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Abstract

The intelligent use of electronic health record data opens up new opportunities to
improve clinical care. Such data have the potential to uncover new sub-types of a
disease, approximate the effect of a drug on a patient, and create tools to find patients
with similar phenotypic profiles. Motivated by such questions, this thesis develops
new algorithms for unsupervised and semi-supervised learning of latent variable, deep
generative models – Bayesian networks parameterized by neural networks.

To model static, high-dimensional data, we derive a new algorithm for inference in deep
generative models. The algorithm, a hybrid between stochastic variational inference
and amortized variational inference, improves the generalization of deep generative
models on data with long-tailed distributions. We develop gradient-based approaches
to interpret the parameters of deep generative models, and fine-tune such models
using supervision to tackle problems that arise in few-shot learning.

To model longitudinal patient biomarkers as they vary due to treatment we propose
Deep Markov Models (DMMs). We design structured inference networks for variational
learning in DMMs; the inference network parameterizes a variational approximation
which mimics the factorization of the true posterior distribution. We leverage insights
in pharmacology to design neural architectures which improve the generalization
of DMMs on clinical problems in the low-data regime. We show how to capture
structure in longitudinal data using deep generative models in order to reduce the
sample complexity of nonlinear classifiers thus giving us a powerful tool to build risk
stratification models from complex data.

Thesis Supervisor: David A. Sontag
Title: Associate Professor of Electrical Engineering and Computer Science
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generated by the application of the emission function to the posterior shown

in Latent Space. Shading denotes standard deviations. . . . . . . . . . . 133

6-4 Parameter estimation: Learning parameters 𝛼, 𝛽 in a two-dimensional

non-linear GSSM. 𝑁 = 5000, 𝑇 = 25 �⃗�𝑡 ∼ 𝒩 ([0.2𝑧0𝑡−1+tanh(𝛼𝑧1𝑡−1); 0.2𝑧
1
𝑡−1+

sin(𝛽𝑧0𝑡−1)], 1.0) �⃗�𝑡 ∼ 𝒩 (0.5�⃗�𝑡, 0.1) where �⃗� denotes a vector, [] denotes

concatenation and superscript denotes indexing. . . . . . . . . . . . . . 133

6-5 Inference in a linear SSM on held-out data: Performance of
inference networks on held-out data using a generative model with
Linear Emission and Linear Transition . . . . . . . . . . . . . . . . . 134

6-6 Inference in a don-linear SSM: Performance of inference networks
trained with data from a Linear Emission and Non-linear Transition SSM135

20



6-7 Inference on non-linear synthetic data: Visualizing inference
on training data. Generative Models: (a) Linear Emission and Non-
linear Transition 𝑧* denotes the latent variable that generated the
observation. 𝑥 denotes the true data. We compare against the results
obtained by a smoothed Unscented Kalman Filter (UKF) (Wan & Van
Der Merwe, 2000). The column denoted “Observations" denotes the
result of applying the emission function of the respective generative
model on the posterior estimates shown in the column “Latent Space".
The shaded areas surrounding each curve 𝜇 denotes 𝜇± 𝜎 for each plot. 136

6-8 Two samples from the DMM trained on JSB Chorales . . . . . . . . . 137

6-9 DMM for medical data: The DMM (from Fig. 6-1) is augmented with

external actions 𝑢𝑡 representing medications presented to the patient. 𝑧𝑡 is

the latent state of the patient. 𝑥𝑡 are the observations that we model. Since

both 𝑢𝑡 and 𝑥𝑡 are always assumed observed, the conditional distribution

𝑝(𝑢𝑡|𝑥1, . . . , 𝑥𝑡−1) may be ignored during learning. . . . . . . . . . . . . . 140

6-10 Left two plots; Estimating counterfactuals with DMM: The x-axis

denotes the number of 3-month intervals after prescription of Metformin. The

y-axis denotes the proportion of patients (out of a test set size of 800) who,

after their first prescription of Metformin, experienced a high level of A1C.

In each tuple of bar plots at every time step, the left aligned bar plots (green)

represent the population that received diabetes medication while the right

aligned bar plots (red) represent the population that did not receive diabetes

medication. (Rightmost plot) Upper bound on negative-log likelihood for

different DMMs trained on the medical data. (T) denotes “transition”, (E)

denotes “emission”, (L) denotes “linear” and (NL) denotes “non-linear”. . . 141

6-11 Patient data generated by a DMM Samples of a patient generated by

the model. The x-axis denotes time and the y-axis denotes the observations.

The intensity of the color denotes its value between zero and one . . . . . 144

21



7-1 Patient Data (Left): Illustration of data from a multiple myeloma patient.

Baseline (static) data typically consists of genomics, demographics, and initial

labs. Longitudinal data typically includes laboratory values (e.g. serum

IgG) and treatments. Baseline data is usually complete, but longitudinal

measurements are frequently missing at various time points. The data tells

a rich story of a patient’s disease trajectory and the resulting treatment

decisions. For example, a deviation of a lab value from a healthy range (e.g.

spike in serum IgG) might prompt a move to the next line of therapy. Missing

data (e.g. points in red) in this case are forward filled. Unsupervised

Models of Sequential Data (Right): We show a State Space Model (SSM)

of X (the longitudinal biomarkers) conditioned on 𝐵 (genetics, denographics)

and U (binary indicators of treatment and line of therapy). The rectangle

depicts the IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵), where 𝑆𝑡−1 = 𝑍𝑡−1. . . . . . . . . . . . . 148
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Visualizing PK/PD treatment response models. Curves denote the scalar

biomarker being modeled and vertical lines denote treatment. Left: Log

Cell Kill. The various curves (green, yellow, red) represent different pa-

rameterizations of the function. Here, (for visualization purposes) a single

treatment is always present throughout time, but may be under a different

line of therapy based on the shaded region. For each line, a sharp decline

is followed by a rise in tumor volume, prompting a change in therapy line.

Each curve corresponds to distinct rates of biomarker growth, parametrized

by 𝜌. Right: Biomarker value under the Treatment Exponential model. After

maintaining the response with treatments, a regression towards baseline (in

blue; depicting what would have happened had no treatment been prescribed)

occurs when treatment is stopped. . . . . . . . . . . . . . . . . . . . . 152

7-3 Visualization of synthetic data: Left: A visualization of "patient"’s

baseline data (colored and marked by patient subtype). Right four plots:

Examples of patient’s longitudinal trajectories along with treatment response.

The blue and green longitudinal data denote two diffrent patient biomarkers.

Gray-dotted line represents intervention. The subtypes may, optionally, be

correlated with patient outcomes as highlighted using the values of 𝑦. We do

not use the outcomes in this chapter, but do so later in the thesis. . . . . . 159

22



7-4 Visualizations of learned SSM models: (a) Synthetic: Forward samples

(conditioned only on 𝐵) from SSMPK-PD (o), SSMLinear (x), SSMPK-PD

without local clocks (△), for a single patient. Blue circles (o) denote ground

truth. The markers above the trajectories represent treatments prescribed

across time. (b) ML-MMRF : We visualize the TSNE representations of each

held-out patient’s 𝛼1 parameter (in the TE module) at the start of treatment

and three years in. (c) ML-MMRF : For SSMPK-PD, we visualize weights, 𝛿,
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single patient. As in the synthetic samples, blue circles denote ground truth,

and the markers above the trajectories represent treatments prescribed across
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7-5 a) NLL estimates via importance sampling: We estimate the NLL of

SSMPK-PD and SSMLinear for each feature, summed over all time points and

averaged over all patients. b) Condition on 6 months, forward sample

1 year: We show L1 prediction error for forward samples over a 1 year time

window conditioned on 6 months of patient data. At each time point, we

compute the L1 error with the observed biomarker and sum these errors

(excluding predictions for missing biomarker values) over the prediction
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Condition on 2 years, sample forward 1 year: Finally, we report L1
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of patient data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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treatment to 𝛼1: We visualize the weight matrix of the linear function

that maps the treatment signal to 𝛼1, which varies across the state space

dimension, in SSMPK-PD. . . . . . . . . . . . . . . . . . . . . . . . . . 174
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Chapter 1

Introduction

1.1 Machine learning for healthcare

The ancient Egyptians, through the ritual practice of mummification, had a coarse
grained but functional understanding of the taxonomy of the human body including
body parts such as the brain, the heart, the blood and the role they played in keeping
us alive. As civilisations evolved over the centuries, so too has our understanding
of processes that govern the functioning of human bodies. We now know that the
human body is among the most complex living organisms. At any point in time, there
are millions of biochemical reactions happening simultaneously in the body, all of
which together result in our instantaneous state of being. When one or more of these
processes deviate from normalcy, we become ill.

Healthcare, broadly speaking, comprises the myriad of practices, policies and knowledge
to treat our illnesses. The interventions in our present-day healthcare systems have
been designed with the goal of reverting the state of our body from sick to healthy. We
are constantly improving the way in which we treat diseases as we understand them
better. Over the last several decades, bolstered by the ready availability of digital
storage, healthcare institutions have collected, curated and organized patient data.
We refer to this collection of data as Electronic Health Records (EHR). EHR data
are collected by hospitals, insurance companies and clinics and record each patient’s
interaction with the healthcare system.

Figure 1-1, depicts the kind of data that is often collected. Clinical data may
include diagnosis codes, x-ray imaging, clinical labs and occasionally patient genetics.
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Observations InterventionsCare-facilities

Figure 1-1: Patient data: Left (clinical observations), Middle (centers of care), Right
(treatments provided to patients)

Depending on the source, the data may also contain information on where the data was
tabulated – such as in hospitals (inpatient), external laboratories or clinics (outpatient).
Finally, the data can include treatments and interventions prescribed such as surgery,
check-ups or medication. Computational healthcare is concerned with the use of this
data to improve our understanding of diseases and eventually improve clinical care.
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Imaging
& Lab tests

Clinical
notes

Scales
of the
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body
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statistics

Time

Figure 1-2: Patient data across scales
of the human body: From bottom to
top, we depict patient data as manifested
in the various scales of the human body,
from micro scale to macro scale.

This thesis lies at the intersection of com-
putational healthcare and machine learn-
ing. The field of machine learning has
seen enormous development over the last
several decades. Advances in deep learn-
ing (LeCun et al. , 2015), powered by
Graphical Processing Units (GPUs), en-
able practitioners to build supervised ma-
chine learning algorithms which make pre-
dictions from high-dimensional data using
millions of datapoints. We have begun
to see visible successes of machine learn-
ing in domains such as computer vision
(Krizhevsky et al. , 2012), natural lan-
guage processing (NLP) (Mikolov et al.
, 2013b) and neural machine translation
(Bahdanau et al. , 2014).

The clarion call for personalized medicine has not gone unanswered. Deep learning has
opened up new opportunities for improving the efficacy of clinical care. For example
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(Yala et al. , 2019) use deep neural networks to predict pathologies from breast cancer
images, while (Razavian et al. , 2015) build models to predict the early onset of
diabetes from claims data. However, obtaining supervised data in healthcare is not
feasible for every task – clinician time is valuable and labels can be expensive to obtain.
This motivates the need for models that find patterns from unlabelled data, and use
the underlying patterns to simplify predictive problems of interest so they may be
answered even when labels are scarce.

Models that rise to such a task must, however, contend with the high-dimensionality
of patient data that capture bio-chemical processes happening at multiple scales of the
human body. In Figure 1-2, we provide a visual depiction of these phenomena. The
dimensionality of the data at each level of granularity can span hundreds of thousands
of features. We therefore turn to deep generative models, a class of statistical models
that combines the representational power of deep learning with the probabilistic
semantics of Bayesian networks. In contrast to discriminative models, which learn
distributions of labels of interest conditioned on observations, generative models learn
to model the joint distribution of all observed random variables.

This thesis presents new algorithms for unsupervised and supervised learning of deep
generative models motivated by problems that arise in healthcare.

1.2 Challenges in healthcare

There are numerous challenges that practitioners face in building effective models of
clinical data. Here, we highlight some of them.

Clinical
Observations

Treatments

Time

Figure 1-3: Sequential patient data: When tracking the progression of diseases,
doctors characterize progression of disease as a function of how the patient’s clinical
observations vary with time.

Heterogeneity, sparsity, missingness, and high-dimensionality: Patient data
is recorded in a heterogenous mix of modalities such as imaging, laboratory test results
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and diagnosis codes. Depending on the patient’s reason for a visit to the clinic, some
subset of his or her clinical data may be missing – consequently clinical data is often
sparse. The sparsity may also be a consequence of missing data that can arise from a
number of mechanisms in the data generating process (Mohan & Pearl, 2018).

Temporal data: Diseases change over time, these changes manifest in clinical
observations and the treatments that are prescribed for them, as in Figure 1-3. To
tackle predictive problems when data is dynamic, we need models capable of modeling
time-varying high-dimensional clinical data.

Limited mechanistic knowledge: The human body comprises many phenomena
at multiple scales – and the effects of disease over time are felt through many of them.
Often, we lack fine-grained knowledge of how to characterize variation in clinical
bio-markers throughout the course of disease.

Dataset sizes: While EHRs can constitute millions of patient records, to answer
clinical queries for any specific disease, after selecting for relevant subset of patients,
we are often left with only a few thousand patient records. It therefore becomes
important to build data-efficient learning algorithms.

1.3 Contributions

In Chapter 2 we provide background on probabilistic inference, and parameter estima-
tion in latent variable deep generative models. We highlights of some of the successes
that deep generative models have seen and discuss why this family of models bears
promise in tackling problems in healthcare. The chapters that form the bulk of this
thesis are organized as follows:

Nonlinear Factor analysis: The first set of chapters studies unsupervised and
supervised learning in the simplest latent variable, deep generative model : nonlinear
factor analysis.

∙ Chapter 3: Generative models such as Latent Dirichlet Allocation (LDA) (Blei
et al. , 2003) are inherently interpretable. The parameters that we interpret for
LDA may be written as the gradient operator of the conditional likelihood of
data. We make use of this idea and show how gradient operators may be used
to introspect into the parameters of deep generative models. This is based on
joint work with Matthew Hoffman.
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∙ Chapter 4 studies a failure mode of the canonical learning algorithm for deep
generative models when modeling high-dimensional data with long-tailed distri-
butions. We propose a way to mitigate the underlying pathology encountered
during learning. This is based on joint work with Dawen Liang and Matthew
Hoffman.

∙ Chapter 5 depicts how the task of patient similarity may be posed as few-shot
learning. To this end, we give new algorithms to fine-tune deep generative
models using similarity judgements. This is based on joint work with Arjun
Khandelwal, Rajesh Ranganath and David Sontag.

Deep Markov Models: The latter set of chapters studies models for unsupervised
and supervised learning with high-dimensional, time-varying data.

∙ Chapter 6 introduces Deep Markov Models, nonlinear Gaussian state space
models where the relationships between random variables are parameterized by
neural networks. We propose a variational learning algorithm for the model and
showcase its utility in modeling clinical data. Our work opens up new avenues
for the use of deep generative models to tackle problems in clinical care. This is
based on joint work with Uri Shalit and David Sontag.

∙ Chapter 7 proposes new neural architectures, inspired by pharmacology, which
when used in Deep Markov Models, improve generalization of the model on
patient data. This is based on joint work with Zeshan Hussain and David Sontag.

∙ Chapter 8 develops new methods for how deep generative models may be used
to improve the predictive performance of classifiers by leveraging privileged
information: information available at training time, but not at test time. This
is based on joint work with Zeshan Hussain and David Sontag.

Finally, in Chapter 9, we conclude with a discussion on how the innovations made in
this thesis can drive the next generation of predictive models in healthcare.
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Chapter 2

Background

There are myriad ways to stratify and analyze the collective of methods used in
machine learning. This thesis is best viewed from a probabilistic perspective (Murphy,
2012). This chapter is a primer on probability theory, graphical models, and deep
generative models; the chapter introduces concepts and notation used throughout this
thesis. For a more thorough introduction to random variables, and the statistical
concepts that this thesis builds on, we refer the reader to (Wasserman, 2013).

2.1 Random variables and probabilities

Random variables are the atoms of machine learning. A random variable, as the word
suggests, is a variable whose value (corresponding to an event of interest) is unknown
but has the capacity to take multiple different values. The domain of a random
variable may be discrete (like the side of a die), or continuous (such as how long it
has been since the bus arrived). A probability is the chance of an event occurring,
and a probability distribution describes the chances that a random variable takes any
value in its domain. 𝑃 (𝑋 = 5) denotes the chances that the random variable 𝑋 has
of taking the assignment 5. A probability of zero denotes that the event cannot occur
while a probability of one denotes the certainty of an event among all possible choices.
Notationally, we will often use 𝑃 (𝑥) in leiu of 𝑃 (𝑋 = 𝑥).

Probabilities may also be defined for multiple random variables; 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) is
the joint probability distribution denoting the probability that both random variables
take their assigned values. Similarly, probability distributions of a random variable
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can also be affected by values taken on by other (typically related) random variables.
A conditional probability is the probability of an event occurring given that another
event has occurred. For example, the probability of a patient suffering from a heart
attack increases conditional on the patient being obese. Two random variables are
independent if conditioning on one has no consequence on the probability of the other.
There are a few key rules that probability distributions follow that merit mention at
this junction.

The product rule of probabilities states that the probability of two events can be
written as the probability of the first event times the probability of the second
event conditioned on knowing whether or not the first occurred. This rule general-
izes to the chain rule of probabilities which may be written as: 𝑃 (𝑋1, 𝑋2, 𝑋3) =

𝑃 (𝑋1)𝑃 (𝑋2|𝑋1)𝑃 (𝑋3|𝑋1, 𝑋2). An immediate consequence of this rule is Bayes
rule, which forms the backbone of many inferential tasks. Bayes Rule states that:
𝑃 (𝑋|𝑌 ) = 𝑃 (𝑌 |𝑋)𝑃 (𝑋)

𝑃 (𝑌 )
; i.e. given access to 𝑃 (𝑌 |𝑋), 𝑃 (𝑋), 𝑃 (𝑌 ), it provides a mecha-

nism by which we may invert conditional probabilities.

The sum rule states that 𝑃 (𝑋 ∪ 𝑌 ) = 𝑃 (𝑋) +𝑃 (𝑌 )−𝑃 (𝑋 ∩ 𝑌 ) where ∪ denotes the
union of events spanned by the random variables 𝑋, 𝑌 and ∩ denotes the intersection of
the events. For mutually exclusive events, 𝑃 (𝑋 ∪ 𝑌 ) = 𝑃 (𝑋) + 𝑃 (𝑌 ). A consequence
of the sum rule is that the estimation of marginal probabilities 𝑃 (𝑋) can be derived
from the joint probability distribution 𝑃 (𝑋, 𝑌 ) as: 𝑃 (𝑋) =

∑︀
𝑦 𝑃 (𝑋, 𝑌 = 𝑦) when

𝑌 is discrete (for continuous random variables the sum would be replaced with an
integral).

Finally, a probability density function, pdf for short, is a map from the assignment
of a random variable onto a scalar proportional to the likelihood that the random
variable takes the chosen assignment. For any event 𝐸, which constitutes values that
the random variable may take: 𝑃 (𝑋 ∈ 𝐸) =

∫︀
𝑥∈𝐸 𝑝(𝑥)𝑑𝑥 i.e. the probability density

function characterizes how often random variable 𝑋 lies in the set 𝐸.

The goal of a probabilistic treatment of machine learning is often to pose questions
of interest to the practitioner using the language of probability; we refer to these
questions as probabilistic queries. For example, supervised prediction corresponds to
the evaluation of the conditional probability of 𝑌 , a random variable that represents
the label, given covariates 𝑋: 𝑃 (𝑌 |𝑋). Similarly, the goal of unsupervised learning is
to approximate 𝑃 (𝑋), where 𝑋 may be a vector valued random variable corresponding
to high-dimensional data of interest. Queries from unsupervised models can create
new examples of data by drawing samples via the probabilistic query 𝑃 (𝑋).
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Figure 2-1: Undirected graphical models: Nodes shaded in grey are observed random
variables, while those with a white background denote unobserved or latent random variables
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Figure 2-2: Directed graphical nodels: Nodes shaded in grey are observed random
variables, while those with a white background denote unobserved or latent random variables

2.2 Graphical models

Most practical problems involve more than two random variables. Probability distri-
butions over multiple random variables become unwieldy as the number of random
variables grow. The relationships between random variables, such as which random
variables are related, and which are not, can be difficult to track. The computation
of probabilistic queries, such as conditional distributions is further complicated in
the presence of a large number of random variables. To that end, graphical models,
or PGMs (Koller et al. , 2009; Pearl, 1998), use graphs to represent probabilistic
phenomena that span multiple random variables.

Graphs comprise nodes and edges. PGMs use nodes to represent random variables
while edges represent probabilistic relationships that are either known or posited to
exist. Random variables may be observed (i.e. the problem at hand tells us what
values the observed random variables take), or latent (random variables whose values
are unknown). There are two popular kinds of graphical models: undirected graphical
models, also known as Markov Random Fields (MRFs) in Figure 2-1, and directed
graphical models, or Bayesian networks, in Figure 2-2. But what advantages does the
use of a graphical model confer upon the practitioner?
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2.2.1 Structure as domain knowledge

There are several reasons why graphical models have seen tremendous success as a
tool for probabilistic modelling. First, every graph structure over random variables
implies a factorization on the joint distribution. For the undirected graphical model
in Figure 2-1 (left), it can be shown that

𝑃 (𝑋1, . . . , 𝑋9) =
1

𝑍

∏︁

𝑐𝑖∈𝒞

𝜑𝑖(𝑥𝑐),

where 𝒞 are the set of all cliques in the graph (in this case, all pairs of nodes connected
by an edge), where 𝜑𝑖(𝑥𝑐) denote clique potentials (a function that assigns a scalar to
every assignment taken on by variables in the clique 𝑥𝑐) and 𝑍 is the normalization
constant. Similarly, for the directed graphical model in Figure 2-2 (left), the joint
distribution over the random variables factorizes as:

𝑃 (𝑋1, . . . , 𝑋4) = 𝑃 (𝑋1)𝑃 (𝑋2)𝑃 (𝑋3|𝑋1)𝑃 (𝑋4|𝑋3, 𝑋2),

An immediate consequence of the factorization of the joint distribution is that prac-
tioners need only track parameters associated with each of the clique potentials or
conditional probabilities. For example, if all random variables were binary, then
the joint distribution over random variables in Figure 2-1 (left) would naïvely be
characterized by 29 − 1 = 511 parameters. However, the graphical model has twelve
cliques potentials, each of which can be represented via 22−1 = 3 parameters resulting
in 36 parameters: an order of magnitude in parameter savings.

Second, the exercise of creating the graphical model is often undertaken in conjunction
with a domain expert. Doing so forces practitioners to think carefully about selecting
the random variables in the problem, and decide how they are related. For example,
the graphical model in Figure 2-1 (left) shows a grid structured model, which implies
that the random variables exhibit spatial correlations, such as those among pixels in
an image.

Finally, the use of a graph allows us to understand and take advantage of structural
properties of the data generating distribution to simplify the computation of prob-
abilistic queries. One concrete way in which they do so is via the simplification of
independence statements.
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2.2.2 Independence statements

Once a probabilistic graphical model has been created, we can borrow from the rich
literature on graph theory to study the various properties that must hold among the
distributions over random variables in the graph. Key among them are properties
about which variables are independent from one another.

Marginal Independence: If there exists no edge between two random variables in
a graph, then the random variables are said to be marginally independent. In directed
graphs, there must exist no directed path between two random variables. For example,
there are no random variables in Figure 2-1 (left) that are marginally independent of
one another since the graph is connected. 𝑋1 and 𝑋2 in Figure 2-2 (left) are marginally
independent of one another since one is not a parent of the other. For marginally
independent random variables, we have that 𝑃 (𝑋1, 𝑋2) = 𝑃 (𝑋1)𝑃 (𝑋2).

Conditional Independence: Conditioning, or observing a random variable’s value,
is an important event that has ramifications about the independence properties of
random variables in a graph. Conditional independence statements tell us when
observing a set of random variables renders two random variables independent of one
another. In Figure 2-1 (left), 𝑋1 |= 𝑋3, 𝑋5, 𝑋6,...,9|𝑋2, 𝑋4 since all the influence that
𝑋1 has on the other random variables is via 𝑋2, 𝑋4. Similarly in directed graphical
models, Figure 2-2 (left), 𝑋1 |= 𝑋4|𝑋3. For conditionally independent random variables,
we have that 𝑃 (𝑋1, 𝑋4|𝑋3) = 𝑃 (𝑋1|𝑋3)𝑃 (𝑋4|𝑋3).

In directed graphical models, there is a special form of conditioning that renders other-
wise marginally independent variables dependent. This happens when conditioning on
a common child. For example, 𝑋1��|= 𝑋2|𝑋4 in Figure 2-2 (left) where 𝑋4 is a common
child of both 𝑋1 and 𝑋2. The rationale for this is as follows, consider the following:
let 𝑋1 capture whether a sprinkler is on, 𝑋2 represent the probability of rain, and
𝑋4 denote the grass being wet. Knowing that the grass is wet means that either the
sprinkler was on rendering it less likely to have rained, or vice versa. This phenomenon
is referred to as explaining away ; in the aforementioned example, knowing the grass is
wet allows rain to explain away the chance of the sprinkler being on and vice versa.

The Markov blanket of a random variable is a set of variables which if conditioned on,
render a random variable independent of every other in a graph.

Definition 2.2.1. For any random variables 𝑋, 𝑌 ∈ 𝐺, the Markov Blanket MB(𝑋) ∈
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𝐺 is the minimal set of variables where

𝑃 (𝑋|MB(𝑋), 𝑌 ) = 𝑃 (𝑋|MB(𝑋))

For undirected graphical models, the Markov Blanket of a random variable are all its
neighbors. For a directed graphical model, the Markov Blanket comprises a node’s
parents, its children, and its children’s co-parents. In general, for directed graphical
models, queries about whether two nodes are conditionally independent given the
conditioning set and the graph can be verified in linear time (Shachter, 2013).

2.3 Bayesian networks

Thus far, our discussion has highlighted probabilistic graphical models as a means
to represent probabilistic phenomena in the world by using graphs to capture known
or posited relationships among random variables. We now turn to topics of practical
interest and discuss how to parameterize and learn Bayesian networks from data. To
ground our discussion henceforth, we will discuss two simple Bayesian networks that
characterize a large swath of research done in supervised and unsupervised learning.
In Figure 2-3 (left) we visualize a Bayesian network that captures many supervised
models used in machine learning. In Figure 2-3 (right), we visualize a latent factor
model, commonly used in unsupervised learning.

2.3.1 Parameterizations of Bayesian networks

The choices that practitioners make in selecting the parameterizations of Bayesian
networks dictate the kind of model we obtain. Each choice of parameterization has
an associated set of parameters that we will refer to using 𝜃. We now discuss various
choices for the conditional distributions in the Bayesian networks of Figure 2-3, and
the models that result as a consequence of each choice.

Supervised Learning

In supervised learning, we are given access to a dataset 𝒟 = {(𝑋𝑖, 𝑌𝑖), . . . , (𝑋𝑛, 𝑌𝑛)}
where 𝑋𝑖 denotes a set of multi-variate covariates, and 𝑌𝑖 are the corresponding label
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Figure 2-3: Bayesian networks for supervised and unsupervised Learning: Nodes
shaded in grey are observed random variables, while those with a white background denote
unobserved or latent random variables. On the left is a Bayesian network for supervised
learning where 𝑥 denote the inputs and 𝑦 denote the random variables corresponding to the
labels. On the right is a Bayesian network that characterizes a large class of latent factor
models used in unsupervised learning where 𝑥 is the data being modeled and 𝑧 are the latent
factors (or causes) that influence the data. Under the manifold hypothesis(Fefferman et al.
, 2016), 𝑧 is posited to have a lower-dimensionality than 𝑥, i.e. the domain of the latent
variable 𝑧 is lower-dimensional but suffices to explain variation in the higher-dimensional 𝑥.

which may be binary, categorical, or continuous valued. The goal of supervised learning
is to obtain a model that, when given a new covariates 𝑋𝑘, predicts the corresponding
outcome of interest 𝑌𝑘. Figure 2-3(left) depicts the Bayesian network corresponding to
several models commonly used for supervised learning. Here, 𝜃 denotes the parameters
that dictate how the conditional distribution 𝑃 (𝑌 |𝑋; 𝜃) is decided.

Random forests: A classification tree is a sequence of rules corresponding to
thresholds on various elements of 𝑋. For example if 𝑋 was a binary, two dimensional
random variable, with 𝑋𝑗 denoting the 𝑗𝑡ℎ dimension, and 𝑌 was a binary label,
then the following represents a classification tree for this prediction problem where 𝑌
denotes the predicted label:

if 𝑋1 > 0.5 then
predict 𝑌 = 1

else
if 𝑋2 < 0.5 then

predict 𝑌 = 0

else
predict 𝑌 = 1

end if
end if

When 𝑃 (𝑌 |𝑋) is parameterized by such a decision rule (where 𝜃 encodes both the
thresholds and the dimension of 𝑋 to threshold at each level of the tree), then the
resulting model is a decision tree. An ensemble of decision trees is called a random
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Figure 2-4: Convolutional neural networks: On the left is an input image𝑋 that is
transformed via parameteric, nonlinear functions (such as convolutional operations) to
yield the vector on the right, a set of class probabilities corresponding to a distribution
over probabilities of each label.

forest.

The choice of parameterization, 𝜃 plays a large role in how well we can learn to make
predictions from data. Linear regression is a model of continuous 𝑌 given covariates
𝑋 where 𝑃 (𝑌 |𝑋) = 𝒩 (𝑊 𝑇𝑋 + 𝑏, I). Logistic regression is a model of binary 𝑌

given covariates 𝑋 where 𝑃 (𝑌 |𝑋) = 1
1+exp(𝑊𝑇𝑋+𝑏)

. In both of the aforementioned
models, 𝜃 = {𝑊, 𝑏}.

Finally, while the above model families are linear, we may also parameterize 𝑃 (𝑌 |𝑋; 𝜃)

using nonlinear functions. For example, with binary 𝑌 given covariates 𝑋 we can
have 𝑃 (𝑌 |𝑋) = 1

1+exp(𝑓(𝑋;𝜃))
. There are many feasible choices for 𝑓 but the one that

we will discuss in detail is where 𝑓(𝑋; 𝜃) is a deep neural network.

Deep neural networks are a class of compositional, differentiable, parameteric functions:
𝑓(𝑋; 𝜃) = ℎ𝐾(. . . ℎ2(ℎ1(𝑥; 𝜃1); 𝜃2) . . . ; 𝜃𝐾). Each ℎ𝑘 corresponds to a (potentially
vector valued) function at layer 𝑘 in the network, and each layer has parameters 𝜃𝑘.
The parameters of the model are 𝜃 = {𝜃1, 𝜃2, . . . , 𝜃𝐾}. When ℎ𝑘 is the convolutional
operation (LeCun et al. , 1998) followed by an elementwise non-linearity, 𝑓(𝑥) is a deep
convolutional network. Figure 2-4 depicts a convolutional neural network. Although,
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two-layer neural networks can approximate any real-valued function to an arbitrary
accuracy (Cybenko, 1989), practioners have found that deeper neural networks tend to
yield better results. Hardware acceleration using Graphical Processing Units (GPUs)
has enabled practioners to train neural networks that are hundreds of layers deep. In
2012, Krizhevsky et al. (2012) showed that deep convolutional neural networks, when
trained on a large corpus of labelled data, were capable of detecting objects in unseen
images with accuracies as high as 95%. Since then, deep neural networks have found
success as powerful function approximators in diverse domains like models that play
AlphaGo (Silver et al. , 2016) and self-driving cars (Bojarski et al. , 2016).

Unsupervised Learning

Unsupervised learning is the umbrella term used to describe a class of methods for
modeling the likelihood of data. Given 𝒟 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} samples from some
underlying distribution over data, the goal is to build a model to approximate the
true data distribution 𝑃 (𝑋). This task is often referred to as density estimation. The
ethos of unsupervised learning is that a model which succeeds at density estimation
can only do so by capturing the salient aspects of the dataset 𝒟.

Good unsupervised models of data have several uses. They are used to generate
synthetic data that appears as if it came from the true data distribution. They may
be used for anomaly detection, i.e. given a parameteric model, we can use 𝑃 (𝑋; 𝜃)

to decide the likelihood that a new datapoint �̂� could have come from the true data
distribution. Finally, they may also be used to build exploratory tools of data. One
way to do so is by using unsupervised models to learn low-dimensional representations
of high-dimensional data.

Recall that Bayesian networks may be used to posit a data generation process for the
observed data. Within that process, one or more of the variables in the network may be
latent or unobserved. A common theme in many popular Bayesian networks is to use a
low-dimensional, latent random variable as the parent of an observed, high-dimensional
random variable. Although we do not directly observe latent variables, their values
may be inferred via probabilistic inference from observed data.

There are many widely used latent variable models; here, we discuss two among them
to set the stage for the work done in this thesis – both of them share the Bayesian
network in Figure 2-3 (right).
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Factor Analysis assumes the following generative process for high-dimensional
continuous valued data:

𝑧 ∼ 𝒩 (0; I) 𝑥 ∼ 𝒩 (𝑊𝑥+ 𝑏; Ψ) (2.1)

where 𝑧 ∈ R𝑀 , 𝑥 ∈ R𝐷, 𝑀 < 𝐷 and the parameters 𝜃 = {𝑊, 𝑏,Ψ}. When Ψ = 𝜎2I,
the model is known as probabilistic principal component analysis (PPCA) (Tipping &
Bishop, 1999). The low-dimensional representations recovered under the model may
be shown to converge to the principal components recovered by Principal Component
Analysis (PCA) in the limit 𝜎 → 0.

Nonlinear Factor Analysis generalizes factor analysis with non-linear transforma-
tions of the low-dimensional latent variable.

𝑧 ∼ 𝒩 (0; I) 𝑥 ∼ Π(𝑓(𝑧; 𝜃)) (2.2)

where 𝑧 ∈ R𝑀 , 𝑥 ∈ R𝐷, 𝑀 < 𝐷. We use Π to denote an appropriate distribution
depending on the kind of random variable being modelled. If 𝑥 is a vector of high-
dimensional binary data, then one choice for Π is a vector of probabilities, each
corresponding to mean parameter of a Bernoulli distribution. There are many choices
for 𝑓 but of particular interest to the work done in this thesis is when 𝑓 is a deep
neural network with parameters 𝜃. In this scenario, the resulting model is known as a
deep generative model. When 𝑧 is normally distributed, the Bayesian network is also
referred to as a deep, latent Gaussian model (Rezende et al. , 2014).

Although this section provides a brief introduction to latent variable modeling, we
emphasize that one can learn powerful generative models of data without the use of
latent variables. One way to do so is by using the chain rule of probabilities to derive
an auto-regressive decomposition of 𝑃 (𝑋) over its dimensions as follows:

𝑃 (𝑋; 𝜃) =
∏︁

𝑃 (𝑋1; 𝜃)𝑃 (𝑋2|𝑋1; 𝜃)𝑃 (𝑋3|𝑋1, 𝑋2; 𝜃) . . . 𝑃 (𝑋𝐷|𝑋<𝐷; 𝜃)

where 𝑋<𝐷 = {𝑋1, . . . , 𝑋𝐷−1}. By parameterizing each of the conditional distribu-
tions in the above decomposition of the joint probability, models such as PixelCNN++
(Salimans et al. , 2017), PixelRNN (Oord et al. , 2016a) and Wavenet (Oord et al. ,
2016b) obtain impressive results when modelling high dimensional data such as images
and speech.

Having discussed the various choices a practitioner has to parameterize a Bayesian
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network for both supervised and unsupervised learning problems, we turn to the
question of estimating the parameters, or learning from data.

2.3.2 Learning

There are several guiding principles to learning the parameters of graphical models.
We highlight three of them here. In each case, we will assume access to a dataset
𝒟 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} where 𝑋𝑖 is the realization (or sample) from a parameteric
distribution of random variable 𝑋 driven by an unknown set of parameters 𝜃.

The method of moments reduces the problem of estimating the parameters of
a probability distribution into one of solving a system of equations. This method
relies on uncovering the parameters governing a distribution via the moments of the
distribution. The 𝑘th moment can be expressed as: 𝜇𝑘 = E[𝑋𝑘]. Intuitively, moments
quantify the shape of a distribution. For example, the first moment of a distribution is
the mean (the average value that random variables under that distribution take), the
second is the variance (the degree to which the distribution spreads about the mean),
the third is the skewness (how tilted the distribution is) and the fourth moment is
the kurtosis (the degree of peakiness of a distribution). For many distributions the
moments may be expressed as a function of 𝜃, the parameters of the distribution.
Therefore, given (1) sufficiently many expressions of moments of the distribution
using 𝜃 and (2) empirical estimates of each moment obtained using 𝒟, we can solve
for 𝜃 using 𝑘 systems of equations of the form 𝜇𝑘 = E[𝑋𝑘]. The complexity of the
parametric distribution dictates the number of moments required to estimate 𝜃. For
samples drawn from a univariate Bernoulli random variable, a single moment suffices.
More moments are necessary to estimate the parameters from distributions implied
under certain classes of Bayesian networks such as Mixture Models (Anandkumar
et al. , 2012), Noisy Or networks (Jernite et al. , 2013; Halpern & Sontag, 2013) and
Hidden Markov Models (Hsu et al. , 2012).

Comparative density estimation uses comparisons between a model’s prediction
and observations from a dataset as a means to estimate model parameters. While the
underlying goal of this methodology is to compare the distribution of data under a
model with the true data distribution, in practice a variety of techniques are used to
sidestep our lack of access to the latter, and in some cases the former. For example,
(Dziugaite et al. , 2015; Li et al. , 2015b) derive gradient updates to 𝜃 based on how
well the statistics of samples from a Bayesian network compare to the statistics from
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the data distribution in a Reproducing Kernel Hilbert Space (RKHS). Generative
adversarial networks (Goodfellow et al. , 2014), derive gradients to 𝜃 using an auxiliary
model (called a discriminator) to decide via classification if the samples under the
generative model can be distinguished from samples in the dataset. A characteristic
feature of this class of learning algorithms is that it is capable of operating in the
absence of a parametric specification for the distribution of 𝑋. Models that one can
sample from, but not necessarily evaluate the likelihood of, are often referred to as
implicit generative models. We refer the reader to (Mohamed & Lakshminarayanan,
2016) for an overview of various techniques for learning implicit generative models
and their relationship to one another.

