
Programming Technologies for Engineering Quality

Multicore Software

by

Tim Kaler

B.S., Massachusetts Institute of Technology (2012)
M.Eng, Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2020

Certified by. .
Charles E. Leiserson

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Programming Technologies for Engineering Quality Multicore Software
by

Tim Kaler

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

The widespread availability of large multicore computers in the cloud has given engineers
and scientists unprecedented access to large computing platforms. Traditionally, high-end
computing solutions have been developed and used by only a small community, as these
solutions rely on expensive and specialized computing environments. The emergence of
large-scale cloud computing providers, however, has democratized access to large-scale (al-
though not necessarily HPC-scale) computing power, which can now be rented on-demand
with just a credit card.

The complexity of parallel programming, however, has made it more difficult for even
expert programmers to develop high-quality multicore software systems. For average pro-
grammers, developing parallel programs that are debuggable, correct, and performant is a
daunting challenge. This thesis is concerned with the development of programming tech-
nologies that reduce the complexity of parallel programming to make it easier for average
programmers to exploit the capabilities of multicore hardware.

I contend that realizing the full potential of the multicore revolution requires the devel-
opment of programming technologies that make it easier to write quality code — code that
has a simple understandable structure and performs well in practice. These programming
technologies broadly include parallel algorithms, data structures, optimization techniques,
profiling tools, and system design principles.

Along these ends, this thesis presents seven intellectual artifacts from the domains of
parallel algorithms, multicore-centric systems for scientific computing, and programming
tools that make it easier to write quality code by simplifying the design, analysis, and
performance engineering of multicore software:

• Chromatic: Parallel algorithms for scheduling data-graph computations determinis-
tically.

• Color: Parallel algorithms and ordering heuristics for graph coloring that have the
simple semantics of serial code.

• PARAD: An efficient and parallelism-preserving algorithm for performing automatic
differentiation in parallel programs.

• Connectomics: An end-to-end image-segmentation pipeline for connectomics using
a single large multicore.

• Alignment: An image-alignment pipeline for connectomics that uses memory-efficient
algorithms, and techniques for judiciously exploiting performance–accuracy tradeoffs.

• Reissue: Reissue policies for reducing tail-latency in distributed services that are
easy to analyze and effective in practice.

• Cilkmem: Efficient algorithms and tools for measuring the worst-case memory high-
water mark of parallel programs.

3

Although the emphasis and domains of these artifacts vary, they each involve the dis-
covery of a way to tame complexity in parallel software systems without compromising, in
fact, usually enhancing, theoretical guarantees and real-world performance.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

There are many individuals to whom I owe my thanks for their support and guidance during
my graduate studies.

First and foremost, I thank my advisor Charles E. Leiserson. Charles has earned my
enduring gratitude for his invaluable support, guidance, and generosity over the years.
Charles is a professor who exudes integrity, curiosity, and a sense of fun. These attributes
motivated me to work hard in his undergraduate algorithms class, take his performance
engineering class, and ultimately join his research group. Since then I’ve learned more
about writing and research from Charles than I could have ever anticipated. I can’t say
that it has always been easy to implement all of his advice, but I can say that it’s always
been worth the effort.

I thank Tao B. Schardl, Julian Shun, and I-Ting Angelina Lee for their service on
my thesis committee and for helpful discussions over the years. Tao Schardl has a deep
understanding of parallel linguistics, performance engineering, and compilers and has been
a constant source of ideas, inspiration, and support. I also thank Tao Schardl for his
contributions to the Chromatic, Color, Cilkmem, and PARAD papers. Julian has shared his
substantial expertise in the design of work-efficient parallel algorithms and related topics.
I also thank Julian for inviting me to give a lecture in his seminar class. Angelina has
provided insights into the internals of the Cilk runtime system, and helpful discussions on
research directions on many topics including reducer hyperobjects, scheduling, and program
analysis tools.

Nir Shavit deserves thanks for his support, encouragement, and contributions to the
Connectomics and Alignment papers. The field of connectomics has fascinated me since I
was in high school, and it was a joy to contribute to the project. I thank all the members
of the connectomics project, especially Alex Matveev and Yaron Meirovitch, with whom
I’ve had many fruitful and enriching discussions. I also thank my collaborators at Harvard
including Daniel Berger, Adi (Suissa) Peleg, Thouis R. Jones, Hanspeter Pfister, and Jeff
Lichtman.

Yuxiong He and Sameh Elnikety provided valuable mentorship during my time at Mi-
crosoft Research and contributed to the Reissue paper. Their good humor and sharp intel-
lectual insights made my time at MSR an absolute joy.

I thank my collaborators at IBM, especially Jie Chen, Georgios Kollias and Mark Weber,
for hosting me during multiple visits to IBM’s campus and for advice and helpful discussions
related to machine learning on graphs and automatic differentiation.

I thank my other coauthors, not yet mentioned, William Kuszmaul, Daniele Vettorel,
William Hasenplaugh, Brian Wheatman, Sarah Wooders, Erik Demaine, Quanquan Liu,
Adam Yedidia, and Aaron Sidford. I thank William Kuszmaul for his unique theoretical
insights into approximation algorithms in the Cilkmem paper. I thank Daniele Vetorrel
for his contributions to the Cilkmem paper, and for his advice and guidance in designing a
prototype CSI tool for the PARAD paper. I thank Brian Wheatman and Sarah Wooders for
their dedication and persistence as undergraduate researchers and M.Eng students during
our collaboration on the Alignment paper. I thank Erik Demaine, Quanquan Liu, Adam
Yedidia, and Aaron Sidford for their theoretical insights and contributions to the Retroactive
paper. I thank William Hasenplaugh for his contributions to the Chromatic and Color
papers as well as for his good humor and for sharing his deep theoretical and practical
understanding of memory models and computer architecture.

Julian Shun and Adam Belay served on my RQE commmittee and I am grateful for

5

their helpful comments and advice.
I thank all of the students, faculty, and staff on the seventh floor for providing helpful

discussions and fun diversions throughout my graduate studies. I thank the members of the
Supertech research group past and present. I especially thank Bradley Kuszmaul, Maryam
Mehri Dehnavi, Shahin Kamali, Helen Xu, and Matthew Kilgore for their unique insights
and helpful discussions over the years. I give special thanks to Cree Bruins and Marsha
Davidson for their logistical support and for adding an extra dose of levity and warmth to
the atmosphere of the group.

The members of the EECS graduate office deserve my thanks for helping my graduate
studies run smoothly. I especially thank Janet Fischer for her assistance over the years.
I thank Anne Hunter and the members of the undergraduate EECS office for all of the
support provided during my undergraduate studies, and for their support of my UROP and
M.Eng students.

The members of TIG have been consistently helpful and flexible while I’ve been at
CSAIL. The dedication of the members of TIG to maintaining transparency and openness
in the network and computing infrastructure is something I really appreciate. Garrett
Wollman, in particular, has been especially helpful for various computing projects related
to courses and research.

I thank all of the faculty, staff, and students that have provided support during my time
as an undergraduate at MIT. In particular, I thank Hari Balakrishnan, Sam Madden, Ben
Waber, Lenin Ravindranath, and Arvind Thiagarajan for giving me early opportunities
to engage in research during my undergraduate studies. I owe special thanks to Jeremy
Orloff and Gabrielle Stoy for their excellent mentorship, infectious appreciation for good
mathematical arguments, and giving me the opportunity to learn to teach during my first
few years as an undergraduate at MIT.

I am tremendously grateful for the support of my research sponsors. This research was
sponsored in part by: the United States Air Force Research Laboratory under Cooperative
Agreement Number FA8750-19-2-1000; the National Science Foundation (NSF) under grants
IIS-1447786, CNS-1017058, CCF-1162148, CCF-1314547, CCF-1563880; the Intelligence
Advanced Research Projects Activity (IARPA) under grant 138076-5093555; the MIT-IBM
Watson AI Lab under grant 027397-00059; the Intel Corporation; and, Foxconn Technology
Group. The views and conclusions contained in this document are mine and should not be
interpreted as representing the official policies, either expressed or implied, of the United
States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

Last, but not least, I thank all friends and family that have lent their support during
my graduate studies. I especially thank Sophia for her support and encouragement during
my graduate studies and during the final stretch of writing my thesis.

6

Contents

1 Introduction 11

1.1 Shared-memory multicore programming . 15

1.2 Multicore-centric systems for scientific computing 18

1.3 Beyond runtime: Tools for bounding memory usage and tail latency 20

1.4 Other contributions . 21

1.5 Overview . 22

2 Executing Dynamic Data-Graph Computations Deterministically Using
Chromatic Scheduling 27

2.1 Introduction . 28

2.2 Background . 33

2.3 The Prism algorithm . 35

2.4 The multibag data structure . 37

2.5 Analysis of Prism . 40

2.6 Empirical evaluation . 41

2.7 The Prism-R algorithm . 47

2.8 The multivector data structure . 49

2.9 Analysis and evaluation of Prism-R . 53

2.10 Conclusion . 54

2.11 Acknowledgments . 55

3 Ordering Heuristics for Parallel Graph Coloring 57

3.1 Introduction . 58

3.2 The Jones-Plassmann algorithm . 62

3.3 JP with random ordering . 64

3.4 The LF and SL heuristics . 66

3.5 Log ordering heuristics . 70

3.6 Empirical evaluation . 73

3.7 Implementation techniques . 77

3.8 The SD heuristic . 79

3.9 Related work . 81

3.10 Conclusion . 82

3.11 Appendix: Performance of serial ordering heuristics 83

3.12 Acknowledgments . 83

7

4 PARAD: A Work-Efficient Parallel Algorithm for Reverse-Mode Auto-
matic Differentiation 85

4.1 Introduction . 86

4.2 Preliminaries . 90

4.3 The SPTape Data Structure . 94

4.4 The PARAD algorithm . 99

4.5 Implementation of LibPARAD . 103

4.6 Performance Evaluation . 104

4.7 Related work . 108

4.8 Conclusion . 109

5 A Multicore Path to Connectomics-on-Demand 111

5.1 Introduction . 112

5.1.1 High-throughput connectomics . 112

5.1.2 Towards an automated terabyte-per-hour connectomics pipeline . . . 113

5.1.3 Our contributions . 114

5.1.4 Related work . 115

5.2 System overview . 115

5.2.1 Pipeline structure overview . 115

5.3 Segmentation with CNNs . 117

5.3.1 Our network architecture . 118

5.3.2 A fast CPU framework for CNNs . 118

5.3.3 A fast GPU framework for CNNs . 122

5.4 Watershed . 123

5.5 Agglomeration . 123

5.5.1 Regional adjacency graphs . 123

5.6 Merging . 125

5.7 Skeletonization . 125

5.8 Pipeline performance . 126

5.8.1 Reconstruction accuracy . 127

5.9 Lessons learned . 128

5.10 Conclusion . 129

5.11 Acknowledgements . 130

6 High-Throughput Image Alignment for Connectomics using Frugal Snap
Judgments 131

6.1 Introduction . 131

6.2 Alignment algorithms used in connectomics 134

6.3 Quilter algorithm . 137

6.4 The Stacker algorithm . 139

6.5 Frugal snap judgments . 140

6.6 System evaluation . 142

6.7 Computing platforms and datasets . 145

6.8 Empirical analysis of Stacker’s memory usage 146

6.9 Conclusion . 147

8

7 Cilkmem: Algorithms for Analyzing the Memory High-Water Mark of
Fork-Join Parallel Programs 149
7.1 Introduction . 150

7.1.1 Memory consumption of fork-join programs 151
7.1.2 Algorithms for memory high-water mark 152
7.1.3 The Cilkmem tool . 153
7.1.4 Outline . 153

7.2 Problem formalization . 154
7.3 An exact algorithm with O(p) overhead . 156
7.4 An online (memory-efficient) algorithm . 159
7.5 Online approximation in linear time . 159

7.5.1 Stripped robust antichains . 160
7.5.2 Recursively computing H •∞(G) . 162

7.6 Empirical evaluation . 165
7.6.1 Implementation . 165
7.6.2 Benchmarks . 167
7.6.3 Optimizations . 168
7.6.4 Case study: multicore image processing pipeline 168

7.7 Related work . 169
7.8 Conclusion . 171
7.9 Appendix: Online exact computation of Hp(G) 171
7.10 Appendix: An offline approximate-threshold algorithm 175
7.11 Appendix: Recursing on multi-spawn components 181

8 Optimal Reissue Policies for Reducing Tail-Latency 187
8.1 Introduction . 188
8.2 Deterministic versus random reissue . 191

8.2.1 Model and terminology . 191
8.2.2 The SingleD policies . 191
8.2.3 The SingleR policies . 192
8.2.4 Randomization is essential . 192

8.3 Single versus multiple reissue . 193
8.3.1 Multiple time policies . 193
8.3.2 Single is optimal . 193

8.4 SingleR for interactive services . 197
8.4.1 Parameter search . 197
8.4.2 Incorporating response-time correlations 199
8.4.3 Iterative adaptation for queue delays 200
8.4.4 Extended scenarios . 201

8.5 Simulations . 201
8.5.1 Simulated workload . 202
8.5.2 Benefits of randomization . 203
8.5.3 Impact of correlation and queueing 204
8.5.4 Sensitivity study . 205

8.6 Experimental evaluation . 207
8.6.1 Experimental setup and workloads 207
8.6.2 Redis set-intersection workload . 208
8.6.3 Lucene search workload . 210

9

8.7 Conclusion . 211

9 Polylogarithmic Fully Retroactive Priority Queues via Hierarchical Check-
pointing 213
9.1 Introduction . 213
9.2 Hierarchical checkpointing . 215

9.2.1 Definitions . 215
9.2.2 The data structure . 216

9.3 Time-fusible partially retroactive priority queue 217
9.3.1 Partially retroactive priority queues 218
9.3.2 Fusion algorithm . 218

9.4 Fully retroactive priority queue . 222
9.4.1 Obtaining full retroactivity using hierarchical checkpointing 222
9.4.2 Faster retroactive updates and Find-Deletion-Time queries 224
9.4.3 Faster Find-Deletion-Time queries 225

10 Conclusion 227
10.1 Summary . 227
10.2 Taming complexity in a post-Moore’s-law world 228

10

Chapter 1

Introduction

The widespread availability of large multicore hardware in the cloud has given engineers
and scientists unprecedented access to large computing platforms. Traditionally, high-end
computing solutions have been developed and used by only a small community, as these
solutions rely on expensive and specialized computing environments. The emergence of
large-scale cloud computing providers, however, has democratized access to large-scale (al-
though not necessarily HPC-scale) computing power, which can now be rented on-demand
with just a credit card.

Modern multicore hardware can store within their primary memory the datasets of
many big research problems in engineering and science. For example, the hyperlink graph
extracted from the Common Crawl 2012 web corpus, the largest publicly available graph
of the World Wide Web [257, 256], has fewer than 3.6 billion vertices and 129 billion edges
and can be stored in much less than 100GB in a variety of formats. The largest graph in
Stanford’s SNAP Datasets [222] is com-Friendster, which has fewer than 66 million vertices
and just over 1.8 billion edges and can be stored in less than 9GB. The largest sparse matrix
currently in the University of Florida’s Sparse Matrix Collection [84] is sk-2005, which has
just over 50 million rows and columns and fewer than 2 billion nonzeros and can be stored
in less than 3GB. All of these datasets fit within the primary memory of a large cloud
multicore.

A multicore-centric programming environment provides many advantages relative to
distributed computing and GPUs. A large distributed system may have tremendous com-
putational resources at its disposal, but its raw power comes with added complexity and
overhead. Data must be moved over the network, and the system must support a degree
of fault tolerance. These overheads tend to be small for problems that are embarrassingly
parallel, but can come to dominate the execution time of computations that need to operate
on shared data. Additionally, the multicore programming environment provides a degree
of programming flexibility that can enable the rapid development of novel algorithms and
software systems for emerging applications in industry and the sciences.

Despite multicores being readily available and providing a powerful general-purpose pro-
gramming environment, the notorious difficulty of parallel programming has blunted their
potential. For the scientific computing community, developing quality software systems that
can take full advantage of the capabilities of large multicore hardware is a costly endeavour:
requiring more time, more expert programmers, and more complex software systems. The
complexity of writing performant multicore programs has generated considerable stress in
industry and academia:

11

“When we start talking about parallelism and the use of truly parallel computers,
we’re talking about a problem that’s as hard as any that computer science has
faced.” — John Hennessy, Turing Award Winner, in “A conversation with John
Hennessy and David Patterson” [150]

The complexity of parallel programming has made it more difficult for even expert
programmers to develop high-quality multicore software systems. For average programmers,
developing parallel programs that are debuggable, correct, and performant is a daunting
challenge. This thesis is concerned with the development of programming technologies that
reduce the complexity of parallel programming to make it easier for average programmers
to exploit the capabilities of multicore hardware.

Programming technology for quality multicore software

In this thesis, I seek to simplify the engineering of multicore software systems by making
it easier for programmers to write quality code that has simple understandable structure
and performs well in practice. In pursuit of this goal, I have sought to develop technologies
that simplify the theory and practice of parallel programming. These programming tech-
nologies span a broad range that includes parallel algorithms, data structures, optimization
techniques, profiling tools, and system design principles. I contend that these technologies,
by simplifying the design and performance engineering of parallel code, can empower av-
erage programmers to productively develop quality multicore software. Along these ends,
this thesis provides evidence that appropriate programming technologies can simplify the
design and performance engineering of parallel code.

Specifically, the artifacts in this thesis are in support of the following statement.

Thesis statement: Parallel software systems designed using appropriate pro-
gramming technologies can have a simple understandable structure and achieve
good performance in practice.

In support of my thesis statement, I present seven principal intellectual artifacts that
advance the state-of-the-art in the domains of parallel algorithms, multicore-centric sys-
tems for scientific computing, and programming tools for understanding and optimizing
performance in parallel systems:

• Chromatic (Chapter 2): A parallel algorithm for scheduling data-graph computa-
tions deterministically. From “Executing dynamic data-graph computations deter-
ministically using chromatic scheduling” published in SPAA 2014 [184] and in TOPC
2016 [183] with coauthors: William Hasenplaugh, Tao B. Schardl, and Charles E.
Leiserson.

• Color (Chapter 3): Parallel algorithms and ordering heuristics for graph coloring
that have the simple semantics of serial code. From “Ordering heuristics for parallel
graph coloring” published in SPAA 2014 [146] with coauthors: William Hasenplaugh,
Tao B. Schardl, and Charles E. Leiserson.

• PARAD (Chapter 4): An efficient and parallelism-preserving algorithm for per-
forming automatic differentiation in parallel programs. From “PARAD: A work-
efficient parallel algorithm for reverse-mode automatic differentiation” in-submission
with coauthors: Tao B. Schardl, Brian Xie, Jie Chen, Aldo Pareja, Georgios Kollias,
and Charles E. Leiserson.

12

Theories of Performance

Multicore
Performance
Engineering

Design of Parallel
Systems

Chapters 2–4
Chromatic

Color
PARAD

Chapters 8–9
Cilkmem
Reissue

Chapters 6–7
Connectomics

Alignment

Figure 1-1: Graphical illustration of this thesis’s seven principal artifacts: Chromatic, Color,
PARAD, Connectomics, Alignment, Cilkmem, and Reissue.

• Connectomics (Chapter 5): An end-to-end image segmentation and skeletonization
pipeline for connectomics using a single large multicore. From “A multicore path to
connectomics-on-demand” published in PPoPP 2017 [247] with coauthors: Alexander
Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jakubiuk, Gergely Odor, David
Budden, Aleksandar Zlateski, and Nir Shavit.

• Alignment (Chapter 6): An image-alignment pipeline for connectomics that uses
memory-efficient algorithms, and techniques for judiciously exploiting performance–
accuracy tradeoffs. From “High-throughput image alignment for connectomics using
frugal snap judgments” published in HPEC 2020 [188] with coauthors: Brian Wheat-
man and Sarah Wooders.

• Cilkmem (Chapter 7): Efficient algorithms and tools for measuring the worst-case
memory high-water mark of parallel programs. From “Cilkmem: Algorithms for an-
alyzing the memory high-water mark of fork-join parallel programs” published in
APOCS 2020 [186] with coauthors: William Kuszmaul, Tao B. Schardl, and Daniele
Vettorel.

• Reissue (Chapter 8): Reissue policies for reducing tail latency in distributed services
that are easy to analyze and effective in practice. From “Optimal reissue policies for
reducing tail latency” published in SPAA 2017 [185] with coauthors: Yuxiong He and
Sameh Elnikety.

Organization

The seven principal artifacts of my thesis fall into roughly three categories based on each
artifact’s approach to simplifying the development of quality code. Figure 1-1 illustrates
the organization of the thesis’s principal artifacts. The contributions to parallel algorithms
employ techniques relating to theoretical models of performance and multicore performance

13

engineering to obtain easy-to-understand code that performs well in practice. The contribu-
tions to scientific computing systems employ techniques relating to multicore performance
engineering and parallel system design to obtain simple and high-performance software sys-
tems. The contributions to programming tools use theories of performance in conjunction
with parallel system design to understand and optimize anomalous behavior relating to
memory usage and latency in parallel systems. I summarize, in the following paragraphs,
these three categories of artifacts and explain how they support the development of quality
code.

Parallel algorithms. Chapters 2–4 present advancements in parallel algorithms for data-
graph computations, graph coloring, and automatic differentiation. These artifacts support
the development of quality code by showing how parallel algorithms can be designed to
match the simple semantics of a sequential program while being efficient and scalable both
in theory and in practice. Chapter 2 (the Chromatic artifact) shows how carefully de-
signed parallel scheduling algorithms for data-graph computations can preclude the need
for nondeterministic synchronization using locks. Chapter 3 (the Color artifact) introduces
ordering heuristics for parallel graph coloring that are deterministic, provably scalable, and
produce graph colorings of similar quality to known ordering heuristics used in serial code.
Chapter 4 (the PARAD artifact) shows how serial algorithms for performing automatic dif-
ferentiation can be generalized to parallel code in a work-efficient and parallelism-preserving
manner. In Section 1.1, I provide background on shared-memory multicore programming,
explain why determinism and serial semantics are critical in quality multicore code, and
discuss this thesis’s contributions to parallel algorithms in greater depth.

Multicore-centric scientific computing. Chapters 5–6 present case studies on the de-
sign and performance engineering of software systems that solve computational problems
in the field of connectomics. These artifacts support the development of quality code by
illustrating how simply designed parallel systems can achieve state-of-the-art performance
through the use of quality parallel algorithms and simple performance engineering tech-
niques. Chapter 5 (the Connectomics artifact) discusses the design and implementation of
an image reconstruction pipeline. In this system, I show how careful parallelization and
performance engineering can allow a single shared-memory multicore to outperform more
complex systems that employed distributed computing and GPUs. Chapter 6 (the Align-
ment artifact) discusses a multicore-centric image-alignment pipeline for connectomics. In
this system, I show how carefully designed multicore software systems can scale vertically
to larger machines, horizontally over many multicores in a cluster, and scale to the largest
conceivable data sets on the horizon in connectomics using machines with less than 1 TB of
memory. In Section 1.2 I provide background on the field of connectomics, and summarize
this thesis’s contributions in the area of multicore-centric scientific computing for image
reconstruction and image alignment in connectomics.

Tools for understanding parallel systems. Chapters 7–8 present technologies for un-
derstanding and mitigating anomalous behavior in parallel systems. These artifacts support
the development of quality software by providing principled methods for understanding the
interaction between a system’s structure and its anomalous, or worst-case, behavior. Chap-
ter 7 (the Cilkmem artifact) presents new algorithms for computing the exact and approx-
imate worst-case memory usage of multicore programs. Cilkmem enables a programmer to

14

understand the worst-case memory usage of their multicore code, which may only be ob-
served in practice rarely, by running the program once under Cilkmem’s instrumentation.
Chapter 8 (the Reissue artifact) discusses strategies for mitigating the impact of “strag-
glers” in distributed request-response workflows. In such distributed systems, a key metric
to optimize is the 99th percentile tail-latency of a request, which is often accomplished by
replicating the responding service and judiciously sending duplicate requests to different
replicas. The Reissue artifact describes and theoretically compares families of policies for
sending these duplicate requests and analyzes their ability to effectively reduce tail latency.
Section 1.3 discusses this thesis’s contributions to programming tools for analyzing and
optimizing worst-case memory usage and tail latency in parallel systems in greater depth.

In addition to the seven principal artifacts, Chapter 9 (the Retroactive artifact) presents
a fully retroactive priority queue data structure with polylogarithmic overheads. The con-
tributions in the Retroactive artifact are summarized in Section 1.4. Although this artifact
does not directly relate to quality code, the data structure techniques employed to solve this
open problem in retroactive data structures were inspired by techniques used to manage
parallel data structures.

Section 1.5 provides an overview of the scope and impact of the artifacts in this thesis.

1.1 Shared-memory multicore programming

This section discusses techniques for reducing the complexity of writing correct and efficient
shared-memory multicore code. I discuss the observation, made by many other researchers
in the field, that parallel programming is substantially less complex when it is deterministic
and has the semantics of serial code. I summarize this thesis’s contributions in Chapters
2–4 to parallel algorithms and data structures for graph coloring, data-graph computations,
and reverse-mode automatic differentiation.

Parallelism with serial semantics

Developing correct and performant parallel programs is substantially more complex than
writing sequential code. The patterns and invariants of sequential code that programmers
rely upon when writing software are often lost when parallelism is introduced. One can not
easily rationalize the correctness of most parallel programs by walking through its steps on
a napkin. Nor can one know whether repeated runs of a parallel program on the same input
will yield the same, or even a correct, result. A programmer cannot even do something as
simple as push elements to a dynamic array in parallel without tackling the complexities of
concurrent programming.

“Although threads seem to be a small step from sequential computations, in
fact, they represent a huge step. They discard the most essential and appeal-
ing properties of sequential computations: understandability, predictability, and
determinism.” Edward A. Lee in “The Problem with Threads” [211].

The design of abstractions that allow programmers to productively write correct, per-
formant, and maintainable multicore code is a key challenge in the parallel computing
community [12]. It has been convincingly argued that these abstractions are most useful
when they encapsulate nondeterminism due to concurrency and maintain the semantics of
serial code [250, 43, 211, 33]:

15

“The aggressive goal of the parallel revolution is to make it as easy to write
programs that are efficient, portable, and correct [...] as it has been to write
programs for sequential computers.” Krste Asanovic et al. in “A view of the
parallel computing landscape” [12].

Many researchers over multiple decades have advocated that the difficulty of parallel pro-
gramming can be greatly reduced by using some form of “deterministic parallelism” [281,
143, 125, 326, 32, 106, 105, 92, 93, 160, 23, 24, 274, 353, 43]. With a deterministic parallel
program, the programmer observes no logical concurrency , that is, no nondeterminacy
in the behavior of the program due to the relative and nondeterministic timing of commu-
nicating processes such as occurs when one process arrives at a lock before another. The
semantics of a deterministic parallel program are therefore serial, and reasoning about such
a program’s correctness, at least in theory, is no harder than reasoning about the correctness
of a serial program. Testing, debugging, and formal verification is simplified, because there
is no need to consider all possible relative timings (interleavings) of operations on shared
mutable data.

Despite the apparent advantages of deterministic parallelism, however, most parallel
programs deployed in practice exhibit non-deterministic behavior due to concurrency. In-
deed, most parallel programs today are still written using Pthreads [168], which forces
programmers to use concurrency mechanisms such as mutex locks and condition variables.
As a consequence, only experts can program these parallel applications, especially those for
shared-memory platforms, and these bug-prone codes can only be understood by experts.
For example, all the codes in the PARSEC [27], Galois [283], and STAMP [60] benchmark
suites use concurrency mechanisms.

Nevertheless, important steps toward determinism have been made. Perhaps the most
significant practical progress has occurred in the realm of fork-join parallelism . Fork-
join parallelism is usually implemented using work-stealing [57, 103, 108, 114, 143, 189,
199, 202, 270, 337, 41, 39, 116], where worker threads in the runtime system coordinate to
load-balance the computation, as in the various Cilk dialects [38, 116, 82, 219, 212, 172],
Fortress [3], Habanero [16], Habanero-Java [61], Hood [42], HotSLAW [258], Java Fork/Join
Framework [208], OpenMP [275, 13], Task Parallel Library [218], Threading Building Blocks
(TBB) [291] and X10 [68]. In this model, subroutines can be spawned in parallel, generating
a series-parallel execution dag in which the synchronization of subtasks is managed “under
the covers” by the runtime system. Constructs such as parallel_for can be implemented
as syntactic sugar on top of the fork-join model. As long as the parallel program contains no
determinacy races [106] (also called general races [266]), the program is deterministic.
Moreover, efficient tools exist that can guarantee to detect determinacy races or validate
their absence [106, 107].

Chromatic (Chapter 2)

The Chromatic artifact discusses the deterministic schedulers for data-graph computations
Prism and Prism-R. Data-graph computations have been popularized in such program-
ming systems as Galois [267, 268], Pregel [242], GraphLab [234, 233], PowerGraph [134],
Ligra [318, 321], and GraphChi [203]. Prism employs a technique called chromatic schedul-
ing [26, 1, 233] to resolve data races in a data-graph computation deterministically. Prism
computes a vertex coloring of the graph that it uses to coordinate updates performed in a
round, precluding the need for mutual exclusion locks or other nondeterministic synchro-

16

nization. Surprisingly, Prism outperforms existing lock-based schedulers, showing that the
“price of determinism” in the case of scheduling data-graph computations can be negative.

A key data structure challenge solved in the Chromatic artifact is the efficient and
deterministic management of dynamic collections in parallel code. During a data-graph
computation, Prism maintains dynamic sets of vertices that are partitioned by color called
color sets. The Chromatic artifact introduces two data structures for representing these
color sets: the “multibag” and “multivector.” The multibag provides an efficient way to
manage color sets in parallel, but does not guarantee that the ordering of vertices within a
color set will be deterministic. The multivector is similar to the multibag but additionally
ensures that the vertices in each color set are ordered deterministically. In fact, the multi-
vector maintains the same semantics as a set of dynamic arrays that support the insertion
of vertices via an append operation — vertices are ordered based on the order they would
have been inserted in a serial execution.

The Prism-R algorithm extends Prism to handle data-graph computations whose update
functions perform global associative reductions. Prism-R uses a multivector to represent
its color sets to ensure that vertices of the same color are deterministically ordered. The
multivector enables Prism-R to guarantee that global associative reductions performed over
vertices in the graph have a deterministic result. Prism-R and the multivector provide these
strong serial semantics while matching the theoretical bounds on work, span, and parallelism
achieved by Prism. In practice, Prism-R has only a 7% geometric mean overhead relative
to Prism on seven application benchmarks.

Color (Chapter 3)

The Color artifact discusses the design of vertex-ordering heuristics for parallel graph col-
oring algorithms. Ordering heuristics are vital to achieving quality vertex-colorings when
using a greedy algorithm. In fact, the first ordering heuristic called largest-degree-first (LF)
was described by Welsh and Powell [341] alongside their introduction of the first greedy
graph coloring algorithm in 1967. Numerous other orderings have been proposed since then
such as smallest-degree-last (SL) [246, 4], incidence-degree (ID) [75], and saturation-degree
(SD) [48] heuristics.

It may appear that an ordering heuristic for parallel graph-coloring must necessarily
be aware of concurrency, but it turns out that ordering heuristics used in parallel graph
coloring need not be concerned directly with the details of the parallel execution. Rather,
the intrinsic parallelism of a particular ordering heuristic (as used in a serial code) can be
analyzed theoretically and then directly applied using a deterministic parallel graph coloring
code that matches the result of the serial code.

In Chapter 3, we introduce the largest-log-degree-first (LLF) and smallest-log-degree-last
(SLL) ordering heuristics for parallel greedy graph-coloring algorithms, which are inspired
by the largest-degree-first (LF) and smallest-degree-last (SL) serial heuristics, respectively.
We show that although LF and SL, in practice, generate colorings with relatively small
numbers of colors, they are vulnerable to adversarial inputs for which any parallelization
yields a poor parallel speedup. In contrast, LLF and SLL allow for provably good speedups
on arbitrary inputs while, in practice, producing colorings of competitive quality to their
serial analogs.

17

PARAD (Chapter 4)

The PARAD artifact presents the first work-efficient parallelism-preserving algorithm for
performing reverse-mode automatic differentiation. Automatic differentiation (AD) is a
technique for computing the derivative of function F : Rn → Rm defined by a computer
program. Modern applications of AD, such as machine learning, typically use AD to facili-
tate gradient-based optimization of an objective function for which m � n (often m = 1).
As a result, these applications typically use reverse (or adjoint) mode AD to compute the
gradient of F efficiently, in time Θ(m ·T1(F)), where T1(F) is the work (serial running time)
of F . Although the serial running time of reverse-mode AD has a well known relationship
to the total work of F , general-purpose reverse-mode AD has proven challenging to paral-
lelize in a work-efficient and scalable fashion, as simple approaches tend to result in poor
performance or scalability.

PARAD is a work-efficient parallel algorithm for reverse-mode AD of recursive fork-
join programs. We analyze the performance of PARAD using work-span analysis. Given
a program F with work T1(F) and span (critical-path length) T∞(F), PARAD performs
reverse-mode AD of F in O(m ·T1(F)) work and O(logm+log(T1(F))T∞(F)) span. To the
best of our knowledge, PARAD is the first parallel algorithm for performing reverse-mode
AD that is both provably work-efficient and has span within a polylogarithmic factor of the
original program F .

We implemented PARAD as an extension of Adept, a C++ library for performing
reverse-mode AD for serial programs, which is known for its efficiency. Our implementa-
tion supports the use of Cilk fork-join parallelism and requires no programmer annotations
of parallel control flow. Instead, it uses compiler instrumentation to dynamically trace a
program’s series-parallel structure, which is used to automatically parallelize the gradient
computation via reverse-mode AD. On eight machine-learning benchmarks, our implemen-
tation of PARAD achieves 1.5× geometric-mean multiplicative work overhead relative to
the serial Adept tool, and 8.9× geometric-mean self-relative speedup on 18 cores.

1.2 Multicore-centric systems for scientific computing

This section summarizes this thesis’s contributions in Chapters 5–6 that simplify the en-
gineering of high-performance systems for scientific computing. Specifically, this thesis
presents work on two software systems that solve computational problems arising in the
field of connectomics using a multicore-centric approach. Surprisingly, we find that a mix-
ture of general and domain-specific performance optimization techniques can be used to
obtain performance on a single multicore that rivals that obtained when using large clusters
of CPUs and GPUs.

Background on connectomics

The field of connectomics uses cutting edge machine learning and image processing to
extract brain connectivity graphs from electron microscopy images. Advances in electron
microscopy have enabled the acquisition of image data sets that capture both the small and
large scale features present in neural tissue. The resultant data sets are quite large with a
relatively small 1mm3 volume producing petabytes of data when imaged at 3 × 3 × 30nm
resolution. The scale of the acquired data necessitate the development of image processing
systems that are both scalable and efficient.

18

It has long been assumed that the processing of connectomics data will require mass
storage, farms of CPU/GPUs, and months (if not years) of processing time. However, we
present in Chapter 5 and Chapter 6 two multicore-centric systems for connectomics that
can match the terabyte-per-hour pace of modern electron microscopes while using less than
100 cores.

Connectomics pipeline (Chapter 5)

The Connectomics artifact presents a case study of the design of a large-scale image seg-
mentation pipeline for connectomics that is designed to run on a single multicore server. By
eschewing the complexities involved in the design of a distributed system, this multicore-
centric pipeline was able to avoid overheads related to communication, fault-tolerance, and
data serialization. Perhaps more importantly, the decision to target a single multicore
allowed us to focus entirely on the design and optimization of shared-memory multicore
algorithms. These performance optimizations turned out to be extremely impactful, and
allowed our single 72-core multicore server to process a terabyte of data in 4 hours which
outperformed the previous fastest system that used a cluster of 512 cores to process a
terabyte of data in 140 hours.

The multicore-centric segmentation pipeline presented in Chapter 5 provides compelling
evidence that the benefits of quality algorithms, parallelization, and careful engineering
can sometimes be so vast that it is possible to solve “cluster-scale” problems on a single
commodity multicore machine. The results presented in the Connectomics artifact push
back against the current design trends in large-scale machine-learning that emphasize the
ability to scale across large clusters of CPUs and GPUs.

Alignment pipeline (Chapter 6)

The Alignment artifact presents a high-throughput image alignment pipeline for connec-
tomics that employs the multicore algorithms Quilter and Stacker to perform 2D and 3D
alignment, respectively. As part of the optimization of this pipeline, this chapter introduces
a technique for data-driven performance optimization called “frugal snap judgments” that
is used to obtain more advantageous performance–accuracy trade-offs in Quilter.

We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D
alignment, respectively, on petabyte-scale data sets from connectomics. Quilter and Stacker
are efficient, scalable, and simple to deploy on hardware ranging from a researcher’s laptop to
a large-scale computing cluster. On a single 18-core cloud machine, each algorithm achieves
throughputs of more than 1 TB/hr and, when combined, produce an end-to-end alignment
pipeline that processes data at a rate of 0.82 TB/hr — an over 10x improvement over
previous systems. This efficiency comes from both traditional optimizations and from the
use of “Frugal Snap Judgments” to judiciously exploit performance–accuracy trade-offs. A
high-throughput image-alignment pipeline was implemented and evaluated using the Quilter
and Stacker algorithms. The performance was evaluated on a range of platforms including
a common 18-core machine (Intel E5), a large 112-core machine (Intel Xeon Platinum), and
a supercomputing cluster with 1600 cores. The pipeline achieves a throughput of 0.6–0.8
TB/hr on the 18-core machine, 1.4–1.5 TB/hr on the large 112-core machine, and 21.4
TB/hr on the supercomputing cluster with 1600 cores.

The results in Chapter 6 illustrate how carefully designed multicore software components
can yield software systems that perform well on individual machines and also support simple

19

horizontal scaling over multiple machines in a computing cluster. Furthermore, it illustrates
how higher-level performance optimization techniques, such as frugal snap judgments, can
be employed to dramatically improve performance without substantially increasing system
complexity. The data-driven performance optimizations employed using frugal snap judg-
ments are conceptually simple, yet yield significant performance improvements.

1.3 Beyond runtime: Tools for bounding memory usage and
tail latency

This section describes this thesis’s contributions in Chapters 7–8 that develop tools and
techniques for analyzing and optimizing anomalous behavior related to memory and tail
latency in parallel systems. Performance anomalies that are rarely seen in a small software
system can become harmfully common when deploying the system at scale. In the Reissue
and Cilkmem artifacts we focus on two performance phenomena that require consideration
when developing large-scale software systems: worst-case memory usage in multicore codes
and response-time tail-latency in distributed request-response workflows.

Cilkmem (Chapter 7)

The Cilkmem artifact presents a tool and algorithms for measuring a parallel program’s
worst-case memory high-water mark. Understanding the worst-case memory high-water
mark of a parallel program is of interest to software engineers designing software that has
high memory requirements or executes in memory-constrained environments. Software en-
gineers designing such programs must be cognizant of how their program’s memory require-
ments scale in a many-processor execution. Although tools exist for measuring memory
usage during one particular execution of a parallel program, such tools cannot bound the
worst-case memory usage over all possible parallel executions.

The Cilkmem tool analyzes the execution of a deterministic Cilk program to determine
its p-processor memory high-water mark (MHWM), which is the worst-case memory usage of
the program over all possible p-processor executions. Cilkmem employs two new algorithms
for computing the p-processor MHWM. The first algorithm calculates the exact p-processor
MHWM in O(T1 ·p) time, where T1 is the total work of the program. The second algorithm
solves, in O(T1) time, the approximate threshold problem, which asks, for a given memory
threshold M , whether the p-processor MHWM exceeds M/2 or whether it is guaranteed
to be less than M . Both algorithms are memory efficient, requiring O(p · D) and O(D)
space, respectively, where D is the maximum call-stack depth of the program’s execution
on a single thread.

Our empirical studies show that Cilkmem generally exhibits low overheads. Across ten
application benchmarks from the Cilkbench suite, the exact algorithm incurs a geometric-
mean multiplicative overhead of 1.54 for p = 128, whereas the approximation-threshold
algorithm incurs an overhead of 1.36 independent of p. In addition, we use Cilkmem to reveal
and diagnose a previously unknown issue in a large image-alignment program contributing
to unexpectedly high memory usage under parallel executions.

Reissue (Chapter 8)

The Reissue artifact presents a principled strategy for reducing tail latency in distributed
request-response workflows by judiciously sending duplicate copies of requests. Sending du-

20

plicate requests to replicated services is a simple and commonly used strategy in distributed
systems for reducing latency. Determining the optimal strategy for sending duplicate re-
quests, however, is challenged by the difficulty of obtaining closed-form solutions to complex
problems in queueing theory. Data-driven methods are often employed to tune a reissue
policy’s parameters, in practice, to find good reissuing strategies. It is not known, however,
the degree to which the parametrization of a reissue policy impacts its performance. In
Chapter 8, we make progress towards understanding the relative power of different param-
eterized families of reissue policies within a simplified analytical model, and corroborate
these conclusions with a combination of simulation and real-world experiments.

Interactive distributed services send redundant requests to multiple different replicas to
meet stringent tail latency requirements. These additional (reissue) requests mitigate the
impact of nondeterministic delays within the system and thus increase the probability of
receiving an on-time response. There are two existing approaches to using reissue requests
to reduce tail latency. (1) Reissue requests immediately to one or more replicas, which
multiplies the load and runs the risk of overloading the system. (2) Reissue requests if
not completed after a fixed delay. The delay helps to bound the number of extra reissue
requests, but it also reduces the chance for those requests to respond before a tail latency
target.

We introduce a new family of reissue policies, Single-Time / Random (SingleR),
that reissues requests after a delay d with probability q. SingleR employs randomness
to bound the reissue rate, while allowing requests to be reissued early enough to have
sufficient time to respond, exploiting the benefits of both immediate and delayed reissue
of prior work. We formally prove, within a simplified analytical model, that SingleR is
optimal even when compared to more complex policies that reissue multiple times. In a set
of simulations and experiments on real-world systems, we show that SingleR policies are
effective in practice. For example, SingleR reduces the 99th-percentile latency of Redis by
30–70% by reissuing only 2% of requests, and the 99th-percentile latency of Lucene search
by 15–25% by reissuing only 1% of requests.

1.4 Other contributions

In addition to the principal artifacts in this thesis, Chapter 9 (the Retroactive artifact)
presents a result that resolves an open problem in retroactive data structures using tech-
niques that were inspired by, but do not directly relate to, the design of deterministic paral-
lel data structures. Specifically, the “hierarchical checkpointing” technique employed in the
Retroactive paper was inspired by work relating to the design of reducer hyperobjects [115].

Retroactive (Chapter 9)

The Retroactive artifact describes a fully retroactive priority queue data structure that has
polylogarithmic overheads. Although this artifact is not directly concerned with parallel
programming, the techniques used to solve this previously open problem were inspired by
those used to devise efficient parallel data structures.

Since the introduction of retroactive data structures at SODA 2004, a major open ques-
tion has been the difference between partial retroactivity (where updates can be made in
the past) and full retroactivity (where queries can also be made in the past). In particular,
for priority queues, partial retroactivity is possible in O(logm) time per operation on an

21

m-operation timeline, but the best previously known fully retroactive priority queue has
cost Θ(

√
m logm) time per operation.

In Chapter 9, I address this open problem by providing a general logarithmic-overhead
transformation from partial to full retroactivity called hierarchical checkpointing, provided
that the given data structure is time-fusible (multiple structures with disjoint timespans can
be fused into a timeline supporting queries of the present). As an application, we construct
a fully retroactive priority queue which can insert an element, delete the minimum element,
and find the minimum element, at any point in time, in O(log2m) amortized time per
update and O(log2m log logm) time per query, using O(m logm) space.

1.5 Overview

The overall goal of this thesis is to develop programming technologies that facilitate the
development of quality multicore code — code that has simple understandable structure
and performs well in practice. These programming technologies are well suited to a broad
set of programmers since they are simple to use, have theoretical guarantees, and perform
well in practice. This section explains why I believe it is important to (a) improve the
programmability of shared-memory multicores and, (b) emphasize technologies that enable
programmers to write quality code. The section ends with a concise outline of the remaining
chapters of this thesis which are adapted from my published articles.

Scope

The primary scope of this thesis lies in the realm of shared-memory multicore programming.
Six of the seven principal artifacts in this thesis directly concern algorithms, data structures,
and software systems for shared-memory multicore machines. The Reissue artifact is not
directly concerned with multicore programming, but relates to problems arising in large-
scale distributed systems.

The parallel algorithms described in this thesis are all designed using fork-join paral-
lelism and analyzed in the dag model of multithreading [40, 41] using work-span analysis [77,
Ch. 27]. The requisite background information relating to the parallel linguistics and run-
time are provided within each chapter of the thesis.

Distributed computing, GPUs, and specialized hardware

Parallel computing can be performed using platforms other than shared-memory multicores
including distributed systems, GPUs, FPGAs, and other specialized hardware. Distributed
computing is especially helpful when tackling problems that do not fit in-memory on a single
multicore, but they encounter overheads relating to fault-tolerance and communication of
intermediate results. GPUs, FPGAs, and other hardware accelerators (e.g. TPUs) tend to
be more memory-constrained than multicores, are substantially more complex to program,
and are generally suited to a more narrow range of problems.

Within this thesis, the benefits of multicore-centric computing relative to GPUs and
distributed computing are illustrated in the Connectomics and Alignment artifacts (Chap-
ters 6–7). Chapter 5 (the Connectomics artifact) provides an extreme case in which a single
multicore with superiorly optimized software outperformed much larger systems that used
distributed computing and GPUs. Chapters 6–7 provide multiple exhibits that illustrate

22

Method Type
8-channel MaxoutNet
Throughput (MB/s)

32-channel MaxoutNet
Throughput (MB/s)

cpuXNN CPU (72-core) 111.1 16.67
gpuZNN GPU (Titan X) 67.61 25.28
gpuNeon GPU (Titan X) 37.06 (exceeds memory)

Figure 1-2: A comparison of CNN throughput for the best-performing CPU and GPU-based
implementations using the MaxoutNet architecture.

2D Alignment Method Runtime Throughput

FijiBento 362 minutes 0.091 TB/hr
Quilter Full Resolution 180 minutes 0.18 TB/hr
Quilter FSJ(20,100) 32 minutes 1.03 TB/hr

Figure 1-3: Performance comparison of FijiBento and Quilter for 2D Alignment on the
Common Multicore platform, an 18-core AWS C4 instance.

the power of properly optimized multicore software, but let us examine just two illustrative
examples.

The Connectomics artifact (Chapter 5) includes a direct performance comparison of
CPU and GPU implementations of a CNN architecture for membrane detection. The im-
plementations that are compared include a 72-core multicore implementation, a custom
GPU implementation, and a GPU implementation that uses existing software libraries for
executing CNNs. Figure 1-2 compares GPU and multicore implementations of the CNN
MaxoutNet architecture that is used in the Connectomics artifact. The gpuNeon implemen-
tation used existing GPU libraries for computing CNNs and underperformed our 72-core
multicore implementation by 3x on the 8-channel MaxoutNet architecture. Worse still, gpu-
Neon failed to execute the 32-channel network due to memory constraints. The gpuZNN
provides an optimized GPU implementation that outperforms the multicore implementa-
tion by 1.5x on the 32-channel architecture, but is 1.6x worse on the 8-channel architecture
which is what the software pipeline in the Connectomics artifact actually uses. This ex-
ample demonstrates that shared-memory multicore code is not, necessarily, substantially
slower than specialized hardware. In fact, properly optimized multicore code can outper-
form GPUs in certain cases, such as in the 8-channel architecture, where the low amount of
compute performed per-byte causes data transfers to the GPU to bottleneck performance.

The Alignment (Chapter 6) artifact includes a comparison between a distributed and
shared-memory approach for solving the 2D alignment problem in connectomics. The over-
heads of distributed computing are illustrated in Figure 1-3 from the Alignment artifact.
The FijiBento software system employs distributed computing by partitioning the task of
2D aligning an image into many fine-grained tasks, whereas Quilter parallelizes the compu-
tation in-memory. Even when FijiBento runs on a single 18-core machine, precluding the
need to communicate intermediate results over the network, it performs 2x slower than Quil-
ter due to overheads related to the serialization of intermediate results from its fine-grained
tasks. Furthermore, the flexibility of the shared-memory programming model allows us to
implement optimizations relating to performance–accuracy trade-offs in Quilter FSJ(20,100)
that improve performance by an additional 5x. Such performance–accuracy trade-offs are

23

not as valuable in the distributed setting since it is more difficult to implement fine-grained
dynamic control flow, and the overheads of data serialization reduces the relative value of
optimizing the application-specific, as opposed to compute-framework, logic.

For the reasons outlined here, I believe that in the present moment shared-memory
multicores strike the best balance between general programmability and performance. This
belief motivates the focus of this thesis on the development of programming technologies
which reduce the complexity of parallel programming on shared-memory multicores.

The value of quality multicore code

Why is it important for code and programming technology to have a simple understandable
structure? I believe that the reason goes beyond simple aesthetics. I contend that the
simple understandable structure of quality code has tangible value. Quality code is able to
more readily incorporate refined programming patterns from the past, and be understood
across disciplines.

Techniques for developing parallel code with simple understandable structure and good
performance in practice broadens the set of algorithms that can be efficiently brought into
the modern era. A few examples can be observed in the artifacts of this thesis. The Chro-
matic artifact was used to parallelize a provably good three-dimensional thinning algorithm
developed in 1995 [25]. This parallel implementation was directly used in the Connectomics
artifact to perform skeletonization of neural volumes while provably preserving their topol-
ogy. The Color artifact designed ordering heuristics for parallel graph coloring that were
directly inspired by serial heuristics developed between 1967 and 1995 [341, 75, 246, 4, 48].
The Color artifact evaluates the theoretical parallelism in these heuristics in a principled
fashion and shows how many of these heuristics can be coarsened to be theoretically scal-
able and achieve good coloring qualities in practice. The PARAD artifact provides a work-
efficient algorithm for parallel automatic differentiation which extends the simple serial
automatic differentiation algorithms that have been known since the 1960s [342, 230, 324].

Quality code with simple understandable structure can be more readily understood and
adapted by practitioners in other scientific or industrial fields. Performance–accuracy trade-
offs are exploited in the Alignment artifact to achieve a 5x improvement to performance
using relatively simple machine-learning techniques that learn criteria to switch between
“fast” and “slow” code paths. The Reissue artifact shows how to analyze reissue policies
for distributed request-response workflows in a simplified analytical model. The Cilkmem
artifact shows how to analyze the worst-case memory usage of a fork-join parallel program.
This enables practitioners using shared computing clusters to correctly reason about the
amount of memory they must reserve for their multicore task.

Summary

The goal of this thesis is to make it easier to develop parallel software systems that have a
simple understandable structure and achieve good performance in practice. My approach
in this thesis has mostly focused on the development of programming technologies that im-
prove the simplicity and performance of parallel computing in the shared-memory multicore
setting. Although there are other platforms in which parallelism can be expressed, such as
distributed computing and GPUs, I believe there is compelling evidence that the flexible
programming environment provided by general-purpose multicores makes them well-suited
to many computational problems in science and industry. I have also discussed ways in

24

which the simple understandable structure of quality code has tangible value by enabling it
to better leverage and incorporate algorithmic insights developed in sequential programming
models.

25

26

Chapter 2

Executing Dynamic Data-Graph
Computations Deterministically
Using Chromatic Scheduling

This chapter presents the Prism and Prism-R algorithms for executing dynamic data-graph
computations deterministically using chromatic scheduling. The Multibag and Multivector
data structures are presented as key data structures that allow Prism and Prism-R to
maintain active sets of vertices in a work-efficient manner and preserve serial semnatics.
This work was conducted in collaboration with William Hasenplaugh, Tao B. Schardl, and
Charles E. Leiserson.

Abstract

A data-graph computation — popularized by such programming systems as Galois,
Pregel, GraphLab, PowerGraph, and GraphChi — is an algorithm that performs local
updates on the vertices of a graph. During each round of a data-graph computation, an
update function atomically modifies the data associated with a vertex as a function of
the vertex’s prior data and that of adjacent vertices. A dynamic data-graph computation
updates only an active subset of the vertices during a round, and those updates determine
the set of active vertices for the next round.

This chapter introduces Prism, a chromatic-scheduling algorithm for executing dy-
namic data-graph computations. Prism uses a vertex-coloring of the graph to coordinate
updates performed in a round, precluding the need for mutual-exclusion locks or other
nondeterministic data synchronization. A multibag data structure is used by Prism to
maintain a dynamic set of active vertices as an unordered set partitioned by color. We
analyze Prism using work-span analysis. Let G = (V,E) be a degree-∆ graph colored
with χ colors, and suppose that Q ⊆ V is the set of active vertices in a round. Define
size(Q) = |Q|+

∑
v∈Q deg(v), which is proportional to the space required to store the ver-

tices of Q using a sparse-graph layout. We show that a P -processor execution of Prism
performs updates in Q using O(χ(lg(Q/χ) + lg ∆) + lgP) span and Θ(size(Q) + P) work.

These theoretical guarantees are matched by good empirical performance. In order
to isolate the effect of the scheduling algorithm on performance, we modified GraphLab
to incorporate Prism and studied seven application benchmarks on a 12-core multicore
machine. Prism executes the benchmarks 1.2–2.1 times faster than GraphLab’s nondeter-

27

ministic lock-based scheduler while providing deterministic behavior.

This chapter also presents Prism-R, a variation of Prism that executes dynamic data-
graph computations deterministically even when updates modify global variables with as-
sociative operations. Prism-R satisfies the same theoretical bounds as Prism, but its
implementation is more involved, incorporating a multivector data structure to main-
tain a deterministically ordered set of vertices partitioned by color. Despite its additional
complexity, Prism-R is only marginally slower than Prism. On the seven application
benchmarks studied, Prism-R incurs a 7% geometric mean overhead relative to Prism.

2.1 Introduction

Many systems from physics, artificial intelligence, and scientific computing can be repre-
sented naturally as a data graph — a graph with data associated with its vertices and
edges. For example, some physical systems can be decomposed into a finite number of
elements whose interactions induce a graph. Probabilistic graphical models in artificial in-
telligence can be used to represent the dependency structure of a set of random variables.
Sparse matrices can be interpreted as graphs for scientific computing.

A data-graph computation is an algorithm that performs “local” updates on the vertices
of a data graph, taking as input data associated with a vertex and its neighbors. Several
software systems have been implemented to support parallel data-graph computations, in-
cluding GraphLab [234, 233], Pregel [242], Galois [267, 268], PowerGraph [134], Ligra1

[318, 321], and GraphChi [203]. These systems can support “complex” data-graph compu-
tations, in which data can be associated with edges as well as vertices and updating a vertex
v can modify any data associated with v, v’s incident edges, and the vertices adjacent to v.
For ease in discussing chromatic scheduling, however, we shall principally restrict ourselves
to “simple” data-graph computations (which correspond to “edge-consistent” computations
in GraphLab), although most of our results straightforwardly extend to more complex mod-
els. Indeed, six out of the seven GraphLab applications described in [234, 233] are simple
data-graph computations.

Updates to vertices proceed in rounds, where each vertex can be updated at most once
per round. In a static data-graph computation, the activation set Qr of vertices updated
in a round r — the set of active vertices — is determined a priori. Often, a static data-
graph computation updates every vertex in each round. Static data-graph computations
include Gibbs sampling [124, 123], iterative graph coloring [81], and n-body problems such
as the fluidanimate PARSEC benchmark [27].

We shall be interested in dynamic data-graph computations, where the activation set
changes round by round. Dynamic data-graph computations include the Google PageRank
algorithm [51], loopy belief propagation [263, 282], coordinate descent [90], co-EM [269],
alternating least-squares [153], singular-value decomposition [133], and matrix factoriza-
tion [333].

We formalize the computational model as follows. Let G = (V,E) be a data graph.
Denote the neighbors, or adjacent vertices, of a vertex v ∈ V by Adj[v] = {u ∈
V : (u, v) ∈ E}. The degree of v is thus deg(v) = |Adj[v]|, and the degree of G is
deg(G) = max{deg(v) : v ∈ V }. A (simple) dynamic data-graph computation is a

1While Ligra does not technically execute data-graph computations, it is designed to implement similar
algorithms by decoupling the scheduling and algorithm-specific code, as with the other data-graph compu-
tation frameworks.

28

triple 〈G, f,Q0〉, where

• G = (V,E) is an undirected graph with data associated with each vertex v ∈ V ;

• f : V → 2V is an update function ; and

• Q0 ⊆ V is the initial activation set .

The update S ← f(v) implicitly computes as a side effect a new value for the data associated
with v as a function of the old data associated with v and v’s neighbors. The update returns
a set S ⊆ Adj[v] of vertices that must be updated in the next round. For example, an update
f(v) might activate a neighbor u only if the value of v changes significantly. During a round
r of a dynamic data-graph computation, each vertex v ∈ Qr is updated at most once, that
is, Qr is a set, not a multiset.

The advantage of dynamic over static data-graph computations is that they avoid per-
forming many unnecessary updates. Studies in the literature [234, 233] show that dynamic
execution can enhance the practical performance of many applications. We confirmed these
findings by implementing static and dynamic versions of several data-graph computations.
The results for a PageRank algorithm on a power-law graph of 1 million vertices and 10
million edges were typical. The static computation performed approximately 15 million
updates, whereas the dynamic version performed less than half that number of updates.

A serial reference implementation

Before we address the issues involved in scheduling and executing dynamic data-graph com-
putations in parallel, let us first hone our intuition with a serial implementation. Figure 2-1
gives the pseudocode for Serial-DDGC. This algorithm schedules the updates of a data-
graph computation by maintaining a FIFO queue Q of activated vertices that have yet to
be updated. Sentinel values enqueued in Q on lines 4 and 9 demarcate the rounds of the
computation such that the set of vertices in Q after the rth sentinel has been enqueued is
the activation set Qr for round r.

Given a data-graph G = (V,E), an update function f , and an initial activation set
Q0, Serial-DDGC executes the data-graph computation 〈G, f,Q0〉 as follows. Lines 1–
2 initialize Q to contain all vertices in Q0. The while loop on lines 5–14 then repeatedly
dequeues the next scheduled vertex v ∈ Q on line 5 and executes the update f(v) on line 11.
Executing f(v) produces a set S of activated vertices, and lines 12–14 check each vertex in
S for membership in Q, enqueuing all vertices in S that are not already in Q.

We can analyze the time Serial-DDGC takes to execute one round r of the data-graph
computation 〈G, f,Q0〉. Define the size of an activation set Qr as

size(Qr) = |Qr|+
∑
v∈Qr

deg(v) .

The size of Qr is asymptotically the space needed to store all the vertices in Qr and their
incident edges using a standard sparse-graph representation, such as compressed-sparse-
rows (CSR) format [328]. For example, if Q0 = V , we have size(Q0) = |V | + 2|E| by
the handshaking lemma [77, p. 1172–3]. Let us make the reasonable assumption that the
time to execute f(v) serially is proportional to deg(v). If we implement the queue as a
dynamic (resizable) table [77, Section 17.4], then line 14 executes in Θ(1) amortized time.
Of course, a linked list would suffice to append operations in Θ(1) time, but would not
allow for convenient subsequent parallel iteration over its elements. All other operations
in the for loop on lines 12–14 take Θ(1) time, and thus all vertices activated by executing

29

Serial-DDGC(G, f,Q0)

1 for v ∈ Q0

2 enqueue(Q, v)
3 r ← 0
4 enqueue(Q,nil) // Sentinel nil denotes the end of a round.
5 while Q 6= {nil}
6 v ← dequeue(Q)
7 if v == nil
8 r += 1
9 enqueue(Q,nil)

10 else
11 S ← f(v)
12 for u ∈ S
13 if u /∈ Q
14 enqueue(Q, u)

Figure 2-1: Pseudocode for a serial algorithm to execute a data-graph computation
〈G, f,Q0〉. Serial-DDGC takes as input a data graph G and an update function f . The
computation maintains a FIFO queue Q of activated vertices that have yet to be updated
and sentinel values nil, each of which demarcates the end of a round. An update S ← f(v)
returns the set S ⊆ Adj[v] of vertices activated by that update. Each vertex u ∈ S is added
to Q if it is not currently scheduled for a future update.

f(v) are examined in Θ(deg(v)) time. The total time spent updating the vertices in Qr is
therefore Θ(Qr +

∑
v∈Qr

deg(v)) = Θ(size(Qr)), which is linear time: time proportional
to the storage requirements for the vertices in Qr and their incident edges.

Parallelizing dynamic data-graph computations

The salient challenge in parallelizing data-graph computations is to deal effectively with
races between updates, that is, logically parallel updates that read and write common data.
A determinacy race [105] (also called a general race [266]) occurs when two logically
parallel instructions access the same memory location and at least one of them writes to that
location. Two updates in a data-graph computation conflict if executing them in parallel
produces a determinacy race. A parallel scheduler must manage or avoid conflicting updates
to execute a data-graph computation correctly and deterministically.

The standard approach to preventing races associates a mutual-exclusion lock with each
vertex of the data graph to ensure that an update on a vertex v does not proceed until
all locks on v and v’s neighbors have been acquired. Although this locking strategy pre-
vents races, it can incur substantial overhead from lock acquisition and contention, hurting
application performance, especially when update functions are simple. Moreover, because
runtime happenstance can determine the order in which two logically parallel updates ac-
quire locks, the data-graph computation can act nondeterministically: different runs on the
same inputs can produce different results. Without repeatability, parallel programming is
arguably much harder [211, 43]. Nondeterminism confounds debugging.

A known alternative to using locks is chromatic scheduling [26, 1, 233], which sched-
ules a data-graph computation based on a coloring of the data-graph computation’s conflict
graph — a graph with an edge between two vertices if updating them in parallel would
produce a race. For a simple data-graph computation, the conflict graph is simply the data

30

Benchmark |V | |E| χ RRLocks Cilk+Locks Prism Prism-R

PR/G 916,428 5,105,040 43 15.5 14.3 9.7 12.6
PR/L 4,847,570 68,475,400 333 227.6 200.4 109.3 127.3
ID/2000 4,000,000 15,992,000 4 48.6 43.8 32.1 32.8
ID/4000 16,000,000 63,984,000 4 200.0 179.6 123.1 124.3
FBP/C1 87,831 265,204 2 8.7 8.9 6.9 7.0
FBP/C3 482,920 160,019 2 16.4 17.8 13.3 13.4
ALS/N 187,722 20,597,300 6 134.3 123.6 105.2 105.7

Figure 2-2: Comparison of dynamic data-graph schedulers on seven application benchmarks.
All runtimes are in seconds and were calculated by taking the median 12-core execution time
of 5 runs on an Intel Xeon X5650 with hyperthreading disabled. The runtimes of Prism and
Prism-R include the time used to color the input graph. PR/G and PR/L run a PageRank
algorithm on the web-Google [223] and soc-LiveJournal [14] graphs, respectively. ID/2000
and ID/4000 run an image denoise algorithm to remove Gaussian noise from 2D grayscale
images of dimension 2000 by 2000 and 4000 by 4000. FBP/C1 and FBP/C3 perform belief
propagation on a factor graph provided by the cora-1 and cora-3 datasets [322, 248]. ALS/N
runs an alternating least squares algorithm on the NPIC-500 dataset [259].

graph itself with undirected edges. The idea behind chromatic scheduling is fairly simple.
Chromatic scheduling begins by computing a (vertex) coloring of the conflict graph —
an assignment of colors to the vertices such that no two adjacent vertices share the same
color. Since no edge in the conflict graph connects two vertices of the same color, updates
on all vertices of a given color can execute in parallel without producing races. To execute
a round of a data-graph computation, the set of activated vertices Q is partitioned into χ
color sets — subsets of Q containing vertices of a single color. Updates are applied to
vertices in Q by serially stepping through each color set and updating all vertices within
a color set in parallel. Indeed, the special case where the active set Q == V is the entire
graph (i.e., a static data-graph computation) can be executed using chromatic scheduling
using Distributed GraphLab [233]. The result of a data-graph computation executed using
chromatic scheduling is equivalent to that of a slightly modified version of Serial-DDGC
that starts each round (immediately before line 9 of Figure 2-1) by sorting the vertices
within its queue by color.

Chromatic scheduling avoids both of the pitfalls of the locking strategy. First, since only
nonadjacent vertices in the conflict graph are updated in parallel, no races can occur, and
the necessity for locks and their associated performance overheads are precluded. Second,
by establishing a fixed order for processing different colors, any two adjacent vertices are
always processed in the same order. The data-graph computation is therefore executed
deterministically, as long as a deterministic coloring algorithm is used to color the conflict
graph. While chromatic scheduling potentially loses parallelism because colors are processed
serially, we shall see that this concern does not appear to be an issue in practice.

To date, chromatic scheduling has been applied to static data-graph computations [233],
but not to dynamic data-graph computations. This chapter addresses the question of how
to perform chromatic scheduling efficiently when the activation set changes on the fly,
necessitating a data structure for maintaining dynamic sets of vertices in parallel.

31

Contributions

This chapter introduces Prism, a chromatic-scheduling algorithm that executes dynamic
data-graph computations in parallel efficiently in a deterministic fashion. Prism employs
a “multibag” data structure to manage an activation set as a list of color sets. The multi-
bag achieves efficiency using “worker-local storage,” which is memory locally associated
with each “worker” thread executing the computation. By using the “multibag” and a
deterministic coloring algorithm, Prism guarantees to execute the data-graph computation
deterministically.

We analyze the performance of Prism using work-span analysis [77, Ch. 27]. The work
of a computation is the total number of instructions executed, and the span corresponds
to the longest path of dependencies in the parallel program. We shall make the reasonable
assumption that a single update f(v) executes in Θ(deg(v)) work and Θ(lg(deg(v))) span.2

Under this assumption, on a degree-∆ data graph G colored using χ colors, Prism exe-
cutes the updates on the vertices in the activation set Qr of a round r on P processors in
O(size(Qr) + P) work and O(χ(lg(Qr/χ) + lg ∆) + lgP) span.

The “price of determinism” incurred by using chromatic scheduling instead of the more
common locking strategy appears to be negative for real-world applications. This discovery
is perhaps surprising since it would seem to be strictly harder to guarantee that the compu-
tation behave deterministically than to allow for nondeterministic behaviors. Nevertheless,
as Figure 2-2 indicates, on seven application benchmarks, Prism executes 1.2–2.1 times
faster than GraphLab’s comparable, but nondeterministic, locking strategy, which we call
RRLocks. This performance gap is not due solely to superior engineering or load balanc-
ing. A similar performance overhead is observed in a comparably engineered lock-based
scheduling algorithm, Cilk+Locks. Prism outperforms Cilk+Locks on each of the 7
application benchmarks and is on average (geometric mean) 1.4 times faster.

Our contribution is not a full-featured data-graph computation framework like GraphLab,
Pregel, Galois, PowerGraph, Ligra, or GraphChi. Each of these systems is the result of
countless hours of performance engineering and feature support. Instead, we provide a
scheduling technique that could be adopted by any such framework to enable the deter-
ministic execution of work-efficient, dynamic data-graph computations, which no existing
framework currently supports3 We use a modified shared-memory version of GraphLab in
order to isolate the effect of our scheduling algorithms. Thus, the empirical comparisons
in this chapter are apples-to-apples comparisons of scheduling strategies, not competitive
comparisons with other systems.

Prism behaves deterministically as long as every update is pure : it modifies no data
except for that associated with its target vertex. This assumption precludes the update func-
tion from modifying global variables to aggregate or collect values. To support this common
use pattern, we describe an extension to Prism, called Prism-R, which executes dynamic
data-graph computations deterministically even when updates modify global variables using
associative operations. Prism-R replaces each multibag Prism uses with a “multivector,”
maintaining color sets whose contents are ordered deterministically. Prism-R executes in
the same theoretical bounds as Prism, but its implementation is more involved. Empir-

2Other assumptions about the work and span of an update can easily be made at the potential expense
of complicating the analysis.

3Deterministic Galois [268] has added support for deterministic execution of dynamic data-graph com-
putations by recursively removing and executing independent sets of vertices. However, their algorithm is
not work-efficient and, as a result, is much slower than the nondeterministic version.

32

ically Prism-R is on average (geometric mean) only 1.07 times slower than Prism and
outperforms Cilk+Locks on each of the seven application benchmarks.

Outline

The remainder of this chapter is organized as follows. Section 2.2 reviews dynamic multi-
threading, the parallel programming model in which we describe and analyze our algorithms.
Section 2.3 describes Prism, the chromatic-scheduling algorithm for dynamic data-graph
computations. Section 2.4 describes the multibag data structure Prism uses to represent
its color sets. Section 2.5 presents our theoretical analysis of Prism. Section 2.6 de-
scribes a Cilk Plus [170] implementation of Prism and presents empirical results measuring
this implementation’s performance on seven application benchmarks. Section 2.7 describes
Prism-R which executes dynamic data-graph computations deterministically even when
update functions modify global variables using associative operations. Section 2.8 describes
and analyzes the multivector data structure Prism-R uses to represent deterministically or-
dered color sets. Section 2.9 analyzes Prism-R both theoretically, using work-span analysis,
and empirically. Section 2.10 offers some concluding remarks.

2.2 Background

We implemented the Prism algorithm in Cilk Plus [170], a dynamic multithreading concur-
rency platform. This section provides background on the dag model of multithreading that
embodies this and other similar concurrency platforms, including MIT Cilk [116], Cilk++
[219], Fortress [3], Habenero [16, 61], Hood [42], Java Fork/Join Framework [208], Task
Parallel Library (TPL) [218], Threading Building Blocks (TBB) [291], and X10 [68]. We
review the dag model of multithreading, the notions of work and span, and the basic prop-
erties of the work-stealing runtime systems underlying these concurrency platforms. We
briefly discuss worker-local storage, which Prism’s multibag data structure uses to achieve
efficiency.

The dag model of multithreading

The dag model of multithreading [40, 41] is described in tutorial fashion in [77, Ch. 27].
The model views the executed computation resulting from running a parallel program as a
computation dag in which each vertex denotes an instruction, and edges denote parallel
control dependencies between instructions. To analyze the theoretical performance of a
multithreaded program, such as Prism, we assume that the program executes on an ideal
parallel computer , where each instruction executes in unit time, the computer has ample
bandwidth to shared memory, and concurrent reads and writes incur no overheads due to
contention.

We shall assume that algorithms for the dag model are expressed using the keywords [77,
Ch. 27] spawn, sync, and parallel for. The keyword spawn when preceding a function
call F allows F to execute in parallel with its continuation — the statement immediately
after the spawn of F . The complement of spawn is the keyword sync, which acts as a
local barrier and prevents statements after the sync from executing until all earlier spawned
functions return. These keywords can be used to implement other convenient parallel control
constructs, such as the parallel for loop, which allows all of its iterations to operate
logically in parallel. The work of a parallel for loop with n iterations is the total number

33

of instructions in all executed iterations. The span is Θ(lg n) plus the maximum span of any
loop iteration. The Θ(lg n) span term comes from the fact that the runtime system executes
the loop iterations using parallel divide-and-conquer, and thus fans out the iterations as a
balanced binary tree in the dag.

An important property of this model is notion of the serial elision of a program. The
serial elision is the serial program that results when the keywords spawn and sync are
elided and the parallel for is replaced by an ordinary for loop. The model guarantees that
the serial elision of a program always provides a correct implementation of the program.
That is, the keywords indicate opportunities for parallelism, but they do not require parallel
execution. In this sense, every program in this model has a serial semantics.

Work-span analysis

Given a multithreaded program whose execution is modeled as a dag A, we can bound the
P -processor running time TP (A) of the program using work-span analysis [77, Ch. 27].
Recall that the work T1(A) is the number of instructions in A, and that the span T∞(A) is
the length of a longest path in A. Greedy schedulers [49, 99, 137] can execute a deterministic
program with work T1 and span T∞ on P processors in time TP satisfying

max{T1/P, T∞} ≤ Tp ≤ T1/P + T∞ , (2.1)

and a similar bound can be achieved by more practical “work-stealing” schedulers [40, 41].
The speedup of an algorithm on P processors is T1/TP , which Inequality (2.1) shows to be
at most P in theory. The parallelism T1/T∞ is the greatest theoretical speedup possible
for any number of processors.

Work-stealing runtime systems

Runtime systems underlying concurrency platforms that support the dag model of multi-
threading usually implement a work stealing scheduler [57, 142, 41], which operates as
follows. When the runtime system starts up, it allocates as many operating-system threads,
called workers, as there are processors. Each worker keeps a ready queue of tasks that
can operate in parallel with the task it is currently executing. Whenever the execution of
code generates parallel work, the worker puts the excess work into the queue. Whenever it
needs work, it fetches work from its queue. When a worker’s ready queue runs out of tasks,
however, the worker becomes a thief and “steals” work from another victim worker’s
queue. If an application exhibits sufficient parallelism compared to the actual number
of workers/processors, one can prove mathematically that the computation executes with
linear speedup.

Worker-local storage

We refer to memory that is private to a particular worker thread as worker-local stor-
age . In a P -processor execution of a parallel program, a worker-local variable x can be
implemented using a shared-memory array of length P . A worker accesses its local copy of
x using a runtime-provided worker identifier to index the array of worker-local copies of x.
The Cilk Plus runtime system, for example, provides the __cilkrts_get_worker_number()
API call, which returns an integer identifying the current worker. Our implementation of

34

Prism assumes the existence of a runtime-provided Get-Worker-ID function that exe-
cutes in Θ(1) time and returns an integer from 0 to P−1. Other strategies for implementing
worker-local storage exist that are comparable to the strategy outlined here.

2.3 The Prism algorithm

This section presents Prism, a chromatic-scheduling algorithm for executing dynamic data-
graph computations deterministically. We describe how Prism differs from the serial al-
gorithm in Section 2.1, including how it maintains activation sets that are partitioned by
color using the multibag data structure.

Figure 2-3 shows the pseudocode for Prism, which differs from the Serial-DDGC
routine from Figure 2-1 in two main ways: the use of a multibag data structure to implement
Q, and the call to Color-Graph on line 1 to color the data graph.

A multibag Q represents a list 〈C0, C1, . . . , Cχ−1〉 of χ bags (unordered multisets) and
supports two operations:

• MB-Insert(Q, v, k) inserts an item v into bag Ck in Q. A multibag supports parallel
MB-Insert operations.

• MB-Collect(Q) produces a collection C that represents a list of the nonempty bags
in Q, emptying Q in the process.

Although the multibag data structure supports duplicate items in a single bag, our im-
plementation of Prism actually ensures that no duplicate vertices are ever inserted into a
bag.

Prism calls Color-Graph on line 1 to color the given data graph G = (V,E) and
obtain the number χ of colors used. Although it is NP-complete to find an optimal
coloring of a graph [119] — a coloring that uses the smallest possible number of colors
— an optimal coloring is not necessary for Prism to perform well, as long as the data
graph is colored deterministically, in parallel,4 and with sufficiently few colors in prac-
tice. Many parallel coloring algorithms exist that satisfy the needs of Prism (see, for
example, [5, 229, 179, 131, 146, 132, 330, 201, 200, 15]), however, our implementation
of Prism uses a multicore variant of the Jones and Plassmann algorithm [179] that pro-
duces a deterministic (∆ + 1)-coloring of a degree-∆ graph G = (V,E) in linear work and

O
(

lg V + lg ∆ ·min{
√
E,∆ + lg ∆ lg V/lg lg V }

)
span [146].

Let us now see how Prism uses chromatic scheduling to execute a dynamic data-graph
computation 〈G, f,Q0〉. After line 1 colors G, line 3 initializes the multibag Q with the
initial activation set Q0, and then the while loop on lines 4–13 executes the rounds of the
data-graph computation. At the start of each round, line 5 collects the nonempty bags C
from Q, which correspond to the nonempty color sets for the round. Lines 6–12 iterate
through the color sets C ∈ C sequentially, and the parallel for loop on lines 7–12 processes
the vertices of each C in parallel. For each vertex v ∈ C, line 9 performs the update
S ← f(v), which returns a set S of activated vertices, and lines 10–12 insert into Q the
vertices in S that have been activated.

Although a vertex u can be activated by multiple neighbors, it must only be updated at

4If the data-graph computation performs sufficiently many updates, a serial Θ(V + E)-work greedy
coloring algorithm, such as that introduced by Welsh and Powell [341], can suffice as well, since the time to
color the graph would be sufficiently amortized against the work performed.

35

Prism(G, f,Q0)

1 χ← Color-Graph(G)
2 r ← 0
3 Q← Q0

4 while Q 6= ∅
5 C ←MB-Collect(Q)
6 for C ∈ C
7 parallel for v ∈ C
8 active[v]← false
9 S ← f(v)

10 parallel for u ∈ S
11 if CAS(active[u], false,true)
12 MB-Insert(Q, u, color [u])
13 r ← r + 1

CAS(current , test , value)

14 begin atomic
15 if current == test
16 current ← value
17 return true
18 else
19 return false
20 end atomic

Figure 2-3: Pseudocode for Prism, including the compare-and-swap synchronization prim-
itive CAS. The procedure Prism takes as input a data graph G, an update function f , and
an initial activation set Q0. The procedure Color-Graph colors a given graph and returns
the number of colors it used. The procedures MB-Collect and MB-Insert operate the
multibag Q to maintain activation sets for Prism. The variable r tracks the number of
rounds executed.

most once during a round. Prism enforces this constraint5 by using the atomic compare-
and-swap operator [151, p. 480], which is available as a synchronization primitive on most
machines and whose definition is given in lines 14–20. Lines 10–12 use the CAS primitive
to activate each vertex u ∈ S by atomically setting active[u] ← true, and if active[u] was
previously false, then calling MB-Insert. Thus, each vertex is inserted into Q at most
once during a round.

