of the form (𝑖, 𝑏) in the selected set 𝐵 or for which 𝑥𝑖 ̸= 𝑥′

𝑖. These operations
use the change hint 𝛿𝑋 to determine which applications 𝑖 have 𝑥𝑖 ̸= 𝑥′

𝑖 without requiring a
full scan over all 𝑖, and they can pass through change hints to individual applications if 𝛿𝑋

contains this information.

176



Unfold combinator The Unfold combinator (Figure 5-3b) constructs a generative func-
tion 𝒫 ′ = (𝑋 ′, 𝑌 ′, 𝑝′, 𝑓 ′, 𝑞′) that applies a generative function 𝒫 repeatedly in sequence.
Unfold generalizes dynamic Bayesian networks, a common building block of probabilistic
models, by representing a Markov chain with state-space 𝑌 and transition 𝒫 from 𝑌 ×𝑍 to
𝑌 . The generative function 𝒫 maps (𝑦, 𝑧) ∈ 𝑌 × 𝑍 to a new state 𝑦′ ∈ 𝑌 . The generative
function produced by this combinator takes as input the initial state 𝑦0 ∈ 𝑌 , parameters
𝑧 ∈ 𝑍, and the number of Markov chain steps 𝑛 to apply (that is 𝑋 ′ := 𝑌 ×𝑍×{1, 2, . . .}).
Each callee application is given an address namespace 𝑖 ∈ {1 . . . 𝑛}. Starting with ini-
tial state 𝑦0, Unfold repeatedly applies 𝒫 to each state and returns the vector of states
(𝑦1, . . . , 𝑦𝑛) ∈ 𝑌 ′ := ⊔∞

𝑚=0𝑌 𝑚. The trace data structure of the resulting generative func-
tion stores a vector of subtraces, one for each application of 𝒫. The combinator’s im-
plementation of the the abstract data operations exploits the conditional independence of
applications 𝑖 and 𝑗 given the return value of an intermediate application 𝑙, where 𝑖 < 𝑙 < 𝑗.
The change hint values 𝛿𝑌 returned by the applications of 𝒫 each 𝑖 are used to determine
which applications require a recursive call to the data type operations for the subtraces.

Recurse combinator The Recurse combinator (Figure 5-3c) takes two generative func-
tion, a production function 𝒫p and a reduction function 𝒫r, and returns a generative function
𝒫 ′ = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞) that (i) recursively applies 𝒫p to produce a tree of values, then (ii) recur-
sively applies 𝒫r to reduce this tree to a single return value. Recurse is used to implement
recursive computation patterns including probabilistic context free grammars, which are
a common building block of probabilistic models [38, 54, 65]. Letting 𝑏 be the maximum
branching factor of the tree, 𝒫p maps 𝑋 to 𝑉 × (𝑋 ∪ {⊥})𝑏 and 𝒫r maps 𝑉 × (𝑌 ∪ {⊥})𝑏

to 𝑌 , where ⊥ indicates no child. The update implementation uses change hint values 𝛿𝑋

from the production and reduction functions to determine which subset of production and
reduction applications require a recursive call to update.

A recursive DML function that is semantically equivalent to that produced by the
Recurse combinator is shown on the left below. The function invokes generative functions
production and reduction (definitions not shown). The right-hand side shows Julia code
that generates a semantically equivalent generative function using the Recurse combinator.

@gen function f(x)
(v, xs) = ({:prod} ∼ production(x))
ys = Dict()
for i in 1:length(xs)

ys[i] = ({i} ∼ f(xs[i]))
end
y = ({:red} ∼ reduction(v, ys))
return y

end

f = Gen.Recurse(production, reduction)

A particle filtering benchmark Table 5.2 shows a performance comparison of sev-
eral implementations of particle filtering (Section 3.5) for object tracking using a nonlinear
state-space model. An object is assumed to move along a piecewise-linear path at con-

177



stant speed with Gaussian noise added to the distance traveled at each time step. The
measurement model also assumes additive Gaussian noise. The task is to track the object
over time along its assumed path. We evaluated two particle filtering inference algorithms
implemented in Gen using the Unfold combinator. The first uses a generic proposal distri-
bution based on forward sampling, which is the automatically generated internal proposal
family (Section 4.1). The second uses custom proposal derived by manual analysis of the
model and expressed in Gen’s DML (Section 3.5). We compared these implementations
to particle filtering implementations in Turing [40], Anglican [130], and Venture [79], none
of which supported custom particle filtering proposals. The results show that the custom
proposal gives accurate results in an order of magnitude less time than the generic proposal.
Furthermore, the Gen implementation using the generic proposal significantly outperforms
the Anglican, Turing, and Venture implementations of the same algorithm. Note that each
of these implementations scales linearly in the number of time steps, whereas an algorithm
implemented using only Gen DML and without Unfold would scale quadratically in the
number of time steps because each time step would require a full end-to-end execution
execution as part of the update operation. The running time is measured as the me-
dian runtime across multiple replicates required to achieve a mean log marginal likelihood
estimate above a threshold within two nats of a gold-standard estimate.

Implementation Proposal distribution Running time
Gen (DML + Unfold) Custom 4.9ms (±0.07)
Gen (DML + Unfold) Generic 82ms (±3.6)
Anglican Generic 275ms (±11)
Turing Generic 1174ms (±25)
Venture Generic > 106ms

Table 5.2: Performance comparison of particle filtering implementations

A structure inference benchmark Table 5.3 shows a performance comparison for
MCMC inference in a Gaussian process structure learning model based on a fully Bayesian
adaptation [113, 109] of the model of [77]. The task is to infer the covariance function
of a Gaussian process (GP) model of a time series data set, where the prior on covariance
functions is defined using a probabilistic context free grammar (PCFG). The MCMC kernel
is a trans-dimensional kernel that modifies the parse tree of the PCFG. We evaluated a Gen
implementation of the kernel with and without the Recurse combinator, which automati-
cally caches intermediate covariance matrix computations. The Gen DML implementation
uses Julia recursion in DML to sample from the PCFG. The Gen ‘SML + DML + Recurse’
implementation uses SML for the top-level generative function, and a generative function
constructed by Recurse for the PCFG-based prior distribution on covariance functions, and
DML generative functions for the production and aggregation kernels that are passed into
the Recurse combinator. The Gen DML implementation gives a 40x speedup over Ven-
ture, even without using Recurse or SML, and performs comparably to a hand-coded Julia
implementation that does not cache intermediate covariance matrix computations. Using

178



SML and Recurse gives a 1.7x speedup over the handcoded implementation, due to the
Recurse combinator’s automatic reuse of cached intermediate covariance matrix computa-
tions, which is possible due to propagation of change hints within the tree of production and
reduction applications. Interestingly, the DML implementation outperforms the Venture
implementation, despite the fact that Venture’s backend avoids unnecessary recomputa-
tion via dynamic dependency tracking and the DML implementation does not. This is
explained by the high constant-factor overhead of Venture’s backend relative to Gen’s trace
data type implementations. Because Venture uses a single generic backend implementation,
in order to achieve asymptotically efficient updates, it implements fine-grained incremen-
tal computation for all code written in its modeling language. This leads to a complex
data structure for storing random choices and a dynamic dependency graph that has high
overhead. In contrast, because Gen uses abstract data types for traces, and allows for in-
teroperable and specialized implementations of these data types, Gen avoids the need for
fine-grained dynamic dependency tracking of arbitrary model code: Gen’s combinators (in
this case, Recurse) can achieve asymptotically efficient updates based on coarse-grained and
static patterns of conditional independence and the DML implementation does not need to
employ any dependency tracking, which vastly reduces constant-factor overhead.

Implementation Running time (per step)
Gen (SML + DML + Recurse) 2.57ms (±0.09)
Julia (handcoded) 4.73ms (±0.45)
Gen (DML) 6.21ms (±0.94)
Venture 279ms (±31)

Table 5.3: Performance of different implementations of a trans-dimensional MCMC kernel

A Bayesian robust regression benchmark We also benchmarked several inference
implementations applied to a Bayesian robust regression problem. The aim is to infer the
slope and intercept of a linear model of data from observations that include outliers. Ta-
ble 5.4 shows a comparison of Gen and Venture on an uncollapsed variant of the model that
contains explicit discrete random choices which indicate whether each data point is an inlier
or an outlier. A Gen implementation using SML and the Map combinator gives a >200x
speedup over Venture for two inference algorithms (Metropolis-Hastings moves on both
the parameters and the outlier indicator variables, and gradient-based optimization on the
parameters combined with Metropolis-Hastings moves on the outlier indicator variables).
The incremental computation optimizations enabled by the SML and the Map combinator
give a roughly 100x speedup over the DML implementation, which does not exploit incre-
mental computation and scales as 𝑂(𝑛2) where 𝑛 is the number of observed data points (𝑛
is ∼500 in the experiments). The ± values in the table indicate the inter-quartile range
across many runs of each step. Table 5.5 shows a comparison of a Gen implementation of
a Gaussian random walk Metropolis-Hastings algorithm with implementations in Anglican
and Venture for a collapsed variant of the model, where the discrete random choices for the
outlier indicators are manually eliminated from the model by summing them out. For each

179



implementation we measured the running time needed to exceed an accuracy threshold on
held-out data. The Gen implementation is 10x faster than the Anglican implementation
and many orders of magnitude faster than the Venture implementation.

Implementation Inference Algorithm Running time (per step)
Gen (SML + Map) Custom Metropolis Hastings 64ms (±1)
Gen (DML) Custom Metropolis Hastings 7,376ms (±87)
Venture Custom Metropolis Hastings 15,910ms (±500)
Gen (SML + Map) Gradient-Based Optimization 74ms (±2)
Gen (DML) Gradient-Based Optimization 7,384ms (±85)
Venture Gradient-Based Optimization 17,702ms (±234)

Table 5.4: Performance comparison of inference operations for Bayesian robust regression

Implementation Running time (to converge)
Gen (SML + Map) 75.3ms
Anglican 783ms
Venture 1.3×106 ms

Table 5.5: Performance comparison of MCMC algorithms for Bayesian robust regression

5.4 Domain-specific generative functions

The DML and SML modeling languages and the generative function combinators discussed
above are general-purpose—they are not specialized to any given application domain or
class of models. Also, they are completely interoperable, in that generative functions com-
piled using any of these languages or combinators can internally invoke generative functions
compiled from any of the other languages or constructs. And they can invoke essentially
arbitrary pure-functional general-purpose code. While these dimensions of flexibility are
useful, they are in tension with performance. High performance implementations of the
generative function and trace ADT implementations require specialization to the particu-
lar structures and properties of the generative function. The DML does not exploit any
such structure in its generative function and trace implementations, and the SML and
combinators only exploit high-level conditional independence structure.

While DML, SML and combinators provide a reasonable baseline level of performance,
it is possible improve performance further by implementing more specialized generative
functions. There is a wide gamut of different potential specializations, ranging from hand-
crafting a trace implementation that optimize memory layout of the trace data structure
for a user’s model to leveraging a specialized runtime like TensorFlow, to using dynamic
programming in a restricted modeling language to construct a more efficient internal pro-
posal distribution. We now discuss a few types of more specialized implementations of the
generative function and trace ADTs that are possible.

180



Wrapping TensorFlow and PyTorch computations in generative functions It
is possible to compile generative functions from code written in domain-specific modeling
languages like TensorFlow and PyTorch that use runtime systems specialized for certain
computational workloads. The resulting ADT implementations invoke the these alternate
runtime systems as part of every generative function and trace operation. Constructors for
generative functions based on pure-functional deterministic TensorFlow and PyTorch code
have been implemented. In particular the gradient trace operation is implemented using the
automatic differentiation capabilities of TensorFlow and PyTorch respectively. For DML
and SML generative functions that invoke a generative function compiled from one of these
other languages, the gradient operation combines automatic differentiation of Julia code
with automatic differentiation of the specialized runtime system. The code below shows the
construction of a TensorFlow-based generative function (neural_net) that is invoked by a
DML generative function (inference_model) on the right. In particular, the DML function
implements a discriminative inference model that takes as input an image, and passes the
image to neural_net, which returns parameters of beta distributions from which the DML
function samples at addresses rot, left_x, etc.

tf = pyimport("tensorflow")
image_flat = tf.placeholder(..)
W_conv1 = tf.Variable(..)
b_conv1 = tf.Variable(..)
...
output = tf.add(..)
neural_net = GenTF.TFFunction(

[W_conv1, b_conv1, ..],
[image_flat], output)

@gen function inference_model(image)
nn_output ∼ neural_net(image)
rot ∼ beta(nn_output[1], nn_output[2])
left_x ∼ beta(nn_output[3], nn_output[4])
right_y ∼ beta(nn_output[5], nn_output[6])
right_z ∼ beta(nn_output[7], nn_output[8])
...

end

A specialized generative function for discrete hidden Markov models Discrete-
valued hidden Markov models [99] are a popular class of models because they admit efficient
algorithms for inference over latent states and marginal likelihood evaluation via the for-
ward algorithm and forward-filtering backward sampling. These algorithms are based on
dynamic programming, and are specialized to both the graph structure of hidden Markov
models (a chain) and the domain of the individual random choices (discrete). Importantly,
these algorithms are exact and not approximate and have predictable running time (for a
chain with 𝑇 time steps and 𝐾 possible hidden states per time step, the forward-filtering
backward-sampling algorithm can be used to sample from the conditional distribution of
hidden states given observations in time 𝑂(𝐾2𝑇 )). It is possible to leverage these specialized
algorithms within a Gen model by implementing a generative function that uses them as
the basis of optimal internal proposal family (Section 4.1) that samples from the conditional
distributions 𝑝(·|𝜎) on random choices given choices 𝜎. It is also possible to implement a
generative function that implements a collapsed HMM. For example, the generative function
collapsed_hmm below takes as input the parameters of a HMM, and encodes a probability
distribution on the observed variables only (with addresses 1, . . . , 𝑛). Each evaluation of
𝑝(𝜏 ; 𝑥) within collapsed_hmm triggers a run of the forward-backward algorithm to compute
the marginal likelihood. In the context of the DML generative function hmm_based_model

181



that calls collapsed_hmm, the observed states have addresses (y, 1), . . . , (y, 𝑛). Note that
the author of hmm_based_model does not need to know that collapsed_hmm is a specialized
generative function implementation that uses dynamic programming internally, because it
behaves externally the same way as all other generative functions.