Maximum likelihood estimation turns parameter estimation into an optimization
problem. Specifically, given 𝒟, the goal is to solve the following optimization:

max
𝜃

𝑁∏︁

𝑖=1

𝑝(𝑋𝑖; 𝜃)

⏟  ⏞  
likelihood of observing 𝒟

and find model parameters 𝜃 such that the probability of observing 𝒟 is as high as
possible. In practice, we often use the logarithmic transformation of the probability
density function of the dataset yielding the following optimization problem:

max
𝜃

log
𝑁∏︁

𝑖=1

𝑝(𝑋𝑖; 𝜃) = max
𝜃

𝑁∑︁

𝑖=1

log 𝑝(𝑋𝑖; 𝜃)⏟  ⏞  
log-likelihood of 𝒟

2.3.3 Variational learning of latent variable models

For many classes of supervised and unsupervised models discussed above, the log-
likelihood is a differentiable function of 𝜃, the model parameters. Consequently,
the optimization problem max𝜃

∑︀𝑁
𝑖=1 log 𝑝(𝑋𝑖; 𝜃) or max𝜃

∑︀𝑁
𝑖=1 log 𝑝(𝑌𝑖|𝑋𝑖; 𝜃) may be

solved via stochastic gradient ascent. But this is not always the case. Learning can be
challenging in latent variable models like those in Figure 2-3 (right) and will be the
focus of this section where we consider learning parameters 𝜃 from a single datapoint
𝑋 = 𝑥.

log 𝑝(𝑥; 𝜃) = log

∫︁

𝑧

𝑝(𝑥|𝑧; 𝜃)𝑝(𝑧; 𝜃)𝑑𝑧 (2.3)
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For models such as linear factor analysis, we can derive an analytic expression for the
integral in Equation 2.3 as a function of the parameters 𝜃.

However, when 𝑝(𝑥|𝑧; 𝜃) is a non-linear function, the integral inside the logarithm is
intractable. We therefore must resort to approximations to evaluate the log-likelihood.
So how can we learn if the function that we use to evaluate the quality of a models’ fit
to data is not tractable? We use a surrogate to the likelihood function, in particular,
a lower bound to it. In order to construct a lower bound to the likelihood function,
we will require access to an auxillary distribution over the latent variables 𝑞(𝑧).

log 𝑝(𝑥; 𝜃) = log

∫︁

𝑧

𝑝(𝑥, 𝑧; 𝜃)𝑑𝑧 = log

∫︁

𝑧

𝑞(𝑧)𝑝(𝑥, 𝑧; 𝜃)

𝑞(𝑧)
𝑑𝑧

≥
∫︁

𝑧

𝑞(𝑧) log
𝑝(𝑥, 𝑧; 𝜃)

𝑞(𝑧)
(2.4)

= E𝑞(𝑧)[log 𝑝(𝑥, 𝑧; 𝜃)] + H(𝑞(𝑧))⏟  ⏞  
ℒ(𝑥,𝑞(𝑧);𝜃)

(2.5)

where Equation 2.4 is due to Jensen’s Inequality. The distribution 𝑞(𝑧) is known as the
variational distribution and the lower bound in Equation 2.5 is called the variational
lower bound or the evidence lower bound (ELBO). Note that while Equation 2.3 had
an expectation inside the log, Equation 2.5 has the expectation outside. Consequently,
as long as we can evaluate the entropy of the variational distribution and the log-
probability of the joint distribution log 𝑝(𝑥, 𝑧; 𝜃), we may use Monte-Carlo sampling
to obtain an unbiased estimate of the lower-bound. If the resulting estimate is
differentiable, then we can learn the model parameters via gradient ascent.

The practitioner is free to choose 𝑞(𝑧) and the ELBO is a valid lower bound on the
log-likelihood of data for any choice of 𝑞(𝑧). However, it is easy enough to derive the
best choice for 𝑞(𝑧) by studying at the difference between the log-likelihood and the
variational lower bound:

log 𝑝(𝑥)− ℒ(𝑥, 𝑞(𝑧)) = log 𝑝(𝑥; 𝜃)−
∫︁

𝑧

𝑞(𝑧) log
𝑝(𝑥, 𝑧)

𝑞(𝑧)

=

∫︁

𝑧

𝑞(𝑧) log 𝑝(𝑥)−
∫︁

𝑧

𝑞(𝑧) log
𝑝(𝑥, 𝑧)

𝑞(𝑧)

=

∫︁

𝑧

𝑞(𝑧) log
𝑝(𝑥)𝑞(𝑧)

𝑝(𝑥, 𝑧)

=

∫︁

𝑧

𝑞(𝑧) log
𝑝(𝑥)𝑞(𝑧)

𝑝(𝑧|𝑥)𝑝(𝑥)
= KL(𝑞(𝑧)||𝑝(𝑧|𝑥)) (2.6)
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Equation 2.6 tells us that gap between the log-likelihood under the model and the
lower bound on it is the KL divergence between the variational distribution and the
true posterior distribution 𝑝(𝑧|𝑥). Intuitively, the posterior distribution represents
the distribution over the latent variable most likely to give rise to the observed data.
The practionioner therefore must choose 𝑞(𝑧) to be as close as possible to the true
posterior distribution. In general this is a hard problem, and one where we must resort
to approximations yet again.

Stochastic Variational Inference

Variational inference (VI) assumes that the variational distribution 𝑞(𝑧) lies within
some tractable family of distributions. The desiderata that guide our choices for 𝑞(𝑧)
are two-fold and stem from our desire to evaluate Equation 2.5. First, we must be able
to sample from the variational distribution, and second, we must be able to evaluate
its entropy. A common choice for the variational distribution is that it lies in the
exponential family, for example a Gaussian distribution where 𝑞(𝑧;𝜑) = 𝒩 (𝜇,Σ) and
𝜑 = {𝜇,Σ} are called the variational parameters.

However, even within our selection of variational distribution, there may be good
and bad choices for the variational parameters for a datapoint. Stochastic variational
inference (SVI) (Hoffman et al. , 2013) uses a gradient-based search procedure within
the variational family to find the optimal variational parameters. Given the optimal
variational parameters for a datapoint, we may proceed to derive gradients with respect
to our model parameters 𝜃. We visualize this two-stage procedure in Figure 2-5.
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Figure 2-5: Stochastic Variational Inference (SVI) (Hoffman et al. , 2013) 𝜑 denote
the variational parameters which are optimized prior to deriving gradients with respect to
the model parameters 𝜃
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Amortized Variational Inference

In SVI, each datapoint is assigned a variational parameter which is optimized during
training time. In effect, the number of variational parameters that are tracked by
the method scale with the number of datapoints. Furthermore, every new datapoint
is assigned variational parameters that must be optimized prior to evaluating the
variational bound. In 2013, (Rezende et al. , 2014; Kingma & Welling, 2014) derived
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Figure 2-6: Amortized Variational Inference (AVI) (Rezende et al. , 2014; Kingma &
Welling, 2014) 𝜑 denotes the parameters of an inference network which is used to predict the
variational parameters that are subsequently used to evaluate the variational lower bound.

a new method for probabilistic inference and learning in deep generative models
reminiscent of the Wake-Sleep Algorithm (Hinton et al. , 1995). Rather than tracking
𝑁 variational parameters, one for each datapoint, they proposed using a separate
parameteric function, an inference network with parameters 𝜑, to predict the optimal
variational parameters as a function of the data. i.e. they proposed the use of a condi-
tional variational distribution 𝑞(𝑧|𝑥;𝜑) = 𝒩 (𝜇(𝑥;𝜑),Σ(𝑥;𝜑)) where 𝜇(𝑥;𝜑),Σ(𝑥;𝜑)
are functions parameterized by a neural network. Consequently, the variational bound
may be derived as:

log 𝑝(𝑥; 𝜃) ≥ E𝑞(𝑧|𝑥;𝜑)[log 𝑝(𝑥, 𝑧; 𝜃)] + H(𝑞(𝑧|𝑥;𝜑))⏟  ⏞  
ℒ(𝑥,𝑞(𝑧|𝑥;𝜑);𝜃)

(2.7)

Relative to variational learning with SVI, an important difference of this approach
was that rather than a two-stage approach to learning, their work resulted in a single
stage approach where the model parameters 𝜃 and inference network parameters 𝜑
were jointly updated via gradient ascent on the variational lower bound as in Figure
2-6. The scheme of using an inference network to predict variational parameters
was known as Amortized Variational Inference (AVI), since the inference network
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learned to amortize the solution to the optimization problem corresponding to finding
the optimal variational parameters for a datapoint. The joint coupling of a model
like non-linear factor analysis and its inference network is known as a variational
autoencoder. Figure 2-7 depicts an example of a variational autoencoder.

Figure 2-7: Nonlinear factor analysis: The model comprises a single
latent variable 𝑧 with the conditional probability 𝑝(𝑥|𝑧) defined by a deep
neural network with parameter 𝜃. On the right, 𝑞𝜑(𝑧|𝑥), the inference net-
work, parameterized by 𝜑, is used to predict variational parameters used at
train and test time inference. When paired with an inference network, the
resulting coupled model is known as a variational autoencoder.

𝑧

𝑥

𝜃

𝑧

𝑥

𝜑

Gradient based inference and learning

Both SVI and AVI require us to have a way to derive gradients with respect to the
variational parameters and the model parameters. To solve the optimization problem
max𝜃max𝜑 ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃) via gradient ascent, we need access to ∇𝜑ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃)
and ∇𝜃ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃). We may obtain gradients with respect to the model’s param-
eter as follows:

∇𝜃ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃) = ∇𝜃E𝑞(𝑧|𝑥;𝜑)[log 𝑝(𝑥, 𝑧; 𝜃)] + H(𝑞(𝑧|𝑥;𝜑))
= E𝑞(𝑧|𝑥;𝜑)[∇𝜃 log 𝑝(𝑥, 𝑧; 𝜃)] + H(𝑞(𝑧|𝑥;𝜑))⏟  ⏞  

constant w.r.t 𝜃

(2.8)

As long as we can evaluate gradients of the log-joint probability log 𝑝(𝑥, 𝑧; 𝜃), we can
obtain an unbiased estimate of ∇𝜃ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃) via Monte-Carlo sampling from
Equation 2.8.

Obtaining ∇𝜑ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃) is a little harder. For example, the efficient computation
of this gradient may depend on distributional assumptions made about the conditional
probabilities in the generative model; e.g. Hoffman et al. (2013) assume the complete
conditionals lie within the exponential family; consequently they can derive an analytic
form for the ELBO as a function of the variational parameters. For variational inference
in deep generative models, however, deriving gradients with respect to 𝜑 is harder.
Unlike in Equation 2.8, we may not, as easily, obtain an unbiased estimate of the
gradient via a Monte-Carlo approximation of an expectation since bringing the gradient
operator inside the expectation leaves us with an integral over the gradient of a product
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of distributions.

To circumvent this issue, (Kingma & Welling, 2014; Rezende et al. , 2014) make use
of the reparameterization trick :

E𝑧∼𝒩 (𝜇,Σ)[𝑓(𝑧)] = E𝜖∼𝒩 (0;I)[𝑓(𝜇+𝑅𝜖)]; Σ = 𝑅𝑅𝑇 (2.9)

Crucially, the use of the trick removes the dependence of the expectation on the
parameters 𝜑.

∇𝜑ℒ(𝑥, 𝑞(𝑧|𝑥;𝜑); 𝜃) = ∇𝜑E𝑧∼𝑞(𝑧|𝑥;𝜑)[log 𝑝(𝑥, 𝑧; 𝜃)] +∇𝜑H(𝑞(𝑧|𝑥;𝜑))
= ∇𝜑E𝑧∼𝒩 (𝜇(𝑥;𝜑),𝑅(𝑥;𝜑)𝑅𝑇 (𝑥;𝜑))[log 𝑝(𝑥, 𝑧; 𝜃)] +∇𝜑H(𝑞(𝑧|𝑥;𝜑))
= ∇𝜑E𝜖∼𝒩 (0;I)[log 𝑝(𝑥, 𝜇(𝑥;𝜑) +𝑅(𝑥;𝜑)𝜖; 𝜃)] +∇𝜑H(𝑞(𝑧|𝑥;𝜑))
= E𝜖∼𝒩 (0;I)[∇𝜑 log 𝑝(𝑥, 𝜇(𝑥;𝜑) +𝑅(𝑥;𝜑)𝜖; 𝜃)] +∇𝜑H(𝑞(𝑧|𝑥;𝜑))

(2.10)

Where Equation 2.10 now gives us a route to approximate the gradients with respect
to 𝜑 via Monte-Carlo sampling.

The reparameterization trick is not the only route to obtain unbiased estimates, and
there is a rich literature surrounding the construction of schemes that permit the
approximation of gradients via Monte-Carlo approximations. When the variational
distribution is not continuous and/or reparameterizable, one may use the (more general
purpose) score function estimator (Ranganath et al. , 2013; Mnih & Gregor, 2014) to
obtain gradients. Maddison et al. (2016) derive a new family of reparameterizable
distributions, known as the Concrete distribution, that allows for the practitioner to
form variational approximations to discrete latent variables. Jankowiak & Obermeyer
(2018) derive connections between the reparameterization gradients and solutions of
a transport equation (as in optimal transport). Lee et al. (2018) derive gradients
when the variational distribution used is non-differentiable. Finally, we refer the
reader to Mohamed et al. (2019) for an overview of a variety of techniques to obtain
unbiased gradients using Monte-Carlo approximations as well as their use in several
sub-domains of machine learning, with variational inference, being one among them.
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Overview

We instantiated variational inference as a method for probabilistic inference used
within parameter estimation and highlighted Stochastic Variational Inference (SVI)
and Amortized Variational Inference. In reality, both are a small part of the rich
literature in variational methods for probabilistic inference and we refer the reader to
(Jordan et al. , 1999) for a comprehensive overview of the same. Variational inference is
not the only technique capable of approximating the posterior distribution. Techniques
such as Markov Chain Monte Carlo are capable of drawing samples from the true
posterior distribution in complex latent variable models; however, this remains outside
the scope of this thesis and we refer the reader to (Neal, 1993) for a broad overview of
MCMC methods for probabilistic inference in graphical models.

2.4 Learning with automatic differentiation

Until now, we have assumed access to the gradients of functions of the log-joint of
the data and latent variables. But when the conditional probability distributions are
parameterized by neural networks, these gradients may be complex, vector valued
functions of their inputs. Manually deriving these gradients can prove tedious and
can severely hinder a practitioner’s ability to experiment with different choices of
parameterizations for conditional probabilities in the model. Fortunately, much of the
machinery behind the computation of gradients for such functions may be automated
by Automatic Differentiation (AD).

The remarkable successes that deep learning has seen would be all but a pipe dream
without automatic differentiation. Academic software such as Theano (Team et al. ,
2016) and Torch (Collobert et al. , 2002) led the way for industrial scale frameworks
such as PyTorch (Paszke et al. , 2017) and Tensorflow (Abadi et al. , 2015) which
allow for deep learning algorithms to scale via the distribution of computation across
multiple hardware devices.

At its core, AD allows users to specify a mathematical function in code. The code
is silently instrumented so that when it is executed, intermediate results about the
execution of the function are stored in computer memory. The calculation of derivatives
then proceeds via the chain rule. A thorough review of AD is unnecessary to understand
the context of this thesis and therefore out of scope. However, we point the reader to
(Baydin et al. , 2017) for an accessible survey on the topic.
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2.5 Modeling data with deep generative models

Despite the advances that machine learning has made over the decades, there is much
we cannot say with certainty.

Inference or parameter estimation? A note on being Bayesian

The background we present on parameter estimation in latent variable models treat
latent variables as first-class citizens whose values we must infer from data. A valid
question then is: why not treat the model parameters 𝜃 as random variables too?
Certainly, much of the machinery discussed in the previous sections carries forward and
we can use techniques such as Markov Chain Monte Carlo and Variational Inference
to pose parameter estimation as probabilistic inference. This is a valid point of view
and for certain problems a desirable one, but one that this thesis does not explore in
depth. We refer the reader to (MacKay & Mac Kay, 2003) for an overview of machine
learning from a Bayesian lens.

What makes a good model?

One of the most important question that a modeller must answer is, how to design
a probabilistic graphical model. Certainly a good starting point would be to collect
all the random variables in the problem at hand – these form the nodes in the graph.
Next might be engaging with a domain expert to understand which random variables
are associated with each other, and what drives their association. These form the
edges in the graph. However, at this junction, several important questions remain.

Are there latent variables in the problem to consider and account for? How do the
latent variables relate to the observed data, is the interaction linear or non-linear,
known or unknown? How can we ever know that we’ve gotten the right model?

There are no right answers to these questions. George Box, a famous statistician is
credited with the saying: “all models are wrong, but some models are useful". In
reality, model development is an iterative process. Machine learning’s successes have
been as much about using data judiciously as they have been about taking insights
from domain experts and operationalizing them with mathematical primitives and
incorporating them within graphical models.
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Chapter 3

Gradient based introspection in deep
generative models

Factor analysis (Spearman, 1904a) is a widely used model in the applied sciences. The
generative model assumes the data is a linear function of independent latent variables.
In Section 2.3.1 we introduced nonlinear factor analysis where the generative model is
parameterized by deep neural networks. When paired with an inference or recognition
network (Hinton et al. , 1995), a parametric function that predicts local variational
parameters from data, such models go by the name of variational autoencoders (VAEs,
Kingma et al. , 2014; Rezende et al. , 2014).

One of the reasons that factor analysis has found widespread use is that studying the
matrix which maps from the latent variable onto the data characterizes the correlations
that exist among features. In this chapter, we discuss ways in which we may similarly
introspect into deep generative models through the use of gradient operators.

3.1 Introduction

The promise of variational autoencoders, and deep generative models, lies in the
ability to model complex nonlinear data. However it is worth pausing to ask: what
purpose is served by fitting more powerful generative models? Breiman (2001) argues
that discriminative modeling falls into two schools of thought: the data modeling
and the algorithmic modeling culture. The former advocates the use of models with
interpretable, mechanistic processes while the latter espouses black box techniques
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with an emphasis on prediction accuracy. Breiman’s arguments also apply to the
divide between deep generative models with complex conditional distributions and
simpler, more interpretable statistical models. Our goal in this chapter will be to
bridge this divide.

Consider a classic model such as latent Dirichlet allocation (LDA) (Blei et al. , 2003).
It is outperformed in held-out likelihood (Miao et al. , 2016) by deeper generative
models and assumes a simple probabilistic process for data generation that is unlikely
to hold in reality. Despite its simplicity, its generative semantics lend it a distinct
advantage: interpretability. The word-topic matrix in the LDA allows practitioners
to read off what the model has learned about the data. This begs the question we
explore herein: is there a natural way to interpret the generative model when the
conditional distributions are parameterized by a deep neural network?

Using unsupervised models of data, there are two kinds of insights one can hope to
achieve:

1. Interpreting datapoints: Latent variable models encode our knowledge of the
data generating process within the prior distributions over latent variables. By
studying variation and patterns in the inferred values of (often low-dimensional)
latent variables across a dataset, we may more easily observe salient structure
that exists within a dataset. For example, using T-SNE (Maaten & Hinton, 2008)
on the inferred latent representations from a variational autoencoder trained on
MNIST (LeCun, 1998) reveals that there are ten clusters, each one corresponding
to one of ten digits within the dataset.

2. Interpreting model parameters: Whereas the latent variables may be used
to simplify patterns that differentiate datapoints in a dataset, the parameters
within latent variable models can also yield insights into patterns that unify data
by their inclusion in a dataset. For example, a common use of factor analysis
is feature exploration. After learning the generative model in Equation 2.1, we
may inspect the factor loading matrix 𝑊 to study patterns by which features
of the observation vary according to a latent dimension. By plotting these
feature representations in latent space we may inspect and discover ambient
structure among features that are shared across all datapoints. This is the
premise underpinning the literature of exploratory factor analysis (Norris &
Lecavalier, 2010) and the form of interpretability that we study in this chapter.

Our contribution towards this vision is a simple, easy to implement method to
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interpret the parameters learned by nonlinear factor analysis. We use the Jacobian
of the conditional distribution with respect to latent variables to create embeddings
(or Jacobian vectors) of the observational features. Intuitively the Jacobian captures
variation for each feature of the observations along directions in the vector dimensional
latent space.

Introspection into what the model has learned through the use of embeddings has a
long history. Landauer et al. (1998) proposed latent semantic analysis, one of the
earliest works to create vector space representations of documents. Bengio et al. (2003)
and Mikolov et al. (2013a) propose log-linear models to create word-representations
from document corpora. Rudolph et al. (2016) describe a family of models to create
conditional embeddings where the data are parameterized to lie within the exponential
family. In the context of discriminative modeling, Erhan et al. (2009) use gradient
information to study the patterns with which neurons are activated in a deep neural
network. At the crux of each of the above methods lies the ethos that the inspection
of a model’s parameters via embeddings can yield insights into what the model has
learned about the dataset on hand.

We make use of gradients in the log densities of a statistical model relative to per-
datapoint latent variables to capture patterns of interest to practitioners. However,
gradient information may also be of use to other downstream models. For example, the
derivative of the log-probability of data with respect to the globally shared parameters
of a generative model encodes the variability in the input under the generative process.
Jaakkola & Haussler (2007) exploit this variability to form a kernel function for a
discriminative classifier using Fisher Score features.1

Generative model: In this chapter, we will consider a generative model of the
form shown in Figure 2-7. We observe a set of 𝐷 word-count2 vectors 𝑥1:𝐷, where 𝑥𝑑𝑣
denotes the number of times that word index 𝑣 ∈ {1, . . . , 𝑉 } appears in document 𝑑.
We assume we are given the total number of words per document 𝑁𝑑 ≡

∑︀
𝑣 𝑥𝑑𝑣, and

that 𝑥𝑑 was generated via the following generative process:

𝑧𝑑 ∼ 𝒩 (0, 𝐼); 𝛾(𝑧𝑑) ≡ MLP(𝑧𝑑; 𝜃); (3.1)

𝜇(𝑧𝑑) ≡
exp{𝛾(𝑧𝑑)}∑︀
𝑣 exp{𝛾(𝑧𝑑)𝑣}

; 𝑥𝑑 ∼ Mult.(𝜇(𝑧𝑑), 𝑁𝑑).

1For some model that parameterizes 𝑝(𝑥; 𝜃), the Fisher score is defined as 𝑈𝑥 = ∇𝜃 log 𝑝(𝑥; 𝜃)
2We use word-count in document for the sake of concreteness. Our methodology is generally

applicable to other types of discrete high-dimensional data.
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That is, we draw a Gaussian random vector, pass it through a multilayer perceptron
(MLP) with parameters 𝜃, pass the resulting vector through the softmax (a.k.a.
multinomial logistic) function, and sample 𝑁𝑑 times from the resulting multinomial
distribution over the vocabulary. In keeping with common practice, we neglect the
multinomial base measure term 𝑁 !

𝑥1!···𝑥𝑉 !
, which amounts to assuming that the words

are observed in a particular order.

3.2 Jacobian vectors

Linear models are inherently interpretable. Consider linear regression, factor analysis
(Spearman, 1904a), and latent Dirichlet allocation (LDA; Blei et al. , 2003), which
(standardizing notation) assume the following relationships:

Regression: E[𝑦|𝑥] = 𝑊𝑥+ 𝑏;

Factor Analysis: 𝑥 ∼ 𝒩 (0, 𝐼); E[𝑦|𝑥] = 𝑊𝑥+ 𝑏;

LDA: 𝑥 ∼ Dirichlet(𝛼); E[𝑦|𝑥] = 𝑊𝑥. (3.2)

In each case, we need only inspect the parameter matrix 𝑊 to answer the question
“what happens to 𝑦 if we increase 𝑥𝑘 a little?” The answer is clear—𝑦 moves in the
direction of the 𝑘th row of 𝑊 . We can ask this question differently and get the same
answer: “what is the derivative 𝜕E[𝑦|𝑥]

𝜕𝑥
?” The answer is simply the parameter matrix

𝑊 .

For latent variable models like nonlinear factor analysis (NFA), the variability in the
training data is assumed to be due to the single latent state 𝑧. The relationship
between latent variables 𝑧 and observations 𝑥 cannot be quickly read off the parameters
𝜃. But we can still ask what happens if we perturb 𝑧 by some small 𝑑𝑧—this is simply
the directional derivative 𝜕E[𝑥|𝑧]

𝜕𝑧
𝑑𝑧. We can interpret this Jacobian matrix in much

the same way we would a factor loading matrix, with two main differences.

1. The Jacobian matrix 𝜕E[𝑥|𝑧]
𝜕𝑧

varies with 𝑧—the interpretation of 𝑧 may change
significantly depending on context.

2. NFAs exhibit rotational symmetry—the prior on 𝑧 is rotationally symmetric, and
the MLP can apply arbitrary rotations to 𝑧 before applying any nonlinearities,
so a priori there is no “natural” set of basis vectors for 𝑧. For a given Jacobian
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matrix, however, we can find the most significant directions via a singular value
decomposition (SVD).

For the generative model described in Eq. 3.1, we consider three variants of Jacobian
embedding vectors based on the unnormalized potentials from the MLP, logarithmic
probabilities, and linear probabilities respectively:

𝒥 (𝑧)pot =
𝜕𝛾(𝑧)

𝜕𝑧
;𝒥 (𝑧)log =

𝜕 log 𝜇(𝑧)

𝜕𝑧
;𝒥 (𝑧)prob =

𝜕𝜇(𝑧)

𝜕𝑧
(3.3)

For any 𝑧, {𝒥 (𝑧)log,𝒥 (𝑧)pot,𝒥 (𝑧)prob} ∈ R𝑉×𝐾 where𝐾 is the latent dimension and
𝑉 is the dimensionality of the observations. We use this matrix to form embeddings.

When not referring to a particular variant, we use 𝒥 (𝑧) to denote the Jacobian matrix.
𝒥 (𝑧) is a function of 𝑧 leaving open the choice of where to evaluate this function. The
semantics of our generative model suggest a natural choice: 𝒥mean := E𝑝(𝑧)[𝒥 (𝑧)].
This set of embeddings captures the variation in the output distribution with respect
to the latent state across the prior distribution of the generative model. One may also
evaluate the Jacobian at the approximate posterior corresponding to an observation 𝑥.
In Section 3.3, we show how this may be used to obtain contextual feature vectors. In
automatic-differentiation frameworks (Theano Development Team, 2016; Paszke et al.
, 2019), 𝒥mean is easily estimated via Monte Carlo sampling from the prior.

For the choice of likelihood (i.e., multinomial) of the data, we depict the functional
form of the Jacobian vectors for linear and nonlinear factor analysis in Table 3.1. In
linear models 𝛾(𝑧𝑑) = 𝑊𝑧𝑑 (c.f Eq 3.1) and in nonlinear models 𝛾(𝑧𝑑) = 𝑓(𝑧𝑑; 𝜃) for
some smooth, differentiable function 𝑓 . We denote by 𝜈(𝑧)𝑖 = ∇𝑧𝛾𝑖(𝑧), the 𝑖th row of
the matrix ∇𝑧𝛾(𝑧) ∈ R𝑉×𝐾 .

The three kinds of Jacobian vectors realize different ways to form low-dimensional
representations of features. At the core of each is 𝜈(𝑧)𝑖, the gradient of the unnormalized
potential with respect to the latent state. 𝒥 (𝑧)pot uses 𝜈(𝑧)𝑖 directly as an embedding
for each feature while 𝒥 (𝑧)log uniquely represents a feature within the convex hull of
pairwise differences between 𝜈(𝑧)𝑖 and 𝜈(𝑧)𝑗 for all other features in the vocabulary
𝑗. Which of the three is most sensible and works best may depend on the choice of
parameterization for the conditional probability 𝑝𝜃(𝑥|𝑧). Eq. 3.2 presents examples
where 𝒥 (𝑧)prob is a sensible choice and 𝒥 (𝑧)

pot
𝑖 in a linear model recovers the practice

(Mikolov et al. , 2013a) of using the final weight matrix as embeddings for features.
To the best of our knowledge, Jacobian Vectors and their properties have not been
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studied in the context of deep generative models.

Table 3.1: Jacobian vectors: The functional form of the Jacobian vectors for feature 𝑖
as defined in Eq. 3.3 when 𝑝(𝑥𝑖 = 1|𝑧) is defined as in Eq. 3.1.

Linear Model

𝒥 (𝑧)log
𝑖

∑︀
𝑗 𝑝(𝑥𝑗 = 1|𝑧)(𝑤𝑖 − 𝑤𝑗)

𝒥 (𝑧)prob
𝑖 𝑝(𝑥𝑖 = 1|𝑧)∑︀𝑗 𝑝(𝑥𝑗 = 1|𝑧)(𝑤𝑖 − 𝑤𝑗)

𝒥 (𝑧)pot
𝑖 𝑤𝑖

Nonlinear Model

𝒥 (𝑧)log
𝑖

∑︀
𝑗 𝑝(𝑥𝑗 = 1|𝑧)(∇𝑧𝜈(𝑧)𝑖 − 𝜈(𝑧)𝑗)

𝒥 (𝑧)prob
𝑖 𝑝(𝑥𝑖 = 1|𝑧)∑︀𝑗 𝑝(𝑥𝑗 = 1|𝑧)(𝜈(𝑧)𝑖 − 𝜈(𝑧)𝑗)

𝒥 (𝑧)pot
𝑖 ∇𝑧𝜈(𝑧)𝑖

Deriving Jacobian vectors Here, we derive the function form of Jacobian vectors.
For clarity we provide the generative model under consideration:

𝑧𝑑 ∼ 𝒩 (0, 𝐼); 𝛾(𝑧𝑑) ≡ MLP(𝑧𝑑; 𝜃);

𝜇(𝑧𝑑) ≡
exp{𝛾(𝑧𝑑)}∑︀
𝑣 exp{𝛾(𝑧𝑑)𝑣}

; 𝑥𝑑 ∼ Multinomial(𝜇(𝑧𝑑), 𝑁𝑑). (3.4)

For simplicity, we derive the functional form of the Jacobian in a linear model, i.e.,
where 𝛾(𝑧𝑑) = 𝑊𝑧𝑑 (c.f Eq 3.4). We drop the subscript 𝑑 and denote by 𝛾𝑖(𝑧), the 𝑖th
element of the vector 𝛾(𝑧). Then, we can write the probability of an element as:

𝑝(𝑥𝑖 = 1|𝑧) = exp(𝛾𝑖(𝑧))∑︀
𝑗 exp(𝛾𝑗(𝑧))

and 𝛾𝑖(𝑧) = 𝑤𝑇𝑖 𝑧

For linear models, ∇𝑧𝛾𝑖(𝑧) = 𝑤𝑖 directly corresponds to 𝒥 (𝑧)pot. Noting that
∇𝑧 exp(𝛾𝑖(𝑧)) = exp(𝛾𝑖(𝑧))∇𝑧𝛾𝑖(𝑧) and ∇𝑧

∑︀
𝑗 exp(𝛾𝑗(𝑧)) =

∑︀
𝑗 exp(𝛾𝑗(𝑧))∇𝑧𝛾𝑗(𝑧),

we estimate 𝒥 (𝑧)prob as:
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∇𝑧𝑝(𝑥𝑖 = 1|𝑧) = ∇𝑧
exp(𝛾𝑖(𝑧))∑︀
𝑗 exp(𝛾𝑗(𝑧))

=

∑︀
𝑗 exp(𝛾𝑗(𝑧))∇𝑧 exp(𝛾𝑖(𝑧))− exp(𝛾𝑖(𝑧))∇𝑧

∑︀
𝑗 exp(𝛾𝑗(𝑧))

(
∑︀

𝑗 exp(𝛾𝑗(𝑧)))
2

=

∑︀
𝑗 exp(𝛾𝑗(𝑧)) exp(𝛾𝑖(𝑧))𝑤𝑖 − exp(𝛾𝑖(𝑧))

∑︀
𝑗 exp(𝛾𝑗(𝑧))𝑤𝑗

(
∑︀

𝑗 exp(𝛾𝑗(𝑧)))
2

= 𝑝(𝑥𝑖 = 1|𝑧)𝑤𝑖 − 𝑝(𝑥𝑖 = 1|𝑧)
∑︁

𝑗

𝑝(𝑥𝑗 = 1|𝑧)𝑤𝑗

= 𝑝(𝑥𝑖 = 1|𝑧)(𝑤𝑖 −
∑︁

𝑗

𝑝(𝑥𝑗 = 1|𝑧)𝑤𝑗)

Similarly, we may compute 𝒥 (𝑧)log:

∇𝑧 log 𝑝(𝑥𝑖 = 1|𝑧) = 𝑤𝑖 −
∑︁

𝑗

𝑝(𝑥𝑗 = 1|𝑧)𝑤𝑗 =
∑︁

𝑗

𝑝(𝑥𝑗 = 1|𝑧)(𝑤𝑖 − 𝑤𝑗) (3.5)

We use 𝑤𝑖 − 𝑤𝑗 to denote a word-pair vector, where 𝑤𝑖, 𝑤𝑗 are columns of the matrix
𝑊 . If we define the set of all word-pair vectors as 𝒮, then Eq 3.5 captures the idea that
the vector representation for a word 𝑖 lies in the convex hull of 𝒮. Furthermore, the
word vector’s location in CONV(𝒮) is determined by the likelihood of the pairing word
(𝑥𝑗) under the model 𝑝(𝑥𝑗 = 1|𝑧). When we use a non-linear conditional probability
distribution 𝒥 (𝑧)log becomes: ∇𝑧 log 𝑝(𝑥𝑖 = 1|𝑧) = ∑︀

𝑗 𝑝(𝑥𝑗 = 1|𝑧)(∇𝑧𝛾𝑖(𝑧)−∇𝑧𝛾𝑗(𝑧))

where ∇𝑧𝛾𝑖(𝑧) is a non-linear function of 𝑧.

3.3 Evaluation

We study the various properties of 𝒥 log
mean (unless otherwise specified) derived from a

nonlinear factor analysis model trained on diverse sets of data with different kinds
of structure. We form a Monte Carlo estimate of 𝒥 log

mean using 400 samples. Cosine
distance is used to define neighbors of words in the embedding space of the Jacobian.
We evaluate embeddings qualitatively and quantitatively.
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3.3.1 Text data

There is much prior work in the construction of embeddings in Natural Language
Processing (Almeida & Xexéo, 2019). Many techniques such as GLoVE embeddings
(Mikolov et al. , 2013a; Pennington et al. , 2014) make use of structure within sentences
to learn models whose parameters give rise to the embeddings. For example, Word2Vec
(Mikolov et al. , 2013a) builds a predictive model of the next word given its surrounding
context. This implicitly makes use of the fact that semantically correlated words
often arise within the same context and this structure makes its way into the model’s
parameters from which embeddings are extracted. An important caveat to our results
herein is that the use of a latent variable model is sub-optimal, in the sense that
it does not make use of the structure that correlated words co-occur close to each
other in sentences. For any given document, the model assumes that all words are
conditionally independent given the latent variable. We do not anticipate that the
embeddings for words thus obtained outperform those from Word2Vec; rather our
interest lies in examining their relative merits on a variety of tasks.

Dataset: We train nonlinear factor analysis models on the large Wikipedia cor-
pus used in Huang et al. (2012). The resulting dataset is of size train/valid/test:
1,212,781/2,000/10,000 and vocabulary 𝑉 :20,253.

Table 3.2: Word embeddings (nearest neighbors): We visualize nearest neighbors of
word embeddings (excluding plurals of the query)

Query Neighborhood
intelligence espionage, colleagues, cia
zen dharma, buddhism, buddha, meditation
book author, republished, written, paperback
medicine physicians, medical, pathology, vascular

Preprocessing: We strip all special characters, remove hyphens between words,
ignore numbers and include (a) the top 20000 words in the vocabulary and (b)
the words needed to complete the evaluation for the Stanford Contextual Word
Similarity (SWCS) (Huang et al. , 2012) and WordSim353 (Finkelstein et al. , 2001)
benchmarks. This results in a total vocabulary size of 20253. When performing the
evaluation for contextual word embeddings in Table 3.3, we use Wikipedia to obtain
our context document, which we perform inference with. The context document
comprises bag of words from the first 5000 characters of the word’s Wikipedia page.
For example, if the context word is “construction”, then the URL to extract text
from Wikipedia would be https://en.wikipedia.org/w/api.php?format=json&action=
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query&prop=extracts&exchars=5000&explaintext=&titles=construction. We build a
bag-of-words representation from the text thus extracted and the vocabulary of our
dataset.

Evaluation: For text data, direct quantitative comparison is difficult since (1) our
vocabulary is on the order of tens of thousands of words compared to most work
(Pennington et al. , 2014) where 𝑉 ranges from 0.4 to 2 million and (2) many of the
models we compare to use local context during learning, which yields a more precise
signal about the meanings of particular words. Nonetheless, we study where Jacobian
vectors stand (albeit with a significantly smaller vocabulary and a global training
objective). Using an inference network we train (1) 1-L multinomial PCA (Collins
et al. , 2001), corresponding to a single linear layer in 𝑝(𝑥|𝑧; 𝜃) and (2) 3-L a deep
generative model with a three layer neural network that parameterizes 𝑝(𝑥|𝑧; 𝜃).

Table 3.3: Word embeddings (polysemy): We visualize the nearest neighbors under the
Jacobian vector induced by the posterior distribution of a document created based on the
context word.

Word Context Neighboring words
crane construction lifting, usaaf, spanned, crushed, lift

bird erected, parkland, locally, farmland, cause-
way

bank river watershed, footpath, confluence, drains, trib-
utary

money banking, government, bankers, comptroller,
fiscal

Table 3.4: Semantic similarity on text data: A higher number is better. In Table
3.4a, 3.4b, the baseline results are taken from Huang et al. (2012). C&W uses embeddings
from the language model of Collobert & Weston (2008). Glove corresponds to embeddings
by Pennington et al. (2014). 𝜌 corresponds to Spearman rho-correlation.

(a) WordSim353

Models 𝜌 ×100
Huang 71.3
Glove 75.9
C&W 55.3
ESA 75

Huang (G) 22.8

1-L 𝒥 prob
mean 69.7

3-L 𝒥 prob
mean 59.6

(b) SCWS

Models 𝜌 ×100
Huang 65.7
C&W 57
tf-idf-S 26.3

Pruned tf-idf-S 62.5

1-L 𝒥 prob
mean 61.7

3-L 𝒥 prob
mean 59.5
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Qualitative analysis In Table 3.2, we visualize some of the nearest neighbors
of words using 𝒥 log

mean obtained from models trained on Wikipedia and find that
the neighbors are semantically sensible. Next, we consider contextual embeddings.
Rather than evaluating the Jacobian at 𝐿 points 𝑧1:𝐿 ∼ 𝑝(𝑧), we instead evaluate it
at 𝑧1:𝐿 ∼ 𝑞(𝑧|𝑥) for some 𝑥. In Table 3.3, we select three polysemous query words
alongside “context words” that disambiguate the query’s meaning. For each word-
context pair, we create a document comprising a subset of words in the the context’s
Wikipedia page. Then, we use the inference network to perform posterior inference
to evaluate 𝒥 log

mean at the corresponding 𝑞(𝑧|𝑥). This yields a set of contextual
Jacobian vectors. We display the nearest neighbors for each word under different
contextual Jacobian vectors and find that, while not always perfect, they capture
different contextually relevant semantics. Note that other approaches to obtain context
specific representations (Chen et al. , 2014) explicitly use local context during training
– our method does not. Rather the contextual nature of the representation arises due
to the sensitivity of the nonlinear Jacobian vector to the choice of 𝑧. By combining
posterior inference in NFA with our methodology of introspecting the model, one
obtains different context-specific representations.