Design considerations for the implementation of multibags

The theoretical performance of Prism depends upon the properties of the multibag data
structure. In particular, the multibag is carefully designed to ensure that Prism is work-
efficient — that is, it performs the same asymptotic work as the serial algorithm Serial-
DDGC in Figure 2-1. Before examining the design of the multibag in Section 2.4, let
us first explore why maintaining active color sets in Prism in a work-efficient manner is
tricky. Specifically, we shall consider two alternative strategies: bit vectors and an array of
worker-local queues.

The bit-vector approach avoids the multibag altogether and simply manages activation
sets using the bit vector active already used by Prism. Recall that if active[i] is true, then
the vertex vi ∈ V indexed by i is active. Suppose that active were the only data structure.
To iterate over all activated vertices of color k, a parallel for could scan through active,
updating the vertex vi whenever active[i] is true and color [i] is k. This scheme requires
Ω(V χ) work per round of the computation, where χ is the number of colors returned by
Color-Graph in line 1 of Figure 2-3, since the entire bit vector must be scanned χ times
each round. At the cost of additional preprocessing, active could be organized such that

5This constraint may be enforced without the use of an atomic compare-and-swap operation by dedupli-
cating the contents of Q at the start of each round. However, our empirical studies have shown that this
limited use of atomics is beneficial in practice.

36

vertices of the same color are assigned contiguous indexes. Even with this optimization,
however, scanning active requires Ω(V) work each round, which is not work-efficient for
dynamic computations that activate only a sparse subset of the vertices each round.

An alternative strategy that one might consider is to represent the active color sets
using an array of worker-local queues. A straightforward implementation of this approach,
however, is also not work-efficient. For a dynamic data-graph computation using χ colors
and P processors, a total of Pχ worker-local queues would be needed to maintain the set
of active vertices, and Ω(Pχ) work would be required to collect all nonempty queues. As
we shall see in Section 2.4, however, by using a carefully designed data structure to manage
worker-local queues, we can obtain a work-efficient data structure for maintaining color sets.

2.4 The multibag data structure

This section presents the multibag data structure employed by Prism. The multibag uses
worker-local sparse accumulators [126] and an efficient parallel collection operation. We
describe how the MB-Insert and MB-Collect operations are implemented, and we an-
alyze them using work-span analysis [77, Ch. 27]. When used in a P -processor execution
of a parallel program, a multibag Q of χ bags storing n elements supports MB-Insert in
Θ(1) worst-case time and MB-Collect in O(n+χ+P) work and O(lg n+χ+ lgP) span.
Such a multibag storing k elements uses O(Pχ+ k) space.

A sparse accumulator (SPA) [126] implements an array that supports lazy initial-
ization of its elements. A SPA T contains a sparsely populated array T.array of elements
and a log T.log , which is a list of indices of initialized elements in T.array . To implement
multibags, we shall only need the ability to create a SPA, access an arbitrary SPA element,
or delete all elements from a SPA. For simplicity, we shall assume that an uninitialized
array element in a SPA has a value of nil. When an array element T.array [i] is modified for
the first time, the index i is appended to T.log . An appropriately designed SPA T storing
n = |T.log | elements admits the following performance properties:

• Creating T takes Θ(1) work.

• Each element of T can be accessed in Θ(1) work.

• Reading all k initialized elements of T takes Θ(k) work and Θ(lg k) span.

• Emptying T takes Θ(1) work.

A multibag Q is an array of P worker-local SPA’s, where P is the number of workers
executing the program. We shall use p interchangeably to denote either a worker or that
worker’s unique identifier. Worker p’s local SPA in Q is thus denoted by Q[p]. For a
multibag Q of χ bags, each SPA Q[p] contains an array Q[p].array of size χ and a log
Q[p].log . Figure 2-4(a) illustrates a multibag with χ = 7 bags, 4 of which are nonempty. As
Figure 2-4(a) shows, the worker-local SPA’s in Q partition each bag Ck ∈ Q into subbags
{Ck,0, Ck,1, . . . , Ck,P−1}, where Q[p].array [k] stores subbag Ck,p.

Implementation of MB-Insert and MB-Collect

The worker-local SPA’s enable a multibag Q to support parallel MB-Insert operations
without creating races. Figure 2-5 shows the pseudocode for MB-Insert. When a worker
p executes MB-Insert(Q, v, k), it inserts element v into the subbag Ck,p as follows. Line 1
calls Get-Worker-ID to get worker p’s identifier. Line 2 checks if subbag Ck,p stored

37

v24 v9 v14

v25 v1

v33 v44 v28

v97 v6

v84

v12 v8

v60 v13 v72

v5 v79 v10
array

log

size 3

log log

size 2
bag-offsets

3

array array

v24 v9 v14

v12 v8

v25 v1

v60 v13 v72

v97 v6

v33 v44 v28

v84

v5 v79 v10

0

2

3

6

collected-subbags

size

subbag

0 1 P–1

(a) (b)

C0

C2

C3

C6

Figure 2-4: A multibag data structure. (a) A multibag containing 19 elements distributed
across 4 distinct bags: {C0, C2, C3, C6}, representing vertices of colors 0, 2, 3, and 6, re-
spectively. Each worker keeps track of its portion of a particular bag, its subbag , using a
worker-local SPA, thus avoiding initialization of unused subbags by maintaining a compact
log pointing to the set of populated subbags. For example, bag C6 is composed of three
subbag contributions from the three active workers: {v33, v44, v28}, {v84}, and {v5, v79, v10}.
(b) The output of MB-Collect when executed on the multibag in (a). Sets of subbags
in collected -subbags are labeled with the bag Ck that their union represents.

MB-Insert(Q, v, k)

1 p← Get-Worker-ID()
2 if Q[p].array [k] == nil
3 Append(Q[p].log , k)
4 Q[p].array [k]← new subbag
5 Append(Q[p].array [k], v)

Figure 2-5: Pseudocode for the MB-Insert multibag operation. MB-Insert(Q, v, k) in-
serts the element v into the kth bag Ck of the multibag Q.

in Q[p].array [k] is initialized, and if not, lines 3 and 4 initialize it. Line 5 inserts v into
Q[p].array [k].

Conceptually, the MB-Collect operation extracts the bags in Q to produce a compact
representation of those bags that can be read efficiently. Figure 2-4(b) illustrates the com-
pact representation of the elements of the multibag from Figure 2-4(a) that MB-Collect
returns. This representation consists of a pair 〈bag-offsets, collected -subbags〉 of arrays that
together resemble the representation of a graph in a CSR format. The collected -subbags ar-
ray stores all of the subbags in Q sorted by their corresponding bag’s index. The bag-offsets
array stores indices in collected -subbags that denote the sets of subbags comprised by each
bag. In particular, in this representation, the contents of bag Ck are stored in the subbags
in collected -subbags between indices bag-offsets[k] and bag-offsets[k + 1].

Figure 2-6 sketches how MB-Collect converts a multibag Q stored in worker-local
SPA’s into the representation illustrated in Figure 2-4(b). Steps 1 and 2 create an array
collected -subbags of nonempty subbags from the worker-local SPA’s in Q. Each subbag Ck,p
in collected -subbags is tagged with the integer index k of its corresponding bag Ck ∈ Q.
Step 3 sorts collected -subbags by these index tags, and Step 4 creates the bag-offsets array.

38

Step 5 removes all elements from Q, thereby emptying the multibag.

Analysis of multibags

We now analyze the work and span of the multibag’s MB-Insert and MB-Collect op-
erations, starting with MB-Insert.

Lemma 1 Executing MB-Insert takes Θ(1) time in the worst case.

Proof. Consider each step of a call to MB-Insert(Q, v, k). The Get-Worker-ID
procedure on line 1 obtains the executing worker’s identifier p from the runtime system in
Θ(1) time, and line 2 checks if the entry Q[p].array [k] is empty in Θ(1) time. Suppose
that Q[p].log and each subbag in Q[p].array are implemented as dynamic arrays that use a
deamortized table-doubling scheme [52]. Lines 3–5 then take Θ(1) time each to append k
to Q[p].log , create a new subbag in Q[p].array [k], and append v to Q[p].array [k].

The next lemma analyzes the work and span of MB-Collect.

Lemma 2 In a P -processor parallel program execution, a call to MB-Collect(Q) on a
multibag Q with χ bags whose contents are distributed across m distinct subbags executes in
O(m+ χ+ P) work and O(lgm+ χ+ lgP) span.

Proof. We analyze each step of MB-Collect in turn. We shall use a helper proce-
dure Prefix-Sum(A), which computes the all-prefix sums of an array A of n integers in
Θ(n) work and Θ(lg n) span. (Blelloch [30] describes an appropriate implementation of
Prefix-Sum.) Step 1 replaces each entry in Q[p].log in each worker-local SPA Q[p] with
the appropriate index-subbag pair 〈k, Ck,p〉 in parallel, which requires Θ(m+P) work and
Θ(lgm+lgP) span. Step 2 gathers all index-subbag pairs into a single array. Suppose that
each worker-local SPA Q[p] is augmented with the size of Q[p].log , as Figure 2-4(a) illus-
trates. Executing Prefix-Sum on these sizes and then copying the entries of Q[p].log into
collected -subbags in parallel therefore completes Step 2 in Θ(m+P) work and Θ(lgm+lgP)
span. Step 3 can sort the collected -subbags array in Θ(m+ χ) work and Θ(lgm+ χ) span
using a variant of a parallel radix sort [74, 35, 355] as follows:

1. Divide collected -subbags into m/χ groups of size χ, and create an (m/χ)×χ matrix A,
where entry Aij stores the number of subbags with index j in group i. Constructing
A can be done with Θ(m + χ) work and Θ(lgm + χ) span by evaluating the groups
in parallel and the subbags in each group serially.

2. Evaluate Prefix-Sum on AT (or, more precisely, the array formed by concatenating
the columns of A in order) to produce a matrix B such that Bij identifies which
entries in the sorted version of collected -subbags will store the subbags with index j
in group i. This Prefix-Sum call takes Θ(m+ χ) work and Θ(lgm+ lgχ) span.

3. Create a temporary array T of sizem, and in parallel over the groups of collected -subbags,
serially move each subbag in the group to an appropriate index in T , as identified by B.
Copying these subbags executes in Θ(m+ χ) work and Θ(lgm+ χ) span.

4. Rename the temporary array T as collected -subbags in Θ(1) work and span.

Finally, Step 4 can scan collected -subbags for adjacent pairs of entries with different bag
indices to compute bag-offsets in Θ(m) work and Θ(lgm) span, and Step 5 can reset every
SPA in Q in parallel using Θ(P) work and Θ(lgP) span. Totaling the work and span of
each step completes the proof.

39

MB-Collect(Q)

1. For each SPA Q[p], map each bag index k in Q[p].log to the pair 〈k, Q[p].array [k]〉.
2. Concatenate the arrays Q[p].log for all workers p ∈ {0, 1, . . . , P − 1} into a single array,

collected -subbags.
3. Sort the entries of collected -subbags by their bag indices.
4. Create the array bag-offsets, where bag-offsets[k] stores the index of the first subbag in

collected -subbags that contains elements of the kth bag.
5. For p = 0, 1, . . . , P − 1, delete all elements from the SPA Q[p].
6. Return the pair 〈bag-offsets, collected -subbags〉.

Figure 2-6: Pseudocode for the MB-Collect multibag operation. Calling MB-Collect
on a multibag Q produces a pair of arrays collected -subbags, which contains all nonempty
subbags in Q sorted by their associated bag’s index, and bag-offsets, which associates sets
of subbags in Q with their corresponding bag.

Remark 3 Let Q be a multibag in a P -processor execution with m distinct subbags that
represents bags whose indices lie in the range [0, k]. Then Q may be treated as a multibag
representing k bags so that MB-Collect(Q) executes in O(m+k+P) work and O(lgm+
k + lgP) span.

Although different executions of a program can store the elements of Q in different
numbers m of distinct subbags, notice that m is never more than the total number of
elements in Q.

2.5 Analysis of Prism

This section analyzes the performance of Prism using work-span analysis [77, Ch. 27].
We derive bounds on the work and span of Prism for any simple data-graph computation
〈G, f,Q0〉. Recall that we make the reasonable assumptions that a single update f(v)
executes in Θ(deg(v)) work and Θ(lg(deg(v))) span, and that the update only activates
vertices in Adj[v]. These work and span bounds can be used to characterize the data-graph
computations on which Prism achieves good parallel scalability. In particular, we show
that on a data-graph on n vertices colored using χ colors that Prism achieves good parallel
speedup whenever the average work per round is much greater than P χ lg n

Let us first analyze the work and span of Prism for one round of a data-graph compu-
tation.

Theorem 4 Suppose that Prism colors a degree-∆ data graph G = (V,E) using χ colors,
and then executes the data-graph computation 〈G, f,Q0〉. Then, on P processors, Prism
executes updates on all vertices in the activation set Qr for a round r using O(size(Qr)+P)
work and O(χ(lg(Qr/χ) + lg ∆) + lgP) span.

Proof. Let us first analyze the work and span of one iteration of lines 6–12 in Prism,
which perform the updates on the vertices belonging to one color set C ∈ Qr. Consider a
vertex v ∈ C. Lines 8 and 9 execute in Θ(deg(v)) work and Θ(lg(deg(v))) span. For each
vertex u in the set S of vertices activated by the update f(v), Lemma 1 implies that lines
11–12 execute in Θ(1) total work. The parallel for loop on lines 10–12 therefore executes
in Θ(S) work and Θ(lgS) span. Because |S| ≤ deg(v), the parallel for loop on lines 7–12
thus executes in Θ(size(C)) work and Θ(lgC + maxv∈C lg(deg(v))) = O(lgC + lg ∆) span.

40

By processing each of the χ color sets belonging to Qr, lines 6–12 therefore executes
in Θ(size(Qr) + χ) work and O(χ(lg(Qr/χ) + lg ∆)) span. Lemma 2 implies that line 5
executes MB-Collect in O(Qr + χr + P) work and O(lgQr + χr + lgP) span where
χr = maxv∈Qr{color [v]}. Note that we take advantage here of the observation made in
Remark 3. The theorem follows since |Qr|+ χr ≤ size(Qr) + 1

Theoretical scalability of Prism

Dynamic data-graph computations typically run for multiple rounds until a convergence
criteria is met. We will now generalize Theorem 4 to prove work and span bounds for
Prism when executing a sequence of rounds.

Theorem 5 Suppose that Prism colors a degree-∆ data graph G = (V,E) using χ colors,
and then executes the data-graph computation 〈G, f,Q0〉 in r rounds applying updates to the
activation sets Q0, Q1, . . . , Qr−1. Define the multiset U =

⊎r−1
i=0 Qi so that |U| =

∑r−1
i=0 |Qi|

and size(U) =
∑r−1

i=0 size(Qi), where the symbol
⊎

indicates a multiset sum.6 Then, on
P processors, Prism executes the data-graph computation using O(size(U) + rP) work and
O(r χ(lg((U/r)/χ) + lg ∆) + r lgP) span.

Proof. The work bound follows directly from Theorem 4 by taking the sum of work
performed in each of the r rounds of Prism. The total span of Prism is equal to the sum
of each round’s span which by Theorem 4 is bounded by

∑r−1
i=0 (χ(lg(Qi/χ) + lg ∆) + lgP).

Observing that
∑r−1

i=0 χ lg(Qi/χ) ≤ r χ lg((U/r)/χ) completes the proof.

Given Theorem 5 we can compute the parallelism of Prism for a data-graph computation
that applies a multiset U of updates over r rounds. The following corollary expresses the
parallelism of Prism in terms of the average size of the activation sets in a sequence of
rounds.

Corollary 6 Suppose Prism executes a data-graph computation in r rounds during which
it applies a multiset U of updates. Define the average number of updates per round Uavg =
|U|/r and the average work per round Wavg = size(U)/r. Then Prism has Ω(Wavg/(χ(lg(Uavg/χ)+
lg ∆))) parallelism.

Proof. Follows from Theorem 5 by computing the parallelism as the ratio of the work
and span and then performing substitution.

Corollary 6 implies that Prism achieves near perfect linear parallel speedup on P
processors for a graph of n vertices when the average work performed in each round
Wavg � P χ lg n.

2.6 Empirical evaluation

This section explores the performance properties of Prism from an empirical perspective.
We describe three experiments designed to investigate the synchronization costs, dynamic-
scheduling overheads, and scalability properties of Prism. For the first experiment, on a
suite of 12 benchmark graphs, Prism executed between 1.0 and 2.1 times faster than a

6 A multiset sum M =
⊎

i∈IMi has multiplicity of element m equal to M(m) =
∑

i∈IMi(m) for all
m ∈M .

41

nondeterministic locking protocol on PageRank [51], exhibiting a geometric-mean speedup
of a factor of 1.5, a substantial advantage in synchronization costs. The second experi-
ment shows that the slowdown that Prism incurs for dynamic scheduling using multibags,
compared with static scheduling, is only about 1.16 when all vertices are activated in ev-
ery round. This experiment shows that Prism can be effective even for relatively densely
activated graphs. The third experiment shows that Prism scales well and is relatively in-
sensitive to the number of colors needed to color the data graph, as long as there is sufficient
parallelism.

Experimental setup

All of the benchmarks presented in this section were run on an Intel Xeon X5650 machine
with 12 processor cores running at 2.67-GHz with hyperthreading disabled. Our test ma-
chine has 49 GB of DRAM, two 12-MB L3-caches, each shared among 6 cores, and private
L2- and L1-caches of sizes 128 KB and 32 KB, respectively.

As a platform for our experiments, we implemented a new parallel execution engine
within GraphLab [234] that uses Intel Cilk Plus7 [170] to expose parallelism. The new
execution engine and all of our scheduling algorithms were designed to be compatible with
the original GraphLab API in order to facilitate a fair evaluation of the relative merits of
different scheduling methodologies. In particular, to better understand the performance
properties of Prism, we developed four scheduling algorithms for comparison:

• Serial-DDGC is an implementation of the serial scheduling algorithm from Figure 2-
1. Serial-DDGC provides a serial performance baseline for measuring the parallel
speedup achieved by the other, more complex, scheduling algorithms for dynamic
data-graph computations.

• Cilk+Locks is a lock-based scheduling algorithm for dynamic data-graph computa-
tions. During each round, Cilk+Locks updates only an active subset of the vertices
in the graph. It uses a locking scheme to avoid executing conflicting updates in par-
allel. The locking scheme associates a shared-exclusive (i.e., reader-writer) lock [79]
with each vertex in the graph. Prior to executing an update f(v), vertex v’s lock
is acquired exclusively, and a shared lock is acquired for each u ∈ Adj[v]. A global
ordering of locks is used to avoid deadlock.

• RRLocks is the lock-based dynamic scheduling algorithm implemented by the round-
robin sweep scheduler in the original shared-memory version of GraphLab. A bit
vector active is used to represent the active set of vertices. During each round,
RRLocks scans each vertex in the active set in a round-robin fashion, condition-
ally updating a vertex vi if active[i] is true. To avoid races, a locking strategy is
used to coordinate updates that conflict.

• RRColor is a coloring-based dynamic scheduling algorithm that uses a bit vector
active to represent the active set of vertices. Instead of using locks to coordinate
conflicting updates, however, RRColor uses a vertex-coloring of the graph. At the
start of the computation, RRColor partitions the vertices by color and stores them
in static arrays. For a graph colored using χ colors, each round of the computation
is divided into χ color steps. During the kth color step, RRColor scans all color-k
vertices and conditionally updates a color-kd vertex vi if active[i] is true.

7All code was compiled with Intel’s ICC version 13.1.1.

42

Graph |V | |E| χ Cilk+Locks Prism Prism-R Coloring

cage15 5,154,860 94,044,700 17 36.9 35.5 35.6 12%
liveJournal 4,847,570 68,475,400 333 36.8 21.7 22.3 12%
randLocalDim25 1,000,000 49,992,400 36 26.7 14.4 14.6 18%
randLocalDim4 1,000,000 41,817,000 47 19.5 12.5 13.7 14%
rmat2Million 2,097,120 39,912,600 72 22.5 16.6 16.8 12%
powerGraph2M 2,000,000 29,108,100 15 12.1 9.8 10.1 13%
3dgrid5m 5,000,210 15,000,600 6 10.3 10.3 10.4 7%
2dgrid5m 4,999,700 9,999,390 4 17.7 8.9 9.0 4%
web-Google 916,428 5,105,040 43 3.9 2.4 2.4 8%
web-BerkStan 685,231 7,600,600 200 3.9 2.4 2.7 8%
web-Stanford 281,904 2,312,500 62 1.9 0.9 1.0 11%
web-NotreDame 325,729 1,469,680 154 1.1 0.8 0.8 12%

Figure 2-7: Performance of Prism versus Cilk+Locks when executing 10 · |V | updates
of the PageRank [51] data-graph computation on a suite of six real-world graphs and six
synthetic graphs. Column “Graph” identifies the input graph, and columns |V | and |E|
specify the number of vertices and edges in the graph, respectively. Column χ gives the
number of colors Prism used to color the graph. Columns “Cilk+Locks,” “Prism,”
and “Prism-R” present 12-core running times in seconds for each respective scheduler.
Each running time is the median of 5 runs. Column “Coloring” gives the percentage of
Prism’s running time spent coloring the graph. Prism-R, discussed in Section 2.7, provides
deterministic support for associative operations on global variables.

Overheads for locking and for chromatic scheduling

We compared the overheads associated with coordinating conflicting updates of a dynamic
data-graph computation using locks versus using chromatic scheduling. We evaluated these
overheads by comparing the 12-core execution times for Prism and Cilk+Locks to execute
the PageRank [51] data-graph computation on a suite of graphs. We used PageRank for this
study because of its comparatively cheap update function, which makes overheads due to
scheduling more pronounced. PageRank updates a vertex v by first scanning v’s incoming
edges to aggregate the data from its incoming neighbors, and then by scanning v’s outgoing
edges to activate its outgoing neighbors.

We executed the PageRank application on a suite of six synthetic and six real-world
graphs. The six real-world graphs came from the Stanford Large Network Dataset Collec-
tion (SNAP) [220], and the University of Florida Sparse Matrix Collection [84]. The six
synthetic graphs were generated using the “randLocal,” “powerLaw,” “gridGraph,” and
“rMatGraph” generators included in the Problem Based Benchmark Suite [320]. We chose
the graphs in this suite to be large enough to stress the memory system and thus make
parallel speedup comparatively difficult. That is, given the random access inherent in data-
graph computations, we expect most references to vertex data to come from DRAM, making
DRAM bandwidth a scarce shared commodity. Since the span of Prism is superconstant,
however, for a fixed number of workers, increasing the size of the graph only increases par-
allelism, making good parallel speedup comparatively easy. Thus, we have pessimistically
chosen the graphs in the suite to be large enough to make DRAM bandwidth a shared
bottleneck but not unduly larger.

We observed that Prism often performs slightly fewer rounds of updates than Cilk+Locks
when both are allowed to run until convergence. Wishing to isolate scheduling overheads,
we controlled this variation by explicitly setting the total number of updates on a graph to

43

Benchmark χ Updates RRLocks RRColor Prism Prism-R

PR/L 333 48,475,700 35.25 14.5 17.7 18.4
ID/2000 4 40,000,000 63.15 50.1 59.2 59.9
FBP/C3 2 16,001,900 11.9 8.8 8.8 8.9
ID/1000 4 10,000,000 15.7 12.6 14.9 15.0
PR/G 43 9,164,280 3.1 1.3 2.1 2.2
FBP/C1 2 8,783,100 5.9 4.7 4.8 4.8
ALS/N 6 1,877,220 65.7 52.4 52.8 53.5

Figure 2-8: Performance of three schedulers on the seven application benchmarks from
Figure 2-2, modified so that all vertices are activated in every round. Column “Up-
dates” specifies the number of updates performed in the data-graph computation. Columns
“RRLocks,” “RRColor,” “Prism,” and “Prism-R” list the 12-core running times in
seconds for the respective schedulers to execute each benchmark. Each running time is
the median of 5 runs. The Prism-R algorithm, which provides deterministic support for
associative operations on global variables, will be discussed in Section 2.7.

10 times the number of vertices.

Figure 2-7 presents the empirical results for this study. Figure 2-7 shows that over the 12
benchmark graphs, Prism executes between 1.0 and 2.1 times faster than Cilk+Locks on
PageRank, exhibiting a geometric-mean speedup of a factor of 1.5. Moreover, from Figure 2-
7 we see that an average of 10.9% of Prism’s total running time is spent coloring the data
graph, which is approximately equal to the cost of executing |V | updates. Prism colors the
data-graph once to execute the data-graph computation, however, meaning that its cost
can be amortized over all of the updates in the data-graph computation. By contrast, the
locking scheme implemented by Cilk+Locks incurs overhead for every update. Before
updating a vertex v, Cilk+Locks acquires each lock associated with v and every vertex
u ∈ Adj[v]. For simple data-graph computations whose update functions perform relatively
little work, this step can account for a significant fraction of the time to execute an update.

Dynamic-scheduling overhead

To investigate the overhead of using multibags to maintain activation sets, we compared
the 12-core running times of Prism, RRColor, and RRLocks on the seven benchmark
applications from Figure 2-2. For this study, we modified the benchmarks slightly for each
scheduler in order to provide a fair comparison. In particular, because Prism typically
executes fewer updates than a static data-graph computation scheduler, we modified the
update functions for each application so that every update on a vertex v always activates
all vertices u ∈ Adj[v]. This modification guarantees that Prism executes the same set of
updates each round as RRLocks and RRColor, while still incurring the overhead that
Prism requires in order to maintain a dynamic set of active vertices. Thus, we compare
the worst case conditions for Prism with respect to scheduling overhead with the best case
conditions for RRLocks and RRColor.

Figure 2-8 presents the results of these tests, revealing that the overhead Prism incurs
to maintain its activation sets using a multibag. As can be seen from the figure, Prism is
1.0 to 1.6 times slower than RRColor on the benchmarks with a geometric-mean relative
slowdown of 1.16. That is, for static data-graph computations, Prism incurs only an
aggregate 16% slowdown through the use of a multibag, as opposed to the simple array
used by RRColor, which suffices for static scheduling. The Prism algorithm, which can

44

also support dynamic activation sets efficiently, incurred minimal overhead for the multibag
data structure. Prism outperformed RRLocks on all benchmarks, achieving a geometric-
mean speedup of 30% due to RRLocks’s lock overhead. Thus, Prism incurs relatively
little overhead by maintaining activation sets with multibags.

The relative overhead of RRColor and Prism depends on the percentage of vertices
active during a given round. As a typical example, RRColor is approximately 1.09 times
faster than Prism on the image denoise benchmark when 80% of the vertices are active each
round, but is 1.11 times slower when 5% or less of the vertices are active each round. As
part of an effort to incorporate the Prism scheduling paradigm into an existing data-graph
computation framework (e.g., GraphLab, Pregel etc.), one might consider using a heuristic
to switch between the use of a bitvector and a multibag depending on the density of the
activation set. A simple heuristic such as a fixed threshold on the relative density of the
activation set8 (e.g., 10% of the vertices) would likely suffice to maintain activation sets
with good performance: if fewer than 10% of vertices are active, use a multibag, otherwise
use a bitvector.

Scalability of Prism

To measure the scalability of Prism, and Cilk+Locks, we compared their 12-core runtimes
to the serial reference implementation Serial-DDGC. Figure 2-9 shows the empirical 12-
core speedups relative to Serial-DDGC of Prism and Cilk+Locks on seven application
benchmarks. Data for Prism-R is also included, which will be discussed in Section 2.9.
In geometric mean, Cilk+Locks achieved 5.73 times speedup, Prism achieved 7.56 times
speedup, and Prism-R achieved 7.42 times speedup.

In order to study the effect of the number χ of colors used to color the application’s data
graph on the parallel scalability of Prism, we measured the parallelism T1/T∞ and the 12-
core speedup T1/T12 of Prism while executing the image-denoise application as we varied
the number of colors used. The image-denoise application performs belief propagation to
remove Gaussian noise added to a gray-scale image. The data graph for the image-denoise
application is a two-dimensional grid in which each vertex represents a pixel, and there is
an edge between any two adjacent pixels. The Color-Graph procedure invoked in line 1
of Figure 2-3 typically colors this data-graph with just 4 colors.

To perform this study, we artificially increased χ by repeatedly taking a random nonempty
subset of the largest set of vertices with the same color and assigning a new color to those
vertices. Using this technique, we ran the image-denoise application on a 500-by-500 pixel
input image for values of χ between 4 and 250, 000, the last data point corresponding to a
coloring that assigns all pixels distinct colors. Figure 2-10 plots the results of these tests.
Although the parallelism of Prism is inversely proportional to χ, Prism’s speedup on 12
cores is relatively insensitive to χ, as long as the parallelism is greater than about 120. This
result is consistent with the rule of thumb that a program with at least 10P parallelism
should achieve nearly perfect linear speedup on P processors [77, p. 783].

8A similar heuristic was shown to be effective in the graph computation library Ligra [318] for adaptively
switching between “dense” and “sparse” representations of vertex subsets.

45

2

4

6

8

10

12

P
R

/
L

ID
/
2
00

0

F
B

P
/
C

3

ID
/
1
00

0

P
R

/
G

F
B

P
/
C

1

A
L

S
/N

S
pe

ed
u

p

Cilk+Locks
Prism

Prism-R

Figure 2-9: Empirical speedup relative to Serial-DDGC on 12 processor cores. Shown
are the empirical speedups Ts/T12 of Cilk+Locks, Prism, and Prism-R, where Ts is the
runtime of the serial scheduling algorithm Serial-DDGC and T12 is the runtime of the
particular algorithm on 12 cores. The Prism-R algorithm is discussed in Section 2.7.

0.25

1

4

16

64

256

1024

4096

16384

24 26 28 210 212 214 216 218

S
pe

ed
u

p

Colors

Parallelism
Empirical Speedup

Figure 2-10: Scalability of Prism on the image-denoise application as a function of χ, the
number of colors used to color the data graph. The parallelism T1/T∞ is plotted together
with the empirical speedup T1/T12 achieved on a 12-core execution. Parallelism values were
measured using the Cilkview scalability analyzer [149].

46

2.7 The Prism-R algorithm

This section introduces Prism-R, a chromatic-scheduling algorithm that executes a dy-
namic data-graph computation deterministically even when updates modify global reducer
variables using associative operations such as a reducer hyperobject [115]. While the chro-
matic scheduling technique employed by Prism ensures that there are no data races on the
vertex data of the graph, the order in which updates are made to a reducer variable among
vertices of a common color can yield a nondeterministic result to the final reducer variable
value. The multivector data structure, which is a theoretical improvement to the multibag,
is used by Prism-R to maintain activation sets that are partitioned by color and ordered
deterministically. We describe an extension of the model of simple data-graph computa-
tions that permits an update function to perform associative operations on global variables
using a parallel reduction mechanism. In this extended model, Prism-R executes dynamic
data-graph computations deterministically while achieving the same work and span bounds
as Prism.

Data-graph computations with global reductions

Several frameworks for executing data-graph computations allow updates to modify global
variables in limited ways. Pregel aggregators [242], and GraphLab’s sync mechanism [234],
for example, both support data-graph computations in which an update can modify a global
variable in a restricted manner. These mechanisms coordinate parallel modifications to a
global variable using parallel reductions [175, 205, 31, 66, 197, 291, 169, 251], that is, they
coordinate these modifications by applying them to local views (copies) of the variable and
then reducing (combining) those copies together using a binary reduction operator .

A reducer (hyperobject) [115, 213] is a general parallel reduction mechanism provided
by Cilk Plus and other dialects of Cilk. A reducer is defined on an arbitrary data type T ,
called a view type , by defining an Identity operator and a binary Reduce operator for
views of type T . The Identity operator creates a new view of the reducer. The binary
Reduce operator defines the reducer’s reduction operator. A reducer is a particularly gen-
eral reduction mechanism because it guarantees that, if its Reduce operator is associative,
then the final result in the global variable is deterministic: every parallel execution of the
program produces the same result. Other parallel reduction mechanisms, including Pregel
aggregators and GraphLab’s sync mechanism, provide this guarantee only if the reduction
operator is also commutative.

Although Prism is implemented in Cilk Plus, Prism does not produce a deterministic
result if updates modify global variables using a noncommutative reducer. The reason
for this is, in part, that the order of vertices within in a multibag depends on how the
computation was scheduled among participating workers. As a result, the order in which
lines 7–12 of Prism in Figure 2-3 evaluates the vertices in a color set C is nondeterministic.
If two updates on vertices in C modify the same reducer, then the relative order of these
modifications can differ between runs of Prism, even if a single worker happens to execute
both updates.

Prism-R

Prism-R is an extension to Prism that executes dynamic data-graph computations de-
terministically even when update functions are allowed to perform associative operations
on global variables. The semantics of Prism-R mimic that of Serial-DDGC when its

47

Prism-R(G, f,Q0)

1 χ← Color-Graph(G)
2 r ← 0
3 updates ← 0
4 Q← Q0

5 while Q 6= ∅
6 C ←MV-Collect(Q)
7 for C ∈ C
8 parallel for i← 1, 2, . . . , |C|
9 〈v, p〉 ← C[i]

10 if p == priority [v]
11 rank [f(v)] = updates + i
12 priority [v]←∞
13 S ← f(v)
14 parallel for u ∈ S
15 if PriorityWrite(priority [u], rank [f(v)])
16 MV-Insert(Q, 〈u, rank [f(v)]〉, color [u])
17 updates ← updates + |C|
18 r ← r + 1

PriorityWrite(current , value)

19 begin atomic
20 if current > value
21 current ← value
22 return true
23 else
24 return false
25 end atomic

Figure 2-11: Pseudocode for Prism-R. The algorithm takes as input a data graph G, an
update function f , and an initial activation set Q0. Color-Graph colors a given graph
and returns the number of colors it used. The procedures MV-Collect and MV-Insert
operate the multivector Q to maintain activation sets for Prism-R. Prism-R updates the
value of updates after processing each color set and r after each round of the data-graph
computation.

queue of active vertices is stable sorted by color at the start of each round. In this mod-
ified version of Serial-DDGC updates to active vertices of the same color are applied in
increasing order of their insertion into the queue. Prism-R guarantees that the result of
associative reductions performed by update functions reflect this same order.

Figure 2-11 shows the pseudocode for Prism-R which differs from Prism in its use of
alternate data structure to maintain partitioned activation sets and in its use of a priority
deduplication strategy for avoiding multiple updates to the same vertex in a round.

A multivector is used by Prism-R to represent a list of χ vectors (ordered multisets).
It supports the operations MV-Insert and MV-Collect, which are analogous to the
multibag operations MB-Insert and MB-Collect, respectively. Each vector maintained
by a multivector has serial semantics, meaning that the order of elements within each vector
is deterministic and equivalent to the insertion order in an execution of the serial elision
of the parallel program. Section 2.8 describes and analyzes the implementation of the
multivector data structure.

The serial semantics of the multivector are not alone sufficient to ensure that updates
are ordered deterministically in an execution of the serial elision of the program. Consider,
for example, a round of Prism that updates the three vertices x, y, z in parallel. Suppose
that y activates u and both x and z activate a common neighbor v. The atomic compare-
and-swap operator used by Prism on line 11 of Figure 2-3 ensures that x and z will not
both insert v into the activation set, but which of the two succeeds is nondeterministic.
Inserting these two activated vertices into a multivector would produce either the order u, v
or v, u depending on whether x or z activated v.

48

To eliminate this source of nondeterminism, Prism-R assigns each update f(v) a unique
integer rank [f(v)] on line 11 of Figure 2-11 that orders updates applied during a round
according to their execution order in an execution of the serial elision of Prism-R. Instead
of maintaining a bit vector denoting whether or not a vertex is active Prism-R maintains
an integer array priority of priorities. For each active vertex v the value priority [v] is equal
to the smallest rank of any update f(u) that activated v in the previous round. The priority
of a vertex v is reset on line 12 before applying f(v) by setting priority [v] =∞.

For each vertex u ∈ Adj[v] activated by update f(v), Prism-R uses an atomic priority-
write operator [319] to set priority [u] = min{priority [u], rank [f(v)]} and inserts the vertex-
priority pair 〈u, rank [f(v)]〉 into the multivector if the priority write is successful on line 15.
The color sets returned by MV-Collect on line 6 can contain multiple vertex-priority
pairs for each active vertex. On lines 8–16 Prism-R iterates over the vertex-priority pairs
〈v, p〉 in a color set and only applies the update f(v) if priority [v] == p. Since priority [v]
is equal to the lowest ranked update that activated v, Prism-R updates each active vertex
exactly once during a round in the same order as a serial execution.

2.8 The multivector data structure

This section introduces the multivector data structure, which provides a theoretical improve-
ment to the multibag. The multivector data structure maintains several vectors (dynamic
arrays), each supporting a parallel append operation. Each vector has serial semantics, that
is, the order of elements within any vector is equivalent to their insertion order in an execu-
tion of the serial elision of the Cilk parallel program. The multivector can be used in place
of the multibag to provide a stronger encapsulation of nondeterminism in programs whose
behavior depends on the ordering of elements in each set. This section assumes familiarity
with the Cilk execution model [116], as well as its implementation of reducers [115].

A multivector represents a list of χ vectors (ordered multisets). It supports the
operations MV-Insert and MV-Collect, which are analogous to the multibag operations
MB-Insert and MB-Collect, respectively. Our implementation relies on properties of
a work-stealing runtime system. Consider a parallel program modeled by a computation
dag A in the Cilk model of multithreading. The serial execution order R(A) of the
program lists the vertices of A according to the order they would be visited if an execution
of the serial elision of the underlying Cilk program were executed, which corresponds to a
left-to-right depth-first execution of the dag.

A work-stealing scheduler partitions R(A) into a sequence R(A) = 〈t0, t1, . . . , tM−1〉,
where each trace ti ∈ R(A) is a contiguous subsequence of R(A) executed by exactly one
worker. A multivector represents each vector as a sequence of trace-local subvectors —
subvectors that are modified within exactly one trace. The ordering properties of traces
imply that concatenating a vector’s trace-local subvectors in order produces a vector whose
elements appear in the serial execution order. The multivector data structure assumes that
a worker can query the runtime system to determine when it starts executing a new trace.

The log-tree reducer

A multivector stores its nonempty trace-local subvectors in a log tree , which represents an
ordered multiset of elements and supports Θ(1)-work append operations. A log tree is a
binary tree in which each node L stores a dynamic array L.sublog . The ordered multiset that

49

Flatten(L,A, i)

1 A[i]← L
2 if L.left 6= nil
3 spawn Flatten(L.left , A, i− L.right .size − 1)
4 if L.right 6= nil
5 Flatten(L.right , A, i− 1)
6 sync

Figure 2-12: Pseudocode for the Flatten operation for a log tree. Flatten performs a
post-order parallel traversal of a log tree to place its nodes into a contiguous array.

Identity()

7 L← new log-tree node
8 L.sublog ← new vector
9 L.size ← 1

10 L.left ← nil
11 L.right ← nil
12 return L

Reduce(Ll, Lr)

13 L← Identity()
14 L.size ← Ll.size + Lr.size + 1
15 L.left ← Ll

16 L.right ← Lr

17 return L

Figure 2-13: Pseudocode for the Identity and Reduce log-tree reducer operations. The
Identity operation creates and returns a new log-tree node L. The Reduce(Ll, Lr) oper-
ation concatenates a left log-tree node Ll with a right log-tree node Lr.

a log tree represents corresponds to a concatenation of the tree’s dynamic arrays in a post-
order tree traversal. Each log-tree node L is augmented with the size of its subtree L.size
counting the number of log-tree nodes in the subtree rooted at L. Using this augmentation,
the operation Flatten(L,A,L.size − 1) described in Figure 2-12 flattens a log tree rooted
at L of n nodes and height h into a contiguous array A using Θ(n) work and Θ(h) span.

To handle parallel MV-Insert operations, a multivector employs a log-tree reducer ,
that is, a Cilk Plus reducer whose view type is a log tree. Figure 2-13 presents the pseu-
docode for the Identity and Reduce operations for the log-tree reducer.

The Identity operation creates a new log-tree node with an empty sublog. The
Reduce(Ll, Lr) operation creates a new root node L and assigns L.left = Ll and L.right =
Lr. Updates are performed using a log-tree reducer R by first obtaining a local view L of the
log-tree reducer using a runtime-provided function Get-Local-View(R) and appending
elements to L.sublog . A log tree’s Flatten operation uses a post-order traversal to order
the log tree’s nodes, which results in an ordering identical to that which would be obtained
by using a linked-list reducer in place of the log-tree reducer.

The log-tree reducer’s Reduce operation is logically associative, that is, for any three
log-tree reducer views a, b, and c, the views produced by Reduce(Reduce(a, b), c) and
Reduce(a,Reduce(b, c)) represent the same ordered multiset.

Figure 2-14 illustrates the state of a log-tree reducer R following the execution of a fork-
join parallel function A(R). Steals occur on line 2 of A and line 8 of B. The log-tree reducer
partitions this execution of A(R) into 5 traces each of which corresponds to one node in
the tree. The first trace corresponds to the worker that begins the execution of A(R) and
each steal creates two additional traces: one corresponding to the stolen continuation of the
spawned function, and another corresponding to the portion of the program following the
associated sync statement.

To maintain trace-local subvectors, a multivector Q consists of an array of P worker-

50

A(R)

1 Log-Insert(R, e1)
2 spawn B(R)
3 Log-Insert(R, e7)
4 sync
5 Log-Insert(R, e8)

B(R)

6 Log-Insert(R, e2)
7 spawn Log-Insert(R, e3)
8 Log-Insert(R, e4)
9 Log-Insert(R, e5)

10 sync
11 Log-Insert(R, e6)

Log-Insert(R, e)

12 L← Get-Local-View(R)
13 Append(L.subblog , e)

e8

size

5

left right

sublog

e6

size

3

left right

sublog e7

size

1

left right

sublog

e1 e2 e3

size

1

left right

sublog e4 e5

size

1

left right

sublog

Figure 2-14: The state of a log-tree reducer R after a work-stealing execution of A(R).
Steals occur on line 2 of A and line 8 of B partitioning the execution into 5 traces. The
ordered multiset (e1, e2, . . . , e8) is represented by 5 trace-local sublogs ordered according to
a post-order traversal of the log tree.

local SPA’s, where P is the number of processors executing the computation, and a log-tree
reducer. The SPA Q[p] for worker p stores the trace-local subvectors that worker p has
appended since the start of its current trace. The log-tree reducer Q.log-reducer stores all
nonempty subvectors created.

Let us see how MV-Insert and MV-Collect are implemented.

Figure 2-16 sketches the MV-Insert(Q, v, k) operation to insert element v into the
vector Ck ∈ Q. MV-Insert differs from MB-Insert in two ways. First, when a new
subvector is created and added to a SPA, lines 19–20 additionally append that subvector
to Q.log-reducer , thereby maintaining the log-tree reducer. Second, lines 15–16 reset the
contents of the SPA Q[p] after worker p begins executing a new trace, thereby ensuring that
Q[p] stores only trace-local subvectors.

Figure 2-15 sketches the MV-Collect operation. The return value of MV-Collect
is a pair 〈subvector -offsets, collected -subvectors〉 analogous to the return value of MB-
Collect. The procedure MV-Collect differs from MB-Collect primarily in that
Step 1, which replaces Steps 1 and 2 in MB-Collect, flattens the log tree underlying
Q.log-reducer to produce the unsorted array collected -subvectors. MV-Collect also re-
quires that collected -subvectors be sorted using a stable sort on Step 2. The integer sort
described in the proof of Lemma 2 for MB-Collect is a suitable stable sort for this pur-
pose.

Analysis of multivector operations

We now analyze the work and span of the MV-Insert and MV-Collect operations,
starting with MV-Insert.

51

MV-Collect(Q)

1. Flatten the log-reducer tree so that all subvectors in the log appear in a contiguous array
collected -subvectors.

2. Sort the subvectors in collected -subvectors by their vector indices using a stable sort.
3. Create the array vector -offsets, where vector -offsets[k] stores the index of the first subvector

in collected -subvectors that contains elements of the vector Ck ∈ Q.
4. Reset Q.log-reducer , and for p = 0, 1, . . . , P − 1, reset Q[p].
5. Return the pair 〈vector -offsets, collected -subvectors〉.

Figure 2-15: Pseudocode for the MV-Collect multivector operation. Calling MV-
Collect on a multivectorQ produces a pair 〈vector -offsets, collected -subvectors〉 of arrays,
where collected -subvectors contains all nonempty subvectors in Q sorted by their associated
vector’s color, and vector -offsets associates sets of subvectors in Q with their corresponding
vector.

MV-Insert(Q, v, k)

14 p← Get-Worker-ID()
15 if worker p began a new trace since last insert
16 reset Q[p]
17 if Q[p].array [k] == nil
18 Q[p].array [k]← newsubvector
19 L← Get-Local-View(Q.log-reducer)
20 Append(L.sublog , Q[p].array [k])
21 Append(Q[p].array [k], v)

Figure 2-16: Pseudocode for the MV-Insert multivector operation. MV-Insert(Q, v, k)
inserts an element v into the kth vector Ck maintained by the multivector Q.

Lemma 7 Executing MV-Insert takes Θ(1) time in the worst case.

Proof. Resetting the SPA Q[p] on line 16 can be done in Θ(1) worst-case time with an
appropriate SPA implementation, and appending a new subvector to a log tree takes Θ(1)
time. The theorem thus follows from the analysis of MB-Insert in Lemma 1.

Lemma 8 bounds the work and span of MV-Collect.

Lemma 8 Consider a computation A with span T∞(A), and suppose that the contents of a
multivector Q of χ vectors are distributed across m subvectors. Then a call to MV-Collect(Q)
incurs Θ(m+ χ) work and Θ(lgm+ χ+ T∞(A)) span.

Proof. Flattening the log-tree reducer in Step 1 is accomplished in two steps. First,
the Flatten operation writes the nodes of the log tree to a contiguous array. Execution
of Flatten has span proportional to the depth of the log tree, which is bounded by
O(T∞(A)), since at most O(T∞(A)) reduction operations can occur along any path in A,
and Reduce for log trees executes in Θ(1) work [115]. Second, using a parallel-prefix sum
computation, the log entries associated with each node in the log tree can be packed into
a contiguous array, incurring Θ(m) work and Θ(lgm) span. Step 1 thus incurs Θ(m) work
and O(lgm+T∞(A)) span. The remaining steps of MV-Collect, which are analogous to
those of MB-Collect and analyzed in Lemma 2, execute in Θ(χ+ lgm) span.

52

2.9 Analysis and evaluation of Prism-R

This section presents a theoretical work-span analysis of Prism-R, demonstrating that
its work and span are asymptotically equivalent to Prism. This section also discusses
Prism-R’s empirical performance relative to Prism, which was evaluated in Section 2.6. In
particular, Prism-R is only 2-7% slower than Prism, overall, while providing deterministic
support for associative operations on global variables.

Work-span analysis of Prism-R

We begin by analyzing the work and span of Prism-R for simple data-graph computations
that perform associative operations on global variables. In this extended model, Prism-R
executes dynamic data-graph computations deterministically while achieving the same work
and span bounds as Prism.

Theorem 9 Let G be a degree-∆ data graph. Suppose that Prism-R colors G using χ
colors. Then Prism-R executes updates on all vertices in the activation set Qr for a round
r of a simple data-graph computation 〈G, f,Q0〉 in O(size(Qr)) work and O(χ(lg(Qr/χ) +
lg ∆)) span.

Proof. Prism-R can perform a priority write to its active array with Θ(1) work,
and it can remove duplicates from the output of MV-Collect in O(size(Qr)) work and
O(lg(size(Qr))) = O(lgQr + lg ∆) span. The theorem follows by applying Lemmas 7 and 8
appropriately to the analysis of Prism in Theorem 4.

Theorem 10 Suppose that Prism-R colors a degree-∆ data graph G = (V,E) using χ
colors, and then executes the data-graph computation 〈G, f,Q0〉 in r rounds applying up-
dates to the activation sets Q0, Q1, . . . , Qr−1. Define the multiset U =

⊎r−1
i=0 Qi so that

|U| =
∑r−1

i=0 |Qi| and size(U) =
∑r−1

i=0 size(Qi). Then Prism-R executes the data-graph
computation using O(size(U)) work and O(r · χ(lg((U/r)/χ) + lg ∆)) span.

Proof. By Theorem 9 Prism-R executes a round of a data-graph computation using
the same asymptotic work and span as Prism. We mirror the arguments in Theorem 5 to
bound the work and span of Prism-R for a sequence of rounds.

Given Theorem 10 we can compute the parallelism of Prism-R for a data-graph compu-
tation that applies a multiset U of updates over r rounds. The following corollary expresses
the parallelism of Prism-R in terms of the average size of the activation sets in a sequence
of rounds.

Corollary 11 Suppose Prism-R executes a data-graph computation in r rounds during
which it applies a multiset U of updates. Define the average number of updates per round
Uavg = |U|/r and the average work per round Wavg = size(U)/r. Then Prism-R has
Ω(Wavg/(χ(lg(Uavg/χ) + lg ∆))) parallelism.

Proof. Follows from Theorem 10 by computing the parallelism as the ratio of the work
and span and then performing substitution.

53

Empirical evaluation of Prism-R

Prism-R provides deterministic support for associative operations on global variables at the
cost of additional complexity versus Prism, specifically in the maintenance of activation
sets. Nonetheless, Prism-R guarantees the same asymptotic work and span as Prism.
Empirically, we find that Prism-R suffers a geomean slowdown of only 2-7% versus Prism
in various scenarios. In particular, the 12-core performance for each dynamic data-graph
computation application featured in Figure 2-2 demonstrate that for real-world applications
Prism-R is 7% slower in geometric mean than Prism. in Figure 2-8 we see that Prism-R
is only 1.8% slower than Prism for static versions of the applications featured in Figure 2-2
(i.e., all vertices are updated every round). Finally, in Figure 2-7 we present the 12-core
performance of Prism-R on PageRank [51] for a suite of six synthetic and six real-world
graphs. In this case, Prism-R is 3.5% slower in geometric mean than Prism.

2.10 Conclusion

Researchers over multiple decades have soberly advised the rest of the community that the
difficulty of parallel programming can be greatly reduced by using some form of determin-
istic parallelism [281, 143, 125, 326, 32, 105, 92, 93, 160, 23, 24, 274, 354, 43]. With a
deterministic parallel program, the programmer observes no logical concurrency, that is, no
nondeterminacy in the behavior of the program due to the relative and nondeterministic
timing of communicating processes (e.g., when two processes try to acquire a lock simultane-
ously). The semantics of a deterministic parallel program are therefore serial and reasoning
about such a program’s correctness is theoretically no harder than reasoning about the
correctness of a serial program, which is already sufficiently hard for most people. Testing,
debugging, and formal verification is simplified by determinism, because there is no need
to consider all possible relative timings (i.e., interleavings) of operations on shared mutable
state.

The behavior of Prism corresponds to a variant of Serial-DDGC that sorts the acti-
vated vertices in its queue by color at the start of each round. Whether Prism executes a
given data graph on 1 processor or many, it always behaves the same way. With Prism-R,
this property holds even when the update function can perform reductions (e.g., associa-
tive operators on global variables). By contrast, lock-based schedulers provide no such a
guarantee of determinism. Instead, updates in a round executed by a lock-based scheduler
appear to execute according to some linear order, the so-called sequential consistency model
employed by GraphLab [234, 233] and others. This order is nondeterministic due to races
on the acquisition of locks.

Blelloch, Fineman, Gibbons, and Shun [33] argue that deterministic programs can be
fast compared with nondeterministic programs, and they document many examples where
the overhead for converting a nondeterministic program into a deterministic one is small.
They even document a few cases where this “price of determinism” is slightly negative. To
their list, we add the execution of dynamic data-graph computations as having a price of
determinism which is significantly negative.

54

2.11 Acknowledgments

Thanks to Guy Blelloch of Carnegie Mellon University for sharing utility functions from
his Problem Based Benchmark Suite [320]. Thanks to Aydın Buluç of Lawrence Berkeley
Laboratory for helping us in our search for collections of large sparse graphs. Thanks to
Uzi Vishkin of University of Maryland for helping us track down early work on parallel
sorting. Thanks to Fredrik Kjolstad, Angelina Lee, and Justin Zhang of MIT CSAIL and
Guy Blelloch, Julian Shun, and Harsha Vardhan Simhadri of Carnegie Mellon University
for providing helpful discussions.

55

56

Chapter 3

Ordering Heuristics for Parallel
Graph Coloring

This chapter discusses efficient parallel algorithms for coloring graphs that are determin-
istic and have the semantics of the commonly used serial graph-coloring algorithm from
Welsh and Powell. The serial semantics of the parallel algorithm described in this chapter
are leveraged to design principled ordering heuristics for parallel graph coloring that can
be viewed and analyzed as coarsened variants of existing heuristics used in serial codes.
This work was conducted in collaboration with William Hasenplaugh, Tao B. Schardl, and
Charles E. Leiserson.

Abstract

This chapter introduces the largest-log-degree-first (LLF) and smallest-log-degree-last (SLL)
ordering heuristics for parallel greedy graph-coloring algorithms, which are inspired by the
largest-degree-first (LF) and smallest-degree-last (SL) serial heuristics, respectively. We
show that although LF and SL, in practice, generate colorings with relatively small numbers
of colors, they are vulnerable to adversarial inputs for which any parallelization yields a poor
parallel speedup. In contrast, LLF and SLL allow for provably good speedups on arbitrary
inputs while, in practice, producing colorings of competitive quality to their serial analogs.

We applied LLF and SLL to the parallel greedy coloring algorithm introduced by Jones
and Plassmann, referred to here as JP. Jones and Plassmann analyze the variant of JP that
processes the vertices of a graph in a random order, and show that on an O(1)-degree graph
G = (V,E), this JP-R variant has an expected parallel running time of O(lg V/lg lg V) in
a PRAM model. We improve this bound to show, using work-span analysis, that JP-R,
augmented to handle arbitrary-degree graphs, colors a graph G = (V,E) with degree ∆
using Θ(V + E) work and O(lg V + lg ∆ ·min{

√
E,∆ + lg ∆ lg V/lg lg V }) expected span.

We prove that JP-LLF and JP-SLL— JP using the LLF and SLL heuristics, respectively
— execute with the same asymptotic work as JP-R and only logarithmically more span
while producing higher-quality colorings than JP-R in practice.

We engineered an efficient implementation of JP for modern shared-memory multicore
computers and evaluated its performance on a machine with 12 Intel Core-i7 (Nehalem) pro-
cessor cores. Our implementation of JP-LLF achieves a geometric-mean speedup of 7.83
on eight real-world graphs and a geometric-mean speedup of 8.08 on ten synthetic graphs,
while our implementation using SLL achieves a geometric-mean speedup of 5.36 on these
real-world graphs and a geometric-mean speedup of 7.02 on these synthetic graphs. Fur-

57

thermore, on one processor, JP-LLF is slightly faster than a well-engineered serial greedy
algorithm using LF, and likewise, JP-SLL is slightly faster than the greedy algorithm us-
ing SL.

3.1 Introduction

Graph coloring is a heavily studied problem with many real-world applications, including
the scheduling of conflicting jobs [341, 244, 10, 109], register allocation [64, 63, 50], high-
dimensional nearest-neighbor search [22], and sparse-matrix computation [180, 297, 75], to
name just a few. Formally, a (vertex)-coloring of an undirected graph G = (V,E) is an
assignment of a color color(v) to each vertex v ∈ V such that for every edge (u, v) ∈ E,
we have color(u) 6= color(v), that is, no two adjacent vertices have the same color. The
graph-coloring problem is the problem of determining a coloring which uses as few colors
as possible.

We were motivated to work on graph coloring in the context of “chromatic scheduling”
[26, 1, 184] of parallel “data-graph computations.” A data graph is a graph with data
associated with its vertices and edges. A data-graph computation is an algorithm im-
plemented as a sequence of “updates” on the vertices of a data graph G = (V,E), where
updating a vertex v ∈ V involves computing a new value associated with v as a function of
v’s old value and the values associated with the neighbors of v: the set of vertices adjacent
to v in G, denoted Adj[v] = {u ∈ V : (v, u) ∈ E}. To ensure atomicity of each update,
rather than using mutual-exclusion locks or other nondeterministic means of data synchro-
nization, chromatic scheduling first colors the vertices of G and then sequences through the
colors, scheduling all vertices of the same color in parallel. The time to perform a data-graph
computation thus depends both on how long it takes to color G and on the number of colors
produced by the graph-coloring algorithm: more colors means less parallelism. Although
the coloring can be performed offline for some data-graph computations, for other com-
putations the coloring must be produced online, and one must accept a trade-off between
coloring quality — number of colors — and the time to produce the coloring.

Although the problem of finding an optimal coloring of a graph — a coloring us-
ing the fewest colors possible — is NP-complete [120], heuristic “greedy” algorithms work
reasonably well in practice. Welsh and Powell [341] introduced the original greedy color-
ing algorithm, which iterates over the vertices and assigns each vertex the smallest color
not assigned to a neighbor. For a graph G = (V,E), define the degree of a vertex
v ∈ V by deg(v) = |Adj[v]|, the number of neighbors of v, and let the degree of G be
∆ = maxv∈V {deg(v)}. Welsh and Powell show that the greedy algorithm colors a graph G
with degree ∆ using at most ∆ + 1 colors.

Ordering heuristics

In practice, however, greedy coloring algorithms tend to produce much better colorings than
the ∆+1 bound implies, and moreover, the order in which a greedy coloring algorithm colors
the vertices affects the quality of the coloring.1 To reduce the number of colors a greedy
coloring algorithm uses, practitioners therefore employ ordering heuristics to determine
the order in which the algorithm colors the vertices [179, 4, 48, 246].

1In fact, for any graph G = (V,E), some ordering of V causes a greedy algorithm to color G optimally,
although finding such an ordering is NP-hard [260].

58

The literature includes many studies of ordering heuristics and how they affect running
time and coloring quality. Here are six of the more popular heuristics:

FF The first-fit ordering heuristic [341, 232] colors vertices in the order they appear in
the input graph representation.

R The random ordering heuristic [179] colors vertices in a uniformly random order.

LF The largest-degree-first ordering heuristic [341] colors vertices in order of decreasing
degree.

ID The incidence-degree ordering heuristic [75] iteratively colors an uncolored vertex
with the largest number of colored neighbors.

SL The smallest-degree-last ordering heuristic [246, 4] colors the vertices in the order
induced by first removing all the lowest-degree vertices from the graph, then recur-
sively coloring the resulting graph, and finally coloring the removed vertices.

SD The saturation-degree ordering heuristic [48] iteratively colors an uncolored vertex
whose colored neighbors use the largest number of distinct colors.

The experimental results overviewed in the Appendix (Section 3.11) indicate that we
have listed these heuristics in rough order of coloring quality from worst to best, confirming
the findings of Gebremedhin and Manne [122], who also rank the relative quality of R, LF,
ID, and SD in this order.

Although an ordering heuristic can be viewed as producing a permutation of the vertices
of a graph G = (V,E), we shall find it convenient to think of an ordering heuristic H as
producing an injective (1-to-1) priority function ρ : V → R.2 We shall use the notation
ρ ∈ H to mean that the ordering heuristic H produces a priority function ρ.

Figure 3-1 gives the pseudocode for Greedy, a greedy coloring algorithm. Greedy
takes a vertex-weighted graph G = (V,E, ρ) as input, where ρ : V → R is a priority function
produced by some ordering heuristic. Each step of Greedy simply selects the uncolored
vertex with the highest priority according to ρ and colors it with the smallest available color.
Generally, for a coloring algorithm A and ordering heuristic H , let A-H denote the coloring
algorithm A that runs on vertex-weighted graphs whose priority functions are produced
by H . In this way, we separate the behavior of the coloring algorithm from that of the
ordering heuristic.

Greedy, using any of these six ordering heuristics, can be made to run in Θ(V + E)
time theoretically. Although some of these ordering heuristics involve more bookkeeping
than others, achieving these theoretical bounds for Greedy-FF, Greedy-R, Greedy-LF,
Greedy-ID, and Greedy-SL is straightforward [129, 246]. Despite conjectures to the
contrary [129, 75], Greedy-SD can also be made to run in Θ(V +E) time, as we shall show
in Section 3.8.

In practice, to produce a better quality coloring tends to cost more in running time. That
is, the six heuristics, which are listed in increasing order of coloring quality, are also listed
in increasing order of running time. The only exception is Greedy-ID, which is dominated

2If the rule for an ordering heuristic allows for ties in the priority function (the priority function is not
injective), we shall assume that ties are broken randomly. Formally, suppose that an ordering heuristic H
produces a priority function ρH which may contain ties. We extend ρH to a priority function ρ that maps
each vertex v ∈ V to an ordered pair 〈ρH (v), ρR(v)〉, where the priority function ρR is produced by the
random ordering heuristic R. To determine which of two vertices u, v ∈ V has higher priority, we compare
the ordered pairs ρ(u) and ρ(v) lexicographically. Notwithstanding this subtlety, we shall still adopt the
simplifying convenience of viewing the priority function as mapping vertices to real numbers. In fact, the
range of the priority function can be any linearly ordered set.

59

Greedy(G)

1 let G = (V,E, ρ)
2 for v ∈ V in order of decreasing ρ(v)
3 C ← {1, 2, . . . ,deg(v) + 1}
4 for u ∈ Adj[v] such that ρ(u) > ρ(v)
5 C ← C − {color(u)}
6 color(v)← minC

Figure 3-1: Pseudocode for a serial greedy graph-coloring algorithm. Given a vertex-
weighted graph G = (V,E, ρ), where the priority of a vertex v ∈ V is given by ρ(v),
Greedy colors each vertex v ∈ V in decreasing order according to ρ(v).

JP(G)

7 let G = (V,E, ρ)
8 parallel for v ∈ V
9 v.pred = {u ∈ V : (u, v) ∈ E and ρ(u) > ρ(v)}

10 v.succ = {u ∈ V : (u, v) ∈ E and ρ(u) < ρ(v)}
11 v.counter ← |v.pred |
12 parallel for v ∈ V
13 if v.pred == ∅
14 JP-Color(v)

JP-Color(v)

15 color(v)← Get-Color(v)
16 parallel for u ∈ v.succ
17 if Join(u.counter) == 0
18 JP-Color(u)

Get-Color(v)

19 C ← {1, 2, . . . , |v.pred |+ 1}
20 parallel for u ∈ v.pred
21 C = C − {color(u)}
22 return minC

Figure 3-2: The Jones-Plassmann parallel coloring algorithm. JP uses a recursive helper
function JP-Color to process a vertex once all of its predecessors have been colored. JP-
Color uses the helper routine Get-Color to find the smallest color available to color a
vertex v.

by Greedy-SL in both coloring quality and runtime. The experiments discussed in the
Appendix (Section 3.11) summarize our empirical findings for serial greedy coloring.

Parallel greedy coloring

There is a historical tension between coloring quality and the parallel scalability of
greedy graph coloring. While the traditional ordering heuristics FF, LF, ID, and SL are
efficient using Greedy, it can be shown that any parallelization of them requires worst-case
span of Ω(V) for a general graph G = (V,E). Of the various attempts to parallelize greedy
coloring [236, 96, 74], the algorithm first proposed by Jones and Plassmann [179] extends
the greedy algorithm in a straightforward manner, uses work linear in size of the graph, and
is deterministic given a random seed. Jones and Plassmann’s original paper demonstrates
good parallel performance for O(1)-degree graphs using the random ordering heuristic R.

60

Unfortunately, in practice, R tends to produce colorings of relatively poor quality relative
to the other traditional ordering heuristics. But the other traditional ordering heuristics are
all vulnerable to adversarial graph inputs which cause JP to operate in Ω(V) time and thus
exhibit poor parallel scalability. Consequently, there is need for new ordering heuristics for
JP that can achieve both good coloring quality and guaranteed fast parallel performance.

Figure 3-2 gives the pseudocode for JP, which colors a given graph G = (V,E, ρ) in
the order specified by the priority function ρ. The algorithm begins in lines 9 and 10
by partitioning the neighbors of each vertex into predecessors — vertices with larger
priorities — and successors — vertices with smaller priorities. JP uses the recursive
JP-Color helper function to color a vertex v ∈ V once all vertices in v.pred have been
colored. Initially, lines 12–14 in JP scan the vertices of V to find every vertex that has no
predecessors and colors each one using JP-Color. Within a call to JP-Color(v), line 15
calls Get-Color to assign a color to v, and the loop on lines 16–18 broadcasts in parallel
to all of v’s successors the fact that v is colored. For each successor u ∈ v.succ, line 17 tests
whether all of u’s predecessors have already been colored, and if so, line 18 recursively calls
JP-Color on u.

Jones and Plassmann analyze the performance of JP-R for O(1)-degree graphs. Al-
though they do not discuss using the naive FF ordering heuristic, it is apparent that there
exist adversarial input orderings for which their algorithm would fail to scale. For example,
if the graph G = (V,E) is simply a chain of vertices and the input order of V corresponds to
their in order in the chain, JP-FF exhibits no parallelism. Jones and Plassmann show that
a random ordering produced by R, however, allows the algorithm to run in O(lg V/lg lg V)
expected time on this chain graph — and on any O(1)-degree graph, for that matter. Sec-
tion 3.3 of this chapter extends their analysis of JP-R to arbitrary-degree graphs.

Although JP-R scales well in theory, as well as in practice, when it comes to coloring
quality, R is one of the weaker ordering heuristics, as we have noted. Of the other heuristics,
JP-LF and JP-SL suffer from the same problem as FF, namely, it is possible to construct
adversarial graphs that cause them to scale poorly, which we explore in Section 3.4. The
ID heuristic tends to produce worse colorings than SL, and since Greedy-ID also runs
more slowly than Greedy-SL, we have dropped ID from consideration. Moreover, because
of our motivation to use the coloring algorithm for online chromatic scheduling, where the
performance of the coloring algorithm cannot be sacrificed for marginal improvements in
the quality of coloring, we also have dropped the SD heuristic. Since SD produces the
best-quality colorings of the six ordering heuristics, however, we see parallelizing it as an
interesting opportunity for future research.

Consequently, this chapter focuses on alternatives to the LF and SL ordering heuristics
that provide comparable coloring quality while exhibiting the same resilience to adversarial
graphs that R shows compared with FF. Specifically, we introduce two new randomized
ordering heuristics — “largest log-degree first” (LLF) and “smallest log-degree last” (SLL)
— which resemble LF and SL, respectively, but which scale provably well when used with JP.
We demonstrate that JP-LLF and JP-SLL provide good parallel scalability in theory and
practice and are resilient to adversarial graphs.

Table 3.1 summarizes our empirical findings. The data suggest that the LLF and SLL
ordering heuristics produce colorings that are nearly as good as LF and SL, respectively.
With respect to performance, our implementations of JP-LLF and JP-SLL actually operate
slightly faster on 1 processor than our highly tuned implementations of Greedy-LF and
Greedy-SL, respectively, and they scale comparably to JP-R.

61

H H ′
CH ′

CH

Greedy-H

JP-H ′1

JP-H ′1
JP-H ′12

FF R 1.011 0.417 7.039
LF LLF 1.021 1.058 7.980
SL SLL 1.037 1.092 6.082

Table 3.1: Summary of ordering-heuristic behavior on a suite of 8 real-world graphs and 10
synthetic graphs when run on a machine with 12 Intel Xeon X5650 processor cores. Column
H lists three serial heuristics traditionally used for Greedy, and column H ′ lists parallel
heuristics for JP, of which LLF and SLL are introduced in this chapter. Column “CH ′/CH ”
shows the geometric mean of the ratio of the number of colors the parallel heuristic uses
compared to the serial heuristic. Column “Greedy-H /JP-H ′1” shows the geometric mean
of the ratio of serial running times of Greedy with the serial heuristic versus JP with the
analogous parallel heuristic when run on 1 processor. Column “JP-H ′1/JP-H ′12” shows the
geometric mean of the speedup of each parallel heuristic going from 1 processor to 12.

Outline

The remainder of this chapter is organized as follows. Section 3.2 reviews the asyn-
chronous parallel greedy coloring algorithm first proposed by Jones and Plassmann [179].
We show how JP can be extended to handle arbitrary-degree graphs and arbitrary pri-
ority functions. Using work-span analysis [77, Ch. 27], we show that JP colors a ∆-
degree graph G = (V,E, ρ) in Θ(V + E) work and O(L lg ∆ + lg V) span, where L is
the length of the longest path in G along which the priority function ρ decreases. Sec-
tion 3.3 analyzes the performance of JP-R, showing that it operates using linear work and
O(lg V +lg ∆ ·min{

√
E,∆+lg ∆ lg V/lg lg V }) span. Section 3.4 shows that there exist “ad-

versarial” graphs for which JP-LF and JP-SL exhibit limited parallel speedup. Section 3.5
analyzes the LLF and SLL ordering heuristics. We show that, given a ∆-degree graph
G, JP-LLF colors G = (V,E, ρ) using Θ(V + E) work and O(lg V + lg ∆(min{∆,

√
E} +

lg2∆ lg V/lg lg V)) expected span, while JP-SLL colors G = (V,E, ρ) using same work and
an additive Θ(lg ∆ lg V) additional span. Section 3.6 evaluates the performance of JP-LLF
and JP-SLL on a suite of 8 real-world and 10 synthetic benchmark graphs. Section 3.7 dis-
cusses the software engineering techniques used in our implementation of JP-R, JP-LLF,
and JP-SLL. Section 3.8 introduces an algorithm for computing the SD ordering heuristic
using Θ(V + E) work. Section 3.9 discusses related work, and Section 3.10 offers some
concluding remarks. The Appendix (Section 3.11) presents some experimental results for
serial ordering heuristics.

3.2 The Jones-Plassmann algorithm

This section reviews JP, the parallel greedy coloring algorithm introduced by Jones and
Plassmann [179], whose pseudocode is given in Figure 3-2. We first review the dag model
of dynamic multithreading and work-span analysis [77, Ch. 27]. Then we describe how JP
can be modified from Jones and Plassmann’s original algorithm to handle arbitrary-degree
graphs and arbitrary priority functions. We analyze JP with an arbitrary priority function
ρ and show that on a ∆-degree graph G = (V,E, ρ), JP runs in Θ(V + E) work and
O(L lg ∆ + lg V) span, where L is the longest path in the “priority dag” of G induced by ρ.

62

The dag model of dynamic multithreading

We shall analyze the parallel performance of JP using the dag model of dynamic multi-
threading introduced by Blumofe and Leiserson [40, 41] and described in tutorial fashion
in [77, Ch. 27]. The dag model views the executed computation resulting from running a
parallel algorithm as a computation dag A, in which each vertex denotes an instruction,
and edges denote parallel control dependencies between instructions. Although the model
encompasses other parallel control constructs, for our purposes, we need only understand
that the execution of a parallel for loop can be modeled as a balanced binary tree of
vertices in the dag, where the leaves of the tree denote the initial instructions of the loop
iterations.

To analyze the performance of a dynamic multithreading program theoretically, we as-
sume that the program executes on an ideal parallel computer : each instruction executes
in unit time, the computer has ample memory bandwidth, and the computer supports con-
current writes and read-modify-write instructions [151] without incurring overheads due to
contention.

Given a dynamic multithreading program whose execution is modeled as a dag A, we
can bound the parallel running time TP (A) of the computation as follows. The work T1(A)
is the number of strands in the computation dag A. The span T∞(A) is the length of the
longest path in A. A deterministic algorithm with work T1 and span T∞ can always be
executed on P processors in time TP satisfying max{T1/P, T∞} ≤ Tp ≤ T1/P + T∞ [49,
99, 40, 41, 137]. The speedup of an algorithm on P processors is T1/TP , which is at most
P in theory, since TP ≥ T∞. The parallelism T1/T∞ is the greatest theoretical speedup
possible for any number P of processors.

Analysis of JP

To analyze the performance of JP, it is convenient to think of the algorithm as coloring
the vertices in the partial order of a “priority dag,” similar to the priority dag described
by Blelloch et al. [34]. Specifically, on a vertex-weighted graph G = (V,E, ρ), the priority
function ρ induces a priority dag Gρ = (V,Eρ), where Eρ = {(u, v) ∈ V × V : (u, v) ∈
E and ρ(u) > ρ(v)}. Notice that Gρ is a dag, because ρ is an injective function and thus
induces a total order on the vertices V . We shall bound the span of JP running on a graph
G in terms of the depth of Gρ, that is, the length of the longest path through Gρ. We
analyze JP in two steps.

First, we bound the work and span of calls during the execution of JP to the helper
routine Get-Color(v), which returns the minimum color not assigned to any vertex u ∈
v.pred .

Lemma 12 The helper routine Get-Color, shown in Figure 3-2, can be implemented so
that during the execution of JP on a graph G = (V,E, ρ), a call to Get-Color(v) for a
vertex v ∈ V costs Θ(k) work and Θ(lg k) span, where k = |v.pred |.
Proof. Implement the set C in Get-Color as an array whose ith entry initially stores
the value i. The ith element from this array can be removed by setting the ith element
to ∞. With this implementation, lines 20–21 execute in Θ(k) work and Θ(lg k) span. The
min operation on line 22 can be implemented as a parallel minimum reduction in the same
bounds.

Second, we show that JP colors a graph G = (V,E, ρ) using work Θ(V + E) and span
linear in the depth of the priority dag Gρ.

63

Theorem 13 Given a ∆-degree graph G = (V,E, ρ) for some priority function ρ, let Gρ
be the priority dag induced on G by ρ, and let L be the depth of Gρ. Then JP(G) runs in
Θ(V + E) work and O(L lg ∆ + lg V) span.

Proof. Let us first bound the work and span of JP-Color excluding any recursive
calls. For a single call to JP-Color on a vertex v ∈ V , Lemma 12 shows that line 15 takes
Θ(deg(v)) work and Θ(lg(deg(v))) span. The Join operation on line 17 can be implemented
as an atomic decrement-and-fetch operation [151] on the specified counter. Hence, excluding
the recursive call, the loop on lines 16–18 performs Θ(deg(v)) work and Θ(lg(deg(v))) span
to decrement the counters of all successors of v.

Because JP-Color is called once per vertex, the total work that JP spends in calls to
JP-Color is Θ(V +E). Furthermore, the span of JP-Color is the length of any path of
vertices in Gρ, which is at most L, times Θ(lg ∆). Finally, the loop on lines 8–11 executes
in Θ(V +E) work and Θ(lg V + lg ∆) span, and the parallel loop on lines 12–14, excluding
the call to JP-Color, executes in Θ(V + E) work and Θ(lg V) span.

3.3 JP with random ordering

This section bounds the depth of a priority dag Gρ induced on a ∆-degree graph G =
(V,E, ρ) by a random priority function ρ in R. We show that the expected depth of Gρ
is O(min{

√
E,∆ + lg ∆ lg V/lg lg V }). Combined with Theorem 13, this bound implies

that the expected span of JP-R is O(lg V + lg ∆ · min{
√
E,∆ + lg ∆ lg V/lg lg V }). This

bound extends Jones and Plassmann’s O(lg V/lg lg V) bound for the depth of Gρ when
∆ = Θ(1) [179].

To bound the depth of a priority dag Gρ induced on a graph G by ρ ∈ R, let us start
by bounding the number of length-k paths in Gρ. Each path in Gρ corresponds to a unique
simple path in G, that is, a path in which each vertex in G appears at most once. The
following lemma bounds the number of length-k simple paths in G.

Lemma 14 The number of length-k simple paths in any ∆-degree graph G = (V,E) is at
most |V | ·min{∆k−1, (2|E|/(k − 1))k−1}.

Proof. Consider selecting a length-k simple path p = 〈v1, . . . , vk〉 in G. There are |V |
choices for v1, and for all i ∈ {1, . . . , k − 1}, given a choice of 〈v1, . . . , vi〉, there are at
most deg(vi) choices for vi+1. Hence there are at most J = |V | ·

∏k−1
i=1 deg(vi) simple

paths in G of length k. Let Vk ⊆ V denote some set of k − 1 vertices in V , and let
δ = maxVk−1

{
∑

v∈Vk−1
deg(v)/(k − 1)} be the maximum average degree of any such set.

Then we have J ≤ |V | · δk−1.

The proof follows from two upper bounds on δ. First, because deg(v) ≤ ∆ for all v ∈ V ,
we have δ ≤ ∆. Second, for all Vk−1 ⊆ V , we have

∑
v∈Vk−1

deg(v) ≤
∑

v∈V deg(v) = 2|E|
by the handshaking lemma [77, p. 1172–3], and thus δ ≤ 2|E|/(k − 1).

Intuitively, the bound on the expected depth of Gρ follows by arguing that although the
number of simple length-k paths in a graph G might be exponential in k, for sufficiently large
k, the probability is tiny that any such path is a path in Gρ. To formalize this argument,
we make use of the following technical lemma.

64

Lemma 15 Define the function g(α, β) for α, β > 1 as

g(α, β) = e2 lnα

lnβ
ln

(
e
β lnα

α lnβ

)
.

Then for all β ≥ e2, α ≥ 2, and β ≥ α, we have g(α, β) ≥ 1.