@gen function hmm_based_model(n)
p ∼ dirichlet(10)
E ∼ emission_matrix_prior()
T ∼ transition_matrix_prior()
y ∼ collapsed_hmm(p, E, T, n)

end

𝑝 𝐸 𝑇

(y, 1) (y, 2) (y, 3) (y, 4)

5.5 Related work

Conditional independence and probabilistic inference Conditional independence
of random variables is the basis of the ‘graphical models’ approach to probabilistic mod-
eling and inference [66], in which the presence of conditional independencies admits the
construction of efficient inference algorithms. The graphical models paradigm includes
modeling constructs for expressing conditional independence, including Bayesian networks
(directed acyclic graphs where nodes are random variables), and ‘plate notation’ and dy-
namic Bayesian networks. The graphical models paradigm is most adept at represent-
ing static conditional independencies that always hold, but has also formalized notions of
context-specific conditional independencies that only hold when certain random variables
take specific values. Although conditional independence of random variables is usually
studied in the setting of a fixed-length vector of random variables, related types of struc-
ture have been studied in more general classes of probabilistic models. Examples include
open-universe probabilistic models [84, 83] and infinite contingent Bayesian networks [85],
probabilistic models and inference algorithm from Bayesian nonparametric [64], and dy-
namic programming algorithms for stochastic context free grammars [68].

Incremental computation in probabilistic programming languages A number of
sampling-based probabilistic programming systems use the universal Metropolis-Hastings
(MH) MCMC inference algorithm that was introduced in Church [51] and later gener-
alized for use with lightweight embeddings of probabilistic modeling languages in host
languages [127]. The algorithm, sometimes called ‘lightweight MH’, benefits from incre-
mentalization because it involves updating one random choice at a time in an execution
of the program that represents the probabilistic model. A naive implementation of the
algorithm involves interpreting a variant of the program end-to-end, and computing the
MH acceptance probability by separately computing the numerator and denominator, even
when most factors in the numerator and denominator cancel due to conditional indepen-
dencies in the model. A number of approaches have been taken to incrementalize this and

182



related algorithms by leveraging conditional independencies. The Shred [132] tracing inter-
preter for Church recognizes the opportunity for specialization of the inference algorithm
to traces of a certain structure (i.e. control flow path), and compiles and caches MH kernel
implementations that are specialized to each structure that is encountered throughout the
MH algorithm. Shred JIT compiles straight-line traces of the probabilistic model and ap-
plies a reaching analysis (‘slicing’) to these traces to reduce redundant computation in the
MH acceptance probability calculation. The C3 implementation [103] of lightweight MH
wraps call sites in the model with a cache lookup, transforms the model to continuation-
passing-style (CPS), and maintains a call stack data structure. One essential difference of
these two approaches with Gen’s is that they are specialized to one particular inference
algorithm—lightweight MH, whereas Gen’s trace data type supports an open-ended set of
inference algorithms via the much more flexible update operation. An crucial feature of
update is that it can modify the values of multiple random choices at once—this permits
use of proposal distributions that are specialized to the model, as opposed to the generic
forward sampling proposal distribution that is employed within lightweight MH. Further-
more, update can be used to implement algorithms other than MCMC, including various
sequential Monte Carlo [33] algorithms, annealed importance sampling [91], and numeri-
cal and stochastic local optimization. However, it should be possible to use Shred’s JIT
specialization approach as the basis of a more optimized trace data type for a variant of
Gen’s dynamic modeling language. Gen’s SML trace implementation already does exploit
JIT specialization of trace operations to the set of random choices being manipulated (e.g.
the set of choices being changed in a call to update) but SML does not itself support con-
trol flow (control flow is instead handled by other modeling constructs including generative
function combinators, or DML functions).

Although the Venture [79] probabilistic programming system also builds on ideas from
Church [51] and employs incremental computation, it is distinct from Shred and C3 because
its data structures are designed to simultaneously support multiple inference algorithms,
including algorithms that involve updating multiple random choices at once. Venture uses
a custom interpreter for a pure variant of Scheme [100] that constructs a directed acyclic
graph that contains one or more nodes for every application of eval. Edges in this graph
reflect dependencies between evaluated expressions. To compute the set of re-evaluations
that are necessary for a given set of proposed-to choices, a walk of this graph is performed
starting at the nodes corresponding to proposed-to-choices. This data structure is used as
the basis for several inference algorithms, including a restricted form of Metropolis-Hastings
that proposes to multiple random variables at once using forward sampling, and a restricted
form of sequential Monte Carlo that extends a model with additional statements using for-
ward sampling as the proposal for any new latent variables. While Venture’s approach to
incremental computation is more flexible than that of Shred and C3, it has high constant-
factor overhead. Gen’s use of incremental computation differs from that of Venture in
several respects: First, Gen’s trace data types are significantly more flexible than that of
Venture because they allow arbitrary modifications to the values of random choices using
unique user-defined addresses. Second, whereas Venture uses a single generic implementa-
tion for the trace data structure for all models, Gen specializes the trace data structure to
the model. This allows Gen to perform much of the computation for identifying dependen-

183



cies statically during generation of its specialized trace data type implementation, instead
of dynamically as in Venture, leading to very large performance improvements on bench-
marks that compare implementations of the same algorithm in the two systems. The subset
of the Gen current modeling constructs that do exploit incremental computation (SML and
certain generative function combinators) is less expressive than Venture’s modeling lan-
guage. However, Gen’s DML is equally expressive to Venture’s modeling language and
incurs much less constant-factor overhead, making it substantially more performant even
for traces with reasonably large numbers of random choices, for which we would expect
incremental computation to provide significant gains. Furthermore, in Gen it is possible
to construct models from a combination of DML, SML, and combinators, which allows for
selective use of compile-time trace specialization for certain parts of the model. It should
be possible to implement a highly expressive Gen modeling language that uses a trace
data type implementation based on Venture’s dynamic dependency graph and is interoper-
able with Gen’s existing modeling constructs, although it remains to be seen whether this
implementation strategy can be made performant enough to compete with Gen’s current
modeling constructs. Finally, Venture automatically performs incremental computation in
certain cases of exchangeable coupling between random choices. Gen’s current modeling
constructs do not automate this, but devising modeling constructs (e.g. generative function
combinators) that do is an interesting area for future work. One potential challenge is that
random choices that are distant in the call tree of the model can be exchangeably coupled,
and updates to these choices therefore require non-local communication between parts of
the trace, which may complicate compile-time specialization of traces.

Effect handlers in probabilistic programming system implementations Effect
handlers are also used in the implementations of several other probabilistic programming
systems, although in a different manner to how they are used in Gen. There are two
other ways that effect handlers have been used in other probabilistic programming systems.
First, systems including WebPPL [52], Anglican [130], and Turing [40] use a separate effect
handler for each inference algorithm that is supported by their respective inference engines.
Random choice statements (e.g. sample) and in some cases observe or factor statements
in the modeling languages of these systems are associated with a special effect handler for
each algorithm. Therefore, extending these systems with new inference algorithms requires
understanding and extending the implementation of the probabilistic modeling language
with a new effect handler.

Other systems including Pyro [13] and Edward2 [86] also use effect handlers to im-
plement non-standard interpretations of probabilistic modeling code as part of inference,
but each handler implements a lower-level behavior than those of WebPPL, Anglican, and
Turing. In Pyro and Edward2, the effect handlers are intended to be composed to generate
more complex behaviors [86]. This allows for new inference algorithms to be implemented
more concisely in some cases than in WebPPL, Anglican, and Turing. However, imple-
menters of new inference algorithms still need to understand these effect handlers and how
they are implemented by the runtime system, and may need to implement new ones.

In contrast to the two approaches discussed above, in Gen effect handlers do not appear
in user inference code. Instead, effect handlers are one particular implementation strategy

184



that can be used to implement the trace abstract data type. Some of the effect handlers
used in the implementation of of Gen’s Dynamic Modeling Language are similar to those
used in Pyro. However, other Gen modeling languages do not use effect handlers at all,
but instead are based on other implementation strategies including source-to-source trans-
formation. Indeed, the purpose of Gen’s abstract trace data type is to decouple language
implementation details (like effect handlers) from user inference code, making inference
code simpler and easier to understand and extend. The trace abstract data type also serves
as a type of foreign function interface, which allows generative functions in general-purpose
modeling languages to invoke generative functions compiled from much more specialized
languages with higher-performance and more specialized implementations. These callee
generative functions may also use their own specialized inference algorithms internally to
implement the trace abstract data type more efficiently (e.g. exploiting dynamic program-
ming in the case of factor graph and hidden Markov model generative functions). The
composable effect handler architecture of Pyro and Edward2 is not designed to support
this type of extensibility, and is rooted in the assumption that a single runtime system is
used for the entire model. However, by committing to a small interface to the modeling
language runtime (the trace abstract data type), Gen does sacrifice some potential for spe-
cialization of low-level inference code to the inference algorithm context. For example, the
NumPyro [96] implementation of Pyro is able to perform optimizations like automatic vec-
torization on the implementations of inference algorithms, whereas Gen encapsulates the
low-level operations that comprise inference algorithms within the trace abstract data type,
making dynamic transformations and other optimizations of high-level inference algorithm
logic less natural.

Static compilers for probabilistic programming languages Gen statically compiles
model code into artifacts representing generative functions that have associated specialized
trace data type implementations. While static compilers for probabilistic programming sys-
tems have been developed [131, 60], these compilers are responsible for generating inference
implementations for more general-purpose inference algorithms. In contrast, Gen does not
currently static compile the inference algorithm, which is composed by user and library
Julia code on top of the trace data type. Instead, Gen uses static compilation primarily as
a means to statically specialize trace implementations to the structure in models, agnostic
to the inference algorithm. JIT compilation of some trace operations for certain modeling
languages does specialize to limited inference algorithm context, but this context is limited
to the set of addresses involved in the trace operation, and not the whole inference algo-
rithm. Development of inference compilation techniques that retain the flexibility of Gen’s
inference programming capabilities is an interesting area of future work.

185



186



Chapter 6

Applications

The previous chapters described Gen’s design and implementation. This chapter describes
several applications of Gen. The applications utilize Gen’s modeling flexibility—the models
make use of black-box simulators, stochastic discrete structures, and both discrete and con-
tinuous random variables. The applications also utilize Gen’s inference algorithm flexibility,
in the form of Monte Carlo inference, hybrid Monte Carlo and neural inference, surrogate
models, and custom trans-dimensional MCMC kernels.

6.1 Inference in generative models of intelligent behavior

This section describes an application of Gen to the task of interpreting the behavior of
an intelligent agent. The application adopts the inverse planning paradigm [8], in which
we make inferences about the intentions or beliefs of an intelligent agent from their be-
havior using probabilistic inference in a generative model that explains behavior as arising
from rational pursuit of objectives given beliefs. The section presents several variants
of the model and the inference algorithm, implemented using Gen. The models exercise
the expressiveness of Gen’s modeling languages via stochastic control flow and the use of
black-box code simulators. The inference constructs used include importance sampling and
MCMC with data-driven proposals (Section 3.2 and Section 3.4.2), the composite kernel
DSL (Section 3.4.4), resample-move particle filtering (Section 3.5), involutive MCMC (Sec-
tion 3.7), and the ability to construct specialized domain-specific ADT implementations
(Chapter 5). An earlier version of the modeling approach used for this application was
described by Cusumano-Towner et al. [31].

6.1.1 An algorithmic generative model of goal-directed movement

The code below defines a generative probabilistic model of a person’s goal-directed move-
ment throughout an indoor environment using Gen’s DML:

187



@gen function agent_model(floorplan, start_location, num_time_steps)
destination ∼ random_location(floorplan)
path = plan_path(floorplan, start_location, destination)
observations ∼ noise_model(path, num_time_steps)

end

The model takes three arguments, which represent information that is assumed to be known:
the floorplan of the indoor environment (including walls and other obstacles), the starting
location of the person, and the number of time steps at which the person’s location will be
observed. The first statement samples the destination of the agent from a uniform prior
distribution on the free space in the floorplan.

destination ∼ random_location(floorplan)

Here, random_location is a custom family of probability distributions on values in R2. A
possible value for the destination is shown as a red dot in Figure 6-1a, and the starting
location is shown in blue. Next, we invoke the Julia function plan_path, which takes the
floorplan, start location, and destination locations, and uses a path planning algorithm to
generate a path from the start location to the destination location that does not intersect
with any walls or obstacles in the floorplan:

path = plan_path(floorplan, start_location, destination)

Note that the ability to include essentially arbitrary executable code in generative models
allows use of algorithmic models of complex phenomena. Here we are using a path planning
algorithm to model the complex goal-directed behavior of an intelligent agent. This model
assumes the agent is approximately rational and takes relatively efficient routes from its
current location to its destination. It would be more difficult to express such a model
mathematically, but here we can repurpose off-the-shelf code for use in our model. The
algorithm internally constructs a rapidly exploring random tree [69] (Figure 6-1b) and
uses this tree together with trajectory optimization to generate the path (Figure 6-1c).
The internal randomness used in the path planning algorithm is encapsulated randomness
(Section 4.5). The next line in the DML function body samples hypothetical observations

(a) (b) (c) (d)

Figure 6-1: A prior sample from a generative model of goal-directed intelligent behavior

using a generative function (noise_model) that simulates the person walking along the path
with random perturbations as well as measurement noise (Figure 6-1d).