Quantitative analysis To quantify the amount of semantic content in Jacobian
vectors, we evaluate the vector space representations on WordSim353 (Finkelstein
et al. , 2001) and SCWS (Huang et al. , 2012). Each benchmark contains human
annotated measures of similarity between words. The evaluation on the WordSim
and SCWS datasets are done by computing the Spearman rank correlation between
human annotated rankings between 1 and 10 and an algorithmically derived measures
of word-pair similarity. We first compute the distances between all word pairs. Our
measure of similarity is obtained by subtracting the distances from the maximal
distance across all word pairs. Closest to us in learning procedure is (Huang (G),
Table 3.4a), whose model we outperform. On a discriminative task of predicting
sentiment on the Stanford Sentiment Treebank Dataset (Socher et al. , 2013), we find
that Jacobian vectors perform only slightly worse than Glove embeddings, despite
being trained with a much smaller vocabulary. For this task, we do not find much
improvements in the quality of the embeddings relative to those obtained from a
simpler multinomial-PCA model.

To test the discriminative ability of the learned Jacobian vectors, we use the Jacobian
vectors as representations for sentiment classification. We evaluate our method on
classifying the sentiment of movie ratings from the Rotten Tomatoes (RT) dataset
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Table 3.5: Discriminative ability of Jacobian vectors: Glove corresponds to embed-
dings by (Pennington et al. , 2014). (Stanford Sentiment Treebank) SST-fine corresponds
to the fine grained classification task of predicting one of eight different sentiments while
SST-binary corresponds to predicting a positive or negative sentiment for the sentence.

Models Rotten Tomatoes SST-fine SST-binary
Glove 75.2 41.5 77.7

1-L 𝒥 log
mean 72.6 42.6 76.4

3-L 𝒥 log
mean 70.3 40.2 74.1

(Pang & Lee, 2005) and from the Stanford Sentiment Treebank (SST) Dataset (Socher
et al. , 2013). We follow the procedure in (Iyyer et al. , 2015), who average word
embeddings from Glove and use the resulting averaged embedding as a sentence
representation. They use the resulting representation as input to an MLP to predict
the sentiment of the sentence. The 300 dimensional Glove vectors are created from
a bigger dataset (Common Crawl) with a much larger vocabulary (2 million). In
our experiment we created 300 dimensional Jacobian vectors on a variant of the
Wikipedia dataset with 40000 features. To partially even the playing field, we restrict
our comparison to Glove using only the words vectors that lie in our own vocabulary.
While we do not outperform Glove vectors on any of the datasets, we do perform
comparably on the Stanford Sentiment Treebank datasets in both the fine grained
and coarse grained prediction task.

3.3.2 Electronic Health Record (EHR) data

Next, we study Jacobian vectors deep generative models learned on electronic health
record data. We construct a dataset using EHR data provided by an insurance
company. There are 185,000 patients and patient’s data across time was aggregated
to create a bag-of-diagnosis-codes representation of the patient. The vocabulary
comprises four different kinds of medical diagnosis codes: diagnosis codes, laboratory
tests, prescription medication and surgical procedures. The vocabulary is of size
𝑉 = 51, 321, though for any given patient, only a small handful of the embeddings are
non-zero.

Qualitative Analysis In Table 3.6, similar to the setup in Table 3.2 but using
Jacobian vectors derived from models of EHR data, we visualize the nearest neighbors
of different drugs to find that they capture interesting disease specific structure. Table
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Table 3.6: Medical embeddings (nearest neighbors): Nearest neighbors of some
diagnosis codes (ignoring duplicates). Metformin (and it’s neighbors) are diabetic drugs. A
contour meter measures blood glucose. Spiriva and it’s neighbors are drugs used for treating
chronic obstructive pulmonary disease (COPD).

Code Neighboring codes
Metformin Glimepiride, Avandia, Contour Meter
Spiriva Advair, Albuterol, Foradil
Asbestosis Coal Workers’ Pneumoconiosis, Ct Scan

Chest
Bone Marrow Trans-
plant [C]

Acute Graft-Versus-Host Disease [I9], Mi-
croscopic Examination (Bacterial Smear) [I9
Proc], Bone Marrow Biopsy [C]

Table 3.7: Medical analogies: We perform analogical reasoning with embeddings of
medical codes. If we know a drug used to treat a disease, we can use their relationship in
vector space to find unknown drugs associated with a different disease. Queries take the form
Code 1→Code 2 =⇒ Code 3→?. Sicca syndrome or Sjogren’s disease is an immune disease
treated with Evoxac and Methotrexate is commonly used to treat Rheumatoid Arthiritis.
“Leg Varicosity” denotes the presence of swollen veins under the skin. “Ligation of angioaccess
arteriovenous fistula” denotes the tying of a passage between an artery and a vein.

Code 1 Code 2 Code 3 Neighbors of Result
Evoxac Sicca Syndrome Methotrexate Rheumatoid Arthritis
Biliary Atre-
sia

Kidney Trans-
plant

Leg Varicosity w/ In-
flammation

Ligation of angioaccess arte-
riovenous fistula

Table 3.8: Medical embeddings (clustering): We visualize some topical clusters of
diagnosis codes.

Label Diagnosis Codes

Thrombosis Hx Venous Thrombosis, Compression Of Vein, Renal
Vein Thrombosis

Occular Atrophy Optic Atrophy, Retina Layer Separation, Chronic En-
dophthalmitis

Drug Use Opioid Dependence, Alcohol Abuse-Continuous, Hallu-
cinogen Dep

3.7 depicts two examples of using the learned embeddings in the Jacobian matrix to
answer tasks queries related to drug-disease pairs. Table 3.8 depicts clusters found in
medical diagnosis codes. In all three cases, we find that the Jacobian vectors capture
the semantic structure encoded in high-dimensional representations of patient data.

For EHR data in particular, the bag-of-diagnosis-codes assumption we make is a crude
one since (1) we assume the temporal nature of the patient data is irrelevant, and (2)
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combining patient statistics over time renders it difficult for the generative model to
disambiguate the correlations between codes that correspond to multiple diseases a
patient may suffer from. Despite this, it is interesting that the Jacobian vectors still
capture much of the meaningful structure among the diagnosis codes.

Quantitative Analysis Choi et al. (2016c) explore different metrics to test whether
the embedding space of medical diagnosis codes captures medically related concepts
well. We evaluate medical embeddings as follows. MRMNDF-RT (Medical Relatedness
Measure under NDF-RT) leverages a medical database (NDF-RT) to evaluate how
good an embedding space is at answering analogical queries between drugs and diseases.
The evaluation (MRMCCS) measures if the neighborhood of the diagnosis codes is
medically coherent using a predefined medical ontology (CCS) as ground truth. The
number is a measure of precision, where higher is better.

MRMCCS(𝑉,𝐺): The Agency for Healthcare Research and Quality’s clinical classi-
fication software (CCS) collapses the hierarchical ICD9 diagnosis codes into clinically
meaningful categories. The evaluation on CCS checks whether the nearest neighbors
of a disease include other diseases related to it (if they are in the same category in the
CCS). Using the ICD9 hierarchy, the authors further split the evaluation task into
predicting neighbors of fine-grained and coarse grained diagnosis codes. For a choice
of granularity 𝐺 ∈ {fine,coarse}, 𝑉 (𝐺) ∈ 𝑉 denotes the subset of ICD9 codes in the
vocabulary. I𝐺(𝑣(𝑖)) is one if the 𝑣’s i’th nearest neighbor: 𝑣(𝑖) is in the same group
as 𝑣 according to 𝐺.

MRMCCS(𝑉,𝐺) =
1

|𝑉 (𝐺)|
∑︁

𝑣∈𝑉 (𝐺)

40∑︁

𝑘=1

I𝐺(𝑣(𝑖))
log2(𝑖+ 1)

(3.6)

MRMNDF-RT(𝑉,𝑅): This uses the National Drug File Reference Terminology (NDF-
RT) to evaluate analogical reasoning. The NDF-RT provides two kinds of relationships
(𝑅) between drugs and diseases: May-Treat (if the drug may be used to treat the
disease) and May-Prevent. Given 𝜑𝐴 as the embedding for a code 𝐴, this test automates
the evaluation of analogies such as 𝜑Diabetes⏟  ⏞  

𝑟

≈ 𝜑Metformin⏟  ⏞  
𝑣

−(𝜑Lung Cancer − 𝜑Tarceva⏟  ⏞  
𝑠

). Here

𝑣 is the query code and 𝑠 is a representation of the relationship we seek. (Metformin is
a diabetic drug and Tarceva is used in the treatment of lung cancer.) The evaluation
we perform reports a number proportional to the number of times the neighborhood of
𝑣− 𝑠 contains 𝑟 for the best value of 𝑠 (computed from the set of all valid drug-disease
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relationships in the datasets.) Given 𝑉 * ∈ 𝑉 (concepts for which NDF-RT has at-least
one substance with the given relation), I𝑅 (∪40𝑖=1(𝑣 − 𝑠)(𝑖)) = 1 if any of the medical
concepts in the top-40 neighborhood of the medical concept 𝑣 satisfies relation 𝑅.

MRMNDF-RT(𝑉,𝑅) =
1

|𝑉 *|
∑︁

𝑣∈𝑉 *

I𝑅
(︀
∪40𝑖=1(𝑣 − 𝑠)(𝑖)

)︀
(3.7)

In both cases the choice of 40 (in Eq. 3.7 and 3.6) was adopted to maintain consistency
with (Choi et al. , 2016c). Both evaluations are conducted by taking the average result
over all possible seeds 𝑠 and the best possible seed 𝑠 for a query.

Table 3.9: Medical embeddings: Medical Relatedness Measure (MRM) We eval-
uating embeddings using medical (NDF-RT and CCS) ontologies. SCUIs result from the
method developed by Choi et al. (2016c) applied to data in Finlayson et al. (2014).

Models MRMNDF-RT MRMCCS

De Vine et al. 53.21 22.63
Choi et al. 59.40 44.80

SCUI 52.75 34.16
1L 𝒥 pot

mean 59.63 31.58
3L 𝒥 pot

mean 60.32 37.77

Table 3.9 displays the results. It is interesting that the approach we present herein
outperforms baselines published in the literature even though our training procedure
ignores the longitudinal aspect of EHR data (variants of Word2Vec adapted to diagnosis
codes). Furthermore, we see an instance where Jacobian vectors resulting from a
deeper, better-trained model outperform those from a shallow model – highlighting the
importance of building nonlinear representations. We hypothesize that nonlinearity
helps in representations of EHR data due to the hierarchical structure present in
medical diagnosis codes (Slee, 1978).

3.3.3 Netflix: Embeddings for movies

We study the use of NFA on data from Netflix3. Following standard procedure: (1) we
binarize the explicit rating data keeping ratings of four or higher and interpret them
as implicit feedback (Hu et al. , 2008) and (2) we only keep users who have positively
rated at least five movies. We train with users’ binary implicit feedback as 𝑥𝑑 and the

3http://www.netflixprize.com/
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vocabulary comprises the set of all movies. The number of training/validation/test
users is 383,435/40,000/40,000 for Netflix (𝑉 : 17,769).

The Netflix dataset comprises movie ratings of 500, 000 users. We treat each user’s
ratings as a document and model the numbers ascribed to each movie (from 1− 5)
as counts drawn from the multinomial distribution parameterized as in Eq. 3.1. We
train the three-layer deep generative model on the dataset, evaluate 𝒥mean with 100

samples and consider two distinct methods of evaluating the learned embeddings. We
cluster the movie embeddings (using spectral clustering with cosine distance to obtain
100 clusters) and depict some of the clusters in Table 3.10a. We find that clusters
exhibit coherent themes such as documentary films, horror and James Bond movies.
Other clusters (not displayed) included multiple seasons of the same show such as
Friends, WWE wrestling, and Pokemon. In Table 3.10b, we visualize the neighbors
of some popular films. In the examples we visualize, the nearest neighbors include
sequels, movies from the same franchise or, as in the case of 12 Angry Men, other
dramatic classics.

To compare the effect of using a model to create embeddings versus using the raw
data from a large dataset directly, we evaluated nearest neighbors of movies using a
simple baseline. For a query movie, we found all users who gave the movie a rating of
3 or above (nominally, they watched and liked the movie). Then, for all those users,
we computed the mean ratings they gave to every other movie in the vocabulary and
ranked them based on the mean ratings. We display the top five movies obtained
using this approach in Table 3.10c. The query words are the same as in Table 3.10b.
For most of the queries, the difference between the two is evident and we simply end
up with popular, well-liked movies rather than relevant movies.

3.4 Discussion

This chapter introduced and studied Jacobian Vectors both qualitatively and quanti-
tatively. In three different datasets of high-dimensional data, we showed how Jacobian
vectors capture semantic structure among features in datasets giving practitioners a
new way to perform exploratory analysis of data with deep generative models.

Beyond the construction of embeddings, there are many other uses practiotioners can
find for the gradients in deep generative models. In Chapter 4, we will see how the
gradient operator may be used to characterize the quality of a learned generative model
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and in Chapter 7, we will make use of the Jacobian to interpret what a sequential,
deep generative model has learned about the data.
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Table 3.10: Qualitative evaluation of movie embeddings: We evaluate 𝒥 log
mean using

100 Monte-Carlo samples to perform the evaluation in Tables 3.10a and 3.10b.

(a) Clustering movie embeddings: We display some of the clusters found from clustering
the movie embeddings. The names were assigned based on salient features of movies in the
cluster

Cluster Name Movies
Documentary
Films

Nature: Antarctica, Ken Burns’ America: Empire of the Air, Travel the World
by Train: Africa, Deepak Chopra: The Way of the Wizard & Alchemy, The
History Channel Presents: Troy: Unearthing the Legend

Concerts Neil Diamond: Greatest Hits Live, Meat Loaf: Bat Out of Hell, Ricky Martin:
One Night Only, Beyonce: Live at Wembley, Enigma: MCMXC A.D, Sarah
Brightman: In Concert

Horror Movies Halloween 5: The Revenge of Michael Myers, Halloween: H2O, Creepshow,
Children of the Corn, Poltergeist, Friday the 13th: Part 3, The Omen, Cujo

James Bond For Your Eyes Only, Goldfinger, The Living Daylights, Thunderball, From
Russia With Love, Dr. No

Hindi Movies Seeta Aur Geeta, Gupt, Mann, Jeans, Coolie No.1, Mission Kashmir, Rangeela,
Baazigar, Daud, Zakhm

(b) Movie neighbors: We visualize some of the closest neighbors found to movies whose
title is displayed on the column on the left

Cluster Name Movies
Superman II Superman: The Movie, Superman III, Superman IV: The Quest for Peace,

RoboCop, Batman Returns
Casablanca Citizen Kane, The Treasure of the Sierra Madre, Working with Orson Welles,

The Millionairess, Indiscretion of an American Wife, Doctor Zhivago
Bride of Chucky Bride of Chucky, Leprechaun 3, Leprechaun, Wes Craven’s New Nightmare,

Child’s Play 2: Chucky’s Back
The Princess
Bride

The Breakfast Club, Sixteen Candles, Groundhog Day, Beetlejuice, Stand by
Me, Pretty in Pink

12 Angry Men To Kill a Mockingbird, Rear Window, Mr. Smith Goes to Washington, Inherit
the Wind, Vertigo, The Maltese Falcon

(c) Movie neighbors [baseline]: We visualize some of the closest neighbors to a given
query movie. We using a simple baseline that rates every movie based on average scores
given by all the users who liked (rating greater than three) the query movie. LOTR (Lord of
the Rings), PotC (Pirates of the Caribbean)

Cluster Name Movies
Superman II LOTR: The Two Towers, PotC: The Curse of the Black Pearl, Raiders of the

Lost Ark, LOTR: The Fellowship of the Ring
Casablanca To Kill a Mockingbird, The Usual Suspects, The Shawshank Redemption,

Citizen Kane, The Wizard of Oz
Bride of Chucky The Matrix, Independence Day, The Silence of the Lambs, PotC: The Curse of

the Black Pearl, The Sixth Sense
The Princess
Bride

The Shawshank Redemption, Forrest Gump, LOTR: The Two Towers, LOTR:
The Fellowship of the Ring, PotC: The Curse of the Black Pearl

12 Angry Men LOTR: The Fellowship of the Ring, PotC: The Curse of the Black Pear, The
Godfather, Forrest Gump, The Shawshank Redemption
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Chapter 4

Representation learning for
high-dimensional data

4.1 Introduction

Deep generative models, like those highlighted in Chapter 2, learn low-dimensional
representations 𝑧, of high-dimensional random variables 𝑥 from data via unsupervised
learning. There are many perspectives on how, and why such models learn meaningful
representations. Among them is the perspective that the task of learning a gener-
ative model is equivalent to the task of compressing high-dimensional information.
Intuitively, to effectively compress high-dimensional data the model must use latent
variables to capture variation in both coarse and fine-grained structure. A more formal
view on this perspective can be found in (Honkela & Valpola, 2004) who characterize
the relationship between the compression of information (via an information theoretic
concept known as bits-back coding) and variational learning of latent variable models.
However, this perspective is not a guarantee that unsupervised learning of deep gener-
ative models will always be successful in learning meaningful representations of data.
In this chapter, we take a critical look at the canonical learning algorithm for deep
generative models and investigate pitfalls that practioners may encounter. We focus
our discussion on latent factor models.

The assumption of linearity in factor analysis (FA, Spearman, 1904b) has been relaxed
in nonlinear factor analysis (NFA) (Gibson, 1960) and extended across a variety
of domains such as economics (Jones, 2006), signal processing (Jutten, 2003), and
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Figure 4-1: Learning nonlinear factor analysis with an inference
network: [Left] The generative model contains a single latent variable
𝑧. The conditional probability 𝑝(𝑥|𝑧; 𝜃) parameterized by a deep neural
network. [Right] The inference network 𝑞𝜑(𝑧|𝑥) is used for inference at
train and test time.

𝑧

𝑥

𝜃

𝑧

𝑥

𝜑

machine learning (Valpola & Karhunen, 2002; Lawrence, 2004). NFA assumes the
joint distribution factorizes as 𝑝(𝑥, 𝑧; 𝜃) = 𝑝(𝑧)𝑝(𝑥|𝑧; 𝜃) and the parameters of 𝑝(𝑥|𝑧; 𝜃)
in Equation 2.3 are the output of passing 𝑧 through a deep neural network. Figure
4-1 depicts NFA when it is learned using an inference network (and referred to as a
Variational Autoencoder (VAE)). We study VAEs for the unsupervised learning of
sparse, high-dimensional categorical data.

Sparse, high-dimensional data is ubiquitous; it arises naturally in survey and demo-
graphic data, bag-of-words representations of text, mobile app usage logs, recommender
systems, genomics, and finally, electronic health records. In the context of clinical
data, the problem we consider in this chapter is that of learning representations of
patient history as manifested in the history of diagnosis codes associated with them.
Figure 4-2 depicts what this collection might look like for a single patient.

Time

Inpatient diagnosis 
ICD-10 codes

Bag-of-diagnosis codes

ICU admission

Prescription medication
NDC codes

Outpatient diagnosis 
ICD-10 codes

Outpatient diagnosis 
CPT codes

Outpatient lab results 
LOINC codes

Outpatient lab results 
LOINC codes

Figure 4-2: From patient history to a bag of diagnosis codes: On the left is a
depiction of a patient’s history (outpatient in green and inpatient in red). On the right is
how such a history would appear to machine learning models; as collections of diagnosis
codes.

Why might a practitioner be interested in learning a representation of patient history?
The first reason may be data analysis: a good representation may aid in finding
patterns among patient cohorts that are less obvious to spot in high-dimensional data.
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The second reason may be to use the representation as a proxy for the high-dimensional
data in prediction tasks. High-dimensional tabular data, such as collections of patient
diagnosis codes are characterized by a few frequently occurring features and a long tail
of rare features. For example, during the course of a patient medical history, we may
see many counts of diagnosis codes and treatments associated with common medical
conditions such as hypertension but fewer codes associated with rare diseases.

When directly learning deep generative models on sparse data, a problem we run into
is that the standard amortized variational learning algorithm results in underfitting ;
i.e. the learning algorithm fails to utilize the model’s full capacity to model the
data. This is problematic since it severely limits the applicability of this class of
models to finding low-dimensional representations of sparse, high-dimensional data. To
explore, understand and mitigate this phenomena, this chapter explores the following
contributions to the literature (Krishnan et al. , 2018):

1. We identify a problem with standard VAE training when applied to sparse,
high-dimensional data—underfitting. We investigate the underlying causes of
this phenomenon, and propose modifications to the learning algorithm to address
these causes. We combine inference networks with an iterative optimization
scheme inspired by Stochastic Variational Inference (SVI) (Hoffman et al. ,
2013).

2. We show that our proposed learning algorithm dramatically improves the quality
of the estimated parameters.

3. We empirically study various factors that govern the severity of underfitting and
how the techniques we propose mitigate it.

4. A practical ramification of our work is that improvements in learning NFA on
recommender system data translate to more accurate predictions and better
recommendations. In contrast, standard VAE training fails to outperform the
simple shallow linear models that still largely dominate the collaborative filtering
domain (Sedhain et al. , 2016).

4.2 Setup

A bag-of-words (or in the context of clinical data, a bag-of-diagnosis codes) represen-
tation is one that foregoes the ordering of observed features and instead represents
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collections of multivariate data as multi-sets comprising features and feature counts.
For example, if the observation is a sentence: “the cat ran over the hill", then the
bag-of-words representation would be 𝑥 = {the : 2, cat : 1, ran : 1, over : 1, hill : 1}.
Similarly for a patient’s history, their bag-of-diagnosis code representation could be:
𝑥 = {ICD-10 E08.2 : 2,NDC 65862-008-99 : 2,LOINC 55399-0 : 3}. The bag-of-
diagnosis codes points to a diabetic patient who had two diagnoses of diabetes mellitus
(ICD-10), two prescriptions of Metformin (NDC) and three panels to track diabetes
(LOINC). In what follows, we use "words" to denote the name of the item observed
and "word counts" to denote their frequency. We refer to collections of words (and
their counts) as documents and consider learning in generative models of the form
shown in Figure 4-1. We introduce the model in the context of performing maximum
likelihood estimation over a corpus of documents.

We observe a set of 𝐷 word-count vectors 𝑥1:𝐷, where 𝑥𝑑𝑣 denotes the number of
times that word index 𝑣 ∈ {1, . . . , 𝑉 } appears in document 𝑑. Given the total number
of words per document 𝑁𝑑 ≡

∑︀
𝑣 𝑥𝑑𝑣, 𝑥𝑑 is generated via the following generative

process:

𝑧𝑑 ∼ 𝒩 (0, 𝐼); 𝛾(𝑧𝑑) ≡ MLP(𝑧𝑑; 𝜃); (4.1)

𝜇(𝑧𝑑) ≡
exp{𝛾(𝑧𝑑)}∑︀
𝑣 exp{𝛾(𝑧𝑑)𝑣}

; 𝑥𝑑 ∼ Mult.(𝜇(𝑧𝑑), 𝑁𝑑).

That is, we draw a Gaussian random vector, pass it through a multilayer perceptron
(MLP) parameterized by 𝜃, pass the resulting vector through the softmax (a.k.a.
multinomial logistic) function, and sample 𝑁𝑑 times from the resulting distribution
over 𝑉 .1

Variational Learning: For ease of exposition we drop the subscript on 𝑥𝑑 when
referring to a single data point. Jensen’s inequality yields the following lower bound
on the log marginal likelihood of the data:

log 𝑝𝜃(𝑥) ≥ E𝑞(𝑧;𝜓)[log 𝑝𝜃(𝑥 | 𝑧)]−KL( 𝑞(𝑧;𝜓) || 𝑝(𝑧) ).⏟  ⏞  
ℒ(𝑥;𝜃,𝜓)

(4.2)

𝑞(𝑧;𝜓) is a tractable “variational” distribution meant to approximate the intractable
posterior distribution 𝑝(𝑧 | 𝑥); it is controlled by some parameters 𝜓. For example, if

1In keeping with common practice, we neglect the multinomial base measure term 𝑁 !
𝑥1!···𝑥𝑉 ! , which

amounts to assuming that the words are observed in a particular order.
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𝑞 is Gaussian, then we might have 𝜓 = {𝜇,Σ}, 𝑞(𝑧;𝜓) = 𝒩 (𝑧;𝜇,Σ). We are free to
choose 𝜓 however we want, but ideally we would choose the 𝜓 that makes the bound
in equation 4.2 as tight as possible, 𝜓* , argmax𝜓 ℒ(𝑥; 𝜃, 𝜓).

Hoffman et al. (2013) proposed finding 𝜓* using iterative optimization, starting from
a random initialization. This is effective, but can be costly. More recently, Kingma &
Welling (2014) and Rezende et al. (2014) proposed training a feedforward inference
network (Hinton et al. , 1995) to find good variational parameters 𝜓(𝑥) for a given 𝑥,
where 𝜓(𝑥) is the output of a neural network with parameters 𝜑 that are trained to
maximize ℒ(𝑥; 𝜃, 𝜓(𝑥)). Often it is much cheaper to compute 𝜓(𝑥) than to obtain an
optimal 𝜓* using iterative optimization. But there is no guarantee that 𝜓(𝑥) produces
optimal variational parameters—it may yield a much looser lower bound than 𝜓* if
the inference network is either not sufficiently powerful or its parameters 𝜑 are not
well tuned.

Moving forward, we will use 𝜓(𝑥) to denote an inference network that implicitly
depends on some parameters 𝜑, and 𝜓* to denote a set of variational parameters
obtained by applying an iterative optimization algorithm to equation 4.2. Following
common convention, we will sometimes use 𝑞𝜑(𝑧 | 𝑥) as shorthand for 𝑞(𝑧;𝜓(𝑥)).

4.3 Sources of error in variational learning

We elucidate our hypothesis on why the learning algorithm for VAEs is susceptible to
underfitting. There are two sources of error in variational parameter estimation with
inference networks:

1. The first is the distributional error accrued due to learning with a tractable-
but-approximate family of distributions 𝑞𝜑(𝑧|𝑥) instead of the true posterior
distribution 𝑝(𝑧|𝑥). Although difficult to compute in practice, it is easy to
show that this error is exactly KL(𝑞𝜑(𝑧|𝑥)‖𝑝(𝑧|𝑥)). We restrict ourselves to
working with normally distributed variational approximations and do not aim
to overcome this source of error.

2. The second source of error comes from the sub-optimality of the variational
parameters 𝜓 used in Eq. 4.2. We are guaranteed that ℒ(𝑥; 𝜃, 𝜓(𝑥)) is a valid
lower bound on log 𝑝(𝑥) for any output of 𝑞𝜑(𝑧|𝑥) but within the same family of
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variational distributions, there exists an optimal choice of variational parameters
𝜓* = {𝜇*,Σ*} realizing the tightest variational bound for a data point 𝑥.

It is easy to establish the following sequence of lower bounds on the log-marginal
likelihood of the data.

log 𝑝(𝑥) ≥ E𝒩 (𝜇*;Σ*)[log 𝑝(𝑥|𝑧; 𝜃)]−KL(𝒩 (𝜇*,Σ*)‖𝑝(𝑧))⏟  ⏞  
ℒ(𝑥;𝜃,𝜓*)

≥ ℒ(𝑥; 𝜃, 𝜓(𝑥)), (4.3)

with: 𝜓* := {𝜇*,Σ*} = argmax
𝜇,Σ

E𝒩 (𝜇,Σ)[log 𝑝(𝑥|𝑧; 𝜃)]−KL(𝒩 (𝜇,Σ)‖𝑝(𝑧)).

The cartoon in Figure 4-3 illustrates this double bound.

Figure 4-3: Lower bounds in variational learning:
To estimate 𝜃, we maximize a lower bound on log 𝑝(𝑥; 𝜃).
ℒ(𝑥; 𝜃, 𝜓(𝑥)) denotes the standard training objective
used by VAEs. The tightness of this bound (relative to
ℒ(𝑥; 𝜃, 𝜓*) depends on the inference network. The x-axis is
𝜃.

log p(x)

L(x; ✓, ⇤)

L(x; ✓, (x)) ✓

The canonical learning algorithm for deep generative models updates 𝜃, 𝜑 jointly based
on ℒ(𝑥; 𝜃, 𝜓(𝑥)). It directly uses 𝜓(𝑥) (as output by 𝑞𝜑(𝑧|𝑥)) to estimate Equation
4.2. See Algorithm 1 for pseudocode.

Algorithm 1 Learning with inference networks (Kingma et al. , 2014)
Inputs: 𝒟 := [𝑥1, . . . , 𝑥𝐷] ,
Model: 𝑞𝜑(𝑧|𝑥), 𝑝𝜃(𝑥|𝑧), 𝑝(𝑧);
for k = 1. . . K do

Sample: 𝑥 ∼ 𝒟, 𝜓(𝑥) = 𝑞𝜑(𝑧|𝑥), update 𝜃, 𝜑:
𝜃𝑘+1 ← 𝜃𝑘 + 𝜂𝜃∇𝜃𝑘ℒ(𝑥; 𝜃𝑘, 𝜓(𝑥))
𝜑𝑘+1 ← 𝜑𝑘 + 𝜂𝜑∇𝜑𝑘ℒ(𝑥; 𝜃𝑘, 𝜓(𝑥))

end for

In contrast, stochastic variational inference methods (Hoffman et al. , 2013) update
𝜃 based on gradients of ℒ(𝑥; 𝜃, 𝜓*) by updating randomly initialized variational pa-
rameters for each example. 𝜓* is obtained by maximizing ℒ(𝑥; 𝜃, 𝜓) with respect to 𝜓.
This maximization is performed by 𝑀 gradient ascent steps yielding 𝜓𝑀 ≈ 𝜓*; see
Algorithm 2 for pseudocode.
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Algorithm 2 Learning with Stochastic Variational Inference: 𝑀 : number of
gradient updates to 𝜓.

Inputs: 𝒟 := [𝑥1, . . . , 𝑥𝐷] ,
Model: 𝑝𝜃(𝑥|𝑧), 𝑝(𝑧);
for k = 1. . . K do

1. Sample: 𝑥 ∼ 𝒟 and initialize: 𝜓0 = 𝜇0,Σ0

2. Approx. 𝜓𝑀 ≈ 𝜓* = argmax𝜓 ℒ(𝑥; 𝜃;𝜓):
For 𝑚 = 0, . . . ,𝑀 − 1:

𝜓𝑚+1 = 𝜓𝑚 + 𝜂𝜓
𝜕ℒ(𝑥;𝜃𝑘,𝜓𝑚)

𝜕𝜓𝑚

3. Update 𝜃: 𝜃𝑘+1 ← 𝜃𝑘 + 𝜂𝜃∇𝜃𝑘ℒ(𝑥; 𝜃𝑘, 𝜓𝑀)
end for

4.3.1 Limitations of joint parameter updates

Alg. (1) updates 𝜃, 𝜑 jointly. During training, the inference network learns to approxi-
mate the posterior, and the generative model improves itself using local variational
parameters 𝜓(𝑥) output by 𝑞𝜑(𝑧|𝑥). If the variational parameters 𝜓(𝑥) output by
the inference network are close to the optimal variational parameters 𝜓* (Eq. 4.3),
then the updates for 𝜃 are based on a relatively tight lower bound on log 𝑝(𝑥). But in
practice 𝜓(𝑥) may not be a good approximation to 𝜓*.

Both the inference network and generative model are initialized randomly. At the
start of learning, 𝜓(𝑥) is the output of a randomly initialized neural network, and will
therefore be a poor approximation to the optimal parameters 𝜓*. So the gradients used
to update 𝜃 will be based on a very loose lower bound on log 𝑝(𝑥). These gradients
may push the generative model towards a poor local minimum – previous work has
argued that deep neural networks (which form the conditional probability distributions
𝑝𝜃(𝑥|𝑧)) are often sensitive to initialization (Glorot & Bengio, 2010; Larochelle et al.
, 2009). Even later in learning, 𝜓(𝑥) may yield suboptimal gradients for 𝜃 if the
inference network is not powerful enough to find optimal variational parameters for
all data points.

Learning in the original SVI scheme does not suffer from this problem, since the
variational parameters are optimized within the inner loop of learning before updating
to 𝜃 (i.e. in Alg. (2)); 𝜕𝜃 is effectively derived using ℒ(𝑥; 𝜃, 𝜓*)). However, this method
requires potentially an expensive iterative optimization.

This motivates blending the two methodologies for parameter estimation. Rather than
rely entirely on the inference network, we use its output to “warm-start” an SVI-style
optimization that yields higher-quality estimates of 𝜓*, which in turn should yield
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more meaningful gradients for 𝜃.

4.4 Improving estimates of variational parameters

Having highlighted ways in which sub-optimal variational parameters may affect
learning, in this section, we present two improvements we propose towards improving
the learning algorithm for deep generative models on sparse, high-dimensional data.

4.4.1 Between stochastic and amortized variational inference

We use the local variational parameters 𝜓 = 𝜓(𝑥) predicted by the inference network to
initialize an iterative optimizer. As in Alg. 2, we perform gradient ascent to maximize
ℒ(𝑥; 𝜃, 𝜓) with respect to 𝜓. The resulting 𝜓𝑀 approximates the optimal variational
parameters: 𝜓𝑀 ≈ 𝜓*. Since NFA is a continuous latent variable model, these updates
can be achieved via the re-parameterization gradient (Kingma & Welling, 2014). We
use 𝜓* to derive gradients for 𝜃 under ℒ(𝑥; 𝜃, 𝜓*). Finally, the parameters of the
inference network (𝜑) are updated using stochastic backpropagation and gradient
descent, holding fixed the parameters of the generative model (𝜃). Our procedure is
detailed in Alg. 3 and depicted in Figure 4-4.

Update generative model
and inference network

Update the variational 
parameters predicted by 
the inference network
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Figure 4-4: Parameter estimation in NFA with a hybrid inference algorithm

4.4.2 Representations for inference networks

The inference network must learn to regress to the optimal variational parameters for
any combination of features, but in sparse datasets, many words appear only rarely.
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Algorithm 3 Maximum likelihood estimation of 𝜃 with optimized local varia-
tional parameters: Expectations in ℒ(𝑥, 𝜃, 𝜓*) (see Eq. 4.3) are evaluated with a single
sample from the optimized variational distribution. 𝑀 is the number of updates to the
variational parameters (𝑀 = 0 implies no additional optimization). 𝜃, 𝜓(𝑥), 𝜑 are updated
using stochastic gradient descent with learning rates 𝜂𝜃, 𝜂𝜓, 𝜂𝜑 obtained via ADAM (Kingma
& Ba, 2014). In step 4, we update 𝜑 separately from 𝜃. One could alternatively, update 𝜑
using KL(𝜓(𝑥)𝑀‖𝑞𝜑(𝑧|𝑥)) as in Salakhutdinov & Larochelle (2010).

Inputs: 𝒟 := [𝑥1, . . . , 𝑥𝐷] ,
Inference Model: 𝑞𝜑(𝑧|𝑥),
Generative Model: 𝑝𝜃(𝑥|𝑧), 𝑝(𝑧),
for k = 1. . . K do

1. Sample: 𝑥 ∼ 𝒟 and set 𝜓0 = 𝜓(𝑥)
2. Approx. 𝜓𝑀 ≈ 𝜓* = argmax𝜓 ℒ(𝑥; 𝜃𝑘;𝜓),

For 𝑚 = 0, . . . ,𝑀 − 1:
𝜓𝑚+1 = 𝜓𝑚 + 𝜂𝜓

𝜕ℒ(𝑥;𝜃𝑘,𝜓𝑚)
𝜕𝜓𝑚

3. Update 𝜃,
𝜃𝑘+1 ← 𝜃𝑘 + 𝜂𝜃∇𝜃𝑘ℒ(𝑥; 𝜃𝑘, 𝜓𝑀)

4. Update 𝜑,
𝜑𝑘+1 ← 𝜑𝑘 + 𝜂𝜑∇𝜑𝑘ℒ(𝑥; 𝜃𝑘+1, 𝜓(𝑥))

end for

To provide more global context about rare words, we provide to the inference network
(but not the generative network) TF-IDF (Baeza-Yates et al. , 1999) features instead of
counts. These give the inference network a hint that rare words are likely to be highly
informative. TF-IDF is a popular technique in information retrieval that re-weights
features to increase the influence of rarer features while decreasing the influence of
common features. The transformed feature-count vector is �̃�𝑑𝑣 ≡ 𝑥𝑑𝑣 log

𝐷∑︀
𝑑′ min{𝑥𝑑′𝑣 ,1}

.
The resulting vector �̃� is then normalized by its L2 norm.

4.4.3 Spectral analysis of the Jacobian matrix

One consequence of underfitting in latent variable modeling is a phenomenon known
as overpruning in latent variable models, where only a small number of dimensions in
the latent variable are used to model the data while the others remain inactive i.e.
they revert to the prior distribution and have no discernible effect on the likelihood of
observed data. In order to evaluate the efficacy of our proposed learning algorithm,
we need a way to visualize how much of the latent space is being made use of by the
model. To do this, we return to the technique developed in Chapter 3 and use of the
Jacobian of the conditional likelihood.

81



For any vector valued function 𝑓(𝑥) : R𝐾 → R𝑉 , ∇𝑥𝑓(𝑥) is the matrix-valued function
representing the sensitivity of the output to the input. When 𝑓(𝑥) is a deep neural
network, Wang et al. (2016) use the spectra of the Jacobian matrix under various
inputs 𝑥 to quantify the complexity of the learned function. They find that the spectra
are correlated with the complexity of the learned function. We adopt their technique
for studying the utilization of the latent space in deep generative models. In the case
of NFA, we seek to quantify the learned complexity of the generative model. To do so,
we compute the Jacobian matrix as 𝒥 (𝑧) = ∇𝑧 log 𝑝(𝑥|𝑧). This is a read-out measure
of the sensitivity of the likelihood with respect to the latent dimension.

𝒥 (𝑧) is a matrix valued function that can be evaluated at every point in the latent
space. We evaluate it at the mode of the (unimodal) prior distribution i.e. at 𝑧 = 0⃗.
The singular values of the resulting matrix denote how much the log-likelihood changes
from the origin along the singular vectors lying in latent space. The intensity of
these singular values (which we plot) is a read-out measure of how many intrinsic
dimensions are utilized by the model parameters 𝜃 at the mode of the prior distribution.
Our choice of evaluating 𝒥 (𝑧) at 𝑧 = 0⃗ is motivated by the fact that much of the
probability mass in latent space under the NFA model will be placed at the origin.
We use the utilization at the mode as an approximation for the utilization across
the entire latent space. We visualized the spectral decomposition obtained under a
Monte-Carlo approximation to the matrix E[𝒥 (𝑧)] and found it to be similar to the
decomposition obtained by evaluating the Jacobian at the mode. Another possibility
to measure utilization would be using the KL divergence of the prior and the output
of the inference network (as in Burda et al. (2015)).

Unlike in Chapter 3, where we made use of the Jacobian matrix to introspect what the
deep generative model had learned about data, here, we use it as a means to quantify
how much information about the observations is captured by the generative model.

4.5 Related 2ork

Salakhutdinov & Larochelle (2010) optimize local mean-field parameters from an
inference network in the context of learning deep Boltzmann machines. Salimans et al.
(2015) explore warm starting MCMC with the output of an inference network.