Proof. We consider the cases when α ≥ e2 and when α < e2 separately.
When α > e2, the partial derivative of g(α, β) with respect to β is

∂g(α, β)

∂β
= e2 lnα

β ln2β
ln

(
α

e2

lnβ

lnα

)
≥ 0 ,

since α lnβ/e2 lnα ≥ 1 when α ≥ e2 and β ≥ α. Thus, g(α, β) is a nondecreasing function
in its second argument when α ≥ e2 and β ≥ α. Since we have

g(α, α) = e2(lnα/lnα) ln(e(α lnα)/(α lnα))

≥ 1 ,

it follows that g(α, β) ≥ 1 for α ≥ e2 and β ≥ α.
When e2 > α ≥ 2, we make use of the fact that 2β/e lnβ >

√
β for all β > e2:

g(α, β) ≥ (e2 ln 2/lnβ) ln(2β/(e lnβ))

≥ (e2 ln 2/lnβ) ln
(√

β
)

≥ (e2 ln 2 lnβ)/(2 lnβ)

≥ 1 .

The following theorem applies Lemmas 14 and 15 to establish the bound on the depth
of Gρ.

Theorem 16 Let G = (V,E) be a ∆-degree graph, let n = |V | and m = |E|, and let Gρ be
a priority dag induced on G by a random priority function ρ ∈ R. For any constant ε > 0
and sufficiently large n, with probability at most n−ε, there exists a directed path of length
e2 ·min{∆,

√
m}+ (1 + ε) min{e2 ln ∆ lnn/ln lnn, lnn} in Gρ.

Proof. Let p = 〈v1, . . . , vk〉 be a length-k simple path in G. Because ρ is a random priority
function, ρ induces each possible permutation among {v1, . . . , vk} with equal probability. If
p is a directed path in Gρ, then we must have that ρ(v1) < ρ(v2) < · · · < ρ(vk). Hence, p is
a length-k path in Gρ with probability at most 1/k!. If J is the number of length-k simple
paths in G, then by the union bound, the probability that a length-k directed path exists
in Gρ is at most J/k!, which is at most J(e/k)k by Stirling’s approximation [77, p. 57].

We consider cases when ∆ < lnn and ∆ ≥ lnn separately. First, suppose that ∆ < lnn.
By Lemma 14, the number of length-k simple paths in G is at most n∆k−1 ≤ n∆k. By
the union bound, the probability that a length-k path exists in Gρ is at most n(e∆/k)k.
We assume, without loss of generality, that ∆ > 2, since the theorem holds for O(1)-degree
graphs as a result of [179].

65

For ∆ ≥ 2, observe that, by Lemma 15, the function g(α, β) = e2(lnα/lnβ) ln(β lnα/α lnβ)
is at least 1 for all α ≥ 2 and β ≥ e2. Letting α = ∆, β = lnn, and k = e2(∆ + (1 +
ε) ln ∆ lnn/ln lnn), we conclude that

n(e∆/k)k = n · exp(−k ln(k/e∆))

≤ n · exp

(
−e2(1 + ε) lnn

ln ∆

ln lnn
ln

(
e

lnn ln ∆

∆ ln lnn

))
= n · exp(−(1 + ε)(lnn) · g(∆, lnn))

≤ ne−(1+ε) lnn

= n−ε .

Next, given ∆ ≥ lnn, consider the cases when ∆ <
√
m and ∆ ≥

√
m, separately.

When ∆ <
√
m, letting k = e2∆ + (1 + ε) lnn, the theorem follows from the facts that

k ≥ (1 + ε) lnn and k ≥ e2∆. When ∆ ≥
√
m, let k = e2√m+ (1 + ε) lnn. By Lemma 14,

the number of length-k simple paths is at most n(2m/(k−1))k−1 ≤ n(4m/k)k, and thus the
probability that a length-k path exists in Gρ is at most n(4em/k2)k. The theorem follows
from the facts that k ≥ (1 + ε) lnn and k2 ≥ e4m.

Corollary 17 Given a graph G = (V,E, ρ), where ρ ∈ R is a random priority function, the
expected depth of the priority dag Gρ is O(min{

√
E,∆ + lg ∆ lg V/lg lg V }), and thus JP-R

colors all vertices of G with O(lg V + lg ∆ ·min{
√
E,∆ + lg ∆ lg V/lg lg V }) expected span.

Proof. Theorems 13 and 16 imply the corollary.

3.4 The LF and SL heuristics

This section shows that the largest-first (LF) and smallest-last (SL) ordering heuristics can
inhibit parallel speedup when used by JP. We examine a “clique-chain” graph and show
that JP-LF incurs Ω(∆2) span to color a ∆-degree clique-chain graph G = (V,E), whereas
JP-R colors G incurring only O(∆ lg ∆ + lg2∆ lg V/lg lg V) expected span. We formally
review the SL ordering heuristic and observe that this formulation of SL means that JP-SL
requires Ω(V) span to color a path graph G = (V,E).

Tables 3.2 and 3.3 summarize the performance of FF, LF and SL on a suite of 8 real-
world and 10 synthetic benchmark graphs. The number of edges, ratio of edges to vertices
and maximum degree of each benchmark graph is given in Table 3.5.

The LF ordering heuristic

The LF ordering heuristic colors the vertices of a graph G = (V,E, ρ) for some ρ in LF
in order of decreasing degree. Formally, ρ ∈ LF is defined for a vertex v ∈ V as ρ(v) =
〈deg(V), ρR(v)〉, where ρR is randomly chosen from R.

Although LF has been used in parallel greedy graph-coloring algorithms in the past [4,
129], Figure 3-3 illustrates a ∆-degree “clique-chain” graph G = (V,E) for which JP-LF
incurs Ω(∆2) span to color, but JP-R colors with only O(∆ lg ∆+lg2∆ lg V/lg lg V) expected
span. Conceptually, the clique-chain graph comprises a set of cliques of increasing size
that are connected in a “chain” such that JP-LF is forced to color these cliques sequentially
from largest to smallest. Figure 3-3 illustrates a ∆-degree clique-chain graph G = (V,E),

66

Greedy JP

Graph H CH TS T1 T12 TS/T1 T1/T12

com-orkut FF 175 2.23 4.16 0.817 0.54 5.09
LF 87 3.54 6.43 1.067 0.55 6.02
SL 83 10.59 12.94 8.264 0.82 1.57

liveJournal1 FF 352 0.89 1.69 0.275 0.52 6.15
LF 323 2.34 2.89 0.365 0.81 7.91
SL 322 4.69 4.76 2.799 0.98 1.70

europe-osm FF 5 1.32 ∞ ∞ ∞ ∞
LF 4 17.15 5.16 0.587 3.33 8.79
SL 3 19.87 ∞ ∞ ∞ ∞

cit-Patents FF 17 0.50 0.99 0.152 0.50 6.47
LF 14 2.00 1.52 0.211 1.31 7.22
SL 13 3.21 3.05 1.579 1.05 1.93

as-skitter FF 103 0.24 0.55 0.109 0.45 5.00
LF 71 2.43 0.69 0.133 3.51 5.21
SL 70 2.79 1.19 0.733 2.35 1.62

wiki-Talk FF 102 0.09 0.23 0.046 0.38 4.99
LF 72 0.49 0.37 0.073 1.30 5.12
SL 56 0.61 0.57 0.293 1.08 1.93

web-Google FF 44 0.09 0.20 0.036 0.47 5.62
LF 45 0.25 0.29 0.042 0.88 6.85
SL 44 0.47 0.53 0.278 0.89 1.92

com-youtube FF 57 0.06 0.16 0.027 0.39 6.07
LF 32 0.25 0.24 0.040 1.03 6.12
SL 28 0.35 0.36 0.181 0.98 1.99

Table 3.2: Performance measurements for a set of real-world graphs taken from Stanford’s
SNAP project [220]. The column heading H denotes that the priority function used for the
experiment in a particular row was produced by the ordering heuristic listed in the column.
The average number of colors used by the corresponding ordering heuristic and graph is
CH . The time in seconds of Greedy, JP with 1 worker and with 12 workers is given by
TS , T1 and T12, respectively, where a value of ∞ indicates that the program crashed due to
excessive stack usage. Details of the experimental setup and graph suite can be found in
Section 3.6.

where 3 evenly divides ∆. This clique-chain graph contains a sequence of cliques K =
{K1,K4, . . . ,K∆−2} of increasing size, each pair of which is separated by two additional
vertices forming a linear chain. Specifically, for r ∈ {1, 4, . . . ,∆ − 2}, each vertex u ∈ Kr

is connected to each vertex u ∈ Kr+3 by a path 〈u, xr+1, xr+2, v〉 for distinct vertices
xr+1, xr+2 ∈ V . Additional vertices, shown above the chain in Figure 3-3, ensure that the
degree of each vertex in Kr is r+ 2, and the degrees of the vertices xr+1 and xr+2 are r+ 3
and r + 4, respectively. Clique-chain graphs of other degrees are structured similarly.

Theorem 18 For any ∆ > 0, there exists a ∆-degree graph G = (V,E) such that JP-LF

67

Greedy JP

Graph H CH TS T1 T12 TS/T1 T1/T12

constant1M FF 33 0.90 1.70 0.230 0.53 7.40
LF 32 1.16 2.96 0.386 0.39 7.68
SL 34 2.96 5.09 2.023 0.58 2.52

constant500K FF 52 0.74 1.26 0.286 0.59 4.42
LF 52 0.84 2.55 0.444 0.33 5.73
SL 53 1.97 3.50 1.435 0.56 2.44

graph500-5M FF 220 1.83 2.86 0.560 0.64 5.11
LF 159 3.69 3.99 0.649 0.92 6.15
SL 158 8.43 9.45 5.576 0.89 1.69

graph500-2M FF 206 0.52 0.98 0.208 0.53 4.72
LF 153 0.98 1.34 0.221 0.73 6.06
SL 153 2.22 2.72 1.559 0.81 1.75

rMat-ER-2M FF 12 0.47 1.11 0.169 0.42 6.60
LF 11 1.07 1.72 0.204 0.62 8.45
SL 11 2.22 3.07 1.362 0.72 2.25

rMat-G-2M FF 27 0.48 0.88 0.130 0.55 6.74
LF 15 1.18 1.42 0.200 0.83 7.09
SL 15 2.59 3.09 1.712 0.84 1.81

rMat-B-2M FF 105 0.50 0.84 0.151 0.60 5.53
LF 67 1.00 1.28 0.191 0.79 6.68
SL 67 2.41 2.84 1.691 0.85 1.68

big3dgrid FF 4 0.41 1.68 0.173 0.24 9.69
LF 7 4.07 1.53 0.198 2.66 7.72
SL 7 4.77 2.60 1.074 1.83 2.42

cliqueChain400 FF 399 0.05 0.09 0.224 0.51 0.40
LF 399 0.05 ∞ ∞ ∞ ∞
SL 399 0.08 0.14 0.265 0.55 0.54

path-10M FF 2 0.18 ∞ ∞ ∞ ∞
LF 3 2.49 0.76 0.092 3.26 8.27
SL 2 2.58 ∞ ∞ ∞ ∞

Table 3.3: Performance measurements for five classes of synthetically generated graphs:
constant degree, rMat, 3D grid, clique chain and path. The column headings are equivalent
to those in Table 3.2.

colors G in Ω(∆2) span and JP-R colors G in O(∆ lg ∆ + lg2∆ lg V/lg lg V) expected span.

Proof. Assume without loss of generality that 3 evenly divides ∆ and that G is a clique-
chain graph. The span of JP-R follows from Corollary 3.3. Because JP-LF trivially requires
Ω(1) span to process each vertex in G, the span of JP-LF on G can be bounded by showing
that the length of the longest path p in the priority dag Gρ induced on G by any priority
function ρ in LF is ∆2/6 + ∆/2 + 2. Because LF assigns higher priority to higher-degree

68

KΔ–2

Δ

xΔ–3

Δ–1

xΔ–4

Δ–2

KΔ–5

Δ–3

xΔ–6

Δ– 4

x4

4 3

K1

Figure 3-3: A ∆-degree clique-chain graph G, which Theorem 18 shows is adversarial for
JP-LF. This graph contains Θ(∆2) vertices arranged as a chain of cliques. Each hexagon
labeled Kr represents a clique of r vertices, and circles represent individual vertices. A thick
edge between an individual vertex and a clique indicates that the vertex is connected to
every vertex within the clique. A label below an individual vertex indicates the degree of
the associated vertex, and a label below a clique indicates the degree of every vertex within
that clique.

vertices, p starts at some vertex in K∆−2, which has degree ∆, and passes through the ∆−2
vertices in K∆−2 followed by x∆−3 and x∆−4.3 The remainder of p is a longest path through
the clique-chain graph G′ of degree ∆−3 in the remaining graph G−K∆−2−{x∆−3, x∆−4},
which has a longest path p′ of length |p′| = (∆− 3)2/6 + (∆− 3)/2 + 2 by induction. The
length of p is thus ∆ + |p′| = ∆2/6 + ∆/2 + 2.

The SL ordering heuristic

We focus on the formulation of the SL ordering heuristic due to Allwright et al. [4], because
our experiments indicate that it gives colorings using fewer colors than other formula-
tions [246].

Given a graph G = (V,E), the SL ordering heuristic produces a priority function ρ
via an iterative algorithm that assigns priorities to the vertices V in rounds to induce an
ordering on V . For i ≥ 0, let Gi = (Vi, Ei) denote the subgraph of G remaining at the
start of round i, and let δi denote an upper bound on the smallest degree of any vertex
v ∈ Vi. Assume that δ0 = 1. At the start of round i, remove all vertices v ∈ Vi such
that deg(v) ≤ max{δi−1,minv∈Vi{deg(v)}}. For a vertex v removed in round i, a priority
function ρ ∈ SL is defined as ρ(v) = 〈i, ρR(v)〉 where ρR ∈ R is a random priority function.

The following theorem shows that there exist graphs for which JP-SL incurs a large
span, whereas JP-R incurs only a small span.

Theorem 19 There exists a class of graphs such that for any G = (V,E, ρ) in the class and
for any priority function ρ ∈ SL, JP-SL incurs Ω(V) span and JP-R incurs O(lg V/lg lg V)
span.

Proof. Consider the algorithm to compute the priority function ρ for all vertices in a
path graph G. By induction over the rounds, the graph Gi at the start of round i is a
path with |V | − 2i + 2 vertices, and in round i the 2 vertices at the endpoints of Gi will
be removed. Hence d|V |/2e rounds are required to assign priorities for all vertices in G. A

3Notice that it does not matter how ties are broken in the priority function.

69

similar argument shows that the resulting priority dag Gρ contains a path of length |V |/2
along which the priorities strictly decrease. JP-SL trivially incurs Ω(1) span through each
vertex in the longest path in Gρ. Since there are Θ(V) total vertices along the path and by
Corollary 3.3 with ∆ = Θ(1), the theorem follows.

We shall see in Section 3.5 that it is possible to achieve coloring quality comparable to
LF and SL, but with guaranteed parallel performance comparable to JP-R.

3.5 Log ordering heuristics

This section describes the largest-log-degree-first (LLF) and smallest-log-degree-last (SLL)
ordering heuristics. Given a ∆-degree graph G, we show that the expected depth of
the priority dag Gρ induced on G by a priority function ρ ∈ LLF is O(min{∆,

√
E} +

lg2∆ lg V/lg lg V). The same bound applies to the depth of a priority dag Gρ induced on a
graph G by a priority function ρ ∈ SLL, though O(lg ∆ lg V) additional span is required to
calculate ρ using the method given in Figure 3-4. Combined with Theorem 13, these bounds
imply that the expected span of JP-LLF is O(lg V + lg ∆(min{∆,

√
E}+ lg2∆ lg V/lg lg V))

and the expected span of JP-SLL is O(lg ∆ lg V + lg ∆(min{∆,
√
E}+ lg2∆ lg V/lg lg V)).

The LLF ordering heuristic

The LLF ordering heuristic orders the vertices in decreasing order by the logarithm of
their degree. More precisely, given a graph G = (V,E, ρ) for some ρ ∈ LLF, the priority
of each v ∈ V is equal to ρ(v) = 〈dlg(deg(v))e, ρR(v)〉, where ρR ∈ R is a random priority
function and lg x denotes log2 x. 4 For a given graph G, the following theorem bounds the
depth of the priority dag Gρ induced by ρ ∈ LLF.

Theorem 20 Let G = (V,E) be a ∆-degree graph, and let Gρ be the priority dag induced
on G by a priority function ρ ∈ LLF. The expected length of the longest directed path in Gρ
is O(min{∆,

√
E}+ lg2∆ lg V/lg lg V).

Proof. Consider a length-k path p = 〈v1, . . . , vk〉 in Gρ. Let G(`) ⊆ Gρ be the subdag
of Gρ induced by those vertices v ∈ V for which ρ(v) = dlg(deg(v))e = `. Suppose that
vi ∈ G(`) for some vi ∈ p. Since dlg(deg(vi−1))e ≥ dlg(deg(vi))e for all i > 1, we have
vi−1 ∈ G(`′) for some `′ ≥ `. We can therefore decompose p into a sequence of paths
p =

〈
pdlg ∆e, . . . , p0

〉
such that each subpath p` ∈ p is a path through G(`). By definition

of LLF, the subdag G(`) is a dag induced on a graph with degree 2` by a random priority
function.

By Corollary 3.3, the expected length of p` is O(2` + ` lg V/lg lg V). Linearity of expec-

4The theoretical results in this section assume only that the base b of the logarithm is a constant. In
practice, however, it is possible that the choice of b could have impact on the coloring quality or runtime of
JP-LLF. We studied this trade-off and found that there is only a minor dependence on b. In general, the
coloring quality and runtime of JP-LLF smoothly transitions from the behavior of JP-LF for small b and
the behavior of JP-R for large b, sweeping out a Pareto-efficient frontier of reasonable choices. We chose
b = 2 for our experiments, because log2 x can be calculated conveniently by native instructions on modern
architectures.

70

tation therefore implies that

E[|p|] =

dlg ∆e∑
`=0

O
(

2` + ` lg V/lg lg V
)

= O
(
∆ + lg2∆ lg V/lg lg V

)
.

To establish the
√
E bound, observe that at most E/2` vertices have degree at least 2`.

Consequently, for ` > lg
√
E, the depth of G(`) can be at most E/2`. Hence we have

E[|p|] ≤
dlg
√
Ee∑

`=0

O
(

2`
)

+
∞∑

`=dlg
√
Ee
E/2` +

dlg ∆e∑
`=0

O(` lg V/lg lg V)

= O
(√

E + lg2∆ lg V/lg lg V
)
.

Corollary 21 Given a graph G = (V,E, ρ) for some ρ ∈ LLF, JP-LLF colors all vertices
in G with expected span O(lg V + lg ∆(min{

√
E,∆}+ lg2∆ lg V/lg lg V)).

Proof. The corollary follows from Theorem 13.

The SLL ordering heuristic

To understand the SLL ordering heuristic, it is convenient to consider in isolation how to
compute its priority function. The pseudocode in Figure 3-4 for SLL-Assign-Priorities
describes algorithmically how to perform this computation on a given graph G = (V,E).
As Figure 3-4 shows, a priority function ρ ∈ SLL can be computed by iteratively removing
low-degree vertices from G in rounds. The priority of a vertex v ∈ V is the round number
in which v is removed, with ties broken randomly. As with SL, SLL colors the vertices of G
in the reverse order in which they are removed, but SLL-Assign-Priorities determines
when to remove a vertex using a degree bound that grows exponentially. SLL-Assign-
Priorities considers each degree bound for a maximum of r rounds. Effectively, a vertex
is removed from G based on the logarithm of its degree in the remaining graph.

We can formalize the behavior of SLL as follows. Given a graph G, let Gi = (Vi, Ei)
denote the subgraph of G remaining at the start of round i. As Figure 3-4 shows, for
each d ∈ {0, 1, . . . , lg ∆}, SLL-Assign-Priorities executes r rounds in which it removes
vertices v ∈ Vi such that deg(v) ≤ 2d in Gi.

5

For a given graph G, the following theorem bounds the depth of the priority dag Gρ
induced by a priority function ρ ∈ SLL.

Theorem 22 Let G = (V,E) be a ∆-degree graph, and let Gρ be the priority dag induced
on G by a random priority function ρ ∈ SLL. The expected length of the longest directed
path in Gρ is O(min{∆,

√
E}+ lg2∆ lg V/lg lg V).

5As with LLF, the degree cutoff 2d on line 30 of Figure 3-4 could be bd for an arbitrary constant base
b with no harm to the theoretical results. We explored the choice of base empirically, but found that there
was only a minor dependence on b. Generally, JP-SLL smoothly transitions from the behavior of JP-SL for
small b to the behavior of JP-R and for large b. We therefore chose b = 2 for our experiments because of its
implementation simplicity.

71

SLL-Assign-Priorities(G, r)

23 let G = (V,E)
24 i← 1
25 U ← V
26 let ∆ be the degree of G
27 let ρR ∈ R be a random priority function
28 for d← 0 to lg ∆
29 for j ← 1 to r
30 Q← {u ∈ U : |Adj[u] ∩ U | ≤ 2d}
31 parallel for v ∈ Q
32 ρ(v)← 〈i, ρR(v)〉
33 U ← U −Q
34 i← i+ 1
35 return ρ

Figure 3-4: Pseudocode for SLL-Assign-Priorities, which computes a priority function
ρ ∈ SLL for the input graph. The input parameter r denotes the maximum number of times
SLL-Assign-Priorities is permitted to remove vertices of at most a particular degree 2d

on lines 29–34.

Proof. We begin with an argument similar to the proof of Theorem 20. Let p =
〈v1, . . . , vk〉 be a length-k path in Gρ, and let G(`) ⊆ Gρ be the subdag of Gρ induced
by those vertices v ∈ V , where ρ(v) = `. Since lines 29–34 of SLL-Assign-Priorities
remove vertices with degree at most 2d exactly r times for each d ∈ [0, . . . , lg ∆], we have
that bρ(v)/rc = d, and thus the degree of G(`) is at most 2b`/rc. Suppose that vi ∈ G(`) for
some vi ∈ p. Since ρ(vi−1) ≤ ρ(vi) for all i > 1, we have vi−1 ∈ G(`′) for some `′ ≥ `. We
can therefore decompose p into a sequence of paths p =

〈
pdr lg ∆e, . . . , p0

〉
where each p` ∈ p

is a path in G(`). By definition of SLL, the subdag G(`) is a dag induced on a subgraph
with degree at most 2b`/rc by a random priority function.

By Corollary 3.3, the expected length of p` is O(2b`/rc+ b`/rc lg V/lg lg V). Linearity of
expectation therefore implies that

E[|p|] =

dr lg ∆e∑
`=0

O
(

2b`/rc + b`/rc lg V/lg lg V
)

= O
(
∆ + lg2∆ lg V/lg lg V

)
.

Next, because at most E/2b`/rc vertices can have degree at least 2b`/rc, we have for
` > r lg

√
E that the longest path through the subdag G(`) is no longer than E/2b`/rc. We

72

thus conclude that

E[|p|] ≤
dr lg

√
Ee∑

`=0

O
(

2b`/rc
)

+
∞∑

`=dr lg
√
Ee
E/2b`/rc

+

dr lg ∆e∑
`=0

O(b`/rc lg V/lg lg V)

= O
(√

E + lg2∆ lg V/lg lg V
)
.

Corollary 23 Given a graph G = (V,E, ρ) for some ρ ∈ SLL, JP-SLL colors all vertices
in G with expected span O(lg ∆ lg V + lg ∆(min{

√
E,∆}+ lg2∆ lg V/lg lg V)).

Proof. The procedure SLL-Assign-Priorities calls the parallel loop on line 31 O(lg ∆)
times, each of which has expected span O(lg V). The proof then follows from Theorems 13
and 22.

3.6 Empirical evaluation

This section evaluates the LLF and SLL ordering heuristics empirically using a suite of
eight real-world and ten synthetic graphs. We describe the experimental setup used to
evaluate JP-R, JP-LLF, and JP-SLL, and we compare their performance with Greedy-FF,
Greedy-LF, and Greedy-SL. We compare the ordering heuristics in terms of the quality
of the colorings they produce and their execution times. We conclude that LLF and SLL
produce colorings with quality comparable to LF and SL, respectively, and that JP-LLF
and JP-SLL scale well. We also show that the engineering quality of our implementations
appears to be competitive with ColPack [121], a publicly available graph-coloring library.
Our source code and data are available from http://supertech.csail.mit.edu.

Experimental setup

To evaluate the ordering heuristics, we implemented JP using Intel Cilk Plus [171] and
engineered it to use the parallel ordering heuristics R, LLF, and SLL. To compare these
parallel codes against their serial counterparts, we implemented Greedy in C to use the
FF, LF, or SL ordering heuristics. In order to empirically evaluate the potential parallel
performance of the serial ordering heuristics, we also engineered JP to use FF, LF, or SL.
We evaluated our implementations on a dual-socket Intel Xeon X5650 with a total of 12
processor cores operating at 2.67-GHz (hyperthreading disabled); 49 GB of DRAM; 2 12-
MB L3-caches, each shared between 6 cores; and private L2- and L1-caches with 128 KB and
32 KB, respectively. Each measurement was taken as the median of 7 independent trials,
and the averages of those measurements reported in Tables 3.6 and 3.7 were taken across 5
independent random seeds.

These implementations were run on a suite of eight real-world graphs and ten synthetic
graphs. The real-world graphs came from the Large Network Dataset Collection provided
by Stanford’s SNAP project [220]. The synthetic graphs consist of the adversarial graphs

73

http://supertech.csail.mit.edu

Graph |V | a b c d

graph500-5M 5M 0.57 0.19 0.19 0.05
graph500-2M 2M 0.57 0.19 0.19 0.05
rMat-ER-2M 2M 0.25 0.25 0.25 0.25
rMat-G-2M 2M 0.45 0.15 0.15 0.25
rMat-B-2M 2M 0.55 0.15 0.15 0.15

Table 3.4: Parameters for the generation of rMat graphs [65], where a+ b+ c+ d = 1 and
b = c, when the desired graph is undirected. An rMat graph is built by adding |E| edges
independently at random using the following rule: Let k be the number of 1’s in a binary
representation of i. As each edge is added, the probability that the ith vertex vi is selected
as an endpoint is (a+ c)k(b+ d)lgn−k.

Graph |E| |E|/|V | ∆

com-orkut 117.2M 38.1 33,313
liveJournal1 42.9M 8.8 20,333
europe-osm 36.0M 0.7 9
cit-Patents 16.5M 2.7 793
as-skitter 11.1M 1.0 35,455
wiki-Talk 4.7M 1.9 100,029
web-Google 4.3M 4.7 6,332
com-youtube 3.0M 2.6 28,754

constant1M 50.0M 50.0 100
constant500K 50.0M 99.9 200
graph500-5M 49.1M 5.9 121,495
graph500-2M 19.2M 9.2 70,718
rMat-ER-2M 20.0M 9.5 44
rMat-G-2M 20.0M 9.5 938
rMat-B-2M 19.8M 9.4 14,868
big3dgrid 29.8M 3.0 6
cliqueChain400 3.6M 132.4 400
path-10M 10.0M 1.0 2

Table 3.5: Number of edges, ratio of edges to vertices and maximum vertex degree for a
collection of real-world and synthetic graphs, which lie above and below the center line,
respectively.

described in Section 3.4 and a set of graphs from three classes: constant degree, 3D grid,
and “recursive matrix” (rMat) [65, 62]. The adversarial graphs — cliqueChain400 and path-
10M — are described in Figure 3-3 with ∆ = 400 and Theorem 19 with |V | = 10, 000, 000,
respectively. The constant-degree graphs — constant1M and constant500K — have 1M
and 500K vertices and constant degrees of 100 and 200, respectively. These graphs were
generated such that every pair of vertices is equally likely to be connected and every vertex
has the same degree. The graph big3dgrid is a 3-dimensional grid on 10M vertices. The
rMat graphs were generated using the parameters in Table 3.4.

74

Greedy JP

Graph H CH TS H ′ CH ′ T1 T12 TS/T1 T1/T12

com-orkut FF 175 2.23 R 132 4.44 0.817 0.50 5.43
LF 87 3.54 LLF 98 5.74 0.846 0.62 6.79
SL 83 10.59 SLL 84 9.90 1.865 1.07 5.31

liveJournal1 FF 352 0.89 R 330 2.08 0.231 0.43 8.98
LF 323 2.34 LLF 326 2.23 0.286 1.05 7.80
SL 322 4.69 SLL 327 4.03 0.704 1.16 5.73

europe-osm FF 5 1.32 R 5 4.04 0.391 0.33 10.34
LF 4 17.15 LLF 4 4.93 0.473 3.48 10.41
SL 3 19.87 SLL 3 7.28 1.232 2.73 5.91

cit-Patents FF 17 0.50 R 21 1.08 0.163 0.46 6.67
LF 14 2.00 LLF 14 1.46 0.160 1.37 9.11
SL 13 3.21 SLL 14 2.90 0.519 1.11 5.58

as-skitter FF 103 0.24 R 81 0.58 0.114 0.42 5.07
LF 71 2.43 LLF 72 0.63 0.106 3.84 5.99
SL 70 2.79 SLL 71 1.04 0.269 2.67 3.88

wiki-Talk FF 102 0.09 R 85 0.28 0.053 0.31 5.28
LF 72 0.49 LLF 70 0.34 0.050 1.43 6.78
SL 56 0.61 SLL 62 0.55 0.124 1.12 4.43

web-Google FF 44 0.09 R 44 0.21 0.029 0.44 7.44
LF 45 0.25 LLF 44 0.27 0.030 0.94 8.92
SL 44 0.47 SLL 44 0.50 0.093 0.94 5.44

com-youtube FF 57 0.06 R 46 0.18 0.026 0.36 6.86
LF 32 0.25 LLF 33 0.22 0.028 1.11 7.97
SL 28 0.35 SLL 28 0.35 0.073 1.01 4.75

Table 3.6: Performance measurements for a set of real-world graphs taken from Stanford’s
SNAP project [220]. The column heading H denotes that the priority function used for the
experiment in a particular row was produced by the ordering heuristic listed in the column.
The average number of colors used by the corresponding ordering heuristic and graph is
CH . The time in seconds of Greedy, JP with 1 worker and with 12 workers is given by TS ,
T1 and T12, respectively. Details of the experimental setup and graph suite can be found in
Section 3.6.

Coloring quality of R, LLF, and SLL

Tables 3.6 and 3.7 present the coloring quality of the three parallel ordering heuristics R,
LLF, and SLL alongside that of their serial counterparts FF, LF, and SL.

The number of colors used by LLF was comparable to that used by LF on the vast
majority of the 18 graphs. Indeed, LLF produced colorings that were within 2 colors of
LF on all synthetic graphs and all but 2 real-world graphs: com-orkut and liveJournal1.
Similarly, SLL produced colorings that were within 3 colors of SL for all synthetic graphs
and all but 2 real-world graphs: liveJournal1 and wiki-Talk.

The liveJournal1 graph appears to benefit little from the ordering heuristics we con-

75

Greedy JP

Graph H CH TS H ′ CH ′ T1 T12 TS/T1 T1/T12

constant1M FF 33 0.90 R 32 1.93 0.255 0.47 7.55
LF 32 1.16 LLF 32 2.70 0.323 0.43 8.35
SL 34 2.96 SLL 32 4.63 0.610 0.64 7.59

constant500K FF 52 0.74 R 52 1.50 0.190 0.49 7.89
LF 52 0.84 LLF 52 2.01 0.273 0.42 7.34
SL 53 1.97 SLL 52 3.33 0.498 0.59 6.69

graph500-5M FF 220 1.83 R 220 2.99 0.558 0.61 5.35
LF 159 3.69 LLF 160 3.74 0.542 0.99 6.89
SL 158 8.43 SLL 162 7.63 1.056 1.10 7.23

graph500-2M FF 206 0.52 R 208 1.01 0.212 0.51 4.77
LF 153 0.98 LLF 154 1.24 0.151 0.79 8.19
SL 153 2.22 SLL 156 2.25 0.324 0.99 6.94

rMat-ER-2M FF 12 0.47 R 12 1.25 0.149 0.37 8.40
LF 11 1.07 LLF 12 1.63 0.198 0.66 8.25
SL 11 2.22 SLL 11 3.13 0.506 0.71 6.18

rMat-G-2M FF 27 0.48 R 27 0.91 0.144 0.53 6.33
LF 15 1.18 LLF 17 1.34 0.204 0.88 6.54
SL 15 2.59 SLL 15 2.75 0.432 0.94 6.36

rMat-B-2M FF 105 0.50 R 105 0.86 0.149 0.58 5.78
LF 67 1.00 LLF 68 1.18 0.149 0.85 7.94
SL 67 2.41 SLL 68 2.38 0.376 1.01 6.31

big3dgrid FF 4 0.41 R 7 1.66 0.178 0.25 9.31
LF 7 4.07 LLF 7 1.89 0.216 2.15 8.76
SL 7 4.77 SLL 7 2.63 0.307 1.81 8.57

cliqueChain400 FF 399 0.05 R 399 0.09 0.012 0.50 7.77
LF 399 0.05 LLF 399 0.12 0.015 0.41 7.70
SL 399 0.08 SLL 399 0.16 0.024 0.47 6.70

path-10M FF 2 0.18 R 3 0.85 0.074 0.21 11.54
LF 3 2.49 LLF 3 0.98 0.083 2.54 11.87
SL 2 2.58 SLL 3 1.36 0.169 1.90 8.04

Table 3.7: Performance measurements for five classes of synthetically generated graphs:
constant degree, rMat, 3D grid, clique chain and path. The column headings are equivalent
to those in Table 3.6.

sidered. Every heuristic uses more than 300 colors, and the biggest difference between the
number of colors used by any heuristic is less than 10.

The wiki-Talk and com-orkut graphs appear to benefit from ordering heuristics and
illustrate what we believe is a coarse hierarchy of coloring quality in which FF < R <
LLF < LF < SLL < SL. On com-orkut, LLF produced a coloring of size 98, which was
better than the 175 and 132 colors used by FF and R, respectively, but not as good as the
87 colors used by LF. In contrast, SLL nearly matched the superior coloring quality of SL,

76

producing a coloring of size 84. On wiki-Talk, SLL produced a coloring of size 62, which
was better than LF, LLF, R, and FF by a margin of between 8 to 40 colors, but not as
good as SL, which used only 56 colors. These trends appear to exist, in general, for most
of the graphs in the suite.

Scalability of JP-R, JP-LLF, and JP-SLL

The parallel performance of JP was measured by computing the speedup it achieved on 12
cores and by comparing the 1-core runtimes of JP to an optimized serial implementation
of Greedy. These results are summarized in Tables 3.6 and 3.7.

Overall, JP-LLF obtains a geometric-mean speedup — the ratio of the runtime on 1
core to the runtime on 12 cores — of 7.83 on the eight real-world graphs and 8.08 on the ten
synthetic graphs. Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and 7.02 on
the real-world and synthetic graphs, respectively.

Tables 3.6 and 3.7 also include scalability data for JP-FF, JP-LF, and JP-SL. Histori-
cally, JP-LF has been used with mixed success in practical parallel settings [129, 300, 179, 4].
Despite the fact that it offers little in terms of theoretical parallel performance guarantees,
we have measured its parallel performance for our graph suite, and indeed JP-LF scales
reasonably well: JP-LF1/JP-LF12 = 6.8 as compared to JP-LLF1/JP-LLF12 = 8.0 in ge-
ometric mean, not including cliqueChain400, which is omitted since JP-LF crashes due to
excessive stack usage on cliqueChain400. The omission of cliqueChain400 highlights the
dangers of using algorithms without good performance guarantees: it is difficult to know
if the algorithm will behave badly given any particular input. In this respect, JP-FF is
particularly vulnerable to adversarial inputs, as we can see by the fact that it crashes on
europe-osm, which is not even intentionally adversarial. We also see this vulnerability with
JP-SL, as well as generally poor scalability on the entire suite.

To measure the overheads introduced by using a parallel algorithm, the runtime T1

of JP on 1 core was compared with the runtime TS of an optimized implementation of
Greedy. This comparison was performed for each of the three parallel ordering heuristics
we considered: R, LLF, and SLL. The serial runtime of Greedy using FF is 2.5 times
faster than JP-R on 1 core for the eight real-world graphs and 2.3 times faster on the
ten synthetic graphs. We conjecture that Greedy gains its advantage due to the spatial-
locality advantage that results from processing the vertices in the linear order they appear
in the graph representation. JP-LLF and JP-SLL on 1 core, however, are actually faster
than Greedy with LF and SL by 43.3% and 19% on the eight real-world graphs and 6%
and 3% on the whole suite, respectively.

In order to validate that our implementation of Greedy is a credible baseline, we
compared it with a publicly available graph-coloring library, ColPack [121], developed by
Gebremedhin et al. and found that the two implementations appeared to achieve similar
performance. For example, using the SL ordering heuristic, Greedy is 19% faster than
ColPack in geometric-mean across the graph suite, though Greedy is slower on 5 of the
16 graphs and as much 2.22 times slower for as-skitter.

3.7 Implementation techniques

This section describes the techniques we employed to implement JP and Greedy for the
evaluation in Section 3.6. We describe three techniques — join-trees [98], bit-vectors, and
software prefetching — that improve the practical performance of JP. Where applicable,

77

these same techniques were used to optimize the implementation of Greedy. Overall,
applying these techniques yielded a speedup of between 1.6 and 2.9 for JP and a speedup of
between 1.2 and 1.6 for Greedy on the rMat-G-2M, rMat-B-2M, web-Google, and as-skitter
graphs used in Section 3.6.

Join trees for reducing memory contention

Although the theoretical analysis of JP in Section 3.2 does not concern itself with con-
tention, the implementation of JP works to mitigate overheads due to contention. The
pseudocode for JP in Figure 3-2 shows that each vertex u in the graph has an associ-
ated counter u.counter . Line 17 of JP-Color executes a Join operation on u.counter .
Although Section 3.2 describes how Join can treat u.counter as a join counter [76] and
update u.counter using an atomic decrement and fetch operation, the cache-coherence pro-
tocol [277] on the machine serializes such atomic operations, giving rise to potential memory
contention. In particular, memory contention may harm the practical performance of JP
on graphs with large-degree vertices.

Our implementation of JP mitigates overheads due to contention by replacing each join
counter u.counter with a join tree having Θ(|u.pred |) leaves. In particular, each join tree
was sized such that an average of 64 predecessors of u map to each leaf through a hash
function that maps predecessors to random leaves. We found that the join tree reduces T1

for JP by a factor of 1.15 and reduces T12 for JP by between 1.1 and 1.3.

Bit vectors for assigning colors

To color vertices more efficiently, the implementation of JP uses vertex-local bit vectors to
store information about the availability of low-numbered colors. Because JP assigns to each
vertex the lowest-numbered available color, vertices tend to be colored with low-numbered
colors. To take advantage of this observation, we store a 64-bit word per vertex u to track
the colors in the range {1, 2, . . . , 64} that have already been assigned to a neighbor of u.
The bit vector on u.vec is computed as a “self-timed” OR reduction that occurs during
updates on u’s join tree. Effectively, as each predecessor v of u executes Join on u’s join
tree, if color(v) is in {1, 2, . . . , 64}, then v OR’s the word 2color(v)−1 into u.vec. When
Get-Color(u) subsequently executes, Get-Color first scans for the lowest unset bit in
u.vec to find the minimum color in {1, 2, . . . , 64} not assigned to a neighbor of u. Only
when no such color is available does Get-Color(u) scan its predecessors to assign a color
to u.

We discovered that a large fraction of vertices in a graph can be colored efficiently using
this practical optimization. We found that this optimization improved T12 for JP by a
factor of 1.4 to 2.2, and a similar optimization sped up the implementation of Greedy by
a factor of 1.2 to 1.6.

Software prefetching

We used software prefetching to improve the latency of memory accesses in JP. In partic-
ular, JP uses software prefetching to mitigate the latency of the indirect memory access
encountered when accessing the join trees of the successors of a vertex v on line 16 of
JP-Color in Figure 3-2. This optimization improves T12 for JP by a factor of 1.2 to 1.5.

Interestingly, our implementation of Greedy did not appear to benefit from using
software prefetching in a similar context, specifically, to access the predecessors of a vertex

78

Greedy-SD(G)

36 let G = (V,E)
37 for v ∈ V
38 v.adjColors ← ∅
39 v.adjUncolored ← Adj[v]
40 PushOrAddKey(v,Q[0][|v.adjUncolored |])
41 s← 0
42 while s ≥ 0
43 v ← PopOrDelKey(Q[s][maxKeys(Q[s])])
44 v.color ← min({1, 2, . . . , |v.adjUncolored |+ 1} − v.adjColors)
45 for u ∈ v.adjUncolored
46 RemoveOrDelKey(u,Q[|u.adjColors|][|u.adjUncolored |])
47 u.adjColors ← u.adjColors ∪ {v.color}
48 u.adjUncolored ← u.adjUncolored − {v}
49 PushOrAddKey(u,Q[|u.adjColors|][|u.adjUncolored |])
50 s← max{s, |u.adjColors|}
51 while s ≥ 0 and Q[s] == ∅
52 s← s− 1

Figure 3-5: The Greedy-SD algorithm computes a coloring for the input graph G =
(V,E) using the SD heuristic. Each uncolored vertex v ∈ V maintains a set v.adjColors
of colors used by its neighbors and a set v.adjUncolored of uncolored neighbors of v. The
PushOrAddKey method adds a specified key, if necessary, and then adds an element to
that key’s associated set. The PopOrDelKey and RemoveOrDelKey methods remove
an element from a specified key’s associated set, deleting that key if the set becomes empty.
The variable s maintains the maximum saturation degree of G.

on line 4 of Greedy in Figure 3-1. We suspect that because Greedy only reads the
predecessors of a vertex on this line and does not write them, the processor hardware is able
to generate many such reads in parallel, thereby mitigating the latency penalty introduced
by cache misses.

3.8 The SD heuristic

Our experiments with serial heuristics detailed in the Appendix (Section 3.11) indicate that
the SD heuristic tends to provide colorings with higher quality than the other heuristics we
have considered, confirming similar findings by Gebremedhin and Manne [122]. Although
we leave the problem of devising a good parallel algorithm for SD as an open question, we
were able to devise a linear-time serial algorithm for the problem, despite conjectures in
the literature [129, 75] that superlinear time is required. This section briefly describes our
linear-time serial algorithm for SD.

Figure 3-5 gives pseudocode for the Greedy-SD algorithm, which implements the SD
heuristic. Rather than trying to define a priority function for SD, the figure gives the
coloring algorithm Greedy-SD itself, since the calculation of such a priority function would
color the graph as a byproduct. At any moment during the execution of the algorithm,

79

C

Graph FF R LF ID SL SD Spark

com-orkut 175 132 87 86 83 76
liveJournal1 352 330 323 325 322 326
europe-osm 5 5 4 4 3 3
cit-Patents 17 21 14 14 13 12
as-skitter 103 81 71 72 70 70
wiki-Talk 102 85 72 57 56 51
web-Google 44 44 45 45 44 44
com-youtube 57 46 32 28 28 26

constant1M 33 32 32 34 34 26
constant500K 52 52 52 55 53 44
graph500-5M 220 220 159 157 158 147
graph500-2M 206 208 153 152 153 141
rMat-ER-2M 12 12 11 11 11 8
rMat-G-2M 27 27 15 15 15 11
rMat-B-2M 105 105 67 67 67 59
big3dgrid 4 7 7 4 7 5
cliqueChain400 399 399 399 399 399 399
path-10M 2 3 3 2 2 2

Table 3.8: Performance measurements for six serial ordering heuristics used by Greedy,
where measurements for real-world graphs appear above the center line and those for syn-
thetic graphs appear below. The “Spark” column contains bar graphs that pictorially
represent the coloring quality for each of the ordering heuristics. The height of the bar for
the coloring quality CH of ordering heuristic H is proportional to CH . Section 3.6 details
the experimental setup and graph suite used.

the saturation degree of a vertex v as the number |v.adjColors| of distinct colors of
v’s neighbors, and the effective degree of v as |v.adjUncolored |, its degree in the as yet
uncolored graph.

The main loop of Greedy-SD (lines 42–52) first removes a vertex v of maximum sat-
uration degree from Q (line 43) and colors it (line 44). It then updates each uncolored
neighbor u ∈ v.adjUncolored of v (lines 45–50) in three steps. First, it removes u from
Q (line 46). Next, it updates the set u.adjUncolored of u’s effective neighbors — u’s
uncolored neighbors in G — and the set u.adjColors of colors used by u’s neighbors (lines
47–48). Finally, it enqueues u in Q based on u’s updated information (lines 49–50).

The crux of Greedy-SD lies in the operation of the queue data structure Q, which is
organized as an array of saturation tables, each of which supports the three methods
PushOrAddKey, PopOrDelKey, and RemoveOrDelKey described in the caption of
Figure 3-5. A saturation table can support these operations in Θ(1) time and allow its
keys K to be read in Θ(K) time. At the start of each main loop iteration, entry Q[i]
stores the uncolored vertices in the graph with saturation degree i in a saturation table.
The PushOrAddKey, PopOrDelKey, and RemoveOrDelKey methods maintain the
invariant that, for each table Q[i], each key j ∈ Keys(Q[i]) is associated with a nonempty
set of vertices, such that each vertex v ∈ Q[i][j] has saturation degree i and effective degree j.

80

TS

Graph FF R LF ID SL SD Spark

com-orkut 2.23 3.39 3.54 44.13 10.59 46.60
liveJournal1 0.89 2.05 2.34 17.93 4.69 19.75
europe-osm 1.32 13.36 17.15 48.59 19.87 52.73
cit-Patents 0.50 1.62 2.00 9.82 3.21 10.08
as-skitter 0.24 1.70 2.43 9.41 2.79 9.94
wiki-Talk 0.09 0.35 0.49 2.79 0.61 2.90
web-Google 0.09 0.22 0.25 1.68 0.47 1.77
com-youtube 0.06 0.19 0.25 1.50 0.35 1.55

constant1M 0.90 1.13 1.16 16.07 2.96 17.23
constant500K 0.74 0.88 0.84 14.20 1.97 15.51
graph500-5M 1.83 3.14 3.69 25.19 8.43 35.29
graph500-2M 0.52 0.77 0.98 8.09 2.22 11.68
rMat-ER-2M 0.47 0.93 1.07 10.10 2.22 9.13
rMat-G-2M 0.48 0.92 1.18 9.17 2.59 9.07
rMat-B-2M 0.50 0.83 1.00 8.44 2.41 8.64
big3dgrid 0.41 3.34 4.07 13.61 4.77 15.30
cliqueChain400 0.05 0.05 0.05 0.81 0.08 2.06
path-10M 0.18 1.95 2.49 7.34 2.58 7.96

Table 3.9: Performance measurements for six serial ordering heuristics used by Greedy,
where measurements for real-world graphs appear above the center line and those for syn-
thetic graphs appear below. The “Spark” column contains bar graphs that pictorially
represent the serial running time for each of the ordering heuristics. The height of the
bar for the serial running time TS of ordering heuristic H is proportional to the log of TS .
Section 3.6 details the experimental setup and graph suite used.

Theorem 24 Greedy-SD colors a graph G = (V,E) according to the SD ordering heuris-
tic in Θ(V + E) time.

Proof. PushOrAddKey, PopOrDelKey, and RemoveOrDelKey operate in Θ(1)
time, and a given saturation table’s key set K can be read in Θ(K) time. Line 43 can
thus find a vertex v with maximum saturation degree s in Θ(|Keys(Q[s])|) time. Line 44
can color v in Θ(deg(v)) time, and lines 50–52 maintain s in Θ(s) time. Because s +
|Keys(Q[s])| ≤ deg(v), lines 42–52 evaluate v in Θ(deg(v)) time. The handshaking lemma
[77, p. 1172–3] implies the theorem, because each vertex in V is evaluated once.

3.9 Related work

Parallel coloring algorithms have been explored extensively in the distributed computing
domain [5, 229, 179, 131, 132, 201, 200, 15]. These algorithms are evaluated in the message-
passing model, where nodes are allowed unlimited local computation and exchange mes-
sages through a sequence of synchronized rounds. Kuhn [200] and Barenboim and Elkin
[15] independently developed O(∆ + lg∗ n)-round message passing algorithms to compute a
deterministic greedy coloring.

81

Several greedy coloring algorithms have been described in synchronous PRAM models.
Goldberg et al. [131] describe an algorithm for finding a greedy coloring of O(1)-degree
graphs in O(lg n) time in the EREW PRAM model using a linear number of processors.
They observe that their technique can be applied recursively to color ∆-degree graphs in
O(∆ lg ∆ lg n) time. Their strategy incurs Ω(lg ∆(V + E)) (superlinear) work, however.

Catalyurek et al. [62] present the algorithm Iterative, which first speculatively colors
a graph G and then fixes coloring conflicts, that is, corrects the coloring where two adjacent
vertices are assigned the same color. The process of fixing conflicting colors can introduce
new conflicts, though the authors observe empirically that comparatively few iterations
suffice to find a valid coloring. We ran Iterative on our test system and found that
JP-LLF uses 13% fewer colors and takes 19% less time in geometric mean of number of
colors and relative time, respectively, over all graphs in our test suite. Furthermore, we
found that JP-SLL uses 17% fewer colors, but executes in twice the time of Iterative.
We do not know the extent to which the optimizations enjoyed by our algorithms could be
adopted by speculative-coloring algorithms, however, and so it is likely too soon to draw
conclusions about comparisons between the strategies.

3.10 Conclusion

Because of the importance of graph coloring, considerable effort has been invested over the
years to develop ordering heuristics for serial graph-coloring algorithms. For the traditional
“serial” LF and SL ordering heuristics, we have developed “parallel” analogs — the LLF
and SLL heuristics, respectively — which approximate the traditional orderings, generating
colorings of comparable quality while offering provable guarantees on parallel scalability.
The correspondence between serial ordering heuristics and their parallel analogs is fairly
direct for LF and LLF . LLF colors any two vertices whose degrees differ by more than a
factor of 2 in the same order as LF. In this sense, LLF can be viewed as a simple coarsening
of the vertex ordering used by LF. Although SLL is inspired by SL, and both heuristics
tend to color vertices of smaller degree later, the correspondence between SL and SLL is
not as straightforward. We relied on empirical results to determine the degree to which
SLL captures the salient properties of SL.

We had hoped that the coarsening strategy LLF and SLL embody would generalize to
the other serial ordering heuristics, and we are disappointed that we have not yet been
able to devise parallel analogs for the other ordering heuristics, and in particular, for SD.
Because the SD heuristic appears to produce better colorings in practice than all of the
other serial ordering heuristics, SD appears to capture an important phenomenon that the
others miss.

The problem with applying the coarsening strategy to SD stems from the way that SD
is defined. Because SD determines the order to color vertices while serially coloring the
graph itself, it seems difficult to parallelize, and it is not clear how SD might correspond
to a possible parallel analog. Thus, it remains an intriguing open question as to whether
a parallel ordering heuristic exists that captures the same “insights” as SD while offering
provable guarantees on scalability.

82

3.11 Appendix: Performance of serial ordering heuristics

Tables 3.8 and 3.9 summarizes our empirical evaluation of Greedy run on our suite of
real-world and synthetic graphs using the six ordering heuristics from Section 3.1. The
measurements were taken using the same machine and methodology as was used for Tables
3.6 and 3.7. As Tables 3.8 and 3.9 show, we found that, in order, FF, R, LF, SL, and SD
generally produce better colorings at the cost of greater running times. ID was outperformed
in both time and quality by SL. The figure indicates that LF tends to produce better
colorings than FF and R at some performance cost, and SL produces better colorings than
LF at additional cost. We found that SD produces the best colorings overall, at the cost of
a 4.5 geometric-mean slowdown versus SL.

3.12 Acknowledgments

Thanks to Guy Blelloch of Carnegie Mellon University for sharing utility functions from
his Problem Based Benchmark Suite with us [320]. Thanks to Aydın Buluç of Lawrence
Berkeley Laboratory for helping us in our search for collections of large sparse graphs.
Thanks to Mahantesh Halappanavar of Pacific Northwest National Laboratory for providing
us with the code for Iterative [62]. Thanks to Assefaw Gebremedhin for input regarding
the publicly available graph-coloring library ColPack [121]. Thanks to Jack Dennis of
MIT CSAIL for helping us track down early work on parallel sorting and join counters.
Thanks to Jeremy Fineman for helpful discussions on the amortized analysis of SD. Thanks
to Angelina Lee and Justin Zhang of MIT CSAIL and Julian Shun and Harsha Vardhan
Simhadri of Carnegie Mellon University for several helpful discussions.

83

84

Chapter 4

PARAD: A Work-Efficient Parallel
Algorithm for Reverse-Mode
Automatic Differentiation

This chapter presents PARAD the first work-efficient parallel algorithm for performing
reverse-mode automatic differentiation. This work was conducted in collaboration with Tao
B. Schardl, Brian Xie, Jie Chen, Aldo Pareja, Georgios Kollias, and Charles E. Leiserson.

Abstract

Automatic differentiation (AD) is a technique for computing the derivative of function
F : Rn → Rm defined by a computer program. Modern applications of AD, such as machine
learning, typically use AD to facilitate gradient-based optimization of an objective function
for which m � n (often m = 1). As a result, these applications typically use reverse (or
adjoint) mode AD to compute the gradient of F efficiently, in time Θ(m · T1(F)), where T1

is the work (serial running time) of F . Although the serial running time of reverse-mode
AD has a well known relationship to the total work of F , general-purpose reverse-mode
AD has proven challenging to parallelize in a work-efficient and scalable fashion, as simple
approaches tend to result in poor performance or scalability.

This chapter introduces PARAD, a work-efficient parallel algorithm for reverse-mode
AD of determinacy-race-free recursive fork-join programs. We analyze the performance of
PARAD using work/span analysis. Given a program F with work T1(F) and span (critical-
path length) T∞(F), PARAD performs reverse-mode AD of F in O(m · T1(F)) work and
O(logm + log(T1(F))T∞(F)) span. To the best of our knowledge, PARAD is the first
parallel algorithm for performing reverse-mode AD that is both provably work-efficient and
has span within a polylogarithmic factor of the original program F .

We implemented PARAD as an extension of Adept, a C++ library for performing
reverse-mode AD for serial programs that is known for its efficiency. Our implementa-
tion supports the use of Cilk fork-join parallelism and requires no programmer annotations
of parallel control flow. Instead, it uses compiler instrumentation to dynamically trace a
program’s series-parallel structure, which is used to automatically parallelize the gradient
computation via reverse-mode AD. On eight machine-learning benchmarks, our implemen-
tation of PARAD achieves 1.5× geometric-mean multiplicative work overhead relative to
the serial Adept tool, and 8.9× geometric-mean self-relative speedup on 18 cores.

85

4.1 Introduction

Automatic differentiation1 [139, 280, 286, 193], or AD for short, aims to numerically
compute the derivative of a function F : Rn → Rm defined by a computer program. Al-
though AD has a long history of exploration and development in applications such as com-
putational fluid dynamics, molecular dynamic simulations, engineering design optimization,
sensitivity analysis, and uncertainty quantification, AD is commonly used today as a fun-
damental computational step in training neural networks for machine learning. In that
context, the program is a neural network that defines a function F mapping a set of weights
W ∈ Rn to a loss L ∈ Rm, for which m � n (often m = 1). AD is used when train-
ing the neural network to facilitate gradient-based optimization of L [44]. In contrast to
symbolic [154] or numerical differentiation [56], AD provides an efficient way to compute
partial derivatives for functions of many input variables, which makes AD appealing for
training neural networks [18]. More broadly, efficient general-purpose AD sees a diversity
of uses today, from general applications of AD in machine learning, such as in differentiable
programming systems (e.g., [167, 46, 280]), to various applications in computational science.

For a function F computed serially in time T1(F), the gradient of F can be computed
using either forward-mode AD [342], in time Θ(n · T1(F)), or using reverse-mode (or
adjoint-mode) AD [230, 324], in time Θ(m · T1(F)). Reverse-mode AD is therefore well
suited for machine learning and has therefore grown in popularity.

This paper addresses the problem of automatically parallelizing general-purpose reverse-
mode AD for programs implemented using (recursive) fork-join parallelism , as sup-
ported by parallel programming languages including dialects of Cilk [116, 219, 172], Fortress
[3], Kokkos [101], Habanero [16], Habanero-Java [61], Hood [42], HotSLAW [258], Java
Fork/Join Framework [208], OpenMP [275, 13], Task Parallel Library [218], Threading
Building Blocks (TBB) [291], and X10 [68]. Fork-join parallelism allows subroutines to
be spawned recursively in parallel and iterations of parallel loops to execute concurrently.
Fork-join programs expose fine-grained tasks that are allowed to execute in parallel, but are
not required to. The execution and synchronization of fine-grained tasks is managed “under
the covers” by a runtime system, which typically implements a randomized work-stealing
scheduler [41, 116, 11, 38] to schedule and load-balance the computation among parallel
worker threads. Constructs such as parallel for can be implemented as syntactic sugar
on top of the fork-join model. As long as a fork-join program contains no determinacy
races [105] (also called general races [266]) — no cases where two logically parallel op-
erations access the same memory location, and at least one access writes to the location —
then it is deterministic, meaning that every execution of the program on a given input
performs the same operations, regardless of scheduling. Fork-join parallelism has emerged
as a popular parallel-programming model that allows many programs to be implemented
efficiently as deterministic parallel programs [33, 183, 317].

This paper explores the following problem: given a determinacy-race-free function F :
Rn → Rm defined by a recursive fork-join parallel program, automatically parallelize the
reverse-mode AD computation of F in a work-efficient and scalable manner that is efficient
in practice. We have observed that, in practice, many applications of reverse-mode AD,
including machine-learning applications, implement functions that satisfy these constraints.

General-purpose reverse-mode AD has long posed a challenge to parallelize efficiently
[29], despite its substantial history of research and development (for a survey of previous

1Also known as algorithmic differentiation.

86

work, see [18]). Reverse-mode AD can be performed in parallel for the m dimensions of the
output of F , but this approach yields minimal parallelism when m is small. Specialized algo-
rithms have been developed to perform parallel reverse-mode AD for specific computations
[164, 163, 162, 161], but these specialized approaches do not apply to recursive fork-join
computations in general. Previously developed solutions [28, 301] to parallel reverse-mode
AD either are not work efficient — the total computation involved is ω(m · T1(F)) — or
they suffer in parallel performance and scalability, for example, due to lock contention.

The challenges of parallelizing reverse-mode AD

To see the challenges in automatically parallelizing reverse-mode AD, let us first examine
serial reverse-mode AD on a function F .

Intuitively, AD views the computation of F as a sequence of primitive arithmetic op-
erations and primitive functions — such as addition, multiplication, sine, and cosine —
and performs a nonstandard interpretation of F to calculate derivatives. Reverse-mode AD
computes the derivative of F by applying the chain rule from differential calculus, starting
from the outermost function, which is the last operation or function in the sequence. More
precisely, let L ∈ Rm be the dependent variable computed by F , and let n be the length of
the operation sequence to compute F . After at each step i, the reverse-mode AD algorithm
has evaluated some suffix Sn−i of the computation of F , and it stores a set of gradients
that encode the adjoint ∂L/∂Wn−i, where Wn−i is the set of inputs to Sn−i. Step i+ 1 of
the algorithm grows the evaluated suffix Sn−i−1 from Sn−i by updating the set of gradients
to store ∂L/∂Wn−i−1 = (∂L/∂Wn−i)(∂Wn−i/∂Wn−i−1).

Reverse-mode AD is most commonly accomplished through maintenance of an auxiliary
tape data-structure.2 Conceptually, reverse-mode AD first performs an augmented execu-
tion of the function F , known as the forward pass, to record data about F ’s computation
onto the tape. After the forward pass completes, reverse-mode AD performs a reverse
pass, in which it applies the chain rule to the operations on the tape in reverse order.
Section 4.2 describes an efficient serial reverse-mode AD algorithm in detail.

At a high level, the tape and the set of gradients pose two key challenges to parallelizing
reverse-mode AD.

Parallelizing the tape Parallel reverse-mode AD must accommodate the parallelism
in the computation of F . For a fork-join parallel program F , the spawning and synchro-
nization of logically parallel tasks imposes a directed acyclic graph (DAG) of dependencies
operations, rather than a sequence. Dependencies between primitive operations must be
recorded efficiently in parallel during the forward-pass execution of F . In addition, the DAG
structure of dependencies implies logical parallelism between operations in the reverse pass,
which should be exploited to achieve performance and scalability.

Parallel maintenance of gradients As Section 4.2 describes, one well-known feature of
reverse-mode AD is that a variable-read operation in the given function F corresponds to
a write of a gradient value during the reverse pass of the reverse-mode AD computation of
F , and vice versa [29, 301]. As a result, even if F is determinacy-race free, logically parallel
read operations during the forward pass become logically parallel write operations during
the reverse pass. Intuitive approaches to managing gradients can lead to poor performance.

2Also called a Wengert list [342].

87

For example, coordinating updates to gradients using locks can result in high contention
that inhibits scalability. Alternatively, one might imagine maintaining gradients using P
thread-local tables, where P is the number of processors executing the reverse pass. But
a simple use of thread-local gradient tables is not work efficient, because reads of gradient
values can occur asynchronously during a parallel execution of the reverse pass, and O(P)
work is needed to read a gradient out of the thread-local tables. Synchronizing these reads
can reduce the total work, but at the cost of parallel scalability.

Previous approaches

Previous work [28] has explored parallel reverse-mode AD for OpenMP programs using
ADOL-C [340], a library for reverse-mode AD in C++ programs. To accommodate OpenMP
threads, a separate instance of ADOL-C is created for each thread, such that each thread
operates on its own tape and set of gradients. Separate user code is invoked to combine
gradient information from these parallel tapes at serial points in the computation. This
thread-local AD approach can work efficiently for programs with simple parallel control
flow, such as a sequence of parallel loops. But it is unclear how to generalize the approach
to handle arbitrary recursive fork-join parallel programs while maintaining work efficiency
and scalability. Nested parallel control flow in particular presents a significant challenge,
because work efficiency can be precluded by the total work performed over the entire reverse
pass to combine gradient information at nested synchronization points.

Previous work has also explored similar node-local approaches to parallelize reverse-
mode AD for MPI programs [301], by assigning each MPI node to operate on a separate
tape and replacing MPI communications in the forward pass with appropriate reversed com-
munications to communicate gradient information in the reverse pass. These approaches are
not work efficient [158], due to the cost of communicating and combining parallel gradient
information.

PARAD: Work-efficient and scalable reverse-mode AD

This paper introduces PARAD a provably efficient parallel algorithm for reverse-mode AD
for determinacy-race-free recursive fork-join programs. Given such a program F , PARAD
computes the gradient of F using reverse-mode AD work-efficiently and with parallel scal-
ability comparable to that of F itself. In particular, PARAD exploits the logical parallel
control flow of the input of F to parallelize the reverse-mode AD computation of F .

In particular, Section 4.4 analyzes the parallel performance of PARAD using work/span
analysis [77, Ch. 27]. The work of a computation is the total number of instructions
executed, and the span is the length of a longest path of dependencies in the program.
Section 4.4 shows that, given an input function F : Rn → Rm which takes work T1(F) and
span T∞(F) to compute, PARAD computes reverse-mode AD of F in work Θ(m · T1(F))
and span O(logm+ log(T1(F))T∞(F)). To the best of our knowledge, PARAD is the first
parallel algorithm for performing reverse-mode AD that both is provably work-efficient and
has span within a polylogarithmic factor of T∞(F).

To efficiently parallelize reverse-mode AD, PARAD implements an SP-Tape data
structure, which records a tape for F efficiently in parallel, and a novel parallel algorithm
for maintaining gradients.

88

Algorithm Ts/T1 Ts/T18 T1/T18

PARAD 0.57 5.12 9.02
PARAD+S 0.66 5.88 8.89

Locks 0.45 2.77 6.14
Worker-Local 0.94 4.96 5.27

Figure 4-1: Performance comparison of PARAD, PARAD+S, Locks, and Worker-Local
over the 8 application benchmarks discussed in Section 4.6. Average (geometric mean) work-
efficiencies Ts/T1 and 18-core speedups Ts/T18 are provided relative to the serial runtime
Ts of Adept.

A work-efficient, scalable, deterministic parallel tape Section 4.3 describes the SP-
Tape data structure for recording a tape of the forward-pass execution of F , including all
series-parallel relationships between primitive operations and functions in F . The SP-Tape
data structure ensures that, if F is determinacy-race free, then the SP-Tape recorded for the
forward-pass execution of F is the same, regardless of how the forward-pass is scheduled
at runtime. Section 4.3 justifies that the SP-Tape records the tape in a work-efficient
and scalable manner with bounded contention. The maintenance of an SP-Tape resembles
techniques in previous work for recording series-parallel dependencies in recursive fork-join
programs [288], but with substantial extensions to implement reverse-mode AD.

Work-efficient parallel maintenance of gradients To achieve a work efficient and
scalable reverse pass, PARAD uses a novel algorithm to maintain gradients that overcomes
the problems of approaches based on locks or thread-local gradient tables. In contrast
to lock-based approaches, the algorithm avoids the overheads of locks and bounds the
contention involved in updating gradients. In contrast to approaches that use thread-local
gradient tables, the algorithm allows gradients to be read in an asynchronous manner, while
maintaining both work efficiency and span comparable to the input function F . Section 4.4
describes this algorithm for maintaining sets of gradients in parallel.

The LibPARAD parallel reverse-mode AD library

We implemented PARAD in a library, called LibPARAD, to evaluate the empirical per-
formance of PARAD. LibPARAD extends the Adept [156] library for reverse-mode AD
computation of serial C++ programs, which is known to exhibit low overheads in practice.
LibPARAD supports the use of the Cilk programming language [116, 219, 172] to encode
recursive fork-join parallelism. LibPARAD captures the series-parallel relationships be-
tween operations using compiler-inserted program instrumentation, based on a version of
the CSI framework [302] that instruments the Tapir compiler intermediate representation of
recursive fork-join parallelism [305]. This approach has the extra benefit that programmers
need not annotate the logical parallelism in the program. Instead, LibPARAD captures
this logical parallelism based on the linguistic constructs in the original program. Section 4.5
describes the implementation of LibPARAD as well as several practical optimizations that
LibPARAD implements on top of the PARAD algorithm.

We evaluated LibPARAD’s serial and parallel performance in practice on a variety of
machine-learning benchmarks, and we compare the performance of LibPARAD to Adept
applied to the serial projection [116, 305] of each benchmark, as well as to implementa-
tions that use fine-grained locks (Locks) and thread-local gradient tables (Worker-Local).

89

Figure 4-1 summarizes our empirical evaluation of LibPARAD in which we compared
PARAD and PARAD+S, which incorporates additional optimizations described in Sec-
tion 4.5, with algorithms using locks and worker-local tables. On average, the PARAD and
PARAD+S algorithms have better scalability than Locks and Worker-Local both in terms
of self-relative speedup and relative to the serial Adept code. Section 4.6 dives into the
empirical evaluation of LibPARAD and examines how the scalability of each algorithms
varies across benchmarks.

Contributions This paper makes the following contributions.
1. We introduce PARAD, an algorithm that performs reverse-mode AD for determinacy-

race-free recursive fork-join parallel programs with substantially fewer overheads than
existing systems. Given a determinacy-race-free recursive fork-join program F : Rn →
Rm, PARAD automatically parallelizes the reverse-mode AD computation of F .

2. Using work/span analysis [77, Ch. 27], we show that PARAD performs reverse-mode
AD on a given function F in work O(m · T1(F)) and O(logm + log(T1(F))T∞(F)).
To the best of our knowledge, PARAD is the first parallel algorithm for performing
reverse mode AD that is both provably work-efficient and has span within a polylog-
arithmic factor of T∞(F).

3. We introduce LibPARAD, an implementation of PARAD for performing automati-
cally parallel reverse-mode AD for determinacy-race-free recursive fork-join programs.
LibPARAD extends the Adept [156] C++ library for serial reverse-mode AD, which
is known to outperform other C++ AD libraries [325].

4. We study the empirical performance of LibPARAD on eight machine-learning bench-
marks and compare the the PARAD, PARAD+S, Locks, and Worker-Local algo-
rithms for reverse-mode AD.

Organization The remainder of the paper is organized as follows. Section 4.2 provides
background on AD and fork-join parallelism. Section 4.3 describes the SP-Tape data struc-
ture and analyzes it in terms of work and span. Section 4.4 presents and analyzes PARAD’s
work-efficient and scalable reverse-mode algorithm. Section 4.5 describes the implementa-
tion of LibPARAD, a C++ library implementation of PARAD, based on the Adept C++
library for serial reverse-mode AD. Section 4.6 compares the empirical performance of Lib-
PARAD against Adept and a lock-based implementation of reverse-mode AD. Section 4.7
discusses related work in parallel AD. Section 4.8 provides concluding remarks.

4.2 Preliminaries

This section provides background information on the serial algorithm for reverse-mode AD,
recursive fork-join parallelism, the dag model of multithreading, and work/span analysis. To
simplify the description of reverse-mode AD, we shall consider input programs F : Rn → Rm
for which m = 1. It is straightforward to extend this description for programs where m > 1.

A serial algorithm for reverse-mode AD

In general, a serial reverse-mode AD computation, as implemented by tools including
Adept [156], ADOL-C [340], and Tapenade [145], operates in two passes. Given a function

90

Forward pass program

TwoByTwoMatVecSqLoss(a, b, c, d, e, f):

1 g = a · e+ b · f
2 h = c · e+ d · f
3 L = g2 + h2

4 return L

Gradient table state after each step of reverse-mode AD

Step ∂a ∂b ∂c ∂d ∂e ∂f ∂g ∂h ∂L

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 2g 2h 0
2 0 0 2h · e 2h · f 2h · c 2h · d 2g 0 0
3 2g · e 2g · f 2h · e 2h · f 2h · c+ 2g · a 2h · d+ 2g · b 0 0 0

Statement Stack

index end index

S0 index (g) 4
S1 index (h) 8
S2 index (L) 10

Operation Stack

index mul

O0 index (a) ∂g/∂a = e
O1 index (e) ∂g/∂e = a
O2 index (b) ∂g/∂b = f
O3 index (f) ∂g/∂f = b
O4 index (c) ∂h/∂c = e
O5 index (e) ∂h/∂e = c
O6 index (d) ∂h/∂d = f
O7 index (f) ∂h/∂f = d
O8 index (g) ∂L/∂g = 2g
O9 index (h) ∂L/∂h = 2h

Figure 4-2: Illustration of a serial reverse-mode AD computation on simple program,
TwoByTwoMatVecSqLoss. The tables in the top right show the statement and op-
eration stacks, recorded during the execution of the forward pass of the program. The
bottom table shows the state of the gradient table after processing each statement (in
reverse order) during the reverse pass.

SerialReversePass(S,O,G):

1 i← |O|−1
2 for k = |S|−1, |S|−2, . . . , 0
3 α← G[Sk.index]
4 G[Sk.index]← 0
5 while i > Sk−1.endIndex
6 G[Oi.index] += α ·Oi.mul
7 i −= 1

Figure 4-3: Pseudocode for the serial algorithm for computing the reverse pass over the
statement stack S and operation stack O with input gradients in the table G.

91

F : Rn → Rm, the forward pass first executes F and records the primitive operations of
F onto a tape data structure. The reverse pass maintains a table of gradient values and
processes the tape data structure step by step in reverse, updating the gradient values at
each step.

To examine the algorithm more closely, let us first examine the tape data structure
and the forward pass. The serial tape data structure consists of two stacks: a statement
stack , corresponding to writes to variables in the program F , and an operation stack ,
that records the values read to compute statements. Each differentiable variable v in the
program, corresponding to an executed statement in F , is assigned a unique integer identifier
index (v), called the gradient index . A statement-stack entry contains the index associated
with the left-hand-side variable v, and the length of the operation stack when the statement
was inserted. Each operation-stack entry contains the index of the variable u being read, as
well as the partial derivative of the statement’s left-hand-side variable v with respect to u.
Figure 4-2 illustrates the statement and operation stacks recorded for a simple program
with 3 statements.

To see how the forward pass populates the statement and operation stacks, consider
the forward-pass executing of TwoByTwoMatVecSqLoss in Figure 4-2 line by line.
Line 1 computes the statement g = a · e + b · f . The expression on the right-hand side
of the statement is evaluated first and the operations O0, O1, O2, O3 are pushed onto the
operation stack. After the right-hand expression is evaluated, an entry S0 is pushed onto
the statement stack recording the gradient index index (g) of the left-hand-side variable
g, and the current length 4 of the operation stack. As a result, after line 1 is executed,
statement S0 on the statement stack identifies operations O0, O1, O2, and O3 as storing
partial derivatives ∂g/∂a, ∂g/∂e, ∂g/∂b, and ∂g/∂f , respectively. Line 2 is handled similarly
by pushing operations O4, O5, O6, O7 to the operation stack and then pushing statement
S1 to the statement stack. Lastly, to handle line 3, operations O8, O9 are pushed onto the
operation stack and statement S2 onto the statement stack.

After executing the function, the reverse pass creates a gradient table with one entry
for each gradient index created during the execution of the forward pass. Initially, all entries
of the gradient table are set to 0, except for (one or more) variables whose derivatives are
already known. In the example in Figure 4-2, there is a single loss variable L whose gradient
index is initialized to 1.

The gradient-table state after each step of the reverse-mode AD algorithm is presented
in Figure 4-2. In the figure, each row presents the state of the gradient table after a step
of the reverse pass. Each row therefore encodes the coefficients of a differential expression
obtained via differentiation of an implicit function. Row 0, for example, encodes the initial
(trivial) differential expression ∂L = 1 · ∂L. After processing statement S2, this expression
is transformed to ∂L = (∂L/∂g)∂g + (∂L/∂h)∂h = 2g ∂g + 2h ∂h. The gradient table on
Row 1 encodes this transformation, in which the coefficient of ∂L is 0, and the coefficients
of ∂g and ∂h are 2g and 2h respectively. To process statement S1 the reverse pass reads the
relationship between ∂h and the operations used to compute h encoded on the operation
stack: ∂h = c ∂e + e ∂c + d ∂f + f ∂d. The reverse pass then uses this relationship
to update the differential expression encoded in the gradient table. The new differential
expression, encoded on Row 2, is ∂L = 2g ∂g+ 2h(c ∂e+ e ∂c+d ∂f + f ∂d). The last step
processes statement S0 as we processed S1, and results in the final gradient table (Row 3)
that contains the partial derivatives of L with respect to each variable in the program.

Figure 4-3 gives psuedocode for the SerialReversePass procedure that performs the
reverse pass, specifically, the updates to the gradient table using a previously recorded

92

statement stack S, operation stack O, and input gradients G. The total work to maintain
the two stacks and execute SerialReversePass is Θ(|O|) + Θ(|S|) = Θ(T1(F)) for an
input program F with work T1(F).

Observations Conceptually, PARAD makes use of two observations of this serial reverse-
mode AD algorithm to parallelize it. First, during the forward-execution of a parallel
program, the serial tape data structure behaves like a list-monoid with an append operator.
Second, the read and write sets of the forward-execution are swapped in the reverse-pass
over the tape, i.e., every read becomes a write, and every write becomes a read. PARAD
leverages these observations in its design of the SP-tape for recording the forward pass, and
in its algorithm for automatically parallelizing the reverse pass to compute derivatives.

Recursive fork-join parallelism

Recursive fork-join parallelism allows logical parallelism in a program to be exposed using
the keywords [77, Ch. 27] spawn, sync, and parallel for. When preceding a function call
F , the spawn keyword spawns F , allowing F to execute in parallel with its continuation
— the statement immediately after the spawn of F . The sync keyword complements the
spawn keyword and acts as a local barrier that joins together, or syncs, the parallelism
specified by spawn. When a function F reaches a sync, control is not allowed to pass that
sync until all functions spawned previously in F return. These keywords can be used to
implement other parallel control constructs, such as the parallel for loop, which allows all
of its iterations to operate logically in parallel.

A recursive fork-join program has a serial projection [116, 305], which intuitively is
the serial program derived by removing parallel keywords from the fork-join program. If
the fork-join program contains no determinacy races, then every execution of the program
matches that of its serial projection.

The computation dag model

An execution of a fork-join program can be modeled as a computation dag G = (V,E).
Each directed edge represents a strand , that is, a sequence of executed instructions with
no spawn or sync statements. The execution of a spawn statement results in a spawn
vertex , which contains two successor strands. The execution of a sync statement results
in a sync vertex , which contains multiple incoming edges.

The dag G is a series-parallel dag [105], which means that G has two distinguished
vertices — a source vertex, from which one can reach every other vertex in G, and a
sink vertex, which is reachable from every other vertex in G — and can be constructed by
recursively combining pairs of series-parallel dags using series and parallel combinations. A
series combination combines two dags G1 and G2 by identifying the sink vertex of G1

with the source vertex of G2. A parallel combination combines two dags G1 and G2 by
identifying their source vertices with each other and their sink vertices with each other.

The recursive construction of a series-parallel dag can be represented as a binary tree,
called the SP tree [105], as follows. Each leaf in the SP tree represents a strand in the
computation dag, and each internal node is either an S-node or a P-node. A subtree of the
SP tree represents a series-parallel subdag of the computation dag. An S-node represents
a series composition of the two subdags represented by its children. A P-node represents a
parallel composition of the two subdags represented by its children.