188



observations ∼ noise_model(path, num_time_steps)

Unlike the sampling statement for destination, noise_model is a generative function not a
distribution, and it generates many random choices recorded in the trace at addresses that
are nested under the address namespace :observations. In this case, the sub-addresses
are simply the integers 1 through num_time_steps, and each sub-address contains the hy-
pothetical observed location at one time step. The generative function noise_model uses a
specialized ADT implementation (Section 5.4) that implements a probabilistic variant of
dynamic time warping [111] to account for variability in the person’s progress along their
path, combined with normally distributed sensor noise. Specifically, we assume a nominal
speed for the agent along their path, and then allow the agent some probability of either
taking no steps or taking an extra step at each time step, and we marginalize out these
discrete random variables using the forward-backward dynamic programming algorithm.

6.1.2 A simple and generic inference implementation

The following Julia code takes as input the floorplan (floorplan, definition not shown),
the starting location (start_location, definition not shown) and an input an array (data,
definition not shown) of num_time_steps observed locations on the floorplan. It generates
approximate conditional samples of the destination location using self-normalized impor-
tance sampling with the default internal proposal family (Algorithm 13) applied to the
generative model above.

observations = Gen.choicemap()
for i in 1:20

observations[:observations => i] = data[i]
end
args = (floorplan, start_location, 20)
traces, weights = Gen.importance_sampling(agent_model, args, observations, 100)
traces = [traces[categorical(weights)] for _ in 1:length(traces)]
destination_samples = [trace[:destination] for trace in traces]

The first lines populate a choice dictionary with the observed data at the hierarchical
address :observations => i:

observations = Gen.choicemap()
for i in 1:20

observations[:observations => i] = data[i]
end

Next, we invoke the importance_sampling function from Gen’s inference library, passing
the arguments to the model generative function that contain values known a-priori, to
produce a weighted collection of traces that are approximately distributed according to the
conditional distribution:

args = (floorplan, start_location, 20)
traces, weights = Gen.importance_sampling(agent_model, args, observations, 100)

We then extract the destination from each trace and resample in proportion to the weights:

189



traces = [traces[categorical(weights)] for _ in 1:length(traces)]
destination_samples = [trace[:destination] for trace in traces]

The results for an observed trajectory are shown in Figure 6-2. Each red dot shows a
destination sampled approximately from the conditional distribution given the observed
locations, which are shown in black. Note that there is substantial uncertainty about the
destination—the conditional distribution is approximately uniform within the set of three
rooms in the lower-left corner.

Figure 6-2: Inferences about a person’s destination from their observed movement

The inference code above is one of the simplest types of inference programs that users
can write using Gen. Generic inference programs like this can give reasonable results on
easy inference problems, but are not efficient, and do not scale to harder inference problems.
Next, we elaborate on the generative model and the inference algorithm.

6.1.3 Adding uncertainty about structure and stochastic control flow

In addition to algorithmic models, another modeling capability that is useful for cogni-
tively inspired generative models is uncertainty about model structure. Gen users express
uncertainty about model structure by writing models where the set of addresses of ran-
dom choices that are sampled is itself random. Like agent_model above, the DML function
leave_model below defines a generative model of the motion of a person moving around an
indoor space, but is more complex:

@gen function leave_model(floorplan, start_location, num_time_steps)
num_attempts ∼ geometric(0.5)
path = [start_location]
previous_location = start_location
for i in 1:num_attempts

current_location = ({(:search_loc, i)} ∼ likely_key_location())
append!(path, plan_path(floorplan, previous_location, current_location))
previous_location = current_location

end
destination ∼ location_near_exit()
append!(path, plan_path(floorplan, previous_location, destination))
observations ∼ noise_model(path, num_time_steps)

end

190



Specifically, leave_model models the behavior of an person who seeks to leave their apart-
ment, but searches for their keys first. The number of times they search for their keys is ran-
dom (sampled from a geometric distribution). The person knows where they typically store
their keys, and they tend to search for their keys in these locations (likely_key_location
is a probability distribution on locations within the floorplan that is biased towards these
locations; see the left of Figure 6-3, where green and yellow indicate high probability den-
sity). According to leave_model, after the person finds their keys, they head for a location
near the exit of the apartment (in the lower right corner, near the green dots in Figure 6-3).
Whereas the previous model assumed the person had a single destination and walked an
efficient route from their starting location to the destination, this model posits the existence
of an unknown number of events (searching for keys) and assumes that the person walks
efficient routes between these search locations and from the final search location to the
exit. Therefore, this model generates more complex trajectories. The right of Figure 6-3
shows six prior samples from leave_model, where the start location is shown in blue, the
exit location is shown in green, and purple dots are locations where the person searched for
their keys. The person searches for their keys a random (geometrically-distributed) number
of times before they find them, and then leaves the apartment.

Figure 6-3: Samples from a model of intelligent behavior with stochastic structure

Combining two models using stochastic branching If we knew the person was
leaving the apartment, then we could use the model leave_model to infer whether the person
has their keys, and where and when they searched for their keys as they moved around the
apartment. These are more complex explanations than were possible with agent_model.
However, suppose we did not know whether they are leaving the apartment or not. To infer
whether they are leaving, we need another generative model for their movement patterns
in the condition where they are not leaving. Consider stay_model defined below:

@gen function stay_model(floorplan, start_location, num_time_steps)
num_waypoints ∼ poisson(2)
path = [start_location]
previous_location = start_location
for i in 1:num_waypoints

current_location = ({(:waypoint, i)} ∼ random_location(floorplan))
append!(path, plan_path(floorplan, previous_location, current_location))
previous_location = current_location

end
observations ∼ noise_model(path, num_time_steps)

end

191



This model is similar to leave_model, but instead of searching for their keys and then head-
ing for the exit, this model simply posits an unknown number of ‘waypoints’ of unknown
purpose. The number of waypoints is random and Poisson-distributed with mean 2, and
the waypoints are sampled at random locations in the floorplan. Samples from the prior
distribution of stay_model are shown in Figure 6-4a. To infer whether the person is leaving
or not, we could explicitly perform Bayesian model comparison, by separately computing
estimates of how well each of the two models explain a given set of observed data, and
comparing these values.1 Instead, we will exercise the flexibility of Gen’s modeling lan-
guages again, and take a more efficient approach—we write a single model that combines
the two models into one using a stochastic if-else branch. Note that both models end in
the same way by sampling the observations from the noise model. Therefore, we refactor
leave_model and stay_model by removing this common line of code and instead return the
path from both functions. The new model is:

@gen function combined_model(floorplan, start_location, num_time_steps)
if ({:is_leaving} ∼ bernoulli(0.1))

path = ({:leave} ∼ leave_model(floorplan, start_location))
else

path = ({:stay} ∼ stay_model(floorplan, start_location))
end
observations ∼ noise_model(path, num_time_steps)

end

Prior samples from combined_model are shown in Figure 6-4b. Note how generative models
in Gen are composable and easy to modify, combine, and refactor because they are based
on functions. By doing inference in the combined model, we will infer whether the person is
leaving or staying (by reading off the Boolean value at address is_leaving in each inferred
trace), but also the specific sequence of waypoints or search locations.

6.1.4 A sequential Monte Carlo inference algorithm

The Julia code in Figure 6-5 below is application inference code that implements an ef-
ficient sequential Monte Carlo [35] algorithm for inference in combined_model: We now
highlight key elements in this code. First, the program creates and manipulates traces
of combined_model using Gen.generate (Line 11) and Gen.update (Line 32), which are two
of the operations supported by the trace data type, as well as a custom MCMC kernel
(custom_kernel, on Line 25), which is a Julia function that takes a trace as input and re-
turns a new trace as output. The program is written in a straightforward familiar Julia
style, and makes use of Julia’s control flow (loops), including its multi-threading features
(Threads.@threads). The program begins by obtaining initial traces of the model where
num_time_steps is 1; the initial values for each random choice besides the observation are

1For example, averaging the importance weights returned for a model gives an estimate of the marginal
likelihood of that model, and we could multiply the marginal likelihood ratio by the prior ratio (which
expresses the prior probability of one model versus the other) to obtains the Bayes factor and then the
posterior probabilities on the two models.

192



(a) Prior samples from stay_model. The start location is shown in blue, and waypoints (of unknown
purpose) are shown in pink. There is a Poisson-distributed number of waypoints, and waypoints
are sampled uniformly at random from locations in the floorplan.

(b) Prior samples from combined_model. With probability 0.1, the agent is leaving (and otherwise
staying). In one of the samples shown here (rightmost), the agent is leaving.

Figure 6-4: Prior samples from alternate models of a person’s activity and motion

produced by Gen.generate using the model’s internal proposal distribution, which is en-
capsulated by the trace data type. The outer loop (Line 14) iterates over time steps, and
alternates between culling low-weight traces (Lines 16-18), doing MCMC inference on each
trace given the observed data so far (Lines 20-27), and extending the traces to the next
time step and incorporating the new observed data point (Lines 29-32). The application
code closely mirrors the pseudocode for the resample-move particle filter algorithm (Algo-
rithm 7) which has also been added to Gen’s inference library (although users may want to
re-implement it for more control over the flow and logging).

Composing a custom rejuvenation MCMC kernel The part of the inference algo-
rithm that is most heavily specialized to the model at hand is the rejuvenation MCMC
kernel (custom_kernel). While users are free to define this kernel using plain Julia code,
we define it using the composite kernel DSL (Section 3.4.4) in Figure 6-6. This composite
MCMC kernel applies a sequence of primitive MCMC kernels. First it applies a selection
MH (Section 4.3) kernel (using Gen.mh, Line 2) that proposes new values of all random
choices using the model’s encapsulated internal proposal. Next, it applies an involutive
MCMC (Section 3.7) kernel (switch_kernel, Line 3) that proposes to switch branches (in-
verting the Boolean value is_leaving). This MCMC kernel will be discussed in more detail
shortly. Next, the composite kernel applies a difference sequence of kernels, depending on
which branch the trace has taken (Line 4).

A specialized reversible jump move for efficiently switching branches Consider
the kernel switch_kernel, which is responsible for proposing a switch of the branch. This
kernel is constructed using the involutive MCMC construction of Section 3.7. Specifically, it
is composed from an auxiliary generative function (code not shown) and a trace transform

193



1 # Given: data (an array of noisy measurements of the 2D location)
2 num_particles = 128
3 traces = Vector{Trace}(undef, num_particles)
4 weights = Vector{Float64}(undef, num_particles)
5
6 # obtain initial traces, which include the observation for the first time step
7 observations = Gen.choicemap(); observations[:observations => 1] = data[1]
8 arguments = (floorplan, start, 1)
9 for i in 1:num_particles

10 traces[i], weights[i] = Gen.generate(combined_model, arguments, observations)
11 end
12
13 for t in 2:length(data)
14
15 # duplicate traces with high weights, delete traces with low weights
16 normalized_weights = normalize(weights)
17 traces = [traces[categorical(normalized_weights)] for i in 1:num_particles]
18
19 # apply rejuvenation MCMC kernels to each trace in parallel
20 Threads.@threads for i in 1:num_particles
21 for iteration in 1:20
22
23 # the custom MCMC kernel is defined with Gen composite kernel DSL
24 traces[i] = custom_kernel(traces[i])
25 end
26 end
27
28 # extend traces to the next time step, incorporating new data
29 observations = Gen.choicemap(); observations[:observations => t] = data[t]
30 new_arguments = (floorplan, start, 1)
31 traces[i], weights[i] = Gen.update(traces[i], new_arguments, observations)
32 end

Figure 6-5: Gen implementation of an SMC algorithm for inferring a person’s destination

(switch_bijection, defined in Figure 6-8).

switch_kernel(trace) = Gen.mh(trace, q_switch, (), switch_bijection)

The bijective trace transform switch_bijection in Figure 6-8 defines a transformation on
traces of the model that switches the branch (Lines 3-5) and then populates the values
of random choices in one branch using the values of random choices in the other branch.
Note that most other universal probabilistic programming systems lack the ability to reuse
values in one branch when switching branches. Instead, they rely on a generic mechanism
for filling in values in the new branch: The new branch is executed from scratch, ignoring
the values in the old branch. Although this generic approach to MCMC inference over
structure converges to the correct distribution if repeated infinitely many times, generic
proposals of this form amount to random guessing and are unlikely to be accepted, making

194



1 @kern function custom_kernel(trace)
2 trace ∼ Gen.mh(trace, Gen.complement(Gen.select(:observations)))
3 trace ∼ switch_kernel(trace)
4 if trace[:is_leaving]
5 trace ∼ add_remove_search_attempt_kernel(trace)
6 trace ∼ leave_random_walks_kernel(trace)
7 else
8 trace ∼ add_remove_waypoint_kernel(trace, points)
9 trace ∼ stay_random_walks_kernel(trace)

10 end
11 return trace
12 end

Figure 6-6: A composite MCMC kernel that combines several types of primitive kernels

Figure 6-7: Contrasting generic and specialized MCMC moves for changing control flow

inference over structure inefficient. Recognizing that ‘waypoints’ in the ‘stay’ model have a
related semantics to ‘search-locations’ in the ‘leave’ model, our switch_bijection reinter-
prets waypoints as search locations and vice-versa, making proposals much more likely to
be accepted. Effectively, we are reusing the inference already done for one control flow path
to jumpstart inference for the new control flow path. Figure 6-7 shows a state in which
is_leaving is true (middle) and new states with is_leaving set to false that are proposed
by our specialized kernel switch_kernel (left) and a generic kernel (right), respectively.
The specialized kernel proposes a hypothesis that explains the data well and is likely to
be accepted, whereas the generic kernel proposes hypotheses for the ‘stay’ model from the
prior that are likely to be rejected.