Previous work has studied the failure modes of learning VAEs. They can be broadly
categorized into two classes. The first aims to improves the utilization of latent
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variables using a richer posterior distribution (Burda et al. , 2015). However, for
sparse data, the limits of learning with a normally distributed 𝑞𝜑(𝑧|𝑥) have barely
been pushed – our goal is to do so in this work. Further gains may indeed be obtained
with a richer posterior distribution but the techniques herein can inform work along
this vein. The second class of methods studies ways to alleviate the underutilization of
latent dimensions due to an overly expressive choice of models for 𝑝(𝑥|𝑧; 𝜃) such as a
Recurrent Neural Network (Bowman et al. , 2015; Chen et al. , 2016). This too, is not
the scenario we are in; underfitting of VAEs on sparse data occurs even when 𝑝(𝑥|𝑧; 𝜃)
is an MLP. Our study here exposes a third failure mode; one in which learning is
challenging not just because of the objective used in learning but also because of the
characteristics of the data.

Our work was among the first to study the effects of sub-optimal variational parameters
in deep generative models; since then there have been several advances that have
enriched our understanding of limitations of inference networks. Cremer et al. (2018)
coin the term amortization gap to refer to the divergence between the variational
distribution predicted by the inference network and the optimal variational distribution
within the distributional family. They highlight that limitations in the predictions
of the inference network, rather than the choice of variational family are responsible
for amortization gaps observed in practice. In our work, we use SVI to update the
variational parameters predicted by the inference network; however our updates to
the parameters of the inference network do not make use of the optimized variational
parameters. Kim et al. (2018) derive gradients of the inference network through
the computation of optimized variational parameters – they find that doing so yields
strong results in building deep generative models of sequence data where 𝑝(𝑥|𝑧; 𝜃) is
parameterized by a recurrent neural network. He et al. (2019) propose a simple, yet
effective approach to improve the quality of inference networks, for each update of
the generative model’s parameters, conduct multiple updates to the parameters of the
inference network. Finally, Lucas et al. (2019) perform a case study on probabilistic
PCA, a linear factor model, and study how posterior collapse, or the underutilization
of the model’s latent variable, can arise due to the existance of multiple local optima
in the log-marginal likelihood.
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4.6 Evaluation

We first confirm our hypothesis empirically that underfitting is an issue when learning
VAEs on high dimensional sparse datasets. We quantify the gains (at training and test
time) obtained by the use of TF-IDF features and the continued optimization of 𝜓(𝑥)
on two different types of high-dimensional sparse data—text and movie ratings. In
Section 4.6.2, we learn VAEs on two large scale bag-of-words datasets. We study (1)
where the proposed methods might have the most impact and (2) present evidence for
why the learning algorithm (Alg. 3) works. In Section 4.6.3, we show that improved
inference is crucial to building deep generative models that can tackle problems in
recommender systems.

4.6.1 Setup

Notation: In all experiments, 𝜓(𝑥) denotes learning with Alg. 1 and 𝜓* denotes the
results of learning with Alg. 3. 𝑀 = 100 (number of updates to the local variational
parameters) on the bag-of-words text data and 𝑀 = 50 on the recommender systems
task. 𝑀 was chosen based on the number of steps it takes for ℒ(𝑥; 𝜃, 𝜓𝑚) (Step 2 in
Alg. 3) to converge on training data. 3-𝜓*-norm denotes a model where the MLP
parameterizing 𝛾(𝑧) has three layers: two hidden layers and one output layer, 𝜓* is
used to derive an update of 𝜃 and normalized count features are conditioned on by
the inference network. In all tables, we display evaluation metrics obtained under
both 𝜓(𝑥) (the output of the inference network) and 𝜓* (the optimized variational
parameters). In figures, we always display metrics obtained under 𝜓* (even if the
model was trained with 𝜓(𝑥)) since ℒ(𝑥; 𝜃, 𝜓*) always forms a tighter bound to log 𝑝(𝑥).
If left unspecified TF-IDF features are used as input to the inference network.

Training and Evaluation: We update 𝜃 using learning rates given by ADAM
(Kingma & Ba, 2014) (using a batch size of 500), The inference network’s intermediate
hidden layer ℎ(𝑥) = MLP(𝑥;𝜑0) (we use a two-layer MLP in the inference network
for all experiments) are used to parameterize the mean and diagonal log-variance as:
𝜇(𝑥) = 𝑊𝜇ℎ(𝑥), log Σ(𝑥) = 𝑊log Σℎ(𝑥) where 𝜑 = {𝑊𝜇,𝑊log Σ, 𝜑0}. Code is available
at github.com/rahulk90/vae_sparse.
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4.6.2 Bag-of-words text data

Datasets and Metrics: We study two large text datasets.

1. RCV1 (Lewis et al. , 2004) dataset (train/valid/test: 789,414/5,000/10,000, 𝑉 :
10,000). We follow the preprocessing procedure in Miao et al. (2016),

2. Wikipedia corpus used in Huang et al. (2012) (train/test: 1,104,937/100,000
and 𝑉 :20,000). We set all words to lowercase, ignore numbers and restrict the
dataset to the top 20, 000 frequently occurring words.

We report an upper bound on perplexity (Mnih & Gregor, 2014) given by

exp(− 1

𝑁

∑︁

𝑖

1

𝑁𝑖

log 𝑝(𝑥𝑖))

where log 𝑝(𝑥𝑖) is replaced by Eq 4.2.

To study the utilization of the latent dimension obtained by various training methods,
we compute the Jacobian 𝒥 (𝑧) matrix (as ∇𝑧 log 𝑝(𝑥|𝑧)). The singular value spectrum
of the Jacobian directly measures the utilization of the latent dimensions in the model.
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Figure 4-5: Mechanics of learning: Best viewed in color. (Left and Middle) For the
Wikipedia dataset, we visualize upper bounds on training and held-out perplexity (evaluated
with 𝜓*) viewed as a function of epochs. Items in the legend corresponds to choices of
training method. (Right) Sorted log-singular values of ∇𝑧 log 𝑝(𝑥|𝑧) on Wikipedia (left) on
RCV1 (right) for different training methods. The x-axis is latent dimension. The legend is
identical to that in Fig. 4-5a.

Reducing Underfitting: Is underfitting a problem and does optimizing 𝜓(𝑥) with
the use of TF-IDF features help? Table 4.1 confirms both statements.

Between “norm” and “tfidf” (comparing first four rows and second four rows), we
find that the use of TF-IDF features almost always improves parameter estimation.
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Furthermore, optimizing 𝜓(𝑥) at test time (comparing column 𝜓* with 𝜓(𝑥)) always
yields a tighter bound on log 𝑝(𝑥), often by a wide margin. Even after extensive training
the inference network can fail to tightly approximate ℒ(𝑥; 𝜃, 𝜓*), suggesting that there
may be limitations to the power of generic amortized inference. Optimizing 𝜓(𝑥) during
training ameliorates under-fitting and yields significantly better generative models on
the RCV1 dataset. The degree of underfitting and subsequently the improvements
from training with 𝜓* are significantly more pronounced on the larger and sparser
Wikipedia dataset (Fig. 4-5a and 4-5b).

Effect of optimizing 𝜓(𝑥): How does learning with 𝜓* affect the rate of convergence
the learning algorithm? We plot the upper bound on perplexity versus epochs on the
Wikipedia (Fig. 4-5a, 4-5b) datasets. As in Table 4.1, the additional optimization
does not appear to help much when the generative model is linear. On the deeper
three-layer model, learning with 𝜓* dramatically improves the model allowing it to
fully utilize its potential for density estimation. Models learned with 𝜓* quickly
converge to a better local minimum early on (as reflected in the perplexity evaluated
on the training data and held-out data). We experimented with continuing to train
3-𝜓(𝑥) beyond 150 epochs, where it reached a validation perplexity of approximately
1330, worse than that obtained by 3-𝜓* at epoch 10 suggesting that longer training is
insufficient to overcome local minima issues afflicting VAEs.

Overpruning of latent dimensions: One cause of underfitting is due to over-
pruning of the latent dimensions in the model. If the variational distributions for

Table 4.1: Test perplexity on RCV1: Left: Baselines Legend: LDA (Blei et al. , 2003),
Replicated Softmax (RSM) (Hinton & Salakhutdinov, 2009), Sigmoid Belief Networks (SBN)
and Deep Autoregressive Networks (DARN) (Mnih & Gregor, 2014), Neural Variational
Document Model (NVDM) (Miao et al. , 2016). 𝐾 denotes the latent dimension in our
notation. Right: NFA on text data with 𝐾 = 100. We vary the features presented to
the inference network 𝑞𝜑(𝑧|𝑥) during learning between: normalized count vectors ( 𝑥∑︀𝑉

𝑖=1 𝑥𝑖
,

denoted “norm”) and normalized TF-IDF

Model 𝐾 RCV1
LDA 50 1437
LDA 200 1142
RSM 50 988
SBN 50 784

fDARN 50 724
fDARN 200 598
NVDM 50 563
NVDM 200 550

NFA 𝜓(𝑥) 𝜓*

1-𝜓(𝑥)-norm 501 481
1-𝜓*-norm 488 454

3-𝜓(𝑥)-norm 396 355
3-𝜓*-norm 378 331
1-𝜓(𝑥)-tfidf 480 456
1-𝜓*-tfidf 482 454

3-𝜓(𝑥)-tfidf 384 344
3-𝜓*-tfidf 376 331
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a subset of the latent dimensions of 𝑧 are set to the prior, this effectively reduces
the model’s capacity. If the KL-divergence in Eq. 4.2 encourages the approximate
posterior to remain close to the prior early in training, and if the gradient signals
from the likelihood term are weak or inconsistent, the KL may dominate and prune
out latent dimensions before the model can use them. In Fig. 4-5c, we plot the
log-spectrum of the Jacobian matrices for different training methods and models. For
the deeper models, optimizing 𝜓(𝑥) is crucial to utilizing its capacity, particularly on
the sparser Wikipedia data. Without it, only about ten latent dimensions are used,
and the model severely underfits the data. Optimizing 𝜓(𝑥) iteratively likely limits
overpruning since the variational parameters (𝜓*) don’t solely focus on minimizing
the KL-divergence but also on maximizing the likelihood of the data (the first term in
Eq. 4.2).
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Figure 4-6: Decrease in per-
plexity versus sparsity: We
plot the relative drop in per-
plexity obtained by training
with 𝜓* instead of 𝜓(𝑥) against
varying levels of sparsity in the
Wikipedia data. On the y-axis,
we plot 𝑃[3−𝜓(𝑥)]−𝑃[3−𝜓*]

𝑃[3−𝜓(𝑥)]
; 𝑃 de-

notes the bound on perplexity
(evaluated with 𝜓*) and the sub-
script denotes the model and
method used during training.
Each point on the x-axis is a re-
striction of the dataset to the
top 𝐿 most frequently occurring
words (number of features).

Sparse data is challenging: What is the relationship between data sparsity and
how well inference networks work? We hold fixed the number of training samples
and vary the sparsity of the data. We do so by restricting the Wikipedia dataset to
the top 𝐿 most frequently occurring words. We train three layer generative models
on the different subsets. On training and held-out data, we computed the difference
between the perplexity when the model is trained with (denoted 𝑃[3−𝜓*]) and without
optimization of 𝜓(𝑥) (denoted 𝑃[3−𝜓(𝑥)]). We plot the relative decrease in perplexity
obtained by training with 𝜓* in Fig. 4-6.

Learning with 𝜓* helps more as the data dimensionality increases. Data sparsity,
therefore, poses a significant challenge to inference networks. One possible explanation
is that many of the tokens in the dataset are rare, and the inference network therefore
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needs many sweeps over the dataset to learn to properly interpret these rare words;
while the inference network is learning to interpret these rare words the generative
model is receiving essentially random learning signals that drive it to a poor local
optimum.

Designing new strategies that can deal with such data may be a fruitful direction for
future work. This may require new architectures or algorithms—we found that simply
making the inference network deeper does not solve the problem.
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Figure 4-7: Late versus early optimization of 𝜓(𝑥): Fig. 4-7a (4-7b) denote the
train (held-out) perplexity for three-layered models trained on the Wikipedia data in the
following scenarios: 𝜓* is used for training for the first ten epochs following which 𝜓(𝑥) is
used (denoted “𝜓* then 𝜓(𝑥)”) and vice versa (denoted “𝜓(𝑥) then 𝜓*”). Fig. 4-7c (Left)
depicts the number of singular values of the Jacobian matrix ∇𝑧 log 𝑝(𝑥|𝑧) with value greater
than 1 as a function of training epochs for each of the two aforementioned methodologies.
Fig. 4-7c (Right) plots the sorted log-singular values of the Jacobian matrix corresponding
to the final model under each training strategy.

When should 𝜓(𝑥) be optimized: When are the gains obtained from learning
with 𝜓* accrued? We learn three-layer models on Wikipedia under two settings: (a)
we train for 10 epochs using 𝜓* and then 10 epochs using 𝜓(𝑥). and (b) we do the
opposite.

Fig. 4-7 depicts the results of this experiment. We find that: (1) much of the gain
from optimizing 𝜓(𝑥) comes from the early epochs, (2) somewhat surprisingly using
𝜓* instead of 𝜓(𝑥) later on in learning also helps (as witnessed by the sharp drop in
perplexity after epoch 10 and the number of large singular values in Fig. 4-7c [Left]).
This suggests that even after seeing the data for several passes, the inference network
is unable to find 𝜓(𝑥) that explain the data well. Finally, (3) for a fixed computational
budget, one is better off optimizing 𝜓(𝑥) sooner than later – the curve that optimizes
𝜓(𝑥) later on does not catch up to the one that optimizes 𝜓(𝑥) early in learning. This
suggests that learning early with 𝜓*, even for a few epochs, may alleviate underfitting.

Rare words and loose lower bounds: Fig. 4-6 suggests that data sparsity
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presents a problem for inference networks at an aggregate level. We now ask which
data points benefit from the optimization of 𝜓(𝑥)? We sample 20000 training and
held-out data points; we compute KL(𝜓(𝑥)‖𝜓*) (both are Normal distributions and
the KL is analytic) and the number of rare words in each document (where a word
is classified as being rare if it occurs in less than 5% of training documents). We
visualize them in Fig. 4-8. We also display the Spearman 𝜌 correlation between
the two values in Fig. 4-8. There exists a positive correlation (about 0.88 on the
training data) between the two values suggesting that the gains in perplexity that we
observe empirically in Table 4.1 and Fig. 4-5 are due to being able to better model
the likelihood of documents with rare words in them.

We present another way to visualize the results of Fig. 4-8. We sample 20000 training
and held-out data points; we compute KL(𝜓(𝑥)‖𝜓*) (both are Normal distributions
and the KL is analytic) and the number of rare words in each document (where a
word is classified as being rare if it occurs in less than 5% of training documents). We
scale each value to be between 0 and 1 using: 𝑐𝑖−𝑚𝑖𝑛(𝑐)

𝑚𝑎𝑥(𝑐)−𝑚𝑖𝑛(𝑐) where 𝑐 is the vector of KL
divergences or number of rare words. We sort the scaled values by the KL divergence
and plot them in Fig. 4-9. As before, we observe that the documents that we move
the farthest in KL divergence are those which have many rare words.

Figure 4-8: KL divergence and rare
word counts: We plot the values of
KL(𝜓(𝑥)‖𝜓*) versus the number of rare
words. We zoom into the plot and reduce
the opacity of the train points to better
see the held-out points. The Spearman
𝜌 correlation coefficient is computed be-
tween the two across 20, 000 points. We
find a positive correlation.

Learning with 𝜓* on small data: We study the role of learning with 𝜓* in the
small-data regime. Table 4.2 depicts the results obtained after training models for
200 passes through the data. We summarize our findings: (1) across the board,
TF-IDF features improve learning, and (2) in the small data regime, deeper non-linear
models (3-𝜓*-tfidf) overfit quickly and better results are obtained by the simpler
multinomial-logistic PCA model (1-𝜓*-tfidf). Overfitting is also evident in Fig. 4-10
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Figure 4-9: Normalized KL and Rare Word Counts: Fig. 4-9a depicts percentage
of times words appear in the Wikipedia dataset (sorted by frequency). The dotted line in
blue denotes the marker for a word that has a 5% occurrence in documents. In Fig. 4-9b,
4-9c, we superimpose (1) the normalized (to be between 0 and 1) values of KL(𝜓(𝑥)‖𝜓*) and
(2) the normalized number of rare words (sorted by value of the KL-divergence) for 20, 000
points (on the x-axis) randomly sampled from the train and held-out data.

from comparing curves on the validation set to those on the training set. Interestingly,
in the small dataset setting, we see that learning with 𝜓(𝑥) has the potential to have
a regularization effect in that the results obtained are not much worse than those
obtained from learning with 𝜓*.

For completeness, in Fig. 4-11, we also provide the training behavior for the RCV1
dataset corresponding to the results of Table 4.1. The results here, echo the convergence
behavior on the Wikipedia dataset.

0 100 200
Epochs

400

600

800

1000

1200

T
ra

in
[P

er
p

le
xi

ty
]

1-ψ(x)

1-ψ∗
3-ψ(x)

3-ψ∗

(a) Training Data

0 100 200
Epochs

700

800

900

1000

1100

1200

H
el

d
-o

u
t

[P
er

p
le

xi
ty

] 1-ψ(x)

1-ψ∗
3-ψ(x)

3-ψ∗

(b) Held-out Data

Dimensions
−2

0

2

S
or

te
d

L
og

S
in

gu
la

r
V

al
u

es

(c) Log-singular Values

Figure 4-10: 20Newsgroups - training and held-out bounds: Fig. 4-10a, 4-10b
denotes the train (held-out) perplexity for different models. Fig. 4-10c depicts the log-
singular values of the Jacobian matrix for the trained models.

Comparison with KL-annealing: An empirical observation made in previous work
is that when 𝑝(𝑥|𝑧; 𝜃) is complex (parameterized by a recurrent neural network or
a neural autoregressive density estimator (NADE)), the generative model also must
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Table 4.2: Test perplexity on 20newsgroups: Left: Baselines Legend: LDA (Blei
et al. , 2003), Replicated Softmax (RSM) (Hinton & Salakhutdinov, 2009), Sigmoid Belief
Networks (SBN) and Deep Autoregressive Networks (DARN) (Mnih & Gregor, 2014), Neural
Variational Document Model (NVDM) (Miao et al. , 2016). 𝐾 denotes the latent dimension
in our notation. Right: NFA on text data with 𝐾 = 100. We vary the features presented
to the inference network 𝑞𝜑(𝑧|𝑥) during learning between: normalized count vectors ( 𝑥∑︀𝑉

𝑖=1 𝑥𝑖
,

denoted “norm”) and normalized TF-IDF (denoted “tfidf”) features.

Model 𝐾 Results
LDA 50 1091
LDA 200 1058
RSM 50 953
SBN 50 909

fDARN 50 917
fDARN 200 —
NVDM 50 836
NVDM 200 852

NFA Perplexity
𝜓(𝑥) 𝜓*

1-𝜓(𝑥)-norm 1018 903
1-𝜓*-norm 1279 889

3-𝜓(𝑥)-norm 986 857
3-𝜓*-norm 1292 879
1-𝜓(𝑥)-tfidf 932 839
1-𝜓*-tfidf 953 828

3-𝜓(𝑥)-tfidf 999 842
3-𝜓*-tfidf 1063 839
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Figure 4-11: RCV1 - training and held-out bounds: Fig. 4-11a, 4-11b denotes the
train (held-out) perplexity for different models. Fig. 4-11c depicts the log-singular values of
the Jacobian matrix for the trained models.

contend with overpruning of the latent dimension. A proposed fix is the annealing of
the KL divergence term in Equation 4.2 (e.g., Bowman et al. , 2015) as one way to
overcome local minima. Although this is a different scenario to the one we present in
that our decoder is a MLP – nonetheless, we apply KL annealing within our setting.

In particular, we optimized E𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧))] − 𝜂KL( 𝑞𝜑(𝑧|𝑥)||𝑝(𝑧) ) where 𝜂 was
annealed from 0 to 1 (linearly – though we also tried exponential annealing) over the
course of several parameter updates. Note that doing so does not give us a lower
bound on the likelihood of the data anymore. There are few established guidelines
about the rate of annealing the KL divergence and in general, we found it tricky to
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get it to work reliably. We experimented with different rates of annealing for learning
a three-layer generative model on the Wikipedia data.

Our findings (visualized in Fig. 4-12) are as follows: (1) on sparse data we found
annealing the KL divergence is very sensitive to the annealing rate – too small an
annealing rate and we were still left with underfitting (as in annealing for 10k), too
high an annealing rate (as in 100k) and this resulted in slow convergence; (2) learning
with 𝜓* always outperformed (in both rate of convergence and quality of final result
on train and held-out data) annealing the KL divergence across various choices of
annealing schedules. Said differently, on the Wikipedia dataset, we conjecture there
exists a choice of annealing of the KL divergence for which the perplexity obtained
may match those of learning with 𝜓* but finding this schedule requires significant trial
and error – Fig. 4-12 suggests that we did not find it. We found that learning with 𝜓*

required less tuning (setting values of 𝑀 to be larger than 100 never hurt) and always
performed at par or better than annealing the KL divergence. Furthermore, we did
not find annealing the KL to work effectively for the experiments on the recommender
systems task. In particular, we were unable to find an annealing schedule that reliably
produced good results.
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Figure 4-12: KL annealing vs learning with 𝜓* Fig. 4-12a, 4-12b denotes the train (held-
out) perplexity for different training methods. The suffix at the end of the model configuration
denotes the number of parameter updates that it took for the KL divergence in Equation 4.2
to be annealed from 0 to 1. 3-𝜓*-50k denotes that it took 50000 parameter updates before
−ℒ(𝑥; 𝜃, 𝜓(𝑥)) was used as the loss function. Fig. 4-10c depicts the log-singular values of
the Jacobian matrix for the trained models.

Depth of 𝑞𝜑(𝑧|𝑥): Can the overall effect of the additional optimization be learned by
the inference network at training time? The experimental evidence we observe in Fig.
4-13 suggests this is difficult.

When learning with 𝜓(𝑥), increasing the number of layers in the inference network
slightly decreases the quality of the model learned. This is likely because the already
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stochastic gradients of the inference network must propagate along a longer path in a
deeper inference network, slowing down learning of the parameters 𝜑 which in turn
affects 𝜓(𝑥), thereby reducing the quality of the gradients used to updated 𝜃.

0 3 6 9 15 20
Epochs

1100

1200

1300

1400

1500

1600

T
ra

in
[P

er
p

le
xi

ty
]

q1-ψ(x)

q1-ψ∗
q2-ψ(x)

q2-ψ∗
q3-ψ(x)

q3-ψ∗

(a) Training Data

0 3 6 9 15 20
Epochs

1200

1300

1400

1500

1600

H
el

d
-o

u
t

[P
er

p
le

xi
ty

]

q1-ψ(x)

q1-ψ∗
q2-ψ(x)

q2-ψ∗
q3-ψ(x)

q3-ψ∗

(b) Held-out Data

Figure 4-13: Varying the depth of 𝑞𝜑(𝑧|𝑥): Fig. 4-12a (4-12b) denotes the train
(held-out) perplexity for a three-layer generative model learned with inference networks of
varying depth. The notation q3-𝜓* denotes that the inference network contained a two-
layer intermediate hidden layer ℎ(𝑥) = MLP(𝑥;𝜑0) followed by 𝜇(𝑥) =𝑊𝜇ℎ(𝑥), log Σ(𝑥) =
𝑊log Σℎ(𝑥).

Putting it all together: Our analysis describes a narrative of how underfitting
occurs in learning VAEs on sparse data. The rare words in sparse, high-dimensional
data are difficult to map into local variational parameters that model the term
E[log 𝑝(𝑥|𝑧)] well (Fig. 4-6,4-8); 𝑞𝜑(𝑧|𝑥) therefore focuses on the less noisy (the KL
is evaluated analytically) signal of minimizing KL(𝑞𝜑(𝑧|𝑥)||𝑝(𝑧)). Doing so prunes
out many latent dimensions early on resulting in underfitting (Fig. 4-7c [Left]). By
using 𝜓*, the inadequacies of the inference network are decoupled from the variational
parameters used to derive gradients to 𝜃. The tighter variational bound ℒ(𝑥; 𝜃, 𝜓*)

achieves a better tradeoff between E[log 𝑝(𝑥|𝑧)] and KL(𝑞𝜑(𝑧|𝑥)||𝑝(𝑧)) (evidenced by
the number of large singular values of ∇𝑧 log 𝑝(𝑥|𝑧) when optimizing 𝜓* in Fig. 4-7c).
The gradient updates with respect to this tighter bound better utilize 𝜃.

4.6.3 Collaborative filtering

Modeling rare features in sparse, high-dimensional data is necessary to achieve strong
results on this task. We study the top-N recommendation performance of NFA under
strong generalization (Marlin & Zemel, 2009).

Datasets: We study two large user-item rating datasets: MovieLens-20M (ML-20M)
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(Harper & Konstan, 2015) and Netflix2. Following standard procedure: we binarize the
explicit rating data, keeping ratings of four or higher and interpreting them as implicit
feedback (Hu et al. , 2008) and keep users who have positively rated at least five
movies. We train with users’ binary implicit feedback as 𝑥𝑑; the vocabulary is the set
of all movies. The number of training/validation/test users is 116,677/10,000/10,000
for ML-20M (𝑉 : 20,108) and 383,435/40,000/40,000 for Netflix (𝑉 : 17,769).

Evaluation and metrics: We train with the complete feedback history from
training users, and evaluate on held-out validation/test users. We select model
architecture (MLP with 0, 1, 2 hidden layers) from the held-out validation users based
on NDCG@100 and report metrics on the held-out test users. For held-out users, we
randomly select 80% of the feedback as the input to the inference network and see
how the other 20% of the positively rated items are ranked based 𝜇(𝑧). We report
two ranking-based metrics averaged over all held-out users: Recall@𝑁 and truncated
normalized discounted cumulative gain (NDCG@𝑁) (Järvelin & Kekäläinen, 2002).
For each user, both metrics compare the predicted rank of unobserved items with
their true rank. While Recall@𝑁 considers all items ranked within the first 𝑁 to
be equivalent, NDCG@𝑁 uses a monotonically increasing discount to emphasize the
importance of higher ranks versus lower ones.

Define 𝜋 as a ranking over all the items where 𝜋(𝑣) indicates the 𝑣-th ranked item,
I{·} is the indicator function, and 𝑑(𝜋(𝑣)) returns 1 if user 𝑑 has positively rated item
𝜋(𝑣). Recall@𝑁 for user 𝑑 is

Recall@𝑁(𝑑, 𝜋) :=
𝑁∑︁

𝑣=1

I{𝑑(𝜋(𝑣)) = 1}
min(𝑁,

∑︀𝑉
𝑣′ I{𝑑(𝜋(𝑣′)) = 1})

.

The expression in the denominator evaluates to the minimum between 𝑁 and the
number of items consumed by user 𝑑. This normalizes Recall@𝑁 to have a maximum of
1, which corresponds to ranking all relevant items in the top 𝑁 positions. Discounted
cumulative gain (DCG@𝑁) for user 𝑑 is

DCG@𝑁(𝑑, 𝜋) :=
𝑁∑︁

𝑣=1

2I{𝑑(𝜋(𝑣))=1} − 1

log(𝑣 + 1)
.

NDCG@𝑁 is the DCG@𝑁 normalized by ideal DCG𝑁 , where all the relevant items
are ranked at the top. We have, NDCG@𝑁 ∈ [0, 1]. As baselines, we consider:

2http://www.netflixprize.com/
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Weighted matrix factorization (WMF) (Hu et al. , 2008): a linear low-rank
factor model. We train WMF with alternating least squares; this generally leads to
better performance than with SGD.
SLIM (Ning & Karypis, 2011): a linear model which learns a sparse item-to-item
similarity matrix by solving a constrained ℓ1-regularized optimization problem.
Collaborative denoising autoencoder (CDAE) (Wu et al. , 2016): An autoen-
coder achitecture specifically designed for top-N recommendation. It augments a
denoising autoencoder (Vincent et al. , 2008) by adding a per-user latent vector to
the input, inspired by standard linear matrix-factorization approaches. Among the
baselines, CDAE is most akin to NFA.

Table 4.3 summarizes the results of NFA under different settings. We found that
optimizing 𝜓(𝑥) helps both at train and test time and that TF-IDF features consistently
improve performance. Crucially, the standard training procedure for VAEs realizes
a poorly trained model that underperforms every baseline. The improved training
techniques we recommend generalize across different kinds of sparse data. With them,
the same generative model, outperforms CDAE and WMF on both datasets, and
marginally outperforms SLIM on ML-20M while achieving nearly state-of-the-art
results on Netflix. In terms of runtimes, we found that learning NFA (with 𝜓*) to be
approximately two-three times faster than SLIM. Our results highlight the importance
of inference at training time showing NFA, when properly fit, can outperform the
popular linear factorization approaches.

Table 4.3: Recall and NDCG on recommender systems: “2-𝜓*-tfidf” denotes a two-
layer (one hidden layer and one output layer) generative model. Standard errors are around
0.002 for ML-20M and 0.001 for Netflix. Runtime: WMF takes on the order of minutes
[ML-20M & Netflix]; CDAE and NFA (𝜓(𝑥)) take 8 hours [ML-20M] and 32.5 hours [Netflix]
for 150 epochs; NFA (𝜓*) takes takes 1.5 days [ML-20M] and 3 days [Netflix]; SLIM takes
3-4 days [ML-20M] and 2 weeks [Netflix].

ML-20M Recall@50 NDCG@100

NFA 𝜓(𝑥) 𝜓* 𝜓(𝑥) 𝜓*

2-𝜓(𝑥)-norm 0.475 0.484 0.371 0.377
2-𝜓*-norm 0.483 0.508 0.376 0.396
2-𝜓(𝑥)-tfidf 0.499 0.505 0.389 0.396
2-𝜓*-tfidf 0.509 0.515 0.395 0.404

wmf 0.498 0.386
slim 0.495 0.401
cdae 0.512 0.402

Netflix Recall@50 NDCG@100

NFA 𝜓(𝑥) 𝜓* 𝜓(𝑥) 𝜓*

2-𝜓(𝑥)-norm 0.388 0.393 0.333 0.337
2-𝜓*-norm 0.404 0.415 0.347 0.358
2-𝜓(𝑥)-tfidf 0.404 0.409 0.348 0.353
2-𝜓*-tfidf 0.417 0.424 0.359 0.367

wmf 0.404 0.351
slim 0.427 0.378
cdae 0.417 0.360
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4.7 Discussion

Studying the failures of learning with inference networks is an important step to
designing more robust neural architectures for inference networks. We show that
avoiding gradients obtained using poor variational parameters is vital to successfully
learning VAEs on sparse data. An interesting question is why inference networks have
a harder time turning sparse data into variational parameters compared to images?
One hypothesis is that the redundant correlations that exist among pixels (but occur
less frequently in features found in sparse data) are more easily transformed into local
variational parameters 𝜓(𝑥) that are, in practice, often reasonably close to 𝜓* during
learning.

Hjelm et al. explore a similar idea as ours to derive an importance-sampling-based
bound for learning deep generative models with discrete latent variables. They find
that learning with 𝜓* does not improve results on binarized MNIST. This is consistent
with our experience—we find that our secondary optimization procedure helped more
when learning models of sparse data. Miao et al. learn log-linear models (multinomial-
logistic PCA, Collins et al. , 2001) of documents using inference networks. We show
that mitigating underfitting in deeper models yields better results on the benchmark
RCV1 data. Our use of the spectra of the Jacobian matrix of log 𝑝(𝑥|𝑧) to inspect
learned models is inspired by Wang et al. (2016).
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Chapter 5

Supervised fine-tuning of deep
generative models

Supervision in machine learning comes in many forms. Although the canonical form
of supervised data is in the form of labelled annotations (for each datapoint), this
may not always be the best way to guide learning algorithm. One form of supervision
of interest are pairwise expressions of similarity between datapoints.

A motivating example is the task of patient similarity where a doctor may be interested
in searching a hospital database to find similar patients. For example, a doctor may
have a set of patients who they believe are similar because they respond rapidly to
a treatment. The doctor may be interested in finding other patients who respond
similarly. In this scenario, the doctor does not prescribe discrete labels to every patient,
but rather identifies similar patients based on how much they satisfy a clinical criteria
such as their response to treatment.

We build algorithms to tackle such a problem by way of analogy to few-shot learning.
In few-shot learning, a learner is given access to sets of datapoints that are assumed
to be similar. At test time, the learner is given a target datapoint and multiple query
sets. Each query set, comprising one or more datapoints, is a candidate to be identified
as being most similar to the target.

To make the analogy to healthcare precise, the target datapoint may comprise patient
data from a new patient and the query sets may comprise pre-defined sets of patients,
each exhibiting known phenotypic characteristics. The goal of the learner is to identify
which set of phenotypic characteristic the new patient is most similar to. In this
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chapter, we an approach to tackle such a problem via the characterization of similarity
as overlap in the latent space of a deep generative model.

Latent Space

Query

Target

Reasoning in Latent Space

Figure 5-1: Comparing objects in representational space: On the left is a target set
that will be ranked based on similarity to the query 𝑄 (right). The colour of each object
is matched to a distribution in representation space. In orange is the output of the latent
reasoning network – it represents the common factor of variation shared by 𝒬. The black
chair should rank higher than the black table; here its distribution (in representation space)
overlaps more with the output of the latent reasoning network.

5.1 Introduction

How can we frame the problem of selecting, from a target set, an object most similar
to a given query set? For example—given a red chair, a blue chair and a black chair,
we would rank chairs in the target set highly. At the same time, given a red chair, a
red car and a red shirt, we would rank red objects highly. Between the two tasks, our
understanding of the data has not changed; what has changed is our understanding of
the task based on the context given by the query. The query highlights the relevant
property of the data that is needed for solving a specific task. Such tasks appear in
few-shot learning, where the goal is ranking objects according to their similarity to a
given query set and in healthcare where a task may be finding similar patients to a
given cohort.

To answer such queries, we could train discriminative models attuned to answering
set-conditional queries at test time (e.g. Vinyals et al. (2016)). Or we could encode
class separability in the structure of a generative model (Edwards & Storkey, 2016)
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and use inference for prediction.

We learn a generic representation space (using unsupervised data) that is warped
(using supervised data) for potentially different test-time problems. The task of scoring
objects given a query is decomposed into two subtasks. The first determines the
common property shared by items in the query set and represents the property as a
region in representation space. In Figure 5-1, we visualize such a hypothetical space.
On the right is a query comprising chairs of different colors and (in orange) a region
of space that characterizes the property (in this case, a likeness to a chair) common
to items in the query. The second task is to score a target item based on how much it
expresses the region of representation space shared by items in the query. For the two
candidate target points in Figure 5-1 (left), the black chair would rank rank highly
since its representation has more in common with the property encapsulated by the
query.

Here, we will use the latent space of deep generative models (Rezende et al. , 2014;
Kingma & Welling, 2014) as our representation space. In such models, one can use the
inference network to do posterior inference and map from raw data onto a distribution
in latent space. However, to find commonalities among a set of multiple query items, we
need a way to aggregate the information contained in multiple posterior distributions.
Therefore, we introduce a latent reasoning network (LRN). The LRN takes a query as
input and constructs a probability distribution over the latent space that summarizes
the representations of the query points into a single distribution. Figure 5-1 (orange)
depicts what the output of the LRN might look like. We design the neural architecture
for the LRN to be permutation invariant, based on Zaheer et al. (2017), so that
it does not depend on the size of the query set. To identify whether a target point
is similar to a query, we assign a score to the latent space of a target item. We
propose using the logarithm of the Bayes Factor (Jeffreys, 1998) which measures how
conditioning on the query alters the likelihood of a target point. Our approach is
inspired by Bayesian Sets Ghahramani & Heller (2005) wherein data was assumed to
be modeled by a hierarchical exponential family distribution and the likelihood ratio
of the joint distribution and product of marginals was shown to be a useful measure
of similarity.

The latent (representation) space of a deep generative model learned with unsupervised
data is typically non-identifiable. i.e. there will exist multiple good (from the
perspective of log-likelihood) representation spaces. Each space corresponds to a
different notion of similarity. To reduce this non-identifiability, we make use of
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𝑥𝑡 𝑥1 𝑥2

𝑧𝑡 𝑧1 𝑧2

𝑤

(a)

𝑥𝑡

𝑧𝑡

𝑤𝑡

𝑥1 𝑥2

𝑧1 𝑧2

𝑤𝑄

(b)

Figure 5-2: Hypothesis testing with deep generative models: (a) The Reasoning
Model, here, depicting the hypothesis that the set {𝑥𝑡,𝒬 = {𝑥1, 𝑥2}} was generated jointly;
(b) the two figures represent the hypothesis that 𝑥𝑡 and 𝒬 were generated independently
under different realizations of 𝑤 (the random variable that captures the property shared
across datapoints).

supervision. Queries provide extra information in that they reveal which points should
be expected to be close together in latent space. We take advantage of this and
propose a supervised max-margin learning algorithm for the LRN such that scores
given to items in the query are larger than scores unrelated to the query.

We obtain a coupled set of models: in which one model is a deep generative model of
the data whilst the other reshapes the latent space of the first and serves to answer
queries about similarity judgements between datapoints. We study how the proposed
approach can tune the latent space of deep generative models and be used to build
new types of models for few-shot learning. We begin in Section 5.2 by motivating the
Bayes Factor as a viable tool for computing similarity.

5.2 From representation learning to reasoning

Here, we consider the problem of scoring elements in a set based on how similar they are
to a given query. Suppose we are given a dataset 𝒟 = {𝑥1, . . . , 𝑥𝑁}, 𝑥𝑖 ∈ R𝑛, 𝑥𝑖 ∈ 𝒟.
Then for a query 𝒬 = {𝑥1, . . . , 𝑥𝑄}; |𝒬|= 𝑄, we wish to assign to each 𝑥𝑡 ∈ 𝒟 a
score(𝑥𝑡,𝒬) that denotes how similar 𝑥𝑡 is to elements of the query 𝒬.

5.2.1 Data model

A simple way to quantify how similar objects are (here, between 𝒬 and 𝑥𝑡) might be
to take the pairwise Euclidian distance between them. For complex, high dimensional
data that do not lie on a Euclidian manifold, such a metric may fail to capture
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interesting regularity between data.

Alternatively, we can use a latent variable model to construct a representation of data.
The latent variable then becomes a low-dimensional sufficient statistic for the raw data
when quantifying similarity. The simplest latent variable model we will consider has
the following generative process: 𝑧 ∼ 𝑝dm(𝑧); 𝑥 ∼ 𝑝dm(𝑥; 𝑓(𝑧; 𝜃)) where 𝑝dm(𝑧) is
a simple distribution such as 𝒩 (0, 𝐼). The use of MLPs in the conditional distributions
allow the model to fit highly complex data despite the use of a simple prior. When 𝑓
is parameterized by a Multi-Layer Perceptron (MLP), the resulting model is a deep
generative model. We will refer to this model (Kingma & Welling, 2014; Rezende et al.
, 2014) as the Data Model (with probabilities denoted with subscript dm).