93

Work/span analysis

Given a fork-join program whose execution is modeled as a DAG A, we can bound the P -
processor running time TP (A) of the program using work/span analysis [77, Ch. 27]. The
work T1(A) is the number of instructions in A, and the span T∞(A) is the length of a longest
path in A. Greedy schedulers [49, 99, 137] can execute a deterministic program with work
T1 and span T∞ on P processors in time TP satisfying max{T1/P, T∞} ≤ Tp ≤ T1/P + T∞.
A similar bound can be achieved by more practical work-stealing schedulers [40, 41]. The
speedup of an algorithm on P processors is T1/TP , which the inequality shows to be at
most P in theory. The parallelism T1/T∞ is the greatest theoretical speedup possible for
any number of processors.

4.3 The SPTape Data Structure

This section describes the SPTape data structure that PARAD uses to record, in parallel,
the statement and operation stacks for reverse-mode AD, and the series-parallel dependen-
cies in the program. After recording, the SPTape supports parallel traversals with work
and span proportional to that of the original recorded program. For later use, we describe
and analyze generic parallel traversal algorithms over the SPTape and provide a set of
rules governing memory access during the traversal that ensure the absence of determinacy
races.

For didactic simplicity, we describe the SPTape data structure for binary recursive
fork-join programs, in which each node in the computation dag has at most two incoming
edges.

Basic structure of an SPTape

The SPTape data structure for a recursive fork-join program stores an SP tree [105] of
the program augmented with data nodes that store “subtapes.” A subtape contains a
statement and operation stack that are used to record derivative dependencies within a
strand. The subtapes in the SPTape represent an ordered partitioning of the statement
and operation stack data structures employed by the serial AD tool discussed in Section 4.2.

Recording an SPTape serially

An SPTape is constructed incrementally during the execution of the forward pass. We
shall first see a serial algorithm for constructing the SP-Tape, and then we shall see how to
parallelize this algorithm.

To record an SPTape, a single processor maintains a shadow stack that is updated
based on the parallel control flow of the forward-pass execution. Each entry on the shadow
stack stores a local SPTape T , which is initialized with a single root node. When an entry
is popped from the shadow stack, the local SPTape T for the popped entry is appended
to the children of the SPTape node of the new top entry on the stack.

Figure 4-4 presents pseudocode for creating an SPTape. At a high level, this pseudocode
creates S and P nodes in the SPTape based on spawn and sync statements in the program,
and it records derivative dependencies in the subtape stored in the data node at the top of
the shadow stack. Figure 4-5 illustrates an example of how the operations on the shadow
stack execute in a simple example fork-join program. As the example shows, a P-node is

94

PushShadow(K, type)

1 Push(K)
2 Top(K).T .type ← type

PopShadow(K)

1 τ ← Top(K).T
2 Pop(K)
3 Append(Top(K).T .children, τ)

On entering a function:

1 PushShadow(K,Series)

On executing a spawn:

1 PushShadow(K,Parallel)
Before executing arithmetic:

1 if Top(K).T .type 6= Data
2 PushShadow(K,Data)

On executing the continuation of a spawn:

1 PushShadow(K,Series)

On returning from a function:

1 if Top(K).T .type == Data
2 PopShadow(K)
3 PopShadow(K)

Immediately before executing a sync:

1 if Top(K).T .type == Data
2 PopShadow(K)
3 PopShadow(K)

Immediately after executing a sync:

1 PopShadow(K)

Combine(K, τ)

1 Append(Top(K).T .children, τ)

Figure 4-4: Pseudocode for the maintenance of the SPTape data structure. The variable
K denotes the shadow stack, each entry of which contains a local SP-Tape T . The field
T.type identifies the type of the root node of T . The field T.children is a list of children of
the root node of T . The Combine method is used to incorporate an SPTape τ recorded
in parallel.

pushed onto the stack when a program executes a spawn, reflecting the fact that both the
spawned function and its continuation can execute in parallel. S-nodes are pushed onto the
stack when the program enters a function or a continuation of a spawn. Nodes are popped
off the stack at the ends of functions and around sync operations.

The following lemma shows that, when the serial execution of a series-parallel computa-
tion dag G completes, the local SPTape at the top of the shadow stack records the gradient
information and series-parallel dependencies for G.

Lemma 25 When a serial execution completes a computation dag G, the top of the shadow
stack stores a local SPTape that records the execution of G.

Proof. The proof follows by induction on the structure of G. In the base case, G is a
single strand u, and the top of the shadow stack stores an SPTape with a single S-node
containing a single child data node that records the derivative dependencies in u. Otherwise
G is the result of a series or parallel composition of subdags G1 and G2. In either case, the
pseudocode in Figure 4-4 ensures that an entry for G is pushed onto the shadow stack at the
beginning of G, and separate pushes and pops occur at the beginning and end, respectively,
of each subdag. When popping the shadow stack at the end of each subdag, PopShadow

95

TwoByTwoMatVecSqLoss(a, b, c, d, e, f,K):

1 PushShadow(K,Series)
2 PushShadow(K,Parallel)
3 spawn λ{
4 PushShadow(K,Series)
5 PushShadow(K,Data) // (D1)
6 g = a · e+ b · f
7 PopShadow(K) // (D1)
8 PopShadow(K) // Series
9 }

10 PushShadow(K,Series)
11 PushShadow(K,Data) // (D2)
12 h = c · e+ d · f
13 PopShadow(K) // (D2)
14 PopShadow(K) // Series
15 sync
16 PopShadow(K) // Parallel
17 PushShadow(K,Data) // (D3)
18 L = g2 + h2

19 PopShadow(K) // (D3)
20 PopShadow(K) // Series
21 return L

Figure 4-5: An example of the SPTape recorded for a parallel implementation of
TwoByTwoMatVecSqLoss.

in Figure 4-4 shows that the new top of the shadow stack is either a P-node, if a spawn
executed, or an S-node otherwise. In addition, Figure 4-4 shows that the local SPTape
formerly at the top of the stack is appended to the list of children for the new top of the
stack. Hence the top of the shadow stack stores a node of the correct type and correct child
SPTape structures for the execution of G1 and G2.

Parallelizing SPTape construction

To construct an SPTape in parallel, the parallel execution of a computation dag G is aug-
mented to maintain separate shadow stacks. Intuitively, consider two series-parallel subdags
G1 and G2 of G that are composed in parallel and are scheduled to execute in parallel. The
execution uses distinct shadow stacks to separately record the SPTape structures of G1

and G2 and then combines those SPTape structures when execution reaches the common
sink vertex of G1 and G2. In modern dialects of Cilk, this behavior can be accomplished
using reducer hyperobjects [115]. We describe this behavior generically for series-parallel
computation dags.

We model the scheduling of a computation dag G as a partitioning of the strands into
scheduling components, such that logically parallel strands execute in parallel if the
scheduler places the strands into distinct scheduling components. We assume that the
scheduler maintains the following properties of scheduling components:

• A new scheduling component can only begin at a successor strand u of a spawn vertex
in G.

96

WalkSPTape(node,G ,VisitSubTape, dir):

1 if node.type = D :
2 VisitSubTape(node.S,node.O,G , dir)
3 C = node.children
4 If dir is right first reverse C.
5 if node.type = S :
6 for c ∈ C
7 RightFirstTraversal(c,G , dir)
8 if node.type = P :
9 parallel for c ∈ C:

10 RightFirstTraversal(c,G , dir)

Figure 4-6: Pseudocode for the parallel right-first traversal of SPTape.

• Consider a spawn vertex s, which is the source vertex of a series-parallel subdag G
produced via parallel composition. A new component C that begins at a successor
strand u of s terminates at a predecessor strand v of the sink vertex of G such that v
is reachable from u.

These properties create a correspondence between scheduling components and series-parallel
subdags of G. In particular, the same scheduling component contains both the first strand
in a series-parallel subdag and the last strand in that subdag. We shall also assume that the
execution of strands within the same component follows a depth-first traversal consistent
with the execution of the serial projection of that computation. Practical work-stealing
schedulers [40, 41] typically satisfy these assumptions.

The parallel execution of the computation dag is augmented to maintain separate SP-
Tape structures for distinct scheduling components. At the first strand s of each scheduling
component C, the scheduler creates a new local SPTape for C. Subsequent operations
within C operate on C’s local SPTape as described in Figure 4-4. At the end of C, the
local SPTape τ for C is combined into the shadow stack K ′ of the scheduling component
C ′ that contains the predecessor w of s. In particular, τ is appended to the list of children
of the root note of the SPTape at the top of K ′, using the Combine method in Figure 4-4.
The following lemma extends Lemma 25 to incorporate combining local SPTape structures.

Lemma 26 When execution completes a computation dag G, the top of the shadow stack
stores a local SPTape that records the execution of G.

Proof. The proof follows by extending the induction in Lemma 25 to handle computation
dags G resulting from a composition involving a subdag G′ whose strands belong to a
different scheduling component. Suppose the lemma holds for such a subdag G′. Because
the initial strand of G′ must be a successor of a spawn vertex, G must be the result of
a parallel composition. Hence, the pseudocode in Figure 4-4 shows that, at the end of
executing G, the top of the shadow stack contains an SPTape structure T rooted at a P-
node. The Combine routine appends the SPTape τ for G′ to the children of this P-node,
yielding an SPTape T that correctly represents G as a parallel composition involving G′.

97

Race-free traversals of SPTape

The PARAD algorithm makes use of parallel traversals over the SPTape. Here we provide
conditions on which these traversals are race-free3, and analyze their work and span.

For didactic purposes, consider a table Gx mapping gradient indices to distinct memory
locations. Consider a call to VisitSubTape(S ,O ,G , dir , Gx), and let IS , IO be the sets
of gradient indices appearing in the statement stack S and operation stack O respectively.
We say a parallel traversal of an SP-Tape obeys the safe adjoint access property if
VisitSubTape performs a read of Gx[gid] only if gid ∈ IS ∪ IO, and only performs a write
to Gx[gid] if gid ∈ IS .

As Lemma 27 shows below, a parallel traversal of an SP-Tape produced by a determinacy-
race-free program is free of data-races on entries of Gx if the traversal has the safe adjoint
access property.

Lemma 27 Let T be an SPTape produced by a determinacy-race-free fork-join program P .
Consider a parallel traversal of T that obeys the safe adjoint access property. Then, the
parallel traversal of T has no data races on accesses to tables Gx indexed by gradient indices
appearing in statements and operations on the tape.

Proof. Consider a parallel traversal of an SPTape T that has the safe adjoint access
property. We will prove that if there exists a data race on entries of Gx during the traversal
of T , then there exists a determinacy race in the program P that produced T .

Consider subtapes U, V corresponding to the two strands u, v in the program P . By
Lemma 26, the subtapes U, V will be processed in parallel by WalkSPTape if and only if
their corresponding strands u, v were logically in parallel in P .

Let IS(U) and IS(V) be the sets of gradient indices appearing in statements on the
subtapes U and V respectively. Similarly define sets IO(U) and IO(V) for gradient indices
appearing on the operation stacks.

Suppose there exists a data race on Gx[gid] when evaluating VisitSubTape on U and
V in parallel. For the data race to exist, at least one of these invocations must perform a
write to Gx[gid]. Suppose the invocation processing U performs a write to Gx[gid]. Then
gid ∈ IS(U), since VisitSubTape has the safe adjoint access property. The processing of V
has either a write or a read to Gx[gid] which implies (by safe adjoint access property) that
gid ∈ (IS(V) ∪ IO(V)). Since each statement in U.S, V.S corresponds to a write performed
in the original program P , and each operation U.O, V.O correspond to reads in P , there
exists a determinacy race between strands u and v in the original program P .

Work/span analysis of SPTape traversal

Subsequent algorithms will perform parallel traversals over the SPTape data structure.
Here we prove bounds on the work and span of a traversal whose VisitSubTape evaluates
a function f(·) on each operation and statement stack entry which performs O(σ) amortized
work (amortized over the whole traversal), and has worst-case span O(υ).

Lemma 28 Consider a parallel traversal by WalkSPTape of a SPTape T produced by
a parallel program P with work T1(P) and span T∞(P). If VisitSubTape processes each
statement and operation with a function f(·) that performs O(σ) amortized work (amortized

3These conditions assume that the recorded program was, itself, free of determinacy races.

98

over the whole traversal) and has O(υ) worst-case span, then WalkSPTape performs T1 =
O(σT1(P)) work and has T∞ = O(υT∞(P)) span.

Proof. The sum of the statement and operation stack sizes in the SPTape T is bounded
by the total work of the program P . The total work of WalkSPTape is, therefore,
O(σT1(P)). By Lemma 26, there is a one-to-one correspondence between strands in P
and subtapes in T , and two subtapes in T are logically in parallel if and only if their associ-
ated strands are logically in parallel in P . Consider the sequence of strands (u1, u2, . . . , uk)
that forms the critical path in P . The corresponding set of subtapes in T for the critical
path can be found (U1, U2, . . . , Uk). Uniformly scaling the work of all instructions in P by υ
does not alter the critical path and scales the span by υ. The span of WalkSPTape when
applying a function f(·) with worst-case span υ is, therefore, at most T∞ = O(υT∞(P))

4.4 The PARAD algorithm

This section presents PARAD, a work-efficient algorithm for performing parallel reverse-
mode AD. For a determinacy-race-free fork-join program F with work T1(F) and span
T∞(F), the program R that performs reverse-mode AD on F has work T1(R) = Θ(m·T1(F))
and span T∞(R) = Θ(logm+ T∞(F) log(T1(F))).

Design of the PARAD algorithm

The PARAD algorithm is designed to parallelize the serial reverse-mode AD algorithm
based upon the series-parallel structure of the recorded program. The serial reverse-mode
AD algorithm can be implemented by executing the SerialReversePass function on each
subtape in the order of a right-first traversal of the SPTape. The problem with parallelizing
this traversal, however, is the presence of write-write races on the gradient table, which occur
when the original program read the same memory location in-parallel. The key challenge
solved by PARAD is the resolution of these races in a work-efficient and scalable manner.

To resolve write-write races on the gradient table, PARAD employs the strategy to
precompute a unique memory location where each operation can safely deposit its gradient
contribution. These memory locations are assigned from a deposit array that provides
one slot for each recorded operation. The gradient contributions are aggregated when a
statement extracts its gradient value. In the serial AD algorithm, a statement can extract
its gradient value by reading from the global gradient table. In PARAD, however, a
statement must potentially collect and sum multiple gradient contributions. To allow this
aggregation to be performed efficiently, the deposit array is organized so that all the gradient
contributions a statement must collect are contiguous in the deposit array.

Let us discuss the structure of the PARAD algorithm whose pseudocode is provided in
Algorithm 1.

The organization of the deposit array in PARAD is accomplished as follows. Step 1
of PARAD computes a table OS that associate each operation with the statement that
will consume its gradient contribution. Next, in Step 2 PARAD collects and semisorts all
operations o by their associated statement OS [o]4. The semisorted array of operations O∗ is
used to assign each operation a unique index in the deposit array D based upon its location
in O∗. The assignment of operations to deposit array locations is recorded in a table Osnd.

4For didactic simplicity, the pseudocode of PARAD additionally semisorts by each operation’s gradient
index to make it simpler to export them to a global gradient table at the end of the computation.

99

Algorithm 1 PARAD Algorithm
Inputs: Gradient table G, and SP-Tape T .
Outputs: Updated gradient table G.

1. Construct OS mapping operations to statements.

• Perform a parallel left-first traversal of the SP-Tree. At statement s, set GS [s.gid] = s.
At operation o, set OS [o] = GS [o.gid].

2. Construct Osnd and Srcv.

• Traverse the SP-Tape T and pack all operations into contiguous array O∗.

• Semisort O∗ using the key function k1(o) = o.gid.

• For each subarray of O∗ with operations of equal k1(o), semisort using the key
k2(o) = OS [o].

• For each subarray O∗[m..m+ k] of operations o with equal k2(o) do the following. Set
Srcv[k2(o)] = (m,m+ k). For l = m,m+ 1, . . . ,m+ k set Osnd[O∗[l]] = l.

3. Perform reverse-mode AD.

• Allocate deposit array D of size |O∗|.
• Perform a right-first traversal.

• At statement s, let (m,m+ k) = Srcv[s] and compute
α = G[s.gid] + sum(D[m..m+ k]). Set G[s.gid] = 0, and D[m..m+ k] = 0.

• At operation o, compute β = α · o.mul and set D[Osnd[o]] = β.

4. Export gradients in D to gradient table G.

• Find subarrays O∗[n..n+ r] in O∗ of operations o with equal gradient index (i.e.
k1(o) = o.gid).

• For each sub subarray, set G[O∗[n].gid] = sum(D[n..n+ r]).

Since all operations associated with the same statement are contiguous in O∗, the gradient
contributions for a statement are in a contiguous range of the deposit array D. A table
Srcv records, for each statement s, a reference to the subarray D[m..m + k] of k gradient
contributions to s.

The deposit array is now used by PARAD to avoid write-write races during its right-first
traversal of the SPTape. Step 3 of PARAD performs reverse-mode AD via a right-first
traversal of the SPTape. The final gradients are then exported in Step 4 to a global gradient
table for application-specific use (e.g., for a gradient descent step).

Figure 4-7 provides an illustration of the deposit array structure for the parallelized
TwoByTwoMatVecSqLoss function. The tables OS , Srcv, and Osnd are shown in Fig-
ure 4-7 as columns of the tables illustrating the statement and operation stacks. The deposit
array structure is provided after processing each of the subtapes D3, D2, and D1.

Theorem 29 PARAD and SerialReversePass compute the same gradients for a recorded
program P that is free of determinacy races.

Proof. We first compare a serial execution of PARAD to the execution of Serial-
ReversePass. In an execution of SerialReversePass, each operation accumulates its
gradient contribution into the gradient table G. This accumulated value is extracted when

100

index mul

index(a) output

index(e) output

index(b) output

index(f) output

index(c) output

index(e) output

index(d) output

index(f) output

index(g)

index(h)

index endindex

index(g)

index(h)

index(L) input

SP Tape

Statements Operations

Evolution of deposit array during PARAD
step

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2g 2h

0 0 0 0 2g 0

0 0

Figure 4-7: Illustration of PARAD performing reverse-mode AD on a parallel implementa-
tion of TwoByTwoMatVecSqLoss. This example continues the running example used in
Figure 4-2 from Section 4.2 and Figure 4-5 from Section 4.3. The statement and operation
stacks are presented in the style of the serial AD example in Figure 4-2, and the subarrays
in these stacks that correspond to the subtapes D1, D2, and D3 are indicated. Additional
columns have been added to the statement and operation stacks to illustrate the Srcv, OS ,
and Osnd functions that map statements and operations to locations in the deposit array.
For clarity, entries that would be undefined by these maps are marked as input or output.
The deposit array state after processing each subtape during PARAD’s right-first traversal
over the tape is provided. The final gradients ∂a, ∂b, . . . , ∂h are obtained by summing the
indicated subarrays of the deposit array.

101

processing a statement with the same gradient index. A single operation’s contribution to
the gradient, therefore, is visible to at most one statement.

We now examine the steps of PARAD.

The left-first traversal of the SPTape in Step 1 of Algorithm 1 maps each opera-
tion O[i] to the last statement S[j] that was encountered during the traversal for which
S[j].gid = O[i].gid. The statement recorded in Os[i] is the statement that will extract
O[i]’s contribution to the gradient.

In Step 2, first the array O∗ is collected and semisorted to group together operations
whose gradient contributions are extracted by the same statement. The step then processes
subarrays O∗[m..m + k] of operations in O∗ and maps each operation to its index Osnd in
O∗. At the same time, the step records in Srcv the range of indices that will contain all
gradient contributions that contribute to the value the statement associated with the group
will extract.

Step 3 performs a right-first traversal of the SPTape. By Lemma 26, the serial right-
first traversal of the SPTape processes statements and operations in the same order as
SerialReversePass. When processing the statement S[j] with statement index j we
lookup in Srcv[j] the subarray in D containing all gradient contributions to S[j].gid needed
by statement S[j], compute their sum, and set the subarray in D to zero. When pro-
cessing the operation O[i] the contribution of O[i] to the gradient is deposited at location
D[Osnd[i]]. The value extracted by statement S[j] will exactly match the value extracted
by the SerialReversePass algorithm when processing the same statement S[j].

After the completing the right-first traversal over the tape, Step 4 accumulates the
remaining gradient contributions deposited in D and places those contributions into the
gradient table G. The two-phase semisort in Step 2 guarantees that all gradient contribu-
tions to the same gradient index are contiguous in D.

By construction, the serial execution of PARAD has identical behavior to the serial
SerialReversePass procedure for performing reverse-mode AD.

To prove that PARAD is correct when run in parallel, it suffices to prove that the
left-first and right-first traversals are data-race free. By construction PARAD has no races
on the arrays O,S,Os, Osnd, Srcv. The remaining data accesses are to tables indexed by
gradient indices. Since all accesses to these tables obey the safe adjoint access property,
we can apply Lemma 27 to prove that the parallel traversals of the SPTape performed
by PARAD are race-free. It follows that the gradient tables produced by PARAD and
SerialReversePass are equivalent.

Analysis of PARAD

We now analyze the work and span of Algorithm 1.

Theorem 30 Given a program F : Rn → Rm with total work T1(F) and span T∞(F), the
program R performing reverse-mode AD on F performs work T1(R) = Θ(m · T1(F)) with
span T∞(R) = Θ(logm+ T∞(F) log T1(F)).

Proof. We analyze Algorithm 1 for m = 1. The bounds for larger m follow from spawning
m instances of PARAD to process the m dimensions in parallel.

Step 1 performs a left-first traversal of the SPTape where O(1) work is performed
for each recorded statement and operation in the program F . We apply Lemma 28 with

102

σ = O(1), υ = O(1) to conclude that the total work and span of this step is O(T1(F)) and
O(T∞(F)) respectively.

Step 2 performs a parallel compaction and a parallel scan over operations in F , both of
which perform O(T1(F)) work and have O(log(T1(F))) span. The semisort performed in this
step can be performed in O(T1(F)) work and O(log(T1(F))) span by using the logarithmic-
depth semisort from [140], which semisorts N elements in Θ(N) work and Θ(logN) span.

Step 3 performs a right-first traversal with constant work per-operation. The work
performed for each statement may be Ω(1), but each unit of work is associated with a
unique operation. The amortized work for each operation and statement is, therefore,
O(1). Accumulating the subarray D[m..m + k] requires Θ(log k) span, and the worst-case
span is O(log T1(F)). Therefore, we apply Lemma 28 with σ = O(1) and υ = O(log T1(F))
to conclude that this step performs O(T1(F)) work and has O(T∞(F) log T1(F)) span.

Step 4 performs a parallel scan and multiple in-parallel reductions with total work
O(T1(F)) and span O(log T1(F)).

Thus, the work and span is bounded by the time required to perform the right-first
traversal of the SPTape, resulting in total work O(T1(F)) and span (T∞(F) log T1(F)).

4.5 Implementation of LibPARAD

This section describes LibPARAD which is an extension of the serial AD library Adept
[156] that implements four different parallel algorithms for performing reverse-mode au-
tomatic differentiation, all of which employ the SPTape. Adept is a C++ library that
implements reverse-mode AD via operator overloading. Other AD libraries using a similar
approach include ADOL-C [340], Autograd [239], and PyTorch [280]. We chose Adept to
base our implementation since its clever use of C++ expression templates and particularly
concise representation for its tape data structure allows it to outperform other C++ AD
libraries [325].

Implementation of the SPTape

LibPARAD uses a version of CSI that instruments the Tapir compiler representation of
recursive fork-join parallelism [305] to insert operations in Figure 4-4 around spawn and
sync statements, at the locations in the program code described in the figure.

LibPARAD modifies the parts of Adept that access its statement and operation stacks
to instead use the SPTape data structure described in Section 4.3. We implemented the
SPTape using a reducer hyperobject [115] and worker-local storage that is accessed by using
the worker identifier returned by Cilk’s GetWorkerNumber runtime call. Storage in data
nodes for subtapes is allocated out of worker-local storage to improve efficiency in practice.
The operations described in Figure 4-4 for constructing an SPTape are inserted into the
program automatically at compile-time through the use of the CSI framework [302]. Specif-
ically, LibPARAD uses a version of CSI that instruments the Tapir compiler representation
of recursive fork-join parallelism to insert operations around spawn and sync statements.
The LibPARAD library is designed to operate on any existing code using Adept, and does
not require any additional annotations from the user aside from the normal use of Cilk
keywords to express parallelism.

Our implementation deviates from the description in Figure 4-4 only slightly to handle
nonbinary spawns. First, immediately after a sync, multiple PopShadow calls are per-
formed to pop the S- and P-nodes pushed onto the shadow stack for each continuation of an

103

executed spawn statement that the sync statement syncs. Second, the SPTape reducer
hyperobject optimizes the handling chains of continuations, rather than simply enqueue
calls to Combine to operate only on SPTape structures that capture the complete execu-
tion of a series-parallel subdag. Neither of these changes impact the theoretical work/span
of the computation or the structure of the SPTape.

Implementation of PARAD

The implementation of PARAD includes optimizations related to the construction of the
deposit array. In our discussions of Algorithm 1 in Section 4.4 we explained how to resolve
write-write races by assigning operations unique memory locations from the deposit array
to deposit their gradient contributions. Our implementation of PARAD avoids performing
this work for operations that cannot possibly participate in a write-write race. We identify
operations whose gradient index never appears in a statement and for such operations we
accumulate gradients using worker-local sparse arrays. Additionally, we identify operations
in subtapes whose contribution to the gradient is extracted by a statement in the same
subtape. For such operations, we set its deposit location in D to be the global gradient
table G. This does not introduce data races because it obeys the safe adjoint access property
discussed in Section 4.3. The remaining operations are filtered and packed in-parallel and
are processed as described in Algorithm 1.

Implementation of PARAD+S

A commonly used strategy to resolve races in reverse-mode AD is to employ worker-local
(or thread-local) gradient tables. The problem with this approach, however, is that it is not
work-efficient — extracting the gradient value for a statement requires work proportional
to the number of processors, which may be greater than the number of operations that
provided gradient contributions.

In PARAD+S, a sampling-based algorithm is used to identify “heavy” statements that
accumulate a large number (greater than P) of operations. Operations contributing to
“heavy” statements can use worker-local gradient tables instead of the deposit array without
compromising the work-efficiency of the algorithm. As such, work can be avoided in Step 2
of Algorithm 1 by filtering these operations during the traversal of the SPTape to pack
operations into O∗.

The additional computation performed by PARAD+S introduces a small constant over-
head relative to PARAD on some benchmarks, but does not compromise the theoretical
work-efficiency or scalability of PARAD.

4.6 Performance Evaluation

This section evaluates the performance of PARAD and PARAD+S that were implemented
in LibPARAD. All experiments were run on an 18-core (hyperthreading disabled) Intel
Xeon CPU (E5-2666 v3, 2.9GHz) with 64GB RAM available as a 4th-generation compute-
optimized machine from Amazon web services. LibPARAD uses Cilk Plus to express
parallelism and compiles the codes using the Tapir [305] based on LLVM 6.0.

Locks and Worker-Local implementations. We implemented two additional reverse-
mode AD algorithms Locks and Worker-Local that employ fine-grain locking and worker-

104

local storage, respectively, to resolve data races on the gradient table. Both of these im-
plementations use the SPTape to record series-parallel dependencies and automatically
parallelize the reverse pass over the tape, but they differ from LibPARAD in that do not
need to perform additional work to organize a deposit array. This, however, comes at the
expense of a loss of scalability and work-efficiency.

Application benchmarks. We evaluated the performance of LibPARAD across 8 bench-
marks with different performance characteristics relevant to reverse-mode AD. For each
benchmark, we measured the time required to perform AD while training the weights of
the network via gradient descent. Figure 4-8 presents our performance results, including
runtimes and speedup achieved for each benchmark. Figure 4-9 provides a summary of the
performance achieved by each implementation (in geometric mean) over all 8 benchmarks.

Note on serial performance of Adept. Although, in general, Adept is highly efficient,
we have observed on certain benchmarks (mlp, gcn, lstm) that the serial T1 runtime of
some of our algorithms outperforms the serial runtime Ts of Adept. This difference comes
entirely from the forward pass of the computation, and we believe it relates to differences in
how gradient identifiers are allocated in an SPTape and in Adept’s serial data structures.
This phenomenon also affects the algorithms using the SPTape, but negatively, on the cnn
benchmarks, where it causes added overheads in the forward pass.

Multilayer perceptron benchmarks

The mlp benchmarks are feed-forward multilayer perceptron networks where mlp1 has a
single hidden layer of 800 nodes, and mlp2 has two hidden layers with 400 and 100 nodes
respectively. Both networks are trained on the MNIST data set [89]. Performance results
are shown in Figure 4-8.

There is little performance variation among the different AD algorithms on the mul-
tilayer perception benchmarks. On these benchmarks, most of the work is performed by
library calls (using OpenBLAS) to perform matrix-vector multiplication, and all implemen-
tations include an optimization of the Adept library for concisely recording the derivative
dependencies resulting from a matrix-vector multiplication. Furthermore, the network is
very simple and regular.

Both the Locks and the Worker-Local implementations achieve relatively good scalability
on the multilayer perceptron benchmarks. On these benchmarks, the shared weight matrices
are large and used only once-per-element of a training batch in the forward pass. The
average number of operations-per-statement is large (> 100) which causes Worker-Local
gradient tables to be relatively efficient on 18-cores. Since these operations’ contributions
are well distributed and are performed on large weight matrices, however, there is little lock
contention and Locks also achieves good scalability on 18-cores.

Similarly, PARAD and PARAD+S perform similarly and achieve reasonably good
scalability. The optimizations outlined in Section 4.5 for PARAD eliminate almost all the
overheads related to the organization of the deposit array. As such, the 18-core runtime is
slower, but only slightly, than Worker-Local, and is still better than Locks.

Convolutional neural networks

The cnn1 and cnn2 benchmarks are convolutional neural networks (CNNs) based on the
lenet-5 architectures. The cnn1 benchmark implements a modernized version of lenet-5

105

Benchmark Algorithm Ts T1 T18 Ts/T1 Ts/T18 T1/T18

mlp1 PARAD 149.50 156.94 14.44 0.95 10.35 10.87
mlp1 PARAD+S 149.50 165.18 15.17 0.91 9.85 10.89
mlp1 Locks 149.50 219.33 16.64 0.68 8.98 13.18
mlp1 Worker-Local 149.50 129.87 12.91 1.15 11.58 10.06

mlp2 PARAD 83.66 92.18 8.22 0.91 10.18 11.22
mlp2 PARAD+S 83.66 95.93 8.77 0.87 9.54 10.94
mlp2 Locks 83.66 95.75 8.31 0.87 10.07 11.52
mlp2 Worker-Local 83.66 71.05 7.23 1.18 11.58 9.83

gcn1 PARAD 94.30 113.00 13.30 0.83 7.09 8.50
gcn1 PARAD+S 94.30 111.00 13.00 0.85 7.25 8.54
gcn1 Locks 94.30 216.00 77.10 0.44 1.22 2.80
gcn1 Worker-Local 94.30 84.90 14.20 1.11 6.64 5.98

gcn2 PARAD 19.20 26.90 4.14 0.71 4.64 6.50
gcn2 PARAD+S 19.20 28.20 4.76 0.68 4.03 5.92
gcn2 Locks 19.20 47.40 9.38 0.41 2.05 5.05
gcn2 Worker-Local 19.20 17.60 5.63 1.09 3.41 3.13

cnn1 PARAD 126.00 307.00 27.00 0.41 4.67 11.37
cnn1 PARAD+S 126.00 311.00 28.60 0.41 4.41 10.87
cnn1 Locks 126.00 314.00 42.30 0.40 2.98 7.42
cnn1 Worker-Local 126.00 246.00 80.50 0.51 1.57 3.06

cnn2 PARAD 159.00 381.00 35.30 0.42 4.50 10.79
cnn2 PARAD+S 159.00 380.00 36.40 0.42 4.37 10.44
cnn2 Locks 159.00 566.00 197.00 0.28 0.81 2.87
cnn2 Worker-Local 159.00 284.00 94.10 0.56 1.69 3.02

lstm1 PARAD 168.00 249.00 46.60 0.67 3.61 5.34
lstm1 PARAD+S 168.00 248.00 44.80 0.68 3.75 5.54
lstm1 Locks 168.00 441.00 62.60 0.38 2.68 7.04
lstm1 Worker-Local 168.00 147.00 34.20 1.14 4.91 4.30

lstm2 PARAD 168.00 933.00 93.80 0.18 1.79 9.95
lstm2 PARAD+S 168.00 241.00 23.40 0.70 7.18 10.30
lstm2 Locks 168.00 442.00 71.00 0.38 2.37 6.23
lstm2 Worker-Local 168.00 147.00 18.00 1.14 9.33 8.17

Figure 4-8: Table of benchmark results for the 8 application benchmarks and 4 algorithm
implementations. The best runtime/speedup on each benchmark is in bold font.

Algorithm Ts/T1 Ts/T18 T1/T18

PARAD 0.57 5.12 9.02
PARAD+S 0.66 5.88 8.89

Locks 0.45 2.77 6.14
Worker-Local 0.94 4.96 5.27

Figure 4-9: Average (geometric mean) performance of algorithms over the 8 benchmarks.

106

using maxpooling layers and linear rectifiers as activation functions. The cnn2 benchmark
implements the lenet-5 architecture as it was originally described in [210, 89] with average
pooling and the use of the tanh activation function. For both networks, we verified that we
achieve the expected accuracy for these well known networks after training for sufficiently
many epochs. The performance results are shown in Figure 4-8.

The Worker-Local and Locks implementations scale poorly on the cnn benchmarks.
The average number of operations-per-statement is approximately 2 on cnn1 and 8 on
cnn2. As such, Worker-Local performs substantially more work when executing on 18-cores
than it does when it executes serially. As such, Worker-Local achieves just 3x self-relative
speedup on the cnn benchmarks on 18-cores. Locks performs similarly poorly on the cnn2
benchmark, but performs better on cnn1 — achieving 7.4x self-relative speedup. Both of
the cnn benchmarks have many parallel updates to small shared weight matrices which
causes scalability issues for Locks. The cnn1 benchmark, however, has a lot of dynamic
sparsity (many gradients are zero) which substantially reduces lock contention.

The PARAD and PARAD+S algorithms scale well on the cnn benchmarks each achiev-
ing 10–11x self-relative speedup. Differences between the SPTape and Adept stack data
structures results in a performance hit on these benchmarks that causes somewhat worse
overheads. As a result, the speedup relative to Adept on cnn is about 4.5x on 18-cores for
PARAD and PARAD+S.

Graph convolutional networks

The graph convolution network (GCN) benchmark gcn1 performs community detection on
the pubmed network [195]. The input embeddings for the vertices are sparse bags of words
vectors and the network uses a single graph convolutional layer that learns an embedding
of dimension 32 for each vertex in the graph. We follow the training method described in
[69] and match their accuracy when training for the same number of epochs. The gcn2
benchmark operates on the email-Eu-core network dataset [221, 350] with random feature
vectors of dimension 1024 and learns an embedding of dimension 64. The performance
results are provided in Figure 4-8.

The scalability of Locks and Worker-Local is mixed on the gcn benchmarks. Like cnn
there are many parallel updates to small weight matrices, but the degree of contention varies
since it depends on the structure of the graph. As such, the self-relative speedup of Locks
and Worker-Local is mixed. The speedup relative to the serial Adept implementation,
however, is uniformly poor (1.2–2x) for Locks on 18-cores. Worker-Local achieves 6.6x
speedup relative to Adept on gcn1 and 3.4x speedup on gcn2.

The scalability of PARAD and PARAD+S is better than Locks and Worker-Local
on both gcn benchmarks. On gcn1 they achieve 8.5x self-relative speedup, and on gcn2
achieve 6–6.5x self-relative speedup. Relative to the serial adept code, they are about 7x
faster on gcn1 and 4–4.6x faster on gcn2 on 18-cores. The PARAD+S algorithm is the
best performing algorithm on gcn1, by a small margin. The more complex parallel structure
in the gcn benchmarks causes the more sophisticated optimizations in PARAD+S to be,
subtly, visible.

Long short-term memory networks

The long short-term memory network (LSTM) [155] benchmarks lstm1 and lstm2 imple-
ment a recurrent neural network to generate text given examples. We used a subset of the
Paul Graham dataset consisting of 500 100-character data points, using a one-hot encoding

107

of each character. The primary difference between lstm1 and lstm2 is that lstm1 has very
little parallelism. The lstm2 benchmark expresses additional fine-grained parallelism and
allows some algorithms to achieve improved performance.

On the lstm benchmarks, the Worker-Local implementation performs very well and
Locks performs poorly. The locking overheads are significant on the lstm networks and so
the scalability of Locks relative to Adept is poor 2x, even though its self-relative speedup
is fairly good. The Worker-Local implementation scales relatively well achieving 4x and
8x self-relative speedup on lstm1 and lstm2 respectively. Worker-Local is pretty efficient
relative to Adept on the lstm benchmarks as well since there are hundreds of operations,
on average, per statement. As such, Worker-Local achieves 5x and 9x speedup relative to
Adept on lstm1 and lstm2.

The differences between PARAD and PARAD+S are very apparent in the lstm bench-
marks. Although they perform similarly to one another on lstm1, the expression of addi-
tional fine-grained parallelism in lstm2 causes an increase in PARAD’s constant overheads.
The additional optimizations in PARAD+S, however, enable it to perform consistently
across both lstm1 and lstm2. PARAD+S achieves 7x and 10.3x self-relative speedup on
lstm1 and lstm2 respectively, and achieves 3.7x and 7x speedup relative to the serial Adept
code. Although not as good as Worker-Local on these benchmarks, PARAD+S is not too
far behind in terms of performance and scalability.

4.7 Related work

This section discusses related work on parallel AD.

Some previous work has examined parallelization of forward-mode AD. Forward-mode
differentiation can be accomplished using dual numbers that tie to each parameter x the
infinitesimal εx and perform computations on x̃ = (x + εx). Hovland et al. have explored
approaches that augment MPI communications to transmit dual numbers between nodes,
in order to parallelizing forward-mode AD for MPI programs [159, 158]. Forward-mode AD
is less efficient than reverse-mode AD, however, for many applications, including machine-
learning applications, for which the function F : Rn → Rm being differentiated has a
low-dimensional output, that is, m � n. Bücker et al. [55] examine parallel forward and
reverse-mode AD for OpenMP programs when minm,n is large. In contrast, PARAD’s
parallelization of reverse-mode AD is work-efficient and scalable, even when m = 1.

Prior work has developed specialized parallel reverse-mode AD algorithms for specific
computations. Gremse et al. developed optimized reverse-mode AD computations on GPUs
of four input functions [138]. Hückelheim et al. developed a parallel reverse-mode AD al-
gorithm for compressible flow solvers for unstructured meshes [161]. Other parallel reverse-
mode AD algorithms have been devised for stencil computations [164, 163], and convolu-
tional neural networks [162]. The code transformations employed for these parallel reverse-
mode AD algorithms do not generalize to handle arbitrary recursive fork-join programs.
PARAD, meanwhile, handles arbitrary recursive fork-join parallel programs.

Prior work has developed several systems that support parallel reverse-mode AD. In
the context of a parallel plasma simulation code, Bischof et al. explored parallel reverse-
mode AD for OpenMP programs, using OpenMP-thread-local instances of ADOL-C [28].
Substantial prior work has explored parallel reverse-mode AD in message-passing pro-
grams [158, 159]. Schanen et al. [301] have developed an adjoint MPI library, which provides
appropriate MPI communications to parallelize reverse-mode AD, based on communications
in a given MPI program. These systems are not guaranteed to be work-efficient, because of

108

the overheads they incur to combine parallel gradients. In contrast, the PARAD parallel
AD algorithm targets shared-memory multicore systems and is provably work-efficient and
scalable.

4.8 Conclusion

This chapter presented PARAD, a work-efficient and scalable reverse-mode AD algorithm
for determinacy-race-free recursive fork-join programs. PARAD performs reverse-mode AD
on a given program with scalability similar to the input program and bounded contention.
We have observed that PARAD works well in practice, achieving good work efficiency and
self-relative speedups on eight machine-learning benchmarks.

109

110

Chapter 5

A Multicore Path to
Connectomics-on-Demand

This chapter presents, as a proof-of-concept, a high-throughput connectomics-on-demand
system that runs on a multicore machine with less than 100 cores and extracts connectomes
at the terabyte per hour pace of modern electron microscopes. This work was conducted
in collaboration with Alexander Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor
Jakubiuk, Gergely Odor, David Budden, Aleksandar Zlateski, and Nir Shavit.

Abstract

The current design trend in large scale machine learning is to use distributed clusters of
CPUs and GPUs with MapReduce-style programming. Some have been led to believe
that this type of horizontal scaling can reduce or even eliminate the need for algorithm
development, careful parallelization, and performance engineering. This chapter is a case
study showing the contrary: that the benefits of algorithms, parallelization, and engineering,
can sometimes be so vast that it is possible to solve “cluster-scale” problems on a single
commodity multicore machine.

Connectomics is an emerging area of neurobiology that uses cutting edge machine learn-
ing and image processing to extract brain connectivity graphs from electron microscopy
images. It has long been assumed that the processing of connectomics data will require
mass storage, farms of CPU/GPUs, and will take months (if not years) of processing time.
We present a high-throughput connectomics-on-demand system that runs on a multicore
machine with less than 100 cores and extracts connectomes at the terabyte per hour pace
of modern electron microscopes.

Figure 5-1: The Stages of a high-throughput connectomics pipeline.

111

5.1 Introduction

The conventional wisdom in machine learning is that large scale “big-data” problems should
be addressed using distributed clusters of CPUs, GPUs or specialized tensor processing
hardware in the cloud [71, 80, 224, 329, 147, 135, 166]. This chapter presents a solution to
one of the most demanding big-data machine learning areas: connectomics. It provides a
case study in how novel algorithms combined with proper parallelization and performance
engineering, can reduce the problem from a large cluster to a single commodity multicore
server (that can be placed in any neurobiology lab), eliminating the crucial bottleneck of
transferring data to the cloud at terabyte-an-hour rates.

5.1.1 High-throughput connectomics

Perhaps neuroscience’s greatest challenge is to provide a theory that accommodates the
highly complicated structure and function of neural circuits. These circuits, found in flies,
in mammals, and ultimately, in humans, are conjectured to be the substrate that enables
the complex behavior we call “thought.” However, to this day, our ability to provide such
a theory has been hampered by our limited ability to view even small fragments of these
circuits in their entirety. Neurobiologists have had sparse circuit maps of mammalian brains
for over a century [289]. However, as surprising as this may seem, no one has seen the dense
connectivity of even a single neuron in cortex, that is, all of its input and output connections
(called synapses) to other neurons. No one has been able to map the full connectivity among
even a small group of neighboring neurons, not to mention the tens of thousands of neurons
that constitute a “cortical column.” Without such maps, it would seem hard to understand
how a brain consisting of billions of interconnected neurons actually works. Would you
believe that someone understood how a modern microprocessor worked if they could tell
you in great detail how individual transistors operated but were unable to describe how
these transistors are interconnected?

Mapping brain networks at the level of synaptic connections, a field called connectomics,
began in the 1970s with a study of the 302-neuron nervous system of a worm [343]. This
study, which required capturing and combining hundreds of electron microscopy images, was
done by hand and took 8 years. Manual mapping of minute volumes of neural tissue have
recently produced breakthrough results in neuroscience [191, 217, 262]. However, extending
the approach to the millions and billions of neurons in higher animals seems an unattainable
goal without a fast and fully automated pipeline.

Recent advances in the design of multi-beam electron microscopes now allow researchers
to collect the nanometer resolution images, necessary to view neurons and the synaptic
connections between them, at unprecedented rates. A cubic millimeter of brain tissue,
enough to contain a mouse cortical column, is within reach. This is only a tiny sliver of
brain, about the size of a grain of sand, but it will contain about 100 thousand neurons and
a billion synapses. The cubic millimeter will constitute about two petabytes of imagery that
will be collected in about 6 months using a 61-beam electron microscope that generates half
a terabyte of imagery per hour [100, 226].

A modern connectomics pipeline [227], as depicted in Figure 5-1, consists of a physical
part and a computational part. The physical part takes a piece of stained brain tissue
embedded in a resin, slices it thousands of times using a special microtome device, and
feeds these minute slices into an electron microscope that scans them and produces separate
images of the slices [100, 309]. The computational part of the pipeline, the focus of this

112

(a) (b) (c) (d) (e)

Figure 5-2: 2D visualization of connectomics pipeline stages: (a) Electron microscope (EM)
image. (b) Membrane probabilities generated by CNN. (c) Over-segmentation generated
by Watershed. (d) Neuron reconstruction generated by agglomeration. (e) Pipeline inter-
block merging: for each two adjacent blocks, the pipeline slices a boundary sub-block and
executes agglomeration.

chapter, then takes the thousands of separate 2-dimensional images, reconstructs the 3-
dimensional neurons within them, and produces skeletonizations or graphs that capture
their morphological and connectivity properties.

However, a viable solution to the computational problem of extracting the skeletoniza-
tions and connectivity maps from the image data still seems far away. Using existing
algorithms and at the present computing rates, the common assumption is that extracting
the connectivity of the circuits within two petabytes of data may take years and require su-
percomputing clusters [226, 338]. It is even unclear how to efficiently move the vast amounts
of data from the microscope to a large scale storage and compute facility where it will be
processed [227]. The prospect of connectomics-on-demand, where neurobiology labs around
the world each run their own microscopes and extract connectomes “as needed” seems far
far away.

This chapter takes a first step towards proving the feasibility of designing a high-
throughput connectomics-on-demand system that runs on a multicore machine with less
than 100 cores and extracts connectomes at the terabyte-per-hour pace of modern micro-
scopes. Such a system, once achieved, will eliminate the need to transfer and store petabytes
of data in special warehouses. It could be readily deployed in labs across the world, allowing
scientists to view connectomes as they come off the scope. Down the road, such efficient
connectomics systems could make it feasible for neurobiologists to extract the complete
connectome of a mouse cortex of about 12 million neurons and 120 billion synapses from
about 100 petabytes of data, and eventually make it possible to analyze exabyte-scale parts
of the connectome of both healthy and diseased human brains (Human brain has roughly
100 billion neurons and a quadrillion synapses).1

5.1.2 Towards an automated terabyte-per-hour connectomics pipeline

The “proof of concept” connectomics system we present here processes a terabyte of data,
from image-stack to detailed skeletons, in less than 4 hours on a single 72 core Haswell-
based multicore machine with 500GB of memory. The upcoming generation of both GPU

1These numbers may sound like science fiction, yet as Lichtman and Sanes note by analogy [228], se-
quencing the first human genome took multiple labs around the world a concerted effort over 15 years, while
today a single lab can sequence a human genome within hours.

113

and CPU chips, with some further optimizations (see our performance section), easily place
it within the target terabyte-an-hour performance envelope of todays fastest electron mi-
croscopes. One should contrast this with the recent connectomics system of Roncal et al.
[294] that uses a cluster of 100 AMD Opteron cores, 1 terabyte of memory, and 27 GeForce
GTX Titan cards to process a terabyte in 4.5 weeks, and the state-of-the-art distributed
MapReduce based system of Plaza and Berg [284] that uses 512 cores and 2.9 terabytes
of memory to process a terabyte of data in 140 hours (not including skeletonization).
Importantly, the speed of our pipeline does not come at the expense of accuracy, which is
on par or better than existing systems in the literature [294, 192, 284] (using the accepted
variation of information (VI) measure [252]).

Our high-level pipeline design builds on prior work [192, 241, 271, 272, 278, 284]. It
passes the data through several stages as seen in Figure 5-2. The image data is split into
blocks. The pipeline first runs a convolutional neural network (CNN) on the separate image
blocks to detect the boundaries of neurons. The neuronal objects defined by the boundaries
are then segmented into objects by a watershed algorithm. At this point the image is over-
segmented, that is, neuronal objects are fragmented. The next step in the reconstruction
is to run an agglomeration phase that merges all the fragments in a block into complete
objects. Then the blocks are merged, so that objects now span the entire volume. Finally,
as depicted in Figure 5-8, the objects are skeletonized.

5.1.3 Our contributions

• A new CPU execution engine for CNNs that scales well on multicore systems, process-
ing 1024x1024 images 70x faster than previous state-of-the-art [359] on a single 18-core
Haswell CPU. Our code applies GCC-Cilk (a state-of-the-art work-stealing scheduler
[37]), is optimized to leverage Intel AVX2 instructions [345] and maximizes memory
reuse in L1, L2 and L3 cache sub-systems. Analysis shows that this code achieves 80%
utilization of the peak theoretical FLOPS of the system on a single thread and scales
almost linearly, compared to previous approaches (Caffe CNN framework with Intel
MKL [177, 78]) that exhibit only 20% utilization and no scalability beyond 4 threads.
The remaining performance gap is obtained by implementing minimal “dense” (fully-
convolutional) CNN inference, which involves 284x fewer computations than naive
implementations.

• A new GPU execution engine for CNNs that leverages custom fast Fourier transforms
(FFTs) and the latest cuDNN primitives [70]. The system performs ∼2x faster for
our CNN benchmarks than previous state-of-the-art [264] on a Titan X GPU.

• Parallelized and performance engineered version of NeuroProof, a system originally
developed in Janelia Research Labs by Parag, Chakrobarty and Plaza [279]. This
system implements an agglomeration procedure that reconstructs 3D neurons from
the watershed oversegmentation. Specifically, we redesigned the Regional Adjacency
Graph (RAG) algorithm as an augmented mergesort, efficiently defer expensive opera-
tions that occur during constructions and traversals of RAGs, and batch computations
for lazy execution. Our implementation is 6.5x faster on a single thread, and has 85x
scalability factor on our 72-core server (super-linear factor due to HyperThreading).

• Two new algorithms for the connectomics domain: (1) a new inter-block merging
algorithm that, unlike prior approaches, applies parallelized NeuroProof to optimize

114

object-pair merges, and (2) a parallel skeletonization algorithm that uses novel tech-
niques and GCC-Cilk based chromatic scheduling [183] to execute efficiently on mul-
ticores. We describe the algorithmic side in more detail in [254].

We believe that our work departs from existing systems by showing that combination
of new algorithms, proper parallelization of existing algorithms, modern scheduling using
languages like Cilk, and performance engineering of code to fully utilize CPU resources,
can move the connectomics problem from the large scale distributed systems space to run
on a commodity shared-memory multicore system. This might be true for other big-data
machine-learning based problems in medicine and the life sciences, and even for problems
where big systems are necessary, our approach may provide insights on how to make indi-
vidual system elements much faster and scalable.

5.1.4 Related work

The image segmentation approach we use was developed by [8] and suggested for auto-
matic electron microscopy segmentation by [271]. It is used by most of todays systems
[271, 272, 278, 241, 192, 284]. Increasingly accurate membrane predictors based on convo-
lutional neural networks have recently been proposed [73, 295]. Our system implements a
solution that is inspired by these algorithms, is on-par with their current accuracy levels,
and yet is simpler and faster to execute. Other studies have focused on new approaches to
segmentation of supervoxels (e.g., [241]). Further research however is required to bench-
mark their accuracy on even gigabyte size datasets, so at this time their scalability cannot
be addressed.

We are aware of three previous connectomics pipelines: the original RhoAna pipeline
by Kaynig et al. [192], the system by Roncal et al. that extends RhoAna [294], and state-
of-the-art Plaza and Berg’s Spark-based system [284] that uses NeuroProof.

5.2 System overview

This is the story of how one can replace the use of a large distributed system with a single
multicore machine. Although a large distributed system may have tremendous computa-
tional resources at its disposal, its raw computing power comes with a cost of additional
overheads and system complexity, e.g. data must be moved over the network, and the sys-
tem must support a degree of fault tolerance [284, 71, 356, 225, 357, 86]. These overheads
tend to be small for problems that are embarrassingly parallel, but can come to dominate
the execution time of more complex computations that need to operate on shared data. In
addition, the opportunities to obtain performance within a single multicore are abundant,
and can result in performance improvements that rival or even dwarf those obtained through
horizontal scaling. As we will see, the connectomics problem requirements can be satisfied
using a single multicore machine to execute a pipeline of carefully designed multicore algo-
rithms that efficiently utilize a machine’s available computing cycles, take advantage of the
low shared-memory communication overheads, and parallelize across cores using efficient
task scheduling tools.

5.2.1 Pipeline structure overview

The input to our pipeline is a sequence of aligned 2D images each of which represents a single
slice of a 3D volume of brain that was captured at high resolution (∼3-4nm) by an electron

115

microscope. These images are broken down into smaller sub-images with a standardized
size of 1024x1024 pixels, which are then grouped into blocks of 1024x1024x100 pixels. The
pipeline executes a segmentation procedure that extracts the neuronal objects within each
block, and then executes an inter-block merging procedure that “combines” the per-block
segmentations to obtain a complete segmentation of the original input volume [254]. These
stages of the connectomics pipeline are illustrated in 2D within Figure 5-2.

First, as seen in Parts 1 and 2 of Figure 5-2, a convolutional neural network (CNN) is
executed to detect membranes (or cell borders). This network was trained using “ground
truth” annotation by human experts. The training process is time-consuming, but since
it only needs to be performed once on an annotated subset of the dataset it does not
impact the pipeline’s throughput. The result of applying the CNN to a subvolume is a new
1024x1024x100 block where each pixel indicates a membrane probability between 0 and 1.
Since the CNN may run on blocks independently, this stage of the pipeline may be executed
in a distributed manner. It turns out, however, that careful performance engineering enabled
this stage of the pipeline to execute sufficiently fast on a single multicore machine. In
fact, we found that our optimized code for executing the CNN was able to significantly
outperform existing state-of-the-art CPU [177, 78, 359] and GPU [264] implementations.
In Section 5.3 we describe the design of this CNN, and the steps taken to ensure that the
our implementations made efficient use of the machine’s compute cycles, L1/L2/L3 caches,
and disk.

Next, as seen in Part 3 of Figure 5-2, a 3D watershed algorithm executes on the mem-
brane probability map. The watershed algorithm performs a BFS-style flood from “seed”
pixels that have 0 probability of being a membrane, to pixels with higher probability. The
result of the watershed execution is a new block in which segments (3D objects) have been
formed around seeds, each with a segment identifier. Methods of parallelizing watershed
have been described in the literature (e.g. [261]), but it turned out that our pipeline was
able to achieve better performance by engineering an efficient sequential algorithm with
low-memory consumption. This strategy allowed us to obtain a watershed algorithm that is
an order of magnitude faster than the code provided in the popular OpenCV [174] library,
and whose low-memory requirements permit us to run many independent instances of the
algorithm on a shared memory machine. Section 5.4 describes the design of this serial
watershed algorithm in greater detail.

The segments produced by the watershed algorithm represent an over-segmentation of
the true neuronal objects; i.e. each neuron might be fragmented into many smaller parts,
as shown in Part 3 of Figure 5-2. To obtain segments that represent whole neurons an
agglomeration algorithm is employed that merges segments that lie within the same 3D
object. The result of the agglomeration procedure is a collection of larger segments that
each represent a whole neuronal object, as is illustrated (in 2D) in Part 4 of Figure 5-2.
The agglomeration procedure used by the pipeline is based upon the serial NeuroProof
agglomeration algorithm of Parag et al. [279]. We reformulated the Neuroproof procedure
to use parallel algorithms, and performed a variety of performance optimizations to reduce
the total work and memory usage. Together, these optimizations obtained a 6.5x speedup
on 4-cores over the original sequential code. Moreover, we achieve near-linear scalability
which provides an additional 82x factor speedup on our 72-core server with HyperThread-
ing. Section 5.5 describes, in greater detail, the parallelization techniques and performance
optimizations that were employed to optimize the agglomeration stage of the pipeline.

After a segmentation has been obtained for each block, the pipeline executes an efficient
inter-block merging procedure on the reconstructed blocks [254]. Here we utilize the shared

116

memory properties of the machine in which I/O operations are automatically cached by the
OS kernel. Thus, for every two adjacent blocks, our block merging algorithm carves out a
thin sub-block near the shared boundary and employs a variant of our parallel agglomeration
procedure to identify and merge objects across this boundary. Part 5 of Figure 5-2 is a two
dimensional rendering of this merging process. The result of each merging is a small file, and
because all the files are on the same machine, it is inexpensive to combine all of them into a
full segmentation. This contrasts sharply with the approach of Plaza and Berg [284] where
a sophisticated merge algorithm must be executed across many machines in the network.
In our case, there is no need to perform expensive data-transfers over the network and
to support a complex failure detection and recovery mechanisms, since the whole system
executes on a single server. The design of the inter-block merging procedure is discussed
further in Section 5.6.

The final step of the pipeline skeletonizes the volume segmentation (see Figure 5-8)
on a per-block basis. A skeleton provides a space-efficient one dimensional representation
of a 3D volume that runs a long the volume’s medial axis, allowing for faster and easier
analysis of the biological structures. It is also an intermediate step on the way to creating a
graph representation of the neuronal objects. We experimented with various skeletonization
algorithms and found out that a subfield “thinning” algorithm [25] fits our purposes best.
with points on the object boundary and repeatedly removes ones that do not affect overall
topological connectivity. We devised a simple and efficient parallel algorithm for extracting
volume skeletons using chromatic scheduling [183] to efficiently schedule the parallel order
of which points are considered for deletion doing the thinning process. The details of the
skeletonization algorithm are discussed further in Section 5.7.

5.3 Segmentation with CNNs

Our connectomics pipeline leverages a CNN to map EM input images to membrane proba-
bility output images. A CNN system is typically made up of two components: the network
architecture that defines layers of perceptrons and their connectivity, and the computational
framework that executes this architecture’s forward propagation over a trained network.
typically be trained using backward propagation and ground truth data, a compute inten-
sive phase that needs to be performed once. The trained network is then executed multiple
times in the life of the connectomics pipeline, allowing us to focus on forward propagation
times.

In this section we describe our network architecture and new computational frameworks
for both CPU and GPU. Specifically, these frameworks implement fully-convolutional neu-
ral networks by applying “dense computation” rather than a patch-based sliding window
approach [73]. This is accomplished through the usage of “max-pooling fragments,” which
apply the traditional maxpooling operation to different offsets of the input image [128, 245].
The resultant images are then recombined to produce the final dense result.

In contrast to other methods of dense computation (e.g., dilated convolution [352],
strided kernels [332], max filtering [215, 359] and filter rarefaction [231]), we adopt maxpool
fragments because they generate independent matrices that are contiguous in memory.
This feature is leveraged for improved parallelization of both our CPU and GPU-based
implementations, as described in detail in Sections 5.3.2 and 5.3.3 respectively.

117

5.3.1 Our network architecture

We recently proposed a CNN architecture, called MaxoutNet [254, 196, 191], which consists
of 4 ConvPool layers of alternating convolution/maxpool pairs aggregated with a maxout
function. Convolutional layers use 4 × 4 kernels with stride 1 and either 8 or 32 channels,
which combined with stride 2 max-pooling yields a 105× 105 field-of-view for each output
pixel. In our pipeline execution, MaxoutNet leverages the fact that our input EM images
are 3nm high resolution (2048× 2048): it performs sub-sampling of the input by executing
standard pooling in the first ConvPool layer, while executing “dense” poolings in the next
layers. This produces a 2-fold subsampled 1024 × 1024 output image, and accelerates the
network by a factor of 4 without losing too much accuracy. For our benchmarks, described
in Sections 5.3.2 and 5.3.3, we simplify this network and execute only the last 3 layers of
ConvPool.

5.3.2 A fast CPU framework for CNNs

We introduce XNN, a CNN framework implemented in C and inline assembly for Haswell
CPUs. These provide support for AVX2 instructions and include two FMA units, allowing
the chip to execute 32 floating-point operations per cycle [345]. As a result, a single 2.5
GHz 18-core Haswell chip can theoretically produce 1.44 TFLOPS (compared to state-of-
the-art GPU, like NVIDIA’s Titan X, that theoretically produces 6TFLOPS). In practice
it is challenging to achieve close to these peak floating-point utilizations, requiring careful
engineering techniques that take into account the hardware specifics. The remainder of this
section describes the techniques we applied to achieve state-of-the-art CNN throughput.

Haswell AVX2 SIMD parallelization

We initially adopted Intel’s MKL convolution primitives [78]. However, our results showed
that the CPU FLOPS utilization for MKL was only ∼20%, so we reimplemented this crit-
ical component with hand-crafted AVX2 assembly. One of complication of AVX2 vector
instructions is that they must have aligned memory addresses. As a result, it is impossible
to slide a convolution window on a 2D matrix by using AVX instructions since some of the
window locations are not aligned. Instead, we leveraged the fact that CNN’s internal matri-
ces are 3D, where the first two dimensions are spatial and the third dimension is channels.
The convolution window slides on the first two spatial dimensions while the AVX applies to
the third channel dimension, where the number of channels is a multiple of the AVX vector
width. This constraint is not problematic for CNNs that already use many channels, thus
allowing us to achieves 70-80% utilization.

Our first implementation was a simple loop over the channel dimension, which did not
provide a high CPU floating-point utilization. To improve this, we computed 6 convolutions
at the same time by using a different set of AVX registers for each (a total of 16 registers).
We interleave the register load, FMA compute, and store operations of the 6 running con-
volutions in a way that maximizes the usage of the two FMA units of the Haswell CPUs.
In addition, we made the loop bounds and counter increments constant at compile-time, so
that the GCC vector optimizations could unroll the loops and optimize the code as much
as possible.

118

(a) XNN (c) ZNN

2 6 10 14 18 36

4.0

3.0

2.0

1.0

10.0

20.0

30.0

Haswell (18 cores)

0.0

8
 c
h
a
n
n
e
ls

3
2
 c
h
a
n
n
e
ls

Threads

T
h
ro

u
g
h
p
u
t

(M
B

/
s)

Skylake (4 cores)

0.0

3.0

6.0

9.0

12.0

1 2 4 8
0.0

0.5

1.0

1.5

(b) Caffe

0.0

Figure 5-3: Throughput of the three CPU-based CNN implementations evaluated using 8
and 32-channel MaxoutNet.

Cilk-based concurrency and caching

We used Cilk [115, 219], a work-stealing scheduler that is supported by GCC 4.8, to dynam-
ically generate multicore fine-grained tasks. The key advantage of Cilk is that it provides
a “fork-join” primitive that scales well to many cores. It uses a sophisticated combina-
tion of per-thread double-ended queues, and a clever work-stealing algorithm that has no
bottlenecks and memory contention on a shared memory system.

Our implementation applies the Cilk “fork-join” primitive to all “for-loops” that have no
loop iteration dependencies, simplifying our parallelization effort. However, we still require
that memory accessed by executing Cilk threads fits into the L3 cache. The L3 cache is
much faster than main memory, and having threads working on data that resides in L3 is key
to ensuring a high ratio of compute to memory access, which is important for scalability.
For example, large matrix operations (e.g. convolution) are executed over sub-matrices
that each fit into the L3 cache, with a set of threads operating over this sub-matrix before
proceeding to the next. We observed that this approach improves scalability by a factor of
3-4x.

Memory usage

Another important aspect of the implementation is the amount of memory used to compute
the forward propagation pass of the CNN network. Since we are only concerned with
the performance of forward propagation, we optimized the memory usage significantly by
allocating only two large matrix buffers, one for input and one for output, and then reuse
(swap) these buffers between layers. As a result, the memory usage is bounded by the
largest input/output size of a single CNN layer, which reduces cache trashing and OS paging
effects. Note that memory is only allocated at the start, i.e. there are no dynamic memory
allocations during the computation itself that could introduce contention and bottlenecks.

119

T
h
ro

u
g
h
p
u
t

(M
B

/
s)

1 8 18 36 54 72 90 108 126 144

(a) 8 channels (b) 32 channels

0

3

6

9

10

20

30

40

0

single 18-core chip all chips (NUMA)

Figure 5-4: Throughput of the XNN up to 144 hardware threads on our 4 socket system.

CPU benchmarking

Benchmarking was performed on the same shared memory server we use to run our pipeline:
a 4-socket machine with Intel Haswell 18 core chips and 512 GB of RAM. We also bench-
marked a machine equipped with a single 4-core Intel Skylake CPU with 64 GB RAM.

We benchmarked our XNN framework against the most efficient known multicore CNN
frameworks the Caffe framework of Yangqing et al. [177] and the ZNN framework of Zlateski
et al. [359]. Throughput was evaluated using 1024×1024 (6 nm) images. We benchmarked
all three using a lightweight version of MaxoutNet with 3 fully convolutional ConvPool layers
(field-of-view = 53) because the subsampling required for the fourth layer (3 nm data) is
available only in our XNN framework. We benchmark for both 8 and 32 channels. To
ensure best performance, we compiled with the Intel C++ Compiler (ICC) version 16.0.0,
optimized for maximum speed (-O3), linked against Intel Threading Building Blocks (TBB)
version 4.4 (libtbbmalloc, libtbbmalloc proxy), and Intel Math Kernel Library (MKL)
version 11.3 with enabled FFT caching, and single-precision floating-point arithmetic.

The results of this benchmarking are presented in Figure 5-3. In this execution, we
perform a scalability test on a single 18-core chip: an input is set to a fixed size and we
increase the number of threads. By binding multi-threading to one chip we disable the
NUMA-effects for this test (expensive inter-chip communication). It is evident that our
XNN CPU framework exhibits substantial throughput improvement over Caffe and ZNN.
First, one can see that there is a significant difference in single-threaded performance, which
is the effect of the hand-crafted assembly of XNN that utilizes the two FMA AVX2 units of
Haswell CPU. Second, the scalability of XNN is almost linear, 15x over a single thread on
18 cores. This is achieved by constraining active threads to operate on memory sets that
fit into the L3 cache while using Cilk to manage short-living jobs.

Figure 5-4 presents the results of XNN executed as a single instance (fixed input) on
all 72 cores across 4 sockets, running up to 144 threads to utilize hyperthreading. As can
be seen, for the 32 channel execution (green) linear scalability is evident up to 18 cores
and plateaus all the way to 36 cores, as hyperthreading provides only 10-20% boost in
performance. Increasing threads from 36 to 72 utilizes additional cores to again provide
pseudo-linear scalability. Beyond 72 cores, additional threads leverage hyperthreading for

120

(a) gpuZNN (b) Neon (c) Caffe
Channe ls

8 32

0

20

40

60

T
h
ro

u
g
h
p
u
t

(M
B

/
s)

8 32 8 32

Size = 1024 Size = 512 Size = 256

Figure 5-5: Throughput of GPU-based CNNs using 8 and 32-channel MaxoutNet architec-
tures.

Method Type 8-channel MaxoutNet

Throughput (MB/s)

32-channel MaxoutNet

Throughput (MB/s)

XNN CPU (72-core) 111.1 16.67

gpuZNN GPU (Titan X) 67.61 25.28

Neon GPU (Titan X) 37.06 (exceeds memory)

XNN CPU (4-core) 11.49 1.74

Figure 5-6: A comparison of CNN throughput for the best-performing CPU and GPU-based
implementations using the MaxoutNet architecture.

a minimal further improvement. For 8 channels (red), the smaller network size generates
low latency Cilk tasks that introduce more pressure on the software implementation. There
is still linear scalability up to 18 threads, but only small improvement is evident beyond
36 cores. This is because the overhead of threading (NUMA side effects) is substantial
compared to the performance benefit from adding additional cores.

In our pipeline execution, we overcome these NUMA overheads by combining multi-
processing with multi-threading. Specifically, we execute multiple instances of XNN (each
bound to a specific chip) with an empirically optimized number of threads, resulting in a
2.8x speedup. Generating these instances increases the RAM requirements (not problematic
for our 512 GB RAM system).

121

5.3.3 A fast GPU framework for CNNs

In this section we present gpuZNN, a GPU-based CNN framework that improves upon the
previously published ZNN [359] to optimize forward propagation throughput.

The SIMT programming model and limited amount of memory available on a GPU
require a different implementation than our XNN CPU framework. To saturate the GPU,
we process multiple input images simultaneously. We also leverage the fact that all sub-
samplings of the “dense” computation have equal size, which is equivalent to processing
multiple inputs of a layer at the same time.

Most of our convolutional primitives use cuDNN’s low-level implementations [273, 70].
To address the large memory overhead of some primitives, we allow the computation to be
split into multiple stages, computing a subset of results at the time. This is accomplished
by computing a subset of input batches and/or subset of output images (feature maps).
This can reduce the parallelization potential, but reducing the memory overhead can allow
for using a computationally cheaper primitive. We also implement optimized FFT-based
convolutional primitives with very low memory overhead. Batched 1D FFTs and memory
reshuffling was used to efficiently utilize the GPU.

Sub-sampling layers (maxpooling and maxout) were implemented using cuDNN’s max-
pooling primitive. We minimized the number of calls to the primitives such that each
primitive performs more computation and can thus saturate the GPU. To allow this, we
implicitly gathered the inputs and scattered the results for each call. Implicit gather/scat-
ter is performed by providing the shapes and strides for all inputs/outputs from which the
memory location of each element can be computed.

GPU CNN benchmarking

We benchmarked our gpuZNN implementation relative to the fastest available GPU frame-
works [72] on an NVIDIA GeForce GTX Titan X (3072 cores, 1.0 GHz, 12 GB memory).
Specifically, we benchmarked the MaxoutNet network with both 8 and 32 channels for three
GPU frameworks: (a) gpuZNN, our modified version of ZNN [359]; Caffe [177], compiled
with cuDNN v4; and Neon by Nervana [264], which outperformed Caffe and other alterna-
tives on several recently published benchmarks [72]. Throughput was evaluated using 6 nm
images presented with different sizes (10242, 5122, 2562) in batches of size 32 (a constraint
of Neon’s GPU backend), while using max-pool layers with a stride of 1. This eliminates
“sub-sampling” effects of max-pooling and simulates the same number of floating-point
computations as a “dense” inference (not supported by Caffe or Neon).

The results of this benchmarking are presented in Figure 5-5. It is evident that gpuZNN
provides the best throughput on both 8 and 32-channels for all image sizes: 1.8x and 2.9x
faster than Neon and Caffe for 8 channels respectively, and 1.8x faster than Caffe for 32
channels. The 32-channel MaxoutNet could not be benchmarked on Neon as the memory
usage exceeded the 12 GB available on the Titan X. The main reason for gpuZNN’s improve-
ment is its low-memory overhead FFTs that allows it to aggregate large sub-computation
units and minimize the amount of calls to primitives of the GPU (each such call involves
host-device memory transfers on the PCI-E bus). We note that the actual speed difference
between 32 and 8 channels for gpuZNN is 2.6x (and not 32/8=4), which is an effect of
the overheads of PCI-E host-device memory transfers that become more significant as the
network becomes smaller.

122

A comparison of CPUs and GPUs

Table 5-6 shows the maximum throughput that we could achieve for XNN, gpuZNN and
Neon for 8 and 32 channel CNNs. For 72-cores, we found that the best combination of
multi-threading and multi-processing is 8 instances (2 per chip), where each is using 18
threads. One can see that for a network with 32 channels, the GPU is faster than the CPU.
However, this is not the case for 8 channels, where the CPU is twice as fast as the GPU.
This is because an 8 channel CNN implies less compute for the GPU and makes the PCI-E
bus memory transfers more expensive.

5.4 Watershed

The next stage in the connectomics pipeline involves producing an over-segmentation of
neuron candidates from the CNN membrane probability output. Over-segmentation en-
sures that no supervoxel straddles more than one true segment and is later resolved by
agglomeration. Specifically, we apply a custom 3D implementation of the popular linear-
time watershed algorithm that yields an 11x speed-up on previous implementations [174]. In
general, the key idea is to take into account that probability maps are allowed to take only
8-bit values, which allows us to implement the priority queue as a set of 28 FIFO queues.
The FIFO queues are implemented using simple arrays with an amortized cost of O(1)
for both push and pop operations. As a result, queue accesses are cache and pre–fetcher
friendly. In addition, we reduce the memory overhead by an order of magnitude compared
to OpenCV, which is an important factor for the watershed algorithm that exhibits low
ratio of compute-to-memory.

5.5 Agglomeration

The agglomeration stage of our pipeline is based on Neuroproof [279], a state of the art tool
for graph-based image segmentation. Serial optimizations and shared memory paralleliza-
tion techniques were employed to enhance the performance of Neuroproof on our shared
memory multicore system, with the results summarized in Figure 5-7.

5.5.1 Regional adjacency graphs

Agglomeration is performed on a higher-level representation of the labeled volume called
a regional adjacency graph (RAG). A RAG is a graph with a vertex for each distinctly
labeled region, and an edge connecting each pair of adjacent regions. Each vertex within
the RAG maintains several regional features such as histograms of membrane-probabilities
and multiple image moments. These features are typically associative with respect to the
agglomeration’s merge operation, and thus enable the agglomeration procedure to operate
directly on the RAG instead of the much larger input volume.

The RAG construction is the most expensive stage. Prior to our performance engineering
efforts, it required 124 seconds on a 1024x1024x100 block and was responsible for 70% of
the total time.

123

Baseline (s) Fast 1-core (s) Fast 4-core (s)

Input/Output 11.2 10.5 6.7
RAG Construction 123.2 24.2 6.8

RAG Agglomeration 42.5 40.2 13.4
Total 176.9 75.0 27.0

Figure 5-7: Performance improvements to agglomeration stage.

Serial optimizations

Feature computation was optimized by providing a batched version the feature computa-
tion function, so that it could process multiple pixels at once. In addition, a significant
optimization was for the image moment features. The ith image moment feature computes
the sum of pi for all pixels p in a region. The standard library pow function was used to
compute these features for 4 moments, and was to blame for over 50% of the runtime in
RAG construction. We modified the function computing moment features to perform itera-
tive multiplication, and reduce the per-pixel-cost to 3 floating point multiplications. These
modifications to feature computation resulted in a 2.5x improvement in serial runtime for
RAG construction, resulting in a total runtime of 50 seconds.

Another class of changes involved eliminating unnecessary layers of indirection in matrix
and hashtable access. The labeled input volume was loaded into an OpenCV Mat object
and was accessed through a provided interface. We modified all accesses to operate directly
on matrices underlying arrays to eliminate unnecessary indirection to the OpenCV library.
This resulted in a further 1.6x improvement in RAG construction time, reducing the total
runtime of RAG construction to 30 seconds.

The last major optimization was the design of a divide-and-conquer RAG construction
algorithm that takes advantage of the associativity of region features. Given a 3D volume,
the largest dimension of the volume was divided in half and the RAG was computed for
each half recursively. These RAGs were then merged with their regional featured combined
according to each of their associative update rules. The base-case of the recursion was
coarsened so that the total volume would fit into an L2 cache of approximately 256 KB.

Parallelization

The divide-and-conquer implementation of RAG construction was especially amenable to
efficient parallelization. In particular, the method of merging RAGs can be performed
efficiently by thinking of the algorithm as a parallel merge sort with an augmented merge
operation [77, Ch 27.3]. In other words, the RAG construction algorithm can be parallelized
in the same fashion as merge sort by considering a RAG to be a sorted edge-list. We
represent regions with a self-edge and store the region’s computed features as metadata.
After performing a merge of two RAGs’ edge lists, the edge list is scanned in parallel
to identify and merge duplicated edges. These steps can all be performed in parallel using
logarithmic-depth algorithms. On 4 cores, the parallel RAG construction algorithm achieves
speedup of 3.5x, reducing the time of RAG construction to 6.8s.

After RAG construction, RAG agglomeration analyzes edges to determine which node
pairs to merge. We observed that most of the work was performed by a random-forest
classification library within OpenCV that computes edge weights. To parallelize RAG

124

agglomeration, we defer the computation of edge weights, and mark affected nodes and
edges as dirty [279]. A dequeued edge is ignored if it is dirty or incident to a dirty node.
When the priority queue is empty, the edge weights are all computed in parallel as a batch,
and reinserted into the queue. This strategy resulted in 3x speedup for agglomeration,
reducing its runtime from 40.2 to 13.4 seconds.

5.6 Merging

The state-of-the-art Spark-based system of Plaza and Berg [284] generates overlaps between
adjacent blocks and identifies “merge pairs” from these overlaps. These merge pairs are
identified from a set of complicated, hand-crafted heuristics, and the authors report that this
is made difficult by the substantial number of edge cases. Instead, our merging algorithm
leverages NeuroProof’s fast random forest algorithm to identify merge pairs directly [254].
We further optimize this process by ordering and parallelizing computations in a way that
maximizes utilization of the cache sub-systems, e.g. by processing small subsets that fit in
the L3 cache of each chip.

Merge Pair Decisions. Merge pairs are determined for all adjacent blocks in the volume
in two phases. First, the segments in the block boundary are agglomerated using our
parallel NeuroProof. This phase is conservative, so only clear matches are merged. In the
second phase, the algorithm generates a synthetic ground-truth by executing watershed
and agglomeration on the block boundary. Then, it executes an optimization procedure
based on the synthetic ground-truth: it merges a pair and computes the associated VI score
relative to the ground-truth. If accuracy decreases, it aborts the merge and tries a different
pair. Note that since most of the pairs are merged in the first phase, the second phase has
fewer pairs to process and is substantially faster.

Combining and Relabelling. The merging procedure gives each voxel a new (final)
label in the whole volume. To combine labels, we implemented a disjoint-set data structure,
which clusters segments from different blocks according to the merge pair decisions. In a
cluster-based system, this process is complicated by network transfers and failures, where in
our case all intermediate data is immediately available in RAM or on disk, As an example,
it takes just 4 seconds to combine labels of a 473 GB dataset – a speed which would be
unobtainable on a network of hundreds of machines. Finally, the algorithm executes a
parallel pass over all segmented blocks and relabels them according to clustering from the
disjoint-set data structure. As this step is I/O bound, we utilize all of the drives to maximize
I/O throughput.