Proposing new waypoints based on a heuristic detector Consider the involutive
MCMC kernels add_remove_waypoint_kernel and add_remove_search_attempt that are in-
voked on Line 5 and Line 8 of custom_kernel respectively. These kernels add or delete
waypoints from the trace. Different techniques can be used to propose new waypoint lo-
cations in these kernels. The generic proposal mechanism that forms the basis for most
existing universal probabilistic programming systems (forward sampling) would propose
values for waypoints uniformly at random, just as when switching branches. However, as
shown in Figure 6-9, we can instead use a simple heuristic to find points along the observed
trajectory where the trajectory appears to change direction. These points will often be

195



@transform switch_bijection (model_in, aux_in) to (model_out, aux_out) begin

# switch branches
is_leaving = @read(model_in[:is_leaving], :disc)
@write(model_out[:is_leaving], !is_leaving, :disc)

if is_leaving

# populate choices in leave branch, using old choices in stay branch
@copy(aux_in[:reuse_dest], aux_out[:set_dest_from_waypoint])
num_attempts = @read(model_in[:num_search_attempts], :disc)
if @read(aux_in[:reuse_dest], :disc)

num_waypoints = num_attempts + 1
@copy(model_in[:destination], model_out[(:waypoint, num_waypoints)])

else
num_waypoints = num_attempts
@copy(model_in[:destination], aux_out[:destination])

end
@write(model_out[:num_waypoints], num_waypoints, :disc)
for i in 1:num_attempts

@copy(model_in[(:search_loc, i)], model_out[(:waypoint, i)])
end

else

# populate choices in stay branch, using old choices in leave branch
..

end
end

Figure 6-8: A Gen trace transform that switches control flow branches

waypoints, because the person is unlikely to change direction unless there is a waypoint.
Note that this heuristic is not perfect—the heuristic does not know about the floorplan, so
it cannot distinguish between turns that are explained by the floorplan and those that are
not. But Monte Carlo inference algorithms including importance sampling (Section 3.2),
MCMC (Section 3.4.2, Section 3.7) and particle filtering (Section 3.5) that use data-driven
proposals can filter out the incorrect proposals using by assigning a low importance weight
or by rejecting a proposal outright. Furthermore data-driven proposals can be learned or
tuned automatically via supervised learning on simulated or real training data (Section 3.3).

Using a coarse-grained surrogate model as the basis of a proposal The data-
driven proposal for waypoints described above is based on a non-probabilistic heuristic.
We can also use a probabilistic heuristic to propose new waypoints. In particular, we use
probabilistic inference in a simplified version of the generative model as a proposal dis-
tribution for inference in the original generative model. Instead of modeling the precise
location of an agent using a path planning algorithm, we can simply model what room

196



(a) Changes in apparent direction are often indicative of a waypoint (pink) because we assume that
the agent tends to take direct paths to their next waypoint. But this heuristic can produce false
positives because it does not take into account prior knowledge about the obstacles.

(b) Left: Heuristic waypoint detections from from the Ramer-Douglas-Peucker [36] line simplification
algorithm. Right: The density of a data-driven proposal distribution that proposes a waypoint by
randomly picking one of the heuristic detection and adding Gaussian noise to it.

Figure 6-9: A data-driven proposal based on a heuristic

they are in (Figure 6-10a) using family of hidden Markov models (in this case with 20
discrete states). Because exact inference in hidden Markov models is efficient, we can
perform exact inference easily in this coarse and discrete model of the application (Fig-
ure 6-10b). The simplified generative model can be trained offline on data simulated from
the original generative model. Then, inferences in the simplified model can be used to
aid inference in the original model in various ways, including (i) within proposal distribu-
tions in importance sampling, MCMC, and sequential Monte Carlo, and (ii) as part of a
coarse-to-fine sequential Monte Carlo algorithm (Section 3.6). Here we use inference in the
discrete model to propose new waypoint locations within add_remove_waypoint_kernel and
add_remove_search_attempt_kernel.

Using custom implementations of Gen’s abstract data types The surrogate model
based on hidden Markov models can be implemented itself using Gen’s built-in modeling
languages like DML. However, since a hidden Markov model is a reusable modeling motif,
it makes sense to implement specialized, performant, and reusable generative function and
trace data types for it. Here we used a specialized implementation for collapsed discrete
HMMs that internally uses an efficient implementation of the forward-backward algorithm
to compute marginal likelihoods that contribute to the acceptance probabilities of the invo-
lutive MCMC kernels add_remove_waypoint_kernel and add_remove_search_attempt_kernel.

197



(a) Left: The continuous state space is discretized into cells. Middle: For each destination cell,
there is a transition matrix that determines the distribution on the next cell given the current cell.
The matrix was learned from data simulated from the original generative model, which uses a path
planning algorithm. Right: The resulting generative model is a mixture of hidden Markov models.

(b) Exact inference in the coarsened model via dynamic programming is efficient. The posterior
distribution on the destination cell is shown for three observed data sets.

Figure 6-10: Using a coarse-grained surrogate model to aid inference in a fine-grained model

6.1.5 Symbolic reasoning from noisy data via probabilistic inference

Figure 6-11 shows inferences made using the inference code of Figure 6-5. First, note that
the inferences provide much more than activity classification—the traces contain detailed
information about both past and future events as well as predicting future trajectories.
The inferences exhibit the combination of logical reasoning with uncertainty over symbolic
structures (events) and inference from noisy data, capabilities that motivate use of universal
probabilistic programming systems. However, performing inferences like this in nontrivial
models requires more specialization of the inference code than allowed by existing universal
probabilistic programming systems, which are largely based on generic inference algorithms.

198



(a) Observed data (left), predicted future events (middle), and predicted trajectories. Predicted
future events for this observed data set include leaving the apartment (green), and visiting waypoints
of unknown purpose (pink), but not searching for keys (purple). The inferences are intuitive—if the
person did not have their keys, they would have walked towards the likely key locations, but instead
they are walking directly towards the exit.

(b) An observed data set where the person first walks towards the likely key location in the lower
left, and then to the other likely key location in the center-left, and then back again to the lower-left.
The Gen inferences conclude that the person is probably searching for their keys and is planning to
leaving the apartment, long before they actually start moving in the direction of the exit.

Figure 6-11: Inferring past events, and predicting future events and trajectories with Gen

199



6.2 Inferring object pose and existence from point clouds

Robust, accurate, and more human-like reasoning about scenes requires the ability to ac-
count for uncertainty due to occlusion. This section describes an application of Gen to 3D
perception of objects from point cloud data under self-occlusion and full and partial occlu-
sion by other objects. This section shows two example applications—inferring the pose of
a self-occluded object with uncertainty quantification, and inference about the existence or
non-existence of a fully occluded object based on Bayesian spatial reasoning about multi-
ple objects in a scene. We take an approach based on ‘vision as inverse graphics’ [10], a
paradigm for computer vision that is based on inverting the generative process of rendering
to produce interpretable descriptions of an image in terms of discrete primitives like objects.

Bayesian inference of 6DoF object pose under self-occlusion Self-occlusion is a
common source of uncertainty about object poses in 3D perception, especially for objects
with articulation (e.g. human body) and objects with regularities or symmetries (e.g. a
coffee mug that is rotationally symmetric, except for the handle). Figure 6-12a shows a
Gen DML generative function that defines a generative model of the full positional and
rotational pose (6DoF) of a rigid object and the point cloud generated by a depth cam-
era facing the object. The pose is factored into a 3D Cartesian position, and a rotation
that is implemented using a custom data type provided by the domain-specific modeling
and inference library Gen3DRot. The data type uses a custom reference measure, and the
Gen3DRot library provides a set of probability distributions with densities defined with re-
spect to this reference measure, as well as a set of involutive MCMC moves (Section 3.7) for
this data type. Each move proposes a specific common-sense mental rotation of the object
(e.g. flipping or rotating around some axis of rotation). These moves allow construction of
efficient MCMC algorithms for pose uncertainty quantification that exploit the structure
of the objects. For example, for the mug used in this example, rotating around the z-axis
(which is perpendicular to the base of the mug) is an efficient way to explore the poste-
rior, which is highly concentrated along this one degree of freedom. Gen is designed to
support an ecosystem of interoperable modeling and inference libraries like Gen3DRot. Mul-
tiple implementations of the likelihood model (noise_model) were tested, including a 3D
and probabilistic extension of chamfer distance [9] between point clouds that marginalizes
out the unknown correspondence between observed points and rendered points and outlier
indicator variables for observed points.

Inference about the presence or absence of fully occluded objects Suppose a
robot is tasked with assembling a piece of furniture, performing maintenance on a vehicle,
or retrieving something from the kitchen. In each of these cases, the robot has a prior belief
that some object (e.g. a tool, component, or kitchen item) is present in the environment.
However, in unstructured environments are complex and cluttered, and the target object is
likely to be fully occluded from the robot’s view. That target object may be in fact absent
from the environment, especially in human-robot interactive scenarios (e.g. the component
or item is missing or misplaced). To act rationally in such situations, the robot will need
to consider plausible poses of the object that can explain the absence of its percept. Also,

200



the robot must consider the possibility that the object is indeed not present, by weighing
the lack of percept of the object against the prior probability that it is present or absent.
We propose a principled proof-of-concept solution to these challenges based on Bayesian
inference. In particular, we apply Bayesian inference in a generative model of point clouds
with an interpretable latent representation that includes the existence and 6DoF pose of
multiple objects. The generative model (Figure 6-13a) employs a 3D renderer to produce a
synthetic point cloud from the latent variables, accounting for mutual occlusion of objects.
The noise model is robust to outliers, which are common in real depth sensor data.

Most work on inverse graphics has focused on single objects, and therefore cannot be
used to address existential uncertainty due to full occlusion. Work in this area that has
considered occlusion has been limited to situations without existential uncertainty, where
the set of objects that are present is known a-priori [62]. Perhaps one reason why structural
and existential uncertainty has received less attention is the mathematical complexity that
it introduces. Gen simplifies the implementation of Bayesian inference in the presence of
structural uncertainty. Figure 6-13 shows the results of MCMC inference in Gen (inference
program not shown) on several scenarios involving occlusion, using object models from the
YCB 3D object data set [19]. The results illustrate Bayesian inference about the 6DoF pose
and presence or absence of a fully occluded object, and investigate the dynamics of these
inferences as the fraction of occluded volume in the scene is varied. In particular, the lack of
percept of the mug in the visual field (i) reduces the posterior probability of its presence, but
also (ii) informs the distribution on its 6DoF pose, if it is present. Note that as the fraction
of volume in the scene that is occluded by the box increases, the posterior probability that
mug is present in the environment increases. This reflects common sense—the more volume
occluded by the box, the more places the mug could be hidden from view.

201



@gen function object_pose_prior()
x ∼ uniform(xmin, xmax)
y ∼ uniform(ymin, ymax)
z ∼ uniform(zmin, zmax)
rot ∼ Gen3DRot.uniform()
return (x, y, z, rot)

end

@gen function mug_model()
mug ∼ object_pose_prior()
points ∼ render_depth([(mug, mug_mesh)])
observed_points ∼ noise_model(points)

end

(a) A generative model of the 6DoF pose of an object and point clouds produced by a depth
camera. The 3D rotation (rot) is a quaternion sampled from the Haar measure on the group of
unit quaternions. The Gen3DRot domain-specific modeling and inference library provides several
probability distributions on 3D rotations.

@kern pose_kernel(trace, addr)
trace ∼ Gen.mh(trace, position_random_walk, (0.01, addr))

# flip over x-axis, then y-axis, then z-axis
trace ∼ Gen3DRot.flip_around_fixed_axis_mh(trace, addr=>:rot, [1,0,0])
trace ∼ Gen3DRot.flip_around_fixed_axis_mh(trace, addr=>:rot, [0,1,0])
trace ∼ Gen3DRot.flip_around_fixed_axis_mh(trace, addr=>:rot, [0,0,1])

# rotate around z axis (perpendicular to base of mug)
trace ∼ Gen3DRot.uniform_angle_fixed_axis_mh(trace, addr=>:rot, [0,0,1])
trace ∼ Gen3DRot.small_angle_fixed_axis_mh(trace, addr=>:rot, [0,0,1], pi/16)

# random small rotations to explore mode
trace ∼ Gen3DRot.small_angle_random_axis_mh(trace, addr=>:rot, pi/32)
return trace

end

(b) A custom composite MCMC kernel for the pose of an object, parametrized by the address of the
object’s pose (for the model in (a), the addr = mug). The kernel uses reusable involutive MCMC
moves on 3D rotations implemented in the domain-specific modeling and inference library Gen3DRot.

(c) Posterior inferences from a simulated point cloud. Left: Handle is visible, and the posterior is
concentrated. Right: Handle is occluded, and there is uncertainty about the angle of the handle.

Figure 6-12: Using MCMC for Bayesian inference of 6DoF object pose from point clouds

202



@gen function existential_doubt_model()
objects = []
if ({:box_present} ∼ bernoulli(0.9))

pose = ({:box} ∼ object_pose_prior())
push!(objects, (pose, box_mesh))

end
if ({:mug_present} ∼ bernoulli(0.9))

pose = ({:mug} ∼ object_pose_prior())
push!(objects, (pose, mug_mesh))

end
points = render_depth(objects)
observed_points ∼ noise_model(points)

end

(a) Left: A scenario in which a depth camera is viewing a scene that may or may not contain a
cracker box and a mug. Only the cracker box is visible in the observed depth images (see below).
Right: The generative model. The prior probability that the object exists is 0.9 for both objects.