The generative process assumes datapoints are drawn independently. Using variational
inference with an inference network (Hinton et al. , 1995) to approximate the posterior
distribution, 𝑝rm(𝑧|𝑥), the model can be learned by maximizing a lower bound on
the log-likelihood of the data.

log 𝑝dm(𝑥; 𝜃) ≥ E
𝑞dm(𝑧|𝑥;𝜑)

[︀
log 𝑝dm(𝑥|𝑧; 𝜃))

]︀
(5.1)

−KL( 𝑞dm(𝑧|𝑥;𝜑)||𝑝dm(𝑧) ) = ℒ(𝑥; 𝜃, 𝜑),

With a Gaussian distribution as the variational approximation: 𝑞dm(𝑧|𝑥;𝜑) ∼
𝒩 (𝜇𝜑(𝑥),Σ𝜑(𝑥)) where 𝜇𝜑(𝑥),Σ𝜑(𝑥) are (differentiable, parametric, with parame-
ters 𝜑) functions of the observation 𝑥. As before, Eq. 5.1 is differentiable in 𝜃, 𝜑

(Kingma & Welling, 2014; Rezende et al. , 2014) and the model parameters (𝜃, 𝜑) can
be learned via gradient ascent on ℒ(𝑥; 𝜃, 𝜑).

With the variational approximation, 𝑞dm(𝑧|𝑥;𝜑), to map from data to latent space,
would computing overlap in the posterior distributions of points in 𝒬 and 𝑥𝑡 suffice
to identify similar points? The answer is sometimes. While unsupervised learning
will tend to put similar points together, the notion of similarity encoded in the latent
space need not correspond to the notion of similarity required for a task at test time.
We require a way to guide the structure of the latent space to be better suited for a
task.
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5.2.2 Reasoning model

Introducing hierarchy into the generative process is one way to guide the structure
of latent variables. In Figure 5-2 (b) is a simple hierarchical model that makes
explicit the insight that similar datapoints should have similar latent spaces. It
defines the following generative process for a set of similar objects 𝒬: 𝑝rm(𝒬) =∫︀
𝑤

∫︀
𝑧
𝑝rm(𝑤)

∏︀𝑄
𝑞=1 𝑝rm(𝑧𝑞|𝑤)𝑝rm(𝑥𝑞|𝑧𝑞). The random variable 𝑤 defines the context

of 𝒬. It may denote the label or class identity of points in 𝒬 but more broadly is a
representation of the properties that points in 𝒬 satisfy. For notational convenience
and because we can express reasoning about similarity as a probabilistic query in this
model, we refer to it as the Reasoning Model.

The Neural Statistician (Edwards & Storkey, 2016) uses KL(𝑝(𝑤|𝑥𝑡)||𝑝(𝑤|𝒬)) to
quantify the similarity between 𝑥𝑡 and 𝒬 in a model similar to the one in Figure 5-2
(b). In this work, we pose the estimation of similarity between objects as hypothesis
testing in a hierarchical deep generative model. The conditional independences in
Figure 5-2 (b) enforce that 𝑥𝑡 is independent of 𝑤 given 𝑧𝑡, i.e. the per-data-point
latent variables serve as a sufficient statistic to quantify comparisons between multiple
datapoints. The conditional density 𝑝(𝑥𝑡|𝑧𝑡) is a map from the representation space
to the data while 𝑝(𝑧𝑡|𝑤) dictates how the latent space of a datapoint behaves as a
function of property encoded in 𝑤.

5.2.3 Bayes factor

To score the similarity between two objects (in this case 𝑥𝑡 and set 𝒬) under the
Reasoning Model, we turn to the likelihood ratio between the joint distribution of 𝑥𝑡
and 𝒬 and the product of their marginals. If 𝑥𝑡 and 𝒬 are drawn from the same joint
distribution, then there exists a random variable 𝑤 that governs the distribution of the
latent spaces 𝑧𝑡, 𝑧1, . . . , 𝑧𝑄. With slight abuse of notation1, Figure 5-2 (a) depicts this
scenario when 𝒬 = {𝑥1, 𝑥2}. If 𝑥𝑡 and 𝒬 are not similar, then their latent spaces will
have different distributions, and they are children of different realizations of 𝑤 (see
Figure 5-2 (b)). With that in mind, the score function we use to measure similarity is
given by (Bayes Factor):

𝑝(𝑥𝑡,𝒬)
𝑝(𝑥𝑡)𝑝(𝒬)

=
𝑝(𝑥𝑡|𝒬)
𝑝(𝑥𝑡)

= score(𝑥𝑡,𝒬) (5.2)

1We re-use Figure 5-2 to denote both the instantiation of a hypothesis and the generative process
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The log-score is the pointwise mutual information (Fano, 1949), a measure of association
that is frequently used in applications such as natural language processing (Church &
Hanks, 1990). The Bayes Factor normalizes the posterior predictive density of the
target point conditioned on the query by the target’s marginal likelihood under the
model. It also has an information theoretic interpretation. Letting ℎ(𝑥) = − log 𝑝(𝑥)

denote the self-information (or surprisal), then log score(𝑥𝑡,𝒬) = ℎ(𝑥𝑡) − ℎ(𝑥𝑡|𝒬)
intuitively denotes the surprise (quantified in nats or bits) from observing 𝑥𝑡 when
having already observed 𝒬.

Similarity in Latent Space: Equation 5.2 captures an intuitive notion of similarity
but evaluating 𝑝(𝑥𝑡), the marginal density of the target, is typically intractable (except
in hierarchical models that lie in the exponential family (Ghahramani & Heller, 2005)).
Furthermore, an importance sampling based Monte-Carlo estimator for 𝑝(𝑥𝑡) will
involve a high-dimensional integral in the data 𝑥𝑡. We therefore propose the following
decomposition of the score function that evaluates the Bayes Factor in the target
datapoint’s (lower dimensional) latent space:

𝑝rm(𝑥𝑡|𝒬)
𝑝rm(𝑥𝑡)

=
1

𝑝rm(𝑥𝑡)

∫︁

𝑧𝑡

𝑝rm(𝑥𝑡, 𝑧𝑡|𝒬) (5.3)

=
1

𝑝rm(𝑥𝑡)

∫︁

𝑧𝑡

𝑝rm(𝑥𝑡|𝑧𝑡)𝑝rm(𝑧𝑡|𝒬)

=
1

𝑝rm(𝑥𝑡)

∫︁

𝑧𝑡

𝑝rm(𝑧𝑡|𝑥𝑡)𝑝rm(𝑥𝑡)

𝑝rm(𝑧𝑡)
𝑝rm(𝑧𝑡|𝒬)

=

∫︁

𝑧𝑡

𝑝rm(𝑧𝑡|𝑥𝑡)
𝑝rm(𝑧𝑡)⏟  ⏞  

Relative Posterior Likelihood

𝑝rm(𝑧𝑡|𝒬)⏟  ⏞  
Latent Reasoning Network

.

The estimator above formalizes the intuition for comparing points laid out in Section
5.1. The query-conditional posterior-predictive density over the latent space of the
target datapoint, 𝑝rm(𝑧𝑡|𝒬), reasons about points in the query and represents them
as a density in latent space, The Relative Posterior Likelihood, 𝑝rm(𝑧𝑡|𝑥𝑡)

𝑝rm(𝑧𝑡)
scores

how likely the target point is to have come from the relevant part of latent space.

5.3 Hierarchical models with compound priors

To compute the ratio 𝑝rm(𝑧𝑡|𝑥𝑡)
𝑝rm(𝑧𝑡)

, we need to marginalize 𝑤𝑡. However, under certain
assumptions about the conditional distributions in the Reasoning Model, we will
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see that approximating this ratio becomes simpler.

Assumption 1. Priors with Compound Distributions
∫︁

𝑤

𝑝rm(𝑤)𝑝rm(𝑧|𝑤)𝑑𝑤 = 𝑝dm(𝑧)

Assumption 2. Matching conditional likelihoods

𝑝rm(𝑥|𝑧) = 𝑝dm(𝑥|𝑧)

Lemma 5.3.1. Matching posterior marginals

𝑝dm(𝑧|𝑥) = 𝑝rm(𝑧|𝑥)

Proof. Follows from Bayes rule and Assumption 1, 2.

Lemma 5.3.2. Matching marginal likelihoods

Under Assumption 1 and 2:
𝑝dm(𝑥) = 𝑝rm(𝑥)

Proof.

𝑝rm(𝑥) =

∫︁

𝑤

∫︁

𝑧

𝑝rm(𝑤)𝑝rm(𝑧|𝑤)𝑝rm(𝑥|𝑧)]𝑑𝑧𝑑𝑤

=

∫︁

𝑧

𝑝dm(𝑧)𝑝dm(𝑥|𝑧)𝑑𝑧 = 𝑝dm(𝑥)

The conditions above state when we can take an instance of the Data Model discussed
in Section 5.2.1 and transform it into an instance of the Reasoning Model in Section
5.2.2 while preserving the marginal likelihood of the data.

This transformation has a few implications. The first is when evaluating the Bayes
Factor; if we work in a class of Reasoning Models that satisfy Assumption 1, then
we can evaluate the Relative Posterior Likelihood using the prior and posterior
distribution of the associated Data Model. With Lemma 5.3.1 and Assumption 1:

𝑝rm(𝑥𝑡|𝒬)
𝑝rm(𝑥𝑡)

=

∫︁

𝑧𝑡

𝑝dm(𝑧𝑡|𝑥𝑡)
𝑝dm(𝑧𝑡)⏟  ⏞  

Relative Posterior Likelihood

𝑝rm(𝑧𝑡|𝒬)⏟  ⏞  
Latent Reasoning Network
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(b) Loss function

Figure 5-3: Latent Reasoning Networks (LRN) and loss function: On the left is
a diagrammatic representation of 𝑝rm(𝑧𝑡|𝒬). On the right is a depiction of Monte-Carlo
sampling (with samples from the LRN) to evaluate Bayes factor. 𝑥𝑖 is a point similar to
those in the query 𝒬 = {𝑥1, 𝑥2, 𝑥3}, while 𝑥𝑛𝑠 is not. We suppress subscripts in the figure.

where 𝑝dm(𝑧𝑡) is typically fixed ahead of time (e.g. 𝒩 (0; I)) and we can do inference
for 𝑝dm(𝑧𝑡|𝑥𝑡) (or approximate it using the inference network 𝑞dm(𝑧|𝑥;𝜑)).

The second implication is that part of the Reasoning Model, 𝑝rm(𝑥|𝑧), can be
learned ahead of time. This gives us the flexibility to warm-start the Reasoning
Model using a pre-trained Data Model whose 𝑝dm(𝑧) can be expressed according
to Assumption 1. In this way, even if we do not know which property will be
used to organize datapoints into sets at test time, we can still learn a generic low-
dimensional representation of the dataset. We will make use of this when we discuss
the learning framework in Section 5.5. For now, what remains is how we can specify
𝑝rm(𝑤), 𝑝rm(𝑧|𝑤) in order to evaluate 𝑝rm(𝑧𝑡|𝒬).

5.4 Latent Reasoning Networks

Although 𝑝rm(𝑧𝑡|𝒬) =
∫︀
𝑤
𝑝rm(𝑧𝑡|𝑤)𝑝rm(𝑤|𝒬)𝑑𝑤, finding both 𝑝rm(𝑤) and 𝑝rm(𝑧|𝑤)

that satisfy Assumption 1 may prove challenging and so we will make use of another
computational trick. To evaluate the Bayes Factor we only need a way to sample from
𝑝rm(𝑧𝑡|𝒬) i.e. the posterior predictive distribution given the query, of the target’s
latent representation. Our strategy therefore, will instead be to parameterize and
learn 𝑝rm(𝑧𝑡|𝒬) directly from data.

Without 𝑝rm(𝑤) and 𝑝rm(𝑧|𝑤), we lose the ability to sample from the Reasoning
Model but by amortizing 𝑝rm(𝑧𝑡|𝒬) we obtain a fast way to evaluate the Bayes Factor
at test time. 𝑝rm(𝑧𝑡|𝒬) must reason about how the latent spaces of points in 𝒬 are
related and parameterize a distribution over the latent space of the target datapoint 𝑥𝑡;
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this distribution must characterize the property represented by points in 𝒬. Therefore,
we refer to this amortizated, parameteric posterior-predictive distribution as a Latent
Reasoning Network. Since we do not know the functional form of this distribution we
will parameterize it as a non-linear function of the query 𝒬.

To construct the LRN, we require neural architectures capable of operating over sets.
We make use of two primitives for such neural architectures proposed by Zaheer et al.
(2017). These functions operate over sets of vectors 𝒬 = {𝑥1, . . . , 𝑥𝑄}, 𝑥𝑞 ∈ R𝑛. We

will use the notation R𝑛×|𝒬| to denote a set of size |𝒬| where each element is an
𝑛-dimensional vector. We design the LRN, with the following three properties:

A] Parameter Sharing: We share parameters between the inference network of
the Data Model and the LRN. A direct consequence of this choice is that the LRN
now has the ability to change the way inference is done in the Data model. The first
stage of the LRN uses the inference network of the Data Model to map from the set
𝒬 to a set of each point’s variational parameters

B] Exchangeability: The output of the LRN must not depend on the order of
elements in 𝒬. We achieve this by using the functions proposed by (Zaheer et al. ,
2017): 𝑔 : R𝑛×|𝒬| → R𝑚×|𝒬| is a permutation equivariant function that maps from sets
of 𝑛 dimensional vectors to sets of 𝑚 dimensional vectors while ensuring that if the
input elements were permuted, then the output elements would also be permuted

identically. The form of 𝑔 is given by 𝑔(𝒬) =
[︁
𝜌
(︁
𝑊 eq

1 𝑥𝑞 +𝑊 eq
2 (

∑︀
𝑞′ 𝑥𝑞′)

)︁]︁|𝒬|

𝑞=1
where

𝑊 eq
1 ∈ R𝑚×𝑛, 𝑊 eq

2 ∈ R𝑚×𝑛 and 𝜌 is an elementwise nonlinearity. We use compositions
of the function 𝑔 in the second stage of the LRN to learn about how the variational
parameters between points in 𝒬 relate to one-another and map to a set of intermediate
representations.

C] Distributions in latent space: The network must parameterize a valid
density in latent space; this is satisfied by construction. To go from the set of
intermediate representations to the parameters of 𝑝(𝑧𝑡|𝒬), we leverage the following
permutation invariant function: 𝑓(𝒬) = 𝜌

(︁∑︀
𝑞(𝑊

inv𝑥𝑞 + 𝑏)
)︁
, 𝑓 : R𝑛×|𝒬| → R𝑚 where

𝑊 inv ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚 are linear operators and 𝜌 is an elementwise non-linearity.

With 𝜇(𝒬; 𝛾, 𝜑),Σ(𝒬; 𝛾, 𝜑) as parameteric functions of set 𝒬, we can express the
probability distribution 𝑝rm(𝑧𝑡|𝒬; 𝛾, 𝜑) = 𝒩 (𝜇(𝒬; 𝛾, 𝜑),Σ(𝒬; 𝛾, 𝜑)). 𝛾 denotes the
parameters of the permutation equivariant and invariant layers while 𝜑 represent the
parameters shared with 𝑞dm(𝑧|𝑥;𝜑). We visualize the LRN in Figure 5-3a.
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5.5 Learning

The learning procedure we use is based on a combination of doing unsupervised
learning to learn a good representation alongside a supervised max-margin loss to
ground the representation for a specific task. We discuss each separately and then
highlight how they are combined.

Unsupervised Learning: Since we use Reasoning Models that satisfy As-
sumption 1, 2, we make use of the transformation between the Data Model and
Reasoning Model in Section 5.3. We maximize the likelihood of a given dataset
using the lower-bound in Equation 5.1. A consequence of doing variational learning of
the Data Model is that we can use 𝑞dm(𝑧|𝑥;𝜑) to approximate the Bayes Factor.

Max-Margin Learning: We expect that the Bayes Factor in Equation 5.3 takes
a high value when the target point 𝑥𝑡 is similar to 𝒬 and a low value when 𝑥𝑡 is
dissimilar to 𝒬. But how do we know what points form 𝒬? This will depend on the
test-time task. We assume we are given labels that define the property encompassed
in sets of datapoints.

Assumption 3. For 𝐿 datapoints in 𝒟, we have 𝒴 = {𝑦𝑥1 , . . . , 𝑦𝑥𝐿}, 𝑦𝑙 ∈ {1, . . . , 𝐾}
where 𝑦𝑥𝑖 is the label for 𝑥𝑖 that takes one of 𝐾 unique labels. We define N𝒬

𝑥𝑖
=

{𝑥𝑘 𝑠.𝑡. 𝑦𝑥𝑘 ∈ 𝒴 & 𝑦𝑥𝑘 = 𝑦𝑥𝑖}, N̸𝑄
𝑥𝑖

= {𝑥𝑘 𝑠.𝑡. 𝑦𝑥𝑘 ∈ 𝒴 & 𝑦𝑥𝑘 ̸= 𝑦𝑥𝑖} to be sets of
datapoints that have the same label as 𝑥𝑖 and those that do not.

We will assume that a point can only have a single label. Here, the labels characterize
the property we want to base our similarity judgements on. Therefore, learn the
parameters of 𝑝(𝑧𝑡|𝒬; 𝛾, 𝜑) using the following (supervised) loss function:

ℒmm(𝑥; 𝛾, 𝜑) = E𝒬∼N𝒬
𝑥
E𝒬𝑛𝑠∼N ̸𝑄

𝑥

1

|𝒬𝑛𝑠|
∑︁

𝑥𝑛𝑠∈𝒬𝑛𝑠

max(log score(𝑥𝑛𝑠,𝒬)

− log score(𝑥,𝒬) + Δ, 0). (5.4)

The loss function maximizes the difference between the log-Bayes Factor for points
that lie within the set 𝒬 and those that do not (they lie in 𝒬𝑛𝑠). The log score(𝑥,𝒬),
in Equation 5.3, is evaluated via Monte-Carlo sampling and the log-sum-exp trick.
The expectation is differentiable with respect to 𝛾, 𝜑 via the reparameterization trick
(Kingma & Welling, 2014; Rezende et al. , 2014). For the margin Δ we use the
mean-squared-error between the the posterior means of 𝑥, 𝑥𝑛𝑠. We provide a visual
depiction of how the loss is evaluated using the LRN in Figure 5-3.

107



Combined Loss: With the unsupervised learning objective for the Data Model
and the supervised max-margin loss function (Equation 5.4) for the LRN, we obtain
the following loss to jointly learn 𝜃, 𝜑, 𝛾:

min
𝜃.𝜑.𝛾

1

𝑁

𝑁∑︁

𝑖=1

1

𝐶 + 1
[−ℒ(𝑥𝑖; 𝜃, 𝜑)] + (5.5)

𝐶

𝐶 + 1
I[𝑥𝑖 ∈ 𝒴 ]ℒmm(𝑥𝑖; 𝛾, 𝜑)

where 𝐶 is a regularization constant that trades off between the supervised and the
unsupervised loss. The unsupervised loss learns a representation space constrained
to lie close to the prior while explaining the data under the generative model. The
max-margin loss modifies this representation space so that dissimilar points are kept
apart. Note that Equation 5.5 is no longer a valid bound on the marginal likelihood
of the training set (for 𝐶 > 0).

5.6 Evaluation

The goal of this section is threefold: (1) to study whether 𝑝rm(𝑧|𝒬)is learnable from
data using the max-margin learning objective – we expect this to be challenging since
we learn the parameters of a model that is itself used to evaluate the the score function
in the loss; (2) studying the role of parameter sharing between the inference network
and the LRN – i.e. whether the latter can change the former in adversarial scenarios;
and (3) studying the utility of the framework for few-shot learning.

We will release code in Keras (Chollet et al. , 2015). Appendix A contains detailed
information on the neural architectures of the deep generative models used in the eval-
uation. We learn parameters with a learning rate of 0.00005 and adaptive momentum
updates given by ADAM (Kingma & Ba, 2014). We set the value 𝐶 separately for
each experiment. When there is a task to be solved, 𝐶 can be set using the validation
data. When using a pre-trained Data Model, we found it useful to anneal 𝐶 from
a higher to a lower value so that the task-specific supervised term can overcome
(potentially) suboptimal latent spaces learned from unsupervised data. We use the
following datasets for our study:

Synthetic Pinwheel: A synthetic dataset of two-dimensional points arranged on a
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(b) Learning dynamics: (Top left)
Visualization of adversarially labelled
data (relative to the learned aggre-
gate posterior in Figure 5-4a (top
right)). The remaining plots are class
coloured visualizations of the aggre-
gate posterior (during training) while
allowing the LRN to fine-tune the la-
tent space of the DGM.

Figure 5-4: Qualitative evaluation on pinwheel data: Studying how the latent
space of the data changes over the course of fine-tuning on the synthetic, pinwheel
dataset.

pinwheel taken from the work of Johnson et al. (2016). We depict the raw data in
Figure 5-4a. The dataset is created with five labels.

MNIST digits: 50000 black and white images of handwritten digits (LeCun, 1998).

MiniImagenet: A subsampled set of images taken from the Imagenet repository setup
for the task of k-shot learning by Vinyals et al. (2016). We use the train-validate-test
split kindly provided by Ravi & Larochelle (2016).

5.6.1 Learning 𝑝(𝑧|𝒬)

As a sanity check, we begin by first training a deep generative model (without labels
and using a one-dimensional latent space) on the Pinwheel dataset. We visualize the
raw-data and learned aggregate posterior

∑︀
𝑥 𝑞dm(𝑧|𝑥;𝜑) in Figure 5-4a (top row).

We see that the unsupervised learning alone induces class separation in the aggregate
posterior distribution. Using the learned model, we hold fixed parameters: 𝜃, 𝜑 and
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learn the parameters 𝛾 of the LRN using the loss function in 5.4 with 𝐶 = 2000. We
form a kernel density estimate of samples from 𝑝rm(𝑧|𝒬) using randomly constructed
sets of points derived from the red and green clusters. In Figure 5-4a (bottom row),
we see that samples from the LRN correspond to regions of the latent space associated
with 𝒬. On synthetic examples, the LRN finds regions of latent space corresponding
to points from a query 𝒬.

5.6.2 Changing inductive biases at test-time

Previously, we worked with a model where the structure of the latent space (as seen
in the aggregate posterior distribution) formed during unsupervised learning coincided
with how points were grouped into sets. Here, we study what happens where the
notion of which points are similar changes at test time. We relabel the pinwheel
dataset so that the yellow and orange points form one class while the green, red and
blue form the other (see Figure 5-4b, top left). This corresponds to an adversarial
labelling of the data since we use a deep generative model in which points in the same
class are far apart in the learned latent space. If we keep 𝜃, 𝜑 fixed then 𝑝rm(𝑧|𝒬)
(whose output is parameterized as a unimodal Gaussian distribution) cannot capture
the relevant subspace.

We have two choices here; we can either consider richer parameterizations for 𝑝rm(𝑧|𝒬)
that are capable of capturing multi-modal structure in the latent space using techniques
proposed by Rezende & Mohamed (2015), or we can instead allow the 𝑝rm(𝑧|𝒬) to
change the underlying latent space of the generative model by back-propagating
through the parameters of the inference network. Here, we opt for the latter, though
the former is an avenue for future work.

We minimize Equation 5.5 while annealing the constant 𝐶 from 1000 → 1 linearly
through the course of training. To gain insight into the learning dynamics of the
LRN during training, we visualize the aggregate posterior of the generative model (via
the fine-tuned inference network) in Figure 5-4b through the course of training. The
role of this adversarial scenario is to highlight two important points (1) unsupervised
learning is typically unidentifiable and may not learn a representation appropriate to
all tasks and (2) learning with the latent reasoning network can overcome a suboptimal
(relative to the task at hand) representation and transform it to a more suitable one.
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5.6.3 Modeling high-dimensional data

Inducing diversity in latent space: Moving beyond low-dimensional data, we
study learning LRNs on MNIST digits. We use a Data Model with a two-dimensional
latent space for this experiment. We begin by training the model in a fully unsupervised
manner and visualize the learned latent space in the form of the aggregate posterior
(Figure 5-5a [left]). Although there is some class separability, we find that the
unsupervised learning algorithm concentrates much of the probability mass together.

We re-learn the same model with the loss in Equation 5.5 where 𝐶 is set to 3000 (and
annealed to 1). We again visualize the new aggregate posterior distribution of the
Data Model in Figure 5-5a (middle and right). When learning with Equation 5.5, the
inference network uses more of the latent space in the model because the max-margin
loss pushes points in different classes further apart.

Qualitative Analysis of MNIST digits: To validate our method, we provide
visualizations on the MNIST dataset. We select a handful of labelled examples 𝒬
(Figure 5-5b, left) and visualize both their posterior means and samples from 𝑝(𝑧|𝒬)
(Figure 5-5b, middle). Then, for each sample from 𝑝rm(𝑧|𝒬), we evaluate the fine-
tuned 𝑝dm(𝑥|𝑧) and visualize the images in Figure 5-5b (right). We see that the
generative model fine-tuned with the learning algorithm retains its ability to generate
meaningful samples.

5.6.4 Few-shot learning with the Bayes factor

The task of k-shot learning is to identify the class an object came from given a single
example from 5 other classes (1-shot, 5-way). In the 5-shot, 5-way task. there are
5 examples provided from each of the 5 potential classes. We use an LRN with a
deep-discriminative model to obtain near state of the art performance in few-shot
learning on the MiniImagenet dataset.

Following (Bauer et al. , 2017), who show that discriminative models alone form
powerful baselines for this task on this dataset, we pretrain an 18 layer Resnet (He
et al. , 2016) convolutional neural network to predict class labels at training time.
We use early stopping on a validation set based on the nearest neighbor performance
of the learned embeddings (obtained from the final layer of the ResNet) to identify
the best model. Building a good generative model of the images in MiniImagenet
is difficult and so instead, we use the fixed embeddings as a 256 dimensional proxy
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(a) Training dynamics for MNIST: Aggregate (two-dimensional) posterior of deep
generative model of MNIST (coloured by label). The left corresponds to a model trained
with unsupervised data only; the middle & right show the aggregate posteriors for a model
fine-tuned using Equation 5.5.

Latent Space [Visualization] Decoded LRN SamplesRaw Images

(b) Test-time evaluation of LRN on MNIST: On the left are a set of query points 𝒬
drawn from the same class, in the middle, we visualize samples from 𝑞dm(𝑧|𝑥;𝜑) for each of
the points and 𝑝rm(𝑧|𝒬). On the right is the output of the fine-tuned conditional density
𝑝dm(𝑥|𝑧) for samples drawn from 𝑝rm(𝑧|𝒬).

Figure 5-5: Qualitative evaluation on MNIST: Studying the effect of fine-tuning
the latent space of the data model on MNIST.
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for each image. We initialize 𝑞dm(𝑧|𝑥;𝜑) with the pretrained Resnet and set up
a deep generative model to maximize the likelihood of the fixed embeddings (after
discriminative pre-training).

For this task, when comparing to the many different approaches proposed, it is
challenging to control for both the depth of the encoder that parameterizes the
representation and the various algorithmic approach used to tackle the problem using
the representation. Therefore, our two take-aways from Table 5.1 are: (1) on the
1 shot and 5 shot task, we outperform a strong nearest neighbors baseline created
using fixed (but learned) embeddings suggesting that our algorithmic approach bears
promise for this task and (2) the method is competitive with other state of the art
approaches.

Table 5.1: 5-way MiniImagenet task: Accuracies for few-shot learning on the MiniIma-
genet task. The first row contains our method where higher is better.

Model 1-shot 5-shot

Nearest Neighbor 51.4± 0.08 67.5± 0.08
Ours [Resnet18 encoder] 53.5± 0.08 68.8± 0.08

Matching Networks 46.6 60.0
(Vinyals et al. , 2016)
MAML 48.7 63.1
(Finn et al. , 2017)
Prototypical Nets 49.4 68.2
(Snell et al. , 2017)
MetaNets 49.2 *
(Munkhdalai & Yu, 2017)
TCML 56.7 68.9
(Mishra et al. , 2018)

5.7 Related work

Max Margin Learning: Max margin parameter estimation has been widely used in
machine learning (e.g. in structural SVMs (Yu & Joachims, 2009) and in discriminative
Markov networks (Zhu & Xing, 2009)). (Li et al. , 2015a) give a doubly stochastic
subgradient algorithm for regularized maximum likelihood estimation when dealing
with max-margin posterior constraints.
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(Zaheer et al. , 2017) experiment with max-margin learning using a variant of the
DeepSets model to predict a scalar score conditioned on a set. While (Zaheer et al.
, 2017) cite the estimator in (Ghahramani & Heller, 2005) as motivation for their
model, they do not explicitly use, parameterize, or differentiate through the Bayes
Factor in a generative model of data.

Inductive Transfer and Metric Learning: Lake et al. (2013) use probabilistic
inference in a hierarchical model to classify unseen examples by their probability of
being in a new class. Instead of the Bayes Factor, they use the posterior predictive
obtained via the use of a MCMC algorithm to score target points relative to a query.
(Ghahramani & Heller, 2005) evaluate the Bayes factor analytically in exponential
family distributions. What we gain in for sacrificing tractability is the ability to
work within a richer class of models. Though not motivated within the context of a
hierarchical model, (Engel et al. , 2018) use an adversarial loss to recognize regions of
latent space that correspond to points with a specified class.

Vinyals et al. (2016) learn a parametric K-nearest neighbor classifiers to predict
whether a target item is within the same class as 𝑘-others. (Snell et al. , 2017)
associate a point with a prototype within a set and use it to answer whether an object
is in the same class as others. (Bauer et al. , 2017) show that the features from a
ResNet (He et al. , 2016) model already provide a powerful feature representation in
which a k-nearest neighbor classifier performs remarkably well. The Neural Statistician
(Edwards & Storkey, 2016) learns a model similar 2 to the Reasoning Model in
Figure 5-2 (b) by maximizing the likelihood of sets 𝒬. Their method does not use the
Bayes Factor to score items; it also does not permit easy initialization with pre-trained
Data Models since the full model is trained with queries.

We tune the latent space of a deep generative model to enhance class separability for
test time tasks. By contrast, meta learning algorithms learn to tune the parameters
of an algorithm or a model. (Finn et al. , 2017) prime the parameters of a neural
network to have high accuracy at test time using second order gradient information.

Our work has close parallels with metric-learning; here the metric learned lies in
the latent space of a deep generative model. (Bar-Hillel et al. , 2005) proposed
Relevant Component Analysis, an optimization problem that jointly performs (linear)
dimensionality reduction and learns a Mahalanobis metric using queries.

2Their model does not enforce the conditional independence statement 𝑥𝑡 || 𝒬|𝑧𝑡
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5.8 Discussion

We seek good, task-specific inductive biases to quantify how similar a point is to a
set. We give new theoretical and practical constructs towards this goal. We break
up the problem into two parts: learn a good representation and tune the learned
representation for a specific notion of similarity. Using the latent space in a deep
generative model as our representation, we use the Bayes Factor to quantify similarity.

We derive conditions under which there exists an equivalence between a generative
model where data are generated independently and a hierarchical model that jointly
generates sets of (similar) points. Using this insight, we derive a differentiable estimator
for the Bayes Factor; the estimator poses the comparison between a point and a set as
overlap in latent space. With the Bayes Factor as a differentiable scoring mechanism,
we give a max-margin learning algorithm capable of changing the inductive bias of
a (potentially pre-trained) deep generative model. To evaluate the Bayes Factor, we
propose a neural architecture for a latent reasoning network : a set conditional density
that amortizes the posterior predictive distribution of a hierarchical model.

Our approach has limitations. By directly parameterizing the posterior predictive
density, and not the prior 𝑝rm(𝑤) and conditional 𝑝rm(𝑧|𝑤), we lose the ability to
sample points from the hierarchical generative model. Working with a set of models
in which Assumption 1 holds may implicitly only find posterior predictive densities
under relatively simple model families of 𝑝rm(𝑤) and 𝑝rm(𝑧|𝑤). Finally, enforcing
that property identity in 𝑤 is conditionally independent of the data 𝑥, given the
representation 𝑧, may make for a challenging learning problem – 𝑧 has to represent
both the property and variability in the property conditional distribution of the data.

An avenue of future work is leveraging vast amounts of unlabeled data for representation
learning informed by a small amount of supervision to guide either during learning, or
after learning, the structured of the learned space. Yet another interesting direction
would be to learn LRNs that parameterize distributions over hierarchies of latent
variables.
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Chapter 6

Deep Markov Models

In the previous three chapters, we described algorithms for learning and prediction
with deep generative models of static, high-dimensional data. However, one of the
key challenges we outline in Chapter 1 is the temporal nature in which observational
clinical data manifests. In this chapter we introduce Deep Markov Models (DMMs), a
deep generative model of sequential data. DMMs are a Gaussian state space model
wherein the conditional probabilities are parameterized by deep neural networks. We
derive an efficient learning algorithm for this model and showcase its flexibility in
unsupervised learning on a wide variety of datasets including a cohort of diabetic
patients.

Gaussian state space models have been used for decades as generative models of
sequential data. They admit an intuitive probabilistic interpretation, have a simple
functional form, and enjoy widespread adoption. We introduce a unified algorithm to
efficiently learn a broad class of linear and non-linear state space models, including
variants where the emission and transition distributions are modeled by deep neural
networks. Our learning algorithm simultaneously learns a compiled inference network
and the generative model, leveraging a structured variational approximation parame-
terized by recurrent neural networks to mimic the posterior distribution. We apply
the learning algorithm to both synthetic and real-world datasets, demonstrating its
scalability and versatility. We find that using the structured approximation to the
posterior results in models with significantly higher held-out likelihood.
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6.1 Introduction

Models of sequence data such as hidden Markov models (HMMs) and recurrent neural
networks (RNNs) are widely used in machine translation, speech recognition, and
computational biology. Linear and non-linear Gaussian state space models (GSSMs,
Fig. 6-1) are used in applications including robotic planning and missile tracking.
However, despite huge progress over the last decade, efficient learning of non-linear
models from complex high dimensional time-series remains a major challenge. Our
paper proposes a unified learning algorithm for a broad class of GSSMs, and we
introduce an inference procedure that scales easily to high dimensional data, compiling
approximate (and where feasible, exact) inference into the parameters of a neural
network.

In engineering and control, the parametric form of the GSSM model is often known,
with typically a few specific parameters that need to be fit to data. The most
commonly used approaches for these types of learning and inference problems are
often computationally demanding, e.g. dual extended Kalman filter (Wan & Nelson,
1997), expectation maximization (Briegel & Tresp, 1999; Ghahramani & Roweis,
1999) or particle filters (Schön et al. , 2011). Our compiled inference algorithm can
easily deal with high-dimensions both in the observed and the latent spaces, without
compromising the quality of inference and learning.

When the parametric form of the model is unknown, we propose learning Deep
Markov Models (DMM), a class of generative models where linear emission and
transition distributions are replaced with complex multi-layer perceptrons (MLPs).
These are GSSMs that retain the Markovian structure of HMMs, but leverage the
representational power of deep neural networks to model complex high dimensional
data. If one augments a DMM model such as the one presented in Fig. 6-1 with edges
from the observations 𝑥𝑡 to the latent states of the following time step 𝑧𝑡+1, then the
DMM can be seen to be similar to, though more restrictive than, stochastic RNNs
(Bayer & Osendorfer, 2014) and variational RNNs (Chung et al. , 2015).

Our learning algorithm performs stochastic gradient ascent on a variational lower bound
of the likelihood. Instead of introducing variational parameters for each data point,
we compile the inference procedure at the same time as learning the generative model.
This idea was originally used in the wake-sleep algorithm for unsupervised learning
(Hinton et al. , 1995), and has since led to state-of-the-art results for unsupervised
learning of deep generative models (Kingma & Welling, 2014; Mnih & Gregor, 2014;
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Figure 6-1: Generative Models of Sequential Data: (Top Left) Hidden Markov
Model (HMM), (Top Right) Deep Markov Model (DMM) � denotes the neural networks
used in DMMs for the emission and transition functions. (Bottom) Recurrent Neural Network
(RNN), ♦ denotes a deterministic intermediate representation. Code for learning DMMs and
reproducing our results may be found at: github.com/clinicalml/structuredinference

Rezende et al. , 2014).

Specifically, we introduce a new family of structured inference networks, parameterized
by recurrent neural networks, and evaluate their effectiveness in three scenarios: (1)
when the generative model is known and fixed, (2) in parameter estimation when
the functional form of the model is known and (3) for learning deep Markov models.
By looking at the structure of the true posterior, we show both theoretically and
empirically that inference for a latent state should be performed using information from
its future, as opposed to recent work which performed inference using only information
from the past Chung et al. (2015); Gan et al. (2015); Gregor et al. (2015), and that
a structured variational approximation outperforms mean-field based approximations.
Our approach may easily be adapted to learning more general generative models, for
example models with edges from observations to latent states.

Finally, we learn a Deep Markov Model on a polyphonic music dataset and on a
dataset of electronic health records (a complex high dimensional setting with missing
data). We use the model learned on health records to ask queries such as “what would
have happened to patients had they not received treatment”, and show that our model
correctly identifies the way certain medications affect a patient’s health.

Related Work: Learning GSSMs with MLPs for the transition distribution was
considered by Raiko & Tornio (2009). They approximate the posterior with non-linear
dynamic factor analysis Valpola & Karhunen (2002), which scales quadratically with
the observed dimension and is impractical for large-scale learning.

Recent work has considered variational learning of time-series data using structured
inference or recognition networks. Archer et al. propose using a Gaussian approxima-
tion to the posterior distribution with a block-tridiagonal inverse covariance. Johnson
et al. use a conditional random field as the inference network for time-series models.
Concurrent to our own work, Fraccaro et al. also learn sequential generative models
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using structured inference networks parameterized by recurrent neural networks.

Bayer & Osendorfer and Fabius & van Amersfoort create a stochastic variant of
RNNs by making the hidden state of the RNN at every time step be a function of
independently sampled latent variables. Chung et al. apply a similar model to speech
data, sharing parameters between the RNNs for the generative model and the inference
network. Gan et al. learn a model with discrete random variables, using a structured
inference network that only considers information from the past, similar to Chung
et al. and Gregor et al. ’s models. In contrast to these works, we use information
from the future within a structured inference network, which we show to be preferable
both theoretically and practically. Additionally, we systematically evaluate the impact
of the different variational approximations on learning.

Watter et al. construct a first-order Markov model using inference networks. However,
their learning algorithm is based on data tuples over consecutive time steps. This
makes the strong assumption that the posterior distribution can be recovered based
on observations at the current and next time-step. As we show, for generative models
like the one in Fig. 6-1, the posterior distribution at any time step is a function of all
future (and past) observations.

6.2 Setup

Gaussian State Space Models: We consider both inference and learning in a class
of latent variable models given by: We denote by 𝑧𝑡 a vector valued latent variable and
by 𝑥𝑡 a vector valued observation. A sequence of such latent variables and observations
is denoted �⃗�, �⃗� respectively.