5.7 Skeletonization

A skeleton is a one dimensional space-efficient representation of a 3D volume that runs along
the segments’s medial axis. There are a vast number of algorithms to compute skeletons for
a variety of purposes in computer graphics [299]. We found that for connectomics a thinning
algorithm would be most fitting because it is the fastest algorithm that still preserves the
connectivity of the objects. Their algorithms remove all so-called simple points, voxels whose
removal does not change the topology. Checking if a point is simple or not is non-trivial,
especially when multiple voxels are deleted in parallel.

125

Figure 5-8: Skeletonization of 20 objects from the Kasthuri et al. dataset (as one large
block) [191] (473 GB ≈ 100,000 cubic microns of cortex).

Our parallel thinning algorithm is implemented as a chromatically scheduled dynamic
data-graph computation [183]. A grid graph represents the labeled 3D volume and a
statically-computed distance-2 coloring is used to identify sets of voxels that may be pro-
cessed in parallel.

Initially updates are scheduled on all surface points, which check if a given point satisfies
the simple point criterion based on their 26-neighborhood. An update that deletes a point
schedules an update dynamically for all non-deleted neighbors. Since there are only 226

possible 26-neighborhoods, the simple point criterion can be precomputed. Our simple
point criterion is based upon the 38 templates of [314] and ensures local connectedness.
Since our algorithm uses chromatic scheduling, it is equivalent to a standard 8-subfield
thinning algorithm and thus provably preserves the topology of the objects [25].

After skeletonization, we transform the 3D segments into tree graphs based on 26-
connectivity. If cycles exist in the graph they are broken up arbitrarily, however, large cycles
are detected and are reported for further analysis and error detection. After performing a
one-pass pruning step the trees are outputted as .swc files and visualized using the neuTube
software[104]. Although not scalable, the same algorithm can run on the entire volume
instead of the per-block approach (Figure 5-8).

5.8 Pipeline performance

Machine learning consumes a large fraction of the computation in existing systems [284,
294], and was the main target of our scalability effort, so we spent time understanding its
performance on both CPUs and GPUs earlier in the chapter. Here we focus on the combined
performance of our pipeline elements. The main workhorse for our system testing is the
previously described 4-socket shared memory machine equipped with 4 18-core Intel Xeon
CPUs with 512 GB of RAM running Ubuntu 14.04.

We tested our pipeline on a 473 GB (3x3x30 nm resolution) electron microscopy dataset
of mouse somatosensory cortex [190], containing 1850 pre-aligned 16,384 x16,384 (256 MB)
2D EM brain scans.

Figure 5-9 shows our total execution times for all of the pipeline stages. The total
time to process the entire 473 GB EM dataset was 1.7 hours, implying a throughput
of 3.6 hours/TB. Importantly, we have managed to improve the machine learning-based
segmentation component to be on par with others, which has previously been a bottleneck

126

CNN
200MB/s (38%)

Skeletonization
1.1GB/s (7%)

Merging
430MB/s (17%)

Agglomeration
330MB/s (23%)

Watershed
500MB/s (15%)

Figure 5-9: Proportion of the execution time spent on each stage.

in the throughput of connectomics pipelines [284].

To analyze the efficiency of using a 72-core system, we measured the time that it takes
to execute our pipeline on a single core. The result is 1.11 s/MB total on a single core,
compared to 0.013 s/MB on 72-core. This means that our pipeline achieves an 85x factor
speedup, which is more than 72 because of the hyper-threading that allows us to generate
144 hardware threads on a single machine.

To achieve maximum throughput in the CNN phase, we execute 8 instances of XNN
(2 per chip), where each instance uses 18 threads. This eliminates any NUMA side-effects
that could introduce contention and bottlenecks. In the watershed phase, we simply spawn
144 instances since the implementation we have is a fast sequential code with low memory
consumption (each instance <1 GB, and total memory is 512 GB). In the agglomeration, we
execute 36 instances of the parallelized NeuroProof’s code (9 per chip), where each instance
uses 4 threads. A similar scheme is applied to merging and skeletonization.

5.8.1 Reconstruction accuracy

To evaluate the reconstruction accuracy of our pipeline we followed the benchmark described
by Kaynig et al. [192]. We partitioned a total of 150 images (a region of the data called
AC3 in [192]) at 2048x2048 and 3 nm resolution into three sets; 10 for training, 65 for
validation and 75 for testing. Ground truth neuron segmentation was provided by expert
neurobiologist annotators.

Our measure of segmentation accuracy is variation of information (VI) [253], that cap-
tures the statistical difference between two segmentations. In a typical segmentation there
are split errors (neurons split erroneously) and merge errors (neurons merged erroneously),
and the VI is an indicator to the extent of such errors in the data set. We benchmarked our
8-channel MaxoutNet CNN architecture (described in Section 5.3.1) and the state-of-the-
art reconstruction of RhoAna described by Kaynig et al. [192] using the same evaluation
benchmark on our test dataset described above. Our reconstruction obtained an accuracy
score of VI = 1.6483, a substantial improvement over the VI = 1.99 score reported for

127

RhoAna (lower VI means improved reconstruction).

5.9 Lessons learned

In this section we discuss some of the general lessons learnt from our effort to reduce a high-
throughput, big-data problem to the domain of a single shared-memory multicore system.
Some of these may be known to the reader, but others were counter-intuitive, at least to
us, and therefore worth explicit mention.

Software scalability reduces memory requirements. Writing multicore code is gen-
erally hard – it is far simpler to write a single-threaded program that avoids the associated
concurrency “nightmares,” and scales horizontally by launching a separate instance per core.
While this may work for simple tasks, we observed that this approach can be seriously flawed
for complex software. In the case of both our NeuroProof and CNN implementations, the
large memory footprint of each instance caused the OS to frequently swap between memory
and disk, thus increasing I/O bandwidth requirements. Moreover, scalability degraded due
to L3 cache pollution – multiple instances spawned on the same 18-core chip populated the
shared L3 cache with disjoint memory accesses. To tackle this issue, we engineered our
software so each instance utilizes all 18 cores. For our 4-socket 72-core machine, 4 instances
of this software were spawned, (one per socket) to avoid handling complex NUMA over-
heads [58, 94, 95, 102, 255], although it is possible that further work could allow a single
instance to effectively utilize the full machine.

Disk I/O on a single machine is not problematic. Once computation is sufficiently
optimized, disk-to-memory I/O for a single machine can become a bottleneck. This is often
part of the motivation to migrate computation to a cluster of machines, and is a problem
we encountered in the Watershed and agglomeration pipeline phases (where the disk I/O
100 MB/s read and 200 MB/s write were reached). Instead, we resolved this bottleneck
by horizontally scaling our disk drives – data was sharded across a set of 5 drives, yielding
500 MB/s read and 1000 MB/s write for the system. Adding more disks to improve I/O
bandwidth in this manner is far cheaper and simpler than migrating to a distributed cluster.

Cilk simplifies cache-aware multicore parallelization. A potential criticism of a
multicore implementation approach is that we are simply shifting from one set of program-
ming complexities (networking, failure detection and recovery schemes on a distributed
system) to the unique challenges posed by multicore concurrency. Our experience is that
effective multicore programming can be very straightforward. We make extensive use of the
GCC-Cilk work-stealing scheduler to parallelize loop iterations, which removes the need to
manually handle jobs/threads, encapsulate their environment (variable stacks) or schedule
across multiple cores. In this way, multicore scalability only requires us to ensure that loop
iterations (forming Cilk jobs) are cache and pre-fetcher friendly.

A GPU is not 100X faster than a CPU. It is widely believed in the machine learning
community that a single GPU can perform orders of magnitude faster than a single CPU.
This is supported empirically by popular machine learning packages – if one compares
Caffe (bound to Intel MKL and Nvidia cuDNN libraries) execution times on GPU versus
CPU, the speed-up is approximately 50 to 100-fold. Following our multicore performance

128

engineering efforts, we observe substantially different results. On a single 18-core 2.4 GHz
Haswell chip, our XNN execution is only 2-3x slower than both gpuZNN and the previous
fastest CNN framework (Neon [264]) executed on a Titan X GPU. Moreover, XNN execution
on a commodity 4-core Skylake chip (a standard desktop/laptop processor) was only 4-6x
slower than this top-end GPU. These observations are consistent with the findings reported
in [216], but here we support the claim on a modern CPU.

Multicores enable new efficient algorithms that are expensive on clusters. Cluster-
based algorithms exhibit high network latencies, which forces them to avoid communication
between machines. As a result, programmers are constrained to coding patterns that are
“trivially parallelizable” in the context of clusters, since it is the only way to avoid high
network costs and get scalability. However, this is not the case for multicores: inter-core
communication is orders of magnitude less expensive than network cluster communication,
which allows programmers to design more sophisticated approaches that involve complex
communication patterns. For example, in our case, a multicore pipeline can use a sophis-
ticated scheduler to split the work between cores: it can identify problematic data regions
and schedule cores to process them without the need to worry about communicating the
problematic data and setting the cores (this is a much more complex and expensive process
on a cluster).

Programming for multicores is not harder than for a cluster. A common belief
of Hadoop/Spark programmers is that coding for a distributed cluster is simpler than for a
multicore, and therefore, shifting software to multicores is not worth the effort. However,
our experience shows that this not true. A key point that needs to be emphasized is that
coding for clusters is simple as long as the parallelization of the problem is “trivial”. In
other words, as long as one can break the problem to small parts without the need to use
communication between these parts, then it is easy to do map-reduce style programming.
However, if this is simple for the cluster, then it will also be simple for the multicore. This is
because one can use threads to execute the small parts, and since there is no communication
between these parts, there is no need to detect and handle race-conditions, which are the
complex and hard part of the multicore programming. As a result, if programming cluster
is simple, then programming multicore must be simple as well.

5.10 Conclusion

We presented a “proof of concept” connectomics pipeline that can extract a full skeletoniza-
tion from an EM image stack in less than 4 hours on a commodity multicore machine and
with a VI accuracy on par or better than any existing system. This has the potential to
move the connectomics problem, a big-data research problem in the natural sciences, from
the realm of distributed data and warehouse storage, to that of on-demand processing in
labs across the world. Given current trends in multicore CPU and GPU architectures, we
venture to predict that a single socket machine, perhaps with a single attached GPU card,
will be able to provide a solution for many connectomics pipelines around the world.

The domain-specific results we report on Kashturi data-set [191], constitute a case-
study on the role of multicore performance engineering in large-scale image processing
pipelines. The lessons learnt from our experiences designing this system are of great import
to those in the multicore and cluster computing communities. Through careful performance

129

engineering, we show that a single commodity multicore machine can not only compete, but
significantly outperform, existing CPU- and GPU- based clusters solving the same problem.
This, of course, is not intended to advocate that all “big data” problems are best solved
on a single multicore, but rather to serve as a reminder of the importance and dramatic
benefits that can be obtained through multicore performance engineering.

5.11 Acknowledgements

Support is gratefully acknowledged from the National Science Foundation (NSF) under
grants IIS-1447786 and CCF-1563880, and the Intelligence Advanced Research Projects
Activity (IARPA) under grant 138076-5093555. In addition, we would like to thank the MIT
SuperTech group for helpful discussions. In particular, Quan Nguyen, William Hasenplaugh,
Bradley Kuszmaul, and Charles Leiserson. Finally, we would like to thank the Harvard
connectomics group for reviewing our work and providing useful feedback. Specifically,
Daniel Berger, Adi (Suissa) Peleg, Thouis R. Jones, Hanspeter Pfister, David Cox, and Jeff
Lichtman.

130

Chapter 6

High-Throughput Image
Alignment for Connectomics using
Frugal Snap Judgments

This chapter presents a high-throughput image alignment pipeline for connectomics that
employs the multicore algorithms Quilter and Stacker to perform 2D and 3D alignment
respectively. As part of the optimization of this pipeline, this chapter introduces a technique
for data-driven performance optimization called frugal snap judgments that is used to obtain
more advantageous performance–accuracy trade-offs in Quilter. This work was conducted
in collaboration with Brian Wheatman and Sarah Wooders.

Abstract

Accurate and computationally efficient image alignment is a vital step in the field of connec-
tomics, which seeks to understand the structure of the brain through electron microscopy.

We introduce the algorithms Quilter and Stacker that are designed to perform 2D and
3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and
Stacker are efficient, scalable, and simple to deploy on hardware ranging from a researcher’s
laptop to a large-scale computing cluster. On a single 18-core cloud machine each algorithm
achieves throughputs of more than 1 TB/hr and when combined produce an end-to-end
alignment pipeline that processes data at a rate of 0.82 TB/hr — an over 10x improvement
over previous systems. This efficiency comes from both traditional optimizations, and from
the use of “Frugal Snap Judgments” to judiciously exploit performance–accuracy trade-offs.

A high-throughput image alignment pipeline was implemented and evaluated using the
Quilter and Stacker algorithms. The performance was evaluated on a range of platforms
including a common 18-core machine (Intel E5), a large 112-core machine (Intel Xeon Plat-
inum), and a supercomputing cluster with 1600 cores. The pipeline achieves a throughput
of 0.6–0.8 TB/hr on the 18-core machine, 1.4–1.5 TB/hr on the large 112-core machine,
and 21.4 TB/hr on the supercomputing cluster with 1600 cores.

6.1 Introduction

Accurate and computationally efficient image alignment is vital within the field of connec-
tomics [227, 226, 313, 298, 331], which seeks to study comprehensive maps of connections in

131

the brain through the analysis of extremely-high resolution imagery obtained from electron
microscopes. Advances in electron microscopy have enabled the acquisition of image data
sets that capture both the small and large-scale features present in neural tissue. The resul-
tant data-sets are quite large with a relatively small 1mm3 volume producing petabytes of
data when imaged at (3× 3× 30)nm resolution. The scale of the acquired data necessitate
the development of image processing algorithms that are both scalable and efficient.

The process of imaging a large physical volume at such high resolution does not, im-
mediately, produce a single representative three-dimensional image. Instead, the volume
to be imaged is physically sliced into very thin sections (approximately 30nm thick) which
are then each imaged separately. Imaging a single two-dimensional section in its entirely
is, unfortunately, also not possible since the size of each section vastly exceeds the limited
field of view of the microscope. In order to image each section, therefore, the head of the
microscope must physically move to scan over the entirety of a section each time capturing
a single image tile of the section. These images must be aligned using 2D and 3D align-
ment algorithms in order to correct for the physical movements of the microscope and the
deformations introduced during the slicing process [227].

This chapter presents a case study on the engineering of a high-performance image align-
ment pipeline for connectomics that makes efficient use of commodity multicore hardware
whilst retaining both strong and weak scalability. The focus of our discussions shall be on
the development of a high-performance variant of an existing, widely used, image alignment
algorithm as implemented in software tools such as FijiBento [293] which is widely used
within the connectomics research community [178, 312, 209, 311].

Designing an efficient alignment pipeline for multicore

Existing systems for performing image alignment in connectomics distribute fine-grained
tasks over large compute clusters that have specialized hardware (GPUs) for accelerating
performance-intensive tasks. Although there exist many, often lab-specific, alignment sys-
tems, they all tend to closely follow the methodology used in the FijiBento library [293] and
the HHMI/Janelia Aligner project [306]. Each of these systems distributes work in stages
where each stage is composed of one or more tasks for each image tile (approximately 8
MB) in the dataset. The intermediate results needed to combine the results of these tasks
to perform 2D and 3D alignment are communicated either directly over the network or,
more commonly, through a distributed filesystem such as Lustre [45] or pNFS [152]. In Sec-
tion 6.2 we review the algorithms used in connectomics to perform 2D and 3D alignment
and discuss the performance challenges that previous systems have encountered.

In Section 6.3 and Section 6.4 we describe the two multicore algorithms that form the
backbone of this work’s alignment pipeline. In Section 6.3, we introduce Quilter which
is an efficient multicore algorithm for 2D alignment that avoids costly serialization and
communication of intermediate results. Key to the design of Quilter is its efficient task
ordering which allows it to reap the advantages of fast shared-memory communication of
intermediate results whilst retaining the ability to scale to data sets that are much larger
than the available memory of a single multicore. In Section 6.4, we introduce the Stacker
algorithm which performs 3D alignment of sections. Stacker enables the alignment of a
stack of sections in parallel by computing the pair-wise alignment of all adjacent sections
concurrently. Although this strategy is often employed when performing affine alignment of
sections, this method has not been used with the non-uniform elastic transformations that
are needed to align imagery in connectomics.

132

Exploiting performance–accuracy tradeoffs

A simple way to increase the throughput of an image processing pipeline is to downsample
the data. Downsampling the data is a tempting strategy for improving the performance
of Quilter. For the vast majority of tiles in a section, aligning neighboring tiles using
downsampled images does not change the computed relative alignment.

Our discussions with practitioners performing image alignment on connectomics datasets,
however, revealed a wariness towards downsampling due to its potential to introduce er-
rors. Their rationale is twofold: (a) the alignment errors introduced in 2D alignment, while
small, can accumulate when performing stitching of a large section resulting in unnatural
deformations that are difficult to correct; and, (b) even small misalignments are sufficient
to alter fine-details in certain neuronal structures such as the spine necks of dendrites. In-
deed, small differences in alignment can impact later stages of the connectomics pipeline;
e.g., small misalignments of 4–8 pixels can cause neuronal objects to be incorrectly split or
merged [227].

The potential performance advantages of downsampling, however, were too alluring
to pass up. Thus, we developed a technique called frugal snap judgments that allows us
to obtain more advantageous performance–accuracy trade-offs. Figure 6-1a and Figure 6-
1b show the throughput and accuracy obtained for 2D alignment when using frugal snap
judgments (FSJ). Using frugal snap judgments, our system learns to identify when the
result of the fast alignment algorithm is likely to match the result of the more-accurate
code. This enables us to achieve a 5x improvement in throughput without introducing
significant alignment error.

In Section 6.5 we introduce frugal snap judgments and explain how we applied it to
the image alignment problem to obtain more advantageous performance–accuracy trade-
offs. Using frugal snap judgments, our system learns to identify when the result of the fast
alignment algorithm is likely to match the result of the more-accurate code. The learned
criteria is not based upon an objective notion of correctness (which would be costly to
compute). Instead, it is based upon intermediate results generated by the fast alignment
code that are analyzed to extract a measure of reliability.

Performance evaluation of Quilter and Stacker

Section 6.6 presents an end-to-end performance evaluation of the image alignment pipeline
we developed using Quilter and Stacker. We investigate the performance of Quilter and
Stacker on a set of four computing platforms that range from a modestly sized desktop
machine to a large compute cluster with thousands of cores. The efficient design of Quilter
and Stacker combined with the judicious exploitation of performance–accuracy trade-offs
using frugal snap judgments allows us to obtain state-of-the-art performance while using
only commodity multicore hardware. Our pipeline achieves 0.6–0.8 TB/hr throughput on
a commodity 18-core Intel Xeon CPU E5-2666; 1.4–1.5 TB/hr throughput on a large 112-
core Intel Xeon Platinum 8180 (2.5GHz); 7.5 TB/hr on 5440 AMD Opteron 6274 processors
(2.2GHz); and, 21.4 TB/hr on 1600 Intel E5-2666 cores.

Contributions

A summary of the contributions are as follows.

• An efficient 2D alignment algorithm called Quilter with a low memory high-water-
mark that does not perform redundant file I/O or recomputation.

133

Algorithm Runtime Throughput

100% 180 minutes 0.18 TB/hr
50% 86 minutes 0.38 TB/hr
33% 49 minutes 0.67 TB/hr
25% 30 minutes 1.1 TB/hr
20% 27 minutes 1.2 TB/hr

FSJ(20%, 100%) 32 minutes 1.03 TB/hr

(a) Alignment throughput.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

>1px >2px >4px >8px

%
T

il
es

FSJ (20,100)
50%
33%
20%

(b) Alignment errors.

Figure 6-1: Impact of downsampling on throughput and accuracy. Figure 6-1a shows run-
time and throughput of 2D alignment on the mouse50 dataset: a 550GB dataset composed
of 65, 000 tiles. Figure 6-1b illustrates alignment errors on mouse50 greater than 1px, 2px,
4px, and 8px relative to the algorithm run on full-resolution images. The algorithms 50%,
33%, and 20% downsample to 1/2, 1/3, and 1/5 respectively. FSJ(20%, 100%) downsamples
to 1/5, but recomputes at full-resolution when detecting a likely error.

• A horizontally scalable 3D alignment algorithm called Stacker that supports affine
and elastic transformations.
• We introduce the optimization technique of frugal snap judgments and apply it to

improve the performance of Quilter by 3–5x with no significant accuracy loss.
• System evaluation of Quilter and Stacker on three datasets ranging in size from 550GB

to 38TB, and on four computing platforms including a single 18-core workstation and
a supercomputing cluster with thousands of cores. The evaluation illustrates end-to-
end performance, vertical/horizontal scalability, and strong/weak scaling.

6.2 Alignment algorithms used in connectomics

In this section, we provide necessary background on the general structure of algorithms used
to align large EM data sets in connectomics. The primary purpose of this discussion is to
provide a basic understanding of the key operations that are performed during alignment
when using FijiBento (and related) systems. Additionally, we will discuss some perfor-
mance challenges related to memory-limitations and overheads due to data serialization
and file/network I/O.

Image data format

Let us briefly describe the format of the images provided by the microscope to make our
later back-of-the-envelope calculations concrete. The microscope provides a set of image tiles
where each image is 2724× 3128 pixels. Each pixel in an image represents a (3× 3× 30)nm
physical volume. We assume that the set of tiles that compose a 2D section fall within a

134

bounding rectangle whose length and width differ by a constant factor; and, we assume that
the average tile overlaps with ≈ 8 neighbors. These assumptions are realistic guarantees
that are ensured during the image acquisition process.

2D alignment algorithm

The first step of the alignment pipeline constructs a 2D section from the set of image tiles
obtained by imaging a single physical slice of tissue. During the imaging process each
image tile acquired is associated with an approximate location in the plane, and adjacent
tiles are imaged such that there is a small amount of overlap. This overlap allows for the
2D alignment algorithm to identity common landmarks in adjacent tiles that are then used
to precisely determine the tiles’ position relative to eachother. After the relative alignments
are computed, optimization is performed to find the tile locations that minimize the total
energy of a system in which each adjacent tile pair is connected by a spring with rest position
determined by the tile pair’s relative alignment.

Algorithm 2 2D image Alignment
Result: locations of each tile in a single global space.

1 read in metadata file
2 create list P of all pairs of possibly overlapping tiles
3 all local offsets = ∅
4 for p ∈ P
5 load image(p.first)
6 load image(p.second)
7 kp 1 = getKeyPoints(p.first)
8 kp 2 = getKeyPoints(p.second)
9 matched kp = matchKeyPoints(kp 1, kp 2)

10 local offset = find best offset(matched kp)
11 all local offsets[p] = local offset
12 global offset = combine offsets(all local offsets)

Algorithm 2 illustrates the structure of the 2D alignment step. The input to Algorithm
Algorithm 2 is a metadata file that includes the location of each image tile on disk, and
the approximate coordinates of each tile in the plane. These approximate coordinates
induce a poor alignment, but are sufficient to determine the pairs of tiles that overlap. The
image data for each tile is often compressed to reduce file and network I/O. A common
format is JPEG2000[91] which obtains up to 10x compression ratios on connectomics data
sets. Generating keypoints is commonly performed using the SIFT algorithm[235]. Other
algorithms such as SURF[17] and ORB[296] are sometimes used in place of SIFT, but
their use is less common. Keypoints in the two images are matched by finding the nearest
neighbors in the SIFT feature space, and filtered using the ratio of difference heuristic
described in [235]. Next, a random sampling and consensus algorithm (RANSAC) [110]
is used to find a coordinate transformation (in the case of 2D a rigid translation) that is
consistent with the maximum number of matched keypoints.

135

Design considerations for 2D alignment

A variety of designs were considered for the 2D alignment algorithm that vary in terms of
their memory and communication requirements. Our goal in the design of Quilter, which
we describe in Section 6.3, was to build a system that would: (a) read each image tile
only once to save on extra I/O costs; (b) do not compute the same thing twice to save on
extra compute costs; (c) do not serialize intermediate results to disk, to save on extra I/O
costs; and, (d) have projected memory requirements that allow a single multicore to align
a human brain.

To illuminate the design challenges addressed by Quilter, we shall discuss a few natural
alternative designs and explain their shortcomings.

All-I/O and All-Mem

First, let us consider two extreme approaches: All-Mem which stores all images and inter-
mediate results in-memory; and, All-I/O which keeps only a single pair of tiles in-memory
and writes intermediate results to disk.

An All-Mem algorithm loads all images from disk and then computes the 2D alignment
while keeping all images and intermediate results in-memory. All-Mem requires memory
proportional to the size of the area being aligned which precludes its use for large sections.
The advantages of All-Mem are that it only reads each image once, and does not need to
perform recomputation. Thus, All-Mem satisfies (a)–(c), but fails to satisfy (d).

An All-I/O algorithm maintains a constant memory footprint by performing redundant
computation and file I/O. For each pair of overlapping image tiles All-I/O reads both images
from disk, computes the SIFT keypoints for both images, and uses those keypoints to find
the tile pair’s relative alignment. This relative alignment is written to disk, and then the
images along with the computed keypoints are discarded. All-I/O must read and compute
keypoints for each image approximately 4 times — increasing compute and I/O costs by
4x. Thus, All-I/O satisfies (c) and (d), but fails to satisfy (a) and (b).

Inter-Mem and Inter-I/O

Let us now consider two variations, Inter-Mem and Inter-I/O, that avoid recomputation by
caching the keypoints computed for each image. The Inter-Mem algorithm reads each image
and generates keypoints that are then cached in-memory. Then the relative alignment of
all adjacent tiles are computed using the previously computed keypoints. The Inter-I/O
algorithm operates analogously, but it caches keypoints on disk instead of in-memory. For
a typical tile of size 8MB, the size of the cached keypoints is between 1.2–3.1MB1. As
such, the Inter-Mem algorithm is generally more memory-efficient than All-Mem. Inter-
I/O, however, is generally less efficient than All-I/O for two reasons: (1) images are often
read from disk in a compressed format that can be 10x smaller than the uncompressed data;
and (2) the Inter-I/O algorithm must read a tile’s keypoints 4 times, on average, to align
it to all of its neighbors. As such, Inter-I/O performs less computation than All-I/O by
avoiding recomputation, but does so at the expense of extra I/O to access cached keypoints.

1A data table is provided in Figure 6-12 that contains the information needed for this back-of-the-envelope
calculation

136

3D alignment algorithm

After the 2D alignment step, the now-constructed sections are aligned to form a 3D im-
age that represents the imaged volume. A variety of processes during the imaging process
can introduce distortions in the 2D sections that need to be corrected during 3D align-
ment. The physical cutting of the volume is the likely cause of most distortions, but other
processes such as the transport of the very-thin sections via water-bed and non-uniform
expansion/compression of the tissue due to environmental conditions can play a role as
well. Regardless of the cause, these distortions must be corrected in order to obtain a
representative 3D image for the sample.

The 3D alignment algorithm approximates the function mapping the coordinates of one
section into another using a collection of affine transformations. Specifically, a triangle
mesh overlays each section and a barycentric coordinate transformation [157] maps the
points within each triangle into the coordinate space of adjacent sections.

Typical systems, such as those in FijiBento, for performing 3D alignment operate by
dividing the volume into smaller 3D blocks and perform iterative optimization of the triangle
mesh. Corresponding points between adjacent sections are identified (using a procedure
similar to that used in 2D). Then, an iterative optimization procedure adjusts the triangle
meshes in the volume to minimize the distance between corresponding points.

A disadvantage of this approach is that the entire volume must be aligned more-or-
less simultaneously. The addition or removal of a single new section can necessitate the
recomputation of the alignment for the entire volume. This can be especially problematic
when one fails to identify a single bad section prior to investing the computing resources
to optimize a large volume. Furthermore, this approach precludes the interleaving of 2D
and 3D alignment in a principled manner — since the computed 3D alignment for a single
section depends on all other sections.

6.3 Quilter algorithm

This section describes Quilter: a 2D alignment algorithm for stitching very large mosaics
in-memory. Quilter employs careful task ordering to bound its memory use while avoiding
unnecessary file-I/O and recomputation. This enables Quilter to reap the performance
advantages of in-memory computing even for very large mosaics. Quilter can process a
2D cross-section of an entire mouse brain with under 50 GB of memory, and process a 2D
cross-section of human brain with less than a 1 TB memory.

Line-sweep ordering of tasks

The essential idea of Quilter is to order tasks based upon a 1D line-sweep through the section
being 2D aligned. At any given point in the execution, the image data and intermediate
results for tiles that are touched by the line-sweep and those tiles’ neighbors are kept in-
memory. The data retained for a tile is released once the line sweep has advanced beyond
all of a tile’s potential neighbors.

Figure 6-2 illustrates an in-progress execution of Quilter using this line-sweep task-
ordering. Quilter begins by computing, for each tile, a set of overlapping neighbors and
sorts all tiles by the y-coordinate of their bounding box’s bottom-left corner. The initial set
of tiles processed by Quilter consists of tiles whose bounding box overlaps with a horizontal
slab extending along the bottom of the section. For each tile being processed, all of its

137

Done In-Memory

7 7

7

7 →

7

Figure 6-2: An illustration of a Quilter execution in-progress. Tiles are shaded red if being
processed, blue if it’s keypoints are in-memory, and light/dark gray if it’s untouched/done.

neighbors that are not already in-memory are read from disk. Quilter then computes
pairwise alignments between selected tiles and all of their overlapping neighbors. Quilter
then progresses by increasing the position of its horizontal slab to select a new set of tiles to
process. This new slab will contain the old neighbors of the previous slab, which are already
in memory. Before local alignment is computed, the slab’s new neighbors are loaded into
memory. Once the local alignment is finished the first slab’s data can be released, the slab
moved up and the process repeated.

After computing the pairwise alignments of all tiles in the section, Quilter solves the
optimization problem described in Section 6.2 to position tiles in the plane using a loss
function determined by the local relative alignments between tile pairs. This optimization
problem is formulated and solved in parallel by treating it as a data-graph computation and
employing the techniques from [184].

Memory requirements of Quilter

We shall now analyze the memory and I/O required by Quilter to align a section using the
data from Figure 6-12.

Quilter performs I/O to read compressed image data and to write its final result to disk.
For a 10cm2 section, Quilter reads 100TB of compressed image data from disk. Quilter
writes a list of tile ids and 2D offsets to disk which are negligible in size (less than 64 bytes
per tile). The total memory required by Quilter depends upon the maximum size of its
working set. For each tile in the working set we store the tile’s uncompressed image data
and all of its keypoints. The maximum size of the working set is approximately 3 rows
of tiles. As such, the total memory required to process a 10cm2 section using Quilter is
approximately 800GB. A comparison of Quilter to the methods described in Section 6.2 can

138

Method Memory Total I/O I/O Ops

All-Mem 1000 TB 100 TB 130 million
All-I/O 0.5 TB 400 TB 520 million
Inter-Mem 160 - 400 TB 100 TB 130 million
Inter-I/O 0.5 TB 640 - 1600 TB 780 million
Quilter 0.8 TB 100 TB 130 million

Figure 6-3: Memory and I/O Characteristics of 2D alignment algorithms on a 10cm2 section
imaged at (3× 3× 30)nm resolution with tile size 2724× 3128 pixels.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

M
em

or
y

U
sa

ge
 (G

ig
ab

yt
es

)

Dataset size (GB)

Memory usage

all mem line sweep

Figure 6-4: Memory high-water mark of Quilter compared to all-mem as the data set grows.
Data obtained by extracting regions from regions from human100.

be found in Figure 6-3.

The memory requirements of Quilter relative to All-Mem were measured empirically and
plotted as a function of dataset size in Figure 6-4. For this experiment, we ran All-Mem
and Quilter on progressively larger subsets of a large 2D section of 40, 000 tiles. These
subsets were circular regions centered in the middle of the 2D section with varied radius.
As expected, the memory requirements of Quilter scale proportionately to the diameter of
the region being aligned, and All-Mem scales proportionately to the area.

6.4 The Stacker algorithm

This section describes the Stacker 3D alignment algorithm. Stacker operates on pairs of
adjacent sections that have been 2D-aligned using Quilter. Stacker supports both affine
transformations and non-affine “elastic” transformations which enable Stacker to compute
high-quality 3D alignments that correct for distortions introduced by errors during sample
preparation or imaging.

Our discussion will focus on two aspects of Stacker that are especially relevant to the
alignment pipeline described in this chapter: (a) its ability to align adjacent sections inde-
pendently in-parallel, and (b) the memory requirements of Stacker when operating on large

139

sections.

Independent alignment of sections

Stacker is designed to align pairs of adjacent sections independently using composable trans-
formations. Given a pair of sections (Si−1, Si), Stacker computes a coordinate transforma-
tion mapping points in Si to points in Si−1. This coordinate transform is represented using
a hexagonal triangle mesh that overlays section Si. Each triangle vertex in Si has a cor-
responding transformed vertex in Si−1 whose position is computed by Stacker during 3D
alignment. After 3D aligning Si to Si−1 a point in Si can be mapped to a coordinate in
Si−1 by finding the triangle containing that point, and performing a barycentric coordinate
transformation[157] to obtain that point’s location in the corresponding triangle within
Si−1.

Given a stack of sections S1, S2, . . . , Sk Stacker computes the pairwise alignment of
(S1, S2), (S2, S3), . . . , (Sk−1, Sk) independently. To map all sections into the global coor-
dinate space of a single 3D volume, the relative alignments are combined using function
composition which can be accomplished efficiently by applying the barycentric coordinate
transformations upon the vertices of the triangle mesh itself.

Memory requirements of Stacker

Stacker is designed to align a pair of sections on a single multicore. As such, a natural
concern is that Stacker will be unable to align very-large sections efficiently due to the
limited available memory of a single machine. Fortunately, the memory requirements of
Stacker are actually quite modest and allow it to scale all the way to the human brain while
only requiring about 4TB of memory.

A good estimate of the memory requirements of Stacker can be obtained via a back-of-
the-envelope calculation. For each image tile of size ≈ 8MB, Stacker requires memory for
approximately 100 corresponding points and 12 triangles. Each corresponding point, along
with its SIFT feature vector, is represented using 156 bytes, and each triangle requires 128
bytes. Each section of human brain (10cm2) is composed of approximately 125, 000, 000
tiles, and so the total memory requirements of Stacker per-section is approximately 2TB.
Since Stacker stores data for 2 sections while computing a pairwise alignment, Stacker
requires about 4TB of memory to perform 3D alignment on sections of human brain.

Presently, the volumes being aligned in connectomics are substantially smaller than
those of the human brain. For the “grand challenge” of reconstructing an entire mouse
brain which is 100x smaller by volume than the human brain, the same back of the envelope
calculation shows that Stacker requires only about 50GB of memory.

6.5 Frugal snap judgments

This section describes a technique called frugal snap judgments (FSJ) that is used to ac-
celerate the performance of Quilter by a factor of 3-5x without any appreciable loss of
alignment accuracy.

Design of FSJ in Quilter

Let us now describe how frugal snap judgments are applied to improve the performance
of Quilter. Frugal snap judgments are used to optimize the algorithm used to compute

140

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
t

of
T

il
e

P
ai

rs

Error Magnitude (pixels)

30% with FSJ
30% without FSJ

Figure 6-5: Error with and without FSJ on human100 relative to the alignment Quilter
produces with no downsampling.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 101112131415

R
el

at
iv

e
Im

p
or

ta
n

ce

FSJ Classification Feature

Overlap Dimensions
Num Matched Keypoints

Filter Ratios
Keypoint properties

(a) FSJ Feature Importance

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2000 4000 6000 8000 10000

P
er

ce
n
t

E
rr

or

Number of training samples

Average Error
P95 Error

(b) FSJ Training

Figure 6-6: Figure 6-6a shows the relative importance of variables used by FSJ on human100
dataset. Variables are numbered as follows: 1–3 and 12–14 are overlap area/length features
before and after fast-path alignment; 5,15 ratios of keypoints filtered during matching; 6–11
aggregate statistics of overlap region; and, 4 is number of matched keypoints. Figure 6-6b
illustrates FSJ classification error during training.

141

corresponding keypoints between two overlapping tiles.
The fast-path algorithm for computing pairwise tile alignments operates on downsam-

pled tile images at 30% resolution. For approximately 2% of tiles and 0.4% of all tile pairs,
these modifications result in a less accurate algorithm relative to the original code path
operating on full-resolution images. Yet, for the remaining tile pairs the fast-path computes
a result that matches the slow-path within a tolerance of 1-2 pixels.

In order to detect when the result of the fast-path is unreliable, we employ random-forest
classification over feature vectors that summarize the intermediate results of the fast-path
algorithm.

We employ feature vectors of dimension 15 which include the following information.
The area, width, and height of the overlapping region between a pair of tiles, the fraction
of keypoints matched, the fraction of matched keypoints that are filtered by RANSAC,
the total number of filtered keypoints, and aggregate statistics from the filtered keypoints.
Additional details are provided in Figure 6-6a. These feature vectors are small and inex-
pensive to compute since they depend on the intermediate results of the fast-path rather
than directly depending on raw pixel data in the image tiles.

Training our fast-path detector

Data to train the detector is obtained through random sampling of overlapping tile pairs
from the stack and executing the fast and slow path codes on the same input. The relative
offsets between the tiles computed by the fast and slow path are compared and considered
matching if they differ by less than 1px. We extract a feature vector from the fast-path
result and insert it into either the training or testing sets.

During training, a false positive occurs when the detector incorrectly predicts that the
fast/slow codes will match, and a false negative occurs when it incorrectly predicts that they
will disagree. A well-trained detector will minimize the false negative rate while strictly
constraining the false positive rate.

Figure 6-6b illustrates the evolution of the false-positive rate while training the FSJ
classifier. A 95th percentile confidence bound on the false-positive rate is estimated, using
the testing set, during training and used as a stopping criterion. For our data sets, we
typically stopped training once the 95th percentile confidence bound on the false-positive
rate fell below 0.4%. The false-negative rate of our FSJ classifiers varied between ≈ 4−10%
depending on the resolution of the fast path and the dataset. Training time does not depend
on the size of the dataset, and took between 10-20 minutes on an 18-core Intel Xeon CPU
(E5-2666 v3, 2.9GHz).

After training on the human100 data set using 30% resolution images in the fast path,
we achieved an out-of-bag error of 6.7e−2, a 95th percentile confidence false-positive rate
of 0.4%, and a false negative rate of 6%. The relative variable importance scores for the
random forest classifier are provided in Figure 6-6a.

Figure 6-5 shows the 2D alignment errors of Quilter when using FSJ on a set of 4 sections
that were not used during training. When using FSJ, there are nearly no errors greater
than 1 pixel, and 0 errors greater than 5 pixels.

6.6 System evaluation

This section provides end-to-end performance results for the alignment pipeline built using
the Quilter and Stacker algorithms on three datasets across four computing platforms.

142

Dataset FSJ Platform Hardware Wall-clock runtime Throughput

mouse200 FSJ30 AWS Cluster 200 8-core AWS C4 Instances (1600 cores) 5.6 minutes 21.4 TB/hr
mouse200 FSJ30 LLSC Cluster 170 Opteron nodes (5440 cores) 16 minutes 7.5 TB/hr
mouse200 FSJ30 Large Multicore 112-Core Intel Xeon Platinum 8180 80 minutes 1.5 TB/hr
human100 FSJ30 Large Multicore 112-Core Intel Xeon Platinum 8180 26.7 hours 1.4 TB/hr
mouse50 FSJ30 Common Multicore 18-Core AWS C4 Instance 49 minutes 0.67 TB/hr
mouse50 FSJ20 Common Multicore 18-Core AWS C4 Instance 40 minutes 0.82 TB/hr

Figure 6-7: End-to-end performance results for whole alignment pipeline executing both
Quilter and Stacker. In the FSJ column, FSJ30 and FSJ20 indicate that the fast path
employed by FSJ used 30% and 20% resolution images respectively.

2D Alignment Method Runtime Throughput

FijiBento 362 minutes 0.091 TB/hr
Quilter Full Resolution 180 minutes 0.18 TB/hr
Quilter FSJ(20,100) 32 minutes 1.03 TB/hr

Figure 6-8: Performance comparison of FijiBento and Quilter for 2D Alignment on the
Common Multicore platform.

Experimental setup

A summary of the software, datasets and hardware used in our evaluation are as follows.

Software. The alignment pipeline composed of Quilter and Stacker was implemented
as a C++ software library parallelized using Cilk Plus [36, 219] and the Tapir [304] branch
of the LLVM [206, 207] compiler (version 6)2. The following software libraries were used:
OpenCV v3.2.0 [47], OpenJPEG v3.2.0 [91], and Google protocol buffers [136].

Datasets. Three different data sets were employed in our evaluations: Mouse50,
Mouse200, and Human100. Mouse50 is 550GB dataset composed of 50 sections and 65,000
image tiles. Mouse200 is a 2TB dataset composed of 200 sections and 200,000 image tiles.
Human100 which is a 100-section 38TB dataset.

Hardware. Our evaluations employ four different computing platforms to evaluate run-
time performance: Common Multicore, Large Multicore, LLSC Cluster, and AWS Cluster.
Figure 6-7 details the hardware for each platform, and additional details are provided in
Section 6.7.

Multicore performance of Quilter and Stacker

Let us first analyze the efficiency of Quilter on the Common Multicore system relative to
FijiBento. For this experiment, we used the mouse50 dataset. Both Quilter and FijiBento
compute equivalent 2D alignments, but FijiBento has additional overheads due to the se-
rialization of intermediate results to disk. In Figure 6-8, we see that Quilter out-performs
FijiBento by a factor of 2x when operating on full-resolution data. The use of frugal snap
judgments in Quilter (Quilter FSJ(20,100) in Figure 6-8) provides a further performance
boost of 5.6x, and causes Quilter to outperform FijiBento by a factor of 11.3x.

The performance of Stacker on the Common Multicore platform is similarly efficient.
To 3D align the mouse50 dataset Stacker required only 8 minutes of compute time on

2Available from http://cilk.mit.edu

143

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

N0 N1 N2 N3

S
p

ee
d
u
p

p
er

co
re

(M
ou

se
)

S
p

ee
d
u
p

p
er

so
ck

et
(H

u
m

a
n
)

Number of cores (on one machine)

Speedup mouse200
Speedup human100

Figure 6-9: Vertical scalability. Reports speedup obtained when executing 4 sections of
mouse200 and 4 sections of human100 on the LargeMulticore platform. The mouse200
scalability is relative to a 1-core executing using the left-axis of the plot. The human100
scalability is relative to a 1-socket execution using the right-axis. The mapping of cores to
sockets is provided via the N0, N1, N2, N3 labels.

Common Multicore. The total runtime to 2D and 3D align mouse50 was 40 minutes as
shown in Figure 6-7.

Next, let us analyze the performance of Quilter and Stacker on the Large Multicore
platform to evaluate its scalability on a single machine with a larger number of processing
cores.

Figure 6-9 illustrates the speedup achieved on the Large Multicore platform when align-
ing 4 sections of the mouse200 and human100 dataset. The left y-axis shows the speedup
achieved on the mouse200 dataset relative to a serial execution. On mouse200 approxi-
mately 10x speedup is achieved on a 28-core (1 full socket) execution relative to a serial
execution. The sublinear speedup is attributable, primarily, to aggressive downclocking of
the cores on the socket when using AVX instructions [346]. On 112-cores (4 sockets), the
speedup achieved on mouse200 relative to a serial execution is approximately 39x. For the
human100 dataset we report the scalability relative to a 1-socket execution using the right
y-axis.3 Similar to mouse200, Each additional socket provides near-linear improvements in
performance when aligning the human100 dataset.

Scaling across multiple machines in a cluster.

Now we evaluate the scalability of Quilter and Stacker when executing the pipeline across
many multicores in a computing cluster. For these experiments we use the AWS Cluster

3A serial execution of a section of human100 is unduly time-consuming.

144

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

200 400 600 800 1200 1600

M
o
u

se
2
00

ru
n
ti

m
e

(s
ec

s)

Number of cores

mouse200
Linear Speedup

(a) Strong scaling.

100
200
300
400
500
600
700
800
900

1000

64 128 256 512 1024
100
200
300
400
500
600
700
800
900
1000

M
ou

se
20

0
ru

n
ti

m
e

(s
ec

on
d

s)

H
u

m
an

10
0

ru
n
ti

m
e

(m
in

u
te

s)

Number of Cores

mouse200
human100

(b) Weak scaling.

Figure 6-10: Strong and weak scalability on the AWS Cluster platform on the mouse200
and human100 datasets.

platform to align the mouse200 and human100 datasets.

The strong scaling of the pipeline is shown in Figure 6-10a. For this experiment, when
running the pipeline on N nodes we divide the mouse200 stack into 200/N blocks. A block
is first processed by a single task that runs Quilter and Stacker back-to-back as a single
shared-memory process on the sections within a block. Next, N − 1 tasks are created that
run Stacker on pairs of sections that border adjacent blocks. On the mouse200 dataset and
the AWS Cluster platform we observe near-linear strong scaling.

The weak scaling of the alignment pipeline is shown in Figure 6-10b. For the weak
scaling experiment we ensured that the work-per-node was constant by scaling the number
of sections being aligned proportionately to the number of machines used to execute the
pipeline. We observe no appreciable decrease in efficiency-per-node when scaling from 1 to
128 machines where each machine is an 8-core Intel E5 node.

End-to-end system experiments

Figure 6-7 illustrates the absolute runtime obtained on the mouse200, human100, and
mouse50 data sets on the Common Multicore, Large Multicore, LLSC Cluster, and AWS
Cluster systems. Due to the difficulty of moving the full human100 dataset to different
platforms, we only ran a full end-to-end test for this dataset on the Large Multicore plat-
form. The highest throughput was achieved on the AWS Cluster platform which was able
to align data at a rate of 21.4 terabytes per hour using 1600 cores.

6.7 Computing platforms and datasets

This section provides additional details on the computing platforms and datasets employed
to evaluate Quilter and Stacker in Section 6.6.

Common Multicore is an 18-core 2-way hyperthreaded Intel Xeon CPU (E5-2666 v3,
2.9GHz) available as a 4th-generation compute-optimized machine from amazon web ser-

145

10 GB of data

100 GB of data

222 GB of data
(1mm^2)

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000

M
em

or
y

U
sa

ge
 (G

ig
ab

yt
es

)

Total Number of Tiles

Memory usage

Figure 6-11: Memory high-water mark of Stacker vs. number of tiles aligned.

vices which has 64GB of memory and runs Ubuntu 14.04 on Linux Kernel 3.13.0-106.
Amazon EFS [6] (elastic filesystem) is used to store image data files. Amazon EFS pro-
vides performance tiered to the size of the mounted volume. Based on these tiers and our
mounted volume size of 2.8TiB our maximum burst IO throughput was 100 MiB/s during
our experiments on this platform.

Large Multicore is a 112-core 2-way hyperthreaded Intel Xeon Platinum 8180 CPU
2.5GHz with 1.5TB of memory running Centos7 on Linux Kernel 3.10.0-862. This machine
was part of the Odyssey Cluster and retrieves stored image data from Lustre mounted
storage connected via 56 Gb/s FDR InfiniBand network.

LLSC Cluster is a shared supercomputing center LLSC (Lincoln Lab Supercomputing
Center) [292] using the AMD Opteron partition of the TX-Green system, consisting of 274
compute nodes, each containing two 16-core AMD Opteron(TM) Processor 6274, running
at 2.2GHz, for a total of 32 cores per node, with 128 GB per node. The nodes employ a
shared Lustre filesystem and are connected with a 10 GigE Arista switch. A total of 170
Opteron compute nodes, and 64 Intel E5 nodes were available for our experiments on this
platform. Experiments run on more than 4 nodes were run on LLSC’s private cluster by a
third party with guidance from the authors.

AWS Cluster is a 200-node cluster where each node is an 8-core version of the Common
Multicore platform. AWS ParallelCluster software is used to manage the nodes as a SLURM
cluster, and EFS is used as the cluster’s shared filesystem.

6.8 Empirical analysis of Stacker’s memory usage

This section provides details on the empirical memory usage of Stacker.

We ran an experiment to empirically measure the memory requirements of Stacker. We
followed a similar methodology to that used in Section 6.3 to analyze Quilter’s memory re-
quirements. Regions of varied size were extracted from a section of the human100 dataset,
and then this section was duplicated to construct a stack of two identical sections. Stacker
then executed to align this dataset. Figure 6-11 shows the results empirical experiments

146

constant value

pixel resolution 3× 3nm

tile height 2724 pixels
tile width 3128 pixels

raw tile 8.5 MB
JP2 tile 832 KB
tile metadata 4 KB

keypoint size 156 bytes
keypoints per image 8,000–20,000

region size # tiles

1mm row 107
1cm row 1,066
10cm row 10,656

1mm2 section 13,040
1cm2 section 1,304,000
10cm2 section 130,400,000

Figure 6-12: Values for the different constants needed to calculate memory usage of a 2D
alignment algorithm

Dataset Z Size Description

mouse200 200 2 TB Subset of 100umSept2017
dataset from 100µ3 volume of
mouse brain, stored in J2K
compressed format.

mouse50 50 0.55 TB Subset of 100umIARPASep14
dataset from 100µ3 volume of
mouse brain, stored in JPEG
compressed format.

human100 100 38 TB ROI2w05 which is a subset of a
600 TB dataset obtained from
human brain biopsy, stored in
J2K compressed format.

Figure 6-13: Dataset descriptions. The Z column provides the number of 2D sections in
the dataset. Datasets were obtained from the Lichtman Lab using the Zeiss multiSEM
microscope.

measuring Stacker’s memory requirements. Stacker uses 300 KB of data per tile which is
≈ 20x more than analytic estimates. There are two reasons for the gap: (a) presently our
implementation of Stacker uses 4-byte floats to represent keypoint descriptors where 1-byte
is sufficient (since values are discretized into 255 bins); and, (b) aligning a section to its
identical copy results in an abnormally large number of inter-section keypoint matches. As
such, this experiment illustrates a worst-case scenario for Stacker’s memory usage. Re-
gardless, even in this scenario all datasets but the human brain remain a feasible task on
commodity multicore hardware.

6.9 Conclusion

The alignment algorithm Quilter described in this chapter provides the first fast and ac-
curate multicore alignment pipeline that can align data at TB/hr pace using commodity
multicore hardware without compromising alignment accuracy.

147

100

200

300

400

500

600

700

800

900

1000

64 128 256 512 102420484096
100

200

300

400

500

600

700

800

900

1000

M
ou

se
20

0
W

al
l

cl
o
ck

ti
m

e
(s

ec
s)

H
u
m

an
10

0
W

al
l

cl
o
ck

ti
m

e
(m

in
s)

Number of cores (Using 32-core Opteron Nodes)

Weak scaling on mouse200
Weak scaling on human100

(a) LLSC Cluster 32-core Opteron Nodes

100

200

300

400

500

600

700

800

900

1000

64 128 256 512 1024
100

200

300

400

500

600

700

800

900

1000

M
ou

se
20

0
W

al
l

cl
o
ck

ti
m

e
(s

ec
s)

H
u
m

an
10

0
W

al
l

cl
o
ck

ti
m

e
(m

in
s)

Number of cores (Using 16-core Intel E5 Nodes)

Weak scaling on mouse200
Weak scaling on human100

(b) LLSC Cluster 16-core Intel E5 Nodes

Figure 6-14: Weak scalability experiments on the LLSC cluster. Illustrates reported run-
times on the LLSC Cluster platform on the mouse200 and human100 datasets when the
stack input-size scales with the number of nodes used to execute Quilter and Stacker. The
left y-axis provides the runtime in seconds for mouse200 and the right y-axis provides the
runtime in minutes for human100.

The design of Quilter was, to an extent, multicore-centric. Our development was prin-
cipally performed using a single 18-core workstation and our main test dataset was the
relatively small 550GB stack from mouse50. Through careful algorithmic design and care-
ful consideration of how Quilter’s memory requirements scale with dataset size, these algo-
rithms easily scaled to datasets 100x larger.

Furthermore, the standard performance optimizations we employed to improve perfor-
mance in the shared-memory setting was translatable to the distributed cluster-computing
setting through coarse-grained parallelization across sections facilitated by Stacker’s use of
“associative” elastic transformations.

The performance of our alignment pipeline was achieved, in part, through aggressive
downsampling of input images — an “optimization” that is often deemed unsuitable for
connectomics due to its demand for highly accurate alignments. As we have illustrated,
however, much of the performance benefits of downsampling can be achieved without sacri-
ficing accuracy by using machine learning techniques to distinguish between highly-reliable
and not-so-reliable results produced by a fast, but sometimes inaccurate, code path.

148

Chapter 7

Cilkmem: Algorithms for
Analyzing the Memory
High-Water Mark of Fork-Join
Parallel Programs

This chapter describes the Cilkmem algorithms for analyzing the memory high-water mark
of fork-join parallel programs. The Cilkmem algorithms, and their implementation in the
Cilkmem tool, enable the identification of the worst-case memory requirements of shared-
memory multicore codes. This work was conducted in collaboration with William Kuszmaul,
Tao B. Schardl, and Daniele Vettorel.

Abstract

Software engineers designing recursive fork-join programs destined to run on massively
parallel computing systems must be cognizant of how their program’s memory requirements
scale in a many-processor execution. Although tools exist for measuring memory usage
during one particular execution of a parallel program, such tools cannot bound the worst-
case memory usage over all possible parallel executions.

This chapter introduces Cilkmem, a tool that analyzes the execution of a deterministic
Cilk program to determine its p-processor memory high-water mark (MHWM), which is the
worst-case memory usage of the program over all possible p-processor executions. Cilkmem
employs two new algorithms for computing the p-processor MHWM. The first algorithm
calculates the exact p-processor MHWM in O(T1 ·p) time, where T1 is the total work of the
program. The second algorithm solves, in O(T1) time, the approximate threshold problem,
which asks, for a given memory threshold M , whether the p-processor MHWM exceeds
M/2 or whether it is guaranteed to be less than M . Both algorithms are memory efficient,
requiring O(p ·D) and O(D) space, respectively, where D is the maximum call-stack depth
of the program’s execution on a single thread.

Our empirical studies show that Cilkmem generally exhibits low overheads. Across ten
application benchmarks from the Cilkbench suite, the exact algorithm incurs a geometric-
mean multiplicative overhead of 1.54 for p = 128, whereas the approximation-threshold
algorithm incurs an overhead of 1.36 independent of p. In addition, we use Cilkmem to reveal
and diagnose a previously unknown issue in a large image-alignment program contributing

149

to unexpectedly high memory usage under parallel executions.

7.1 Introduction

To design a recursive fork-join parallel program1, such as a Cilk program, to run on massively
parallel computing systems, software engineers must assess how their program’s memory
requirements scale in a many-processor execution. Many tools have been developed to
observe a program execution and report its maximum memory consumption (e.g., [173,
307, 285, 276, 265]). But these tools can only ascertain the memory requirements of the
one particular execution of the program that they observe. For parallel programs, whose
memory requirements can depend on scheduling decisions that vary from run to run, existing
tools are unable to provide bounds on the maximum amount of memory that might be used
during future program executions2. This chapter studies the problem of computing the
p-processor memory high-water mark (MHWM) of a parallel program, which measures
the worst-case memory consumption of any p-processor execution. We introduce Cilkmem,
an efficient dynamic-analysis tool that measures the MHWM of a Cilk program for an
arbitrary number of processors p.

Computing the MHWM of an arbitrary parallel program is a theoretically difficult prob-
lem. In the special case where a program’s allocated memory is freed immediately, without
any intervening parallel control structure, computing the MHWM corresponds to finding a
solution to the poset chain optimization problem [315, 59, 316]. The poset chain op-
timization problem is well understood theoretically, and the fastest known algorithms run
in (substantial) polynomial time using techniques from linear programming [315]. A direct
application of these algorithms to compute the MHWM of a parallel program would require
computation that is polynomially large in the execution time of the original program.

Many dynamic-analysis tools (e.g., [105, 149, 303, 334, 351]) have been developed that
exploit structural properties of fork-join programs to analyze a program efficiently. Specif-
ically, these tools often leverage the fact that the execution of a fork-join program can be
modeled as a series-parallel computation DAG (directed acyclic graph) [41, 105], where
the edges model executed instructions, and the vertices model parallel-control dependencies.

But even when restricted to series-parallel DAGs, computing the p-processor MHWM
efficiently is far from trivial. Identifying the worst-case memory requirement of a p-processor
execution involves solving an optimization problem that sparsely assigns a finite number of
processors to edges in the program’s computation DAG. Such a computation DAG can be
quite large, because of the liberal nature in which fork-join programs expose logically parallel
operations. Moreover, whereas the poset chain optimization problem assumes that memory
is freed immediately after being allocated, fork-join programs can free memory at any point
that serially follows the allocation. Efficient solutions for this optimization problem are not
obvious, and seemingly require a global view of the program’s entire computation DAG.
To obtain such a view, a tool would need to store a complete trace of the computation for
offline processing and incur the consequent time and space overheads.

This work shows, however, that it is possible not only to compute the p-processor
MHWM efficiently for a fork-join program, but also to do so in an online fashion, without

1When we talk about fork-join parallelism throughout this chapter, we mean recursive fork-join paral-
lelism.

2In this chapter, when we consider executions of a program, we shall assume a fixed input to the program,
including fixed seeds to any pseudorandom number generators the program might use.

150

MemoryExplosion(n)

1 if n > 1
2 cilk spawn MemoryExplosion(n− 1)
3 b← malloc(1)
4 cilk sync

5 free(b)
6 return

Figure 7-1: Example Cilk program whose heap-memory usage can increase dramatically
depending on how the program is scheduled.

needing to store the entire computation DAG. Specifically, we provide an online algorithm
for computing the exact p-processor MHWM in O(T1 · p) time, where T1 is the total work
of the program. We also examine the approximate threshold problem , which asks, for a
given memory threshold M , whether the p-processor MHWM exceeds M/2 or whether it is
guaranteed to be less than M . We show how to solve the approximate threshold problem in
O(T1) time using an online algorithm. Both of these algorithms are space efficient, requiring
O(p · D) and O(D) space, respectively, where D is the maximum call-stack depth of the
program’s execution on a single thread.

7.1.1 Memory consumption of fork-join programs

Let us review the fork-join parallel programming model and see how scheduling can cause
a fork-join program’s memory consumption to vary dramatically.

Recursive fork-join parallelism, as supported by parallel programming languages includ-
ing dialects of Cilk [116, 219, 172], Fortress [3], Kokkos [101], Habanero [16], Habanero-Java
[61], Hood [42], HotSLAW [258], Java Fork/Join Framework [208], OpenMP [275, 13], Task
Parallel Library [218], Threading Building Blocks (TBB) [291], and X10 [68], has emerged as
a popular parallel-programming model. In this model, subroutines can be spawned in paral-
lel, generating a series-parallel computation DAG of fine-grained tasks. The synchronization
of tasks is managed “under the covers” by the runtime system, which typically implements
a randomized work-stealing scheduler [41, 116, 11, 38]. Constructs such as parallel_for

can be implemented as syntactic sugar on top of the fork-join model. As long as the parallel
program contains no determinacy races [105] (also called general races [266]), the program
is deterministic, meaning that every program execution on a given input performs the
same set of operations, regardless of scheduling.

Even a simple fork-join program can exhibit dramatic and unintuitive changes in mem-
ory consumption,3 based on how the program is scheduled on p processors. Consider, for
example, the Cilk subroutine MemoryExplosion in Figure 7-1,4 which supports parallel
execution using the keywords cilk spawn and cilk sync. The cilk spawn keyword on
line 2 allows the recursive call to MemoryExplosion(n − 1) to execute in parallel with
the call to malloc(1) on line 3, which allocates 1 byte of heap memory. The cilk sync

on line 4 waits on the spawned recursive call to MemoryExplosion to return before pro-
ceeding; if a thread reaches the cilk sync, and the recursive call to MemoryExplosion

3This work focuses on heap-memory consumption. In contrast, the Cilk runtime system is guaranteed to
use stack space efficiently [41].

4Similar examples can be devised for other task-parallel programming frameworks.

151

has not yet completed, then the thread can be rescheduled to make progress elsewhere in
the program.

Cilk’s randomized work-stealing scheduler [41] schedules the parallel execution of Mem-
oryExplosion as follows. When a Cilk worker thread encounters the cilk spawn state-
ment on line 2, it immediately executes the recursive call to MemoryExplosion(n−1). If
another worker thread in the system has no work to do, it becomes a thief and can steal
the continuation of this parallel recursive call, on line 3.

Because of Cilk’s scheduler, the memory consumption of MemoryExplosion can vary
dramatically and nondeterministically from run to run, even though MemoryExplosion
is deterministic. When run on a single processor, the cilk spawn and cilk sync state-
ments effectively act as no-ops. Therefore, MemoryExplosion uses at most 1 byte of
heap memory at any point in time, because each call to malloc is followed by a call to
free almost immediately thereafter. When run on 2 processors, however, the memory
consumption of MemoryExplosion can increase dramatically, depending on scheduling.
While one worker is executing line 2, a thief can steal the execution line 3 and allocate 1
byte of memory before encountering the cilk sync on line 4. The thief might then return
to work stealing, only to find another execution of line 3 to steal, repeating the process.
As a result, the heap-memory consumption of MemoryExplosion(n) on two or more Cilk
workers can vary from run to run between 1 byte and n bytes, depending on scheduling
happenstance.

7.1.2 Algorithms for memory high-water mark

This chapter presents algorithms for computing the p-processor MHWM of a program with a
series-parallel computation DAG, and in particular, of a deterministic parallel Cilk program
P. Let G = (V,E) be the computation DAG for P, and suppose each edge of G is annotated
with the allocations and frees within that edge.

Section 7.3 presents a simple offline algorithm for computing the exact p-processor
MHWM of the parallel program P, given the DAG G. A straightforward analysis of the
exact algorithm would suggest that it runs in time O(T1 · p2), where T1 is the 1-processor
running time of the program P. By performing an amortized analysis over the parallel
strands of the program, we show that a slightly modified version of the algorithm actually
achieves a running time of O(T1 · p).

Explicitly storing the DAG G can be impractical for large programs P. Section 7.4
presents a combinatorial restructuring of the exact algorithm that computes the MHWM in
an online fashion, meaning that the algorithm runs as instrumentation on (a single-threaded
execution of) the program P. The online exact algorithm introduces at most O(p) time
and memory overheads when compared to a standard single-threaded execution of P. In
particular, the algorithm runs in time O(T1 · p) and uses at most O(p ·D) memory, where
T1 is the 1-processor running time of the program, and D is the maximum call-stack depth
of the program’s execution on a single thread. The simple amortization argument used for
the offline algorithm does not apply to the more subtle structure of the online algorithm.
Instead, we employ a more sophisticated amortized analysis, in which subportions of the
graph are assigned sets of leader vertices, and the algorithm’s work is charged to the leader
vertices in such a way that no vertex receives more than O(p) charge.

The two exact algorithms for computing the p-processor MHWM have the additional
advantage that they actually compute each of the i-processor MHWM’s for i = 1, . . . , p.
Thus a user can determine the largest i ≤ p for which the i-processor MHWM is below

152

some threshold M .

We also consider the approximate-threshold version of the p-processor MHWM problem.
Here, one is given a number of processors p and a memory threshold M , and wishes to
determine whether p processors are at risk of coming close to running out of memory while
executing on a system with memory M . Formally, an approximate-threshold algorithm
returns a value of 1 or 0, where 1 indicates that the p-processor MHWM is at least M/2,
and 0 indicates that the p-processor MHWM is bounded above by M .

Section 7.5 presents a strictly-linear time online algorithm for the approximate-threshold
problem, running in time O(T1). The independence of the running time from p means that
the algorithm can be used for an arbitrarily large number of processors p while still having
a linear running time. This property can be useful for either understanding the limit
properties of a program (i.e., behavior for very large p), or the behavior that a program will
exhibit on a very large machine. The algorithm is also memory efficient. In particular, the
memory usage of the algorithm never exceeds O(D), where D is the maximum call-stack
depth of the program’s serial execution.

A key technical idea in the approximate-threshold algorithm is a lemma that relates the
p-processor high-water mark to the infinite-processor MHWM taken over a restricted set of
parallel execution states known as “robust antichains”. The infinite-processor MHWM over
robust antichains can then be computed in strictly linear time via a natural recursion. To
obtain an online algorithm, we introduce the notion of a “stripped robust antichain” whose
combinatorial properties can be exploited to remove dependencies between non-adjacent
subproblems in the recursive algorithm.

7.1.3 The Cilkmem tool

We introduce the Cilkmem dynamic-analysis tool, which implements the online algorithms
to measure the p-processor memory high-water mark of a deterministic parallel Cilk pro-
gram.

Both of Cilkmem’s algorithms run efficiently in practice. We implemented Cilkmem
using the CSI framework for compiler instrumentation [302] embedded in the Tapir/LLVM
compiler [304]. In Section 7.6, we measure the efficiency of Cilkmem on a suite of ten Cilk
application benchmarks. Cilkmem introduces only a small overhead for most of the bench-
marks. For example, the geometric-mean multiplicative overhead across the ten benchmarks
is 1.54, to compute the MHWM exactly for p = 128, and 1.36, to run the approximate-
threshold algorithm. For certain benchmarks with very fine-grained parallelism, however,
the overhead can be substantially larger (although still bounded by the theoretical guaran-
tees of the algorithms). We find that for these applications, the strictly-linear running time
of the approximate-threshold algorithm provides substantial performance benefits, allowing
computations to use arbitrarily large values of p with only small constant-factor overhead.

In addition to measuring Cilkmem’s performance overhead, we use Cilkmem to analyze
a big-data application, specifically, an image-alignment program [187] used for brain connec-
tomics [247]. Section 7.6 describes how, for this application, Cilkmem reveals a previously
unknown issue contributing to unexpectedly high memory usage under parallel executions.

7.1.4 Outline

The remainder of the chapter is structured as follows. Section 7.2 formalizes the problem
of computing the p-processor MHWM in terms of antichains in series-parallel DAGs. Sec-

153

tion 7.3 presents the O(T1 · p)-time exact algorithm, and Section 7.4 extends this to an
online algorithm. Section 7.5 presents an online linear-time algorithm for the approximate-
threshold problem. The design and analysis of the online approximate-threshold algorithm
is the most technically sophisticated part of the chapter. Section 7.6 discusses the imple-
mentation Cilkmem, and evaluates its performance. Section 7.7 discusses related work, and
Section 7.8 concludes with directions for future work.

7.2 Problem formalization

This section formalizes the problem of computing the p-processor memory high-water mark
of a parallel program.

The DAG model of multithreading

Cilk programs express logical recursive fork-join parallelism through spawns and syncs. A
spawn breaks a single thread into two threads of execution, one of which is logically a new
child thread, while the other is logically the continuation of the original thread. A sync
by a thread t, meanwhile, joins thread t with the completion of all threads spawned by t,
meaning the next continuation of t occurs only after all of its current child threads have
completed.

An execution of a Cilk program can be modeled as a computation DAG G = (V,E).
Each directed edge represents a strand , that is, a sequence of executed instructions with
no spawns or syncs. Each vertex represents a spawn or a sync.

The DAG G is a series-parallel DAG [105], which means that G has two distinguished
vertices — a source vertex, from which one can reach every other vertex in G, and a sink
vertex, which is reachable from every other vertex in G — and can be constructed by
recursively combining pairs of series-parallel DAGs using series and parallel combinations.
A series combination combines two DAGs G1 and G2 by identifying the sink vertex of
G1 with the source vertex of G2. A parallel combination combines two DAGs G1 and G2

by identifying their source vertices with each other and their sink vertices with each other.
We shall refer to any DAG used in a series or parallel combination during the recursive
construction of G as a component of G. Although the recursive structure of series-parallel
DAGs suggests a natural recursive framework for algorithms analyzing the DAG, Section 7.4
describes how a more complicated framework is needed to analyze series-parallel DAGs in
an online fashion.

The structure of G = (V,E) induces a poset on the edges E, in which e1 ≤ e2 if there
is a directed path from e1 to e2. A collection of edges (e1, e2, . . . , eq) form an antichain if
there is no pair ei, ej such that ei < ej . Note that edges form an antichain if and only if
there is an execution of the corresponding parallel program in which those edges at some
point run in parallel.

The p-processor memory high-water mark

To analyze potential memory usage, we model the computation’s memory allocations and
frees (deallocations) in the DAG G using two weights, m(e) and t(e), on each edge e. The
weight m(e), called the edge maximum , denotes the high-water mark of memory usage
at any point during the execution of e when only the allocations and frees within e are
considered. The edge maximum m(e) is always non-negative since, at the start of the

154

execution of an edge e, no allocations or frees have been performed, and thus the (local)
memory usage is zero. The weight t(e), called the edge total , denotes the sum of allocations
minus frees over the entire execution of the edge. In contrast to m(e), an edge total t(e)
can be negative when memory allocated previously in the program is freed within e.

The p-processor memory high-water mark is determined by the memory requirements
of all antichains of length p or less in the computation DAG G. We define the water mark
W (A) of an antichain A = (e1, . . . , eq) to be maximum amount of memory that could be
in use on a q-processor system that is executing the edges e1, . . . , eq concurrently. The p-
processor high-water mark Hp(G) is the maximum water mark over antichains of length
p or smaller5:

Hp(G) = max
(e1,...,eq)∈A,

q≤p

W (e1, . . . , eq), (7.1)

where A is the set of antichains in G.

Memory water mark of an antichain

The water mark W (A) of an antichain A = (e1, . . . , eq) is the sum of two quantities W (A) =
W1(A) +W2(A).

The quantity W1(A) consists of the contribution to the water mark from the edges
e1, . . . , eq and from all the edges e ∈ G satisfying e ≤ ei for some i:

W1(A) =
∑
ei∈A

m(ei) +
∑

e∈E,e<ei for some ei∈A
t(e). (7.2)

The quantity W2(A) counts the contribution to the water mark of what we call sus-
pended parallel components. If the series-parallel construction of G combines two sub-
graphs G1 and G2 in parallel, we call them partnering parallel components of G. Con-
sider two partnering parallel components G1 and G2, and suppose that G2 contains at least
one edge from the antichain A, while G1 does not. Then there are two options for a parallel
execution in which processors are active in the edges of A: either (1) the parallel compo-
nent G1 has not been executed at all, or (2) the parallel component G1 has been executed
to completion and is suspended until its partner parallel component completes. In the
latter case, G1 will contribute

∑
e∈G1

t(e) to the water mark of A. If this sum, which is
known as G1’s edge sum , is positive, then we call G1 a companion component to the
antichain A. The quantity W2(A) counts the contribution to the water mark of edges in
companion components. That is, if G is the set of companion components to A, then

W2(A) =
∑
G∈G

∑
e∈G

t(e). (7.3)

Note that the companion components of A are guaranteed to be disjoint, meaning that
each edge total t(e) in Equation (7.3) is counted at most once.

5This definition of water mark makes no assumption about the underlying scheduling algorithm. In
particular, when a thread spawns, we make no assumptions as to which subsequent thread the scheduler will
execute first.

155

The downset non-negativity property

Several of our algorithms, specifically for the approximate-threshold problem, take advan-
tage of a natural combinatorial property satisfied by edge totals t(e). Although t(e) can be
negative for a particular edge e, the sum

∑
e∈E t(e) is presumed to be non-negative, since the

parallel program should not, in total, free more memory than it allocates. We can generalize
this property to subsets of edges, called downsets, where a subset S ⊆ E is a downset if,
for each edge e ∈ S, every edge e′ < e is also in S. The downset-non-negativity property
requires that, for every downset S ⊆ E,

∑
e∈S t(e) ≥ 0. This property corresponds to the

real-world requirement that at no point during the execution of a parallel program can the
total memory allocated be net negative.

7.3 An exact algorithm with O(p) overhead

This section presents ExactOff, an O(|E|·p)-time offline algorithm for exactly computing
the high-water marks H1(G), . . . ,Hp(G) of a computation DAG G for all numbers of pro-
cessors 1, . . . , p. We first give a simple dynamic-programming algorithm which runs in time
O(|E|·p2). We describe how ExactOff optimizes this simple algorithm. We then perform
an amortization argument to prove that ExactOff achieves a running time of O(|E|·p).

The algorithm exploits the fact that G can be recursively constructed via series and
parallel combinations, as Section 7.2 describes. The algorithm builds on top of this recursive
structure. Note that one can construct a recursive decomposition of a series-parallel DAG G
in linear time [335]. Section 7.4 discusses how to adapt the algorithm in order to run in an
online fashion, executing along with the parallel program being analyzed, and introducing
only O(p) additional memory overhead.

Given a parallel program represented by a series-parallel DAG G, and a number of
processors p, we define the (p + 1)-element array RG = (RG[0], RG[1], . . . , RG[p]) so that,
for i > 0, RG[i] is the memory high-water mark for G over all antichains of size exactly i.
We define RG[0] to be max(0, t(G)), where t(G) :=

∑
e∈G t(e). For i > 0, if the graph G

contains no i-edge antichains, then RG[i] is defined to take the special value null, treated
as −∞.

One can compute Hp(G) from the array RG using the identity Hp(G) = maxpi=1RG[i].
Our goal is therefore to recursively compute RG for the given DAG G.

An O(|E|·p2)-time algorithm

The algorithm computes RG using the recursive series-parallel decomposition of G. When G
consists of a single edge e, we haveRG[0] = max(0, t(e)), RG[1] = m(e), andRG(2), . . . , RG[p] =
null.

Suppose that G is the parallel combination of two graphs G1 and G2. Then,

RG[i] =

{
max(0, t(G)) if i = 0,

maxij=0RG1 [j] +RG2 [i− j] otherwise.

In the second case, if either of RG1 [j] or RG1 [i− j] are null, then their sum is also defined
to be null. Moreover, note that the definitions of RG1 [0] and RG2 [0] ensure that suspended
components are treated correctly in the recursion.

156

Suppose, on the other hand, that G is the series combination of two graphs G1 and G2.
Then RG can be expressed in terms of RG1 , RG2 , t(G1), t(G) using the equation,

RG[i] =

{
max(0, t(G)) if i = 0,

max(RG1 [i], t(G1) +RG2 [i]) otherwise.

Combining the above cases yields an O(|E|·p2)-time algorithm for computing RG.

Achieving a running time of O(|E|·p)

To optimize the simple algorithm, we define, for a DAGG, the value s(G) to be the size of the
largest antichain of edges in G, or p if G contains an antichain of size p or larger. The value
s(G) is easy to compute recursively using the recursion s(G) = min(s(G1)+s(G2), p), when
G is the parallel combination of components G1 and G2, and s(G) = max(s(G1), s(G2)),
when G is the series combination of G1 and G2.

ExactOff optimizes the simple dynamic program as follows. Suppose that G is a
parallel combination of components G1 and G2. Notice that RG1 [i] = null whenever i >
s(G1) and RG2 [i] = null whenever i > s(G2). It follows that,

RG[i] =

max(0, t(G)) if i = 0,

max
0≤j≤i,
j≤s(G1),

(i−j)≤s(G2)

RG1 [j] +RG2 [i− j] otherwise, (7.4)

where the max for the second case is defined to evaluate to null if it has zero terms.

Theorem 31 For a series-parallel DAG G = (V,E), ExactOff recursively computes RG
in time O(|E|·p).

To prove Theorem 31, let us consider the time needed to compute RG when G is obtained
by combining two subgraphs G1 and G2 in parallel. For each value of i ≤ s(G1) and of
i − j ≤ s(G2), the term RG1 [i] + RG2 [i − j] will appear in Equation (7.4) for exactly
one index i. It follows that the total time to compute RG from RG1 and RG2 is at most
O(p+ s(G1) · s(G2)).

Since parallel combinations cost O(p+ s(G1) · s(G2)) and series combinations cost O(p),
Theorem 31 reduces to, ∑

(G1,G2)∈C

s(G1) · s(G2) ≤ O(|E|·p),

where the set C consists of all parallel combinations in the recursive construction of G.

Lemma 32 Let G = (V,E) be the series-parallel DAG modeling some parallel program’s
execution. Then, ∑

(G1,G2)∈C

s(G1) · s(G2) ≤ O(|E|·p),

where the set C consists of all parallel combinations in the recursive construction of G.

Proof. Call a parallel combination between two components G1 and G2 fully-formed
if s(G1) = s(G2) = p. We claim that there are at most O(|E|/p) fully-formed parallel

157

combinations in the recursive construction of G. Consider the full recursive constructing
G from individual edges using series and parallel combinations. Then each fully-formed
parallel combination reduces the total number of components H satisfying s(H) = p by
one. On the other hand, the number of components satisfying s(H) = p can only be
increased when two components H1, H2 satisfying s(H1), s(H2) < p are combined to form
a new component H satisfying s(H) = p. The total number of such combinations is at
most |E|/p, since each such H absorbs at least p edges. Since the number of components
satisfying s(H) = p is incremented at most |E|/p times, it can also be decremented at most
|E|/p times, which limits the number of fully-formed parallel combinations to |E|/p.

Using the bound on the number of fully-formed parallel combinations, we have that∑
(G1,G2)∈F

s(G1) · s(G2) ≤ O
(
|E|
p
· p2

)
≤ O(|E|·p),

where F is the set of fully-formed parallel combinations.

To complete the proof of the lemma, it suffices to show∑
(G1,G2)∈F

s(G1) · s(G2) ≤ O(|E|·p), (7.5)

where F is the set of non-fully formed parallel combinations.