(b) An observed simulated depth image and a subset of the posterior samples. The observed image
has the box angled so that it occupies less of the field of view than in (c). The posterior probabilities
that the mug and box are present are 0.33 and 1.0, respectively.

(c) An observed simulated depth image and a subset of the posterior samples. The observed image
has the box closer to the camera, so that it occupies more of the field of view than in (b). The
posterior probabilities that the mug and box are present are 0.63 and 1.0, respectively.

Figure 6-13: Inferring the presence, absence, and pose of multiple objects from point clouds

203



6.3 Real-time camera pose estimation

This section describes an application of Gen to real-time camera-pose estimation in an
indoor environment, and inference of environment parameters; and examines the relative
strengths and weaknesses of model based and neural network based inference in this setting.
Specifically, the task is to estimate the height of the room, the elevation of the camera above
the floor, and the pitch and roll angles of the camera in real-time from a stream of point
cloud data generated by a depth camera. An online MCMC inference algorithm based on
the following generative model of depth images was implemented in Gen:

@gen function cam_pose_prior(height)
z ∼ uniform(0.0, height)
pitch ∼ uniform(pi/4, 3*pi/4)
roll ∼ uniform(-pi/4, pi/4)
return (0,0,z,quat(roll,pitch,0))

end

@gen function cam_pose_model()
height ∼ uniform(2.0, 3.0)
cam_pose ∼ cam_pose_prior(height)
objects = [
(plane, (0,0,0,quat(0,0,0))),
(plane, (0,0,height,quat(0,0,0)))

]
points = render_depth(objects, cam_pose)
observed_points ∼ noise_model(points)

end

The left of Figure 6-14 shows an input depth image frame from an indoor office scene
where red pixels indicate missing data. The middle frame shows the inferred ceiling and
floor depth pixels (blue) using the online Monte Carlo algorithm implemented with Gen.
On the right is a visualization of synthetic data generated from the generative model. The
generative model only models the floor and ceiling, and not any walls or other objects in the
scene. The noise model uses an independent per-pixel mixture of a uniform distribution (to
explain unmodeled objects and outliers) and normal distribution centered at the modeled
depth at every pixel. A combination of random-walk and independent Metropolis-Hastings
moves were used to obtain an initial pose estimate, and to track the pose over time by
initializing the Markov chain for each new observation to the previous pose estimate. This
can be interpreted as a sequential Monte Carlo algorithm (Section 3.5) with a single particle.

Figure 6-14: Tracking camera pose using online Monte Carlo in a generative model

It is also possible to use a ‘bottom-up’ neural approach to regress camera pose from
depth data. To compare the tradeoffs between a neural approach and the online Monte
Carlo approach, we implemented both approaches using Gen and compared them on dif-
ferent simulated data sets. For this experiment, the room height was fixed, so there were

204



three latent variables (z, pitch, and roll). Note that modeling the yaw is unnecessary
since only the ceiling and floor are modeled, and they are modeled as infinite planes. The
neural network was a multi-layer perceptron with one hidden layer with 20 hidden units
implemented as a generative function in DML, and trained to regress from an observed
depth image to the pose of the camera, using data simulated from the generative model
(Section 3.3). The simulated data included range of pitch angles between −𝜋/4 and 𝜋/4
(where 0 is looking straight ahead). As shown in Figure 6-15a and Figure 6-15b, the trained
neural network performs reasonably for input data within its training distribution, but fails
when given out-of-distribution data with pitch angles ranging from −𝜋/2 to 𝜋/2 (that is,
looking straight up at the ceiling or straight down at the floor). The model-based online
Monte Carlo inference algorithm works with no re-training required. However, it is more
computationally expensive than the neural network. Gen supports combining bottom-up
and model-based methods. For example, when the neural network is used as a proposal
within Monte Carlo, its proposals are rejected in the out-of-distribution regime where it is
inaccurate. Gen is designed to support research into robust hybrid inference architectures.

(a) A neural network was trained to regress from an observed depth image to the pose of the
camera, using data simulated from the generative model. Black points are observed data, green are
reconstructed data. Left: The trained neural network performs well for new data that lies within its
training distribution. Middle: When the distribution changes to include unfamiliar data (looking
upwards), a model-based inference algorithm works with no re-training required. Right: The neural
network fails for cases on which it was not trained. Gen is designed for combining bottom-up
inference with model-based reasoning, which can give inference that is both robust and fast.

0 10 20 30 40 50

Time (seconds)

0.0

0.5

1.0

1.5

2.0

E
rr

or

z

pitch

roll

0 10 20 30 40 50

Time (seconds)

0.0

0.5

1.0

1.5

2.0

E
rr

or

z

pitch

roll

Out of dist. In dist.

(b) Left: Error for the online Monte Carlo algorithm. Right: Error for a simple neural network.
These two algorithms took comparable time (on the order of minutes) to implement using Gen; this
does not not include the training time for the neural network, which was a few minutes.

Figure 6-15: Comparing bottom-up and top-down inference approaches for pose estimation

205



6.4 Inferring the dynamic geometric structure of a 3D scene

This section describes an application of Gen to robust 3D scene understanding. While
neural network techniques like Deep Object Pose Estimation [124] (DOPE), or heuristics
like using RANSAC to fit object models to point clouds [114] can give approximate estimates
of the 6DoF pose of individual objects, they do not take into account prior knowledge
about the physical dynamics of scenes, or prior knowledge about the physical relationships
between objects. Additional filtering or post-processing is needed to use these estimates
for downstream tasks. For example, pose estimates from DOPE can be unreliable and
frequently change drastically from frame to frame or drop out completely for certain frames
during e.g. unfavorable or out-of-distribution lighting conditions. Developing more robust
perception systems for embodied intelligence applications requires synthesizing more prior
knowledge about scenes with perceptual data, and inference in probabilistic generative
models of scenes is well-suited to this challenge. We used Gen to develop a probabilistic
generative model and inference algorithm that synthesizes (i) heuristic 6DoF object pose
estimates, (ii) prior knowledge about temporal dynamics of scenes, and (iii) prior knowledge
about the physical relationships between objects to produce beliefs about the poses of
objects in a scene and their physical relationships. Figure 6-16 shows example input data
in the form of heuristic 6DoF pose estimates of three objects (cracker box, mustard bottle,
and table surface) and the 6DoF pose estimates produced by our algorithm. For this video
sequence, the algorithm is able to filter out incorrect estimates of the pose of the cracker box
(green), and also infer that the mustard bottle is resting on the cracker box (white square
1) and that the cracker box is resting on the table (white square 2). The remainder of this
section describes the generative model, the inference algorithm, and its implementation.

(a) Heuristic 6DoF object pose estimates at selected frames in a video

(b) For each frame in (a), the inferred 6DoF object poses and object-object contact planes

Figure 6-16: Probabilistic inference of scene graphs makes pose estimation more robust

206



Scene graphs The basis of our generative model is the scene graph, a directed tree that
spans a set of coordinate frames. Our scene graph representation is inspired by the scene
graph representations used for rendering in computer graphics and video games [123], as
well as augmented and reality [101], and related structures in robotics [98]. These scene
graphs typically parametrize a scene as a tree, rooted with a world coordinate frame, with
nodes for objects and object parts. Edges in the tree encode relative 6DoF poses, that
are typically generated by some lower-dimensional parametrization (e.g. rotating an elbow
joint in an articulated model of a character body). In our framework, a scene graph is a
directed tree, where the root node represents the world coordinate frame and each non-root
represents one object. Any objects whose parent in the tree is the world coordinate frame
are called floating, and objects whose parent is another object are called sliding. The 6DoF
pose of an object that are floating is parametrized as a full 6DoF transformation (three
dimensions of position, and a unit quaternion for orientation) from the world coordinate
frame to the object’s coordinate frame. The 6DoF pose of an object that is sliding is
parametrized as a 3DoF relative pose transformation from the coordinate frame of one of
the parent object’s faces and one of the faces of the child object, where the faces of the
two objects are sliding on one another with anti-parallel outward normal vectors. There
are two degrees of translational freedom and one degree for rotation around the normal
vectors. We use cuboids to model most objects. Given the scene graph, it is possible to
compute the 6DoF pose of each object relative to the world coordinate frame by walking
the graph from the root to the leaves.

A generative model for scene graphs and pose estimates Figure 6-17 shows a
variant of the generative model, implemented in Gen’s DML. The set of objects, and their
mesh models, are assumed to be known a-priori. The generative model (scene_graph_model)
first samples the structure of the scene graph, by sampling an undirected spanning tree over
𝑛 + 1 nodes uniformly at random. The first node represents the world coordinate frame,
and the remaining nodes represent objects in the scene. Then, we convert the undirected
spanning tree into a directed spanning tree by forcing the world coordinate frame node
to be the root of the tree. Next, the model samples the numerical parameters for each
object node, which is either floating or sliding. The code for sampling the sliding object
parameters assumes that both objects are cuboids and have six faces. Then, the scene
graph is the tuple of the structure and parameters. Next, the model computes the 6DoF
poses of each object relative to the world coordinate frame by walking the scene graph.2
Consider the resulting prior probability distribution on world frame 6DoF poses for each
object (the distribution on world_poses). This distribution is complex, and encodes the the
prior knowledge that objects are often in face-to-face contact with one another. However,
note that while interpenetration of one object by another is less likely under this prior than
if each object was modeled independently, it is still not guaranteed because objects that are
not connected directly in the tree may interpenetrate. Finally, a robust likelihood model
models the heuristic estimates of each object’s 6DoF pose relative to the world frame via

2When walking the scene graph, we also sample extra slack degrees of freedom for each sliding object
(not shown). The slack variables make reversible jump MCMC inference over the structure more efficient.

207



a combination of zero-mean Gaussian noise in the position, von-Mises Fisher noise in the
orientation, and outliers in both position and orientation.

@gen function float_params_prior()
x ∼ uniform(xmin, xmax)
y ∼ uniform(ymin, ymax)
z ∼ uniform(zmin, zmax)
rot ∼ Gen3DRot.uniform(),
return (x, y, z, rot)

end

@gen function slide_params_prior()
other_side ∼ uniform_discrete(1, 6)
my_side ∼ uniform_discrete(1, 6)
u ∼ normal(0.0, side_len / 3)
v ∼ normal(0.0, side_len / 3)
theta ∼ uniform(0., 2 * pi)
return (other_side, my_side, u, v, theta)

end

@gen function scene_graph_model(num_objects::Int)

# generate the structure scene graph, a directed spanning tree
num_nodes = num_objects + 1 # the world coordinate frame is a node
undirected_spanning_tree ∼ uniform_spanning_tree(num_nodes)
structure = to_directed_tree(undirected_spanning_tree)

# generate numerical parameters of the scene graph
params = Dict()
for object in 1:num_objects

if object_is_floating(scene_graph_structure, object)
params[object] = ({(object,:floating)} ∼ float_params_prior())

else
params[object] = ({(object,:sliding)} ∼ slide_params_prior())

end
end

# construct scene graph from its structure and parameters
scene_graph = (structure, params)

# generate noisy measurement of each object pose relative to world frame
world_poses = compute_world_poses(scene_graph)
observations ∼ noise_model(world_poses)

end

Figure 6-17: Using Gen to model the symbolic structure of a 3D scene with multiple objects

208



Inferring the scene graph via involutive MCMC Given a collection of labeled object
pose estimates for each object produced by either DOPE (for YCB objects) or a RANSAC-
based estimator that uses depth data (for the table-top), the inference algorithm produces
approximate posterior samples of the scene graphs, in the form of traces of the model
scene_graph_model. The inference algorithm is based on MCMC and is implemented using
Gen. The MCMC algorithm uses a combination of data-driven proposals, random-walk
moves on individual parameters, and a custom reversible jump MCMC move that is im-
plemented using Gen’s involutive MCMC construct (Section 3.7). The reversible jump
proposal is illustrated in Figure 6-18. Given a graph 𝐺, with root note 𝑟 and object nodes
𝑜𝑖 for each 𝑖, the auxiliary generative function samples random node to sever from the tree
(in this case 𝑜5, shown in green), and a random other node on which to graft the first node
(in this case, 𝑟, shown in pink). Note that this change to the structure is reversible, by
using the same severed node but the previous parent (𝑜3) as the graft node. The involu-
tion transforms between the equivalent parametrizations of the pose of the severed object.
The resulting inferences about contacts between objects arise naturally via Bayesian Oc-
cam’s razor—if two objects are nearly in face-to-face contact, this is most parsimoniously
explained via an edge between the two objects in the scene graph.

Randomly choose:
1)  a node to sever (           )
2)  a graft node (         )

Figure 6-18: A transition kernel on scene graph structures

Adding temporal dynamics We augmented the model shown above with temporal
dynamics over both the structure of the scene graph and its continuous parameters. Time
is modeled as sequence of discrete steps. At each step, there is some probability that the
scene graph structure changes. We model transitions on scene graph structure using a
mixture of a uniform distribution on a new spanning tree (with low probability) and a local
random walk on the space of spanning trees based on the same transition kernel shown in
Figure 6-18. The transition model on continuous parameters is based on a random walk in
parameter space. The inference algorithm for the temporal model uses sequential Monte
Carlo (Section 3.5) with MCMC moves including structure-changing involutive MCMC
moves used as rejuvenation kernels between new observations.

Integrating Gen and ROS This application also served as a proof-of-concept for the
integration of Gen and the Robot Operating System [98] (ROS). In particular, the Gen in-
ference algorithm was wrapped within a ROS node as part of a a real-time ROS application
that also integrated a depth camera, the DOPE detector, and a visualizer.

209



6.5 Gaussian process structure learning for time series

Bayesian synthesis Gen’s modeling languages are flexible enough to express prior dis-
tributions on programs. By combining a prior distribution on programs with a likelihood
model that defines a probability distribution on data for each possible program, we obtain
a generative model over program code and data. Inferring the source code of the program
via approximate sampling from the conditional distribution given observed data is called
Bayesian synthesis [109]. Bayesian synthesis can be tractable when the space of programs
is defined using a small domain-specific language.