𝑧𝑡 ∼ 𝒩 (G𝛼(𝑧𝑡−1,Δ𝑡), S𝛽(𝑧𝑡−1,Δ𝑡)) (Transition) (6.1)

𝑥𝑡 ∼ Π(F𝜅(𝑧𝑡)) (Emission) (6.2)

We assume that the distribution of the latent states is a multivariate Gaussian with a
mean and covariance which are differentiable functions of the previous latent state
and Δ𝑡 (the time elapsed of time between 𝑡− 1 and 𝑡). The multivariate observations
𝑥𝑡 are distributed according to a distribution Π (e.g., independent Bernoullis if the
data is binary) whose parameters are a function of the corresponding latent state 𝑧𝑡.
Collectively, we denote by 𝜃 = {𝛼, 𝛽, 𝜅} the parameters of the generative model.
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Eq. 6.1 subsumes a large family of linear and non-linear Gaussian state space models.
For example, by setting G𝛼(𝑧𝑡−1) = 𝐺𝑡𝑧𝑡−1, S𝛽 = Σ𝑡,F𝜅 = 𝐹𝑡𝑧𝑡, where 𝐺𝑡, Σ𝑡 and 𝐹𝑡

are matrices, we obtain linear state space models. The functional forms and initial
parameters for G𝛼, S𝛽,F𝜅 may be pre-specified.

Variational Learning: Using recent advances in variational inference we optimize
a variational lower bound on the data log-likelihood. We will make use of an inference
network or recognition network Hinton et al. (1995); Kingma & Welling (2014); Mnih
& Gregor (2014); Rezende et al. (2014), a neural network which approximates the
intractable posterior. This is a parametric conditional distribution that is optimized
to perform inference. Throughout this paper we will use 𝜃 to denote the parameters
of the generative model, and 𝜑 to denote the parameters of the inference network.

For the remainder of this section, we consider learning in a Bayesian network whose
joint distribution factorizes as: 𝑝(𝑥, 𝑧) = 𝑝𝜃(𝑧)𝑝𝜃(𝑥|𝑧). The posterior distribution
𝑝𝜃(𝑧|𝑥) is typically intractable. Using the well-known variational principle, we posit
an approximate posterior distribution 𝑞𝜑(𝑧|𝑥) to obtain the following lower bound on
the marginal likelihood:

log 𝑝𝜃(𝑥) ≥ E
𝑞𝜑(𝑧|𝑥)

[log 𝑝𝜃(𝑥|𝑧)]−KL( 𝑞𝜑(𝑧|𝑥)||𝑝𝜃(𝑧) ), (6.3)

where the inequality is by Jensen’s inequality. Kingma & Welling; Rezende et al. use
a neural net (with parameters 𝜑) to parameterize 𝑞𝜑. The challenge in the resulting
optimization problem is that the lower bound in Eq. 6.3 includes an expectation
w.r.t. 𝑞𝜑, which implicitly depends on the network parameters 𝜑. When using a
Gaussian variational approximation 𝑞𝜑(𝑧|𝑥) ∼ 𝒩 (𝜇𝜑(𝑥),Σ𝜑(𝑥)), where 𝜇𝜑(𝑥),Σ𝜑(𝑥)

are parametric functions of the observation 𝑥, this difficulty is overcome by using
stochastic backpropagation: a simple transformation allows one to obtain unbiased
Monte Carlo estimates of the gradients of E𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] with respect to 𝜑. The
KL term in Eq. 6.3 can be estimated similarly since it is also an expectation. When
the prior 𝑝𝜃(𝑧) is normally distributed, the KL and its gradients may be obtained
analytically.

6.3 A factorized variational lower bound

We leverage stochastic backpropagation to learn generative models given by Eq. 6.1,
corresponding to the graphical model in Fig. 6-1. Our insight is that for the purpose
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of inference, we can use the Markov properties of the generative model to guide us
in deriving a structured approximation to the posterior. Specifically, the posterior
factorizes as:

𝑝(�⃗�|�⃗�) = 𝑝(𝑧1|�⃗�)
𝑇∏︁

𝑡=2

𝑝(𝑧𝑡|𝑧𝑡−1, 𝑥𝑡, . . . , 𝑥𝑇 ). (6.4)

To see this, use the independence statements implied by the graphical model in Fig.
6-1 to note that 𝑝(�⃗�|�⃗�), the true posterior, factorizes as:

𝑝(�⃗�|�⃗�) = 𝑝(𝑧1|�⃗�)
𝑇∏︁

𝑡=2

𝑝(𝑧𝑡|𝑧𝑡−1, �⃗�)

Now, we notice that 𝑧𝑡 || 𝑥1, . . . , 𝑥𝑡−1|𝑧𝑡−1, yielding the desired result. The significance
of Eq. 6.4 is that it yields insight into the structure of the exact posterior for the class
of models laid out in Fig. 6-1.

We directly mimic the structure of the posterior with the following factorization of
the variational approximation:

𝑞𝜑(�⃗�|�⃗�) = 𝑞𝜑(𝑧1|𝑥1, . . . , 𝑥𝑇 )
𝑇∏︁

𝑡=2

𝑞𝜑(𝑧𝑡|𝑧𝑡−1, 𝑥𝑡, . . . , 𝑥𝑇 ) (6.5)

s.t. 𝑞𝜑(𝑧𝑡|𝑧𝑡−1, 𝑥𝑡, . . . , 𝑥𝑇 ) ∼
𝒩 (𝜇𝜑(𝑧𝑡−1, 𝑥𝑡, . . . , 𝑥𝑇 ),Σ𝜑(𝑧𝑡−1, 𝑥𝑡, . . . , 𝑥𝑇 ))

where 𝜇𝜑 and Σ𝜑 are functions parameterized by neural nets. Although 𝑞𝜑 has the
option to condition on all information across time, Eq. 6.4 suggests that in fact it
suffices to condition on information from the future and the previous latent state. The
previous latent state serves as a summary statistic for information from the past.

Exact Inference: We can match the factorization of the true posterior using the
inference network but using a Gaussian variational approximation for the approximate
posterior over each latent variable (as we do) limits the expressivity of the inferential
model, except for the case of linear dynamical systems where the posterior distribution
is Normally distributed. However, one could augment our proposed inference network
with recent innovations that improve the variational approximation to allow for multi-
modality Rezende & Mohamed (2015); Tran et al. (2016). Such modifications could
yield black-box methods for exact inference in time-series models, which we leave for
future work.

Deriving a variational lower bound: For a generative model (with parameters
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𝜃) and an inference network (with parameters 𝜑), we are interested in max𝜃 log 𝑝𝜃(�⃗�).
For ease of exposition, we instantiate the derivation of the variational bound for a
single data point �⃗� though we learn 𝜃, 𝜑 from a corpus.

The lower bound in Eq. 6.3 has an analytic form of the KL term only for the simplest
of transition models G𝛼, S𝛽 between 𝑧𝑡−1 and 𝑧𝑡 (Eq. 6.1). One could estimate the
gradient of the KL term by sampling from the variational model, but that results
in high variance estimates and gradients. We use a different factorization of the KL
term (obtained by using the prior distribution over latent variables), leading to the
variational lower bound we use as our objective function:

ℒ(�⃗�; (𝜃, 𝜑)) =
𝑇∑︁

𝑡=1

E
𝑞𝜑(𝑧𝑡|�⃗�)

[log 𝑝𝜃(𝑥𝑡|𝑧𝑡)] (6.6)

−KL(𝑞𝜑(𝑧1|�⃗�)||𝑝𝜃(𝑧1))−
𝑇∑︁

𝑡=2

E
𝑞𝜑(𝑧𝑡−1|�⃗�)

[KL(𝑞𝜑(𝑧𝑡|𝑧𝑡−1, �⃗�)||𝑝𝜃(𝑧𝑡|𝑧𝑡−1))] .

The key point is the resulting objective function has more stable analytic gradients.
Without the factorization of the KL divergence in Eq. 6.6, we would have to estimate
KL(𝑞(�⃗�|�⃗�)||𝑝(�⃗�)) via Monte-Carlo sampling, since it has no analytic form. In contrast,
in Eq. 6.6 the individual KL terms do have analytic forms. Section 6.3.1 simplifies
the lower bound we use during learning while Section 6.3.2 derives the analytic forms
for the KL divergence term in the simplification.

6.3.1 Simplifying the lower bounds

We can derive the bound on the likelihood ℒ(�⃗�; (𝜃, 𝜑)) as follows:

log 𝑝𝜃(�⃗�) ≥
∫︁

�⃗�

𝑞𝜑(�⃗�|�⃗�) log
𝑝𝜃(�⃗�)𝑝𝜃(�⃗�|�⃗�)
𝑞𝜑(�⃗�|�⃗�)

𝑑�⃗� = E
𝑞𝜑(�⃗�|�⃗�)

[log 𝑝𝜃(�⃗�|�⃗�)]−KL(𝑞𝜑(�⃗�|�⃗�)||𝑝𝜃(�⃗�))

( Using 𝑥𝑡 || 𝑥¬𝑡|𝑧𝑡 )

=
𝑇∑︁

𝑡=1

E
𝑞𝜑(𝑧𝑡|�⃗�)

[log 𝑝𝜃(𝑥𝑡|𝑧𝑡)]−KL(𝑞𝜑(�⃗�|�⃗�)||𝑝𝜃(�⃗�)) = ℒ(�⃗�; (𝜃, 𝜑)) (6.7)

In the following we omit the dependence of 𝑞 on �⃗�, and omit the subscript 𝜑. We
can show that the KL divergence between the approximation to the posterior and the
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prior simplifies as:

KL(𝑞(𝑧1, . . . , 𝑧𝑇 )||𝑝(𝑧1, . . . , 𝑧𝑇 )) =
∫︁

𝑧1

. . .

∫︁

𝑧𝑇

𝑞(𝑧1) . . . 𝑞(𝑧𝑇 |𝑧𝑇−1) log
𝑝(𝑧1, . . . , 𝑧𝑇 )

𝑞(𝑧1)..𝑞(𝑧𝑇 |𝑧𝑇−1)

(Factorization of the variational distribution)

=

∫︁

𝑧1

. . .

∫︁

𝑧𝑇

𝑞(𝑧1) . . . 𝑞(𝑧𝑇 |𝑧𝑇−1) log
𝑝(𝑧1)𝑝(𝑧2|𝑧1) . . . 𝑝(𝑧𝑇 |𝑧𝑇−1)

𝑞(𝑧1) . . . 𝑞(𝑧𝑇 |𝑧𝑇−1)

(Factorization of the prior)

=

∫︁

𝑧1

. . .

∫︁

𝑧𝑇

𝑞(𝑧1) . . . 𝑞(𝑧𝑇 |𝑧𝑇−1) log
𝑝(𝑧1)

𝑞(𝑧1)
+

𝑇∑︁

𝑡=2

∫︁

𝑧1

. . .

∫︁

𝑧𝑇

𝑞(𝑧1) . . . 𝑞(𝑧𝑇 |𝑧𝑇−1) log
𝑝(𝑧𝑡|𝑧𝑡−1)

𝑞(𝑧𝑡|𝑧𝑡−1)

=

∫︁

𝑧1

𝑞(𝑧1) log
𝑝(𝑧1)

𝑞(𝑧1)
+

𝑇∑︁

𝑡=2

∫︁

𝑧𝑡−1

∫︁

𝑧𝑡

𝑞(𝑧𝑡) log
𝑝(𝑧𝑡|𝑧𝑡−1)

𝑞(𝑧𝑡|𝑧𝑡−1)

(Each expectation over 𝑧𝑡 is constant for 𝑡 /∈ {𝑡, 𝑡− 1})

= KL(𝑞(𝑧1)||𝑝(𝑧1)) +
𝑇∑︁

𝑡=2

E
𝑞(𝑧𝑡−1)

[KL(𝑞(𝑧𝑡|𝑧𝑡−1)||𝑝(𝑧𝑡|𝑧𝑡−1))]

For evaluating the marginal likelihood on the test set, we can use the following
Monte-Carlo estimate:

𝑝(�⃗�) u
1

𝑆

𝑆∑︁

𝑠=1

𝑝(�⃗�|�⃗�(𝑠))𝑝(�⃗�(𝑠))
𝑞(�⃗�(𝑠)|�⃗�) �⃗�(𝑠) ∼ 𝑞(�⃗�|�⃗�) (6.8)

This may be derived in a manner akin to the one depicted in Appendix E in Rezende
et al. (2014) or Appendix D in Kingma & Welling (2014).

The log likelihood on the test set is computed using:

log 𝑝(�⃗�) u log
1

𝑆

𝑆∑︁

𝑠=1

exp log

[︂
𝑝(�⃗�|�⃗�(𝑠))𝑝(�⃗�(𝑠))

𝑞(�⃗�(𝑠)|�⃗�)

]︂
(6.9)

Eq. 6.9 may be computed in a numerically stable manner using the log-sum-exp trick.
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6.3.2 Analytic forms of the KL divergence

Maximum likelihood learning requires us to compute:

KL(𝑞(𝑧1, . . . , 𝑧𝑇 )||𝑝(𝑧1, . . . , 𝑧𝑇 ))

= KL(𝑞(𝑧1)||𝑝(𝑧1)) +
𝑇−1∑︁

𝑡=2

E
𝑞(𝑧𝑡−1)

[KL(𝑞(𝑧𝑡|𝑞𝑡−1)||𝑝(𝑧𝑡|𝑧𝑡−1))] (6.10)

The KL divergence between two multivariate Gaussians 𝑞, 𝑝 with respective means
and covariances 𝜇𝑞,Σ𝑞, 𝜇𝑝,Σ𝑝 can be written as:

KL(𝑞||𝑝) = 1

2
(log
|Σ𝑝|
|Σ𝑞|⏟  ⏞  

(𝑎)

−𝐷 + Tr(Σ−1
𝑝 Σ𝑞)⏟  ⏞  
(𝑏)

+(𝜇𝑝 − 𝜇𝑞)𝑇Σ−1
𝑝 (𝜇𝑝 − 𝜇𝑞)⏟  ⏞  

(𝑐)

) (6.11)

The choice of 𝑞 and 𝑝 is suggestive. using Eq. 6.10 & 6.11, we can derive a closed form
for the KL divergence between 𝑞(𝑧1 . . . 𝑧𝑇 ) and 𝑝(𝑧1 . . . 𝑧𝑇 ). 𝜇𝑞,Σ𝑞 are the outputs of
the variational model. Our functional form for 𝜇𝑝,Σ𝑝 is based on our generative and
can be summarized as:

𝜇𝑝1 = 0 Σ𝑝1 = 1 𝜇𝑝𝑡 = 𝐺(𝑧𝑡−1, 𝑢𝑡−1) = 𝐺𝑡−1 Σ𝑝𝑡 = Δ�⃗�

Here, Σ𝑝𝑡 is assumed to be a learned diagonal matrix and Δ a scalar parameter.

Term (a) For 𝑡 = 1, we have:

log
|Σ𝑝1|
|Σ𝑞1|

= log|Σ𝑝1|− log|Σ𝑞1|= − log|Σ𝑞1| (6.12)

For 𝑡 > 1, we have:

log
|Σ𝑝𝑡|
|Σ𝑞𝑡|

= log|Σ𝑝𝑡|− log|Σ𝑞𝑡|= 𝐷 log(Δ) + log|�⃗�|− log|Σ𝑞𝑡| (6.13)

Term (b) For 𝑡 = 1, we have:

Tr(Σ−1
𝑝1 Σ𝑞1) = Tr(Σ𝑞1) (6.14)
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For 𝑡 > 1, we have:

Tr(Σ−1
𝑝𝑡 Σ𝑞𝑡) =

1

Δ
Tr(diag(�⃗�)−1Σ𝑞𝑡) (6.15)

Term (c) For 𝑡 = 1, we have:

(𝜇𝑝1 − 𝜇𝑞1)𝑇Σ−1
𝑝1 (𝜇𝑝1 − 𝜇𝑞1) = ||𝜇𝑞1||2 (6.16)

For 𝑡 > 1, we have:

(𝜇𝑝𝑡 − 𝜇𝑞𝑡)𝑇Σ−1
𝑝𝑡 (𝜇𝑝𝑡 − 𝜇𝑞𝑡) = Δ(𝐺𝑡−1 − 𝜇𝑞𝑡)𝑇 diag(�⃗�)−1(𝐺𝑡−1 − 𝜇𝑞𝑡) (6.17)

Rewriting Eq. 6.10 using Eqns. 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, we get:

KL(𝑞(𝑧1, . . . , 𝑧𝑇 )||𝑝(𝑧1, . . . , 𝑧𝑇 )) =
1

2
((𝑇 − 1)𝐷 log(Δ) log|�⃗�|−

𝑇∑︁

𝑡=1

log|Σ𝑞𝑡|

+ Tr(Σ𝑞1) +
1

Δ

𝑇∑︁

𝑡=2

Tr(diag(�⃗�)−1Σ𝑞𝑡) + ||𝜇𝑞1||2

+Δ
𝑇∑︁

𝑡=2

E
𝑧𝑡−1

[︀
(𝐺𝑡−1 − 𝜇𝑞𝑡)𝑇 diag(�⃗�)−1(𝐺𝑡−1 − 𝜇𝑞𝑡)

]︀
)

6.3.3 Learning with gradient ascent

The objective in Eq. 6.6 is differentiable in the parameters of the model (𝜃, 𝜑). If the
generative model 𝜃 is fixed, we perform gradient ascent of Eq. 6.6 in 𝜑. Otherwise, we
perform gradient ascent in both 𝜑 and 𝜃. We use stochastic backpropagation Kingma
& Welling (2014); Rezende et al. (2014) for estimating the gradient w.r.t. 𝜑. Note
that the expectations are only taken with respect to the variables 𝑧𝑡−1, 𝑧𝑡, which are
the sufficient statistics of the Markov model. For the KL terms in Eq. 6.6, we use
the fact that the prior 𝑝𝜃(𝑧𝑡|𝑧𝑡−1) and the variational approximation to the posterior
𝑞𝜑(𝑧𝑡|𝑧𝑡−1, �⃗�) are both Normally distributed, and hence their KL divergence may be
estimated analytically.

Algorithm 4 depicts an overview of the learning algorithm. We outline the algorithm
for a mini-batch of size one, but in practice gradients are averaged across stochastically
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Algorithm 4 Learning a DMM with stochastic gradient descent: We use a single
sample from the recognition network during learning to evaluate expectations in the bound.
We aggregate gradients across mini-batches.

Inputs: Dataset 𝒟
Inference Model: 𝑞𝜑(�⃗�|�⃗�)
Generative Model: 𝑝𝜃(�⃗�|�⃗�), 𝑝𝜃(�⃗�)

while 𝑛𝑜𝑡𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑() do
1. Sample datapoint: �⃗� ∼ 𝒟
2. Estimate posterior parameters (Evaluate 𝜇𝜑,Σ𝜑)
3. Sample ^⃗𝑧 ∼ 𝑞𝜑(�⃗�|�⃗�)
4. Estimate conditional likelihood: 𝑝𝜃(�⃗�|^⃗𝑧) & KL
5. Evaluate ℒ(�⃗�; (𝜃, 𝜑))
6. Estimate MC approx. to ∇𝜃ℒ
7. Estimate MC approx. to ∇𝜑ℒ
(Use stochastic backpropagation to move gradients with respect to 𝑞𝜑 inside
expectation)
8. Update 𝜃, 𝜑 using ADAM (Kingma & Ba, 2014)

end while

sampled mini-batches of the training set. We take a gradient step in 𝜃 and 𝜑, typically
with an adaptive learning rate such as Kingma & Ba (2014).

6.4 Structured Inference Networks

We now detail how we construct the variational approximation 𝑞𝜑, and specifically
how we model the mean and diagonal covariance functions 𝜇 and Σ using recurrent
neural networks (RNNs).

Since our implementation only models the diagonal of the covariance matrix (the
vector valued variances), we denote this as 𝜎2 rather than Σ. This parameterization
cannot in general be expected to be equal to 𝑝𝜃(�⃗�|�⃗�), but in many cases is often a
reasonable approximation. We use RNNs due to their ability to scale well to large
datasets.

Table 6.1 details the different choices for inference networks that we evaluate. The
Deep Kalman Smoother DKS corresponds exactly to the functional form suggested
by Eq. 6.4, and is our proposed variational approximation. The DKS smoothes
information from the past (𝑧𝑡) and future (𝑥𝑡, . . . 𝑥𝑇 ) to form the approximate posterior
distribution.
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Table 6.1: Inference networks: BRNN refers to a Bidirectional RNN and comb.fxn is
shorthand for combiner function.

Inference network Variational approximation for 𝑧𝑡 Implemented with

MF-LR 𝑞(𝑧𝑡|𝑥1, . . . 𝑥𝑇 ) BRNN
MF-L 𝑞(𝑧𝑡|𝑥1, . . . 𝑥𝑡) RNN
ST-L 𝑞(𝑧𝑡|𝑧𝑡−1, 𝑥1, . . . 𝑥𝑡) RNN & comb.fxn
DKS 𝑞(𝑧𝑡|𝑧𝑡−1, 𝑥𝑡, . . . 𝑥𝑇 ) RNN & comb.fxn

ST-LR 𝑞(𝑧𝑡|𝑧𝑡−1, 𝑥1, . . . 𝑥𝑇 ) BRNN & comb.fxn

We also evaluate other possibilities for the variational models (inference networks) 𝑞𝜑:
two are mean-field models (denoted MF) and two are structured models (denoted
ST). They are distinguished by whether they use information from the past (denoted
L, for left), the future (denoted R, for right), or both (denoted LR). See Fig. 6-2
for an illustration of two of these methods. Each one is conditional on a different
subset of the observations to summarize information in the input sequence �⃗�. DKS
corresponds to ST-R.

The hidden states of the RNN parameterize the variational distribution, which go
through what we call the “combiner function”. We obtain the mean 𝜇𝑡 and diagonal
covariance 𝜎2

𝑡 for the approximate posterior at each time-step in a manner akin to
Gaussian belief propagation. Specifically, we interpret the hidden states of the forward
and backward RNNs as parameterizing the mean and variance of two Gaussian-
distributed “messages” summarizing the observations from the past and the future,
respectively. We then multiply these two Gaussians, performing a variance-weighted
average of the means. All operations should be understood to be performed element-
wise on the corresponding vectors. ℎleft

𝑡 , ℎright
𝑡 are the hidden states of the RNNs that

run from the past and the future respectively (see Fig. 6-2).

Combiner function for mean field approximations: For the MF-LR inference
network, the mean 𝜇𝑡 and diagonal variances 𝜎2

𝑡 of the variational distribution 𝑞𝜑(𝑧𝑡|�⃗�)
are predicted using the output of the RNN (not conditioned on 𝑧𝑡−1) as follows, where
softplus(𝑥) = log(1 + exp(𝑥)):

𝜇r = 𝑊 right
𝜇r ℎright

𝑡 + 𝑏right
𝜇r , 𝜎2

r = softplus(𝑊 right
𝜎2r

ℎright
𝑡 + 𝑏right

𝜎2r
)

𝜇l = 𝑊 left
𝜇l
ℎleft
𝑡 + 𝑏left𝜇l

, 𝜎2
l = softplus(𝑊 left

𝜎2
l
ℎleft
𝑡 + 𝑏left𝜎2

l
)

𝜇𝑡 =
𝜇r𝜎

2
l + 𝜇l𝜎

2
r

𝜎2
r + 𝜎2

l
; 𝜎2

𝑡 =
𝜎2

r𝜎
2
l

𝜎2
r + 𝜎2

l

128



Combiner function for structured approximations: The combiner functions for
the structured approximations are implemented as:

(For ST-LR)

ℎcombined =
1

3
(tanh(𝑊𝑧𝑡−1 + 𝑏) + ℎleft

𝑡 + ℎright
𝑡 ),

(For DKS)

ℎcombined =
1

2
(tanh(𝑊𝑧𝑡−1 + 𝑏) + ℎright

𝑡 ),

(Posterior Means and Covariances)

𝜇𝑡 = 𝑊𝜇ℎcombined + 𝑏𝜇, 𝜎2
𝑡 = softplus(𝑊𝜎2ℎcombined + 𝑏𝜎2)

The combiner function uses the tanh non-linearity from 𝑧𝑡−1 to approximate the
transition function (alternatively, one could share parameters with the generative
model), and here we use a simple weighting between the components.

Related work: Archer et al. ; Gao et al. use 𝑞(�⃗�|�⃗�) =
∏︀

𝑡 𝑞(𝑧𝑡|𝑧𝑡−1, �⃗�) where
𝑞(𝑧𝑡|𝑧𝑡−1, �⃗�) = 𝒩 (𝜇(𝑥𝑡),Σ(𝑧𝑡−1, 𝑥𝑡, 𝑥𝑡−1)). The key difference from our approach is
that this parameterization (in particular, conditioning the posterior means only on
𝑥𝑡) does not account for the information from the future relevant to the approximate
posterior distribution for 𝑧𝑡.

Johnson et al. interleave predicting the local variational parameters of the graphical
model (using an inference network) with steps of message passing inference. A key
difference between our approach and theirs is that we rely on the structured inference
network to predict the optimal local variational parameters directly. In contrast, in
Johnson et al. , any suboptimalities in the initial local variational parameters may be
overcome by the subsequent steps of optimization at additional computational cost.

Chung et al. propose the Variational RNN (VRNN) in which Gaussian noise is
introduced at each time-step of a RNN. Chung et al. use an inference network that
shares parameters with the generative model and only uses information from the
past. If one views the noise variables and the hidden state of the RNN at time-step 𝑡
together as 𝑧𝑡, then a factorization similar to Eq. 6.6 can be shown to hold, although
the KL term would no longer have an analytic form since 𝑝𝜃(𝑧𝑡|𝑧𝑡−1, 𝑥𝑡−1) would not
be Normally distributed. Nonetheless, our same structured inference networks (i.e.
using an RNN to summarize observations from the future) could be used to improve
the tightness of the variational lower bound, and our empirical results suggest that it
would result in better learned models.
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𝑥1 𝑥2 𝑥3

ℎleft
1 ℎleft

2 ℎleft
3Forward RNN

ℎright
1 ℎright

2 ℎright
3Backward RNN

(𝜇1,Σ1) (𝜇2,Σ2) (𝜇3,Σ3)Combiner function

(a) (a) (a)

𝑧1 𝑧2 𝑧30⃗

Figure 6-2: Structured Inference Networks: MF-LR and ST-LR variational approx-
imations for a sequence of length 3, using a bi-directional recurrent neural net (BRNN).
The BRNN takes as input the sequence (𝑥1, . . . 𝑥3), and through a series of non-linearities
denoted by the blue arrows it forms a sequence of hidden states summarizing information
from the left and right (ℎleft

𝑡 and ℎright
𝑡 ) respectively. Then through a further sequence of

non-linearities which we call the “combiner function” (marked (a) above), and denoted by the
red arrows, it outputs two vectors 𝜇 and Σ, parameterizing the mean and diagonal covariance
of 𝑞𝜑(𝑧𝑡|𝑧𝑡−1, �⃗�) of Eq. 6.5. Samples 𝑧𝑡 are drawn from 𝑞𝜑(𝑧𝑡|𝑧𝑡−1, �⃗�), as indicated by the
black dashed arrows. For the structured variational models ST-LR, the samples 𝑧𝑡 are fed
into the computation of 𝜇𝑡+1 and Σ𝑡+1, as indicated by the red arrows with the label (a).
The mean-field model does not have these arrows, and therefore computes 𝑞𝜑(𝑧𝑡|�⃗�). We use
𝑧0 = 0⃗. The inference network for DKS (ST-R) is structured like that of ST-LR except
without the RNN from the past.

6.5 Deep Markov Models

Following Raiko et al. (2006), we apply the ideas of deep learning to non-linear
continuous state space models. When the transition and emission function have an
unknown functional form, we parameterize G𝛼, S𝛽,F𝜅 from Eq. 6.1 with deep neural
networks. See Fig. 6-1 (right) for an illustration of the graphical model.

Emission function: We parameterize the emission function F𝜅 using a two-layer MLP
(multi-layer perceptron), MLP(𝑥,NL1,NL2) = NL2(𝑊2NL1(𝑊1𝑥+ 𝑏1) + 𝑏2)), where
NL denotes non-linearities such as ReLU, sigmoid, or tanh units applied element-wise
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to the input vector. For modeling binary data,

F𝜅(𝑧𝑡) = sigmoid(𝑊emissionMLP(𝑧𝑡,ReLU,ReLU) + 𝑏emission)

parameterizes the mean probabilities of independent Bernoullis.

Gated transition function: We parameterize the transition function from 𝑧𝑡 to 𝑧𝑡+1

using a gated transition function inspired by Gated Recurrent Units (Chung et al. ,
2014), instead of an MLP. Gated recurrent units (GRUs) are a neural architecture that
parameterizes the recurrence equation in the RNN with gating units to control the
flow of information from one hidden state to the next, conditioned on the observation.
Unlike GRUs, in the DMM, the transition function is not conditional on any of the
observations. All the information must be encoded in the completely stochastic latent
state. To achieve this goal, we create a Gated Transition Function. We would like the
model to have the flexibility to choose a linear transition for some dimensions while
having a non-linear transitions for the others. We adopt the following parameterization,
where I denotes the identity function and ⊙ denotes element-wise multiplication:

𝑔𝑡 = MLP(𝑧𝑡−1,ReLU, sigmoid) (Gating Unit)

ℎ𝑡 = MLP(𝑧𝑡−1,ReLU, I) (Proposed mean)

(Transition Mean G𝛼 and S𝛽)

𝜇𝑡(𝑧𝑡−1) = (1− 𝑔𝑡)⊙ (𝑊𝜇𝑝𝑧𝑡−1 + 𝑏𝜇𝑝) + 𝑔𝑡 ⊙ ℎ𝑡
𝜎2
𝑡 (𝑧𝑡−1) = softplus(𝑊𝜎2

𝑝
ReLU(ℎ𝑡) + 𝑏𝜎2

𝑝
)

Note that the mean and covariance functions both share the use of ℎ𝑡. In our
experiments, we initialize 𝑊𝜇𝑝 to be the identity function and 𝑏𝜇𝑝 to 0. The parameters
of the emission and transition function form the set 𝜃.

6.6 Evaluation

We use Adam Kingma & Ba (2014) with a learning rate of 0.0008 to train the DMM.
In the models we trained, the hidden dimension was set to be 100 for the emission
distribution and 200 in the transition function. We typically used RNN sizes from one
of {400, 600} and a latent dimension of size 100. We study the inference algorithm
and the model on three datasets.
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6.6.1 Synthetic data

Dataset: We consider simple linear and non-linear GSSMs. To train the inference
networks we use 𝑁 = 5000 datapoints of length 𝑇 = 25. We consider both one
and two dimensional systems for inference and parameter estimation. We compare
our results using the training value of the variational bound ℒ(�⃗�; (𝜃, 𝜑)) (Eq. 6.6)

and the RMSE =
√︁

1
𝑁

1
𝑇

∑︀𝑁
𝑖=1

∑︀𝑇
𝑡=1[𝜇𝜑(𝑥𝑖,𝑡)− 𝑧*𝑖,𝑡]2, where 𝑧* correspond to the true

underlying 𝑧’s that generated the data.

Compiling exact inference: We seek to understand whether inference networks
can accurately compile exact posterior inference into the network parameters 𝜑 for
linear GSSMs when exact inference is feasible. For this experiment we optimize Eq.
6.6 over 𝜑, while 𝜃 is fixed to a synthetic distribution given by a one-dimensional
GSSM. We compare results obtained by the various approximations we propose to
those obtained by an implementation of Kalman smoothing (Duckworth, 2016) which
performs exact inference. Fig. 6-3 (top and middle) depicts our results. The proposed
DKS (i.e., ST-R) and ST-LR outperform the mean-field based variational method
MF-L that only looks at information from the past. MF-LR, however, is often able
to catch up when it comes to RMSE, highlighting the role that information from
the future plays when performing posterior inference, as is evident in the posterior
factorization in Eq. 6.4. Both DKS and ST-LR converge to the RMSE of the exact
Smoothed KF, and moreover their lower bound on the likelihood becomes tight.

Approximate inference and parameter estimation: Here, we experiment with
applying the inference networks to synthetic non-linear generative models as well as
using DKS for learning a subset of parameters within a fixed generative model. On
synthetic non-linear datasets (see supplemental material) we find, similarly, that the
structured variational approximations are capable of matching the performance of
inference using a smoothed Unscented Kalman Filter Wan & Van Der Merwe (2000)
on held-out data. Finally, Fig. 6-4 illustrates a toy instance where we successfully
perform parameter estimation in a synthetic, two-dimensional, non-linear GSSM.

Experimental setup: We used an RNN size of 40 in the inference networks used
for the synthetic experiments.

Linear SSMs: Fig. 6-5 (N=500, T=25) depicts the performance of inference networks,
only now using held out data to evaluate the RMSE and the upper bound. We find
that the results echo those in the training set, and that on unseen data points,
the inference networks, particularly the structured ones, are capable of generalizing
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Figure 6-3: Synthetic evaluation: (Top & Bottom) Compiled inference for a fixed
linear GSSM: 𝑧𝑡 ∼ 𝒩 (𝑧𝑡−1 + 0.05, 10), 𝑥𝑡 ∼ 𝒩 (0.5𝑧𝑡, 20). The training set comprised
𝑁 = 5000 one-dimensional observations of sequence length 𝑇 = 25. (Top left) RMSE with
respect to true 𝑧* that generated the data. (Top right) Variational bound during training.
The results on held-out data are very similar (see supplementary material). (Bottom four
plots) Visualizing inference in two sequences (denoted (1) and (2)); Left panels show the
Latent Space of variables 𝑧, right panels show the Observations 𝑥. Observations are generated
by the application of the emission function to the posterior shown in Latent Space. Shading
denotes standard deviations.
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Figure 6-4: Parameter estimation: Learning parameters 𝛼, 𝛽 in a two-dimensional
non-linear GSSM. 𝑁 = 5000, 𝑇 = 25 �⃗�𝑡 ∼ 𝒩 ([0.2𝑧0𝑡−1+tanh(𝛼𝑧1𝑡−1); 0.2𝑧

1
𝑡−1+sin(𝛽𝑧0𝑡−1)], 1.0)

�⃗�𝑡 ∼ 𝒩 (0.5�⃗�𝑡, 0.1) where �⃗� denotes a vector, [] denotes concatenation and superscript denotes
indexing.

compiled inference.
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Figure 6-5: Inference in a linear SSM on held-out data: Performance of
inference networks on held-out data using a generative model with Linear Emission
and Linear Transition

Non-linear SSMs: Fig. 6-6 considers learning inference networks on a synthetic
non-linear dynamical system (𝑁 = 5000, 𝑇 = 25). We find once again that inference
networks that match the posterior realize faster convergence and better training (and
validation) accuracy.

Visualizing posterior estimations: In Fig. 6-7 we visualize the posterior estimates
obtained by the inference network. We run posterior inference on the training set 10

times and take the empirical expectation of the posterior means and covariances of
each method. We compare posterior estimates with those obtained by a smoothed
Unscented Kalman Filter (UKF) Wan & Van Der Merwe (2000).

6.6.2 Polyphonic music

Dataset: We train DMMs on polyphonic music data Boulanger-Lewandowski et al.
(2012). An instance in the sequence comprises an 88-dimensional binary vector

corresponding to the notes of a piano. We learn for 2000 epochs and report results
based on early stopping using the validation set. We report held-out negative log-
likelihood (NLL) in the format “a (b) {c}”. 𝑎 is an importance sampling based
estimate of the NLL (details in supplementary material); 𝑏 = 1∑︀𝑁

𝑖=1 𝑇𝑖

∑︀𝑁
𝑖=1−ℒ(�⃗�; 𝜃, 𝜑)

where 𝑇𝑖 is the length of sequence 𝑖. This is an upper bound on the NLL, which
facilitates comparison to RNNs; TSBN Gan et al. (2015) (in their code) report
𝑐 = 1

𝑁

∑︀𝑁
𝑖=1

1
𝑇𝑖
ℒ(�⃗�; 𝜃, 𝜑). We compute this to facilitate comparison with their work.
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(b) Performance on held-out data

Figure 6-6: Inference in a don-linear SSM: Performance of inference networks
trained with data from a Linear Emission and Non-linear Transition SSM

As in (Sønderby et al. , 2016a), we found annealing the KL divergence in the variational
bound (ℒ(�⃗�; (𝜃, 𝜑))) from 0 to 1 over 5000 parameter updates got better results.

Mean-Field vs Structured Inference Networks: Table 6.2 shows the results
of learning a DMM on the polyphonic music dataset using MF-LR, ST-L, DKS
and ST-LR. ST-L is a structured variational approximation that only considers
information from the past and, up to implementation details, is comparable to the one
used in Gregor et al. (2015). Comparing the negative log-likelihoods of the learned
models, we see that the looseness in the variational bound (which we first observed
in the synthetic setting in Fig. 6-3 top right) significantly affects the ability to learn.
ST-LR and DKS substantially outperform MF-LR and ST-L. This adds credence
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Figure 6-7: Inference on non-linear synthetic data: Visualizing inference on
training data. Generative Models: (a) Linear Emission and Non-linear Transition
𝑧* denotes the latent variable that generated the observation. 𝑥 denotes the true
data. We compare against the results obtained by a smoothed Unscented Kalman
Filter (UKF) (Wan & Van Der Merwe, 2000). The column denoted “Observations"
denotes the result of applying the emission function of the respective generative model
on the posterior estimates shown in the column “Latent Space". The shaded areas
surrounding each curve 𝜇 denotes 𝜇± 𝜎 for each plot.

to the idea that by taking into consideration the factorization of the posterior, one can
perform better inference and, consequently, learning, in real-world, high dimensional
settings. Note that the DKS network has half the parameters of the ST-LR and
MF-LR networks.

A Generalization of the DMM: To display the efficacy of our inference algorithm
to model variants beyond first-order Markov Models, we further augment the DMM
with edges from 𝑥𝑡−1 to 𝑧𝑡 and from 𝑥𝑡−1 to 𝑥𝑡. We refer to the resulting generative
model as DMM-Augmented (Aug.). Augmenting the DMM with additional edges
realizes a richer class of generative models.

We show that DKS can be used as is for inference on a more complex generative model
than DMM, while making gains in held-out likelihood. All following experiments use
DKS for posterior inference.

The baselines we compare to in Table 6.3 have more complex generative models than
the DMM. STORN has edges from 𝑥𝑡−1 to 𝑧𝑡 given by the recurrence update and
TSBN has edges from 𝑥𝑡−1 to 𝑧𝑡 as well as from 𝑥𝑡−1 to 𝑥𝑡. HMSBN shares the same
structural properties as the DMM, but is learned using a simpler inference network.
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Table 6.2: Comparing inference networks: Test negative log-likelihood on polyphonic
music of different inference networks trained on a DMM with a fixed structure (lower is
better). The numbers inside parentheses are the variational bound.