We prove Equation (7.5) with an amortization argument. Consider the recursive con-
struction of G from edges via series and parallel combinations. Before beginning the com-
binations, we assign 2p− 1 credits to each edge e ∈ E. Every time two components G1 and
G2 are combined in parallel and G1 satisfies s(G1) < p, we deduct s(G2) credits from each
edge in G1. Note that if both s(G1) < p and s(G2) < p, then we deduct credits from the
edges in both components.

The number of credits charged for each non-fully-formed parallel combination is at least
s(G1) · s(G2). Thus the total number of credits deducted from all edges over the course
of the construction of G is at least the left side of Equation (7.5). In order to prove
Equation (7.5), it suffices to show that every edge still has a non-negative number of credits
after the construction of G.

Consider an edge e ∈ E as G is recursively constructed. Define Ht to be the component
containing e after t steps in the construction, ct to be the total amount of credit deducted
from e in the first t steps, and at to be the size of the largest antichain in Ht. We claim
as an invariant that ct ≤ at. Indeed, whenever r = ct − ct−1 credits are deducted from e
during some step t, the parallel combination during that step also increases at to be at least
r larger than at−1.

Since s(Ht) = min(at, p), the invariant tells us that whenever e is in a component Ht

with s(Ht) < p, the total amount ct deducted from e so far must satisfy ct < p. Prior to
the step t in which s(Ht) finally becomes p, the total amount deducted from e is at most
p− 1. During the step t when s(Ht) becomes p, at most p credits can be deducted from e.
And after the step t when s(Ht) becomes p, no more credits will ever be deducted from e.
Thus the total deductions from e sum to at most 2p− 1, as desired.

158

a0 a1 a2 a3 ak

b1

b2

b3
bk

· · ·

· · ·

Figure 7-2: A multi-spawn combination. The components a0, . . . , ak and b1, . . . , bk are
combined into a single component. If executed on a single processor in Cilk, the order of
execution would be a0, b1, a1, b2, a2, . . . , bk, ak.

7.4 An online (memory-efficient) algorithm

The ExactOff algorithm in Section 7.3 computes Hp(G) by considering the construction
of a computation DAG G using only series and parallel combinations. Although in principle
any series-parallel DAG can be constructed using only these combinations, doing so in an
online fashion (as the parallel program executes) can require substantial memory overhead.
In particular, parallel programs implemented in Cilk implicitly contain a third primitive
way of combining components: multi-spawn combinations (see Figure Figure 7-2). A multi-
spawn combination corresponds with all of the child spawns (i.e., cilk spawn statements)
of a thread that rejoin at a single synchronization point (i.e., at a cilk sync).

When a multi-spawn combination is executed on a single processor, the execution tra-
verses the components in the order a0, b1, a1, b1, . . . , bk, ak. If one wishes to use the recursions
from Section 7.3 in order to compute H ◦∞(G) then one must store the recursively computed
values for each of a0, b1, a1, . . . , ak before any series or parallel combinations can be per-
formed. After computing the values, one can then combine ak and bk in parallel, combine
this with ak−1 in series, combine this with bk−1 in parallel, and so on.

When k is large, storing Θ(k) recursive values at a time can be impractical (though in
total the memory overhead of ExactOff will still be bounded by the span of the parallel
program). If one could instead design a recursion in which each multi-spawn combination
could be performed using O(p) space, then the recursive algorithm would be guaranteed
to use no more than O(p ·D) space, where D is the maximum stack depth of the parallel
program in Cilk.

Appendix Section 7.9, presents the ExactOn algorithm, which implements this alter-
native recursion. The amortized analysis in Section 7.3 fails to carry over to ExactOn,
because the work in the new algorithm can no longer be directly charged to the growth of
components. Instead, we employ a more sophisticated amortized analysis in which compo-
nents of the graph are assigned sets of leader vertices, and the work by the algorithm is
charged to the leader vertices in such a way so that no vertex receives a charge of more
than O(p).

7.5 Online approximation in linear time

This section considers the approximate threshold version of the p-processor memory high-
water mark problem. In particular, we construct a fully linear-time algorithm that processes
a computation DAG G = (V,E) and returns a boolean with the following guarantee: a
return value of 0 guarantees that Hp(G) ≤ M , while a return value of 1 guarantees that

159

Hp(G) > M/2.
The algorithm will compute the high-water mark over a special class of antichains that

satisfy a certain property that we call stripped robustness. Intuitively, the stripped
robustness property requires that every edge e in the antichain contributes a substantial
amount (at least M/2p) to the antichain’s water mark. The algorithm solves the approxi-
mate threshold problem by computing the infinite-processor water mark over all stripped
robust antichains, and then inferring from this information about Hp(G).

Section 7.5.1 defines what it means for an antichain to be stripped robust and proves
the correctness of the algorithm. Section 7.5.2 describes an online recursive algorithm for
computing the quantity h needed by the algorithm in linear time O(|E|). The algorithm
uses space at most O(D) where D is the maximum stack depth during an execution of the
parallel program being analyzed. A simpler offline algorithm is given in Section 7.10.

7.5.1 Stripped robust antichains

This section defines a special class of antichains that we call stripped robust. We prove that,
by analyzing stripped robust antichains with arbitrarily many processors, we can deduce
information about Hp(G).

An antichain A is stripped robust if it satisfies two requirements:

• Large Local Contributions of Edges: We define the local contribution L•A(xi)
of each edge xi ∈ A to the water mark W (A) to be the value W (A) −W (A \ {xi}).
In order for A to be a stripped robust antichain, each xi must satisfy L•A(xi) >

M
2p .

• Large Edge Contributions of Non-Critical Components: For each multi-spawn
combination a0, b1, a1, . . . , ak in G, if the component bi contains at least one xi, and
if ai ∪ bi+1 ∪ · · · ∪ ak contains at least one other xj , then we call bi a non-critical
component. Define the local contribution of bi to be L•A(bi) = W (A) −W (A \ bi),
the reduction in water mark obtained by removing from A the edges also contained
in bi. In order for A to be a stripped robust antichain, each non-critical component
bi must satisfy L•A(bi) >

M
2p .

The p-processor robust memory high-water mark H •p (G) is defined to be

H •p (G) = max
A∈S, |A|≤p

W (x1, . . . , xq),

where S is the set of stripped robust antichains in E.
The first step in our approximate-threshold algorithm will be to compute the infinite-

processor robust memory high-water mark H •∞(G). Then, if H •∞(G) ≤M/2, our algorithm
returns 0, and if H •∞(G) > M/2, our algorithm returns 1.

Computing H •∞(G) can be done online with constant overhead using a recursive algo-
rithm described in Section 7.5.2. The computation is made significantly easier, in particular,
by the fact that it is permitted to consider the infinite-processor case rather than restricting
to p processors or fewer.

On the other hand, the fact that H •∞(G) should tell us anything useful about Hp(G) is
non-obvious. In the rest of this section, we will prove the following theorem, which implies
the correctness of the algorithm:

Theorem 33 If H •∞(G) ≤ M/2, then Hp(G) ≤ M , and if H •∞(G) > M/2, then Hp(G) >
M/2.

160

It turns out that Theorem 33 remains true even if the second requirement for stripped
robust antichains is removed (i.e. that non-critical components make large contributions).
In fact, removing the second requirement (essentially) gives the notion of a robust an-
tichain used in Section 7.10 in designing an offline algorithm for the same problem. As
we shall see in Section 7.5.2, the second requirement results in several important structural
properties of stripped robust antichains, making an online algorithm possible. The struc-
tural properties enable a recursive computation of H •∞ to handle multi-spawn combinations
in a memory efficient fashion.

Our analysis begins by comparing H •p (G) to Hp(G):

Lemma 34 H •p (G) ≥ Hp(G)− M
2 .

Proof. Consider an antichain A1 = (x1, . . . , xq), with q ≤ p, that is not stripped-robust.
We wish to construct a stripped robust antichain B satisfying W (B) ≥W (A)−M/2.

Then there must either be an edge xi ∈ A1 satisfying L•A1
(xi) ≤ M

2p or a non-critical

component bi satisfying L•A1
(bi) ≤ M

2p . Define an antichain A2 obtained by removing either
the single edge xi from A1 (in the case where such an xi exists) or all of the edges in A1∩ bi
from A1 (in the case where such a bi exists). The antichain A2 contains at least one fewer
edges than does A1, and satisfies W (A2) ≥W (A1)− M

2p .

If A2 is still not stripped-robust, then we repeat the process to obtain an antichain A3,
and so on, until we obtain a stripped-robust antichain Ak. Because the empty antichain is
stripped-robust, this process must succeed.

Since each antichain Ai in the sequence is smaller than the antichain Ai−1, the total
number k of antichains in the sequence can be at most q + 1, where q is the size of the
antichain A1 = (x1, . . . , xq). On the other hand, since W (Ai) ≥ W (Ai−1) − M

2p for each
i ≥ 2, we also have that

W (Ak) ≥W (A1)− (k − 1) · M
2p
≥W (A1)− q · M

2p
≥W (A1)− M

2
,

as desired.

Corollary 35 proves the first part of Theorem 33:

Corollary 35 If H •∞(G) ≤M/2 ≤M/2, then Hp(G) ≤M .

The second half of Theorem 33 is given by Lemma 36:

Lemma 36 If H •∞(G) > M/2, then Hp(G) > M/2.

Proof. Since H •∞(G) > M/2, there are two cases:

Case 1: There is a stripped robust antichain A = (x1, . . . , xq) with q ≤ p such that
W (A) > M/2. In this case, we trivially get that Hp(G) > M/2.

Case 2: There is a stripped robust antichain A = (x1, . . . , xq) with q > p such
that W (A) > M/2. This case is somewhat more subtle, since the large number of edges
in the antichain A could cause W (A) to be much larger than Hp(G). We will use the
stripped robustness of A in order to prove that the potentially much smaller antichain
B = (x1, . . . , xp) still has a large water mark W (B) > M

2 .

Note that we cannot simply argue that L•B(xi) ≥ L•A(xi) for each i ∈ {1, . . . , p}. In
particular, the removal of edges from A may significantly change the local contributions of

161

the remaining edges. Nonetheless, by exploiting the downset-non-negativity property we
will still prove that W (B) > M

2 .
For a given edge xi ∈ A, define Ti to be the set of companion components T to the

antichain A such that T is not a companion component to A \ {xi}. Define Pi to be the set
of edges e such that e < xi but e 6< xj for any other xj ∈ A. Then the local contribution
L•A(xi) of xi to A satisfies,

L•A(xi) ≤ m(xi) +
∑
T∈Ti

∑
e∈T

t(e) +
∑
e∈Pi

t(e). (7.6)

(This would be an exact equality if not for the fact that removing xi from A can also
introduce new companion components, which in turn reduces L•A(xi).)

Let Si denote the quantity on the right side of Equation (7.6). Since A is a stripped
robust antichain, Si ≥M/2p for each i.

Now let us consider the water mark W (B). For each i ∈ {1, . . . , p}, each component
T ∈ Ti is a companion component to B, just as it was to A. Moreover, each edge e ∈ Pi
continues to contribute t(e) to the water mark of B. Define T to be the set of companion
components to B that are not in any of T1, . . . , Tp, and P to be the set of edges e satisfying
e < xi for some i ∈ {1, . . . , p} but e 6∈ P1 ∪ · · · ∪ Pp. Then the water mark W (B) can be
written as

W (B) =

p∑
i=1

Si +
∑
T∈T

∑
e∈T

t(e) +
∑
e∈P

t(e) (7.7)

≥M/2 +
∑
T∈T

∑
e∈T

t(e) +
∑
e∈P

t(e). (7.8)

Since each T ∈ T satisfies
∑

e∈T t(e) > 0 (or else T would not be a companion component
to B),

W (B) ≥M/2 +
∑
e∈P

t(e).

In order to complete the proof that W (B) > M/2, it suffices by the downset-non-
negativity property to show that P is a downset. Notice that P can be rewritten as

P = {e ∈ E | e < xi for some i = 1, . . . , p}
∩ {e ∈ E | e < xi and e < xj for some xi 6= xj ∈ A}

=

(
p⋃
i=1

{e < xi}

)
∩

 ⋃
xi 6=xj∈A

{e < xi} ∩ {e < xj}

 .

Since the downset property is closed under unions and intersections, it follows that P is
a downset.

7.5.2 Recursively computing H •∞(G)

This section discusses a recursive algorithm for computing H •∞(G) in an online fashion. The
algorithm treatsG as being recursively constructed via series and multi-spawn combinations.
For each multi-spawn combination, we assume we are recursively given the computed values

162

for a0, b1, a1, . . . , ak, one after the other. Because k may be large, the recursion is not
permitted to store these values. Instead it stores a constant amount of metadata that is
updated over the course of the multi-spawn combination.

Finding a water-mark-maximizing stripped robust antichain A in a multi-spawn combi-
nation C = (a0, b1, . . . , ak) is complicated the following subtlety: if we choose to include an
edge in one of the bj ’s, then this may reduce the local contribution of any edges included
in later aj ’s and bj ’s, resulting in those edges being unable to be included in the antichain.
Therefore, greedily adding edges to the antichain A as we recursively execute a0, b1, . . . , ak
may not result in an optimal stripped robust antichain.

The second requirement for stripped robust antichains (that non-critical components
must make large edge contributions) is carefully designed to eliminate this problem. It
allows us to prove the following lemma, which characterizes how non-critical components
behave in water-mark-maximizing antichains A that contain multiple edges.6

Lemma 37 Consider a multi-spawn combination C with components a0, b1, a1, . . . , ak. Con-
sider i ∈ {1, . . . , k}, and suppose A is a stripped robust antichain in C that (1) contains
multiple edges; (2) contains at least one edge in ai, bi+1, . . . , ak; and (3) that achieves the
maximum water mark over all stripped robust antichains in C that contain multiple edges.

Let t(bi) =
∑

e∈bi t(e), and let m(bi) denote the water mark of the best stripped robust
antichain in bi. (Note that m(bi) considers only the subgraph bi.)

• If t(bi) > 0 and m(bi) ≤ t(bi) + M
2p , then bi is a companion component of A.

• If t(bi) ≤ 0 and m(bi) ≤ M
2p , then bi is not a companion component of A and does not

contribute any edges to A.

• If m(bi) > max(0, t(bi)) + M
2p , then A restricted to bi is a stripped robust antichain

with water mark m(bi).

Proof.

Any edges that bi contributes to A must form a stripped robust antichain in bi. The
water mark s of that antichain within bi can be at most m(bi). It follows that

L•A(bi) ≤ m(bi)−max(0, t(bi)),

since the removal of the edges in bi from A will have the affect of (a) reducing the water
mark by s and (b) introducing bi as a companion component to A if t(bi) > 0.

Since m(bi)−max(0, t(bi)) ≤ M
2p in the first two cases of the lemma, bi cannot contribute

any edges to A in these cases. This ensures that in the first case bi will be a companion
component of A, and in the second case bi will neither be a companion component nor
contribute any edges.

The third case of the lemma is somewhat more subtle. Suppose thatm(bi) > max(0, t(bi))+
M
2p . We wish to show that A restricted to bi is a stripped robust antichain with water mark
m(bi). If A contains at least one edge in bi, then since A has maximum water mark over
multi-edge stripped robust antichains in C, it must be that A restricted to bi is stripped
robust and has water mark m(bi), as desired.

6In fact, the same lemma would be true if we removed the restriction that A contain multiple edges. The
restriction is necessary for our applications of the lemma, however.

163

Suppose, on the other hand that A contains no edges in bi. We will show that A does
not achieve the maximum water mark over all stripped robust antichains in C that contain
multiple edges. Define A′ to be A with the addition of edges in bi so that A′ restricted to
bi is stripped robust and has water mark m(bi). Since m(bi) ≥ max(0, t(bi)) + M

2p , the water

mark of A′ must be more than M
2p greater than that of A.

Since A has maximum water mark, and A′ has a larger water mark, A′ must no longer
be stripped robust. Notice, however, that the local contribution of bi in A′ is greater than
M
2p , and the local contributions of the other non-critical components of C in A′ are the same

as in A. Thus the only way that A′ can no longer be stripped robust is if there is a single
edge xj ∈ A′ with local contribution at most M

2p . Moreover, xj must be the only edge from

A that is contained in any of the components ai, bi+1, . . . , ak. Define A′′ to be A′ with the
edge xj removed. Note that A′′ has at least as many edges as did A initially, and is thus
still a multi-edge antichain.

Since the local contribution L•A′(xj) of xj to A′ was at most M
2p , the water mark of A′′ still

exceeds that of A. We claim, however, that A′′ is a stripped robust antichain, contradicting
that fact that A has maximum water mark out of all multi-edge stripped robust antichains.
If bi contains multiple edges in A′′, then the fact that those edges form a stripped robust
antichain when restricted to bi, and that the other noncritical components and edges in
A′′ have the same local contributions to A′′ as they did to A, ensure that A′′ is a stripped
robust antichain. If, on the other hand, bi contains a single edge in A′′, then the removal of
that edge would reduce W (A′′) by at least as much as would have the removal of the edge
xj from the original antichain A (since both removals result in the same antichain). Thus
L•A′′(xi) ≥ L•A(xj) >

M
2p , ensuring that A′′ is a stripped robust antichain. Since A′′ has a

larger water mark than A, we have reached a contradiction, completing the proof of the
third case of the lemma.

Our algorithm for computing H •∞(G) recursively computes three quantities for each
component C of the graph.

• The total allocation and freeing work done in C,

MemTotal =
∑
e∈C

t(e).

• The memory high-water mark with one processor,

MaxSingle = H1(C).

• The infinite-processor high-water mark restricted to stripped robust antichains con-
taining more than one edge:

MultiRobust = max
A∈S, |A|>1

W (A),

where S is the set of stripped robust antichains in C. If C contains no such multi-edge
antichains, then MultiRobust = null.

The special handling in the recursion of antichains with only one edge (i.e., by MaxSingle)
is necessary because the local contribution of that edge x is not yet completely determined
until at least one other edge is added to the antichain. On the other hand, once a stripped

164

robust antichain contains multiple edges, the local contribution of each edge is now fixed,
even if we combine this antichain with other antichains as we recursively construct the
graph. This allows for all multi-edge robust antichains to be grouped together in the vari-
able MultiRobust.

As a base case, for a component C consisting of a single edge e, we initialize the variables
as follows: MemTotal = t(e), MaxSingle = m(e), and MultiRobust = null.

When we combine two components C1 and C2 in series to build a new component C,
we have,

C.MemTotal = C1.MemTotal +C2.MemTotal,

C.MaxSingle =

max(C1.MaxSingle, C1.MemTotalC1 +C2.MaxSingle),

C.MultiRobust =

max(C1.MultiRobust, C1.MemTotal +C2.MultiRobust).

In the computations of C.MaxSingle and C.MultiRobust we implicitly use the fact that
every antichain in C must either be in C1 or in C2. Moreover, the antichains in C2 have
water mark C1.MemTotal greater in C than they did in C2.

Note that the computation of C.MultiRobust would not be correct if MultiRobust were
also considering single-edge antichains. In particular, the local contribution of an edge in
a single-edge antichain A in C2 will differ from the local contribution of the same edge in
the same antichain in C1 ∪ C2, allowing it to possibly form a stripped robust antichain in
one but not the other. Because MultiRobust considers only multi-edge antichains, however,
this is not a problem.

The recursion for combining components in a multi-spawn combination is more so-
phisticated. Consider a multi-spawn combination C as in Figure 7-2 with components
C1 = a0, C2 = b1, C3 = a1, . . . , C2k+1 = ak. As our algorithm receives information on each
of C1, C2, C3, . . ., it must gradually construct the best multi-edge stripped robust antichain
in the multi-spawn component. Lemma 37 ensures that this is possible, because the role
that each bi plays in such an antichain depends only on whether any additional edges will
be included from later components ai, bi+1, . . ., and not on the specific properties of the
components.

Nonetheless, the bookkeeping for the recursion is made subtle by the handling of sus-
pended components and other casework. We defer the full recursion to Section 7.11.

7.6 Empirical evaluation

This section discusses the implementation and evaluation of Cilkmem on a suite of bench-
mark programs as well as on a large image processing pipeline performing image alignment.

7.6.1 Implementation

We implemented Cilkmem as a CSI tool [302] written in C++ for the Tapir compiler [304].
The following discussion describes how these facilities are used to implement Cilkmem’s
algorithms for MHWM analysis.

165

Texact/T1

Benchmark Input size p=32 p=64 p=128 p=256 p=512 p=1024 p=2048 p=4096 Tapprox/T1

strassen 4096 x 4096 matrix 1.00 1.00 1.00 0.98 1.02 0.98 0.98 1.00 0.99
nBody 1,000,000 points 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00
lu 4096 x 4096 matrix 1.01 1.02 1.03 1.02 1.06 1.61 3.02 5.77 1.01
remDups 100,000,000 integers 1.03 1.03 1.03 1.01 1.02 1.04 1.58 3.05 1.02
dict 100,000,000 integers 1.11 1.10 1.12 1.11 1.10 1.12 1.66 3.17 1.10
ray small 1.11 1.11 1.11 1.09 1.11 1.21 1.38 2.74 1.10
delaunay 5,000,000 points 1.16 1.16 1.17 1.13 1.13 1.15 1.16 1.19 1.16
nqueens 13 x 13 board 1.44 1.46 1.54 1.66 4.67 7.80 14.82 28.53 1.23
qsort 50,000,000 elements 3.63 3.73 4.07 5.18 12.75 28.60 53.89 103.63 2.61
cholesky 2000 x 2000 matrix 6.62 6.86 7.51 10.08 34.68 59.23 113.79 219.18 4.68

Table 7.1: Application benchmarks from the Cilkbench suite showing the overhead of Cilk-
mem over a single-threaded execution. The overhead is computed as the geometric-mean
ratio of at least 5 runs with Cilkmem enabled and at least 5 runs of the un-instrumented
program for each benchmark in the table.

The Cilkmem CSI tool tracks the evolution of a program’s series-parallel DAG by in-
serting shadow computation before and after the instructions used by the Tapir compiler
to represent fork-join parallelism. The language constructs used by the program-under-test
to represent fork-join parallelism (e.g., Cilk’s cilk_spawn and cilk_sync keywords) are
lowered to Tapir’s detach and sync instructions during compilation. The CSI framework
provides instrumentation hooks that enable a tool to insert shadow computation before and
after instructions in the compiler’s intermediate representation of the program.

Memory allocations and frees are tracked by Cilkmem using process-wide hooks that
intercept calls to the major allocation facilities provided by glibc via library interposition-
ing [54, Ch. 7.13]. These allocation facilities include malloc, aligned_alloc, realloc and
free. While Cilkmem could use CSI’s instrumentation hooks to track memory allocations,
the use of interpositioning allows Cilkmem to capture calls to allocation functions performed
in shared dynamic libraries that may not have been compiled with instrumentation enabled.
Furthermore, interpositioning makes it possible for Cilkmem to track the requested sizes of
allocations without the maintenance of an additional auxillary data structure by prepend-
ing to each allocation a small payload containing the size of the allocated block of memory.
This payload is retrieved at deallocation time to determine how much memory has been
freed. As an alternative to the payload-based technique, Cilkmem can also be instructed
to retrieve the size of allocations using the Linux-specific function malloc_usable_size.
The difference between the two methods comes down to whether the allocation size seen
by Cilkmem is the requested size or the usable size determined by the memory allocator,
which is allowed to reserve more memory than requested by the user. Special care is taken
to ensure that the memory activity of Cilkmem’s instrumentation is properly distinguished
from activity originating from the program-under-test.

Cilkmem separates its instrumentation and analysis logic into two separate threads that
communicate in a producer–consumer pattern. The producer thread executes the program-
under-test and generates records that keep track of the allocation or deallocation of memory
as well as the evolution of the series-parallel structure of the program execution. These
records are sent to the consumer thread which executes either the exact or approximate
MHWM algorithm in a manner that is fidelitous with the descriptions of the online MHWM

166

Memory high-water mark for p = 1 : 894727307 bytes

Source map for p = 1:

[strassen.c:517]: 492013632 bytes

[strassen.c:776]: 402653184 bytes

[strassen.c:459]: 60491 bytes

Memory high-water mark for p = 2 : 1017641835 bytes

Source map for p = 2:

[strassen.c:517]: 614928160 bytes

[strassen.c:776]: 402653184 bytes

[strassen.c:459]: 60491 bytes

Memory high-water mark for p = 3 : 1140556363 bytes

Source map for p = 3:

[strassen.c:517]: 737842688 bytes

[strassen.c:776]: 402653184 bytes

[strassen.c:459]: 60491 bytes

Figure 7-3: An example of Cilkmem’s verbose-mode output for the strassen benchmark.
This excerpt shows the reported high-water mark in bytes for p from 1 to 3 and which lines
of code contribute to it.

algorithms in Section 7.4 and Section 7.5. In order to maintain the theoretical space-bounds
of the online MHWM algorithms, the Cilkmem tool’s producer thread blocks in the rare
case there is a backlog of unconsumed records. Although it would be possible to implement
the online MHWM algorithms without the use of this producer–consumer pattern, such an
approach can result in increased instrumentation overhead due to, among other things, an
increase in instruction cache misses.

In addition to computing the memory high-water mark, Cilkmem supports a verbose
mode which provides the user with actionable information for identifying the root cause of
the memory high-water mark. In verbose mode, Cilkmem constructs the full computation
DAG, annotates each edge (strand) with information about how much memory is allocated
within that strand, and outputs the resulting graph in a graphical format. Furthermore,
Cilkmem identifies the lines of code responsible for allocations that contribute to the memory
high-water mark for a given p, and reports them to the user along with how many bytes
each line is responsible for.

Figure Figure 7-3 shows the output genenerated by Cilkmem’s verbose mode when run
on the strassen benchmark from the Cilkbench suite with a 4096×4096 matrix as the input.
The program’s memory high-water mark increases by about 122MB for each additional
processor, and Cilkmem identifies line 517 of source file strassen.c as the responsible for
such increase. Cilkmem also reveals that the allocations performed by two other lines of
code do not increase in size as p increases.

7.6.2 Benchmarks

We tested the runtime overhead of Cilkmem on ten Cilk programs from the Cilkbench
suite7. The Cilkbench suite contains a variety of programs that implement different kind
of algorithms such as Cholesky decomposition, matrix multiplication, integer sorting, and
Delaunay triangulation.

Table Table 7.1 shows the geometric-mean overhead as the ratio between an execution
of the benchmark program through Cilkmem and a serial execution of the uninstrumented

7The Cilkbench suite is at https://github.com/neboat/cilkbench

167

https://github.com/neboat/cilkbench

Differential MHWM for p = 3 -> p = 4

[sift.cpp:355]: 63.79 MB

[sift.cpp:259]: 21.26 MB

[sift.cpp:319]: 7.08 MB

[tile.cpp:2039]: 5.31 MB

[sift.cpp:327]: 226.76 MB

Figure 7-4: Differential MHWM report on image alignment application. Illustrates the
output of Cilkmem’s differential MHWM report showing the relative increase in the MHWM
when increasing the number of processors from p = 3 to p = 4.

program (T1). The performance of Cilkmem was tested for both the exact algorithm and for
the approximate-threshold algorithm. When the exact algorithm was used, Cilkmem was
run with p set to all powers of 2 from 32 to 4096 inclusive and its runtime is reported in the
table as Texact . The approximate-threshold algorithms’s runtime (Tapprox) is independent
of p.

As can be evinced from the results, Cilkmem’s overheads are generally low and typically
result in less than a 20% overhead relative to an uninstrumented execution. Cilkmem’s
overheads are especially low for benchmarks that do not exhibit substantial fine-grained
parallelism. For programs that do (e.g., qsort or cholesky), however, the exact MHWM
algorithm can incur a significant performance degradation for large values of p. In these
cases, the approximate-threshold algorithm is substantially faster than the exact algorithm.

7.6.3 Optimizations

The Cilkmem tool implements two critical optimizations to achieve low instrumentation
overheads.

Many Cilk programs do not exhibit memory activity in every strand. The MHWM
algorithms were optimized to avoid performing unecessary work whenever a component is
guaranteed not to contribute to the water mark. This often allows Cilkmem to quickly skip
over large sections of the series-parallel structure.

As outlined in section Section 7.6.1, Cilkmem utilizes two threads which act as a pro-
ducer and as a consumer. Since the data produced (allocated) by the first thread is con-
sumed (freed) by the second in FIFO order, the memory management of Cilkmem’s internal
data structures can be greatly simplified to avoid a large number of small allocations and
deallocations. Memory is managed in a memory pool that takes advantage of the FIFO
nature of the producer-consumer relation.

7.6.4 Case study: multicore image processing pipeline

We conducted a case study on an existing image processing pipeline [187] that performs
alignment and reconstruction of high-resolution images produced via electron microscopy8.
The alignment code processes thousands of 8.5 MB image tiles in order to stitch them
together to form a 2D mosaic. The pipeline was designed to carefully manage memory
resources so as to be able to 2D align very large mosaics on a single multicore. The memory
usage of the application scaled predictably as a function of the size of the mosaic, but
there was an unexplained increase in the memory usage when adding additional processors.
Given the size of the individual images being aligned, a natural expectation would be for
the MHWM to increase by approximately 8.5 MB per processor. Empirically, however,

8For the purposes of this study, we ran the pipeline of [187] on full-resolution images without using FSJ.

168

the application’s 18-core execution used several gigabytes more memory than the 1-core
execution, and the precise amount of extra memory used varied from run-to-run.

We used Cilkmem to analyze the pipeline’s p-processor MHWM. Cilkmem revealed that
the MHWM increased by approximately 350 MB per processor. To identify the source of
this per-processor memory requirement, we used Cilkmem to generate a differential MHWM
report9 that attributes an increase in the MHWM between p and p + 1 processors to par-
ticular source-code locations.

Figure 7-4 shows the differential MHWM report generated by Cilkmem for the alignment
code, which reveals that lines 259, 327, and 355 of sift.cpp are responsible for increasing
the MHWM of the application by a total of approximately 311 MB per processor. These
lines perform allocations to store a difference-of-gaussian pyramid of images as a part of the
scale-invariant feature transform employed by the alignment code. This procedure doubles
the resolution of the images (to allow for subpixel localization of features), performs 6
GaussianBlurs on the images, downsamples the blurred image by a factor of 2 in each
dimension, and repeats until the image size falls below a threshold. This routine is called
on overlapping regions of image tiles. Although these overlapping regions are typically
small, the largest 1% are as large as 2 MB in size. Whereas the original input images
represent each pixel with a single byte, this procedure generates intermediate results that
use 4-byte floating-point values for each pixel. A back-of-the-envelope calculation revealed
that this procedure can require 200–400MB of space for tile pairs with large overlapping
regions, which conforms with Cilkmem’s analysis.

This study illustrates a case in which Cilkmem allowed application developers to make
precise their memory-use projections for their pipeline, and illuminated a source of memory
blow-up when running the pipeline on very-large multicores. Cilkmem’s low instrumentation
overhead made it practical to perform frequent and iterative tests on multiple versions of
the pipeline. In fact, both the exact and approximate Cilkmem MHWM algorithms had less
than 5% overhead on the alignment application for p = 128. These low overheads, coupled
with the illuminating insights provided by Cilkmem, led to the incorporation of Cilkmem
into the regression testing process for the alignment pipeline.

7.7 Related work

This section overviews related work in analysis of parallel programs, focusing on analysis of
memory consumption and parallel-program analyses that do not depend on the particulars
of the task-parallel program’s scheduling.

Related theoretical work

From a theoretical perspective, the memory high-water mark problem (MHWM) is closely
related to the poset chain optimization problem (PCOP) [315, 59, 316, 243]. In an
instance of PCOP, one is given a parameter p and an arbitrary DAG G = (V,E) in which
each edge has been assigned a non-negative weight, and one wishes to determine the weight
of the heaviest antichain containing p or fewer edges (where the weight of each antichain is
the sum of the weights of its edges). Shum and Trotter [315] showed that PCOP can be
solved in (substantial) polynomial time in the size of G using a linear-programming based

9Cilkmem generates differential MHWM reports via a lightweight script that parses Cilkmem’s verbose-
mode output.

169

algorithm; for the special case of p = ∞, an algorithm based on maximum-flows is also
known [59, 316, 243].

The relationship between PCOP and MHWM was previously made explicit by Marchal
et al. [243], who applied algorithms for PCOP in order to design polynomial-time algorithms
for computing the memory high-water mark of parallel algorithms. Because none of the
known algorithms for PCOP run in (even close) to linear time, however, the memory high-
water mark algorithms of [243] are too inefficient to be used in practice. Additionally, in
order to apply PCOP algorithms to the computation of memory high-water marks, [243]
were forced to make a number of simplifying assumptions about the parallel programs being
analyzed, and their algorithms require that the parallel programs be in what they call the
simple-data-flow model.

The difficulty of solving PCOP efficiently on arbitrary DAGs motivates the focus in this
chapter on the important special case in which the DAG G is series-parallel. Moreover,
by modeling memory with arbitrary allocations and frees (rather than using the simple-
data-flow model) we ensure that our algorithms have theoretical guarantees when applied
to analyzing arbitrary task-parallel programs.

In addition to considering the high-water mark problem, Marchal et al. [243] considered
the problem of adding new dependencies to a parallel program’s DAG in order to reduce
the high-water mark. They prove that this problem is NP-complete, and empirically eval-
uate several heuristics. These techniques would be difficult to apply to most real-world
parallel programs, however, since they require the offline analysis of the parallel program’s
computation DAG.

Related tools

In practice, many tools exist to measure and report on the maximum memory consumption
of a running program. For example, the Linux kernel tracks memory-usage information for
every running process and publishes that information through the proc pseudo-filesystem
[285], including the virtual memory and resident set size (RSS), which is the portion
of the process’s memory stored in main memory and, therefore, is upper-bounded by the
memory high-water mark. Performance-analysis toolkits including Intel VTune Amplifier
[173], the Sun Performance Analyzer [276], the Massif tool [336] in the Valgrind tool suite
[265], and Linux’s memusage tool [307] measure the memory consumption of an execution
of a specified program and reports its peak stack- and heap-memory consumption. Like
Cilkmem, these tools use intercept system calls to dynamic memory-allocation functions,
such as malloc and free. Unlike Cilkmem, however, all of these memory-analysis tools
gather information that is specific to how the program was scheduled for a particular run.
These analyses do not analyze the worst-case memory consumption of any parallel execution
of the program on a given processor count.

Several other dynamic-analysis tools for task-parallel programs have been developed
whose analyses do not depend on the scheduling of the program. Tools such as Cilkview
[149] and Cilkprof [303] analyze the execution of a Cilk program and report on the pro-
gram’s parallel scalability, which reflects how much speedup the program might achieve
using different numbers of parallel processors. Several other tools analyze parallel memory
accesses in a task-parallel program that might exhibit nondeterministic behavior between
runs of the program [105, 20, 334, 287, 288, 97]. Like Cilkmem, the analyses performed
by these tools do not depend on how the program was scheduled for a particular run, and
instead provide insight into the behavior or performance of all parallel executions of the

170

program. Unlike Cilkmem, however, these tools do not analyze memory consumption.

7.8 Conclusion

This chapter introduced Cilkmem, a tool that analyzes the p-processor memory high-water
mark of fork-join programs. Cilkmem is built on top of novel algorithms which provide Cilk-
mem with both accuracy and running-time guarantees. We conclude with several directions
of future work.

Although Cilkmem analyzes the behavior of parallel programs, currently Cilkmem is
forced to run these programs in serial while performing the analysis. Extending Cilkmem
to run in parallel is an important direction of future work.

Theoretically, all of our algorithms could be implemented in parallel at the cost of re-
quiring additional memory. In particular, both online algorithms adapt to this setting using
total space O(p·T∞) for the exact algorithm and O(T∞) for the approximate-threshold algo-
rithm, where T∞ is the span of the parallel program being analyzed. This can be significant,
especially for parallel programs with large multi-spawn combinations. Furthermore, there
are technical challenges in parallelizing Cilkmem. The current instrumentation approach
is not easily amenable to parallelization since thread scheduling is hidden by the Cilk run-
time system. Finally, capturing memory allocations in a multi-threaded program is made
more difficult by the fact that each allocation needs to be properly attributed to the correct
thread and strand.

A theoretically interesting direction of work would be to extend our work on approx-
imation algorithms to consider the memory-high water mark on parallel programs with
arbitrary DAGs. Whereas computing the exact memory-high water mark of an arbitrary
DAG is known to be difficult to do with low overhead, much less theoretical work has been
done on the approximation version of the same question.

7.9 Appendix: Online exact computation of Hp(G)

This section describes ExactOn, an online algorithm to compute the exact memory high-
water mark for processor counts 1, . . . , p. ExactOn adapts the O(|E|·p)-time exact algo-
rithm, ExactOff, from Section 7.3 to space-efficiently handle multi-spawn combinations.

Formally, ExactOn recursively computes three quantities for each component C: (1)
The (p+ 1)-element array Rc; (2) the total memory allocated t(C) over the edges in C; and
(3) the value of s(C). Since s(C) can be recovered in time O(p) from RC , the final of these
quantities can be computed non-recursively for each component.

Now let us consider a multi-spawn combination C = (a0, b1, a1, . . . , bk, ak), and let
x1, x2, . . . , x2k+1 be a consecutive labeling of a0, b1, a2, . . . , bk (i.e., x1 = a0, x2 = b1, . . .).
During a multi-spawn combination, we are given the values of Rxi , t(xi), s(xi) for each
i = 1, . . . , 2k + 1, and we wish to compute RC and t(C) (after which we can obtain s(C)
from RC in time O(p)).

The quantity t(C) is easy to recursively compute, since t(C) =
∑

i t(xi). What’s more
difficult is to obtain the array RC . To do this, as we receive Rxl , t(xl), s(xl) for each l,
we maintain three intermediate variables. In order to define our intermediate variables, we
must first introduce the notions of suspended-end and ignored-end water marks of antichains
in a multi-spawn component C.

171

If an antichain A in C contains only edges in b1, . . . , bk, and bt is the largest t such
that bt contains a edge in A, then we say A has a suspended end if the components
at+1, bt+2, . . . , ak form a companion component of A (which occurs if the sum of their
edge costs is net positive). The suspended-end water mark of A is W (A) if A has
a suspended end, and is W (A) +

∑
e∈

⋃
at+1,bt+2,...,ak

t(e) if A does not have a suspended
end (i.e., it is the water mark A would have if it had a suspended end). Similarly, the
ignored-end water mark of A is W (A) if A does not have a suspended end, and is
W (A) −

∑
e∈

⋃
at+1,bt+2,...,ak

t(e) if A does have a suspended end. Additionally, for any
antichain A that contains an edge in some at, we define the ignored-end water mark of
A to be the water mark of A; thus the ignored-end water mark is defined for all antichains
in A of C.

As we receive Rxl , t(xl), s(xl) for each l, we maintain three intermediate variables, each
of which is an O(p)-element array indexed either by i = 0, . . . , p or i = 1, . . . , p. Define
l1 to be the index of the largest-indexed ai before or at xl, and l2 to be the index of the
largest-indexed bi before or at xl. After receiving Rxl , t(xl), s(xl), the l-th entry of each of
our three intermediate variables are updated to be defined as follows:

• SuspendEndl[i] for i = 1, . . . , p: This is the maximum suspended-end cost of any an-
tichain A in x1∪· · ·∪xl such that (1) A contains exactly i edges; (2) all of A’s edges are
in b1, . . . , bl2 . (Note that here x1 ∪ · · · ∪xl is treated as a multi-spawn component and
the costs of the antichains are considered just within the graph containing x1, . . . , xl.)

• IgnoreEndl[i] for i = 1, . . . , p: This is the maximum ignored-end cost of any antichain
A in x1 ∪ · · · ∪ xl that contains exactly i edges. If no such A exists, this is null, and
is treated as −∞.

• Partiall[i] for i = 0, . . . , p: Consider antichains A1, . . . , Al2 in b1, . . . , bl2 , respectively,
such that the total number of edges in the antichains is i. Then Partiall[i] is the
sum of two quantities: (1) The sum of the edge-totals in the ai’s seen so far, given
by
∑l1

i=0 t(ai); and the maximum possible value of the sum
∑l2

j=1W (Ai), where the
water mark of each Ai is considered within only the graph bi, and the water mark
of an antichain Ai containing no edges is set to max(0, t(bi)). (If no such A1, . . . , Al2
exist then Partiall[i] = null.)

In terms of Rbj [ti], one can express Partiall[i] as

Partiall[i] =

l1∑
i=0

t(ai) + max
t1+t2+···+tl2=i

l2∑
j=1

Rbj [tj]. (7.9)

When l = 0, before starting the computation, we initialize each entry of each of the
intermediate variables to null; the exception to this is Partial0[0] which we initialize to zero.

Upon receiving a given xl for an odd l (meaning xl = al1), we can compute the new
intermediate variables as follows:

• SuspendEndl[i] for i = 1, . . . , p: This equals SuspendEndl−1[i] + t(xl).

• IgnoreEndl[i] for i = 1, . . . , p: This equals

max

(
IgnoreEndl−1[i],

i
max
j=1

Partiall−1[i− j] +Rxl [j]

)
.

172

In particular, the right side of the maximum considers as an option for IgnoreEndl[i]
the possibility that our antichain A has some non-zero number j of edges in al1 , and
then i− j edges spread across b1, . . . , bl2 .

• Partiall[i] for i = 0, . . . , p: This is Partiall−1[i] + t(xl).

Upon receiving a given xl for an even l (meaning xl = bl2), we can compute the new
intermediate variables as follows:

• SuspendEndl[i] for i = 1, . . . , p: This equals

max

(
SuspendEndl−1[i] + t(bl2),

i
max
j=1

Partiall−1[i− j] +Rxl [j]

)
.

In particular, the right side of the maximum considers as an option for SuspendEndl[i]
the possibility that our antichain A has some non-zero number j of edges in bl2 , and
then i − j edges spread across b1, . . . , bl2−1. Note that the suspended-end cost and
ignored-end cost of such an antichain in x1 ∪ · · · ∪ xl will be equal (since there is no
end to be suspended); consequently, we will use a similar maximum to compute the
new value of IgnoreEndl[i].

• IgnoreEndl[i] for i = 1, . . . , p: This equals

max

(
IgnoreEndl−1[i],

i
max
j=1

Partiall−1[i− j] +Rxl [j]

)
.

As before, the right side of the maximum considers as an option for IgnoreEndl[i] the
possibility that our antichain A has some non-zero number j of edges in bl2 , and then
i− j spread across b1, . . . , bl2−1.

• Partiall[i] for i = 0, . . . , p: This equals

max

(
Partiall−1[i] +Rxl [0],

i
max
j=1

Partiall−1[i− j] +Rxl [j]

)
,

where the right side of the maximum is null for i = 0.

Once again, the right side of the maximum considers as an option for IgnoreEndl[i]
the possibility that our antichain A has some non-zero number j of edges in bl2 , and
then i− j spread across b1, . . . , bl2−1. The left side, on the other hand, represents the
case where no antichain edges appear in bl2 .

Using the recursions above, we can compute the intermediate values for each l in time
O(p2). We can then compute RC using the identity

RC [i] = max(SuspendEnd2k+1[i], IgnoreEnd2k+1[i]),

for i > 0 and RC [0] = max(0, t(C)).
For a series-parallel graph G, we now have a online (space-efficient) algorithm for com-

puting RG in time O(|E|·p2). Using a similar optimization as in the previous section, we
can improve this running time to O(|E|·p). In particular, for each Partiall, we keep track
of the largest index containing a non-null entry; when computing each of the maximums

173

in our updates, we can then ignore any terms involving a null entry of either Partiall−1 or
of Rxl . This ensures that computing the intermediate variables for a given value of l takes
time at most

O

p+ min

b(l−1)/2c∑
j=1

s(bj), p

 · s(xl)
 . (7.10)

Call this the optimized algorithm . Using an amortized analysis we will prove that
the optimized algorithm has running time O(|E|·p).

Theorem 38 For a graph G = (V,E) recursively constructed with series and multi-spawn
combinations, the optimized algorithm recursively computes RG in time O(|E|·p) and using
space O(p) for each combination.

The fact that the product in Equation (7.10) involves a summation
∑b(l−1)/2c

j=1 s(bj)
means that the simple credit-charging argument used to prove Theorem 31 no longer suf-
fices for proving Theorem 38. Nonetheless, by splitting the problem into two separate
amortization arguments we are able to complete the analysis. This is done in Lemma 39.

Lemma 39 Consider a series-parallel graph G = (V,E) recursively built from series and
multi-spawn parallel combinations. Denote each such multi-spawn combination by the tuple
(x1, x2, x3, x3, . . . , xt), where the odd-indexed xi’s represent the ai components and the even-
indexed xi’s represent the bi components. Then

∑
(x1,...,xt)∈M

t−1∑
i=1

min

bi/2c∑
j=1

s(x2j), p

 · s(xi) ≤ O(|E|·p), (7.11)

where the set M contains all multi-spawn combinations in the recursive construction of G.

Proof.
We think of each multi-spawn combination (x1, . . . , xt) as consisting of t − 1 sub-

combinations, in which after i sub-combinations we have combined x1, . . . , xi+1. One should
think of the cost of the (i− 1)-th sub-combination is

min

bi/2c∑
j=1

s(x2j), p

 · s(xi).
We say the sub-combination is heavy if s(xi) = p and is light if s(xi) < p.

The light sub-combinations can be handled using a similar argument as for the non-
fully-formed case in Lemma 32. At the beginning of the recursive construction of G, assign
to each edge 2p − 1 credits. For each light sub-combination, combining some x1, . . . , xi−1

with some xi, we deduct min
(∑bi/2c

j=1 s(x2j), p
)

credits from each edge in xi. Since the

number of edges in xi is at least s(xi), the sub-combination deducts a total of at least

min
(∑bi/2c

j=1 s(x2j), p
)
· s(xi) credits. In order to bound the contribution of light sub-

combinations to Equation (7.11), it suffices to prove that each edge e ∈ E has a total
of at most 2p− 1 credits deducted from it. This follows by the exact same invariant-based
argument as used in the proof of Lemma 32.

174

In order to analyze the contribution of the heavy sub-combinations to Equation (7.11),
we introduce a second amortization argument. Again we assign credits to edges, this time
giving p credits to each edge e. As we recursively construct G through series and multi-
spawn combinations, we assign to each component C a set of up to p representative edges,
which includes all of C’s edges when C contains p or fewer edges, and p edges otherwise.
When a component C is constructed by combining two components C1 and C2 in series, C’s
representative edges are the union of C1’s and C2’s (truncated to at most p edges). When
a component C is constructed by a multi-spawn combination (x1, . . . , xt) such that at least
one of the xi’s contains p or more edges, C’s representative edges are inherited from the
first such xi; if none of the xi’s contain p or more edges, C’s representative edges are the
union of the representative edges for each of xi’s (truncated to at most p edges).

Now consider a heavy sub-combination between sub-components x1, . . . , xi−1 and xi (re-
call that since the subcombination is heavy, we have that s(xi) = p). If each of x1, . . . , xi−1

contains fewer than p edges, then we deduct p credits from each representative edge in each
of x1, . . . , xi−1. (Note that this is actually all of the edges in x1, . . . , xi−1.) If at least one
of x1, . . . , xi−1 contains p or more edges, then we deduct p credits from each representative

edge of xi. In both cases, we deduct at least min
(∑bi/2c

j=1 s(x2j), p
)
· s(xi) credits in total,

corresponding with the work done during the sub-combination.

The deductions of credits are designed so that two important properties hold: (1) when-
ever an edge e has credits deducted during a multi-spawn combination, the edge e will no
longer be a representative edge in the new component C constructed by the multi-spawn
combination; and (2) within a multi-spawn combination each edge e will have credits de-
ducted from it at most once. Combined, these properties ensure that each edge has credits
deducted at most once during the full construction of G. This, in turn, ensures that the to-
tal number of credits deducted by the algorithm is at most |E|·p, and that the contribution
of heavy sub-combinations to Equation (7.11) is also at most |E|·p.

7.10 Appendix: An offline approximate-threshold algorithm

In this section we present our algorithm for the approximate threshold problem in the
simpler offline setting, in which rather than supporting multi-spawn combinations, our
recursive algorithm needs only support series and parallel combinations.

Our algorithm for the approximate threshold problem will compute the high-water mark
over a special class of antichains that satisfy a certain property that we call robustness.
(This is similar to the notion of stripped robustness from Section 7.5, except without any
requirements about non-critical components; there are also several other minor differences
designed to yield the simplest possible final algorithm.) The return value of the algorithm
will then be determined by whether the computed value h is greater than M/2. In this
section, we define what it means for an antichain to be robust and prove the correctness of
our algorithm. Then, in Section 7.10, we describe a recursive algorithm for computing the
quantity h needed by the algorithm in linear time O(|E|).

When considering an antichain A = (x1, . . . , xq), we partition the predecessors of the
antichain, {e | e < xi for some i}, into two categories. The core predecessors C(A) of
the antichain A is the set of edges that are predecessors to more than one member of the
antichain,

CP(A) = {e | e < xi, e < xj for some i 6= j}.

175

If an edge e is a predecessor of A but not a core predecessor, then e is a local predecessor
of some xi. We denote the set of local predecessors of xi by

LPA(xi) = {e | e < xi and e 6< xj∀j 6= i}.

We define the core companions CC(A) of the antichain A to be the set of edges e
contained in a parallel component T1 with positive edge sum and whose partnering parallel
component T2 contains multiple edges from the antichain A. For each xi, we define the
local companions LCA(xi) of xi to be the set of edges e in a parallel component T1 with
positive edge sum and whose partnering parallel component T2 contains the edge xi but not
any other edge xj ∈ A.

The core water mark C(A) is the sum of the edge totals over all edges in the core
predecessors and companions of A,

C(A) =
∑

e∈CP(A)∪CC

t(e).

Similarly, the local water mark L◦A(xi) of each edge xi ∈ A is given by

L◦A(xi) = m(xi) +
∑

e∈LPA(xi)∪LCA(xi)

t(e).

The total water mark of the antichain can be rewritten as

W (A) = C(A) +

q∑
i=1

L◦A(xi).

Our algorithm for the approximate threshold problem will compute the infinite-processor
high-water mark, except restricted only to antichains A whose local water marks all exceed
M
2p . We call an antichain A = (x1, . . . , xq) robust if L◦A(xi) >

M
2p for each edge xi. The

p-processor robust memory high-water mark H ◦p (G) is defined to be

H ◦p (G) = max
A∈R, |A|≤p

W (x1, . . . , xq),

where R is the set of robust antichains in E.

The first step in our algorithm will be to compute the infinite-processor robust memory
high-water mark H ◦∞(G). Then, if H ◦∞(G) ≤ M/2, our algorithm will return 0, and if
H ◦∞(G) > M/2, our algorithm will return 1.

Computing H ◦∞(G) can be done in linear time O(|E|) using a recursive algorithm de-
scribed in Section 7.10. The computation is made significantly easier, in particular, by the
fact that it is permitted to consider the infinite-processor case rather than restricting to p
processors or fewer.

On the other hand, the fact that H ◦∞(G) should tell us anything useful about Hp(G) is
non-obvious. In the rest of this section, we will prove the following theorem, which implies
the correctness of the algorithm:

Theorem 40

• If H ◦∞(G) ≤M/2, then Hp(G) ≤M .

176

• If H ◦∞(G) > M/2, then Hp(G) > M/2.

To prove Theorem 40, we begin by comparing H ◦p (G) and Hp(G):

Lemma 41

H ◦p (G) ≥ Hp(G)− M

2
.

Proof. Consider an antichain A = (x1, . . . , xq), with q ≤ p, that is not robust. One
might try to construct a robust antichain B by removing each xi ∈ A that satisfies L◦A(xi) ≤
M
2p . The removal of these xi’s, however, would change the sets of local predecessors and
companions for the remaining xj ’s, making it so that the new antichain B may still not be
robust.

One can instead obtain a robust antichain through a more iterative approach. Begin
with the antichain A1 = A that is not robust. Since A1 is not robust, some xi ∈ A satisfies
L◦A(xi) ≤ M

2p . Define A2 to be the same antichain with xi removed. If the antichain A2 is

also not robust, then pick some edge xj ∈ A2 such that L◦A2
(xj) ≤ M

2p , and define A3 to be
A2 with xj removed. Continue like this until we reach some Ar that is robust. (Note that
one legal option for Ar is the empty antichain, which is considered to be robust.)

For any two consecutive antichains Ai and Ai+1 in the sequence, that differ by the
removal of an edge xj , the water marks satisfy

W (Ai+1) ≥W (Ai)− L◦Ai
(xj). (7.12)

(Note that the reason that Equation (7.12) is not true with equality is simply that the
removal of xj may allow for the addition of a new companion component to the antichain
Ai+1, thereby making W (Ai+1) greater than W (Ai)− L◦Ai

(xj).)

Since we only remove edges xj satisfying L◦Ai
(xj) ≤ M

2p , it follows that

W (Ai+1) ≥W (Ai)−
M

2p
.

Moreover, in the processes of constructing the robust antichain Ar, we can remove a total
of at most q edges from the original antichain A = (x1, . . . , xq). Thus

W (Ar) ≥W (A)− q · M
2p
≥W (A)− M

2
.

This, in turn, implies that H ◦p (G) ≥ Hp(G)− M
2 , as desired.

The following corollary proves the first part of Theorem 40

Corollary 42 If H ◦∞(G) ≤M/2, then Hp(G) ≤M .

Proof. If H ◦∞(G) ≤M/2, then H ◦p (G) ≤M/2, and thus by Lemma 41, Hp(G) ≤M .

The second half of Theorem 40 is given by Lemma 43:

Lemma 43 If H ◦∞(G) > M/2, then Hp(G) > M/2.

Proof. Since H ◦∞(G) > M/2, one of the following must be true:

177

• There is a robust antichain A = (x1, . . . , xq) with q ≤ p such that W (A) > M/2:
In this case, we trivially get that Hp(G) > M/2.

• There is a robust antichain A = (x1, . . . , xq) with q > p such that W (A) > M/2:
This case is somewhat more subtle, since the large number of edges in the antichain
A could cause W (A) to be much larger than Hp(G). We will use the robustness of
A in order to prove that the potentially much smaller antichain B = (x1, . . . , xp) still
has a large water mark W (B) > M

2 .

Let T denote the set of edges e ∈ E such that either e ≤ xi for some i ∈ [p], or e
is contained in a companion parallel component of B. The quantity W (B) can be
written as

W (B) =
∑
e∈T

t(e)

=

p∑
i=1

L◦A(xi) +
∑

e∈T ∩(CP(A)∪CC(A))

t(e).

By the robustness of A, each local water mark L◦A(xi) is greater than M
2p . Thus

W (B) >
M

2
+

∑
e∈T ∩(CP(A)∪CC(A))

t(e).

Recall the downset-non-negativity property, which requires that every downset S ⊆ E
(meaning that the predecessors of the edges in S are all in S) satisfy

∑
e∈S t(e) ≥ 0.

To see that the T is a downset, observe that it consists of two parts, the set T1 of
predecessors of B, and the set T2 of edges contained in companion parallel components
to B; since the set T1 is a downset, and because the predecessors of edges in T2 are
all either in T2 or in T1, the full set T = T1 ∪T2 is a downset. Similarly we claim that
CP(A) ∪ CC(A) is a downset; in particular, CP(A) is a downset by its definition, and
the predecessors of edges in CC(A) are all either contained in CC(A) or in CP(A). Since
we have shown that T and CP(A)∪CC(A) are downsets, and because the intersection
of two downsets is necessarily also a downset, it follows that T ∩ (CP(A) ∪ CC(A)) is
a downset.

Applying the downset-non-negativity property, we get that∑
e∈T ∩(CP(A)∪CC(A))

t(e) ≥ 0,

implying that W (B) > M
2 , and completing the proof.

Computing H ◦∞(G) in linear time

In this section, we present a recursive algorithm for computing the infinite-processor robust
high-water mark H ◦∞(G) in linear time O(|E|). We assume that we are given the series-
parallel DAG G, along with the labels t(e) and m(e) for each e ∈ G.

178

Suppose we recursively build G from series and parallel combinations. Whenever we
create a new component C (by combining two old ones) we will maintain the following
information on the component:

• The total allocation and freeing work done in C,

MemTotal =
∑
e∈C

t(e).

• The memory high-water mark with one processor,

MaxSingle = H1(C).

• The infinite-processor memory high-water mark restricted only to robust antichains
containing more than one edge:

MultiRobust = max
A∈R, |A|>1

W (A),

where R is the set of robust antichains in G. If C contains no multi-edge robust
antichains, then MultiRobust = null, and is treated as −∞.

As a base case, for a component C consisting of a single edge e, we initialize the variables
as follows: MemTotal = t(e), MaxSingle = m(e), and MultiRobust = null.

When we combine two components C1 and C2 in series to build a new component C,
the three variables can be updated as follows:

• We update C.MemTotal as

C1.MemTotal +C2.MemTotal .

In particular,
∑

e∈C t(e) =
∑

e∈C1
t(e) +

∑
e∈C2

t(e).

• We update C.MaxSingle as

max(C1.MaxSingle, C1.MemTotal +C2.MaxSingle).

In particular, every single-edge antichain in C1 has the same water mark in C as it did
in C1, and every single-edge antichain in C2 has cost in C an additional C1.MemTotal
greater than it did in C2.

• We update C.MultiRobust as

max(C1.MultiRobust, C1.MemTotal +C2.MultiRobust).

In particular, the set of multi-edge robust antichains in the new component C is the
union of the set of multi-edge antichains in C1 with the set of multi-edge antichains
in C2. Whereas each of the multi-edge antichains in C1 have the same water mark
in C as they did in C1, the multi-edge antichains in C2 each have their water marks
increased by C1.MemTotal.

When we combine two components C1 and C2 in parallel to build a new component C,
the three variables can be updated as follows:

179

• We update C.MemTotal as

C1.MemTotal +C2.MemTotal .

In particular, just as before,
∑

e∈C t(e) =
∑

e∈C1
t(e) +

∑
e∈C2

t(e).

• We update C.MaxSingle as

max(C1.MaxSingle + max(0, C2.MemTotal),

C2.MaxSingle + max(0, C1.MemTotal)).

In particular, the set of single-edge antichains in C is the union of the set of single-edge
antichains in C1 with the set of single-edge antichains in C2. Since the water marks of
the antichains are the same in C1 and C2 as they are in C, except with the addition of
max(0, C2.MemTotal) and max(0, C1.MemTotal) respectively (due to the possibility
of C2 and C1 being suspended companion parallel components), C.MaxSingle can be
updated by taking a simple maximum of the two options.

• The update of C.MultiRobust is slightly more subtle. Define C1.MaxSingle and
C2.MaxSingle to be the highest water marks achieved by robust single-edge antichains
in C1 and C2, respectively. That is,

C1.MaxSingle =

{
C1.MaxSingle if C1.MaxSingle > M

2p

null otherwise,

and

C2.MaxSingle =

{
C2.MaxSingle if C2.MaxSingle > M

2p

null otherwise.

Define R(C), R(C1), and R(C2) to be the sets of robust antichains in C, C1, and C2,
respectively. Then, because C is obtained by combining C1 and C2 in parallel,

R(C) = {x ∪ y | x ∈ R(C1), y ∈ R(C2)}.

When computing C.MultiRobust, we are interested exclusively in the antichains A
satisfying |A|> 1. If x = A ∩ C1 and y = A ∩ C2, then the requirement that |A|> 1
translates into the requirement that (at least) one of the following three requirements
holds:

1. |x|= |y|= 1: The maximum water mark for robust antichains a such that |x|=
|y|= 1 is given by

C1.MaxSingle + C2.MaxSingle.

2. |y|> 1: The maximum water mark for robust antichains a such that |y|> 1 is
given by

max(C1.MaxSingle, C1.MultiRobust, C1.MemTotal, 0)

+ C2.MultiRobust,

where entries in the maximum correspond with the cases where |x|> 1; |x|= 1;

180

|x|= 0 and C1 is included as a suspended companion component; and |x|= 0 and
C1 is not included as a suspended companion component.

3. |x|> 1: The maximum water mark for robust antichains a such that |x|> 1 is
given by

max(C2.MaxSingle, C2.MultiRobust, C2.MemTotal, 0)

+ C1.MultiRobust,

where entries in the maximum correspond with the cases where |y|> 1; |y|= 1;
|y|= 0 and C2 is included as a suspended companion component; and |y|= 0 and
C2 is not included as a suspended companion component.

Combining the cases, we can update C.MultiRobust as

max
(

C1.MaxSingle + C2.MaxSingle,

max(C1.MaxSingle, C1.MultiRobust,
C1.MemTotal, 0) + C2.MultiRobust,

max(C2.MaxSingle, C2.MultiRobust,

C2.MemTotal, 0) + C1.MultiRobust
)
.

Using the recursive construction described above, we can compute the variables MemTotal,
MaxSingle, and MultiRobust for our graph G in linear time O(|E|). In order to then com-
pute H ◦∞(G), the infinite-processor high-water mark considering only robust antichains, we
simply compute

H ◦∞(G) = max

({
MaxSingle if MaxSingle > M

2p

null otherwise

}
,MultiRobust, 0

)
.

7.11 Appendix: Recursing on multi-spawn components

In this section, we complete the recursion for H •∞(G) discussed in Section 7.5.2 by handling
the case of multi-spawn combinations.

Consider a multi-spawn combination C as in Figure 7-2 with components C1 = a0, C2 =
b1, C3 = a1, . . . , C2k+1 = ak.

Throughout the section, we will use the notationm(bi) and t(bi) introduced in Lemma 37.
When bi is the first case of the lemma, we say that bi is a natural companion and that
bi’s natural contribution is t(bi); when bi is in the second case, we say that bi is natu-
rally dormant and that bi’s natural contribution is 0; when bi is in the third case, we
say that bi is naturally active and that bi’s natural contribution is m(bi).

Recall that the execution of the parallel program on one thread computes the recursive
values for each Ci with i iterating through the range i = 1, . . . , 2k+1. We wish to use these
in order to compute the recursive values for C.

To do this, we maintain a collection of intermediate values during the execution of the
components C1, . . . , C2k+1. Before introducing these intermediate values, we define a few
terms.

We call a stripped robust antichain A in C a candidate antichain if for each bi in
C such that A contains an edge in one of ai, bi+1, ai+1, . . ., the three properties stated in

181

Lemma 37 hold. (In particular, bi’s local contribution L•A(bi) should be precisely bi’s natural
contribution.) By Lemma 37, when computing computing C.MultiRobust, it suffices to
consider only multi-edge candidate antichains.

In order to describe the intermediate values that we maintain during the execution of the
components, we will also need the notion of a suspendend-end and ignored-end water mark.
(These are the same definitions as used in Section 7.9.) If an antichain A in C contains only
edges in b1, . . . , bk, and bt is the largest t such that bt contains a edge in A, then we say A
has a suspended end if the components at+1, bt+2, . . . , ak form a companion component
of A (which occurs if the sum of their edge costs is net positive). The suspended-end
water mark of A is W (A) if A has a suspended end, and is W (A)+

∑
e∈

⋃
at+1,bt+2,...,ak

t(e)
if A does not have a suspended end (i.e., it is the water mark A would have if it had a
suspended end). Similarly, the ignored-end water mark of A is W (A) if A does not have
a suspended end, and is W (A) −

∑
e∈

⋃
at+1,bt+2,...,ak

t(e) if A does have a suspended end.
These definitions will prove useful when defining the intermediate values maintained by our
algorithm. Additionally, for any antichain A that contains an edge in some at, we define
the ignored-end water mark of A to be the water mark of A; thus the ignored-end water
mark is defined for all antichains in A of C.

After having executed each of C1, . . . , Cl, let l1 be the index of the largest-indexed ai
executed and l2 be the index of the largest-indexed bi executed. We maintain the following
intermediate values:

• MultiRobustSuspendEndl: This is the maximum suspended-end cost of any multi-
edge candidate antichain A in C1 ∪ · · · ∪ Cl containing only edges in b1, . . . , bl2 . If
no such A exists, this is null. Note that here C1 ∪ · · · ∪ Cl is treated as a multi-
spawn component and the costs of the antichains are considered just within the graph
C1 ∪ · · · ∪Cl, rather than the full graph C (which matters because we are considering
the suspended-end cost of the antichain).

• MultiRobustIgnoreEndl: This is the maximum ignored-end cost of any multi-edge
candidate antichain A in C1 ∪ · · · ∪ Cl. If no such A exists, this is null.

• SingleSuspendEndl: This is the maximum suspended-end cost of any single-edge an-
tichain A in C1 ∪ · · · ∪ Cl such that A contains only edges in b1, . . . , bl2 . (Again, we
consider the suspended-end cost just within the graph C1 ∪ · · · ∪ · · · ∪ Cl.)

• SingleIgnoreEndl: This is the maximum ignored-end cost of any single-edge antichain
A in C1 ∪ · · · ∪ Cl.

• RobustUnfinishedl: Let t be the largest t ≤ l2 such that bt is naturally active. Then
RobustUnfinishedl is the sum of the natural contributions of b1, . . . , bt, along with
t(a0), t(a1) + · · ·+ t(at−1). If no such t exists, then RobustUnfinishedl is null.

One should think of this as the contribution of b1, . . . , bt and a0, . . . , at−1 to any
candidate antichain in C that contains at least one edge in bl2+1, . . . , bk or al1+1, . . . , ak.
(We separate this from the contribution of the edges bt+1, . . . , bl2 and at, . . . , al1 which
are considered by the next quantity.)

• RobustUnfinishedTaill: Let t be the largest t ≤ l such that bt is naturally active, or 0
if no such t exists. Then RobustUnfinishedTaill is the sum of the natural contributions
of bt+1, . . . , bl2 , along with t(at) + t(at+1) + · · ·+ t(al1).

182

One should think of this as the contribution of bt+1, . . . , bl2 and at, . . . , al1 to any candi-
date antichain in C that contains at least one edge in bl2+1, . . . , bk or al1+1, . . . , ak. The
quantity RobustUnfinishedTaill is handled separately from RobustUnfinishedl because
if the candidate antichain contains only a single edge in bl2+1, . . . , bk or al1+1, . . . , ak,
then RobustUnfinishedTaill can affect the local contribution of that edge.

• RunningMemTotall: This is
∑l1

i=0 t(ai) +
∑l2

i=1 t(bi), the total sum of the edge totals
over all edges in the components a0, . . . , al1 , b1, . . . , bl2 .

• EmptyTaill: This is
∑l1

i=0 t(ai) +
∑l2

i=1 max(0, t(bi)). One should think of this as the
contribution of a0, . . . , al1 , b1, . . . , bl2 to any single-edge antichain in C whose edge lies
in one of al1+1, al1+2, . . . or bl2+1, bl2+2,

Given the above variables for l = 2k + 1, one can compute

C.MemTotal = RunningMemTotal2k+1,

C.MultiRobust = max(MultiRobustSuspendEnd2k+1,

MultiRobustIgnoreEnd2k+1),

and

C.MaxSingle = max(SingleSuspendEnd2k+1,

SingleIgnoreEnd2k+1).

Prior to beginning, we have l = 0, and have that MultiRobustSuspendEnd0 = null,
MultiRobustIgnoreEnd0 = null, SingleSuspendEnd0 = null, SingleIgnoreEnd0 = null,
RobustUnfinished0 = null, RobustUnfinishedTail0 = 0, RunningMemTotal0 = 0, and
EmptyTail0 = 0.

To complete the algorithm, we present the protocol for advancing l by one, and updating
each of the intermediate values.

Suppose for some odd l > 0 we are given the values of the above quantities for l − 1,
and given the recursive values for a(l+1)/2. We obtain the new values for l as follows:

• Step 1: Simple Updates. We compute MultiRobustSuspendEndl as,

MultiRobustSuspendEndl−1 +a(l+1)/2.MemTotal,

and SingleSuspendEndl as,

SingleSuspendEndl−1 +a(l+1)/2.MemTotal .

We compute SingleIgnoreEndl as

max(SingleIgnoreEndl−1, a(l+1)/2.MaxSingle + EmptyTaill−1),

where the second entry in the maximum is the largest water mark of any single-edge
antichain in C with an edge in a(l+1)/2.

183

We set RobustUnfinishedl = RobustUnfinishedl−1. Finally we increase the following
RobustUnfinishedTaill, RunningMemTotall, and EmptyTaill by a(l+1)/2.MemTotal
over their values for l − 1 (where the outcome is null if they were previously null).

• Step 2: Computing MultiRobustIgnoreEndl. We update MultiRobustIgnoreEndl
with Algorithm 3. The only antichains A that MultiRobustIgnoreEndl needs to con-
sider but that MultiRobustIgnoreEndl−1 did not are the candidate stripped robust
antichains A containing at least one edge in a(l+1)/2.

The first if-statement checks whether any multi-edge candidate antichains exist in
which a(l+1)/2 contributes only a single edge; this requires that

RobustUnfinishedTaill−1 +a(l+1)/2.MaxSingle > M
2p in order for the local contribution

of the edge in a(l+1)/2 to exceed M
2p ; and that RobustUnfinished 6= null that way the

resulting antichain contains multiple edges.

The second if-statement considers candidate antichains in which a(l+1)/2 contributes
multiple edges. If RobustUnfinishedl−1 6= null, then the maximum water mark in
C obtainable by such an antichain is RobustUnfinishedl−1 + RobustUnfinishedTaill−1

+a(l+1)/2.MultiRobust. If RobustUnfinishedl−1 = null, then the maximum water
mark in C obtainable is RobustUnfinishedTaill−1 +a(l+1)/2.MultiRobust.

Suppose for some even l > 0 we are given the values of the intermediate values for l− 1,
and given the recursive values for bl/2. We obtain the new values for l as follows:

• Step 1: Simple Updates: We compute SingleSuspendEndl as

max(SingleSuspendEndl−1 +bl/2.MemTotal,

bl/2.MaxSingle + EmptyTaill−1),

and SingleIgnoreEndl as,

max(SingleIgnoreEndl−1, bl/2.MaxSingle + EmptyTaill−1).

We compute RunningMemTotall as,

RunningMemTotall−1 +bl/2.MemTotal .

Finally, we compute EmptyTaill as,

EmptyTaill = EmptyTaill−1 + max(0, bl/2.MemTotal).

• Step 2: Computing MultiRobustSuspendEndl and MultiRobustIgnoreEndl. We
update MultiRobustSuspendEndl and MultiRobustIgnoreEndl with Algorithm 4. We
begin by computing X, the largest ignored-end cost of any candidate stripped robust
antichain in C that (1) contains multiple edges; (2) contains at least one edge in bl/2;
and (3) contains no edges in al/2, bl/2+1, . . . , ak. The first if-statement considers the
case where the antichain has one edge in bl/2; and the second considers the case where
there are multiple such edges.

After computingX, we update MultiRobustSuspendEndl and MultiRobustIgnoreEndl
based on X’s value.

184

• Step 3: Computing RobustUnfinishedl and RobustUnfinishedTaill. We compute
RobustUnfinishedl and RobustUnfinishedTaill with Algorithm 5. We define m and t
to be m(bl/2) and t(bl/2), as defined in Lemma 37. We then update RobustUnfinishedl
and RobustUnfinishedTaill appropriately based on the three cases in the lemma. (In
the final case, we take the maximum of 0 and RobustUnfinishedl−1 because if the
latter is null, we wish to treat it as zero.)

This completes the recursion described in Section 7.5.2, allowing one to compute H •∞(G)
in an online manner (i.e., while executing the parallel program on a single thread) with
constant time and space overhead.

Algorithm 3 Updating MultiRobustIgnoreEnd for a(l+1)/2

MultiRobustIgnoreEndl = MultiRobustIgnoreEndl−1;
if RobustUnfinishedTaill−1 +a(l+1)/2.MaxSingle > M

2p and RobustUnfinishedl−1 6=
null MultiRobustIgnoreEndl = max(self,RobustUnfinishedl−1

+ RobustUnfinishedTaill−1 +a(l+1)/2.MaxSingle);
if a(l+1)/2.MultiRobust 6= null if RobustUnfinishedl−1 6= null MultiRobustIgnoreEndl =
max(self,RobustUnfinishedl−1 + RobustUnfinishedTaill−1 +a(l+1)/2.MultiRobust);
if RobustUnfinishedl−1 = null MultiRobustIgnoreEndl =
max(self,RobustUnfinishedTaill−1 +a(l+1)/2.MultiRobust);

Algorithm 4 Updating MultiRobustSuspendEnd and MultiRobustIgnoreEnd for bl/2

X = null;
if bl/2.MaxSingle + RobustUnfinishedTaill−1 > M

2p and RobustUnfinishedl−1 6= null
X = bl/2.MaxSingle + RobustUnfinishedTaill−1 + RobustUnfinishedl−1;
if bl/2.MultiRobust 6= null if RobustUnfinishedl−1 6= null X =
max(X,RobustUnfinishedl−1 + RobustUnfinishedTaill−1 +bl/2.MultiRobust) if
RobustUnfinishedl−1 = null X = max(X,RobustUnfinishedTaill−1 +bl/2.MultiRobust)
MultiRobustSuspendEndl = max(X,MultiRobustSuspendEndl−1);
MultiRobustIgnoreEndl = max(X,MultiRobustIgnoreEndl−1);

Algorithm 5 Updating RobustUnfinished and RobustUnfinishedTail for bl/2

m = bl/2.MultiRobust;

if bl/2.MaxSingle > M
2p m = max(m, bl/2.MaxSingle);

if m = null m = 0;
t = bl/2.MemTotal;

if t > 0 and m ≤ t+ M
2p RobustUnfinishedl = RobustUnfinishedl−1;

RobustUnfinishedTaill = RobustUnfinishedTaill−1 +t;
if t ≤ 0 and m ≤ M

2p RobustUnfinishedl = RobustUnfinishedl−1;
RobustUnfinishedTaill = RobustUnfinishedTaill−1;
if m ≥ max(0, t) + M

2p RobustUnfinishedl = max(0,RobustUnfinishedl−1) +
RobustUnfinishedTaill−1 +m;
RobustUnfinishedTaill = 0;

185

186

Chapter 8

Optimal Reissue Policies for
Reducing Tail-Latency

This chapter presents work on the design and formulation of the SingleR policy family
for reducing tail-latency in distributed request-response workflows by judiciously sending
redundant requests. The work presented in this chapter was conducted in collaboration
with Yuxiong He and Sameh Elnikety.

Abstract

Interactive services send redundant requests to multiple different replicas to meet stringent
tail latency requirements. These additional (reissue) requests mitigate the impact of non-
deterministic delays within the system and thus increase the probability of receiving an
on-time response.

There are two existing approaches of using reissue requests to reduce tail latency. (1)
Reissue requests immediately to one or more replicas, which multiplies the load and runs
the risk of overloading the system. (2) Reissue requests if not completed after a fixed delay.
The delay helps to bound the number of extra reissue requests, but it also reduces the
chance for those requests to respond before a tail latency target.

We introduce a new family of reissue policies, Single-Time / Random (SingleR),
that reissue requests after a delay d with probability q. SingleR employs randomness to
bound the reissue rate, while allowing requests to be reissued early enough so they have
sufficient time to respond, exploiting the benefits of both immediate and delayed reissue
of prior work. We formally prove, within a simplified analytical model, that SingleR is
optimal even when compared to more complex policies that reissue multiple times.

To use SingleR for interactive services, we provide efficient algorithms for calculating
optimal reissue delay and probability from response time logs through a data-driven ap-
proach. We apply iterative adaptation for systems with load-dependent queuing delays.
The key advantage of this data-driven approach is its wide applicability and effectiveness
to systems with various design choices and workload properties.

We evaluated SingleR policies thoroughly. We use simulation to illustrate its internals
and demonstrate its robustness to a wide range of workloads. We conduct system exper-
iments on the Redis key-value store and Lucene search server. The results show that for
utilizations ranging from 40-60%, SingleR reduces the 99th-percentile latency of Redis
by 30-70% by reissuing only 2% of requests, and the 99th-percentile latency of Lucene by
15-25% by reissuing 1% only.

187

8.1 Introduction

Interactive online services, such as web search, financial trading, and games require con-
sistently low response times to attract and retain users [144, 308]. The service providers
therefore define strict targets for tail latencies — 95th percentile, 99th percentile or higher
response times [85, 87, 148, 349] to deliver consistently fast responses to user requests.
For many distributed and layered services, a request could span several servers and the
responses are aggregated, in which case the slower servers typically dominate the response
time [194]. As a result, tail latencies are more suitable performance metrics than averages
in latency-sensitive applications that employ concurrency.

Variability in a service’s response-time can lead to tail-latencies that are several orders
of magnitude larger than the average or median. Rare work-intensive requests can have
a disproportionate impact on tail-latency by causing other requests to be delayed. Other,
often nondeterministic, factors also play a significant role: random load-balancing can lead
to short-term skew between machines; background tasks on servers can lead to temporary
shortages in CPU cycles, memory, and disk bandwidth; network congestion can increase la-
tency and reduce throughput of communication channels. Reducing tail latency, influenced
by all of these contributing factors, is challenging.

The judicious use of redundant computation is often a highly effective technique for
reducing tail-latency in interactive services. The basic idea is to exploit inter-machine
parallelism by sending multiple copies of a request to replicated servers in order to boost
the probability of receiving at least one timely response. This technique is widely used by
interactive services, yet despite its prevalence there has been little guidance on optimizing
its usage.

We develop a methodology for designing reissue policies that is composed of 3 steps.
First, we define several families of reissue policies of varied complexity. These reissue policies
are parametrized by variables such as: a) whether to reissue a request, b) when to reissue
a request, and c) how many times to reissue a request. We choose an optimal family of
policies among the candidates guided by a theoretical analysis under a simplified model
where the system’s response-time distributions are static. Second, we provide an algorithm
to find the optimal values for the policy’s parameters using response-time logs, solving the
constrained optimization problem efficiently. Third, we provide iterative algorithms for
refining a policy’s parameters in response to changes in system load, and for adjusting the
total fraction of requests that are reissued to minimize tail-latency.