Inferring the structure and parameters of a covariance function Consider the
task of time series forecasting. Time series often have symbolic explanations; the complex
patterns in time series arise from a composition of simpler patterns [54]. Modeling the
symbolic structures (e.g. periodicity, trends, changepoints) in the data allows for much
more accurate extrapolation compared to autoregressive methods. Saad et al. [109] give a
domain-specific expression language for covariance functions of a Gaussian process (GP)
that builds on a class of models proposed by [54] and describe MCMC algorithms for
Bayesian inference over expressions in this language, conditioned on an observed time series.
The generative model for this Bayesian synthesis problem is expressed in Gen’s Dynamic
Modeling Language in Figure 3-19. The model first samples an expression in a domain-
specific expression language that encodes the covariance function. The prior distribution
on expressions is based on a probabilistic context free grammar (PCFG). Then, the model
samples additional white noise to add to the data and computes the covariance matrix
from the covariance function, inputs (in this case a vector of times at which data will
be sampled), and finally samples the vector of output data over all times points from a
multivariate normal distribution. The prior distribution on covariance matrices is defined
in a DML generative function recursively generates subexpressions from the grammar of
covariance functions. An alternative Gen implementation of this generative model that uses
the Static Modeling Language and the Recurse Combinator is discussed in Section 5.3.

Figure 6-19: Experimenting with different MCMC schedules using Gen

210



Varying the MCMC kernel schedule Several variations of the MCMC inference al-
gorithm of Saad et al. [109] were implemented using Gen’s involutive MCMC construct
(Section 3.7), and the code implementing these is shown and discussed in Section 3.7.5.
Notably, the involutive MCMC construct gives the user fine-grained control over structure-
changing MCMC moves. In this case, we use this control to explore the effect of different
variants of an MCMC kernel that proposes to replace subtrees of the covariance function
parse tree. Figure 6-19 shows an example data set, forecasts for this data set based on the
inferred distribution on covariance functions, and a comparison in the time-accuracy pro-
files of three different MCMC algorithms. One algorithm (full) re-proposes the entire tree
from the root at each iteration, and is less efficient. The other two schedules only re-propose
subtrees (one samples subtrees uniformly in the graph, and the other biases the sampling
towards subtrees at smaller depths). Note that Gen automatically computes all acceptance
probabilities for these moves. Also, Gen’s involutive MCMC construct prevented a bug in
the acceptance probability calculation in one of the baseline hand-coded implementations
of this algorithm. This bug involved accounting for the probability of selecting a subtree,
which is difficult to reason about but automated by Gen’s involutive MCMC construct.

211



212



Chapter 7

Conclusion

7.1 Tradeoffs in probabilistic inference systems architecture

A central insight from the research into Gen’s design is that the design space of software
systems for probabilistic inference is large and subject to fundamental tradeoffs, and that
systems designed for practical use must intentionally and carefully balance these tradeoffs.
This section explains some of these tradeoffs, situates Gen in the design space, and outlines
areas for future work.

Balancing automation and user control Probabilistic inference systems must choose
which of the implementation choices that arise in probabilistic inference to automate, and
what choices to leave to the user. Users must also choose what level of control they need
for their application when evaluating which system to use. At one extreme are modeling
languages with built-in ‘solvers’ that allow users to declaratively specify their model, per-
haps set some parameters of the algorithm, and then run the algorithm [20] (systems that
automatically construct the model from input data are even further down this spectrum
but out of scope of this thesis). Near the other extreme, the inference practitioner may only
use a library of standard probability distributions. They will derive the updates and other
primitive operations in the inference algorithm from their pencil-and-paper mathematical
formulation of the model, and translate these operations directly into a numerical program.

We can better understand the design space by recognizing the different dimensions
of automation and control: First, because inference algorithms are often computationally
intensive and take significant time to run, some users may require control over the high-level
flow of the process, or how it is distributed across parallel computing resources. Other users
may want these decisions to be made for them by the system. Second, the system may use
built-in algorithms [51], or may allow the user to customize a schedule of different built-in
operations used in the algorithm, or may allow the user to add custom heuristics to the
algorithm, or may require the user to define the algorithm themselves. Finally, the system
might automate the low-level implementation details like density evaluations and gradients,
or might require the user to implement the these themselves. Many recent probabilistic
programming systems have emphasized automation over user control [51, 52, 130], while
those in the ‘programmable inference’ paradigm [80] have emphasized the importance of

213



user control over the algorithm.
One approach to sidestepping the tradeoff between automation and user control is to

design multiple levels of interfaces, with more user control at the bottom level and more
automation at the top level, such that users can smoothly transition between levels as their
needs evolve. This is the approach taken in Gen: At the top level, Gen’s inference library
includes an implementation of self-normalized importance sampling with the automatically-
generated internal proposal family (Section 4.2) that requires the user to write a single line
of code and provide a single parameter that governs the amount of computation to use. One
level down, if the user needs to instrument the loop of the algorithm, or distribute across
their infrastructure in a custom way, they can re-implement the loop of the algorithm,
which invokes the generate operation and requires on the order of 10 lines of code. If the
user then needs more efficient inference, they can employ a custom proposal distribution
written as a probabilistic program instead of the built-in proposal family (Section 3.2), and
train it on simulated data (Section 3.3), which might require on the order of 100 lines of
code. Or, they can employ MCMC (Section 3.4) or sequential Monte Carlo (Section 3.5
and Section 3.6) techniques, each of which has more and less automated variants. Finally,
if the user wants to manually Rao-Blackwellize certain random variables in their model,
they can implement custom generative function and trace data types for that part of their
model (Section 5.4). Crucially the user can navigate this design space incrementally and
smoothly, without having to rewrite their application from scratch, sacrifice the separation
between the model and the inference code, or switch platforms.

User control is required when it is impractical to automatically meet the user’s re-
quirements. In probabilistic inference, meeting performance requirements often requires
customization of the algorithm. While automatic adaptation and learning of parameters in
models and inference algorithms is possible in Gen (e.g. Section 3.3), Gen does not attempt
to automatically generate an inference algorithm that is customized to the model. Instead,
Gen delegates this task to the user, because devising efficient custom inference algorithms
often draws on prior knowledge of the problem or related problems and knowledge of rele-
vant heuristics. Automatically generating efficient algorithms specialized to a probabilistic
model is a long-term research challenge that will build on expertise in probabilistic mod-
eling and inference, machine learning, and program synthesis. This task subsumes the de-
sign of efficient heuristics for use in proposals, schedules of MCMC kernels, reversible jump
moves, annealing schedules, coarse-to-fine inference schemes, and algorithms for neural net-
work architecture search. A truly automated system for constructing inference algorithms
must search over structured, hierarchical and combinatorial spaces of inference programs.
Therefore, we might define this as inference program synthesis. Gen lays groundwork for
this research by providing a set of primitives from which inference programs are composed.
One important subproblem is building probabilistic models of the efficiency of inference
programs on inference problems that capture the same sort of intuitions used by human
inference algorithm experts. This line of research is closely related to metareasoning [108].

Achieving good inference performance while managing complexity A central
task in software architecture is designing interfaces that manage the complexity of appli-
cations without preventing them from meeting their functional requirements. Because of

214



the computational intensity of probabilistic inference, meeting performance requirements
of applications can be challenging. Doing so with high-level inference code based on an
explicit and easy-to-evolve model representation is even more challenging. Gen’s abstract
data types strike a particular balance between the simplicity of their interfaces and the
performance that can be achieved using these interfaces.

The most important design choice in Gen is to use an explicit definitive representation of
the model, in the form of a generative function, that separates the low-level computations
associated with the model from the inference algorithm code. This choice is critical for
managing complexity of an inference application—it makes the application much easier to
maintain and modify. Additionally, by automatically compiling the generative function
from a probabilistic program, we considerably reduce the surface area for bugs in low-level
computations associated with the model. This choice does however have consequences
for performance. For example, potential cancellations between a proposal distribution’s
density and a model’s density cannot be exploited (unless the two are re-implemented in a
custom generative function with a custom internal proposal family). Devising intermediate
representations for probabilistic models that expose more information about the model and
therefore allow for more optimizations than Gen’s abstract data types is an interesting area
for future work. However, for a practical system it will be important to ensure users can
smoothly transition from an implementation based on black-box data types to one based
on analysis of intermediate model representations. These two are not in conflict; indeed it
should be possible to extend Gen’s generative function abstract data type with operations
that return intermediate representations and similarly extend Gen’s inference library with
functions that analyze these representations and generate optimized inference code.

Another design choice in Gen that aims to balance complexity and performance is the
immutability of traces. Immutability of traces allows for a single trace data type to be used
for all inference algorithms, including sequential Monte Carlo algorithms that interleave
duplication of particles with rejuvenation MCMC moves (Section 3.5). For example, imple-
menting a resample-move particle filter from scratch requires careful tracking of references
to memory resources that are shared by multiple particles and careful dynamic allocation
and copying. In Gen this complexity is handled by low-level persistent functional data
structures [37] that are used within trace implementations. However, not all algorithms
make used of the immutability of Gen’s traces. For example, unconstrained optimization
algorithms can be implemented using in-place updates, and algorithms that include ac-
cept and reject steps can also be implemented using in-place updates without allocations.
Similarly, Gen’s trace data type does not distinguish between updates that change the
structure (i.e. control flow) of a trace and those that do, which have different potential low-
level implementation strategies. While some performance improvements are possible (and
have been implemented) via just-in-time compilation of trace operations (Section 5.2), ex-
tending Gen’s trace data type with mutable variants and more generally giving users some
intermediate level of control over a trace’s internal data structure and representation so
they can optimize their inference applications without having to write a custom generative
function and trace data type is an important next step. However, these extensions should
be optional both for users and generative function implementers and should be designed
with an awareness of the costs of increasing system complexity.

215



7.2 Generative and discriminative models and heuristics

A core design requirement for the architecture described in this thesis is that it can support
multiple algorithmic paradigms for probabilistic inference. In particular, we distinguish be-
tween discriminative and model-based probabilistic inference. We do not use ‘discriminative
model’ and ‘generative model’ here because generative models and simulators can be used
offline to train discriminative models. We use ‘model-based inference’ to refer to processes
that query an explicitly represented generative model at inference time and ‘discriminative
inference’ to refer to processes that do not, and define both as producing an approximation
to the conditional distribution of latent quantities given observed quantities. Discriminative
inference, which is sometimes called ‘bottom-up inference’, is often based on discrimina-
tive probabilistic models like deep neural networks or random forests trained on real or
simulated data, but can also be based heuristics, as in using least-squares within a robust
Bayesian regression inference problem (Section 3.2). A discriminative inference algorithm
can be interpreted as a type of ‘amortized inference’ [45], because it is constructed based
on experience with other related inference problems.

Gen is designed to support algorithms that combine discriminative and model-based
inference approaches. In Gen, both discriminative models and generative models are rep-
resented as generative functions and are typically constructed by writing probabilistic pro-
grams. Discriminative models can be used to initialize an iterative model-based sampling
or search algorithm like MCMC in a generative model, or as a proposal distribution within
various Monte Carlo algorithms. Generative models can also be used to generate synthetic
data for training discriminative models. Using probabilistic programs to represent both
statistical discriminative models like neural networks and proposal distributions based on
heuristics clarifies their equivalence, and their relationship to model-based inference. In
particular it suggests a methodology [30] based on fitting the stochasticity of a proposal
distribution centered on the output of an arbitrary heuristic to data simulated from a gener-
ative model and then employing this proposal within Monte Carlo algorithms (Section 3.3).

Gen’s abstractions also shed light on and encourage use of principled inference method-
ologies based on ‘surrogate’ generative models. Like discriminative models, surrogate gen-
erative models can be interpreted as a type of heuristic from the perspective of model-based
inference. But also like discriminative models, they can be made less heuristic by training
their parameters on data generated from the generative model, and can be used to accel-
erate asymptotically exact inference in generative models via sequential Monte Carlo and
trace translators (Section 3.6). Indeed, there is a close mathematical relationship between a
surrogate generative model used as an intermediate target distribution in sequential Monte
Carlo and a discriminative model used as a proposal distribution in importance sampling.

A generative model can serve as a sort of specification for a discriminative model or a
surrogate generative models, and there are well-defined metrics based on Kullback-Leibler
divergence for quantifying how well a discriminative or surrogate model meets the specifica-
tion (Section 3.3). Because all of these types of models are expressed explicitly as generative
functions in Gen, it is straightforward to evaluate and optimize these metrics as part of a
coherent engineering methodology.

216



7.3 Towards a mature inference engineering methodology
This thesis is intended to be a step towards an inference engineering methodology grounded
in interpretable generative models that is accessible to a broader community of programmers
and engineers who do not have extensive mathematical training in probabilistic modeling
and inference. Progress must be made along several directions to reach this goal.

First, we need general-purpose libraries for probabilistic modeling and inference that
use explicit representations of structured generative models in human-readable modeling
languages, and flexibly support various algorithmic methodologies including Monte Carlo,
variational, and discriminative approaches and their hybrids, at a high level of abstraction.
These libraries should be based on compositional model representations with common in-
terfaces that encourage modular modeling and inference code and reuse of modeling and
inference components. Gen aims to be such a library. Several other high-level modeling
and inference libraries based on Gen’s data types and interoperable with Gen have been
developed.