Inference Network JSB Nottingham Piano Musedata

DKS (i.e., ST-R) 6.605 (7.033) 3.136 (3.327) 8.471 (8.584) 7.280 (7.136)

ST-L 7.020 (7.519) 3.446 (3.657) 9.375 (9.498) 8.301 (8.495)

ST-LR 6.632 (7.078) 3.251 (3.449) 8.406 (8.529) 7.127 (7.268)

MF-LR 6.701 (7.101) 3.273 (3.441) 9.188 (9.297) 8.760 (8.877)

In Table 6.3, as we increase the complexity of the generative model, we obtain better
results across all datasets.

The DMM outperforms both RNNs and HMSBN everywhere, outperforms STORN
on JSB, Nottingham and outperform TSBN on all datasets except Piano. Compared
to LV-RNN (that optimizes the inclusive KL-divergence), DMM-Aug obtains better
results on all datasets except JSB. This showcases our flexible, structured inference
network’s ability to learn powerful generative models that compare favourably to other
state of the art models.

Samples: Fig. 6-8 depicts mean probabilities of samples from the DMM trained on
JSB Chorales (Boulanger-Lewandowski et al. , 2012). MP3 songs corresponding to two
different samples from the best DMM model learned on each of the four polyphonic
data sets may be found in the code repository.

Experiments with NADE: We also experimented with Neural Autoregressive
Density Estimators (NADE) (Larochelle & Murray, 2011) in the emission distribution
for DMM-Aug and denote it DMM-Aug-NADE. In Table 6.4, we see that DMM-Aug-
NADE performs comparably to the state of the art RNN-NADE on JSB, Nottingham
and Piano.
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(b) Sample 2

Figure 6-8: Two samples from the DMM trained on JSB Chorales
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Table 6.3: Evaluation against baselines: Test negative log-likelihood (lower is better)
on Polyphonic Music Generation dataset. Table Legend: RNN Boulanger-Lewandowski
et al. (2012), LV-RNN Gu et al. (2015), STORN Bayer & Osendorfer (2014), TSBN,
HMSBN Gan et al. (2015).

Methods JSB Nottingham Piano Musedata

DMM
6.388

(6.926)
{6.856}

2.770
(2.964)
{2.954}

7.835
(7.980)
{8.246}

6.831
(6.989)
{6.203}

DMM-Aug.
6.288

(6.773)
{6.692}

2.679
(2.856)
{2.872}

7.591
(7.721)
{8.025}

6.356
(6.476)
{5.766}

HMSBN (8.0473)
{7.9970}

(5.2354)
{5.1231}

(9.563)
{9.786}

(9.741)
{8.9012}

STORN 6.91 2.85 7.13 6.16

RNN 8.71 4.46 8.37 8.13

TSBN {7.48} {3.67} {7.98} {6.81}

LV-RNN 3.99 2.72 7.61 6.89

6.6.3 EHR Patient Data

Learning models from large observational health datasets is a promising approach to
advancing precision medicine and could be used, for example, to understand which
medications work best, for whom.

However, working with EHR data poses some technical challenges: EHR data are noisy,
high dimensional and difficult to characterize easily. Patient data is rarely contiguous
over large parts of the dataset and is often missing (not at random). We learn a DMM
on the data showing how to handle the aforementioned technical challenges.

Dataset: The dataset we use comprises 5000 diabetic patients using data from
a major health insurance provider. The observations of interest are: A1c level
(hemoglobin A1c, a protein for which a high level indicates that the patient is diabetic)
and glucose (blood sugar). We bin glucose into quantiles and A1c into clinically
meaningful bins. The observations also include age, gender and ICD-9 diagnosis codes
for co-morbidities of diabetes such as congestive heart failure, chronic kidney disease
and obesity. There are 48 binary observations for a patient at every time-step. We
group each patient’s data (over 4 years) into three month intervals, yielding a sequence
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Table 6.4: Experiments with NADE Emission: Test negative log-likelihood (lower is
better) on Polyphonic Music Generation dataset. Table Legend: RNN-NADE (Boulanger-
Lewandowski et al. , 2012)

Methods JSB Nottingham Piano Musedata

DMM-Aug.-NADE
5.118

(5.335)
{5.264}

2.305
(2.347)
{2.364}

7.048
(7.099)
{7.361}

6.049
(6.115)
{5.247}

RNN-NADE 5.19 2.31 7.05 5.60

of length 18.

Graphical Model: Fig. 6-9 represents the generative model we use when 𝑇 = 4.
The model captures the idea of an underlying time-evolving latent state for a patient
(𝑧𝑡) that is solely responsible for the diagnosis codes and lab values (𝑥𝑡) we observe. In
addition, the patient state is modulated by drugs (𝑢𝑡) prescribed by the doctor. We
may assume that the drugs prescribed at any point in time depend on the patient’s
entire medical history though in practice, the dotted edges in the Bayesian network
never need to be modeled since 𝑥𝑡 and 𝑢𝑡 are always assumed to be observed. A
natural line of follow up work would be to consider learning when 𝑢𝑡 is missing or
latent.

We make use of time-varying (binary) drug prescription 𝑢𝑡 for each patient by aug-
menting the DMM with an additional edge every time step. Specifically, the DMM’s
transition function is now 𝑧𝑡 ∼ 𝒩 (G𝛼(𝑧𝑡−1, 𝑢𝑡−1), S𝛽(𝑧𝑡−1, 𝑢𝑡−1)) (cf. Eq. 6.1). In our
data, each 𝑢𝑡 is an indicator vector of eight anti-diabetic drugs including Metformin
and Insulin, where Metformin is the most commonly prescribed first-line anti-diabetic
drug.

Emission & transition function:The choice of emission and transition function to
use for such data is not well understood. In Fig. 6-10 (right), we experiment with
variants of DMMs and find that using MLPs (rather than linear functions) in the
emission and transition function yield the best generative models in terms of held-out
likelihood. In the Chapter 7, we will improve upon these choices and show how to
leverage insights from pharmacology to design better transition functions. In these
experiments, the hidden dimension was set as 200 for the emission and transition
functions. We used an RNN size of 400 and a latent dimension of size 50. We use the
DKS as our inference network for learning.
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Figure 6-9: DMM for medical data: The DMM (from Fig. 6-1) is augmented with
external actions 𝑢𝑡 representing medications presented to the patient. 𝑧𝑡 is the latent state of
the patient. 𝑥𝑡 are the observations that we model. Since both 𝑢𝑡 and 𝑥𝑡 are always assumed
observed, the conditional distribution 𝑝(𝑢𝑡|𝑥1, . . . , 𝑥𝑡−1) may be ignored during learning.

Learning with missing data: In the EHR dataset, a subset of the observations
(e.g. A1C and Glucose values used to assess blood-sugar levels for diabetics) are
frequently missing in the data. We marginalize them out during learning, which
is straightforward within the probabilistic semantics of our Bayesian network. The
sub-network of the original graph we are concerned with is the emission function since
missingness affects our ability to evaluate log 𝑝(𝑥𝑡|𝑧𝑡) (the first term in Eq. 6.6). The
missing random variables are leaves in the Bayesian sub-network (comprised of the
emission function). Consider a simple example of two modeling two observations
at time 𝑡, namely 𝑚𝑡, 𝑜𝑡. The log-likelihood of the data (𝑚𝑡, 𝑜𝑡) conditioned on the
latent variable 𝑧𝑡 decomposes as log 𝑝(𝑚𝑡, 𝑜𝑡|𝑧𝑡) = log 𝑝(𝑚𝑡|𝑧𝑡) + log 𝑝(𝑜𝑡|𝑧𝑡) since the
random variables are conditionally independent given their parent. If 𝑚 is missing and
marginalized out while 𝑜𝑡 is observed, then our log-likelihood is: log

∫︀
𝑚
𝑝(𝑚𝑡, 𝑜𝑡|𝑧𝑡) =

log(
∫︀
𝑚
𝑝(𝑚𝑡|𝑧𝑡)𝑝(𝑜𝑡|𝑧𝑡)) = log 𝑝(𝑜𝑡|𝑧𝑡) (since

∫︀
𝑚
𝑝(𝑚𝑡|𝑧𝑡) = 1) i.e we effectively ignore

the missing observations when estimating the log-likelihood of the data. In practice,
we track indicators denoting whether A1C values and Glucose values were observed
in the data. These are used as markers of missingness. During batch learning, at
every time-step 𝑡, we obtain a matrix 𝐵 = log 𝑝(𝑥𝑡|𝑧𝑡) of size batch-size × 48, where
48 is the dimensionality of the observations, comprising the log-likelihoods of every
dimension for patients in the batch. We multiply this with a matrix of 𝑀 . 𝑀 has the
same dimensions as 𝐵 and has a 1 if the patient’s A1C value was observed and a 0

otherwise. For dimensions that are never missing, 𝑀 is always 1.

The effect of anti-diabetic medications: As an illustrative example of how
DMMs could be used in precision medicine in the future, we ask a counterfactual
question using the DMM: what would have happened to a patient had anti-diabetic
drugs not been prescribed? This is causal query that in general, is impossible to answer
without typically untestable (Pearl, 2009) assumptions. We will require that the causal
effect under the model in Figure 6-9 be identifiable, no unobserved confounding over
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Figure 6-10: Left two plots; Estimating counterfactuals with DMM: The x-axis
denotes the number of 3-month intervals after prescription of Metformin. The y-axis denotes
the proportion of patients (out of a test set size of 800) who, after their first prescription of
Metformin, experienced a high level of A1C. In each tuple of bar plots at every time step,
the left aligned bar plots (green) represent the population that received diabetes medication
while the right aligned bar plots (red) represent the population that did not receive diabetes
medication. (Rightmost plot) Upper bound on negative-log likelihood for different DMMs
trained on the medical data. (T) denotes “transition”, (E) denotes “emission”, (L) denotes
“linear” and (NL) denotes “non-linear”.

time, and the assumption of positive support. We refer the reader to (Chakraborty,
2013; Hernán & Robins, 2020) for a thorough discussion on the assumptions necessary
for causal inference to be feasible from sequential, observational data.

The experiment we will conduct asks what happens to a patient under a treatment
plan that is never observed (namely that of not prescribing medication). This is by
no means a clinically meaningful experiment; rather, it serves to illustrate how deep
generative models can find use a as nonlinear structural equation model Pearl (2012).

We are interested in the patient’s blood-sugar level as measured by the widely-used
A1C blood-test. We perform inference using held-out patient data leading up to the
time 𝑘 of first prescription of Metformin and let 𝑇 denote the maximum length of
the patient’s clinical data. From the posterior mean, we perform ancestral sampling
tracking two latent trajectories: (1) the factual: where we sample new latent states
conditioned on the medication the patient actually received and (2) the counterfactual:
where we sample conditioned on not receiving any drugs for all remaining timesteps
(i.e 𝑢𝑘 set to the zero-vector). We reconstruct the patient observations 𝑥𝑘, . . . , 𝑥𝑇 ,
threshold the predicted values of A1C levels into high and low and visualize the average
number of high A1C levels we observe among the synthetic patients in both scenarios.
This is an example of performing do-calculus Pearl (2009) in order to estimate model-
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based counterfactual effect. More formally, we can pose our experiment as one of
comparing 𝑝(𝑥𝑘+1:𝑇 |𝑥1:𝑘, 𝑢1:𝑇 ) with 𝑝(𝑥𝑘+1:𝑇 |𝑥1:𝑘, 𝑢1:𝑡, do(𝑢𝑘+1:𝑇 ) = 0).

The results are shown in Fig. 6-10. On average, the model has learned that patients
who were prescribed anti-diabetic medication had more controlled levels of A1C than
patients who did not receive any medication. Despite being an aggregate effect, this
is interesting because it is a phenomenon that coincides with our intuition but was
confirmed by the model in an entirely unsupervised manner. Note that in our dataset,
most diabetic patients are indeed prescribed anti-diabetic medications, making the
counterfactual prediction harder.

Sampling a patient: We visualize samples from the DMM trained on medical data
in Fig. 6-11 The model captures correlations within timesteps as well as variations
in A1C level and Glucose level across timesteps. It also captures rare occurrences of
comorbidities found amongst diabetic patients.

6.7 Discussion

This chapter introduces Deep Markov Models alongside a black-box variational learning
algorithm. The underlying methodological principle we propose is to build the inference
network in a manner that mimics the factorization structure in the true posterior
distribution (under the generative model). In the context of learning algorithms
hierarchical deep generative models of static data, (Sønderby et al. , 2016b) were
among the first to make use of this principle. Concurrent to our own work, (Fraccaro
et al. , 2016) also make use of this principle in building learning algorithms for
sequential models of time-series data. (Webb et al. , 2018) provide an algorithm for
faithfully inverting the dependency structure in any generative model, empirically
demonstrating that adherence to this principle yields gains in generalization across a
variety of deep generative models. By making use of an inference network, the space
complexity of our learning algorithm depends neither on the sequence length 𝑇 nor
on the training set size 𝑁 , offering massive savings compared to classical variational
inference methods.

Our work has spurred further research into inference networks as well as applications
and extensions of sequential deep generative models. Toyer et al. (n.d.) study the
application of DMMs towards human pose forecasting. Che et al. (2018a) develop
hierarchical DMMs where hierarchies of latent variables capture patterns in multi-rate,
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high-dimensional time-series data. Finally, Zhi-Xuan et al. (2020) extend DMMs
to learn unified, time-varying representations of multi-modal data. An open source
implementation of DMMs is also available in the probabilistic programming package
Pyro (Bingham et al. , 2019).
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Figure 6-11: Patient data generated by a DMM Samples of a patient generated by the
model. The x-axis denotes time and the y-axis denotes the observations. The intensity of
the color denotes its value between zero and one
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Chapter 7

Inductive biases for clinical data

In Chapter 6 we showed how to make use of structure in the graphical model to
derive learning algorithms for nonlinear state space models of clinical data. To make
predictions from longitudinal data or deconstruct salient structure within, we need
good sequential models. However, modeling longitudinal observations in the presence
of time-varying interventions is challenging. In this chapter, we study whether we
can improve upon the use of multi-layer perceptrons in the conditional probability
distributions of DMMs.

Models parameterize intervention effect functions (IEFs), which determine how the
model responds to an intervention, in different ways. A common choice, that we made
in the previous chapter, for high-dimensional data is to use neural networks. However,
datasets in healthcare can be small, leaving such approaches prone to overfitting. We
show how to make deep learning practical in the low-data regime by building new
neural architectures inspired by ideas from pharmacology. In doing so, we show how
practitioners can use domain knowledge and patterns in time-varying interventions to
construct IEFs. In various non-linear, sequential models of disease progression, across
both synthetic and real-world data, our proposed IEF yields dramatic improvements
in generalization where other representation learning approaches overfit.

7.1 Introduction

Deep generative models capture changes in high-dimensional, longitudinal observations
using time-varying hidden representations, such as Recurrent Neural Networks (RNNs)
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(Chung et al. , 2014) or nonlinear state space models (Krishnan et al. , 2017; Fraccaro
et al. , 2016). When control signals, or interventions, drive variation in observations,
models condition their representations on the intervention to capture this variation.
Functions used to capture the effect of an intervention have various names. For
example, in model-based reinforcement learning (RL), dynamics functions or action-
dependent state transition functions (Chiappa et al. , 2017; Oh et al. , 2015) simulate
observations in response to control signals. In causal inference, dose response functions
(Silva, 2016; Schwab et al. , 2019) capture variation in a biomarker as a result of a drug
dosage. We call such functions intervention effect functions (IEFs): IEF(𝑆𝑡, 𝑈𝑡, 𝐵).
𝑆𝑡 denotes a representation in a model that undergoes change due to a (possibly
high-dimensional) intervention 𝑈𝑡 and static covariates 𝐵.

In healthcare, IEFs can be used to build decision support tools by enabling practitioners
to ask and answer counterfactuals using models learned from observational data (Rubin,
1974; Pearl et al. , 2009). Schulam & Saria (2017); Silva (2016) use observational
data to learn Gaussian processes (GPs) that, under strong assumptions on the data,
characterize counterfactuals over how a single intervention affects a single biomarker
over time. Soleimani et al. (2017) propose multi-output GPs to model variation in
multiple biomarkers. Biases in data can hinder learning IEFs in time-varying settings;
consequently, Lim (2018) use propensity weighting to adjust for time-dependent
confounders. We seek to extend these successes to representation learning based
models for two reasons. Firstly, disease progression is increasingly being tracked
not just through a patient’s time-varying clinical biomarkers but also through their
genetics; the integration of such high-dimensional, multi-modal information is therefore
vital, and an area where representation learning shows enormous promise (Wu &
Goodman, 2018). Secondly, representation learning gives us myriad ways to transfer
and combine domain knowledge; one example of this is Sachan et al. (2017), who show
that embeddings pre-trained on unlabeled medical text data yield better predictive
performance on biomedical named entity recognition compared to general purpose
embeddings. Ultimately, for representation learning models to be useful in clinical
decision support, we need good counterfactual models. A good counterfactual model
must answer factuals well. Thus, we focus on building unsupervised models of
observational clinical data conditioned on time-varying interventions.

In reality, clinical datasets may be small due to rarity of chronic diseases, or due to
costs incurred in the collection and curation of rich, multi-modal patient datasets. We
need models for unsupervised learning that are practical even with a few hundred
samples. Using neural networks in IEFs of unsupervised models (Krishnan et al. ,
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2017; Lipton et al. , 2015) for such data risks overfitting. One may overcome the
limited-data problem by using domain expertise; for example, in model-based RL, Du
& Narasimhan (2019); Scholz et al. (2014) use the physics of how objects interact to
design the dynamics function. This approach can reduce sample complexity, but relies
on domain knowledge. We seek to understand what the correct domain knowledge is
in settings where it is not easily obtainable and difficult to formalize, and how one
should leverage it when building IEFs for unsupervised models of disease progression.

This chapter makes several contributions towards both machine learning and its
applications to healthcare. First, we propose a novel neural architecture for an IEF,
PK-PDIEF, that blends mathematical models from pharmacology with deep learning.
The IEF is flexible and leverages unique structure in the treatments prescribed to
chronically ill patients. Second, we show that the incorporation of domain knowledge
in unsupervised models of high-dimensional clinical data aids generalization in the low
data regime. We study the use of PK-PDIEF in three unsupervised models (on both
synthetic and real-world patient data) and find strong differential improvements in
generalization conferred from the use of PK-PDIEF when data is scarce. Qualitatively,
the neural architecture is interpretable, and captures known clinical knowledge regard-
ing the treatment effect. Third, we release code for the PK-PDIEF and the ML-MMRF
dataset, which is a curated, pre-processed subset of the CoMMpass study (Multiple
Myeloma Research Foundation & others, 2011) set up for the machine learning and
healthcare communities to study these and other questions.

7.2 Setup

To ground our discussion, we focus on IEFs tailored for clinical data of chronically ill
patients. Chronic diseases (e.g. cancer, heart disease) are those which require long-
term medical attention and result in one or more organ systems being compromised.
The progression of chronic disease is tracked via clinical biomarkers whose evolution is
influenced by static factors like age, genetics and medical history. Patient data for those
suffering from such diseases may be very limited, making these disease cohorts ideal
for studying questions about the generalization of unsupervised models in the low-data
regime. Patients suffering from such diseases tend to have pre-determined schedules
where their progress is measured and treatments are prescribed. We therefore turn to
discrete-time models as a reasonable approximation of the underlying data generating
process. We review three models of sequential data conditioned on interventions and
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highlight the IEF within each one.

Notation: Let 𝐵 ∈ R𝐽 denote baseline data that are static, i.e. individual-specific
covariates. Let U = {𝑈0, . . . , 𝑈𝑇−1}; 𝑈𝑡 ∈ R𝐿 be a sequence of 𝐿 dimensional
interventions for an individual. An element of 𝑈𝑡 may be binary, to denote prescription
of a drug, or real-valued, to denote the dosage. Let X = {𝑋1, . . . , 𝑋𝑇}; 𝑋𝑡 ∈ R𝑀

denote the sequence of real-valued, 𝑀 dimensional clinical biomarkers. An element
of 𝑋𝑡 may denote a serum lab value or blood count, which is used by clinicians to
measure organ function as a proxy for disease severity. We assume access to a dataset
𝒟 = {(X1,U1, 𝐵1), . . . , (X𝑁 ,U𝑁 , 𝐵𝑁)}. Unless required, we ignore the superscript
denoting the index of the datapoint and denote concatenation with []. The goal of our
work is to build models of X conditioned on U, 𝐵. We denote the parameters of a
model by 𝜃, which may comprise weight matrices or the parameters of functions that
index 𝜃. Each model will have an IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵).

Line 1
Line 2
Line 3+

Bortezomib
Lenalidomide

Serum
IgG

U: Treatments

X: Biomarkers

B: Baseline
Covariates

Time

𝐵

𝑍1

𝑈1

𝑍2

𝑈2

𝑍3

𝑋1 𝑋2 𝑋3

Figure 7-1: Patient Data (Left): Illustration of data from a multiple myeloma patient.
Baseline (static) data typically consists of genomics, demographics, and initial labs. Longitu-
dinal data typically includes laboratory values (e.g. serum IgG) and treatments. Baseline
data is usually complete, but longitudinal measurements are frequently missing at various
time points. The data tells a rich story of a patient’s disease trajectory and the resulting
treatment decisions. For example, a deviation of a lab value from a healthy range (e.g. spike
in serum IgG) might prompt a move to the next line of therapy. Missing data (e.g. points in
red) in this case are forward filled. Unsupervised Models of Sequential Data (Right):
We show a State Space Model (SSM) of X (the longitudinal biomarkers) conditioned on 𝐵
(genetics, denographics) and U (binary indicators of treatment and line of therapy). The
rectangle depicts the IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵), where 𝑆𝑡−1 = 𝑍𝑡−1.

7.2.1 First Order Markov Models (FOMMs)

FOMMs assume observations are conditionally independent of the past given the
previous observation, intervention and baseline covariates:

𝑝(X|U, 𝐵) =
∏︀𝑇

𝑡=1 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵);𝑋𝑡 ∼ 𝒩 (𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵),Σ𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵)),
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Σ𝜃 is a linear function of the input composed with the softplus function to ensure
positivity. The IEF is 𝜇𝜃(𝑆𝑡−1, 𝑈𝑡−1, 𝐵), where 𝑆𝑡−1 = 𝑋𝑡−1, captures variation in 𝑋𝑡.
If 𝜇𝜃 is a linear function of the concatenation of its inputs, we refer to the model
as FOMMLinear. FOMMNL refers to the model where 𝜇𝜃 is a two-layer neural
network.

Maximum Likelihood Estimation of 𝜃: We learn the model by maximizing max𝜃 log 𝑝(X|U, 𝐵).
Using the factorization structure in the joint distribution of the generative model, we
obtain: log 𝑝(X|U, 𝐵) =

∑︀𝑇
𝑡=1 log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵). Each log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵)

is estimable as the log-likelihood of the observed multi-variate 𝑋𝑡 under a Gaussian
distribution whose (diagonal) variance is a function Σ𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵) and whose
mean is given by the IEF, 𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵). Since each log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵) is a
differentiable function of 𝜃, its sum is differentiable as well, and we may use automatic
differentiation to derive gradients of the log-likelihood with respect to 𝜃 in order to
perform gradient ascent. When any dimension of 𝑋𝑡 is missing, that dimension’s
log-likelihood is ignored (corresponding to marginalization over that random variable)
during learning.

7.2.2 Gated Recurrent Neural Network (GRUs)

GRUs (Chung et al. , 2014) are auto-regressive models of sequential observations
i.e. 𝑝(X|U, 𝐵) = ∏︀𝑇

𝑡=1 𝑝(𝑋𝑡|𝑋<𝑡, 𝑈<𝑡, 𝐵)). GRUs use an intermediate hidden state
ℎ𝑡 ∈ R𝐻 at each time-step as a proxy for what the model has inferred about the
sequence of data until 𝑡. The GRU dynamics govern how ℎ𝑡 evolves via an update
gate 𝐹𝑡, and a reset gate 𝑅𝑡:

𝐹𝑡 = 𝜎(𝑊𝑧 · [𝑋𝑡, 𝑈𝑡, 𝐵] + 𝑉𝑧ℎ𝑡−1 + 𝑏𝑧), 𝑅𝑡 = 𝜎(𝑊𝑟 · [𝑋𝑡, 𝑈𝑡, 𝐵] + 𝑉𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ𝑡 = 𝐹𝑡 ⊙ ℎ𝑡−1 + (1− 𝐹𝑡)⊙ tanh(𝑊ℎ · [𝑋𝑡, 𝑈𝑡, 𝐵] + 𝑉ℎ(𝑅𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

𝜃 = { 𝑊𝑧,𝑊𝑟,𝑊ℎ ∈ R𝐻×(𝑀+𝐿+𝐽);𝑉𝑧, 𝑉𝑟, 𝑉ℎ ∈ R𝐻×𝐻 ; 𝑏𝑧, 𝑏𝑟, 𝑏ℎ ∈ R𝐻} are learned
parameters and 𝜎 is the sigmoid function. The effect of interventions may be felt
in any of the above time-varying representations and so the IEF in the GRU is
distributed across the computation of the forget gate, reset gate and the hidden state,
i.e. 𝑆𝑡 = [𝐹𝑡, 𝑅𝑡, ℎ𝑡]. We refer to this model as GRU.

Maximum Likelihood Estimation: We learn the model by maximizing max𝜃 log 𝑝(X|U, 𝐵).
Using the factorization structure in the joint distribution of the generative model,
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we obtain: log 𝑝(X|U, 𝐵) = ∑︀𝑇
𝑡=1 log 𝑝(𝑋𝑡|𝑋<𝑡, 𝑈<𝑡, 𝐵). At each point in time the

hidden state of the GRU, ℎ𝑡, summarizes 𝑋<𝑡, 𝑈<𝑡, 𝐵. Thus, the model assumes
𝑋𝑡 ∼ 𝒩 (𝜇𝜃(ℎ𝑡),Σ𝜃(ℎ𝑡)).

At each point in time, log 𝑝(𝑋𝑡|𝑋<𝑡, 𝑈<𝑡, 𝐵) is the log-likelihood of a multi-variate
Gaussian distribution which depends on 𝜃. As before, we may use automatic dif-
ferentiation to derive gradients of the log-likelihood with respect to 𝜃 in order to
perform gradient ascent. When any dimension of 𝑋𝑡 is missing, that dimension’s
log-likelihood is ignored (corresponding to marginalization over that random variable)
during learning.

7.2.3 State Space Models (SSMs)

SSMs capture longer-term dependencies in sequential data via a time-varying latent
state, as in Figure 7-1 (right). 𝑍𝑡 is a low-dimensional representation of the high-
dimensional 𝑋𝑡. We experiment with Deep Markov Models (Krishnan et al. , 2017):

𝑝(X|U, 𝐵) =

∫︁

𝑍

𝑇∏︁

𝑡=1

𝑝(𝑍𝑡|𝑍𝑡−1, 𝑈𝑡−1, 𝐵; 𝜃)𝑝(𝑋𝑡|𝑍𝑡; 𝜃)𝑑𝑍

𝑍𝑡 ∼ 𝒩 (𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵),Σ𝑡
𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵)), 𝑋𝑡 ∼ 𝒩 (𝜅𝜃(𝑍𝑡),Σ

𝑒
𝜃(𝑍𝑡))

Σ𝑡𝜃,Σ
𝑒
𝜃, 𝜅𝜃(𝑍𝑡) are linear functions of a concatenation of their inputs composed with the

softplus function to ensure positivity. The IEF is 𝜇𝜃(𝑆𝑡−1, 𝑈𝑡−1, 𝐵), where 𝑆𝑡−1 = 𝑍𝑡−1.
SSMLinear and SSMNL refer to models where 𝜇𝜃 is linear and non-linear (two-layer
neural network), respectively.

Maximum Likelihood Estimation: We learn the model by maximizing max𝜃 log 𝑝(X|U, 𝐵).
Using the factorization structure in the joint distribution of the generative model, we
obtain: log 𝑝(X|U, 𝐵) =

∑︀𝑇
𝑡=1 log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵). Each log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵)

is estimable as the log-likelihood of the observed multi-variate 𝑋𝑡 under a Gaussian
distribution whose (diagonal) variance is a function Σ𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵) and whose
mean is given by the IEF, 𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵). Since each log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵) is a
differentiable function of 𝜃, its sum is differentiable as well, and we may use automatic
differentiation to derive gradients of the log-likelihood with respect to 𝜃 in order to
perform gradient ascent. When any dimension of 𝑋𝑡 is missing, that dimension’s
log-likelihood is ignored (corresponding to marginalization over that random variable)
during learning.
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7.2.4 Missing data

Clinical biomarkers may not always be observed. When a variable in the conditioning
set is missing, e.g. 𝑋𝑡−1 when evaluating the FOMM’s IEF 𝜇𝜃, we use a proxy for 𝑋𝑡−1

obtained via forward-fill imputation. In Figure 7-1 (left), the dots in red for serum
IgG are forward filled from their previous values. When evaluating the likelihood, if
𝑋𝑡 is missing, we marginalize it out, i.e. it does not contribute towards the likelihood
of the data. We assume that U, 𝐵 are always observed.

7.2.5 Pharmacokinetic-Pharmacodynamic (PK-PD) models

To gain improvements in sample complexity when doing unsupervised learning in low-
data regimes, we need domain expertise to parameterize IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵). We turn to
the pharmacokinetics (PK) & pharmacodynamics (PD) literature. Pharmacokinetics
is concerned with how drugs move in the body, and pharmacodynamics studies the
body’s response to drugs. We review three PK-PD models in this section.

PK-PD models typically comprise two components: the first is a proxy for disease
burden, and the second is the treatment effect, or rather the effect that treatment
has on disease burden. Disease burden, denoted 𝑆(𝑡), is quantified in different ways
depending on the disease. Models of chronic disease progression might track a single
clinical biomarker as a proxy for disease burden. We will denote the effect of treatment
by 𝐸(𝑡). Unless otherwise specified, the quantities we describe in this section are
real-valued scalars, which may be constrained to be positive.

Linear A linear model is one of the simplest disease progression models that is used
for tracking the dynamics of tumor volume 𝑆(𝑡) (Klein, 2009):

𝑆(𝑡) = 𝑆(0) + (𝛼 + 𝐸(𝑡)) · 𝑡,

Here 𝐸(𝑡) is the scalar, real-valued treatment dose. Linear models have also been
been used successfully to describe progression of biomarkers in neurological disorders
such as Alzheimer’s disease (Doyle et al. , 2014), and Huntington’s disease (Warner &
Sampaio, 2016).
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Figure 7-2: Pharmacodynamic-Pharmacokinetic Treatment Effect Functions: Vi-
sualizing PK/PD treatment response models. Curves denote the scalar biomarker being
modeled and vertical lines denote treatment. Left: Log Cell Kill. The various curves (green,
yellow, red) represent different parameterizations of the function. Here, (for visualization
purposes) a single treatment is always present throughout time, but may be under a different
line of therapy based on the shaded region. For each line, a sharp decline is followed by a rise
in tumor volume, prompting a change in therapy line. Each curve corresponds to distinct
rates of biomarker growth, parametrized by 𝜌. Right: Biomarker value under the Treatment
Exponential model. After maintaining the response with treatments, a regression towards
baseline (in blue; depicting what would have happened had no treatment been prescribed)
occurs when treatment is stopped.

Log-Cell Kill The log-cell kill hypothesis (Norton, 2014) states that a given dose
of chemotherapy results in killing a constant fraction of tumor cells rather than a
constant number of cells. The Log Cell Kill model, a popular choice for modeling the
tumor size in solid cell tumors(Lim, 2018; West & Newton, 2017), can be described by
the following ordinary differential equation (ODE),

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑐𝐶(𝑡)𝑆(𝑡),

where 𝐶(𝑡) is the concentration of a chemotherapeutic drug over time. 𝐶(𝑡) is specified

as follows: 𝐶(𝑡) = 𝐶𝑚𝑎𝑥𝑒
− log(2)

half-life 𝑡, where 𝐶𝑚𝑎𝑥 is the maximum concentration of the
drug (i.e. the dose at which the drug was given), half-life is the half-life of the drug,
and 𝛽𝑐 is a parameter that represents the drug effect on tumor size .

Variants of the model also incorporate the kinetics of tumor growth (Evain & Benzekry,
2016; Lim, 2018; Grassberger & Paganetti, 2016), where the evolution of tumor volume,
𝑆, is described via an ODE:

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜌 log (

𝐾

𝑆(𝑡)
).

𝜌, the growth rate, and 𝐾, the tumor carrying capacity, determine the growth curve
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of the tumor. An analytic expression for the tumor dynamics of the log cell kill model
that incorporates tumor growth is:

𝑆(𝑡) = 𝑆(𝑡− 1) · (1 + 𝜌 log(𝐾/𝑆(𝑡− 1))− 𝛽𝑐𝐶(𝑡)), (7.1)

In Figure 7-2 (left), we show an example of the dynamics of the log-cell kill model
combined with this form of Gompertzian growth.

Treatment Exponential The third treatment effect model is inspired by disease
progression models for chronic diseases. This model was used by Xu et al. (2016)
to estimate individualized treatment-effect curves in patients with Chronic Kidney
Disease (CKD) (Xu et al. , 2016). Given a treatment, a𝜏 , let 𝐸(𝑡− 𝜏) be the response
curve for 𝑡 ≥ 𝜏 of administering this treatment regimen at time 𝜏 . 𝐸(𝑡) is parametrized
as

𝐸(𝑡) =

⎧
⎨
⎩
𝑏0 + 𝛼1/[1 + exp(−𝛼2(𝑡− 𝛾𝑙

2
))], if 0 ≤ 𝑡 < 𝛾𝑙

𝑏𝑙 + 𝛼0/[1 + exp(𝛼3(𝑡− 3𝛾𝑙
2
))], if 𝑡 ≥ 𝛾𝑙

(7.2)

with six free parameters: {𝛼1, 𝛼2, 𝛼3, 𝛾𝑙, 𝑏0, 𝑏𝑙}. 𝛼1 ∈ R represents the maximum
value and its sign determines whether there is an increase or decrease of lab markers
in response to treatment. 𝛼2 ∈ (0, 1) and 𝛼3 ∈ (0, 1) model the steepness of the
curves. Finally, 𝛾𝑙 ∈ ℛ denotes the switching point. The motivation behind using
this functional form of 𝑔(𝑡) is that it admits a flexible "U"-shaped curve, as shown
in Figure 7-2, by concatenating two sigmoid curves. Allowing the parameters of the
function to vary alters the switching point between the two sigmoid curves as well as
the slope of ascent or descent. Thus, this function can capture whether a treatment
causes a patient’s lab value to increase or decrease over time as well as the rate at
which it does so before converging to a stable value. We visualize the ability of this
model to capture "U"-shaped intervention effects in Figure 7-2 (right).

7.3 Intervention Effect Functions for clinical data

We are now ready to describe the way in which we construct IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵). This
task is difficult since unlike other domains, we lack good mechanistic models for how
combinations of drugs affect multiple biomarkers in the short and long-term. However,
there is structure in clinical data that can aid us. Our exposition, moving forward,
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will focus on chronic diseases. First, we recognize that treatments for chronic diseases
are not given in isolation but are often prescribed as parts of contiguous plans of
treatment known as lines of therapy. Second, chronic diseases, despite differences in
how they manifest, may share similarities in mechanisms behind how drugs affect their
progression. To that end, we posit that functions known to capture the mechanistic
effect of drugs contain knowledge we can transfer to design IEFs for chronic diseases
where we lack good mechanistic knowledge. We will refer to IEFs for diseases with
known mechanisms as domain expert modules and propose a neural architecture
that trades off between them. Our architecture does so by using data to guide how
important a domain expert is in deciding how a representation varies over time. To
our knowledge, both of the above have not been studied in the context of unsupervised
learning of high-dimensional clinical data. We will use Figure 7-1 (left), which depicts
data from a patient suffering from a chronic disease, as a guide in our discussion.

7.3.1 Capturing lines of therapy with local and global clocks

Many representation learning based approaches (Choi et al. , 2016b; Krishnan et al.
, 2017; Choi et al. , 2016a; Lipton et al. , 2015) use binary or continuous indicators
to designate the prescription or dosage of drugs in 𝑈𝑡. However, chronic diseases are
treated with more than one drug (combination therapy) following clinically accepted
guidelines known as lines of therapy. For example, first line therapies often represent
combinations prioritized due to their efficacy in clinical trials; subsequent lines may
be decided by clinician experience. Lines of therapy index treatment plans that
span multiple time-steps and are often laid out by clinicians at first diagnosis. We
incorporate line of therapy as one-hot vectors in 𝑈𝑡[: 𝐾] ∀𝑡 where 𝐾 is the maximal
line of therapy. In doing so, we implicitly capture the clinician’s intention when
prescribing drug combinations.

Lines of therapy typically change when drug combinations fail, or due to adverse
side effects. In Figure 7-1 (left), the doctor may change the line of therapy once the
combinations of drugs cease to be effective in modulating the behavior of serum IgG.
By using line of therapy, an IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) can infer vital information such as how
long a patient has been on a line in the representation 𝑆𝑡. We conjecture, however,
that using line of therapy is not enough in a low-data setting. Neural Turing Machines
Graves et al. (2014) can learn to count occurrences of observations in their history,
but may fail when data is at a premium. (Che et al. , 2018b) use time since the last
observation to help RNNs learn well when data is missing. (Koutnik et al. , 2014)
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partition the hidden states in an RNNs so they are updated at different time-scales.
To explicitly enforce our IEFs can capture time since change in line of therapy, we use
clocks to track the time elapsed since an event.

We augment our interventional vector, 𝑈𝑡, with two more dimensions. A global clock,
𝑔𝑐, captures time elapsed since 𝑇 = 0, i.e. 𝑈𝑡[𝐾] = gc𝑡 = 𝑡. A local clock, 𝑙𝑐, captures
time elapsed since a line of therapy began; i.e. 𝑈𝑡[𝐾 + 1] = lc𝑡 = 𝑡 − 𝑝𝑡 where 𝑝𝑡
denotes the index of time when the line last changed. IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) can, by
using the local clock, modulate 𝑆𝑡 to capture patterns such as: the longer a line
of therapy is deployed, the less or (more) effective it may be. For the patient in
Figure 7-1 (left), we can see that the first dimension of U denoting line of therapy
would be [0, 0, 0, 0, 1, 1, 2, 2, 2]. Line 0 was used four times, line 1 used twice, line
2 used thrice. Then 𝑝 = [0, 0, 0, 0, 4, 4, 6, 6, 6, 6], 𝑔𝑐 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] and
𝑙𝑐 = [0, 1, 2, 3, 0, 1, 0, 1, 2, 3]. Next, we highlight how these clocks are put to use.

7.3.2 Domain expert IEF modules for clinical data

There are a few challenges, though, to the use of PK-PD models in parameterizing
IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵). First, PK-PD models are often constructed to quantify dose
response for physiological markers at the micro-scale, such as the evolution of the
volume of a non-small cell lung tumor (Geng et al. , 2017). However, such markers
may not be among the multivariate biomarkers used to characterize disease progression
in clinical practice. We hypothesize that given suitably diverse observations in 𝑋𝑡,
one or more of the dimensions of the representation 𝑆𝑡 can implicitly capture the
value of the unobserved physiological marker. Second, PK-PD models are often
univariate, modeling how a single marker changes in response to variation in the drug.
Our work designs functions to generalize PK-PD models to work with multivariate
representations, 𝑆𝑡−1. The final challenge is knowing which PK-PD models to make
use of. We describe three new IEFs, each using PK-PD dynamics of a different disease,
designed to capture properties we may expect in representations of chronic disease
data.