Related work and challenges.

This technique of reissuing latency-sensitive requests is not new. It has been employed by
a wide variety of systems such as key-value stores [327, 67, 204, 347], distributed request-
response workflows [176], DNS lookup [339, 7], TCP flows [348, 111], and web-search [85].
Existing systems that reissue requests to reduce tail-latency predominantly employ one of
two strategies.

For systems that run at low utilization, the common approach is to perform immediate
reissue of requests — i.e. dispatch multiple copies of all requests. The effectiveness of
immediate reissue has been investigated in previous studies [327, 339, 348, 111]. The primary
advantage of the immediate reissue approach is that all copies of a request have an equal
chance to respond before a tail-latency deadline since they are dispatched at the same time.
This advantage is a motivation within RepFlow [348] for employing immediate reissue for

188

the replication of short TCP flows (under 100KB). The disadvantage of immediate reissue,
however, is that its impact on overall load renders it ineffective for systems with moderate
and high utilization. A recent study in [339] on memcached, for example, shows that
immediate reissue can degrade performance at utilizations as low as 10%.

For systems that run at higher utilization, an alternative approach is to perform delayed
reissue of requests [85, 83, 347, 176] — i.e. dispatch a second copy of a request after a delay
d, which we refer to as Single-Time / Deterministic policy or SingleD. The SingleD
policy family corresponds to the scheme proposed in “The Tail at Scale” by Dean and
Barroso [85], where, for example, the delay d could be decided using 95th-percentile latency
of the workload. The advantage of delayed reissue is that we save the cost of reissuing the
requests that would respond fast anyway. However, if the delay d is picked to be too large,
then there may not be sufficient time for a reissue request to respond before the latency
target.

Along the line of analytical work, prior work only studied immediate reissues for average
latency under very specific arrival/service time distributions. Joshi et al. [181, 182] study
the impact of immediate reissuing on log-concave and log-convex service-time distributions.
Gardner et al. [118] present an exact analysis of immediate reissue for poisson arrivals and
exponential service-times. Lee et al. [214] consider minimizing average latency by reissuing
requests with a known cancellation overhead. Shah et al. [310] analyze the effectiveness of
immediate reissuing in the MDS queue model.

When it comes to developing effective reissue policies for reducing tail-latency on a wide
range of workloads and systems, many questions remain largely unanswered. The problem is
challenging for multiple reasons: (1) The impact of reissuing is complex: one must weigh the
odds of reducing tail latency by sending a duplicate request against the increase in system
utilization caused by adding load. (2) There is a large search space with many different
choices of which requests to reissue and when. (3) The complex and different workload
properties of various interactive services, such as service-time distributions, arrival patterns,
request correlations, and system settings make it difficult to derive general strategies for
reducing tail latency. (4) Analytical work using queueing theory is challenging even when
making strong assumptions about response-time distributions (e.g. drawn from exponential
family), and conclusions draw from such simple models are hard to generalize to more
complex systems.

Methodology and key results.

The goal of our work is to find a reissue policy that minimizes a workload’s kth percentile
tail latency by issuing a fixed percentage (or budget) of redundant requests. We explore the
space and devise reissue policies in a principled manner — directed by theoretical analysis
to identify the key insights of effective reissue policies, and driven by empirical data from
actual systems for wide applicability.

We introduce a new family of reissue policies, Single-Time / Random (SingleR),
that reissue requests after a delay d with probability q. The use of randomness in SingleR
provides an important degree of freedom that allows to bound the reissue budget while
also ensuring that reissue requests have sufficient time to respond, exploiting the benefits
of both immediate and delayed reissue of prior work.

Using a simplified analytical model, we formally prove that SingleR is the optimal
trade-off between the immediate and delayed reissue strategies. More precisely, we define the
Multiple-Time / Random (MultipleR) policies which reissue requests multiple times

189

with different delays and reissue probabilities. We prove that, surprisingly, the optimal
policies in MultipleR and SingleR are equivalent. It is a powerful result, restraining the
complexity of reissue policies to one time reissue only while guaranteeing the effectiveness
of SingleR.

Next, we present how to apply SingleR for interactive services through a data-driven
approach to efficiently find the appropriate parameters, reissue time and probability, given
sampled response times of the workloads. Our approach takes into account correlations
between primary and reissue request response times. It is computationally efficient, finding
optimal values of the parameters in close to linear time, with respect to the data size.

Moreover, we show how to devise reissue policies for systems which are sensitive to added
load by adaptively refining a reissue policy in response to feedback from the system. This
method remains oblivious to many system design details, relies on iterative adaptation to
discover a system’s response-time distributions and its response to added load. This data-
driven approach is performed in a principled manner: every refined policy is the solution to a
well defined optimization problem based on updated response-time distributions, applicable
to a wide range of workloads with varying properties.

Empirical evaluation

We illustrate the properties of SingleR using both simulation and system experiments.
Through careful simulation, we illustrate two key points: 1) the use of randomization in
SingleR is especially important for workloads with correlated service times and queueing
delays, 2) the effectiveness of SingleR is robust to varied workload properties and design
choices including: utilization, service-time distribution, target latency percentiles, service-
time correlations, and load-balancing/request-prioritization strategies.

We also evaluate SingleR using two distributed systems based on Redis [358] and
Lucene enterprise search [237]. We demonstrate that, on a wide range of utilizations from
20-60%, SingleR is able to reduce tail-latency significantly while reissuing only a small
number of requests. Even at 40-60% utilization, which is high for interactive services,
SingleR reduces the 99th-percentile latency of Redis by 30-70% while reissuing only 2%
of requests, and the 99th-percentile latency of Lucene by 15-25% while reissuing just 1% of
requests.

Summary of contributions

1. We introduce the SingleR reissue policy family that reissues requests after a delay
d with probability q. It exploits randomness to permit the timely reissue of requests
with bounded budget, achieving the benefits of both immediate and delayed reissue
(Section 8.2).

2. We prove within a simplified analytical model that the optimal policies in MultipleR
and SingleR are equivalent. Reissuing more than once does not offer additional
benefit — SingleR is simple and effective. (Section 8.3).

3. We show how to apply SingleR for interactive services by providing efficient algo-
rithms for obtaining reissue delay and probability parameters from response time logs.
(Section 8.4).

4. We evaluate SingleR using both simulation and system experiments on Redis key
value store and Lucene search server (Section 8.5 and Section 8.6).

190

Note that our methodology for developing reissue policies utilizes multiple performance
models of increasing complexity. This is a strategic choice that allows us to make definitive
design choices that are guided by theoretical insights. The proof that SingleR is optimal
relative to SingleD and MultipleR operates in a simplified model in which policies reissue
only a fixed fraction of requests, and where the service’s response-time distributions are
static and uncorrelated. This simplified model allows us to address questions about the
general structure of reissue policies that are otherwise intractable. Our algorithms for
finding the optimal SingleR policy for a specific interactive service operates in a less
constrained model where response-times may be correlated. Our techniques for adaptively
refining SingleR policies are in a more general model in which a system may have load-
dependent queueing delays — i.e. reissue requests perturb the response-time distribution.
The sequence of decisions made with respect to performance model are not arbitrary. As
shown in the empirical analysis of SingleR on simulated workloads in Section 8.5 and in
real-world systems in Section 8.6 these steps lead to effective reissue policies and the insights
made in simpler models are readily recognizable in our empirical results.

8.2 Deterministic versus random reissue

In this section, we introduce the Single-Time / Random (SingleR) policies, which
reissues a request with probability q after a delay d. We show how the incorporation of ran-
domness within SingleR policies enables requests to be reissued earlier while still meeting
a specified reissue budget. This allows for SingleR to reduce tail-latency significantly even
when constrained by a small reissue budget.

This section is organized as follows. Section 8.2.1 presents the model and terminol-
ogy. Section 8.2.2 defines the Single-Time / Deterministic (SingleD) policies which
formalize the “delayed reissue” strategy of prior work. We present SingleR policies in
Section 8.2.3 and discuss their benefits over SingleD in Section 8.2.4.

8.2.1 Model and terminology

We shall, for the moment, operate within a simplified performance model in which there are
no queueing delays and query response-times are independent and identically distributed.
Later, in Section 8.4.2 we describe how these limitations can be overcome to adapt our
techniques to workloads with correlated response-times and queueing delays.

Formally, we consider an interactive workload to be a collection of queries where each
query is composed of exactly one primary request that is dispatched at time t = 0 and
zero or more reissue requests dispatched at times d ≥ t.

The response-time of a query is based on the length of time between the dispatch of the
primary request and the arrival of any reply from either a primary or reissue request.

The reissue rate of a workload consisting of N queries and M reissue requests is
defined as the ratio M/N .

We look for a reissue policy that minimizes a workload’s kth percentile tail-latency with
the reissue rate equal to a given reissue budget B.

8.2.2 The SingleD policies

The Single-Time / Deterministic (SingleD) policy family is a 1-parameter family of
policies that is parametrized by a reissue delay d. A SingleD policy reissues a request

191

if a response has not been received after d seconds.

Let the random variable X denote the response time of the primary request and Y
denote the response time of the reissue request. A query Q completes before time t if its
primary response-time X is less than t, or if the reissue request response-time Y is less than
t− d. The probability that the query Q responds before time t is given by Equation (8.1).

Pr(Q ≤ t) = Pr(X ≤ t) + Pr(X > t)Pr(Y ≤ t− d) (8.1)

The expected number of reissue requests created by a SingleD policy is equal to the
number of primary requests that respond after time d, i.e., the reissue budget is

B = Pr(X > d) . (8.2)

Therefore, if a system can tolerate 10% additional requests, then the delay d is chosen for
the SingleD policy such that Pr(X > d) = 1/10. The smaller the delay d, more requests
are reissued, and the higher the budget B.

8.2.3 The SingleR policies

The Single-Time / Random (SingleR) policy family is a 2-parameter family of policies
that is parametrized by a reissue delay d and a reissue probability q. A SingleR policy
reissues a request with probability q if a response has not been received after d seconds.

A query Q responds before time t if the primary request responds before time t, or if a
reissue request was created and its response time is less than t− d. The probability that Q
completes before time t while employing SingleR is given by Equation (8.3).

Pr(Q ≤ t) = Pr(X ≤ t) + q · Pr(X > t)Pr(Y ≤ t− d) (8.3)

The reissue budget is
B = q · Pr(X > d) (8.4)

Given Equation (8.3) and Equation (8.4), we write the constrained optimization problem
which identifies the reissue delay and probability parameters of the optimal SingleR policy
given the primary and reissue response time distributions X and Y .

Optimal policy for SingleR

Given tail-latency percentile k, a reissue budget B, and policy family SingleR

minimize
d, q

t

subject to Pr(X ≤ t) + q · Pr(X > t)Pr(Y ≤ t− d) ≥ k,
q · Pr(X ≥ d) ≤ B

8.2.4 Randomization is essential

The use of randomization in SingleR allows the reissue budget, and thus the added resource
and system load, to be bounded while also ensuring that requests can be reissued early
enough so they have sufficient time to respond. This may not be allowed under SingleD,
which we illustrate in the following example.

192

Suppose, for example, that we want to minimize a workload’s 95th percentile tail-latency
by reissuing no more than 5% of all queries. Clearly, this cannot be achieved using a
SingleD policy — its limited reissue budget forces it to reissue requests later than the
original 95th percentile tail-latency.

In general, a SingleD policy cannot reduce any workload’s kth percentile latency with
budget B < 1− k. Randomization is an essential part of an effective reissue policy.

8.3 Single versus multiple reissue

As we saw in Section 8.2, randomness provides SingleR policies an important degree
of freedom that enables a continuous trade-off between the advantages of immediate and
delayed reissuing. A natural question arises: can we obtain an even better policy family by
introducing additional degrees of freedom?

In this section, we address this question by introducing MultipleR policies that can
reissue requests more than once, at multiple different times, and with different probabilities.
We prove a surprising fact: for a given reissue budget B and tail-latency percentile k, the
optimal MultipleR and SingleR policies achieve the same tail-latency reduction.

Note that we continue to operate in the simplified model described in Section 8.2.1 in
which there are no queueing delays and query response-times are independent and identically
distributed. These limitations will be lifted in Section 8.4.2 as we show how to adapt
SingleR policies to handle correlated response-times and queueing delays.

8.3.1 Multiple time policies

The Multiple-Time / Random (MultipleR) policy family contains policies that can
reissue requests multiple times. A policy that reissues a request at-most n times consists of
a sequence of n delays d1, d2, . . . , dn and n probabilities q1, q2, . . . , qn. Like SingleR, the
MultipleR family explores the space between two extremes — the “immediate reissue”
and “delayed reissue” strategies. Specifically, the reissue times di of a MultipleR policy
lie between 0, the time of immediate reissue, and d′, the time selected by a “delayed reissue”
SingleD policy, where Pr(X > d′) = B. For any di, since di ≤ d′, the following condition
holds

Pr(X > d′) ≥ B . (8.5)

For the purpose of our later arguments, we also define the Double-Time / Random
(DoubleR) policy family. The DoubleR family is a subset of MultipleR and contains
policies that reissue requests at most twice.

8.3.2 Single is optimal

We prove the optimality of SingleR in two steps: (1) We show in Theorem 44 that the
optimal policies in the SingleR and DoubleR families achieve identical tail-latency re-
duction; (2) Finally, we prove a generalization in Theorem 45 for MultipleR policies that
have n > 2 reissue times.

Theorem 44 The optimal SingleR and DoubleR reissue policies achieve the same kth
percentile tail-latency when given the same reissue budget B.

193

Proof. Consider the optimal SingleR policy with budget B that minimizes t, the kth
percentile tail-latency. Suppose that this policy reissues requests at time d∗. Then, the
probability that a query using the optimal SingleR policy responds before time t is given
by Equation (8.6) below.

Pr(Q ≤ t) = Pr(X ≤ t) +G∗SR (8.6)

where,

G∗SR =
B

Pr(X > d∗)
Pr(X > t)Pr(Y ≤ t− d∗) . (8.7)

The first term Pr(X ≤ t) is the probabilitity that the primary request returns before the
tail-latency deadline. The term G∗SR corresponds to the case for which the primary request
misses the deadline, but the reissue request responds on-time.

Now consider a DoubleR policy with reissue times d1, d2 and reissue probabilities
q1, q2. The probability that a query using this policy reponds before time t is given by
Equation (8.8) below.

Pr(Q ≤ t) = Pr(X ≤ t) +G1 +G2 (8.8)

where,
G1 = q1Pr(X>t)Pr(Y1≤t− d1) (8.9)

G2 = q2(1− q1Pr(Y1≤t− d1))Pr(X>t)Pr(Y2≤t− d2) (8.10)

The term G1 corresponds to the case for which the primary request misses the deadline,
but the first reissue request responds on-time. Lastly, the third term G2 corresponds to
the case where both the primary and first reissue request miss the deadline, but the second
reissue request responds on-time.

We shall show that G1 + G2 ≤ G∗SR. After this has been shown, it follows that no
DoubleR policy can achieve a lower tail-latency than a SingleR policy with the same
budget.

First, we provide a bound on G1.

Consider a SingleR policy that reissues requests at time d1 with probability B ·Pr(X >
d1)−1. Using this policy, the probability that a query returns before time t is given by

Pr(Q ≤ t) = Pr(X ≤ t) +GSR,1 (8.11)

where,

GSR,1 =
B

Pr(X > d1)
Pr(X > t)Pr(Y ≤ t− d1) . (8.12)

Since G∗SR is the optimal policy for a budget B, we have that

GSR,1 ≤ G∗SR . (8.13)

Multiplying both sides of Inequality (8.13) by q1Pr(X > d1)B−1 gives us the upper
bound on G1 shown in Inequality (8.14).

G1 ≤
q1Pr(X > d1)

B
G∗SR (8.14)

Second, we provide an upper bound on G2.

We begin by formulating an upper bound on G2 that is a function of q1. This requires
a sequence of observations. We note that the budget constraint for the DoubleR policy

194

implies the following inequality:

q1Pr(X > d1) + q2Pr(X > d2)(1− q1Pr(Y1 ≤ d2 − d1)) ≤ B (8.15)

Then, given q1 Inequality (8.15) implies the following upper bound on q2:

q2 ≤
B − q1Pr(X > d1)

Pr(X > d2)(1− q1Pr(Y1 ≤ d2 − d1))
. (8.16)

Finally, we incorporate this bound on q2 into the expression for G2 given in Equa-
tion (8.10) to obtain an upper bound on G2 as a function of q1.

G2 ≤
B − q1Pr(X > d1)

Pr(X > d2)
γ Pr(X > t)Pr(Y2 ≤ t− d2) (8.17)

where, γ = (1− q1Pr(Y1 ≤ t− d1))/(1− q1Pr(Y1 ≤ d2− d1)). Note that γ is at most 1 since
d2 is less than t which allows us to omit γ in Inequality (8.17) to obtain a simpler (albeit
weaker) upper bound on G2.

Now consider a SingleR policy that reissues at time d2 with probability BPr(X >
d2)−1. The probability that a query using this policy responds before time t is given by:

Pr(Q ≤ t) = Pr(X ≤ t) +GSR,2 (8.18)

where,

GSR,2 =
B

Pr(X > d2)
Pr(X > t)Pr(Y2 ≤ t− d2) . (8.19)

We have that for all positive a that aGSR,2 ≤ aG∗SR. Let a = 1 − q1Pr(X > d1)B−1,
which is strictly positive since the budget constraint on the DoubleR policy implies the
inequality q1Pr(X > d1) < B.

Then, combining Equation (8.19) and Inequality (8.17) we have that

(8.20)
G2 ≤

(
1− q1Pr(X > d1)

B

)
GSR,2

≤
(

1− q1Pr(X > d1)

B

)
G∗SR .

Together the upper bounds on G1 and G2 imply that G1 + G2 ≤ G∗SR, completing the
proof.

Theorem 45 The optimal SingleR and MultipleR reissue policies achieve the same
kth percentile tail-latency when given the same reissue budget B.

Proof.
Assume as an inductive hypothesis that the theorem holds for n- and (n + 1)-time

MultipleR policies. The base cases for 1-time and 2-time MultipleR policies follows
from Theorem 44.

Consider an optimal (n+2)-time MultipleR policy Pn+2 with reissue times d1, . . . , dn+2.
To complete the inductive argument, we will show that there exists an (n+ 1)-time Mul-
tipleR policy with reissue times d1, . . . , dn, d

′ that achieves the same kth percentile tail-
latency.

195

Let Pn be the n-time MultipleR policy obtained by taking the first n reissue times
and reissue probabilities in Pn+2. The policy Pn consumes budget αB(≤ B), where α ≤ 1.

Let Q[Pn] be a random variable representing the response-time distribution of a query
reissued using policy Pn.

Let’s now transform the original problem to a new but equivalent problem of minimizing
the kth percentile tail-latency of a workload W ′ with primary response-time distribution
Q[Pn] and reissue response-time distribution Y .

We want to show that, for the workload W ′, a reissue policy with budget (1−α)B that
reissues at times dn+1 and dn+2 is a DoubleR policy. In particular, we want to show that
its budget and reissue times satisfy the condition of Inequality (8.5) under MultipleR
definition, i.e., the following two inequalities hold:

Pr(Q[Pn] ≥ dn+1) ≥ (1− α)B (8.21)

Pr(Q[Pn] ≥ dn+2) ≥ (1− α)B (8.22)

In order to show that Inequality (8.21) and Inequality (8.22) hold, we use the induction
hypothesis for n-time MultipleR policies to obtain a lower-bound on Pr(Q[Pn] ≥ dn+1)
and Pr(Q[Pn] ≥ dn+2).

Let k′ = (1− Pr(Q[Pn] > dn+1)) so that dn+1 is the k′th percentile tail-latency of Q[Pn].
Consider the original workload W with primary response-time X and reissue response-time
Y . By the induction hypothesis for n-time MultipleR policies, there exists a SingleR
policy PSR with budget αB that achieves a k′th percentile tail-latency that is at most dn+1.
Suppose that PSR reissues requests at time d∗. Then, we have that

Pr(Q[Pn] > dn+1) ≥ Pr(Q[PSR] > dn+1) (8.23)

and that
Pr(Q[PSR] > dn+1)

Pr(X > dn+1)
= 1− αBPr(Y ≤ dn+1 − d∗)

Pr(X > d∗)
(8.24)

By the definition of MultipleR we have that Pr(X > dn+1) ≥ B and by the definition
of SingleR that Pr(X > d∗) ≥ B. Together with Inequality (8.23) this implies that

Pr(Q[Pn] > dn+1) ≥ Pr(Q[PSR] > dn+1) ≥ (1− α)B (8.25)

Which proves that Inequality (8.21) holds. The proof that Inequality (8.22) holds follows
an identical argument.

Therefore, we have shown that for the workload W ′ the policy which reissues requests
at times dn+1 and dn+2 is a DoubleR policy. By Theorem 44 it follows that there exists a
SingleR policy that reissues at some time d′ which achieves the same kth percentile tail-
latency as this DoubleR policy. We can, therefore, replace the (n + 2)-time MultipleR
policy with an (n + 1)-time MultipleR policy that reissues at times d1, . . . , dn, d

′ that
achieves the same kth percentile tail-latency — completing the proof.

Analysis with Correlation The analysis in Theorem 44 may be extended (with addi-
tional assumptions) to the case in which primary and reissue response times are correlated.
Consider a DoubleR policy that reissues requests at times d1, d2, and let Q1 represent
the probability that either the primary or first reissue request (issued at time d1) responds
before time t. Then the analysis in Theorem 44 holds if a) Pr(Y2 ≤ t − d2|Q1 > t) ≤

196

Pr(Y2 ≤ t − d2|X > t), and b) Pr(Y1 ≤ d2 − d1)|X > d2) ≤ Pr(Y1 ≤ t − d1|X > t).
The first assumption (a) is fairly modest and is employed to simplify Inequality (8.15).
Intuitively, assumption (a) states that the likelihood of a second reissue request responding
before time t− d2 decreases (or is unchanged) if the first reissued request fails. The second
assumption (b) is a technical requirement that allows our proof to use the budget constraint
in Inequality (8.15) in the correlated case. Specifically, assumption (b) ensures that γ in
Inequality (8.17) is at most 1. Informally, assumption (b) states that the positive corre-
lation between primary and reissue response-times is weaker in the tail of the distribution
(i.e. near time t) than it is near the reissue times d1, d2. We note that in the case where
assumption (b) fails to hold, derived bounds on γ can still be used to obtain competitive
ratios.

The optimality of SingleR is a powerful result, restraining the complexity of reissue
policies to one time reissue only while guaranteeing its effectiveness.

8.4 SingleR for interactive services

This section presents how to use SingleR for interactive services: We use a data-driven
approach to efficiently find the appropriate parameters, reissue time and probability, given
sampled response times of the workloads. We develop the parameter search algorithm in 3
steps. (1) We start from a simple model in Section 8.4.1, assuming the response times of
primary and reissue requests are independent. We present an algorithm ComputeOpti-
malSingleR that computes optimal reissue time and probability, minimizing tail latency.
Our algorithm is computationally efficient, taking O(N logN) time where N is the num-
ber of response time samples. (2) We extend the algorithm in Section 8.4.2 to incorporate
correlation between reissue and primary requests, guaranteeing optimality on parameter
selection while offering the same computational efficiency of O(N logN). (3) We show
how to adaptively refine a SingleR policy to take into account additional queueing delays
introduced to the system by the reissue requests in Section 8.4.3.

8.4.1 Parameter search

The ComputeOptimalSingleR(RX , RY , k, B) procedure (in Figure 8-1) computes the
optimal SingleR policy to minimize the kth percentile tail-latency of an interactive service
with reissue budget B. The response-time distributions for the service are represented
using two sets of samples: a set RX of response times for primary requests; and, a set RY of
response times for reissued requests, accommodating the cases in which these distributions
differ, e.g., when reissue requests are executed using dedicated or specialized resources. The
output of the procedure is the reissue time d∗ and the reissue probability q for the SingleR
policy.

ComputeOptimalSingleR searches for the optimal reissue time. We preserve the
following invariant throughout the procedure — the SingleR policy that reissues requests
at time d∗ achieves a kth percentile tail-latency of at most t. The procedure begins on
lines 2–3 by selecting a trivial policy that reissues all requests at time d∗ ← min{RX} and
achieves a kth percentile tail-latency of t← max{RX}. A search is then performed on lines
4–12 for each reissue time d ∈ RX to determine if the SingleR policy reissuing at time d
achieves a kth percentile tail-latency smaller than t. For each time d, the success-rate α of
the SingleR policy that reissues at time d is computed on line 7, which is the probability
that a query is serviced before time t. If this success rate is greater than the tail-latency

197

ComputeOptimalSingleR(RX , RY , k, B):

1 Q ← RX

2 d∗ ← min{Q}
3 t ← max{Q}
4 while Q 6= ∅
5 d ← min{Q}
6 Q ← Q − {d}
7 α← SingleRSuccessRate(RX,RY,B, t, d)
8 while α > k and t > d
9 Q ← Q − {t}

10 t ← max{Q}
11 d∗ ← d
12 α← SingleRSuccessRate(RX,RY,B, t, d)
13 q ← 1−DiscreteCDF(RX , d

∗)
14 return (d∗, q)

SingleRSuccessRate(RX , RY , B, t, d):

1 Pr(X ≤ t)← DiscreteCDF(RX , t)
2 Pr(X > d)← 1−DiscreteCDF(RX , d)
3 Pr(Y ≤ t− d)← DiscreteCDF(RY , t− d)
4 q ← B/Pr(X > d)
5 α← Pr(X ≤ t) + q · (1− Pr(X ≤ t)) · Pr(Y ≤ t− d)
6 return α

DiscreteCDF(R, t):

1 s← |{x ∈ R; x < t}|
2 return s/|R|

Figure 8-1: Pseudocode for the data-driven algorithm for finding the optimal SingleR
policy.

percentile target k, we replace d∗ with d∗ ← d and decrease t to max{RX − {t}} while
preserving the invariant. This iterative refinement of the policy is repeated on lines 8–12
until the success rate α of the SingleR policy reissuing at time d is less than k. By then,
we find the optimal d∗ value, and its corresponding q value is computed at line 13.

Complexity.

ComputeOptimalSingleR is computationally efficient with complexity of Θ(N+Sort(N))
where N is the number of samples, and Sort(N) is the time required to sort N response
times. In particular, the list of potential reissue times Q is initialized with N response times.
Each time SingleRSuccessRate is invoked one element is removed from Q. Therefore,
SingleRSuccessRate can be invoked at most N times. SingleRSuccessRate evalu-
ates three cumulative distribution functions DiscreteCDF on lines 1–3. Although the
success rate α computed on line 5 is not necessarily monotonic as a function of (t, d), its

198

composite CDFs are monotonic in t, d, and t − d respectively. As a result, the amortised
cost of DiscreteCDF is O(1) with a careful analysis considering order statistics and us-
ing finger search tree [53, 141]. DiscreteCDF takes pre-sorted response time samples as
inputs, where the sorting takes Θ(Sort(N)) time. Summing them together, the complexity
of ComputeOptimalSingleR is Θ(N + Sort(N)).

Theorem 46 shows that ComputeOptimalSingleR is a computationally-efficient lin-
ear time algorithm.

Theorem 46 Given N sorted response-times RX and N sorted reissue response-times RY ,
ComputeOptimalSingleR computes the optimal SingleR policy for the case in which
request response-times are independent in Θ(N) time.

Proof.
The list of potential reissue times Q is initialized with N response times. Each time

SingleRSuccessRate is invoked one element is removed from Q. Therefore, SingleR-
SuccessRate can be invoked at most N times.

The SingleRSuccessRate procedure evaluates three cumulative distribution func-
tions on lines 1–3. The runtime of DiscreteCDF depends on the time required to
perform the order statistic query on line 1. These order statistic queries can be eval-
uated in O(1) amortized time by taking advantage of the temporal access pattern of
ComputeOptimalSingleR. The algorithm considers N reissue times d = d1, d2, . . . , dN
on lines 4–12 in ascending order, and the tail-latency target t monotonically decreases as
better parameters are discovered. These two properties imply that t − d is also monoton-
ically decreasing. The monotonic behavior of t, d, and t − d is exploited by storing the
response times RX and RY in a finger search tree [53, 141, 165, 198, 240] that supports
consecutive searches to tree elements whose order statistic differs by c in O(lg c) time. This
property implies that a sequence of N order-statistic queries for monotonic sequences can
be performed in Θ(N) time.

8.4.2 Incorporating response-time correlations

The response-time of a request can be divided into two components: the amount of time
a request waits in a server’s queue before being processed (the queueing time), and the
time required execute the request (the service time). The response-times of primary and
reissue requests, however, will often be correlated. For example, queries within a workload
can have different service times: a query with high service time (e.g., many instructions) is
likely to take long for both primary and reissue requests. The system’s instantaneous load
may be similar upon the arrival of the primary and reissue requests.

Correlations between primary and reissue requests influence the probability that a reis-
sue request will respond before a tail-latency deadline. This influence can be taken into
account in ComputeOptimalSingleR by modifying line 5 of SingleRSuccessRate in
Figure 8-1 to use the conditional distribution Pr(Y ≤ t−d|X > t) in place of Pr(Y ≤ t−d).

The conditional distribution Pr(Y ≤ t− d|X > t) may be estimated efficiently by using
a 2D orthogonal range query data structure [238, 2] over pairs (tx, ty) where tx and ty are
the primary and reissue response times.

Each range query performed within SingleRSuccessRate takes O(logN) time, and
SingleRSuccessRate is invoked at most 2N times by ComputeOptimalSingleR. There-
fore, the procedure ComputeOptimalSingleR which takes into account correlation com-
putes the optimal SingleR policy in Θ(N lgN) time.

199

0
50

100
150
200
250
300
350
400
450
500

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T

CDF (T)

Original
SingleR
Reissue
Primary

(a) Inverse CDF.

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10

T

Adaptive Trial

Predicted
Actual

(b) Adaptive algorithm.

Figure 8-2: Convergence of the adaptive SingleR policy on a workload with correlated
service-times and queueing delays.

8.4.3 Iterative adaptation for queue delays

The queueing delay of requests in a workload depends on the arrival process to a service.
The use of a reissue policy can perturb this arrival process and change the response-time
distributions used by ComputeOptimalSingleR to find a SingleR policy.

The impact of added load on a workload’s response-time distributions can be significant.
Consider the inverse CDFs illustrated in Figure 8-2a for Original and Primary requests1.
The Original curve illustrates the inverse CDF of the original primary response-time distri-
bution of the system when no requests are reissued. The Primary curve illustrates the new
inverse CDF of the primary response-time distribution when using a SingleR policy with
a 30% reissue budget. The impact of these reissue requests on the primary response-time
distribution is dramatic: the 85th percentile grows from 50 to 350.

We employ an adaptive approach to iteratively refine a SingleR policy in-response to
changes in the response-time distribution. First, we begin with a reissue policy P that
reissues requests at time d = 0 with probability B. We then execute the system with the
reissue policy and sample the response-time distributions of primary and reissue requests.
The sampled response-time distributions are used within ComputeOptimalSingleR to
compute the optimal SingleR policy Plocal for these response-time distributions. Next, we
obtain a new policy P ′ that has reissue delay d′ = d+λ(dlocal−d) where λ is a learning rate.
Finally, this process is repeated until the empirical kth percentile tail-latency converges to
the value predicted by ComputeOptimalSingleR and the empirical reissue rate converges
to B.

This adaptive approach is based upon two observations: a) using the same budget,
reissuing later tend to impact load more as it is more likely to reissue requests with more
work and higher resource demands; and, b) small changes to the reissue delay result in only
small changes to the response-time distributions. Observation (a) implies that the predicted
kth percentile tail-latency at each step of ComputeOptimalSingleR increases after each
step of the algorithm. Observation (b) implies that for sufficiently small λ that the true
optimal reissue time dopt lies between d′ and dlocal at each step of the algorithm.

Figure 8-2b shows the 95th percentile tail-latency achieved on each step of the adaptive

1The corresponding simulation setup for Figure 8-2a is discussed in Section 8.5.

200

algorithm using a learning rate of 0.2 for a SingleR policy with a reissue budget of 30%.
Convergence can be detected by comparing the policy optimizer’s predicted tail-latency with
the observed latency when using the policy. For this workload, convergence is achieved after
≈ 6 iterations.

8.4.4 Extended scenarios

The tools and algorithms presented in the preceding sections can be applied to handle
common scenarios that occur in practice. Since space limitations prohibit an exhaustive
examination of each of these scenarios, we shall instead sketch a few strategies for addressing
common use cases.

Varying load / response-time distributions.

In practice a system’s response-time distribution can vary over time on both short (hourly,
daily), and long (monthly, yearly) time scales. The iterative algorithm for adaptively re-
fining a SingleR policy can be applied in an online fashion to address these temporal
variations, but requires modifications which depend on specific application needs and the
time-scale of interest to properly balance exploration and exploitation in its search.

Selecting optimal reissue budget.

The adaptive algorithm described in this section assumes the use of a fixed reissue budget.
As we learned in Section 8.2, SingleR policies are able to reduce tail-latency in a “smooth”
fashion even with very small reissue budgets. As a consequence, the tail-latency reduction
of SingleR as a function of the reissue budget tends to be a parabola whose extrema can
be readily found through simple binary search techniques.

To evaluate the practicality of this simple approach, we implemented a simple budget
selection procedure that performs the following steps: 1) set δ = 1% and set best-budget = 0;
2) for budget best-budget + δ run the adaptive SingleR policy optimizer for 5 adaptive
trials to produce reissue policy P ; 3) collect response-time data from the system when
using reissue policy P ; 4) if the budget best-budget + δ has smaller 99th percentile tail-
latency than best-budget , then set δ = 3δ/2. Otherwise, set δ = −δ/2. An example of this
binary search procedure is presented later in Figure 8-8 as part of our system experiments
in Section 8.6.

Meeting tail-latency with minimal resources

Interactive services often formulate service-level agreements (SLA) that guarantee a fixed
latency for k% of all requests. In such a scenario, a system designer may be interested in
minimizing the resources required to satisfy the SLA. Given a particular tail-latency target
T , the budget can be minimized using either a brute force search, starting at small reissue
rates, or by using a variation of the binary search procedure for finding the optimal budget
that transforms tail-latency values L using the function f(L) = min{T, L}.

8.5 Simulations

In this section we use a discrete-time event simulator to carefully evaluate the behavior and
tail-latency impact of SingleR policies. Simulation allows us to vary workload and system

201

In
d

e
p

e
n

d
e
n
t

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3

9
5
th

L
a
te

n
cy

R
ed

u
ct

io
n

R
a
ti

o

Reissue Rate

SingleR
SingleD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

R
em

ed
ia

ti
o
n

R
a
te

Reissue Rate

SingleR Remediation
SingleD Remediation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

P
ro

b
a
b

il
it

y

Reissue Rate

% Requests Outstanding at d
Reissue Probability

Budget
C

o
rr

e
la

te
d

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 0.1 0.2 0.3

9
5
th

L
a
te

n
cy

R
ed

u
ct

io
n

R
a
ti

o

Reissue Rate

SingleR
SingleD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3
R

em
ed

ia
ti

o
n

R
a
te

Reissue Rate

SingleR Remediation
SingleD Remediation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

P
ro

b
a
b

il
it

y

Reissue Rate

% Requests Outstanding at d
Reissue Probability

Budget

Q
u

e
u

e
in

g

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3

9
5
th

L
a
te

n
cy

R
ed

u
ct

io
n

R
a
ti

o

Reissue Rate

SingleR
SingleD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

R
em

ed
ia

ti
o
n

R
a
te

Reissue Rate

SingleR Remediation
SingleD Remediation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

P
ro

b
a
b

il
it

y

Reissue Rate

% Requests Outstanding at d
Reissue Probability

Budget

(a) Tail-latency reduction ratio. (b) Reissue remediation rate. (c) Reissue time and probability.

Figure 8-3: Simulation results for SingleR and SingleD policies with varied reissue bud-
gets on three simulated workloads: Independent, Correlated, and Queueing.

properties covering a wide range of scenarios.

First, we provide simulation results on three types of workloads: Independent, Cor-
related, and Queueing, corresponding to the three workload models in Section 8.4. This
experiment demonstrates two points: a) Randomness in SingleR is, in fact, especially
important for workloads with correlated service-times and queueing delays; and, b) The
optimal SingleR policy takes workload characteristics into account in order to maximize
the value of each reissued request.

Next, we conduct a sensitivity study that varies the Queueing workload along many
dimensions: utilization, service time distribution, percentile targets, strength of service-time
correlations, load balancing strategies, and request prioritization strategies. The results
demonstrate SingleR is effective and robust over varying workloads and system design
properties.

8.5.1 Simulated workload

Figure 8-3 provides simulation results on a set of three workloads: Independent, Correlated,
and Queueing. The service-times in each workload are drawn from a Pareto distribution
with shape parameter 1.1 and mode 2.0.

In the Independent workload, the service-times of primary and reissue requests are
independent and have no queueing delays (i.e. there are an infinite number of servers). In
the Correlated workload, the primary and reissue request service-times are correlated via

202

0

500

1000

1500

2000

0 500 1000 1500 2000

R
ei

ss
u
e

T
im

e

Primary Time

0

500

1000

1500

2000

0 500 1000 1500 2000

R
ei

ss
u
e

T
im

e

Primary Time

(a) Correlated (b) Queueing

Figure 8-4: Response-time correlations between primary and reissue requests on the Cor-
related and Queueing workloads. The service-time X of the primary request is drawn from
a Pareto distribution with shape 1.1 and mode 2. The service-time Y of a reissued request
is drawn from Y = rx+ Z, where x is the observed service-time of the primary request, Z
is drawn from a Pareto distribution with shape 1.1 and mode 2, and r = 0.5.

the relationship Y = rx+ Z where x is the sampled primary request service-time, Z is an
independently drawn service-time, and r = 0.5 is a linear correlation ratio. In the Queueing
workload, requests have correlated service-times and arrive according to a Poisson process.
The request is dispatched to the FIFO queue of one of 10 servers selected uniformly at
random. The arrival rate is chosen to achieve a system utilization of 30%.

Figure 8-3a compares the 95th percentile tail-latency reduction achieved by the optimal
SingleR and SingleD policies for varied reissue budgets. For the Queueing workload,
both the SingleR and SingleD policies are selected using adaptive policy refinement
(for the SingleD policy this adaptive refinement is needed to ensure the reissue budget is
satisfied). Figure 8-3b illustrates the “remediation rate” of SingleR and SingleD policies.
The remediation rate measures the average value of added (i.e. actually issued) reissue
requests and is defined to be the probability that a primary request X exceeds a tail-latency
target t, but the reissued request Y responds before time t− d, i.e. Pr(X > t ∩ Y < t− d).
Figure 8-3c plots the reissue times and probabilities used by the optimal SingleR policy
for each budget.

8.5.2 Benefits of randomization

The results of Figure 8-3a illustrates the benefits of randomization in reissue policies. For
all three workloads, there exists a range of reissue budgets for which the SingleD policy
is ineffective at reducing the 95th percentile tail-latency. On the Independent workload a
SingleD policy is unable to achieve any tail-latency reduction when the reissue budget
is less than 5%. On the Correlated workload, SingleD policies are ineffective for reissue
budgets less than 10%. Worst of all, SingleD policies actually increases the 95th percentile
latency of the Queueing workload with reissue budgets less than 10% — since these reissued
requests increase system load.

203

In contrast, SingleR is able to reduce the 95th percentile tail-latency for all reissue
budgets on the Independent and Correlated workloads. On the Queueing workload, Sin-
gleR begins to reduce tail-latency once the reissue budget is greater than 3%. For all three
workloads, randomization allows for SingleR to achieve better tail-latency reduction than
SingleD for budgets less than 15%.

8.5.3 Impact of correlation and queueing

The procedure outlined in Section 8.4 for finding an optimal SingleR policy takes into
account the properties of the primary and reissue response-time distributions, and adapts
to queueing delays. By inspecting the three workloads in Figure 8-3, we can gain insight
into how SingleR reissue policies are able to outperform SingleD.

The goal of ComputeOptimalSingleR is to find a SingleR policy that minimizes
the workload’s kth percentile tail-latency with a reissue budget of B. One can think of
ComputeOptimalSingleR as searching over all policies that use budget B in order to
find the policy which maximizes the value of each added request. A convenient measure
of the “value“ of each reissue request is its remediation rate — i.e. the probability that
the redundancy provided by the reissue request was necessary for the query to meet its
tail-latency target.

Figure 8-3c illustrates the way in which SingleR changes its choice of reissue delay and
probability based upon the reissue budget and workload characteristics. We shall discuss
the behavior of SingleR policies for each of our three workloads in the case where the
reissue budget is 10%.

On the Independent workload, the optimal SingleR policy reissues requests with prob-
ability 0.7 at a time d where approximately 15% primary requests remain outstanding —
resulting in approximately 10% of all requests being reissued in total. On the Correlated
workload, the optimal SingleR policy chooses to reissue requests with probability 0.4 at a
time d where 25% of requests are outstanding.

On the Correlated workload, the optimal SingleR policy must reissue requests earlier
due to service-time correlations. When optimizing its success rate it takes into account the
fact that if a query’s primary request exceeds a tail latency target, there is a higher chance
of its reissue request responding slowly. By reissuing requests earlier in time, the proba-
bility that the reissued request will help tail latency (i.e. the remediation rate) increases.
Therefore, on this workload the optimal policy reissues requests earlier at a time d when
40% of requests are outstanding, and reissues with a smaller probability of 25%.

On the Queueing workload, the optimal SingleR policy reissues requests with proba-
bility 0.8 at a time d where approximately 13% of requests are outstanding. Although this
workload’s service-times are correlated, the latency of requests in the tail of the response-
time distribution is dominated by queueing delays which depends on the service process
as well as on request arrival process and load balancing. Indeed, we can observe in Fig-
ure 8-4b that the addition of queueing delays dampens the strength of correlation between
primary and reissue requests. Although the preexisting correlation can still be observed,
the structure of the joint-distribution exhibits more randomness due to request queueing
time. This provides an explanation for why SingleR, and reissuing in general, can achieve
more latency reduction on the Queueing workload than the Correlated workload, as shown
in Figure 8-3a.

This experiment shows that SingleR optimizes the choice of reissue time and proba-
bility based upon workload characteristics, maximizing the benefit of reissued requests for

204

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8

T
im

e
(m

s)

Linear Correlation Ratio

95th percentile
No Reissue

8

16

32

64

128

256

512

1024

0 0.1 0.2 0.3 0.4 0.5

9
5
th

P
er

ce
n
ti

le
L

a
te

n
cy

(m
s)

Reissue Rate

Random
Min of Two
Min of All

64

128

256

512

1024

0 0.1 0.2 0.3 0.4 0.5

9
5
th

P
er

ce
n
ti

le
L

a
te

n
cy

(m
s)

Reissue Rate

Baseline FIFO
Prioritized FIFO
Prioritized LIFO

(a) Correlation (b) Load-balancing (c) Queuing

Figure 8-5: Illustrates impact of correlation ratio (Figure 8-5a), load-balancing strategies
(Figure 8-5b), and server’s queue-management policies (Figure 8-5c) on the 95th percentile
tail-latency of the Queueing workload.

P95 P99

L
o
g
N

o
rm

a
l(

1
,1

)

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

9
5
th

L
a
te

n
cy

R
ed

u
ct

io
n

Reissue Rate

LN(1, 1), 20% Util
LN(1, 1), 30% Util
LN(1, 1), 50% Util

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

9
9
th

L
a
te

n
cy

R
ed

u
ct

io
n

Reissue Rate

LN(1, 1), 20% Util
LN(1, 1), 30% Util
LN(1, 1), 50% Util

E
x
p

o
n
e
n
ti

a
l(

0
.1

)

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

9
5
th

L
a
te

n
cy

R
ed

u
ct

io
n

Reissue Rate

Exp(0.1), 20% Util
Exp(0.1), 30% Util
Exp(0.1), 50% Util

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

9
9
th

L
a
te

n
cy

R
ed

u
ct

io
n

Reissue Rate

Exp(0.1), 20% Util
Exp(0.1), 30% Util
Exp(0.1), 50% Util

Figure 8-6: The 95th percentile tail-latency P95 and the 99th percentile tail-latency P99 for
Exp(0.1) and LogNormal(1, 1) distributions with varied reissue rates and system utilization.

tail-latency reduction.

8.5.4 Sensitivity study

We study the sensitivity of SingleR to workload properties and design choices, including:
utilization, service-time distribution, target latency percentiles, correlation among requests,
load-balancing among servers, and changing the priority processing reissued requests. As a
baseline, we use a variant of the Queueing workload from Section 8.5.1 without service-time
correlations unless otherwise specified.

205

Utilization, service-time distribution and percentiles

We use LogNormal(1, 1) and Exponential(0.1) as service time distributions and measure
P95 and P99 tail latency reduction for three utilization levels: 20%, 30%, and 50%.

Figure 8-6 illustrates the P95 and P99 tail-latency reduction (Y-axis) achieved by Sin-
gleR policies over a range of reissue budgets (X-axis) compared to the original tail-latencies
when no requests are reissued. The results demonstrate: (1) Reissue obtains higher ben-
efit under less loaded systems, but even at rather high load of 50% utilization, SingleR
achieves latency reduction of up to 1.5 times. (2) The benefit of reissue tends to increase
for higher target percentiles.

Correlation.

We use the same default Pareto distribution to model service time, and progressively in-
crease the service time correlation ratio r between the primary request and its corresponding
reissued request (defined in Section 8.5.1). The P95 latency without reissue is 567, and is
independent of the correlation ratio r. Figure 8-5a reports P95 latency of SingleR using a
fixed reissue rate of 25% as a function of the correlation ratio. As expected, the less service-
times are correlated the larger benefit reissuing has on tail-latency. Even when primary
and reissue requests are strongly correlated (e.g. r = 1) SingleR is still able to reduce the
response-times of queries delayed due to queueing delays.

Load-balancing.

Figure 8-5b shows the impact of different load-balancing strategies on tail latency. We
make two observations: (1) Using more sophisticated load-balancing strategies such as
Min-of-2 (select the server with shorter queue among two randomly selected servers to
dispatch a request) or Min-of-All (select the server with the shortest queue among all
servers to dispatch a request) helps reduce the P95 tail-latency relative to the simpler
Random strategy that picks a server uniformly at random. (2) In all cases, SingleR
reduces the P95th latency by a factor of 2 or more.

Changing priority of reissued requests.

We study three priority settings: (1) Baseline FIFO corresponds to a server maintaining
a FIFO single queue, and does not differentiate between primary and reissue requests.
(2) Prioritized FIFO corresponds to a server that maintains two separate FIFO queues
for primary and reissue requests, and only processes reissue requests when the primary
queue is empty: preventing multiple reissued requests from delaying a primary request. (3)
Prioritized LIFO is the same as Prioritized FIFO but processes the reissue queue in LIFO
order. Figure 8-5c compares the three systems and shows that changing the priority scheme
has a modest impact on the tail latency improvements of SingleR.

The overall results in this section show that SingleR and its adaptive policy optimizer
is robust and reduces the tail latency for these different system design choices and workload
characteristics.

206

R
e
d

is
S

e
t-

In
te

rs
e
c
ti

o
n

300

400

500

600

700

800

900

1000

0 0.01 0.02 0.03 0.04 0.05 0.06

99
th

P
er

ce
n
ti

le
L

at
en

cy
(m

s)

Reissue Rate

SingleR
SingleD

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5

99
th

P
er

ce
n
ti

le
L

at
en

cy
(m

s)

Reissue Rate

20% Utilization
40% Utilization
60% Utilization

0

200

400

600

800

1000

1200

1400

1600

20 25 30 35 40 45 50 55 60

99
th

P
er

ce
n
ti

le
L

at
en

cy
(m

s)

Utilization

Best Reissue Rate
No Reissue

L
u

c
e
n

e
S

e
a
rc

h

340
350
360
370
380
390
400
410
420
430
440

0 0.01 0.02 0.03 0.04 0.05 0.06

99
th

P
er

ce
n
ti

le
L

a
te

n
cy

(m
s)

Reissue Rate

SingleR
SingleD

(a) SingleR vs SingleD

200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

0 0.02 0.04 0.06 0.08

99
th

P
er

ce
n
ti

le
L

at
en

cy
(m

s)

Reissue Rate

20% Utilization
40% Utilization
60% Utilization

(b) Latency vs Reissue Rate

200

400

600

800

1000

1200

1400

1600

20 25 30 35 40 45 50 55 60

99
th

P
er

ce
n
ti

le
L

at
en

cy
(m

s)

Utilization

Best Reissue Rate
No Reissue

(c) Best Latency vs Utilization

Figure 8-7: System experiment results for the Redis and Lucene workloads. Figure 8-7a
compares the P99 latency of SingleR and SingleD for reissue budgets between 0 and
6% at 40% utilization. Figure 8-7b shows the P99 latency for SingleR with varied reissue
rates for 20%, 40%, and 60% utilization. Figure 8-7c shows the P99 latency achieved when
using the best reissue budget and a SingleR policy for utilizations ranging from 20% to
60%.

8.6 Experimental evaluation

We evaluate SingleR policies in two distributed systems based on Redis [358] which is a
key-value store that supports stored procedures, and Lucene [237] which is an enterprise
search engine. Our main target is reducing the P99 tail latency.

8.6.1 Experimental setup and workloads

We use a cluster of 10 servers to execute the workload. Each server has a dual-core 2.4 GHz
Intel E5-2676 processor and 32GB of RAM. The data sets and its associated indices both for
Redis and for Lucene fit in the main memory. To execute each query workload, we employ
several machines emulating clients that send requests in an open loop with exponential
inter-arrival times.

To enable request reissuing, we assign each primary request a timestamp, and add it
to a FIFO queue so that the request can be reissued later. A reissue thread consumes the
entries from the FIFO queue, and dispatches the request to a server after a policy-specified
delay. Prior to sending a reissue request, the completion status of its associated query is
checked using a client-local boolean array.

All reported system utilizations refer to CPU utilization on a single core as measured by
the Linux sysstat [130] utility. We use 10 adaptive iterations (with learning rate λ = 0.5) to
compute the SingleD and SingleR policies satisfying the reissue budget. The measured

207

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14

B
u

d
g
et

Trial Num

Trial Budget

Best Budget
80

90

100

110

120

130

140

150

0 2 4 6 8 10 12 14

9
9
th

p
er

ce
n
ti

le
(m

s)

Trial Num

Trial Latency

Best Latency

Figure 8-8: Illustration of binary search for optimal budget for the Intersection Counting
query to minimize 99th percentile tail-latency. 20% utilization.

1

4

16

64

256

1024

4096

16384

65536

10 30 50 70 90 110
130

150
170

190
210

230

N
u

m
R

eq
u

es
ts

Service Time (ms)

Lucene

1

4

16

64

256

1024

4096

16384

65536

10 30 50 70 90 110
130

150
170

190
210

230

N
u

m
R

eq
u

es
ts

Service Time (ms)

Redis

Figure 8-9: Service time distributions for the Redis set-intersection and Lucene search
workloads.

reissue rate and the target reissue budget tend to closely agree with the predictions of the
reissue policy optimizer and thus we report only the empirical rate in all figures.

8.6.2 Redis set-intersection workload

The Redis workload consists of set-intersection queries performed over a synthetic collection
of 1000 sets. Each set stores a random subset of integers in the range 1 and 106, and set
cardinalities are distributed according to a lognormal distribution. Query traces consist of
40, 000 intersections between randomly selected pairs of sets.

The service-time distribution for the Redis set-intersection workload is illustrated in Fig-
ure 8-9 discretized into 20 msec bins. Over 98% of set-intersection queries in this workload
have a service-time less than 10 msec. Indeed, the workload’s mean service time µR = 2.366
milliseconds and standard deviation σR = 8.64 may lead us to expect request latencies to
be well-behaved, even in the tail.

A handful of queries (≈ 20), however, have service times greater than 150 msec. These

208

queries correspond to the rare case in which an intersection is performed between two
abnormally large sets. These rare queries do little to skew the aggregate statistics of the
workload’s service-time distribution, but have a substantial impact on tail-latency. As
shown in Figure 8-7b, the 99th percentile tail-latency for the set-intersection workload is
900 msec when one does not reissue requests.

These “queries of death” are a common problem in database applications, and their
impact on tail-latency can be difficult to predict apriori. In particular, the influence of
these requests depends to a large extent on the queueing mechanisms used in the system.
In Redis, requests are serviced in a round-robin fashion from each active client connection
in a batch. If even a single client issues a long-running request, then the requests of all
other clients will be delayed until completion. Furthermore, in an open-loop system such
delays lead to a backlog of requests that further extends the impact of the slow request for
multiple rounds.

Tail latency reduction under SingleR and SingleD

On the Redis workload, the SingleR and SingleD policies are able to reduce the P99
latency at 40% utilization from 900 milliseconds to 400 milliseconds. SingleR is able to
meet this target P99 latency with a budget of just ≈ 3.5%, whereas SingleD requires
a budget of at least 5%. For reissue budgets between 3 and 5%, the reissue probability
of SingleR increases from 0.8 to 1.0 so that for budgets greater than 5% SingleR and
SingleD are equivalent.

Figure 8-7a shows the P99 latency in msec (Y-axis) against the reissue rates between 0
and 6% (X-axis) for SingleR and SingleD. Both Redis (top figure) and Lucene (bottom
figure) running at 40% baseline utilization without any reissue.

We make two observations: First, both the SingleR and SingleD curves illustrate
reduced tail latency relative to the baseline system without reissuing. Second, we note that
the SingleR policy achieves strictly better tail-latencies than SingleD for small reissue
rates. For example at 2% reissue rate in Redis, SingleR reduces the P99 latency to 405
msec, compared to 900 msec for the baseline system and 820 msec for SingleD.

Varied system utilization

Next, we illustrate the performance of SingleR under three system utilization levels: 20%,
40%, and 60% in Figure 8-7b, which depicts the P99 latency against fixed reissue rate. For
all utilizations between 20−60%, SingleR is able to reduce the 99th percentile tail latency.

In particular, at 60% utilization (which is very high for interactive services) SingleR
with a 3% reissue rate reduces the Redis P99 latency from 1750 msec to 1000 msec, and
the Lucene P99 latency from 1603 msec to 1157 msec.

The best latency reduction occurs when choosing the optimal reissue rate, which depends
on the system utilization. For 20% utilization, we illustrate the process of finding the optimal
reissue rate via binary search in Figure 8-8. At 20% utilization the best reissue budget is
approximately 8%. At both 40% and 60% utilization, the best reissue rate is approximately
5%.

Figure 8-7c illustrates the best tail-latency achieved by a SingleR policy for the Redis
workload for utilizations between 20% and 60%. The Best Reissue Rate curve illustrates
the P99 latency achieved by the best SingleR policy (with reissue rate determined via

209

a binary search procedure), and the No Reissue curve illustrates the P99 latency of the
baseline system without reissuing.

8.6.3 Lucene search workload

The Lucene search workload consists of search queries over a corpus of 33 million articles
from the English Wikipedia dataset [112]. Queries are drawn randomly from a set of 10, 000
queries from the Lucene nightly regression tests [249].

The service-time distribution for queries in the search workload contrasts with set-
intersection in that it is not as highly skewed towards very-low latencies. The distribution for
search service-times is illustrated in Figure 8-9 discretized into 20 msec bins. Approximately
90% of all requests have service times between 1 and 70 msec, and the overall distribution
has mean service-time µL = 39.73 msec with standard deviation σL = 21.88.

Similar to the set-intersection workload, the search workload also has rare slow queries.
Approximately 1% of search queries have service-times greater than 100 msec. The impact
of these slow queries on tail-latency, however, is different in Lucene than in Redis. At 40%
utilization, the search workload’s 99th percentile latency is ≈ 435 msec when there are no
reissued requests. This is not entirely due to the differences in service-time distribution,
although it certainly is an important influence. The Lucene search server also differs in
how it manages concurrent requests. Requests from all open connections are placed into a
single FIFO queue which results in relatively good tail-latency behavior — FIFO is, in fact,
optimal for light-tailed service-time distributions [344].

Tail-latency reduction under SingleR and SingleD

On the Lucene workload, we observe in Figure 8-7a that SingleR reduces Lucene’s P99
latency at 40% utilization from 433 milliseconds to 339 milliseconds, and the SingleD
policy reduces P99 to 346 milliseconds. This gap, while small, is not merely measurement
noise — all reported values reflect the median of multiple runs.

The improved performance of the SingleR policy is due to its use of randomization
that allows it to reissue queries earlier than SingleD. At 40% utilization, the optimal
reissue rate for SingleR is 4%, and the optimal policy reissues requests with probability
approximately 0.75. As the reissue rate grows the achieved latency gap between SingleR
and SingleD closes, and the reissue probability of the optimal SingleR policy converges
to 1.0. Randomization is more valuable on the Lucene search workload than it was for
Redis because of the much higher mean service time of requests.

Varied system utilization

Next, we illustrate the performance of SingleR under three system utilization levels: 20%,
40%, and 60% in Figure 8-7b, which depicts the P99 latency against fixed reissue rate.

SingleR reduces the tail-latency of Lucene search workload for all utilizations between
20− 60%. At 60% utilization (high load), SingleR reduces the P99 latency from 1603 to
1157 msec. Figure 8-7c illustrates the best tail-latency achieved by a SingleR policy for
the Lucene workload for utilizations between 20% and 60%. The Best Reissue Rate curve
illustrates the P99 latency achieved by the best SingleR policy (with reissue rate deter-
mined via a binary search procedure), and the No Reissue curve illustrates the P99 latency
of the baseline system without reissuing. We observe significant tail latency reduction due
to SingleR over the baseline.

210

8.7 Conclusion

We have illustrated principled methods of generating reissue policies for interactive services.
By operating within a simplified model, we were able to prove that SingleR is an optimal
compromise between the commonly used immediate and delayed reissue strategies. There
are a few general lessons that we think are useful to impart: a) there is little reason to
choose a reissue policy more complex than SingleR if that additional complexity does not
leverage application-specific insight; and, b) reissue policies that reduce tail-latency as a
“smooth” function of their budget admit relatively simple strategies for adapting to load-
dependent queueing delays and searching for optimal reissue budgets. As we have shown,
we were able to adapt SingleR policies to systems and workloads with a wide range of
properties through iterative adaptation. As we have seen, this leads to a simple process for
finding effective reissue policies in real systems: SingleR is able to reduce tail-latency in
simulated and real-world workloads even when reissuing a small fraction of requests.

211

212

Chapter 9

Polylogarithmic Fully Retroactive
Priority Queues via Hierarchical
Checkpointing

This chapter presents a fully-retroactive priority-queue data struture that supports updates
and queries on a timeline containing m updates with overheads that are polylogarithmic
functions of m. This improves upon the previous best-known fully retroactive priority queue
data structure that relied upon a general transformation that required Θ(

√
m logm) time

per operation. This work was conducted in collaboration with Erik D. Demaine, Quanquan
Liu, Aaron Sidford, and Adam Yedidia.

Abstract

Since the introduction of retroactive data structures at SODA 2004 [88], a major open
question has been the difference between partial retroactivity (where updates can be made
in the past) and full retroactivity (where queries can also be made in the past). In particular,
for priority queues, partial retroactivity is possible in O(logm) time per operation on a m-
operation timeline, but the best previously known fully retroactive priority queue has cost
Θ(
√
m logm) time per operation.

We address this open problem by providing a general logarithmic-overhead transfor-
mation from partial to full retroactivity called “hierarchical checkpointing,” provided that
the given data structure is “time-fusible” (multiple structures with disjoint timespans can
be fused into a timeline supporting queries of the present). As an application, we construct
a fully retroactive priority queue which can insert an element, delete the minimum element,
and find the minimum element, at any point in time, in O(log2m) amortized time per up-
date and O(log2m log logm) time per query, using O(m logm) space. Our data structure
also supports the operation of determining the time at which an element was deleted in
O(log2m) time.

9.1 Introduction

Retroactivity. We can think of a data structure as being defined by a sequence of updates
u1, u2, . . . , um applied to its initial (empty) state. Traditional data structures “live in the
present” in the sense that the user can only append updates to this sequence, and ask

213

queries about the final state of the data structure resulting from the entire update sequence.
Retroactive data structures, introduced at SODA 2004 [88], allow for updates to be
inserted or deleted in the middle of the sequence, instead of just the end. Effectively, this
feature enables the user to travel back in time and make a retroactive change to the data
structure (similar to the movie Back to the Future). Thus we refer to the mutable update
sequence as the timeline .

We distinguish two forms of retroactivity. In partial retroactivity , queries can be
made only of the final version resulting from all of the updates in the timeline; effectively,
retroactive updates must be propagated all the way through the timeline in order to answer
such queries correctly. In full retroactivity , queries can be made about the data structure
at any time, corresponding to the result from a prefix of the timeline. In short, both forms
of retroactivity enable modifying the past, and full retroactivity enables querying the past.

Known results. In some settings, retroactivity is easy to achieve. If updates commute
with each other and have inverses, then retroactive updates can be moved to the end of
the timeline, making partial (but not full) retroactivity easy. If updates are inserts and
deletes, and the queries fall under Bentley and Saxe’s decomposable search problems, then
full retroactivity is possible with an O(logm) factor overhead [88].

Retroactivity becomes challenging when updates can have non-trival interactions. Here
one retroactive update can have a propagated effect on potentially all later updates. In the
extreme, when the data structure is a general-purpose computer, a retroactive update can
require an Ω(m) factor overhead [88].

The more interesting middle ground is when the updates have some but limited influence
on each other—a common scenario in many classic data structures. For example, logarithmic
fully retroactive stacks (with push/pop), queues (with enqueue/dequeue), deques (with all
four), union-find, dictionaries, and predecessor/successor structures all have logarithmic
fully retroactive data structures [88, 127]. Of these results, predecessor/successor was the
most challenging; the original paper [88] solved partial retroactivity in O(logm) but full
retroactivity in O(log2m), which was later improved to O(logm) by Giora and Kaplan
[127]. This problem is equivalent to dynamic rectilinear ray shooting, which was in fact the
original motivation for defining retroactivity.

Challenges. A key open problem in retroactivity, posed at SODA 2004, is whether there
is a difference in difficulty between obtaining partial versus full retroactivity. The only
known upper bound on the separation is a conversion from partial to full retroactivity with
O(
√
m) factor overhead [88]. Essentially, this conversion maintains Θ(

√
m) checkpoints of

the timeline using a partially retroactive data structure, and to query in between, replays
the necessary O(

√
m) intervening updates. On the other hand, the only known data struc-

tural problem with a polynomial separation between the best partially retroactive and best
fully retroactive data structures is priority queues (with insert and delete-min operations).
The logarithmic partially retroactive priority queue [88] is one of the most sophisticated
retroactive data structures, propagating potentially linear-length chain reactions in just
logarithmic time. However, the existing approach appeared limited to partial retroactivity.
Until now, the fastest known fully retroactive priority queue was the O(

√
m logm) bound

that follows from the general conversion.

214

Our results. In this chapter, we solve this 11-year-old open problem by constructing
the first polylogarithmic fully retroactive priority queue. Specifically, our data struc-
ture supports inserting an element, deleting the minimum element, and finding the mini-
mum element, at any time in the timeline, in O(log2m) amortized time per update and
O(log2m log logm) time per query, using O(m logm) space. We also show how to support
another natural query over the timeline: finding the time at which a given element gets
deleted as the minimum (or finding that it remains in the structure in the present).

More importantly, we present a new general transformation from partial to full retroac-
tivity with only a logarithmic factor overhead. This result shows a strong upper bound
on the separation between partial versus full retroactivity, but it requires one additional
assumption. Specifically, we call a (partially retroactive) data structure time-fusible if,
given two such data structures representing two different timelines (contained in disjoint
time intervals), it is possible to form a new (read-only) data structure representing the con-
catenation of those timelines. Roughly speaking, this assumption lets us apply the O(

√
m)

checkpointing idea recursively in a binary tree structure built over the timeline, storing a
partially retroactive data structure for the sub-timeline represented by each rooted subtree.
Hence we call the transformation hierarchical checkpointing . A retroactive query can
then be answered by fusing O(logm) structures and asking a query about the present.

Our fully retroactive priority queue data structure is an application of this general tech-
nique. With some modifications, we show how to fuse two of the logarithmic partially
retroactive priority queues from [88] in polylogarithmic time. Applying the general tech-
nique gives us a polylogarithmic bound on fully retroactive priority queues, but with worse
bounds than those stated above. By a more careful analysis tailored to priority queues, we
show how to further tune the hierarchical checkpointing analysis to improve the running
time by a logarithmic factor and get the claimed bounds of Õ(log2m).

Organization. We organize the sections of this chapter as follows. Section 9.2 introduces
our hierarchical checkpointing framework in greater detail. Section 9.3 describes time-fusible
partially retroactive priority queues whose timelines may be fused together in polylogarith-
mic time. Section 9.4 applies the technique of hierarchical checkpointing to obtain a fully
retroactive priority queue with polylogarthmic overheads.

9.2 Hierarchical checkpointing

In this section, we present our hierarchical checkpointing technique for transforming a time-
fusible partially retroactive data structure into one that is fully retroactive while incurring
only polylogarithmic overheads. In later sections, these results will be employed to design
a fully retroactive priority queue with polylogarithmic overheads.

We begin by defining in Section 9.2.1 the notion of time fusibility for retroactive data
structures. Then in Section 9.2.2 we describe the hierarchical checkpoint procedure and
prove its correctness.

9.2.1 Definitions

Here we discuss the properties of partially retroactive data structures and the conditions
necessary to use hierarchical checkpointing to obtain full retroactivity.

We define a retroactive update operation to be the insertion or deletion of a data
structure operation at a particular time. These operations are:

215

• Insert-Op(o, t): insert a data structure update operation o into the retroactive struc-
ture’s timeline at time t.

• Delete-Op(o, t): delete a data structure update operation o from the retroactive
structure’s timeline at time t.

We define a retroactive query operation to be one that can determine some aspect of
the state of the retroactive data structure at some point in time. We use Get-View(t) as
the canonical query procedure when we describe our transformation.

• Get-View(t): returns some aspect of the state of the retroactive data structure at
time t.

For partially retroactive structures, query operations can only be performed in the
present (i.e. t = ∞). Fully retroactive data structures, however, may be queried at any
time t. It turns out, that a collection of partially retroactive data structures can be used
to support fully retroactive query operations when it is possible to “fuse” their timelines.
Formally, we say a partially retroactive data structure is time fusible if it has the following
properties:

1. It supports a function, Fuse(d1, d2), that fuses the timelines of two instances d1 and
d2 of the partially retroactive data structure, producing a version of the data structure
that allows read-only queries and reflects the updates in both d1 and d2. Fuse(d1, d2)
need only support fusion between structures containing updates that span disjoint
and adjacent intervals of the timeline.

2. Sequences of operations made on it exhibit substring closure; in other words, given a
valid sequence of operations, any contiguous subsequence of operations on the struc-
ture is also valid.

9.2.2 The data structure

In this section we describe how to transform a time-fusible partially retroactive data struc-
ture into one that is fully retroactive using our hierarchical checkpointing framework. Specif-
ically, we obtain a fully retroactive data structure with O(T (m) logm+Q(m, k)) query time
and O(A(m) log2m) amortized update time, where T (m) and A(m) represent the merge and
update time, respectively, in the original partially retroactive data structure, and Q(m, k) is
the query time of a time-fused structure consisting of k fusions and containing m updates.

The first step of our transformation is to build a checkpoint tree — a balanced binary
search tree in which each node of the tree contains a partially retroactive data structure
consisting of all the updates in the subtree rooted at that node. Our checkpoint tree is
similar to a segment tree [21] in that each partially retroactive data structure can be viewed
as a segment with endpoints given by the first and last chronological update in the structure.
The structures in the leaves of our checkpoint tree each contain only one update, and the
leaves are sorted by the time of their one update. The update operations Insert-Op(o, t)
or Delete-Op(o, t) can be performed on the fully retroactive structure by inserting into
or deleting the update, o, from all of the partially retroactive structures in the search
path. A query can be performed at time t by merging O(log n) disjoint partially retroactive
structures obtained from the balanced binary tree such that the fused structure contains
all updates in the time span (−∞, t].

216

Theorem 47 Given a partially retroactive data structure that is time fusible, we may con-
struct a fully retroactive version of the data structure using hierarchical checkpointing. This
data structure will have an O(A(m) log2m) amortized update time and O(T (m) logm +
Q(m, k)) query time.

We prove Theorem 47 in two parts below.

Lemma 48 Our hierarchical checkpointing method produces a fully retroactive data struc-
ture with O(A(m) log2m) amortized update time.

Proof. Let F be a fully retroactive data structure based on a time-fusible partially
retroactive data structure P . Suppose that m updates have been inserted into F and that
the update operation for P runs in O(A(m)) time.

We utilize a scapegoat tree [117] to represent the checkpoint tree for F . The checkpoint
tree contains all updates to the fully retroactive structure at its leaves ordered by time.
Each internal node, x, is associated with an instance of P that reflects the application of
all updates in its subtree. To perform Insert-Op(o, t) or Delete-Op(o, t), we insert
the update as a leaf in the checkpoint tree, and apply the update to the instances of P
associated with nodes along the roof to leaf path in O(A(m) logm) time.

To rebalance the checkpoint tree, the tree rooted at the scapegoat node is rebuilt. We
begin by obtaining a sorted list of the k updates ordered by time by performing an in-order
walk of the subtree. We create a balanced binary tree with these k updates at the leaves,
and initialize an empty instance of P for each internal node of the subtree. Then, we insert
the update at each leaf into each of its O(log k) ancestors. Because applying an update to
an instance of P takes O(A(k)) time, the total time required to rebuild a subtree containing
k updates is O(A(k) log k). The total cost of an Insert-Op or Delete-Op operation for
the fully retroactive structures is then the sum of the cost of an insertion or deletion and
the amortized cost of rebuilding, O(A(m) log2m) amortized.

Lemma 49 Our hierarchical checkpointing method produces a fully retroactive data struc-
ture with O(T (m) logm+Q(m, k)) query time.

Proof. Suppose that T (m) is the time it takes to fuse any two instances of P , and Q(m, k)
is the time it takes to query an instance of P , where m is the total number of updates in
P , and k is the number of components that were used to create the fused structure.

To perform Get-View(t), we first traverse the checkpoint tree to identify the O(logm)
disjoint subtrees that represent the time interval (−∞, t]. The time-fusible partially retroac-
tive structures associated with these subtrees are then fused in-order, resulting in a sin-
gle structure representing the interval (−∞, t]. We can fuse O(logm) P structures in
O(T (m) logm) time. Querying this structure then takes O(Q(m, k)) time. Therefore, the
total runtime of Get-View(t) is O(T logm+Q(m, k)).

9.3 Time-fusible partially retroactive priority queue

In this section we present a partially retroactive priority queue that supports a polyloga-
rithmic fusion operation. Specifically, we describe an algorithm that fuses k = O(logm)
partially retroactive priority queues containing m updates in O(k log k logm) time. This
time-fusible partially retroactive priority queue enables the use of hierarchical checkpointing
to obtain a fully retroactive priority queue with polylogarithmic overheads.

217

9.3.1 Partially retroactive priority queues

We begin with an informal review of a partially retroactive priority queue data structure.
To simplify our exposition, we treat the partially retroactive priority queue from [88] as
a black box and maintain 2 auxillary data structures: Qnow containing the set of all keys
remaining in the priority queue at time t = ∞, and Qdel containing all keys that were
removed from the priority queue at some point in the past.

We assume that the partially retroactive priority queue returns, following each retroac-
tive update, the keys which should be inserted or deleted from Qnow and Qdel. If a priority
queue is empty at time t, then a delete-min operation will, by convention, insert a place-
holder key of infinite weight into Qdel. It is known that, following a retroactive update
at time t, it is only necessary to insert or delete a single key into Qnow and Qdel [88].
We can, therefore, synchronize our auxillary data structures Qnow and Qdel with the par-
tially retroactive priority queue in O(logm) time. A proof of this claim and an in-depth
description of the partially retroactive priority queue data structure can be found in [88,
5.4].

The auxillary Qnow and Qdel structures are maintained using weight-balanced B-trees
[323, 19, 9] which for a balance factor d > 4 have the following properties:

• Insertion and deletion operations on a B-tree containing m elements take O(logm)
time.

• For all non-root nodes u at height h the weight w(u) of the subtree rooted at u is
bounded as follows: dh/2 ≤ w(u) ≤ 2dh.

• The root r of a height-h tree has bounded weight w(r): dh−1 ≤ w(r) ≤ 2dh.

• Tree-split and concatenate operations on a size-m tree take O(logm) time.

• A height-h′ subtree T ′ of a height-h weight-balanced B-tree T can be deleted to form
the weight-balanced B-tree T − T ′ in O(d(h− h′)) time.

A weight-balanced B-tree data structure possessing these properties is described in [19, 9].
Specifically, we apply the result of [19] with balance factor d = 8 to maintain Qnow and
Qdel.

9.3.2 Fusion algorithm

Before describing our algorithm for fusion, let us better understand the structure of the
problem by proving a mathematical relationship between two partially retroactive priority
queues that represent two fusible (i.e. disjoint and adjacent) intervals of time.

Lemma 50 Consider two partially retroactive priority queues Q1 and Q2 whose update
times lie in the intervals [a, b) and [b, c) respectively. Then, the partially retroactive priority
queue Q3 containing all updates in Q1 and Q2 in the interval [a, c) has the property that

Q3,now = Q2,now ∪max-A{Q1,now ∪Q2,del} (9.1)

Q3,del = Q1,del ∪min-D{Q1,now ∪Q2,del} (9.2)

where A = |Q1,now|−|Q2,del|, D = |Q2,del| and max-C{S} denotes the C largest elements in
the set S.

218

GetSplitKey(s, T1, . . . , Tk)

1. If N =
∑

i|Ti|< C (for constant C), sort
⋃

i Ti and
return the sth element.

2. If s < N/2, set s = N − s and “invert” the order of
each Ti.

3. For each Ti, pick a leftmost subtree Tmi contain-
ing keys in the range (−∞,mi) where mi has
an order statistic in Ti contained in the range
(|Ti|/256, |Ti|/4).

4. Assign each mi the weight wi = |Ti|. Using
weighted selection, select the N/4th element mj

among m1,m2, . . . ,mk

5. For mi ≤ mj , let T ′i = Ti − Tmi . For mi > mj , let
T ′i = Ti.

6. Set snew = s −
∑

i(|Ti|−|T ′i |) and return
GetSplitKey(snew , T

′
1, . . . , T

′
k).

(a) Psuedocode for the GetSplitKey operation.

Fuse(Qk
1 , Q

k
2)

1. A = |Q1,now|−|Q2,del|
2. Form a list of 2k trees L = T1, . . . , T2k by

concatenating the list of k trees represent-
ing Q1,now with the k trees representing
Q2,del.

3. x = GetSplitKey(A, T1, . . . , T2k)
4. For i = 1, 2, . . . 2k, split the tree Ti on the

key x to obtain 2 trees Ti,> and Ti,<.
5. Q3,now = Q2,now + T1,>, . . . , T2k,>

6. Q3,del = Q1,del + T1,<, . . . , T2k,<

7. Return Q3

(b) Psuedocode for the Fuse operation.

Figure 9-1: Pseudocode for (a) the GetSplitKey operation; and (b) the Fuse operation.
GetSplitKey takes a key s and a list of k binary trees, and returns a key x such that s
keys in T1, T2, . . . , Tk are less than x.

Proof. Note that fusing Q1 with Q2 is equivalent to retroactively inserting all keys in
Q1,now into the timeline of Q2 at t = −∞. With this observation, the lemma can be shown
to follow from an iterative application of [88, Lemma 6]. Here we present an intuitive sketch
of the proof.

First observe that all keys in x ∈ Q1,del are also deleted in the fusion Q3. Next, suppose
there is a key x ∈ Q1,now that is smaller than the maximum element dmax in Q2,del. If we
insert x into Q2 at time t = −∞, then any delete-min in Q2’s timeline will strike x before
it strikes dmax. The element dmax is never deleted after the insertion of x, because all keys
d′ deleted after dmax are less than dmax. We conclude that Q3,del contains the elements in
Q1,del and the minimum D = |Q2,del| elements of Q1,now ∪Q2,del.

To determine the contents of Q3,now we observe that no element in Q2,now can be deleted
as the result of adding additional elements at t = −∞, and observe that keys which were
inserted, but never deleted from Q3’s timeline must be in Q3,now. It follows that Q3,now

contains the contents of Q2,now and the maximum A = |Q1,now|−|Q2,del| elements of Q1,now∪
Q2,del.

Using Lemma 50 we can construct a time-fused representation of Q3 from Q1 and Q2

in polylogarithmic time. We will represent each of Q3,now and Q3,del as a list of trees
obtained via tree-split operations consistent with the application of Equation (9.1) and
Equation (9.2). We say that a time-fusible partially retroactive priority queue has order k,
and use the superscript notation Qk, if Qknow and Qkdel are represented as lists of at most k
trees.