Tools for evaluating, testing, and verifying inference implementations relative to specifi-
cations defined by generative models are needed. Empirical analyses based on samples from
inference implementations [120, 110], static analyses of inference implementations [73, 7, 72]
that check for key invariants and identify bugs, and techniques that combine aspects of static
analysis and sampling [26] all have a role to play. For performance-constrained applications
like robotics where safety and uncertainty quantification are important, tools for evaluating
the non-asymptotic approximation error of inference implementations and discriminative
models using metrics grounded in probability theory are needed [26]. These tools need to be
flexible enough to evaluate errors on specific data sets and distributions of data sets, search
for data sets for which algorithms fail, and collect data used to build empirical models of
inference algorithm performance.

Finally, we need to make this engineering methodology learnable without relying on
mathematical knowledge of probability theory. Gen has been used to each multiple classes
on applied probabilistic inference for which prior coursework in probabilistic inference was
not required with encouraging results, but more work is needed to systematize practical
knowledge about how to implement, debug, test, and maintain inference implementations.

217



218



Notation

𝑎, 𝑏 Scalars and addresses in choice dictionaries (lowercase)
v, g Vectors (bold)
M , J Matrices (bold italicized uppercase)
𝐴, 𝐵 Sets (uppercase)
∅ Empty set
𝐴c Complement of set 𝐴
𝜌, 𝜎, 𝜏 , 𝜐, 𝜆 Choice dictionaries (bold lowercase Greek letters)
p, q Probabilistic modeling language source code
𝒫,𝒬 Generative functions
t, s Traces (bold lowercase sans-serif font)
𝜏 [𝑎] Value lookup in choice dictionary
𝜎 ⊕ 𝜏 Merge of two choice dictionaries
𝐴𝜏 Set of addresses in a choice dictionary (its domain)
𝜏 |𝐴 Restriction of a choice dictionary to a set of addresses
{𝑎 ↦→ 2, 𝑏 ↦→ 3} Literal choice dictionary
𝒯 ⋆

𝐴 Set of choice dictionaries with addresses that are a subset of 𝐴
𝒯𝐴 Set of choice dictionaries with addresses that are exactly 𝐴
𝑝(𝜏 ), 𝑞(𝜎; 𝑥) Probability density of choice dictionary
supp(𝑝) Support of density 𝑝 (the set {𝜏 : 𝑝(𝜏 ) > 0})
𝜇(𝑑𝜏 ), 𝜈(𝑑𝜏 ) Probability measure on dictionaries
𝑝(𝜌) Marginal likelihood
𝑝(𝜎|𝜌) Conditional probability density
𝜏 ∼ 𝑝, 𝜎 ∼ 𝑞(·; 𝜎) Sampling from the measure induced by probability density
JpK Semantics of source code (a generative function)
[𝑥] Indicator; 1 if 𝑥 is true and 0 if 𝑥 is false
𝑝norm(𝜇,𝜎) Density function for a primitive probability distribution

219



220



Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[2] Umut A. Acar. Self-adjusting computation: (an overview). In Proceedings of the 2009
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages
1–6, 2009.

[3] David J Aldous. Exchangeability and related topics. In École d’Été de Probabilités
de Saint-Flour XIII-1983, pages 1–198. Springer, 1985.

[4] Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for effi-
cient Monte Carlo computations. Ann. Statist., 37(2):697–725, 04 2009.

[5] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An
introduction to MCMC for machine learning. Machine Learning, 50(1-2):5–43, 2003.

[6] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov Chain
monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269–342, 2010.

[7] Eric Atkinson, Cambridge Yang, and Michael Carbin. Verifying handcoded proba-
bilistic inference procedures. arXiv preprint arXiv:1805.01863, 2018.

[8] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as
inverse planning. Cognition, 113(3):329–349, 2009.

[9] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric correspon-
dence and chamfer matching: Two new techniques for image matching. In Proceedings
of the 5th International Joint Conference on Artificial Intelligence - Volume 2, IJ-
CAI’77, pages 659–663, 1977.

[10] Bruce Guenther Baumgart. Geometric Modeling for Computer Vision. PhD thesis,
Stanford, CA, USA, 1974.

[11] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.

221



Theano: a CPU and GPU math expression compiler. In Proceedings of the Python
for scientific computing conference (SciPy), volume 4, pages 1–7, 2010.

[12] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

[13] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D
Goodman. Pyro: Deep universal probabilistic programming. The Journal of Ma-
chine Learning Research, 20(1):973–978, 2019.

[14] Serena Booth, Yilun Zhou, Ankit Shah, and Julie Shah. Bayes-probe: Distribution-
guided sampling for prediction level sets. arXiv preprint arXiv:2002.10248, 2020.

[15] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A
lambda-calculus foundation for universal probabilistic programming. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 33–46, 2016.

[16] Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. arXiv preprint
arXiv:1406.2751, 2014.

[17] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov
Chain Monte Carlo. CRC press, 2011.

[18] Yufei Cai, Paolo G Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory
of changes for higher-order languages: Incrementalizing 𝜆-calculi by static differen-
tiation. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 145–155, 2014.

[19] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M Dollar. The YCB object and model set: Towards common benchmarks
for manipulation research. In 2015 International Conference on Advanced Robotics
(ICAR), pages 510–517. IEEE, 2015.

[20] Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of Statistical Software, 76(1):
1–32, 2017.

[21] Sourav Chatterjee, Persi Diaconis, et al. The sample size required in importance
sampling. The Annals of Applied Probability, 28(2):1099–1135, 2018.

[22] Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings
algorithm. The American Statistician, 49(4):327–335, 1995.

[23] Mary Kathryn Cowles, Gareth O Roberts, and Jeffrey S Rosenthal. Possible biases
induced by MCMC convergence diagnostics. Journal of Statistical Computation and
Simulation, 64(1):87–104, 1999.

222



[24] Marco Cusumano-Towner. Inference library of the Gen probabilistic programming
system. https://github.com/probcomp/Gen.jl/blob/b9d72b/src/inference/
mh.jl#L73-L108, 2018. Accessed: 2018-12-27.

[25] Marco Cusumano-Towner and contributors. Gen: A general-purpose probabilistic
programming system with programmable inference. https://www.gen.dev. Ac-
cessed: 2020-08-28.

[26] Marco Cusumano-Towner and Vikash K. Mansinghka. AIDE: An algorithm for mea-
suring the accuracy of probabilistic inference algorithms. In Advances in Neural
Information Processing Systems 30, pages 3000–3010, 2017.

[27] Marco Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin Vechev, and
Vikash K. Mansinghka. Incremental inference for probabilistic programs. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, pages 571–585. ACM, 2018.

[28] Marco Cusumano-Towner, Alexander K Lew, and Vikash K Mansinghka. Automating
involutive MCMC using probabilistic and differentiable programming. arXiv preprint
arXiv:2007.09871, 2020.

[29] Marco F Cusumano-Towner and Vikash K Mansinghka. Encapsulating mod-
els and approximate inference programs in probabilistic modules. arXiv preprint
arXiv:1612.04759, 2016.

[30] Marco F Cusumano-Towner and Vikash K Mansinghka. Using probabilistic programs
as proposals. arXiv preprint arXiv:1801.03612, 2018.

[31] Marco F Cusumano-Towner, Alexey Radul, David Wingate, and Vikash K Mans-
inghka. Probabilistic programs for inferring the goals of autonomous agents. arXiv
preprint arXiv:1704.04977, 2017.

[32] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K
Mansinghka. Gen: a general-purpose probabilistic programming system with pro-
grammable inference. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 221–236. ACM, 2019.

[33] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):
411–436, 2006.

[34] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan,
Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow
distributions. arXiv preprint arXiv:1711.10604, 2017.

[35] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to Sequential
Monte Carlo methods. In Sequential Monte Carlo methods in practice, pages 3–14.
Springer, 2001.

223

https://github.com/probcomp/Gen.jl/blob/b9d72b/src/inference/mh.jl#L73-L108
https://github.com/probcomp/Gen.jl/blob/b9d72b/src/inference/mh.jl#L73-L108
https://www.gen.dev


[36] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization, 10(2):112–
122, 1973.

[37] James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

[38] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and
Zoubin Ghahramani. Structure discovery in nonparametric regression through com-
positional kernel search. In Proceedings of the 30th International Conference on Ma-
chine Learning, ICML 2010, pages 1166–1174, 2013.

[39] Ted Enamorado, Benjamin Fifield, and Kosuke Imai. Using a probabilistic model
to assist merging of large-scale administrative records. American Political Science
Review, 113(2):353–371, 2019.

[40] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A language for flexible prob-
abilistic inference. volume 84 of Proceedings of Machine Learning Research, pages
1682–1690. PMLR, 09–11 Apr 2018.

[41] Roland Gecse and Attila Kovács. Consistency of stochastic context-free grammars.
Mathematical and Computer Modelling, 52(3-4):490–500, 2010.

[42] Timon Gehr, Sasa Misailovic, and Martin Vechev. Psi: Exact symbolic inference for
probabilistic programs. In International Conference on Computer Aided Verification,
pages 62–83. Springer, 2016.

[43] Andreas Geiger, Martin Lauer, and Raquel Urtasun. A generative model for 3D urban
scene understanding from movable platforms. In CVPR 2011, pages 1945–1952, 2011.

[44] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (6):721–741, 1984.

[45] Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reason-
ing. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 36,
2014.

[46] Samuel J Gershman, Eric J Horvitz, and Joshua B Tenenbaum. Computational
rationality: A converging paradigm for intelligence in brains, minds, and machines.
Science, 349(6245):273–278, 2015.

[47] John Geweke. Getting it right: Joint distribution tests of posterior simulators. Journal
of the American Statistical Association, 99(467):799–804, 2004.

[48] Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A language and program
for complex bayesian modelling. Journal of the Royal Statistical Society: Series D
(The Statistician), 43(1):169–177, 1994.

224



[49] Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A language and program
for complex Bayesian modelling. Journal of the Royal Statistical Society: Series D
(The Statistician), 43(1):169–177, 1994.

[50] Walter R Gilks and Carlo Berzuini. Following a moving target-Monte Carlo inference
for dynamic Bayesian models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(1):127–146, 2001.

[51] Noah Goodman, Vikash Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: a language for generative models. In Proceedings of the 24th
Annual Conference on Uncertainty in Artificial Intelligence, UAI 2008, pages 220–
229, 2008.

[52] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of
Probabilistic Programming Languages. http://dippl.org, 2014. Accessed: 2016-
10-31.

[53] Peter J Green. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732, 1995.

[54] Roger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. Tenen-
baum. Exploiting compositionality to explore a large space of model structures. In
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, UAI 2012,
pages 306–315, 2012.

[55] Shivam Handa, Vikash Mansinghka, and Martin Rinard. Compositional inference
metaprogramming with convergence guarantees. arXiv preprint arXiv:1907.05451,
2019.

[56] David I Hastie and Peter J Green. Model choice using reversible jump Markov chain
Monte Carlo. Statistica Neerlandica, 66(3):309–338, 2012.

[57] Keith Hawkins, Boris Leistedt, Jo Bovy, and David W Hogg. Red clump stars and
Gaia: Calibration of the standard candle using a hierarchical probabilistic model.
Monthly Notices of the Royal Astronomical Society, 471(1):722–729, 2017.

[58] GE Hinton, P Dayan, BJ Frey, and RM Neal. The “wake-sleep” algorithm for unsu-
pervised neural networks. Science, 268(5214):1158–1161, 1995. ISSN 0036-8075.

[59] Tomas Hrycej. Gibbs sampling in bayesian networks. Artificial Intelligence, 46(3):
351–363, 1990.

[60] Daniel Huang, Jean-Baptiste Tristan, and Greg Morrisett. Compiling Markov chain
Monte Carlo algorithms for probabilistic modeling. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
111–125, 2017.

225

http://dippl.org


[61] Jonathan H Huggins, Trevor Campbell, Mikołaj Kasprzak, and Tamara Broderick.
Practical bounds on the error of bayesian posterior approximations: A nonasymptotic
approach. arXiv preprint arXiv:1809.09505, 2018.

[62] Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V Gehler. The in-
formed sampler: A discriminative approach to Bayesian inference in generative com-
puter vision models. Computer Vision and Image Understanding, 136:32–44, 2015.

[63] Claus Skaanning Jensen, Augustine Kong, and Uffe Kjaerulff. Blocking Gibbs sam-
pling in very large probabilistic expert systems. International Journal of Human
Computer Studies, 42(6):647–666, 1995.

[64] Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and
Naonori Ueda. Learning systems of concepts with an infinite relational model. In
AAAI, volume 3, page 5, 2006.

[65] Bjarne Knudsen and Jotun Hein. Pfold: RNA secondary structure prediction using
stochastic context-free grammars. Nucleic Acids Research, 31(13):3423–3428, 2003.

[66] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT press, 2009.

[67] Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka.
Picture: A probabilistic programming language for scene perception. In Proceedings
of the ieee conference on computer vision and pattern recognition, pages 4390–4399,
2015.

[68] Karim Lari and Steve J Young. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer speech & language, 4(1):35–56, 1990.

[69] Steven M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical Report TR 98-11, Computer Science Department, Iowa State University,
1998.

[70] Tuan Anh Le, Atılım Günes Baydin, and Frank Wood. Inference compilation and
universal probabilistic programming. arXiv preprint arXiv:1610.09900, 2016.

[71] Tuan Anh Le, Atılım Günes Baydin, Robert Zinkov, and Frank Wood. Using synthetic
data to train neural networks is model-based reasoning. In 2017 International Joint
Conference on Neural Networks (IJCNN), pages 3514–3521. IEEE, 2017.

[72] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. Towards verified
stochastic variational inference for probabilistic programs. Proceedings of the ACM
on Programming Languages, 4(POPL):1–33, 2019.

[73] Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael Carbin,
and Vikash K Mansinghka. Trace types and denotational semantics for sound pro-
grammable inference in probabilistic languages. Proceedings of the ACM on Program-
ming Languages, 4(POPL):1–32, 2019.

226



[74] Alexander K. Lew, Benjamin Sherman, Marco Cusumano-Towner,
Michael Carbin, and Vikash Mansinghka. MetaPPL: Inference algo-
rithms as first-class generative models. Languages for Inference Work-
shop, 2020. URL https://popl20.sigplan.org/details/lafi-2020/14/
MetaPPL-Inference-Algorithms-as-First-Class-Generative-Models.

[75] Barbara Liskov and Stephen Zilles. Programming with abstract data types. ACM
Sigplan Notices, 9(4):50–59, 1974.

[76] Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer Publishing
Company, Inc., 2001.

[77] James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua Tenenbaum, and Zoubin
Ghahramani. Automatic construction and natural-language description of nonpara-
metric regression models. In Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, 2014.

[78] Anthony Lu. Venture: An extensible platform for probabilistic meta-programming.
Master’s thesis, Massachusetts Institute of Technology, 2016.

[79] Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: A higher-order
probabilistic programming platform with programmable inference. arXiv preprint
arXiv:1404.0099, 2014.

[80] Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen,
and Martin Rinard. Probabilistic programming with programmable inference. In
ACM SIGPLAN Notices, volume 53, pages 603–616. ACM, 2018.

[81] David Merrell and Anthony Gitter. Inferring signaling pathways with probabilistic
programming. Proceedings of the Nineteenth European Conference of Computational
Biology, 2020.

[82] David Merrell and Anthony Gitter. Inferring signaling pathways with probabilistic
programming, 2020.

[83] Brian Milch and Stuart Russell. General-purpose MCMC inference over relational
structures. In Proceedings of the Twenty-Second Conference on Uncertainty in Arti-
ficial Intelligence, pages 349–358, 2006.

[84] Brian Milch, Bhaskara Marthi, and Stuart Russell. BLOG: Relational modeling with
unknown objects. In ICML 2004 workshop on statistical relational learning and its
connections to other fields, pages 67–73, 2004.

[85] Brian Milch, Bhaskara Marthi, David Sontag, Stuart Russell, Daniel L Ong, and
Andrey Kolobov. Approximate inference for infinite contingent Bayesian networks.
In Proceedings of the 10th International Conference on Artificial Intelligence and
Statistics, AISTATS 2005, pages 238–245, 2005.

227

https://popl20.sigplan.org/details/lafi-2020/14/MetaPPL-Inference-Algorithms-as-First-Class-Generative-Models
https://popl20.sigplan.org/details/lafi-2020/14/MetaPPL-Inference-Algorithms-as-First-Class-Generative-Models


[86] Dave Moore and Maria I Gorinova. Effect handling for composable program trans-
formations in Edward2. arXiv preprint arXiv:1811.06150, 2018.

[87] Quaid Morris. Recognition networks for approximate inference in BN20 networks. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
pages 370–377, 2001.

[88] Iain Murray, Ryan Adams, and David MacKay. Elliptical slice sampling. In Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2010, pages 541–548, 2010.

[89] Lawrence M Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B
Schön. Delayed sampling and automatic Rao-Blackwellization of probabilistic pro-
grams. arXiv preprint arXiv:1708.07787, 2017.

[90] Praveen Narayanan and Chung-chieh Shan. Symbolic disintegration with a vari-
ety of base measures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 42(2):1–60, 2020.

[91] Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):
125–139, 2001.

[92] Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2(11):2, 2011.

[93] Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry Vetrov. Involutive
MCMC: A Unifying Framework. arXiv preprint arXiv:2006.16653, 2020.

[94] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8026–8037, 2019.

[95] Avi Pfeffer. Ibal: A probabilistic rational programming language. In IJCAI, pages
733–740, 2001.

[96] Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flex-
ible and accelerated probabilistic programming in NumPyro. arXiv preprint
arXiv:1912.11554, 2019.

[97] William Pugh and Tim Teitelbaum. Incremental computation via function caching.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 315–328, 1989.

[98] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating System. In
ICRA Workshop on Open Source Software, volume 3, page 5. Kobe, Japan, 2009.

228



[99] L. Rabiner and B. Juang. An introduction to hidden Markov models. IEEE ASSP
Magazine, 3(1):4–16, 1986.

[100] Jonathan Rees and William Clinger. Revised3 report on the algorithmic language
Scheme. ACM Sigplan Notices, 21(12):37–79, 1986.

[101] Dirk Reiners. OpenSG: A scene graph system for flexible and efficient realtime render-
ing for virtual and augmented reality applications. PhD thesis, Darmstadt University
of Technology, 2002.

[102] Sylvia Richardson and Peter J Green. On Bayesian analysis of mixtures with an
unknown number of components (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 59(4):731–792, 1997.

[103] Daniel Ritchie, Andreas Stuhlmüller, and Noah Goodman. C3: Lightweight incremen-
talized MCMC for probabilistic programs using continuations and callsite caching. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2016, pages 28–37.

[104] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer-Verlag, 2005.

[105] David A Roberts, Marcus Gallagher, and Thomas Taimre. Reversible jump probabilis-
tic programming. In Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics, AISTATS 2019, pages 634–643, 2019.

[106] Andrew Roth, Jiarui Ding, Ryan Morin, Anamaria Crisan, Gavin Ha, Ryan Giuliany,
Ali Bashashati, Martin Hirst, Gulisa Turashvili, Arusha Oloumi, et al. JointSNVMix:
a probabilistic model for accurate detection of somatic mutations in normal/tumour
paired next-generation sequencing data. Bioinformatics, 28(7):907–913, 2012.

[107] Stuart Russell. Rationality and intelligence: A brief update. In Fundamental issues
of artificial intelligence, pages 7–28. Springer, 2016.

[108] Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial intelligence,
49(1-3):361–395, 1991.

[109] Feras A. Saad, Marco Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and
Vikash K. Mansinghka. Bayesian synthesis of probabilistic programs for automatic
data modeling. Proceedings of the ACM on Programming Languages, 3(POPL):37:1–
37:29, 2019.

[110] Feras A Saad, Cameron E Freer, Nathanael L Ackerman, and Vikash K Mansinghka.
A family of exact goodness-of-fit tests for high-dimensional discrete distributions.
arXiv preprint arXiv:1902.10142, 2019.

[111] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE transactions on acoustics, speech, and signal process-
ing, 26(1):43–49, 1978.

229



[112] Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and
Justin Hsu. Formal verification of higher-order probabilistic programs. Proceedings
of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[113] Ulrich Schaechtle, Feras Saad, Alexey Radul, and Vikash K. Mansinghka. Time
series structure discovery via probabilistic program synthesis. arXiv preprint
arXiv:1611.07051, 2016.

[114] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient RANSAC for point-
cloud shape detection. In Computer Graphics Forum, volume 26, pages 214–226.
Wiley Online Library, 2007.

[115] Adam Ścibior, Zoubin Ghahramani, and Andrew D Gordon. Practical probabilistic
programming with monads. In Proceedings of the 2015 ACM SIGPLAN Symposium
on Haskell, pages 165–176, 2015.

[116] Span Spanbauer, Cameron Freer, and Vikash Mansinghka. Deep involutive generative
models for neural MCMC. arXiv preprint arXiv:2006.15167, 2020.

[117] Geir Storvik. On the flexibility of Metropolis–Hastings acceptance probabilities in
auxiliary variable proposal generation. Scandinavian Journal of Statistics, 38(2):342–
358, 2011.

[118] Andreas Stuhlmüller, Jacob Taylor, and Noah Goodman. Learning stochastic in-
verses. In Advances in Neural Information Processing Systems 26, pages 3048–3056,
2013.

[119] Andreas Stuhlmüller, Robert XD Hawkins, N Siddharth, and Noah D Goodman.
Coarse-to-fine sequential monte carlo for probabilistic programs. arXiv preprint
arXiv:1509.02962, 2015.

[120] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman.
Validating Bayesian inference algorithms with simulation-based calibration. arXiv
preprint arXiv:1804.06788, 2018.

[121] Luke Tierney. Markov chains for exploring posterior distributions. The Annals of
Statistics, pages 1701–1728, 1994.

[122] Luke Tierney. A note on Metropolis-Hastings kernels for general state spaces. Annals
of Applied Probability, 8(1):1–9, 02 1998.

[123] Robert F Tobler. Separating semantics from rendering: a scene graph based archi-
tecture for graphics applications. The Visual Computer, 27(6-8):687–695, 2011.

[124] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox,
and Stan Birchfield. Deep object pose estimation for semantic robotic grasping of
household objects. In Conference on Robot Learning (CoRL), 2018.

230



[125] Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven Markov chain
Monte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24
(5):657–673, 2002.

[126] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305,
2008.

[127] David Wingate, Andreas Stuhlmüller, and Noah Goodman. Lightweight implemen-
tations of probabilistic programming languages via transformational compilation. In
Proceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2011, pages 770–778, 2011.

[128] Sam Witty, Alexander Lew, David Jensen, and Vikash Mansinghka. Bayesian causal
inference via probabilistic program synthesis. arXiv preprint arXiv:1910.14124, 2019.

[129] Sam Witty, Kenta Takatsu, David Jensen, and Vikash Mansinghka. Causal infer-
ence using gaussian processes with structured latent confounders. arXiv preprint
arXiv:2007.07127, 2020.

[130] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new approach to prob-
abilistic programming inference. In Proceedings of the 17th International Conference
on Artificial Intelligence and Statistics, AISTATS 2014, pages 1024–1032, 2014.

[131] Yi Wu, Lei Li, Stuart Russell, and Rastislav Bodik. Swift: Compiled inference for
probabilistic programming languages. arXiv preprint arXiv:1606.09242, 2016.

[132] Lingfeng Yang, Patrick Hanrahan, and Noah Goodman. Generating efficient MCMC
kernels from probabilistic programs. In Proceedings of the 17th International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2014, pages 1068–1076.

[133] Tan Zhi-Xuan, Jordyn L Mann, Tom Silver, Joshua B Tenenbaum, and Vikash K
Mansinghka. Online Bayesian goal inference for boundedly-rational planning agents.
arXiv preprint arXiv:2006.07532, 2020.

[134] Ben Zinberg, Marco Cusumano-Towner, and Vikash K Mansinghka. Structured dif-
ferentiable models of 3D scenes via generative scene graphs. Workshop on Percep-
tion as Generative Reasoning, NeurIPS 2019, Vancouver, Canada. URL https:
//pgr-workshop.github.io/img/PGR025.pdf.

231

https://pgr-workshop.github.io/img/PGR025.pdf
https://pgr-workshop.github.io/img/PGR025.pdf

	Introduction
	A new approach to implementing probabilistic inference
	Overview of programming languages concepts in Gen
	Generative probabilistic models and probabilistic inference
	Using probabilistic programming languages to express generative probabilistic models
	Abstract data types for generative functions and traces
	Generating implementations of the abstract data types from the source code of probabilistic programs
	Approximate probabilistic inference algorithms
	Implementing inference algorithms with abstract data types


	Abstract Data Types for Inference: Generative Functions and Traces
	An abstract formal representation for generative models
	Random choices, addresses, and choice dictionaries
	Probability distributions on choice dictionaries
	Marginal likelihood, conditioning, and expectation
	Generalizing beyond discrete random choices
	Generative functions

	Languages for defining generative functions
	Gen Dynamic Modeling Language
	Formal semantics of a toy modeling language

	Abstract data types for probabilistic inference
	Generative function and trace ADTs
	Implementing the ADT operations compositionally

	Related work

	Implementing Inference Using Generative Functions and Traces
	Simple Monte Carlo with traces
	Importance sampling with traces
	Regular importance sampling
	Self-normalized importance sampling

	Training proposal distributions on simulated data
	Markov chain Monte Carlo with traces
	MCMC with the trace abstract data type
	Metropolis-Hastings using generative functions as proposals
	Hamiltonian Monte Carlo with traces
	A language for composing MCMC kernels

	Resample-move particle filtering with traces
	Trace-based particle filtering with rejuvenation kernels
	Annealed importance sampling with traces

	Bridging between models with trace translators
	Trace translators
	Sparsity-aware Jacobian computation
	A differentiable programming language for trace transforms
	Sequential Monte Carlo with trace translators

	Involutive MCMC
	Symmetric trace translators
	Incremental computation for symmetric trace translators
	Involutive MCMC
	Implementing reversible jump MCMC using involutive MCMC
	State-dependent mixture kernels and involutive MCMC

	Related work

	Encapsulating Inference Logic in Generative Functions and Traces
	Generative functions with internal proposals
	Extending the generate operation using the internal proposal
	The regenerate trace operation
	Example internal proposal families

	Importance sampling with the internal proposal
	Selection Metropolis-Hastings
	A combinator for overriding the internal proposal
	Encapsulated randomness
	Extending the data type operations with encapsulated randomness
	Untraced random choices
	Pseudo-marginal Monte Carlo methods and encapsulation
	Using encapsulated randomness inside proposal distributions

	Related Work

	Compiling Generative Function and Trace Data Types from Probabilistic Modeling Code
	The Dynamic Modeling Language compiler
	Implementing generative functions and traces via effect handlers
	Invoking generative functions

	The Static Modeling Language compiler
	Generative function combinators for control flow
	Domain-specific generative functions
	Related work

	Applications
	Inference in generative models of intelligent behavior
	An algorithmic generative model of goal-directed movement
	A simple and generic inference implementation
	Adding uncertainty about structure and stochastic control flow
	A sequential Monte Carlo inference algorithm
	Symbolic reasoning from noisy data via probabilistic inference

	Inferring object pose and existence from point clouds
	Real-time camera pose estimation
	Inferring the dynamic geometric structure of a 3D scene
	Gaussian process structure learning for time series

	Conclusion
	Tradeoffs in probabilistic inference systems architecture
	Generative and discriminative models and heuristics
	Towards a mature inference engineering methodology