In Figure 9-1 we provide the pseudocode for Fuse which fuses two partially retroactive
priority queues Qk1, Q

k
2 to obtain Q3k

3 . Step 1 computes the value of A from Lemma 50,
and Step 2 concatenates the list of trees representing Qk1,now and and Qk2,del to form a list
L containing 2k trees. Step 3 computes a “split-key” x that is greater than A elements
contained in trees of L. Next each tree in L is split in Step 4 by performing a tree-
split operation to divide each tree Ti into a tree Ti,< containing all keys in Ti that are
less than x and Ti,> containing all keys in Ti that are greater than x . The trees Ti,>

219

for i = 1, 2, . . . , 2k combined with the trees in Q2,now contain the elements satisfying the
relation of Equation (9.1) in Lemma 50, and similarly the trees in Q1,del and in Ti,< for
i = 1, 2, . . . , 2k contain the elements satisfying the relation of Equation (9.2).

The following theorem proves that Fuse fuses two partially retroactive priority queues
of order k in O(k logm) time.

Theorem 51 Consider two partially retroactive priority queues Qk1 and Qk2 with order k
containing m operations. Then Fuse(Qk1, Q

k
2) runs in O(k logm) time.

Proof.

We first show that GetSplitKey runs in O(k logm) time. Our algorithm for finding
the split key is an adaptation of the approach of Frederickson and Johnson to compute
order statistics for sorted arrays [113].

Steps 1, 2, and 4 of GetSplitKey run in O(k) time (step 4 uses linear-time weighted
selection from [290]).

Step 3 finds a leftmost subtree Tmi whose contents are contained in the range (−∞,mi)
and where the order statistic of mi is in the range (|Ti|/256, |Ti|/4). We show that step
3 runs in O(k) time by showing that for each Ti such a subtree exists at a distance of
at most 2 from the root. Consider a height-h weight-balanced B-tree with balance factor
d, root node r, and an internal node u at height h − 2. The weight-balance criteria for
B-trees provided in Section 9.3.1 implies that the ratio w(u)/w(r) is bounded in the range
(1/256, 1/4). The key mi can, therefore, be found in O(1) time by selecting the maximum
key from the leftmost height-(h− 2) subtree of Ti.

Step 5 deletes the subtree Tmi from Ti if mi ≤ mj . The difference in the heights of Tmi

and Ti is at most 2, which allows T − Tmi to be obtained in O(d) time while preserving
weight-balance. For d = 8, this step runs in O(k) time. Note that the subtrees deleted
in this step contain elements whose order statistic is strictly less than N/2 and thus these
subtrees can not contain the sth order statistic. To prove this we show that the order
statistic of mj , computed in step 4, is less than N/2. The key mj is selected in step 4 such
that 3N/4 elements are contained in trees Ti for which mi > mj . For each such i, the key
mi is smaller than at least 3|Ti|/4 of the elements in Ti. The key mj is, therefore, smaller
than at least 9N/16 elements, and thus has an order statistic less than N/2.

Step 6 updates the value of s to reflect the reduced problem size, and recursively calls
GetSplitKey. To bound the depth of the recursion, it is sufficient to show that step 5
eliminates a constant fraction of the elements. Since a total of N/4 elements are contained
in trees Ti for which mi ≤ mj , and at least |Ti|/256 elements in Ti are smaller than mi,
step 5 eliminates at least N/1024 elements. The recursion depth is, therefore, bounded by
O(logN). Since N = O(m), the total runtime of GetSplitKey is O(k logm)

Next let us analyze the Fuse operation. Steps 1-2 and 5-6 of Fuse can be performed
in O(k) time. Step 3 to compute the split key runs in O(k logm) time, and step 4 may
be performed in O(k logm) time by performing an O(logm) time tree split operation on
each of k trees. The runtime of Fuse is bounded by the time to compute the split key, and
therefore is O(k logm).

The bound proved in Theorem 51 depends on the order k of the two time-fusible partially
retroactive priority queues Qk1, Qk2 being merged. It turns out, that the fusion of k partially
retroactive priority queues can be constructed efficiently while being represented using only

220

O(k) trees by combining trees in Qnow and Qdel that originated from a split operation on a
common tree. The ability to perform such a reduction relies on the following lemma.

Lemma 52 Let Q1, . . . , Qk denote k partially retroactive priority queues each with disjoint
time intervals that increase monotonically with k. Let Q∗ be a priority queue containing the
updates in Q1, . . . , Qk applied consecutively. Then Q∗,now and Q∗,del consist of contiguous
intervals of Qi,now and Qi,del, i.e.

Q∗,now = ∪i∈SnowQi,now[ai, bi] ∪i∈Sdel
Qi,del[a

′
i, b
′
i] (9.3)

Q∗,del = ∪i∈TnowQi,now[ci, di] ∪i∈Tdel Qi,del[c
′
i, d
′
i] (9.4)

for some sets Snow, Sdel, Tnow, Tdel ⊆ {1, . . . , k} and elements ai,a
′
i,bi,b

′
i,ci,c

′
i,di,d

′
i where for

a set S and a, b ∈ S we let S[a, b] = {x ∈ S : a ≤ x ≤ b}.

Proof. The proof follows almost immediately from Lemma 50. We prove it by induction
on k. Note that when k = 1 the statement is trivial as clearly in this case Q∗,now = Q1,now

and Q∗,del = Q1,del.
Now suppose we wish to prove the lemma for the given k > 1 and we know that it

holds for k− 1. Let Q′ denote the priority queue that contains the updates in Q1, . . . , Qk−1

applied consecutively. By the inductive hypothesis we know that Q′now and Q′del consist of
contiguous intervals of Qi,now and Qi,del for i ≤ k. Applying Lemma 50 we have that

Q∗,now = Qk,now ∪max-A{Q′now ∪Qk,del} for A = |Q′now|−|Qk,del| (9.5)

and
Q∗,del = Q′del ∪min-B{Q′now ∪Qk,del} for B = |Qk,del| (9.6)

However, as [a, b] ∩ (−∞, c] = [a,min{b, c}] and [a, b] ∩ [c,∞) = [max{a, c}, b] we see that
Q∗,now and Q∗,del each consist of contiguous intervals of the Qi,now and Qi,del (here the
intervals are the intervals within the Q′now as well as Qk,del and the inequality constraint
is the one imposed by restricting to max-A or min-B). Note that this argument uses that
Equation (9.5) and Equation (9.6) each consist of the union disjoint sets and therefore
disjoint intervals.

Thus we have shown that the result holds for k = 1 and we have shown that if the result
holds for k − 1 then it holds for k. The result follows by induction.

The preceding lemma allows us to tweak the fusion algorithm to guarantee that the order
of the fusion of k time-fusible partially retroactive priority queues is bounded by 2k. This
is accomplished by adding a post-processing step PostFuse immediately after the fusion
procedure Fuse. After obtaining the fusion Q3 of Q1 and Q2, the trees representing Q3,now

are checked in PostFuse to identify pairs of split-trees that were obtained by splitting a
common tree. By Lemma 52 the union of these intervals span disjoint intervals and these
pairs of trees can, therefore, be concatenated in logarithmic time.

Lemma 53 The fusion of k time-fusible partially retroactive priority queues has order
bounded by 2k and runs in O(k logm) time when using the PostFuse procedure.

Proof. We utilize the Fuse procedure to fuse 2 time-fusible partially retroactive priority
queues Qk1 and Qk2 to obtain Q2k

3 .
Following the fusion, the PostFuse procedure identifies pairs of trees in Q2k

3,now which
originated from a previous split operation on a common tree T . These pairs contain keys

221

that span disjoint intervals I1, I2, and thus can be concatenated to form a single tree in
O(logm) time. This is done by sorting such trees are sorted in O(k lg k) time by their
associated interval, and then performing concatenation in (logm) time.

By Lemma 52 the keys in the concatenated tree form a contiguous interval I1 ∪ I2 in T
and, as such, performing the concatenation does not limit the algorithm’s ability to perform
additional concatenations between intervals in T .

The time required to perform ProcFuse is dominated by the time to perform Fuse,
and therefore the time bound follows from Theorem 51.

To combine the results of this section, we prove the following theorem.

Theorem 54 Consider k = O(logm) time-fusible partially retroactive priority queues. The
time to fuse these k data structures is bounded by O(k log k logm), and the time required to
query this structure is O(log2m).

Proof. We arrange the k time-fusible structures at the leaves of a balanced height-log k
merge tree. By Lemma 53 the sum of the orders of time-fusible partially retroactive priority
queues at level i in the merge tree is O(k). The total work to perform fusions at level i
is, therefore, O(k logm) Since there are log logm levels in the merge tree the total time
is O(k logm log logm). To query the fused structure we perform a query on each of the
O(logm) trees representing Qnow which can be done in O(log2m) time.

9.4 Fully retroactive priority queue

In this section we describe the design of a fully retroactive priority queue that uses hier-
archical checkpointing. We begin in Section 9.4.1 by showing how to apply our technique
of hierachical checkpointing using the time-fusible partially retroactive priority queue of
Section 9.3. This yields a fully retroactive priority queue that supports retroactive up-
dates in O(log3m) amortized time, retroactive queries in O(log2m log logm) time, and
Find-Deletion-Time in O(log3m log logm) time. Next, in Section 9.4.2, we optimize our
application of hierarchical checkpointing for priority queues to obtain O(log2m) amortized
time updates, and O(log2m) time Find-Deletion-Time queries.

9.4.1 Obtaining full retroactivity using hierarchical checkpointing

Here we analyze the fully retroactive priority queue obtained by a straightforward appli-
cation of hierarchical checkpointing. The time-fusible partially retroactive priority queue
described in Section 9.3 meets the prerequisites of Theorem 47 needed to perform the partial-
to-full transformation. Consequently we can directly apply this theorem to obtain a fully
retroactive priority queue which follows the structure laid out in Section 9.2. A checkpoint
tree contains all retroactive updates ordered by time, and each internal node maintains a
time-fusible partially retroactive priority queue that contains the updates within its subtree.

The checkpoint-tree data structure used in this fully retroactive priority queue is shown
in Figure 9-2(a) after 16 retroactive operations have been performed. In this example, the
checkpoint tree has 16 leaves each corresponding to a retroactive operation on the priority
queue. The time-fusible partially retroactive priority queue data structure described in
Section 9.3 is used to represent the partial checkpoints in a checkpoint tree. Each internal
node, Q[a,b), maintains a time-fusible partially retroactive priority queue that contains all
retroactive operations in its subtree (i.e. all operations occurring at times t ∈ [a, b)).

222

14

Q[0,2) Q[4,6)

3 D 15 D 9 2 6 D 5 D 35

Q[2,4) Q[6,8) Q[8,10) Q[10,12)

8 97 D D

Q[12,14) Q[14,16)

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q[0,4) Q[4,8) Q[8,12)

Q[0,8)

Q[0,16)

Q[8,16)

Q[12,16)

Q[0,8)

Qnow

15

9

2

6

14

3

Qdel

Q[8,10)

Qnow

5

Qdel

∞

Q[10,11)

Qnow Qdel

∞

4 size 2 size 1 size 1 size 0 size 1 size

Figure 9-2: Hierarchical checkpointing for fully retroactive priority queue. Illustration of
the checkpoint tree for a fully retroactive priority queue with 16 operations.

The Get-View(t) operation is illustrated in Figure 9-2(b). A checkpoint representing
the priority queue at time t = 10 is constructed by combining 3 partial checkpoints from the
checkpoint tree. The time-fusible partially retroactive priority queues Q[0,8), Q[8,10), and
Q[10,11) that are highlighted in Figure 9-2 are collected and then merged to obtain obtain a
partially retroactive priority queue containing all updates in in the interval [−∞, 10].

Theorem 55 There exists a fully retroactive priority queue that supports retroactive up-
dates in O(log3m) amortized time, queries in O(log2m log logm), and the operation, Find-
Deletion-Time, in O(log3m log logm) time.

Proof.

The time-fusible partially retroactive priority queue described in Section 9.3 supports
retroactive updates in O(logm) time. Applying Lemma 48 with A(m) = logm shows that
retroactive updates run in O(log3m) amortized time. By Theorem 54, the time to merge
O(logm) time-fusible partially retroactive priority queues is bounded byO(log2m log logm).
Similarly, the time to query this merged structure is bounded by O(log2m) since the merged
priority queue has order O(logm). Applying Lemma 49 with T (m) = O(log2m) and
Q(m) = O(log2m log logm) shows that retroactive queries run in O(log2m log logm) time.
Finally, the Find-Deletion-Time(x) operation can be performed via binary search to
identify the first time t for which the key x is not in the queue. This involves O(logm)

223

retroactive queries showing that Find-Deletion-Time runs in O(log3m log logm) time.

9.4.2 Faster retroactive updates and Find-Deletion-Time queries

The general transformation described in Section 9.2 maintains balance in the checkpoint
tree by reapplying all updates in rebuilt subtrees. As shown in Lemma 56 a checkpoint tree
for priority queues can be rebuilt more efficiently.

Lemma 56 A subtree of the fully retroactive priority queue’s checkpoint tree containing m
updates can be rebuilt in O(m logm) time.

Proof. Consider a node u in the checkpoint tree with children v and w whose subtree
contains m updates. The time-fusible priority queue containing all updates in u’s subtree
can be computed in O(m) time from the 2 time-fusible priority queues associated with v
and w. First the Fuse operation outlined in Section 9.2 is performed to merge v and w.
The resulting time-fusible priority queue may represent Qnow and Qdel using multiple trees,
but these trees can be merged in O(m) time. Using this merge procedure, a subtree of the
checkpoint tree is rebuilt by first placing all m updates at the leaves of a balanced tree,
and then performing merges from the leaves upward. Each update is involved in O(logm)
merges, so the total time to rebuild the subtree is O(m logm).

A more efficient implementation of the Find-Deletion-Time(k) operation can be ob-
tained by performing a binary search directly on the checkpoint tree. The high-level idea is
to perform a binary search for the time of deletion by keeping track of the current number
of surviving keys that are less than or equal to k at any particular time. This result is
stated in Lemma 57 without proof.

Lemma 57 The Find-Deletion-Time operation which performs a binary search directly
on the checkpoint tree data structure runs in O(log2m) time.

Theorem 58 The fully retroactive priority queue performs updates in O(log2m) amortized
time when using a checkpoint tree with the memoized subtree rebuilding procedure, and
performs Find-Deletion-Time operations in O(log2m) time.

Proof. We may improve the runtime of update operations given in Theorem 55 to
O(log2m) amortized time by using the rebuild procedure given in Lemma 56. We still per-
form update operations by inserting or deleting the update from all the partially retroactive
structures along our search path, as in Lemma 48. However, we provide a tighter analysis
for rebalancing the tree.

Since our scapegoat tree has balance factor, α = 9
10 , we perform Ω(m) operations before

rebuilding a subtree. Each update operation may charge logm to every node along the
search path. Therefore, each update operation creates O(log2m) charges. Rebuilding a
subtree of size m takes O(m logm) time as given in Lemma 56. We perform at most
O(logm) rebuilds. Each node that is rebuilt has a stored charge of O(m logm). Therefore,
the time of rebuild may be paid for by the stored charge. The time per update operation
is then O(log2m).

224

9.4.3 Faster Find-Deletion-Time queries

Next we discuss how to implement Find-Deletion-Time in O(log2m) time by performing
a search directly on the checkpoint tree data structure. In this section, for ease of expla-
nation, we will use a counter, di, to keep track of the number of Delete-Min operations
performed on the partially retroactive structure in node i.

Given a key k, Find-Deletion-Time(k) returns the deletion time, dk, of the element
or ∞ if the element was never deleted or never inserted into the queue. By inspection,
an element was ever inserted into a partially retroactive priority queue if and only if it is
present in either the Qnow or Qdel of the queue. Therefore, an element was inserted into
the fully retroactive priority queue if and only if it is present in the partially retroactive
priority queue at its root. Our procedure first checks the root to verify that the element
was inserted and deleted; it returns ∞ otherwise.

For the purposes of this operation, we assume that all keys inserted into the queue are
unique. First, we check whether k is in the Qdel contained in the root of the fully retroactive
tree. If k is in the root Qdel, then it was deleted at some time before the present, and we
proceed with the following recursive procedure to find tk, the time of deletion of key k. If
it is not in Qdel, then it was either never deleted or never inserted, and we return ∞.

We define s to be the number of surviving elements with keys less than or equal to k, c
to be the current node (at the very first step of the recursive procedure c is the root), cl to
be the left child of c, cr to be the right child of c, cgl to be the left child of cr, and cgr to be
the right child of cr. If a child does not exist, then the value of the corresponding variable
is set to null.

The key concept behind the Find-Deletion-Time(k) algorithm is to binary search
for the time of deletion by keeping track of the current number of surviving elements that
are less than or equal to k at any particular time. If this counter becomes zero, then we
have deleted k. We define this counter as s. To help us in the detailed explanation of this
algorithm in Figure 9-3, we define wi to be the number of elements in Qnow of node i that
are at most k, wi = |{k′ : k′ ∈ Qi,now ∩ k′ ≤ k} |, vi to be the number of elements in Qdel of
node i that are at most k, vi = |{k′ : k′ ∈ Qi,del ∩ k′ ≤ k} |, and s′i = s + vi − di of node i.
Each time we check a node i, we check its s′i which tells us either that k was deleted in the
subtree rooted at i or it was not. If s′i ≤ 0, then an update contained in i deleted k and we
binary search for the precise update. Otherwise, we can conclude that none of the updates
in the subtree rooted at i deleted k, and so, we do not need to search any more nodes in
the subtree.

Acknowledgments

This research was initiated during the open-problem sessions of the MIT class 6.851: Ad-
vanced Data Structures taught by E. Demaine in Spring 2014. We thank Adam Hesterberg,
Ofir Nachum, and other members of the class for helpful discussion regarding this problem.

225

Find-Deletion-Time(k)

1. c is the current node. Set c to the root if c has not yet been set. Let s = 0.
2. If k ∈ Qnow of c:

1. If c is the root, return ∞.
2. Else, set s = max (0, s′c) + wc. Update c to be cgl if it exists. If cr only contains one

update, then that update deletes k; return the time of that update. Otherwise, go back
to Step 2.

3. Else if k ∈ Qdel of c:

1. Update c to be cl.
2. Go back to Step 2.

3. Else (k 6∈ Qdel and k 6∈ Qnow):

1. If k ∈ Qnow was found at a previous step:

1. If s′c ≤ 0: check to see if there is only one update within the subtree rooted at c.
If there is only one update, return the time, t, of the update. If there is more than
one update, set c to be cl.

2. If s′c > 0: set s = s′c + wc. Set c to be cgl if it exists. If cgl does not exist, then cr
contains only one update and that update deletes k; return the time of the update.

3. Go back to Step 2.

4. Else (k was not found in previous step):

1. Set s = max (0, s′c) + wc.
2. Set c to be cgl.
3. Go back to Step 2.

Figure 9-3: Pseudocode for the Find-Deletion-Time(k) operation.

226

Chapter 10

Conclusion

10.1 Summary

This thesis has shown that the complexity of parallel programming can be reduced by de-
veloping programming technologies that facilitate the development of quality code that has
simple understandable structure and perform well in practice. There were three categories
of programming technologies developed in the artifacts of this thesis: shared-memory multi-
core algorithms, multicore-centric systems for scientific computing, and tools for measuring
and optimizing anomalous, or worst-case, behavior in parallel systems.

In Chapters 2–4, I discussed artifacts that developed shared-memory multicore algo-
rithms that are deterministic and have the semantics of serial code. The Chromatic artifact
in Chapter 2 showed how dynamic data-graph computations can be executed determin-
istically and with serial semantics by using chromatic scheduling. The Color artifact in
Chapter 3 demonstrated that vertex-ordering heuristics can be used in parallel greedy
graph coloring algorithms to compute the same result as the serial algorithm using the
same ordering. The Color artifact showed how the parallelism of the greedy algorithm can
be theoretically analyzed, and how the historically useful serial ordering heuristics can be
naturally coarsened to increase theoretical parallelism. The PARAD artifact in Chapter 4
provided a work-efficient and parallelism preserving algorithm for performing automatic
reverse-mode differentiation of parallel programs — extending the commonly used serial
program transformation. The results in these artifacts demonstrated that the complexity
of shared-memory multicore programming can be reduced, in many cases, by using par-
allel algorithms that have the semantics of serial code without compromising theoretical
scalability or real-world performance.

In Chapters 5–6, I discussed artifacts that demonstrated the effectiveness of multicore-
centric computing systems for scientific computing in the field of connectomics. The Con-
nectomics artifact in Chapter 5 demonstrated that a mixture of traditional performance
optimizations and the application of quality parallel algorithms can allow a single large mul-
ticore to outperform more complex systems employing distributed computing and GPUs.
The Alignment artifact in Chapter 6 showed how relatively simple algorithm design tech-
niques and careful pipeline design can enable a multicore-centric system to scale to larger
input sizes and scale horizontally over multiple machines in the cluster with low overhead.
The results in these artifacts demonstrated that well-designed multicore-centric systems can
be highly effective at solving problems in scientific computing, even out-performing systems
using GPUs and distributed computing.

227

In Chapters 7–8, I discussed artifacts that related to the analysis and optimization of
anomalous, or worst-case, behavior in parallel systems. The Cilkmem artifact in Chapter 7
provided theoretically efficient algorithms and implementations for measuring the exact
and approximate p-processor memory high-water mark in fork-join parallel programs. The
Cilkmem tool, which implements these algorithms, allows practitioners to measure the
maximum memory their program requires in a worst case execution. The Reissue artifact in
Chapter 8 illustrated the effectiveness of the simple single-time random-reissue (SingleR)
policy family in practice and in theory, using a simplified analytical model to compare
the relative power of differently parametrized reissue policy families. The results in these
artifacts demonstrated the ability of principled tools to analyze and optimize application-
specific performance objectives in ways that have theoretical guarantees and are effective
in practice.

10.2 Taming complexity in a post-Moore’s-law world

An examination of current trends in the semiconductor industry foretells a significant rise
in the importance of software performance engineering.

The historical decoupling of application logic from performance.

In the early 2000s, computer hardware engineers were able to offer a simple and com-
pelling value proposition to industry and the other sciences: focus on the logic of your
domain-specific application, and rely on the seemingly inexorable march of microprocessor
improvements to solve your performance and scaling problems.

The end of Dennard scaling in 2005, however, marked the end of this simple argument.
As Dennard scaling ended, the semiconductor industry turned towards the design of mul-
ticore hardware which could be predictably improved over time by relying on technological
advances to increase transistor density. Thus, the value proposition was amended: if you
design your application to have copious amounts of logical parallelism, the semiconductor
industry will provide you with predictable performance improvements over time.

By 2016, the semiconductor industry acknowledged that increases in transistor density
had plateaued. The International Technology Roadmap for Semiconductors announced a
strategy called “More than Moore” that turned to focus on the needs of applications to
drive chip development instead of focusing on further scaling of semiconductor technology
for general purpose computing. The simple value proposition between the semiconductor
industry and users of computing was now dead. Going forward, the engineering of high
performance computing technology and domain-specific program logic would be intertwined.

The increased complexity of programming modern hardware has made it more difficult
for even expert programmers to develop high-quality software systems. For the scientific
computing community, developing quality software systems that can take advantage of the
latest supercomputing technology has become a costly endeavour: requiring more time,
more expensive hardware, more expert programmers, and more complex software systems.

Building a toolbox of principled technologies for average programmers

I believe that we can make it easier for average programmers to tap into the power provided
by new hardware systems by developing a toolbox of principled programming technologies.

228

Developing quality software for scientific computing depends on the availability of perfor-
mant algorithms, data structures, software libraries, and system design principles. The
development of such programming technologies that are simple to use, theoretically sound,
and performant can allow programmers to focus on their application-specific logic.

The artifacts in this thesis presented several programming technologies for the shared-
memory multicore platform. Of course, the programming technologies presented in this
thesis only address a small subset of the challenges involved in general parallel program-
ming. What this thesis demonstrates, however, is that the pursuit of simple, theoretically
sound, and performant programming technologies can succeed in reducing the complexity
of programming parallel systems.

229

230

Bibliography

[1] L. Adams and J. Ortega. A multi-color SOR method for parallel computation. In
ICPP, 1982.

[2] Pankaj K Agarwal. Range searching. Technical report, DTIC Document, 1996.

[3] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Suky-
oung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress Language
Specification Version 1.0. Sun Microsystems, Inc., March 2008.

[4] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L. Martin. A
comparison of parallel graph coloring algorithms. Technical report, Northeast Parallel
Architecture Center, Syracuse University, 1995.

[5] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583,
December 1986.

[6] Amazon. Amazon elastic file system. https://aws.amazon.com/efs/, 2019.

[7] David G Andersen, Hari Balakrishnan, M Frans Kaashoek, and Rohit N Rao. Improv-
ing web availability for clients with monet. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2, pages 115–
128. USENIX Association, 2005.

[8] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detec-
tion and hierarchical image segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(5):898–916, 2011.

[9] Lars Arge and Jeffrey Scott Vitter. Optimal dynamic interval management in exter-
nal memory. In Foundations of Computer Science, 1996. Proceedings., 37th Annual
Symposium on, pages 560–569. IEEE, 1996.

[10] Esther M Arkin and Ellen B Silverberg. Scheduling jobs with fixed start and end
times. Discrete Applied Mathematics, 1987.

[11] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In SPAA, pages 119–129, 1998.

[12] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, et al.
A view of the parallel computing landscape. Communications of the ACM, 52(10):56–
67, 2009.

231

[13] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Yuan Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and Guansong Zhang. The design of OpenMP tasks. IEEE Trans-
actions on Parallel and Distributed Systems, 20(3):404–418, 2009.

[14] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group for-
mation in large social networks: Membership, growth, and evolution. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 44–54, New York, NY, USA, 2006. ACM.

[15] Leonid Barenboim and Michael Elkin. Distributed (∆+1)-coloring in linear (in ∆)
time. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Com-
puting, STOC ’09, pages 111–120, New York, NY, USA, 2009. ACM.

[16] Rajkishore Barik, Zoran Budimlic, Vincent Cavè, Sanjay Chatterjee, Yi Guo, David
Peixotto, Raghavan Raman, Jun Shirako, Sağnak Taşirlar, Yonghong Yan, Yisheng
Zhao, and Vivek Sarkar. The Habanero multicore software research project. In Pro-
ceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’09, pages 735–736, New
York, NY, USA, 2009. ACM.

[17] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In European conference on computer vision, pages 404–417. Springer, 2006.

[18] Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: A survey. J. Mach.
Learn. Res., 18(1):55955637, January 2017.

[19] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. Cache-oblivious
b-trees. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Sym-
posium on, pages 399–409. IEEE, 2000.

[20] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson.
On-the-fly maintenance of series-parallel relationships in fork-join multithreaded pro-
grams. In 16th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 133–144, 2004.

[21] J. L. Bentley. Solutions to klees rectangle problems. Technical report, Carnegie Mellon
University,, 1977.

[22] Stefan Berchtold, Christian Böhm, Bernhard Braunmüller, Daniel A Keim, and Hans-
Peter Kriegel. Fast parallel similarity search in multimedia databases. In ACM SIG-
MOD Int. Conf. on Management of Data, 1997.

[23] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Core-
Det: A compiler and runtime system for deterministic multithreaded execution. SIG-
PLAN Not., 45(3):53–64, March 2010.

[24] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe mul-
tithreaded programming for C/C++. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 81–96, Orlando, Florida, USA, 2009. ACM.

232

[25] Gilles Bertrand and Zouina Aktouf. Three-dimensional thinning algorithm using sub-
fields. volume 2356, pages 113–124, 1995.

[26] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, 1989.

[27] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In Proceedings of
the 17th International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[28] Christian Bischof, Niels Guertler, Andreas Kowarz, and Andrea Walther. Parallel
reverse mode automatic differentiation for openmp programs with adol-c. In Advances
in Automatic Differentiation, pages 163–173, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[29] Christian H. Bischof. Issues in parallel automatic differentiation. In Proceedings of
the 1991 International Conference on Supercomputing, pages 146–153. ACM Press,
1991.

[30] Guy E. Blelloch. Prefix sums and their applications. Technical report, Carnegie
Mellon University, Pittsburgh, PA, USA, 1990.

[31] Guy E. Blelloch. NESL: A nested data-parallel language. Technical report, Carnegie
Mellon University, Pittsburgh, PA, USA, 1992.

[32] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97,
March 1996.

[33] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally
deterministic parallel algorithms can be fast. SIGPLAN Not., 47(8):181–192, February
2012.

[34] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal
independent set and matching are parallel on average. In ACM SPAA, 2012.

[35] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.
Smith, and Marco Zagha. A comparison of sorting algorithms for the connection
machine CM-2. In Proceedings of the Third Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’91, pages 3–16, New York, NY, USA, 1991.
ACM.

[36] Robert D. Blumofe, Matteo Frigo, Chrisopher F. Joerg, Charles E. Leiserson, and
Keith H. Randall. An analysis of dag-consistent distributed shared-memory algo-
rithms. In Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 297–308, Padua, Italy, June 1996.

[37] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 207–216, Santa Barbara, California, July 1995.

233

[38] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.

[39] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. In Proceedings of the IEEE Symposium on Foundations of Computer
Science, pages 356–368, November 1994.

[40] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multi-
threaded computations. SIAM J. Comput., 27(1):202–229, February 1998.

[41] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. J. ACM, 46(5):720–748, September 1999.

[42] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-level threads li-
brary for multiprogrammed multiprocessors. Technical report, University of Texas
at Austin, 1998.

[43] Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel
programming must be deterministic by default. In Proceedings of the First USENIX
Conference on Hot Topics in Parallelism, HotPar’09, pages 4–4, Berkeley, CA, USA,
2009. USENIX Association.

[44] Léon. Bottou, Frank E. Curtis, and Jorge. Nocedal. Optimization methods for large-
scale machine learning. SIAM Review, 60(2):223–311, 2018.

[45] Peter J Braam and Rumi Zahir. Lustre: A scalable, high performance file system.
Cluster File Systems, Inc, 2002.

[46] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: Composable transformations
of Python+NumPy programs, 2018.

[47] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[48] Daniel Brélaz. New methods to color the vertices of a graph. CACM, 1979.

[49] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, April 1974.

[50] Preston Briggs. Register allocation via graph coloring. PhD thesis, Rice University,
1992.

[51] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, April 1998.

[52] Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro, and Robert
Sedgewick. Resizable arrays in optimal time and space. In Proceedings of the 6th
International Workshop on Algorithms and Data Structures, WADS ’99, pages 37–48,
London, UK, UK, 1999. Springer-Verlag.

[53] Mark R Brown and Robert E Tarjan. Design and analysis of a data structure for
representing sorted lists. SIAM journal on computing, 9(3):594–614, 1980.

234

[54] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Pearson, 3rd edition, 2015.

[55] H. Martin Bücker, Bruno Lang, Dieter an Mey, and Christian H. Bischof. Bringing
together automatic differentiation and openmp. In Proceedings of the 15th Interna-
tional Conference on Supercomputing, ICS 01, page 246251, New York, NY, USA,
2001. Association for Computing Machinery.

[56] R.L. Burden, J.D. Faires, and A.M. Burden. Numerical Analysis. Cengage Learning,
2015.

[57] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a virtual
tree of processors. In Proceedings of the 1981 Conference on Functional Programming
Languages and Computer Architecture, FPCA ’81, pages 187–194, New York, NY,
USA, 1981. ACM.

[58] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir
Shavit. Numa-aware reader-writer locks. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages
157–166, New York, NY, USA, 2013. ACM.

[59] K Cameron and J Edmonds. Algorithms for optimal anti-chains. In Research report
CORR 79, volume 22. Department of Combinatorics and Optimization. University of
Waterloo , 1979.

[60] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC ’08, September
2008.

[61] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-Java: The
new adventures of old X10. In Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java, PPPJ ’11, pages 51–61, New York,
NY, USA, 2011. ACM.

[62] Ümit V. Çatalyürek, John Feo, Assefaw Hadish Gebremedhin, Mahantesh Halap-
panavar, and Alex Pothen. Graph coloring algorithms for muti-core and massively
multithreaded architectures. CoRR, 2012.

[63] Gregory J Chaitin. Register allocation & spilling via graph coloring. In ACM SIG-
PLAN Notices, 1982.

[64] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer Lan-
guages, 1981.

[65] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph
mining. In SDM. SIAM, 2004.

[66] Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin Lin,
Lawrence Snyder, and W. Derrick Weathersby. ZPL: A machine independent pro-
gramming language for parallel computers. IEEE Trans. Softw. Eng., 26(3):197–211,
March 2000.

235

[67] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):4:1–
4:26, June 2008.

[68] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Proceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’05, pages 519–538, New York, NY, USA, 2005.
Association for Computing Machinery.

[69] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional
networks via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[70] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014.

[71] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system. In
Proceedings of the 11th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’14, pages 571–582, Berkeley, CA, USA, 2014. USENIX Association.

[72] Soumith Chintala. Convnet benchmarks. https://github.com/soumith/

convnet-benchmarks.

[73] Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber.
Deep neural networks segment neuronal membranes in electron microscopy images.
In Advances in neural information processing systems, pages 2843–2851, 2012.

[74] R Cole and U Vishkin. Deterministic coin tossing and accelerating cascades: Micro
and macro techniques for designing parallel algorithms. In Proceedings of the Eigh-
teenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 206–219,
New York, NY, USA, 1986. ACM.

[75] T. Coleman and J. Moré. Estimation of sparse Jacobian matrices and graph coloring
problems. SIAM J. Numer. Anal., 1983.

[76] Melvin E. Conway. A multiprocessor system design. In AFIPS, 1963.

[77] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[78] Intel Corporation. Intel math kernel library, 2016.

[79] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Commun. ACM, 14(10):667–668, October 1971.

[80] Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-specialized parameter
server. In Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys ’16, pages 4:1–4:16, New York, NY, USA, 2016. ACM.

236

https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks

[81] Joseph C. Culberson. Iterated greedy graph coloring and the difficulty landscape.
Technical report, University of Alberta, 1992.

[82] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. Programming with
exceptions in JCilk. Science of Computer Programming, 63(2):147–171, December
2008.

[83] Inc. DataStax. Datastax distribution of apache cassandra 3.x, 2016.

[84] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[85] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, 2013.

[86] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[87] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP,
2007.

[88] Erik D Demaine, John Iacono, and Stefan Langerman. Retroactive data structures,
2007. Originally in SODA 2003.

[89] Li Deng. The mnist database of handwritten digit images for machine learning re-
search [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[90] J E Dennis, Jr. and Trond Steihaug. On the successive projections approach to least-
squares problems. SIAM J. Numer. Anal., 23(4):717–733, August 1986.

[91] A Descampe, F Devaux, H Drolon, D Janssens, and Y Verschueren. Openjpeg 2.0. 0,
2012.

[92] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic
shared memory multiprocessing. SIGPLAN Not., 44(3):85–96, March 2009.

[93] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. RCDC:
A relaxed consistency deterministic computer. SIGPLAN Not., 47(4):67–78, March
2011.

[94] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining numa locks. In Pro-
ceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’11, pages 65–74, New York, NY, USA, 2011. ACM.

[95] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: A general technique
for designing numa locks. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pages 247–256, New
York, NY, USA, 2012. ACM.

[96] Krzysztof Diks. A fast parallel algorithm for six-colouring of planar graphs. In Math-
ematical Foundations of Computer Science. 1986.

237

[97] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. Race detection in two dimen-
sions. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’15, pages 101–110, Portland, Oregon, USA, 2015. ACM.

[98] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared memory
algorithms. In STOC, 1993.

[99] Derek L Eager, John Zahorjan, and Edward D Lazowska. Speedup versus efficiency
in parallel systems. IEEE transactions on computers, 38(3):408–423, 1989.

[100] AL Eberle, S Mikula, R Schalek, J Lichtman, ML KNOTHE TATE, and D Zeidler.
High-resolution, high-throughput imaging with a multibeam scanning electron micro-
scope. Journal of microscopy, 259(2):114–120, 2015.

[101] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns.
Journal of Parallel and Distributed Computing, 74(12):3202–3216, 2014. Domain-
Specific Languages and High-Level Frameworks for High-Performance Computing.

[102] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. Snzi: Scalable nonzero
indicators. In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’07, pages 13–22, New York, NY, USA, 2007. ACM.

[103] Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien. Studying overheads in
massively parallel min/max-tree evaluation. In Proceedings of the Sixth Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 94–103, June 1994.

[104] Linqing Feng, Ting Zhao, and Jinhyun Kim. neuTube 1.0: a New Design for Efficient
Neuron Reconstruction Software Based on the SWC Format. eneuro, January 2015.

[105] M. Feng and C. E. Leiserson. Efficient detection of determinacy races in Cilk programs.
Theory of Computing Systems, 32(3):301–326, 1999.

[106] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races
in Cilk programs. In Proceedings of the Ninth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 1–11, June 1997.

[107] Jeremy T. Fineman and Charles E. Leiserson. Race detectors for Cilk and Cilk++
programs. In David Padua, editor, Encyclopedia of Parallel Computing, pages 1706–
1719. Springer, 2011.

[108] Raphael Finkel and Udi Manber. DIB — A distributed implementation of backtrack-
ing. ACM TOPLAS, 9(2):235–256, April 1987.

[109] Matteo Fischetti, Silvano Martello, and Paolo Toth. The fixed job schedule problem
with spread-time constraints. Operations Research, 1987.

[110] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

238

[111] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Cardwell,
Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh Govindan.
Reducing web latency: the virtue of gentle aggression. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 159–170. ACM, 2013.

[112] Wikimedia Foundation. Wikipedia: Database, 2016.

[113] Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking
inX+Y and matrices with sorted columns. Journal of Computer and System Sciences,
24(2):197–208, 1982.

[114] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Fila-
ments: Efficient fine-grain parallelism on a cluster of workstations. In Proceedings of
the First Symposium on Operating Systems Design and Implementation, pages 201–
213, Monterey, California, November 1994.

[115] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Re-
ducers and other Cilk++ hyperobjects. In Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages 79–90,
New York, NY, USA, 2009. ACM.

[116] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the Cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

[117] Igal Galperin and Ronald L Rivest. Scapegoat trees. In Proceedings of the fourth
annual ACM-SIAM Symposium on Discrete algorithms, pages 165–174. Society for
Industrial and Applied Mathematics, 1993.

[118] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and Esa
Hyytia. Reducing latency via redundant requests: Exact analysis. In Proceedings of
the 2015 ACM SIGMETRICS International Conference on Measurement and Model-
ing of Computer Systems, pages 347–360. ACM, 2015.

[119] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete prob-
lems. In Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
STOC ’74, pages 47–63, New York, NY, USA, 1974. ACM.

[120] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1976.

[121] Assefaw H. Gebremedhin, Duc Nguyen, Md. Mostofa Ali Patwary, and Alex Pothen.
ColPack: Software for graph coloring and related problems in scientific computing.
ACM Trans. on Mathematical Software, 2013.

[122] Assefaw Hadish Gebremedhin and Fredrik Manne. Scalable parallel graph coloring
algorithms. Concurrency: Practice and Experience, 2000.

[123] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85(410):398–409,
June 1990.

239

[124] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–
741, November 1984.

[125] P. B. Gibbons. A more practical PRAM model. In Proceedings of the First Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’89, pages 158–168,
New York, NY, USA, 1989. ACM.

[126] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in Matlab:
Design and implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356, January
1992.

[127] Yoav Giora and Haim Kaplan. Optimal dynamic vertical ray shooting in rectilinear
planar subdivisions. ACM Transactions on Algorithms (TALG), 5(3):28, 2009.

[128] Alessandro Giusti, Dan Claudiu Ciresan, Jonathan Masci, Luca Maria Gambardella,
and Jürgen Schmidhuber. Fast image scanning with deep max-pooling convolutional
neural networks. In ICIP, page in press, 2013.

[129] Robert K. Gjertsen Jr., Mark T. Jones, and Paul E. Plassmann. Parallel heuristics
for improved, balanced graph colorings. JPDC, 1996.

[130] Sébastien Godard. Sysstat: System performance tools for the linux os, 2004.

[131] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel symmetry-
breaking in sparse graphs. SIAM J. Discret. Math., 1(4):434–446, October 1988.

[132] Mark Goldberg and Thomas Spencer. A new parallel algorithm for the maximal
independent set problem. SIAM Journal on Computing, 18(2):419–427, 1989.

[133] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics Series B Nu-
merical Analysis, 2(2):205–224, 1965.

[134] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed graph-parallel computation on natural graphs. In Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’12, pages 17–30, Berkeley, CA, USA, 2012. USENIX Association.

[135] Google. Google cloud platform blog: Google supercharges machine learning tasks
with tpu custom chip, 2016.

[136] Google. Protocol buffers. https://developers.google.com/protocol-buffers/, 2019.

[137] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

[138] Felix Gremse, Andreas Höfter, Lukas Razik, Fabian Kiessling, and Uwe Naumann.
Gpu-accelerated adjoint algorithmic differentiation. Computer Physics Communica-
tions, 200:300–311, 2016.

[139] Andreas Griewank et al. On automatic differentiation. Mathematical Programming:
recent developments and applications, 6(6):83–107, 1989.

240

[140] Yan Gu, Julian Shun, Yihan Sun, and Guy E Blelloch. A top-down parallel semisort.
In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Archi-
tectures, pages 24–34, 2015.

[141] Leo J Guibas, Edward M McCreight, Michael F Plass, and Janet R Roberts. A new
representation for linear lists. In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 49–60. ACM, 1977.

[142] Robert H. Halstead, Jr. Implementation of MultiLisp: Lisp on a multiprocessor. In
Proceedings of the 1984 ACM Symposium on LISP and Functional Programming, LFP
’84, pages 9–17, New York, NY, USA, 1984. ACM.

[143] Robert H. Halstead, Jr. MultiLisp: A language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst., 7(4):501–538, October 1985.

[144] James Hamilton. The cost of latency, 2009.

[145] Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool:
Principles, model, and specification. ACM Trans. Math. Softw., 39(3), May 2013.

[146] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Ordering
heuristics for parallel graph coloring. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’14, pages 166–177, New York,
NY, USA, 2014. ACM.

[147] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng Li,
Trevor Mudge, Ronald G. Dreslinski, Jason Mars, and Lingjia Tang. Djinn and
tonic: Dnn as a service and its implications for future warehouse scale computers. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 27–40, New York, NY, USA, 2015. ACM.

[148] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Scheduling interactive services with
partial execution. In ACM Symposium on Cloud Computing (SOCC), page 12, 2012.

[149] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The Cilkview scalability
analyzer. In Proceedings of the Twenty-second Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’10, pages 145–156, New York, NY,
USA, 2010. ACM.

[150] DP John Hennessy. A conversation with john hennessy and david patterson. ACM
Queue, 4(10), 2006.

[151] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[152] Dean Hildebrand and Peter Honeyman. Exporting storage systems in a scalable
manner with pnfs. In 22nd IEEE/13th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST’05), pages 18–27. IEEE, 2005.

[153] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematical Physics, 1927.

241

[154] M. Hitz, J. Grabmeier, E. Kaltofen, and V. Weispfenning. Computer Algebra Hand-
book: Foundations · Applications · Systems. Springer Berlin Heidelberg, 2012.

[155] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[156] Robin J Hogan. Fast reverse-mode automatic differentiation using expression tem-
plates in c++. ACM Transactions on Mathematical Software (TOMS), 40(4):26, 2014.

[157] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuet-
zle. Mesh optimization. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’93, pages 19–26, New York, NY,
USA, 1993. ACM.

[158] P. Hovland and C. Bischof. Automatic differentiation for message-passing parallel
programs. In IPPS, pages 98–104, March 1998.

[159] Paul D. Hovland, Christian H. Bischof, and Lucas Roh. Automatic differentiation of
a parallel molecular dynamics application. In PPSC. SIAM, 1997.

[160] Derek R. Hower, Polina Dudnik, Mark D. Hill, and David A. Wood. Calvin: Determin-
istic or not? free will to choose. In Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, HPCA ’11, pages 333–334,
Washington, DC, USA, 2011. IEEE Computer Society.

[161] Jan Hückelheim, Paul Hovland, Michelle Mills Strout, and Jens-Dominik Mller.
Reverse-mode algorithmic differentiation of an openmp-parallel compressible flow
solver. The International Journal of High Performance Computing Applications,
33(1):140–154, 2019.

[162] Jan Hückelheim and Paul D. Hovland. Automatic differentiation of parallelised con-
volutional neural networks - lessons from adjoint pde solvers. In NIPS, 2017.

[163] Jan Hückelheim, Navjot Kukreja, Sri Hari Krishna Narayanan, Fabio Luporini, Ger-
ard Gorman, and Paul Hovland. Automatic differentiation for adjoint stencil loops. In
Proceedings of the 48th International Conference on Parallel Processing, ICPP 2019,
New York, NY, USA, 2019. Association for Computing Machinery.

[164] Jan Christian Hückelheim, Paul D. Hovland, Michelle Mills Strout, and Jens-Dominik
Müller. Parallelizable adjoint stencil computations using transposed forward-mode
algorithmic differentiation. Optimization Methods and Software, 33:672–693, 2018.

[165] Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted
lists. Acta informatica, 17(2):157–184, 1982.

[166] IBM. Introducing a brain-inspired computer, 2016.

[167] Mike Innes. Flux: Elegant machine learning with julia. Journal of Open Source
Software, 3(25):602, 2018.

[168] Institute of Electrical and Electronic Engineers. Information technology — Portable
Operating System Interface (POSIX) — Part 1: System application program interface
(API) [C language]. IEEE Standard 1003.1, 1996 Edition.

242

[169] Intel. The Threading Building Blocks. http://software.intel.com, 2012.

[170] Intel. Intel Cilk Plus. http://software.intel.com, 2013.

[171] Intel. Intel Cilk Plus. Available from http://software.intel.com, 2013.

[172] Intel Corporation. Intel Cilk Plus Language Specification, 2010. Document Num-
ber: 324396-001US. Available from http://software.intel.com/sites/products/

cilk-plus/cilk_plus_language_specification.pdf.

[173] Intel Corporation. Intel VTune Amplifier. https://software.intel.com/en-us/

vtune, 2019.

[174] itseez. Open source computer vision library, 2016.

[175] Kenneth E. Iverson. A Programming Language. John Wiley & Sons, Inc., New York,
NY, USA, 1962.

[176] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin,
and Chenyu Yan. Speeding up distributed request-response workflows. ACM SIG-
COMM Computer Communication Review, 43(4):219–230, 2013.

[177] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the ACM International Conference on
Multimedia, pages 675–678. ACM, 2014.

[178] Maximilian Joesch, David Mankus, Masahito Yamagata, Ali Shahbazi, Richard
Schalek, Adi Suissa-Peleg, Markus Meister, Jeff W Lichtman, Walter J Scheirer, and
Joshua R Sanes. Reconstruction of genetically identified neurons imaged by serial-
section electron microscopy. elife, 5:e15015, 2016.

[179] Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. SIAM J.
Sci. Comput., 14(3):654–669, May 1993.

[180] Mark T Jones and Paul E Plassmann. Scalable iterative solution of sparse linear
systems. Parallel Computing, 1994.

[181] Gauri Joshi, Emina Soljanin, and Gregory Wornell. Efficient redundancy techniques
for latency reduction in cloud systems. arXiv preprint arXiv:1508.03599, 2015.

[182] Gauri Joshi, Emina Soljanin, and Gregory Wornell. Queues with redundancy:
Latency-cost analysis. ACM SIGMETRICS Performance Evaluation Review,
43(2):54–56, 2015.

[183] T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E. Leiserson. Executing dynamic
data-graph computations deterministically using chromatic scheduling. Transactions
on Parallel Computing, 3(1):2:1–2:31, 2016.

[184] Tim Kaler, William Hasenplaugh, Tao B Schardl, and Charles E. Leiserson. Executing
dynamic data-graph computations deterministically using chromatic scheduling. In
SPAA, 2014.

243

http://software.intel.com
http://software.intel.com
http://software.intel.com/sites/products/cilk-plus/cilk_plus_language_specification.pdf
http://software.intel.com/sites/products/cilk-plus/cilk_plus_language_specification.pdf
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune

[185] Tim Kaler, Yuxiong He, and Sameh Elnikety. Optimal reissue policies for reducing
tail latency. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 195–206, 2017.

[186] Tim Kaler, William Kuszmaul, Tao B Schardl, and Daniele Vettorel. Cilkmem: Algo-
rithms for analyzing the memory high-water mark of fork-join parallel programs. In
Symposium on Algorithmic Principles of Computer Systems, pages 162–176. SIAM,
2020.

[187] Tim Kaler, Brian Wheatman, and Sarah Wooders. High-throughput image alignment
for connectomics using frugal snap judgments: Poster. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, PPoPP ’19, pages
433–434, New York, NY, USA, 2019. ACM.

[188] Tim Kaler, Brian Wheatman, and Sarah Wooders. High-throughput image align-
ment for connectomics using frugal snap judgments. In 2020 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2020.

[189] Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms for backtrack
search and branch-and-bound computation. JACM, 40(3):765–789, July 1993.

[190] Narayanan Kasthuri, Ken Hayworth, Juan C Tapia, Richard Schalek, S Nundy, and
Jeff W Lichtman. The brain on tape: Imaging an ultra-thin section library (utsl). In
Soc. Neurosci. Abstr, 2009.

[191] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger, Richard Lee
Schalek, José Angel Conchello, Seymour Knowles-Barley, Dongil Lee, Amelio
Vázquez-Reina, Verena Kaynig, Thouis Raymond Jones, et al. Saturated reconstruc-
tion of a volume of neocortex. Cell, 162(3):648–661, 2015.

[192] Verena Kaynig, Amelio Vazquez-Reina, Seymour Knowles-Barley, Mike Roberts,
Thouis R Jones, Narayanan Kasthuri, Eric Miller, Jeff Lichtman, and Hanspeter
Pfister. Large-scale automatic reconstruction of neuronal processes from electron mi-
croscopy images. Medical image analysis, 22(1):77–88, 2015.

[193] Gershon Kedem. Automatic differentiation of computer programs. Technical report,
WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER, 1976.

[194] Saehoon Kim, Yuxiong He, Seung-won Hwang, Sameh Elnikety, and Seungjin Choi.
Delayed-dynamic-selective (dds) prediction for reducing extreme tail latency in web
search. In Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, WSDM ’15, pages 7–16, New York, NY, USA, 2015. ACM.

[195] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[196] Seymour Knowles-Barley. Rhoana git. https://github.com/Rhoana/membrane_

cnn/tree/master/maxout.

[197] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele, Jr., and
Mary E. Zosel. The High Performance Fortran Handbook. MIT Press, Cambridge,
MA, USA, 1994.

244

https://github.com/Rhoana/membrane_cnn/tree/master/maxout
https://github.com/Rhoana/membrane_cnn/tree/master/maxout

[198] S Rao Kosaraju. Localized search in sorted lists. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing, pages 62–69. ACM, 1981.

[199] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel Lisp. In Proceedings of the SIGPLAN ’89 Conference on Programming Lan-
guage Design and Implementation, pages 81–90, June 1989.

[200] Fabian Kuhn. Weak graph colorings: Distributed algorithms and applications. In
Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’09, pages 138–144, New York, NY, USA, 2009. ACM.

[201] Fabian Kuhn and Rogert Wattenhofer. On the complexity of distributed graph col-
oring. In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’06, pages 7–15, New York, NY, USA, 2006. ACM.

[202] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
May 1994. Available as MIT Laboratory for Computer Science Technical Report
MIT/LCS/TR-645.

[203] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph com-
putation on just a PC. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 31–46, Berkeley, CA, USA, 2012.
USENIX Association.

[204] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured stor-
age system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[205] Cliff Lasser and Steve M. Omohundro. The essential Lisp manual. Technical report,
Thinking Machines, Cambridge, MA USA, 1986.

[206] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL, December 2002. See http://llvm.cs.uiuc.edu.

[207] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization (CGO’04), page 75, Palo Alto, California,
March 2004.

[208] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 Conference
on Java Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000. ACM.

[209] Jonathan I Leckenby, Miranda A Chacon, Adriaan O Grobbelaar, and Jeff W Licht-
man. Imaging peripheral nerve regeneration: A new technique for 3d visualization of
axonal behavior. Journal of Surgical Research, 242:207–213, 2019.

[210] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, 20, 2015.

[211] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006.

245

[212] I-Ting Angelina Lee. Memory Abstractions for Parallel Programming. PhD thesis,
MIT Department of Electrical Engineering and Computer Science, 2012.

[213] I-Ting Angelina Lee, Aamir Shafi, and Charles E. Leiserson. Memory-mapping sup-
port for reducer hyperobjects. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 287–
297, New York, NY, USA, 2012. ACM.

[214] Kangwook Lee, Ramtin Pedarsani, and Kannan Ramchandran. On scheduling re-
dundant requests with cancellation overheads. In Proc. of the 53rd Annual Allerton
conference on Communication, Control, and Computing, 2015.

[215] Kisuk Lee, Aleksandar Zlateski, Vishwanathan Ashwin, and H Sebastian Seung. Re-
cursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction.
In Advances in Neural Information Processing Systems, pages 3559–3567, 2015.

[216] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu vs.
cpu myth: An evaluation of throughput computing on cpu and gpu. In Proceedings
of the 37th Annual International Symposium on Computer Architecture, ISCA ’10,
pages 451–460, New York, NY, USA, 2010. ACM.

[217] Wei-Chung Allen Lee, Vincent Bonin, Michael Reed, Brett J Graham, Greg Hood,
Katie Glattfelder, and R Clay Reid. Anatomy and function of an excitatory network
in the visual cortex. Nature, 532(7599):370–374, 2016.

[218] Daan Leijen and Judd Hall. Optimize managed code for multi-core machines. MSDN
Magazine.

[219] Charles E. Leiserson. The Cilk++ concurrency platform. Journal of Supercomputing,
51(3):244–257, 2010.

[220] J. Leskovec. SNAP: Stanford network analysis platform. http://snap.stanford.

edu/data/index.html, 2013.

[221] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densifica-
tion and shrinking diameters. ACM transactions on Knowledge Discovery from Data
(TKDD), 1(1):2–es, 2007.

[222] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[223] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[224] Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungureanu. Malt: Distributed data-
parallelism for existing ML applications. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, pages 3:1–3:16, New York, NY, USA,
2015. ACM.

246

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data

[225] Yawei Li and Zhiling Lan. Exploit failure prediction for adaptive fault-tolerance in
cluster computing. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth
IEEE International Symposium on, volume 1, pages 8–pp. IEEE, 2006.

[226] Jeff W Lichtman and Winfried Denk. The big and the small: challenges of imaging
the brains circuits. Science, 334(6056):618–623, 2011.

[227] Jeff W Lichtman, Hanspeter Pfister, and Nir Shavit. The big data challenges of
connectomics. Nature neuroscience, 17(11):1448–1454, 2014.

[228] Jeff W. Lichtman and Joshua R. Sanes. Ome sweet ome: what can the genome tell us
about the connectome? Current Opinion in Neurobiology, 18(3):346–353, June 2008.

[229] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–
201, February 1992.

[230] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Nu-
merical Mathematics, 16(2):146–160, Jun 1976.

[231] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[232] L. Lov́asz, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Math., 1989.

[233] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed GraphLab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April 2012.

[234] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. GraphLab: A new parallel framework for machine learning.
In Conference on Uncertainty in Artificial Intelligence (UAI), Catalina Island, Cali-
fornia, July 2010.

[235] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[236] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 1986.

[237] Apache Lucene. Apache lucene, 2010.

[238] George S Lueker. A data structure for orthogonal range queries. In Foundations of
Computer Science, 1978., 19th Annual Symposium on, pages 28–34. IEEE, 1978.

[239] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gra-
dients in numpy. In ICML 2015 AutoML Workshop, 2015.

[240] David Maier and Sharon C Salveter. Hysterical b-trees. Information Processing
Letters, 12(4):199–202, 1981.

247

[241] Jeremy Maitin-Shepard, Viren Jain, Michal Januszewski, Peter Li, Jörgen Kornfeld,
Julia Buhmann, and Pieter Abbeel. Combinatorial energy learning for image segmen-
tation. arXiv preprint arXiv:1506.04304, 2015.

[242] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[243] Loris Marchal, Hanna Nagy, Bertrand Simon, and Frédéric Vivien. Parallel scheduling
of dags under memory constraints. In IPDPS, pages 204–213. IEEE, 2018.

[244] Dániel Marx. Graph colouring problems and their applications in scheduling. John
von Neumann Ph.D. Students Conf., 2004.

[245] Jonathan Masci, Alessandro Giusti, Dan Ciresan, Gabriel Fricout, and Jurgen Schmid-
huber. A fast learning algorithm for image segmentation with max-pooling convolu-
tional networks. In Image Processing (ICIP), 2013 20th IEEE International Confer-
ence on, pages 2713–2717. IEEE, 2013.

[246] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph
coloring algorithms. JACM, 1983.

[247] Alexander Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jakubiuk, Tim
Kaler, Gergely Odor, David Budden, Aleksandar Zlateski, and Nir Shavit. A multicore
path to connectomics-on-demand. In PPoPP, pages 267–281, 2017.

[248] Andrew McCallum. Cora data set. http://people.cs.umass.edu/mccallum/data.
html, 2012.

[249] Mike McCandless. Lucene nightly benchmarks, 2010.

[250] Michael D McCool. Structured parallel programming with deterministic patterns. In
Proceedings of the 2nd USENIX conference on Hot topics in parallelism, pages 5–5.
USENIX Association, 2010.

[251] D. McGrady. Avoiding contention using combinable objects. Microsoft Developer
Network, 2008.

[252] Marina Meilă. Comparing clusteringsan information based distance. Journal of mul-
tivariate analysis, 98(5):873–895, 2007.

[253] Marina Meilă. Comparing clusteringsan information based distance. Journal of mul-
tivariate analysis, 98(5):873–895, 2007.

[254] Y. Meirovitch, A. Matveev, H. Saribekyan, D. Budden, D. Rolnick, G. Odor, S. K.-
B. T. R. Jones, H. Pfister, J. W. Lichtman, and N. Shavit. A Multi-Pass Approach
to Large-Scale Connectomics. ArXiv e-prints, December 2016.

[255] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65,
February 1991.

248

http://people.cs.umass.edu/mccallum/data.html
http://people.cs.umass.edu/mccallum/data.html

[256] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. Web data
commons — hyperlink graphs.

[257] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph
structure in the Web — analyzed on different aggregation levels. Journal of Web
Science, 1(1):33–47, 2015.

[258] Seung-Jai Min, Costin Iancu, and Katherine Yelick. Hierarchical work stealing on
manycore clusters. In Fifth Conference on Partitioned Global Address Space Pro-
gramming Models (PGAS ’11), October 2011.

[259] Tom Mitchell. NPIC500 data set. http://www.cs.cmu.edu/tom/10709_fall2009/

NPIC500.pdf, 2009.

[260] John Mitchem. On various algorithms for estimating the chromatic number of a graph.
The Computer Journal, 1976.

[261] Alina N. Moga, Bogdan Cramariuc, and Moncef Gabbouj. Parallel watershed trans-
formation algorithms for image segmentation. Parallel Comput., 24(14):1981–2001,
December 1998.

[262] Josh Lyskowski Morgan, Daniel Raimund Berger, Arthur Willis Wetzel, and
Jeff William Lichtman. The fuzzy logic of network connectivity in mouse visual tha-
lamus. Cell, 165(1):192–206, 2016.

[263] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, UAI’99, pages 467–475, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[264] Nervana. Neon. https://github.com/NervanaSystems/neon.

[265] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In PLDI, 2007.

[266] Robert H. B. Netzer and Barton P. Miller. What are race conditions?: Some issues
and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, March 1992.

[267] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure
for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, SOSP ’13, pages 456–471, New York, NY, USA, 2013.
ACM.

[268] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. Deterministic galois: On-
demand, portable and parameterless. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, pages 499–512, New York, NY, USA, 2014. ACM.

[269] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of co-
training. In Proceedings of the Ninth International Conference on Information and
Knowledge Management, CIKM ’00, pages 86–93, New York, NY, USA, 2000. ACM.

249

http://www.cs.cmu.edu/tom/10709_fall2009/NPIC500.pdf
http://www.cs.cmu.edu/tom/10709_fall2009/NPIC500.pdf
https://github.com/NervanaSystems/neon

[270] Rishiyur S. Nikhil. Cid: A parallel, shared-memory C for distributed-memory ma-
chines. In Proceedings of the Seventh Annual Workshop on Languages and Compilers
for Parallel Computing, August 1994.

[271] Juan Nunez-Iglesias, Ryan Kennedy, Toufiq Parag, Jianbo Shi, and Dmitri B
Chklovskii. Machine learning of hierarchical clustering to segment 2D and 3D im-
ages. PloS one, 8(8):e71715, 2013.

[272] Juan Nunez-Iglesias, Ryan Kennedy, Stephen M Plaza, Anirban Chakraborty, and
William T Katz. Graph-based active learning of agglomeration (gala): a python
library to segment 2d and 3d neuroimages. Frontiers in neuroinformatics, 8, 2014.

[273] NVIDIA. Nvidia cudnn - gpu accelerated deep learning, 2016.

[274] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient deter-
ministic multithreading in software. SIGARCH Comput. Archit. News, 37(1):97–108,
March 2009.

[275] OpenMP Application Program Interface, Version 3.0, May 2008.

[276] Oracle. Sun studio 12: Performance analyzer. Available at https://docs.oracle.

com/cd/E19205-01/819-5264/, 2010.

[277] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In ISCA, 1984.

[278] Toufiq Parag, Anirban Chakraborty, Stephen Plaza, and Louis Scheffer. A context-
aware delayed agglomeration framework for electron microscopy segmentation. PloS
one, 10(5):e0125825, 2015.

[279] Toufiq Parag, Anirban Chakrobarty, and Stephen Plaza. A context-aware delayed
agglomeration framework for em segmentation. CoRR, 2014.

[280] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. 2017.

[281] Suhas S. Patil. Record of the project MAC conference on concurrent systems and
parallel computation. chapter Closure Properties of Interconnections of Determinate
Systems, pages 107–116. ACM, New York, NY, USA, 1970.

[282] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[283] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Has-
saan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The Tao of parallelism in algorithms.
In ACM PLDI, 2011.

[284] Stephen M Plaza and Stuart E Berg. Large-scale electron microscopy image segmen-
tation in spark. arXiv preprint arXiv:1604.00385, 2016.

[285] Daniel Quinlan and Michael Kerrisk. proc — process information pseudo-filesystem.
Available at http://man7.org/linux/man-pages/man5/proc.5.html, 2017.

250

https://docs.oracle.com/cd/E19205-01/819-5264/
https://docs.oracle.com/cd/E19205-01/819-5264/
http://man7.org/linux/man-pages/man5/proc.5.html

[286] Louis B Rall and George F Corliss. An introduction to automatic differentiation.
Computational Differentiation: Techniques, Applications, and Tools, 89, 1996.

[287] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
Efficient data race detection for async-finish parallelism. In Howard Barringer, Ylies
Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rosu,
Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime Verification, volume 6418 of
Lecture Notes in Computer Science, pages 368–383. Springer Berlin / Heidelberg,
2010.

[288] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
Scalable and precise dynamic datarace detection for structured parallelism. In Pro-
ceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 531–542, 2012.

[289] Santiago Ramón and S Cajal. Textura del Sistema Nervioso del Hombre y de los
Vertebrados, volume 2. Madrid Nicolas Moya, 1904.

[290] A. Rauh and G.R. Arce. A fast weighted median algorithm based on quickselect. In
Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 105–
108, Sept 2010.

[291] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, first edition, 2007.

[292] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand,
David Bestor, Bill Bergeron, Vijay Gadepally, Michael Houle, Matthew Hubbell, et al.
Interactive supercomputing on 40,000 cores for machine learning and data analysis.
In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages 1–6.
IEEE, 2018.

[293] Rhoana. Fijibento, 2018.

[294] William R Gray Roncal, Dean M Kleissas, Joshua T Vogelstein, Priya Manavalan,
Kunal Lillaney, Michael Pekala, Randal Burns, R Jacob Vogelstein, Carey E Priebe,
Mark A Chevillet, et al. An automated images-to-graphs framework for high resolution
connectomics. Frontiers in neuroinformatics, 9, 2015.

[295] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015, pages 234–241. Springer, 2015.

[296] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International conference on computer vision, pages
2564–2571. Ieee, 2011.

[297] Youcef Saad. SPARSKIT: A basic toolkit for sparse matrix computations. Research
Institute for Advanced Computer Science, NASA Ames Research Center, 1990.

[298] Stephan Saalfeld, Albert Cardona, Volker Hartenstein, and Pavel Tomančák. As-
rigid-as-possible mosaicking and serial section registration of large sstem datasets.
Bioinformatics, 26(12):i57–i63, 2010.

251

[299] Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. A survey on
skeletonization algorithms and their applications. Pattern Recognition Letters, 76:3–
12, June 2016.

[300] A.E. Sariyuce, E. Saule, and U.V. Catalyurek. Improving graph coloring on
distributed-memory parallel computers. In HiPC, 2011.

[301] Michel Schanen, Uwe Naumann, Laurent Hascoët, and Jean Utke. Interpretative ad-
joints for numerical simulation codes using mpi. Procedia Computer Science, 1(1):1825
– 1833, 2010. ICCS 2010.

[302] Tao B. Schardl, Tyler Denniston, Damon Doucet, Bradley C. Kuszmaul, I-Ting An-
gelina Lee, and Charles E. Leiserson. The CSI framework for compiler-inserted pro-
gram instrumentation. Proc. ACM Meas. Anal. Comput. Syst., 1(2):43:1–43:25, De-
cember 2017.

[303] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiserson,
and Charles E. Leiserson. The Cilkprof scalability profiler. In SPAA, pages 89–100,
2015.

[304] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding fork-
join parallelism into LLVM’s intermediate representation. In PPoPP, pages 249–265,
2017.

[305] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
recursive fork-join parallelism into LLVM’s intermediate representation. ACM Trans.
Parallel Comput., 6(4), December 2019.

[306] Louis Scheffer, Bill Karsh, and Shiv Vitaladevun. Automated alignment of imperfect
em images for neural reconstruction. abs/1304.6034, 04 2013.

[307] Peter Schiffer and Michael Kerrisk. memusage — profile memory usage of a program.
Available at http://man7.org/linux/man-pages/man1/memusage.1.html, 2014.

[308] Eric Schurman and Jake Brutlag. The user and business impact of server delays,
additional bytes, and http chunking in web search. In Velocity Conference, 2009.

[309] Sebastian Seung. Connectome: How the brain’s wiring makes us who we are. Houghton
Mifflin Harcourt, 2012.

[310] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. The mds queue: Analysing
the latency performance of erasure codes. In Information Theory (ISIT), 2014 IEEE
International Symposium on, pages 861–865. IEEE, 2014.

[311] Ali Shahbazi. Computer Vision-Based Approaches to Neural Circuit Tracing at Scale.
University of Notre Dame, 2018.

[312] Ali Shahbazi, Jeffery Kinnison, Rafael Vescovi, Ming Du, Robert Hill, Maximilian
Joesch, Marc Takeno, Hongkui Zeng, Nuno Maçarico Da Costa, Jaime Grutzendler,
et al. Flexible learning-free segmentation and reconstruction of neural volumes. Sci-
entific reports, 8(1):1–15, 2018.

252

http://man7.org/linux/man-pages/man1/memusage.1.html

[313] Nir Shavit. A multicore path to connectomics-on-demand. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 211–211.
ACM, 2016.

[314] F.H. She, R.H. Chen, W.M. Gao, P.H. Hodgson, L.X. Kong, and H.Y. Hong. Improved
3d Thinning Algorithms for Skeleton Extraction. In Digital Image Computing: Tech-
niques and Applications, 2009. DICTA ’09., pages 14–18, December 2009.

[315] Henry Shum and Leslie E Trotter Jr. Cardinality-restricted chains and antichains in
partially ordered sets. Discrete applied mathematics, 65(1-3):421–439, 1996.

[316] HK Shum. Chains of bounded length and antichains of bounded width in partially
ordered sets. 1990.

[317] Julian Shun. Shared-Memory Parallelism Can be Simple, Fast, and Scalable. Morgan
& Claypool, 2017.

[318] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. SIGPLAN Not., 48(8):135–146, February 2013.

[319] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Reducing
contention through priority updates. In Proceedings of the Twenty-fifth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, pages 152–163,
New York, NY, USA, 2013. ACM.

[320] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Ky-
rola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: The
problem based benchmark suite. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 68–70,
New York, NY, USA, 2012. ACM.

[321] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and faster: Parallel
processing of compressed graphs with Ligra+. In 2015 Data Compression Conference,
DCC 2015, Snowbird, UT, USA, April 7-9, 2015, pages 403–412, 2015.

[322] Parag Singla and Pedro Domingos. Entity resolution with Markov logic. In Proceedings
of the Sixth International Conference on Data Mining, ICDM ’06, pages 572–582,
Washington, DC, USA, 2006. IEEE Computer Society.

[323] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
Journal of the ACM (JACM), 32(3):652–686, 1985.

[324] Bert Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Al-
gorithms. PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1980.

[325] Filip Srajer, Zuzana Kukelova, and Andrew Fitzgibbon. A benchmark of selected
algorithmic differentiation tools on some problems in computer vision and machine
learning. Optimization Methods and Software, 33(4-6):889–906, 2018.

[326] Guy L. Steele, Jr. Making asynchronous parallelism safe for the world. In Proceed-
ings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, pages 218–231, New York, NY, USA, 1990. ACM.

253

[327] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. Zoolander: Efficiently
meeting very strict, low-latency slos. In ICAC, volume 13, pages 265–277, 2013.

[328] Josef Stoer, Roland Bulirsch, Richard H. Bartels, Walter Gautschi, and Christoph
Witzgall. Introduction to numerical analysis. Texts in applied mathematics. Springer,
New York, 2002.

[329] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

[330] Márió Szegedy and Sundar Vishwanathan. Locality based graph coloring. In Proceed-
ings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 201–207, New York, NY, USA, 1993. ACM.

[331] Tolga Tasdizen, Pavel Koshevoy, Bradley C Grimm, James R Anderson, Bryan W
Jones, Carl B Watt, Ross T Whitaker, and Robert E Marc. Automatic mosaicking and
volume assembly for high-throughput serial-section transmission electron microscopy.
Journal of neuroscience methods, 193(1):132–144, 2010.

[332] Fabian Tschopp. Efficient convolutional neural networks for pixelwise classification
on heterogeneous hardware systems. arXiv preprint arXiv:1509.03371, 2015.

[333] Alan M Turing. Rounding-off errors in matrix processes. The Quarterly Journal of
Mechanics and Applied Mathematics, 1(1):287–308, 1948.

[334] Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee.
Provably good and practically efficient parallel race detection for fork-join programs.
In SPAA, pages 83–94, 2016.

[335] Jacobo Valdes. Parsing Flowcharts and Series-Parallel Graphs. PhD thesis, Stanford
University, December 1978. STAN-CS-78-682.

[336] Valgrind Developers. Massif: a heap profiler. Available at http://valgrind.org/

docs/manual/ms-manual.html, 2018.

[337] Mark T. Vandevoorde and Eric S. Roberts. WorkCrews: An abstraction for controlling
parallelism. International Journal of Parallel Programming, 17(4):347–366, August
1988.

[338] Jacob Vogelstein. Machine intelligence from cortical networks (microns), 2016.

[339] Ashish Vulimiri, Oliver Michel, P Godfrey, and Scott Shenker. More is less: reducing
latency via redundancy. In Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, pages 13–18. ACM, 2012.

[340] Andrea Walther, Andreas Griewank, and Olaf Vogel. Adol-c: Automatic differenti-
ation using operator overloading in c++. In PAMM: Proceedings in Applied Mathe-
matics and Mechanics, volume 2, pages 41–44. Wiley Online Library, 2003.

[341] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal, 1967.

254

http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html

[342] R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM,
7(8):463464, August 1964.

[343] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the
nervous system of the nematode caenorhabditis elegans. Philosophical Transactions
of the Royal Society B: Biological Sciences, 314(1165):1–340, 1986.

[344] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible? Operations
research, 60(5):1249–1257, 2012.

[345] Wiki. Advanced vector extensions, 2016.

[346] WikiChip. Xeon platinum 8180 - intel, 2020.

[347] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. Costlo: Cost-effective redundancy
for lower latency variance on cloud storage services. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), pages 543–557, Oakland,
CA, May 2015. USENIX Association.

[348] Hong Xu and Baochun Li. Repflow: Minimizing flow completion times with replicated
flows in data centers. In INFOCOM, 2014 Proceedings IEEE, pages 1581–1589. IEEE,
2014.

[349] Jeonghee Yi, Farzin Maghoul, and Jan Pedersen. Deciphering mobile search patterns:
A study of Yahoo! mobile search queries. In ACM International Conference on World
Wide Web (WWW), pages 257–266, 2008.

[350] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order
graph clustering. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 555–564, 2017.

[351] Adarsh Yoga and Santosh Nagarakatte. A fast causal profiler for task parallel pro-
grams. In ESEC/FSE, pages 15–26, 2017.

[352] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv:1511.07122, 2015.

[353] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-
memory multi-processor. In Proceedings of the 36th Annual International Symposium
on Computer Architecture, ISCA ’09, pages 325–336, 2009.

[354] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-
memory multi-processor. SIGARCH Comput. Archit. News, 37(3):325–336, June
2009.

[355] Marco Zagha and Guy E. Blelloch. Radix sort for vector multiprocessors. In Proceed-
ings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91,
pages 712–721, New York, NY, USA, 1991. ACM.

[356] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked Systems Design and Imple-
mentation, pages 2–2. USENIX Association, 2012.

255

[357] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10, 2010.

[358] Jeremy Zawodny. Redis: Lightweight key/value store that goes the extra mile. Linux
Magazine, 79, 2009.

[359] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung. ZNN-A fast and scalable
algorithm for training 3D convolutional networks on multi-core and many-core shared
memory machines. arXiv preprint arXiv:1510.06706, 2015.

256

	Introduction
	Shared-memory multicore programming
	Multicore-centric systems for scientific computing
	Beyond runtime: Tools for bounding memory usage and tail latency
	Other contributions
	Overview

	Executing Dynamic Data-Graph Computations Deterministically Using Chromatic Scheduling
	Introduction
	Background
	The Prism algorithm
	The multibag data structure
	Analysis of Prism
	Empirical evaluation
	The Prism-R algorithm
	The multivector data structure
	Analysis and evaluation of Prism-R
	Conclusion
	Acknowledgments

	Ordering Heuristics for Parallel Graph Coloring
	Introduction
	The Jones-Plassmann algorithm
	JP with random ordering
	The LF and SL heuristics
	Log ordering heuristics
	Empirical evaluation
	Implementation techniques
	The SD heuristic
	Related work
	Conclusion
	Appendix: Performance of serial ordering heuristics
	Acknowledgments

	PARAD: A Work-Efficient Parallel Algorithm for Reverse-Mode Automatic Differentiation
	Introduction
	Preliminaries
	The SPTape Data Structure
	The PARAD algorithm
	Implementation of LibPARAD
	Performance Evaluation
	Related work
	Conclusion

	A Multicore Path to Connectomics-on-Demand
	Introduction
	High-throughput connectomics
	Towards an automated terabyte-per-hour connectomics pipeline
	Our contributions
	Related work

	System overview
	Pipeline structure overview

	Segmentation with CNNs
	Our network architecture
	A fast CPU framework for CNNs
	A fast GPU framework for CNNs

	Watershed
	Agglomeration
	Regional adjacency graphs

	Merging
	Skeletonization
	Pipeline performance
	Reconstruction accuracy

	Lessons learned
	Conclusion
	Acknowledgements

	High-Throughput Image Alignment for Connectomics using Frugal Snap Judgments
	Introduction
	Alignment algorithms used in connectomics
	Quilter algorithm
	The Stacker algorithm
	Frugal snap judgments
	System evaluation
	Computing platforms and datasets
	Empirical analysis of Stacker's memory usage
	Conclusion

	Cilkmem: Algorithms for Analyzing the Memory High-Water Mark of Fork-Join Parallel Programs
	Introduction
	Memory consumption of fork-join programs
	Algorithms for memory high-water mark
	The Cilkmem tool
	Outline

	Problem formalization
	An exact algorithm with O(p) overhead
	An online (memory-efficient) algorithm
	Online approximation in linear time
	Stripped robust antichains
	Recursively computing H_^(G)

	Empirical evaluation
	Implementation
	Benchmarks
	Optimizations
	Case study: multicore image processing pipeline

	Related work
	Conclusion
	Appendix: Online exact computation of H_p(G)
	Appendix: An offline approximate-threshold algorithm
	Appendix: Recursing on multi-spawn components

	Optimal Reissue Policies for Reducing Tail-Latency
	Introduction
	Deterministic versus random reissue
	Model and terminology
	The SingleD policies
	The SingleR policies
	Randomization is essential

	Single versus multiple reissue
	Multiple time policies
	Single is optimal

	SingleR for interactive services
	Parameter search
	Incorporating response-time correlations
	Iterative adaptation for queue delays
	Extended scenarios

	Simulations
	Simulated workload
	Benefits of randomization
	Impact of correlation and queueing
	Sensitivity study

	Experimental evaluation
	Experimental setup and workloads
	Redis set-intersection workload
	Lucene search workload

	Conclusion

	Polylogarithmic Fully Retroactive Priority Queues via Hierarchical Checkpointing
	Introduction
	Hierarchical checkpointing
	Definitions
	The data structure

	Time-fusible partially retroactive priority queue
	Partially retroactive priority queues
	Fusion algorithm

	Fully retroactive priority queue
	Obtaining full retroactivity using hierarchical checkpointing
	Faster retroactive updates and Find-Deletion-Time queries
	Faster Find-Deletion-Time queries

	Conclusion
	Summary
	Taming complexity in a post-Moore's-law world