Saturated Linear: (Klein, 2009) study the use of linear functions in characterizing
dose-responses in solid cancerous tumors. To allow for the representations we use to
increase or decrease as a linear function of the treatments and the line of therapy, we
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propose the use of a (bounded) linear effect.

𝑔1(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = LIN(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = 𝑆𝑡−1 ⊙ tanh(𝑏lin +𝑊lin[𝑈𝑡−1, 𝐵]) (7.3)

where 𝑏lin ∈ R𝑄,𝑊lin ∈ R𝑄×(𝐿+𝐽).

Log-Cell Kill: The log-cell kill model is a classical model of tumor volume in solid
cell tumors (Lim, 2018; West & Newton, 2017). It is derived from the log-cell kill
hypothesis, which states that administering a dose of chemotherapy kills a constant
fraction of tumor cells regardless of the size of the tumor. While chronic diseases
may not have a single observation that characterizes the organ system (akin to tumor
volume), we hypothesize that representations, 𝑆𝑡, of the observed clinical biomarkers
may benefit from mimicking the dynamics exhibited by tumor volume when exposed
to chemotherapeutic agents. Therefore, we design the following IEF:

𝑔2(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = LC(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = 𝑆𝑡−1 ⊙ (1− 𝜌 log(𝑆2
𝑡−1)− 𝛽 exp(−𝛿 · lc𝑡−1)),

(7.4)

where 𝛽 = tanh(𝑊𝑙𝑐𝑈𝑡−1 + 𝑏𝑙𝑐). 𝑊𝑙𝑐 ∈ R𝑄×𝐿, 𝑏𝑙𝑐 ∈ R𝑄, 𝛿 ∈ R𝑄 and 𝜌 ∈ R𝑄 are learned.

Treatment Exponential: (Xu et al. , 2016) propose a Bayesian nonparameteric
model of creatinine, a marker of kidney function, in patients suffering from Chronic
Kidney Disease. The model can track the dynamics of creatinine due to treatment,
but is limited to operating on a single biomarker. We extend their IEF to modeling
high dimensional representations, 𝑆𝑡, making use of information in the lines of therapy
via the clocks (Section 7.3.1). We refer to this as the Treatment Exponential IEF.

𝑔3(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = TE(·) =

⎧
⎨
⎩
𝑏0 + 𝛼1,𝑡−1/[1 + exp(−𝛼2,𝑡−1(lc𝑡−1 − 𝛾𝑙

2
))], if 0 ≤ lc𝑡−1 < 𝛾𝑙

𝑏𝑙 + 𝛼0,𝑡−1/[1 + exp(𝛼3,𝑡−1(lc𝑡−1 − 3𝛾𝑙
2
))], if lc𝑡−1 ≥ 𝛾𝑙

(7.5)

The parameters of this model have meaning. 𝛼1,𝑡−1 = 𝑊𝑑[𝑆𝑡−1, 𝑈𝑡−1, 𝐵] + 𝑏𝑑, where
𝑊𝑑 ∈ R𝑄×(𝑄+𝐿+𝐽), 𝑏𝑑 ∈ R𝑄 is used to control whether TE is positive or negative.
𝛼2,𝑡−1, 𝛼3,𝑡−1, and 𝛾𝑙 control the steepness and duration of the effect. We restrict these
characteristics to be similar for drugs administered under the same strategy (or line
of therapy). Thus, we parameterize: [𝛼2, 𝛼3, 𝛾]𝑡−1 = 𝜎(𝑊𝑒 · 𝑈𝑡−1[0] + 𝑏𝑒). If there are
three lines of therapy, 𝑊𝑒 ∈ R3×3, 𝑏𝑒 ∈ R3 and the biases, 𝑏0 ∈ R𝑄 and 𝑏𝑙 ∈ R𝑄, are
learned. Finally, 𝛼0,𝑡−1 = (𝛼1,𝑡−1 + 2𝑏0 − 𝑏𝑙)/(1 + exp(−𝛼3,𝑡−1𝛾/2)) will ensure that
the effect peaks at 𝑡 = lc𝑡 + 𝛾.
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7.3.3 PK-PD Intervention Effect Function

Having proposed three functions (𝑔1, 𝑔2, 𝑔3) from diverse domains, we discuss the
construction of IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵).

Grounded Mixture of Domain Experts (GroMoDE): In general, if the user
specifies 𝐷 domain expert modules, 𝑔𝑑 : R𝑄+𝐿+𝐽 ↦→ R𝑄, 𝑑 ∈ [1, 𝐷], then we’d like each
domain expert module to capture a different way in which the representation, 𝑆𝑡−1,
responds to interventions 𝑈𝑡−1. Given inputs 𝑆𝑡−1, 𝑈𝑡−1, 𝐵, and a gating function
𝛿(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = [𝛿1, 𝛿2, . . . , 𝛿𝐾 ] that (optionally) may be a function of the inputs,
we propose the following IEF:

IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) =
𝐷∑︁

𝑑=1

𝜎(𝛿)𝑑 ⊙ 𝑔𝑑(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) (7.6)

𝜎(𝛿)𝑖 in Equation 7.6 refers to taking the softmax of 𝛿 and then selecting the 𝑑th
element of the resulting vector. The intervention effect term IEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) is a
soft-mixture of domain expert modules weighted by 𝛿𝑖. We refer to this architecture as
the Grounded Mixture of Domain Experts (GroMoDE). Unlike the popular Mixture-
of-Experts (MoE) architecture (Jacobs et al. , 1991; Jordan & Jacobs, 1994), each
𝑔𝑑 we use does not come from the same hypothesis class, but rather has a functional
form grounded in the hypothesis class represented by a domain expert module. The
architecture multiplexes between various domain expert modules to determine inter-
vention effects, allowing the data to guide which domain expert is appropriate for each
dimension of 𝑆𝑡. The gating can be adapted based not only on 𝑆𝑡−1, but also on the
line of therapy at that time and the time-elapsed from the beginning of the line.

PK-PDIEF: We use the GroMoDe to parameterize the effect of an intervention. We
assume the effect is additive in representation space and that the representation 𝑆𝑡

will be one wherein the assumption of additivity holds. Using 𝑔1, 𝑔2, 𝑔3 from Section
7.3.2:

PK-PDIEF(𝑆𝑡−1, 𝑈𝑡−1, 𝐵) = 𝑆𝑡−1+ (7.7)

[𝜎(𝛿)1 ⊙ LIN(𝑆𝑡−1, 𝑈𝑡−1) + 𝜎(𝛿)2 ⊙ LC(𝑆𝑡−1, 𝑈𝑡−1) + 𝜎(𝛿)3 ⊙ TE(𝑆𝑡−1, 𝑈𝑡−1)]

Unsupervised Models of Clinical Data: The PK-PDIEF can be instantiated in
each of the three sequential models we highlighted in Section 7.2 as follows:
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1. FOMMPK-PD sets 𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵) = PK-PDIEF(𝑋𝑡−1, 𝑈𝑡−1, 𝐵)

2. SSMPK-PD sets 𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) = PK-PDIEF(𝑍𝑡−1, 𝑈𝑡−1, 𝐵)

3. GRUPK-PD is obtained by modifying the dynamics of the GRU. We chunk
the output of the IEF, 𝑜𝑡 = PK-PDIEF(𝑋𝑡−1, 𝑈𝑡−1, 𝐵), into three equally sized
vectors: 𝑜𝑓𝑡 , 𝑜𝑟𝑡 , 𝑜ℎ𝑡 . Then,

𝐹𝑡 = 𝜎(𝑜𝑓𝑡 + 𝑉𝑧ℎ𝑡−1 + 𝑏𝑧), 𝑅𝑡 = 𝜎(𝑜𝑟𝑡 + 𝑉𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ𝑡 = 𝐹𝑡 ⊙ ℎ𝑡−1 + (1− 𝐹𝑡)⊙ tanh(𝑜ℎ𝑡 + 𝑉ℎ(𝑅𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

7.4 Datasets

We describe the construction and curation of a synthetic dataset to mimic the progres-
sion of disease in patients and a real-world dataset comprising patients undergoing
treatment for cancer. We will evaluate our methods on these data.

7.4.1 Synthetic data

Each synthetic patient is assigned 𝐵 ∈ R6. 𝐵 determines how biomarkers, 𝑋𝑡 ∈ R2,
behave in the absence of treatment. 𝑈𝑡 ∈ R4, comprises the line of therapy (𝐾 = 2),
the local clock, and a single binary variable indicating when treatment is prescribed.
We train on 50/1000 samples and evaluate on five held-out sets of size 50000.

Below, we outline the general principles that the synthetic data we design is based on:

∙ We sample six random baseline values from a standard normal distribution.

∙ Two of the six baseline values determine the natural (untreated) progression of
the two-dimensional longitudinal trajectories. They do so as follows: depending
on which quadrant the baseline data lie in, we assume that the patient has one
of four subtypes.

∙ Each of the four subtypes typifies different patterns by which the biomarkers
behave such as whether they both go up, both go down, one goes up, one goes
down etc. To see a visual example of this, we refer the reader to Figure 7-3
(left).
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Figure 7-3: Visualization of synthetic data: Left: A visualization of "patient"’s baseline
data (colored and marked by patient subtype). Right four plots: Examples of patient’s
longitudinal trajectories along with treatment response. The blue and green longitudinal
data denote two diffrent patient biomarkers. Gray-dotted line represents intervention. The
subtypes may, optionally, be correlated with patient outcomes as highlighted using the values
of 𝑦. We do not use the outcomes in this chapter, but do so later in the thesis.

Baseline The generative process for the baseline covariates is 𝐵 ∼ 𝒩 (0; I);𝐵 ∈ R6.

Treatments (Interventions): There is a single drug (denoted by a binary random
variable) that may be withheld (in the first line of therapy) or prescribed in the second
line of therapy. 𝑑𝑖 ∼ Unif.[0, 18] denotes when the single drug is administered (and
the second line of treatment begins). 𝑑𝑖 is the point at which the local clock resets.
We can summarize the generative process for the treatments as follows:

𝑑 ∼ Unif.[0, 18]

line𝑡 = 0 if 𝑡 < 𝑑 and 1 otherwise

𝑙𝑐𝑡[0] = 1 if 𝑡 < 𝑑 and 0 otherwise

𝑙𝑐𝑡[1] = 0 if 𝑡 < 𝑑 and 1 otherwise (7.8)

where 𝑙𝑐𝑡[0], 𝑙𝑐𝑡[1] denote the one-hot encoding for line of therapy. Next we describe
the intervention effect function that we use. The functional form of TE(·) is re-stated
below for convenience,

TE(lc𝑡) =

⎧
⎨
⎩
𝑏0 + 𝛼1/[1 + exp(−𝛼2(lc𝑡 − 𝛾𝑙

2
))], if 0 ≤ lc𝑡 < 𝛾𝑙

𝑏𝑙 + 𝛼0/[1 + exp(𝛼3(lc𝑡 − 3𝛾𝑙
2
))], if lc𝑡 ≥ 𝛾𝑙

(7.9)

The parameters that we use to generate the data are: 𝛼2 = 0.6, 𝛼3 = 0.6, 𝛾𝑙 =

2, 𝑏𝑙 = 3, and 𝛼1 = [10, 5,−5,−10], which we vary based on patient subtype. We set
𝛼0 = (𝛼1 + 2𝑏0 − 𝑏𝑙)/(1 + exp(−𝛼3𝛾𝑙)/2) to ensure that the treatment effect peaks at
𝑡 = lc𝑡 + 𝛾𝑙 and 𝑏0 = −𝛼1/(1 + exp(𝛼2 · 𝛾𝑙/2)) for attaining TE(0) = 0.
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Biomarkers: We are now ready to describe the full generative process of the longitu-
dinal biomarkers.

Recall: 𝐵1...,6 ∼ 𝒩 (0; 𝐼),

𝑓𝑑(𝑡) = 2− 0.05𝑡− 0.005𝑡2, 𝑓𝑢(𝑡) = −1 + 0.0001𝑡+ 0.005𝑡2,

𝑋1(𝑡);𝑋2(𝑡) = (7.10)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓𝑑(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑑(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 ≥ 0, 𝐵2 ≥ 0 if subtype 1

𝑓𝑑(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑢(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 ≥ 0, 𝐵2 < 0 if subtype 2

𝑓𝑢(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑑(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 < 0, 𝐵2 ≥ 0 if subtype 3

𝑓𝑢(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑢(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 < 0, 𝐵2 < 0 if subtype 4,

Intuitively, the above generative process captures the idea that without any effect of
treatment, the biomarkers follow the patterns implied by the subtype (encoded in the
first two dimensions of the baseline data). However the effect of interventions is felt
more prominently after the 𝑑, the random variable denoting time at which treatment
was prescribed.

7.4.2 Multiple Myleoma - ML-MMRF

Multiple myeloma is a rare and incurable plasma cell cancer with nearly 30, 000 new
cases every year in the United States. The Multiple Myeloma Research Foundation
(MMRF) CoMMpass study releases de-identified clinical data for 1143 patients suffering
from multiple myeloma, an incurable plasma cell cancer. We will release code that
pre-processes features from the CoMMpass study files to construct ML-MMRF, a
publicly available dataset with clinical and interventional data alongside rich genetic
profiles of patients.

Inclusion Criteria: All patients are aligned to the start of treatment, which is
made according to current standard of care (not random assignment). To enroll in
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the CoMMpass study, patients must be newly diagnosed with symptomatic multiple
myeloma, which coincides with the start of treatment. Patients must be eligible for
treatment with an immunomodulator or a proteasome inhibitor, two of the most
common first line drugs, and they must begin treatment within 30 days of the baseline
bone marrow evaluation (Multiple Myeloma Research Foundation & others, 2011).

Features

Genomic Data: RNA-sequencing of CD38+ bone marrow cells was available for
769 patients. Samples were collected at initiation into the study, pre-treatment. For
these patients, we used the Seurat package version 2.3.4 Butler et al. (2018) in R to
identify variable genes, and we then limit downstream analyses to these genes. We
use principal component analysis (PCA) to further reduce the dimensionality of the
data, and the projection of each patient’s gene expression on to the first 40 principal
components serves as the genetic features used in our model.

Baseline Data 𝐵: Baseline data includes genetic PCA scores, lab values at the
patient’s first visit, gender, age, and the revised ISS stage. The baseline data also
includes binary variables detailing the patient’s myeloma subtype, including whether
or not they have heavy chain myeloma, are IgG type, IgA type, IgM type, kappa type,
or lambda type. Additionally, the following labs are measured at baseline, as well
as longitudinally at subsequent visits: absolute neutrophil count (x109/l), albumin
(g/l), blood urea nitrogen (mmol/l), calcium (mmol/l), serum creatinine (umol/l),
glucose (mmol/l), hemoglobin (mmol/l), serum kappa (mg/dl), serum m protein (g/dl),
platelet count x109/l, total protein (g/dl), white blood count x109/l, serum iga (g/l),
serum igg (g/l), serum igm (g/l), serum lambda (mg/dl).

Longitudinal Data 𝑋: Longitudinal data is measured approximately every 2 months
and includes lab values and treatment information. The biomarkers are real-valued
numbers whose values evolve over time. They include: absolute neutrophil count
(x109/l), albumin (g/l), blood urea nitrogen (mmol/l), calcium (mmol/l), serum
creatinine (umol/l), glucose (mmol/l), hemoglobin (mmol/l), serum kappa (mg/dl),
serum m protein (g/dl), platelet count x109/l, total protein (g/dl), white blood count
x109/l, serum iga (g/l), serum igg (g/l), serum igm (g/l), serum lambda (mg/dl).

Treatment information 𝑈 : This includes the line of therapy (we group all lines
beyond line 3 as line 3+) the patient is on at a given point in time, and the local clock
denoting the time elapsed since the last line of therapy. We also include the following

161



treatments as (binary, indicating prescription) features in our model: lenalidomide,
dexamethasone, cyclophosphamide, carfilzomib, bortezomib. The aforementioned are
the top five drugs by frequency in the MMRF dataset.

Data processing

Longitudinal biomarkers X: Labs are first clipped to five times the median value
to correct for outliers or data errors in the registry. They are then normalized to
their healthy ranges (obtained via a literature search) as (unnormalized labs - healthy
minimum value) / (healthy maximum value - healthy minimum value), and then
multiplied by a scaling factor of lab-dependent scaling factor to ensure that most
values lie within the range [−8, 8]. This dataset has significant missingness, with
∼ 66% of the longitudinal markers missing. In addition, there is right censorship in
the dataset, with around 25% of patients getting censored over time. Missing values
are represented as zeros but a separate mask tensor where 1 denotes observed and 0

denotes missing is used to marginalize out missing variables during learning.

Baseline 𝐵: The biomarkers in the baseline are clipped to five times their median
values. Patients without gene expression data (in the PCA features) are assigned
the average normalized PCA score of their 5 nearest neighbors, using the Minkowski
distance metric calculated on FISH features, ISS stage, and age.

Our results are obtained using 5-fold cross evaluation (60/20/20 split) with cohorts
balanced on age and overall survival time. As a representative example, one fold has
439 train, 211 validation, and 301 test examples. The median length in each of these
sets is 11-12 time steps. There is missingness in the biomarkers, with 66% of the
observations missing.

7.5 Evaluation

We answer the following questions: What benefits does PK-PDIEF confer upon unsu-
pervised models of clinical data? Which model families benefit the most? How does
the GroMoDE architecture aid with introspection into the model’s functionality? We
study these questions on two datasets in the low-data regime (∼ 100-1000 samples),
where little prior work exists. The data faithfully represent the multi-modal nature
by which chronic disease progression is tracked in the clinic.
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Experimental setup: All models are trained to solve argmin𝜃− log 𝑝(X|U, 𝐵; 𝜃)
via stochastic gradient descent using ADAM (Kingma & Ba, 2014) with a learning rate
of 0.001 for 5000 epochs. Latent variable models minimize a bound on this quantity.
L1 and L2 regularization is applied in one of two ways: either we regularize all model
parameters, or we regularize all weight matrices except those associated with 𝛿 in
Eq. 7.7. We search over regularization strengths of 0.01, 0.1, 1, 10. For the RNN and
the state space models, we vary the hidden dimensions to be between 100, 250, and
500. We use five-fold cross validation (with early stopping) for selecting the best
hyper-parameters.

Table 7.1: Synthetic data: Lower is better. We report held-out negative log likelihood
(or a bound on it for SSM models) with std. dev. on several model families to study
generalization in the synthetic setting.

Training Set
Size

FOMM
Linear

FOMM
NL

FOMM
PK-PD GRU GRU

PK-PD
SSM

Linear
SSM
NL

SSM
PK-PD

50 71.06 +/- .03 58.80 +/- .03 56.81 +/- .04 56.65 +/- .11 53.49 +/- .04 64.12 +/- .06 80.82 +/- .09 63.72 +/- .03

1000 62.93 +/- .03 57.16 +/- .03 57.81 +/- .02 31.09 +/- .02 29.27 +/- .01 53.84 +/- .02 44.75 +/- .02 44.57 +/- .03

Table 7.2: ML-MMRF: Higher is better. Each number is the fraction (with std. dev.) of
held-out patients for which the model that uses PK-PDIEF has a lower negative log-likelihood
(or bound on it) than a model in the same family that uses a different IEF.

FOMM
PK-PD vs. FOMM

Linear
FOMM
PK-PD vs.FOMM

NL
GRU

PK-PD vs. GRU SSM
PK-PD vs. SSM

Linear
SSM

PK-PD vs.SSM
NL

SSM
PK-PD vs. SSM

MOE

0.792 (0.405) 0.668 (0.457) 0.420 (0.489) 0.776 (0.414) 0.750 (0.431) 0.706 (0.454)

Baselines: FOMMNL,SSMNL,GRU are represent representation learning models
with typical choices for parameterizing the IEF. FOMMLinear, SSMLinear, which
use linear functions for the IEF, are popular choices when learning models in the
low-data regime. SSMMOE refers to models whose IEFs (𝜇𝜃 (in Section 7.2)) are
a mixture of three, 2-layer neural networks, rather than PK-PDIEF. This control
quantifies the effect of grounding each expert using domain knowledge.

7.5.1 Quantitative analysis

Table 7.1 depicts negative log-likelihoods on held-out synthetic data across different
models, where a lower number implies better generalization. The non-linearity of
the synthetic data makes unsupervised learning a challenge for FOMMLinear at 50
samples, allowing FOMMPK-PD to easily outperform it. In contrast, FOMMNL
can capture non-linearities in the data, making it a strong baseline even at 50 samples.
Yet, FOMMPK-PD outperforms it. At 1000 samples, FOMMNL is able to learn
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Figure 7-4: Visualizations of learned SSM models: (a) Synthetic: Forward samples
(conditioned only on 𝐵) from SSMPK-PD (o), SSMLinear (x), SSMPK-PD without local
clocks (△), for a single patient. Blue circles (o) denote ground truth. The markers above
the trajectories represent treatments prescribed across time. (b) ML-MMRF : We visualize
the TSNE representations of each held-out patient’s 𝛼1 parameter (in the TE module) at
the start of treatment and three years in. (c) ML-MMRF : For SSMPK-PD, we visualize
weights, 𝛿, on each domain expert module (LIN, LC, TE) across state space dimensions. (d)
ML-MMRF : Each column is a different biomarker containing forward samples (conditioned
only on 𝐵) from SSMPK-PD (o) and SSMlinear (x) of a single patient. As in the synthetic
samples, blue circles denote ground truth, and the markers above the trajectories represent
treatments prescribed across time. y-axis shows biomarker levels (normalized to be between
-8 and 8).

enough about the dynamics to improve its performance relative to FOMMPK-PD.
GRU is a strong model on this dataset, but in both data regimes, the GRUPK-PD
improves generalization. Finally, SSMPK-PD outperforms SSMLinear,SSMNL
across the board. SSMNL overfits quickly on 50 samples but recovers most of its
performance when learning with 1000 samples.

Unsupervised learning of the ML-MMRF data is challenging due to high-dimensionality
of the (often missing) biomarkers, which vary due to combinations of drugs prescribed
over time. For each held-out point, Δ𝑖 = 1 when the negative log-likelihood of that
datapoint is lower under a model that uses PK-PDIEF and Δ𝑖 = 0 when it is not. In
Table 7.2, we report 1

𝑁

∑︀𝑁
𝑖=1 Δ𝑖, the proportion of data for which the PK-PDIEF model

yields better results.

We observe improvements in generalization across both FOMMs and SSMs with the
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use of PK-PDIEF. We do not see discernible gains from GRUPK-PD, perhaps due to
missingness in the data, which also results in the GRUs generalizing worse than SSM
models (see Table 7.4).

To further probe the performance of PK-PDIEF, we conduct a control experiment
against the Mixture of Experts parameterization in SSMPK-PD vs SSMMOE (see
Table 7.4 for likelihood results). We find that the inductive bias in each domain expert
plays a role in ensuring that PK-PDIEF outperforms the vanilla Mixture of Experts
architecture.

We are also interested in studying the absolute negative log likelihood and predictive
capacity of the models. In Figure 7-5a), we use importance sampling to estimate the
marginal negative log likelihood of SSMLinear and SSMPK-PD for each covariate
across all time points. Namely, we utilize the following estimator,

𝑝(X) ≈ 1

𝑆

𝑆∑︁

𝑠=1

𝑝(X|Z(𝑠))𝑝(Z(𝑠))

𝑞(Z(𝑠)|X)
, (7.11)

akin to what is used in (Rezende et al. , 2014). SSMPK-PD has lower negative log
likelihood compared to SSMLinear for several covariates, including neutrophil count,
albumin, BUN, serum IgM and serum lambda. This result is corroborated with the
generated samples in Figure 7-6, which often show that the PK-PD model qualitatively
does better at capturing IgM dynamics compared to the Linear model. In general,
although there is a large degree of overlap in the estimates of the likelihood under the
two models for some features, it is reassuring to see that SSMPK-PD does explain
vital markers like serum IgM and serum Lambda (which are often used by doctors to
measure progression for specific kinds of patients), better than the baseline.

In Figure 7-5b), c), and d), we show the L1 error of SSMPK-PD and SSMLinear
when predicting future values of each covariate. We do so under three different
conditioning strategies: 1) condition on 6 months of patient data, and predict 1 year
into the future; 2) condition on 6 months of patient data, and predict 2 years into
the future; 3) condition on 2 years of patient data, and predict 1 year into the future.
Observing 1) and 2) ( Figure 7-5b) and c)), we see that prediction quality expectedly
degrades when trying to forecast longer into the future. However, the amount of data
conditioned on does not seem to affect the L1 error, as the SSM models do well in
predicting 1 year into the future (see Figure 7-5b) and d)).
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Ablation studies

Table 7.3: Ablation experiments on the synthetic and ML-MMRF datasets: Top):
We study the effect of adding each domain expert module to SSMPK-PD. We report held-
out bounds on negative log likelihood. Bottom): In this experiment, we study the effect of
varying the tunable parameters of the domain expert modules in the SSM models vs keeping
them fixed.

Dataset Held-out
NELBO Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

ML-MMRF linear 69.19 72.89 71.13 65.85 62.53
linear + log-cell 67.33 73.47 71.48 68.01 61.04

linear + log-cell + te 60.11 70.50 64.45 64.63 55.52

Dataset SSM
Linear

SSM PK-PD
(fixed params)

SSM PK-PD
(varying params)

ML-MMRF 71.46 62.25 63.04

Synthetic 52.25 +/- 0.04 47.03 +/- 0.02 44.76 +/- 0.01

We report two ablation experiments in Table 7.3.

In Table 7.3 (top), we assess the effect of adding each domain expert module to
SSMPK-PD on held-out negative log likelihood (upper bound). We see that the LC
module gives a modest improvement, while the addition of the TE module gives most
of the improvements.

In Table 7.3(bottom), we show the effect of fixing all tunable parameters in the domain
expert modules vs allowing them to vary over the state space dimension of the SSM.
On the synthetic data, varying the parameters yields a measurable improvement in
generalization, while doing so on the multiple myeloma data does not yield the same
improvement.

Next, we examine how the different models perform on the ML-MMRF data in terms
of held-out log likelihood. In Table 7.4, we report held-out negative log likelihoods
(or bounds on them for the SSM models) across each fold of the multiple myeloma
data. These results anchor the relative pairwise comparisons depicted in Table
7.1,7.2 to absolute likelihood measures. We see that PK-PDIEF yields improvements
in generalization across all five folds for FOMMs and SSMs. While we do not see
these gain in the RNN, we note that the RNN models overall do worse at modeling
the ML-MMRF data than the SSMs. In Table 7.5, we show the full set of pairwise
comparisons over all five folds of the multiple myeloma data for reference relative to
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Table 7.4: Generalization on held-out data in ML-MMRF: Lower is better. For the
FOMM and RNN models, we report negative log-likelihood. For the SSM models, we report
upper bounds on the negative log-likelihood.

Dataset Held-out Neg
Log Likelihood

FOMM
Linear

FOMM
Nonlinear

FOMM
PK-PD

FOMM
MOE RNN RNN

PK-PD

Multiple
Myeloma Mean 92.80 97.53 90.26 97.26 89.89 99.98

Fold 1 90.81 93.83 87.70 90.51 88.61 98.33
Fold 2 98.84 103.00 98.54 106.53 93.59 102.62
Fold 3 98.68 109.56 95.10 109.35 99.17 111.15
Fold 4 89.58 96.29 88.06 96.74 86.83 98.74
Fold 5 86.07 84.98 81.89 83.18 81.25 89.05

Dataset Held-out Neg
Log Likelihood

SSM
Linear

SSM
PK-PD

SSM
Nonlinear

SSM
MOE

Multiple
Myeloma Mean 71.46 63.04 70.58 68.80

Fold 1 70.35 60.11 70.87 69.47
Fold 2 77.99 70.50 74.75 73.98
Fold 3 73.77 64.45 73.31 73.24
Fold 4 70.23 64.63 70.64 65.02
Fold 5 64.96 55.52 63.34 62.31

the limited subset we showcased in Table 7.2.
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Table 7.5: Pairwise comparison of models trained on ML-MMRF: Higher is better.
Each number is the fraction (with std. dev.) of held out patients for which the model that
used PK-PDIEF has a lower negative log-likelihood (or bound on it) than a model in the same
family that uses a different IEF. We report fractions for each fold in ML-MMRF.

Dataset FOMM
PK-PD vs. FOMM

Linear
FOMM
PK-PD vs.FOMM

NL
FOMM
PK-PD vs. FOMM

MOE

Multiple
Myeloma Mean 0.792 (0.405) 0.668 (0.457) 0.510 (0.490)

Fold 1 0.813 (0.390) 0.606 (0.489) 0.404 (0.490)
Fold 2 0.753 (0.432) 0.732 (0.443) 0.665 (0.472)
Fold 3 0.773 (0.419) 0.835 (0.371) 0.464 (0.499)
Fold 4 0.799 (0.401) 0.623 (0.485) 0.573 (0.495)
Fold 5 0.824 (0.381) 0.544 (0.498) 0.420 (0.494)

Dataset SSM
PK-PD vs. SSM

Linear
SSM

PK-PD vs.SSM
NL

SSM
PK-PD vs. SSM

MOE

Multiple
Myeloma Mean 0.776 (0.414) 0.750 (0.431) 0.706 (0.454)

Fold 1 0.793 (0.405) 0.798 (0.402) 0.725 (0.446)
Fold 2 0.778 (0.415) 0.701 (0.456) 0.670 (0.470)
Fold 3 0.742 (0.437) 0.749 (0.434) 0.742 (0.438)
Fold 4 0.764 (0.425) 0.734 (0.442) 0.673 (0.469)
Fold 5 0.801 (0.390) 0.767 (0.423) 0.720 (0.449)
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Figure 7-5: a) NLL estimates via importance sampling: We estimate the NLL of
SSMPK-PD and SSMLinear for each feature, summed over all time points and averaged
over all patients. b) Condition on 6 months, forward sample 1 year: We show L1
prediction error for forward samples over a 1 year time window conditioned on 6 months of
patient data. At each time point, we compute the L1 error with the observed biomarker and
sum these errors (excluding predictions for missing biomarker values) over the prediction
window. We employ this procedure for each patient. c) Condition on 6 months, sample
forward 2 years: We report L1 error for forward samples over a 2 year window conditioned
on 6 months of patient data. d) Condition on 2 years, sample forward 1 year: Finally,
we report L1 error for forward samples over a 1 year time window conditioned on 2 years of
patient data.
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7.5.2 Qualitative Analysis

Ancestral sampling

Figure 7-4(a) shows samples from three SSMs trained on synthetic data. SSMPK-PD
captures treatment response accurately while SSMLinear does not register that the
effect of treatment can persist over time. What role does the local clock (in Section
7.3.1) play? We perform an ablation study on SSMs where the local clock in 𝑈𝑡, used
by PK-PDIEF, is set to a constant. Without clocks (PKPD w/o lc), the model does not
capture the onset or persistence of treatment response. Figure 7-4(d) shows the average
of five ancestral samples from SSMLinear and SSMPK-PD trained on ML-MMRF.
We track five biomarkers that characterize myeloma. SSMPK-PD better captures the
evolution of biomarkers conditioned on treatment, particularly of serum IgA, where
SSMLinear mistakenly predicts the value will be steady. For serum lambda and IgG,
the PK-PD model predicts the dip and rise in the lab values, while the linear model
does not.

In the samples described above, we conditioned on the patient’s baseline covariates
and longitudinal treatments. We now visualize sampling from the model after inferring
the latent representations of patients up to a point in time that we condition on. Let
𝐶 denote the point in time until which we condition on patient data and 𝐹 denote the
number of timesteps that we sample forward into the future. We limit our analysis to
the subset of patients for which 𝐶 + 𝐹 <= 𝑇 where 𝑇 is the maximum number of
time steps for which we observe patient data. The following samples we display are
obtained as a consequence of averaging over five different samples, each of which is
generated (for the SSM) as follows:

𝑍 ∼ 𝑞𝜑(𝑍𝐶 |𝑍𝐶−1, 𝑋1:𝐶 , 𝑈0:𝐶−1)

𝑍𝑘 ∼ 𝑝𝜃(𝑍𝑘|𝑍𝑘−1, 𝑈𝑘−1, 𝐵) 𝑘 = 𝐶 + 1, . . . , 𝐶 + 𝐹

𝑋𝑘 ∼ 𝑝𝜃(𝑋𝑘|𝑍𝑘) 𝑘 = 𝐶 + 1, . . . , 𝐶 + 𝐹 (7.12)

We study the following strategies for simulating patient data from the models.

1. Condition on 6 months of patient data, and then sample forward 2 years,

2. Condition on 1 year of a patient data and then sample forward 1 year,

3. Condition on the data coinciding with a patient’s first line therapy and then
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forward sample until the end of their third line therapy.

In Figure 7-6, we show additional samples from SSMPK-PD when conditioning on
differing amounts of data. Overall, in all three cases, SSMPK-PD models treatment
response better than a linear baseline. For 1. (Figure 7-6a)), we see that SSMPK-PD
correctly captures that the serum IgA value remains steady while SSMLinear predicts
an upward trend. For 2. (Figure 7-6b)), SSMPK-PD does well in modeling down-
trends, as in serum IgA and serum IgM. For 3. (Figure 7-6c)), we similarly see that
SSMPK-PD captures the down-trending serum IgA and serum IgM during the second
line therapy.

Interpreting what the model has learned about multiple myeloma

Do the models learn known clinical relationships between interventions and observa-
tions? On SSMPK-PD, we analyze this via the sensitivity function ∇𝑈𝑡−1E𝑍𝑡(𝑋𝑡|𝑍𝑡).
This presents another use case wherein gradients of a deep generative model may
be used for In Figure 7-7a) and b) show how changes in two combination therapies,
Lenalidomide, Bortezomib, Dexamethasone (RVD) and Bortezomib, Dexamethasone
(VD) respectively are associated with changes in clinical lab markers. (a) RVD is
associated with a decrease in hemoglobin and platelet values, two known side effects
of the treatment (Kumar et al. , 2012). (b) We observe a diminished effect of VD
on hemoglobin, platelets and creatinine. Indeed, VD is given in favor of RVD when
trying to avoid side effects (Jacobus et al. , 2016).

Figure 7-4(c) visualizes the gates 𝜎(𝛿) from SSMPK-PD trained on ML-MMRF.
The highest weighted component is the treatment exponential model followed by the
log-cell kill model for many of the latent state dimensions. This result tells us (a) that
no single domain expert is responsible for the dynamics of all the latent dimensions
and (b) the treatment exponential IEF appears to have the largest weights across
several dimensions.

Knowing that 𝛼1𝑡 in the treatment exponential IEF drives much of the variation in
representation, we perform TSNE (Maaten & Hinton, 2008) on each held-out patient’s
high-dimensional 𝛼1𝑡 at two time points in Figure 7-4(b). This analysis shows how
variation in 𝛼1𝑡, and consequently the dimensions of the latent representation, are
driven by treatment. Early on, the representations segregate by lenalidomine (a
first-line therapy), whereas for patients who make it through three years of treatment,
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the line of therapy drives the representation. The PK-PDIEF thus admits a hierarchical
decomposition of information that aids in interpreting the model’s dynamics.

In Figure 7-8, we perform TSNE (Maaten & Hinton, 2008) on each held-out patient’s
high-dimensional 𝛼1𝑡 vector (obtained from SSMPK-PD trained on ML-MMRF) at
multiple time points, expanding on the two time points that were shown in Figure
7-4. Overall, we gain a richer understanding of how the variation in 𝛼1𝑡 is driven by
treatment. As we saw before, the representations segregate by presence of lenalidomide
in initial therapy. Later, they segregate by line of therapy; finally, most patients are
taken off treatment.

In Figure 7-7c), we show the how treatments in 𝑈𝑡 play a role in 𝛼1𝑡 by visualizing
the weights of the linear model that maps from treatment signal to 𝛼1. This result
showcases how this parameter varies as a function of treatment.

An important point to note in these plots is that as 𝑇 increases, the number of patients
decreases due to right censoring in the ML-MMRF dataset.
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Figure 7-6: Samples from learned SSM models with differing conditioning strate-
gies: We visualize samples from SSMPK-PD (𝑜) and SSMlinear (x). Each row corresponds
to a single patient, whereas each column represents a different biomarker for that patient. a):
We condition on 6 months of patient data and forward sample 2 years. b): We condition on
1 year of patient data and forward sample 1 year. c): We condition on data corresponding
to the patient’s first line of therapy and then forward sample the extent of their second
and third line therapies. The blue circles denote ground truth, and the markers above the
trajectories represent treatments prescribed across time.
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Figure 7-7: a),b) Heatmaps showing directional derivative of expected longitu-
dinal values: Here, we depict two heatmaps showing the directional derivatives of the
expected longitudinal data with respect to VD (a)) and RVD (b)), two common first line
therapies in multiple myeloma. Red boxes surround hemoglobin, creatinine, and platelet
count, covariates that display the most differences between the two therapies over time.
This analysis was done on SSMPK-PD. c) Weights on the linear model that maps
treatment to 𝛼1: We visualize the weight matrix of the linear function that maps the
treatment signal to 𝛼1, which varies across the state space dimension, in SSMPK-PD.
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Figure 7-8: 𝛼1𝑡 Visualizations: We visualize the TSNE representations of each held-out
patient’s 𝛼1 parameter (in TE module used in trained SSMPK-PD) over multiple time
points.
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7.6 Discussion

PK-PDIEF uses domain knowledge from pharmacology, makes use of the properties
of interventions found in clinical data of chronically ill patients, and in doing so,
improves generalization of representation-learning based models in the low data
regime. PK-PDIEF admits introspection and captures known clinical information about
treatment effects. As Bica et al. (2020) note, there is very little work in using
pharmacology to design priors for machine learning models.

Approaches such as (Albers et al. , 2012) make use of domain knowledge in the form
of physiological models to track serum glucose dynamics from electronic health record
data. In a similar vein, albeit in the context of representation learning, we instantiate
knowledge from pharmacology in deep generative models and study the statistical
ramifications of doing so (improved generalization in the low data regime).

An interesting question is whether deep generative models, such as the ones we design
herein, may be used to tackle problems in fields such as quantitative systems pharma-
cology (Helmlinger et al. , 2019; Jusko, 2013; Fleisher et al. , 2017). The SSMPK-PD
may be seen as an adaptation of Bayesian pharmacokinetic models (Lenert et al. ,
1992) to representation learning. If data were no barrier, and interpretability of the
models parameters is not paramount, then the SSMPK-PD can present practitioners
with new approach for building new simulation based pipelines to determine effective
drug doses using deep generative models (Hutchinson et al. , 2019).

It is worth pausing to reflect upon why the use of functions derived from PK-PD
models make sense within representation learning frameworks. One hypothesis would
be that through trial and error, these are functions that which commonly capture the
range of variation in time due to the prescription of treatment. Another hypothesis
could be that the representations learn the marker for disease burden, such as tumor
volume, that the PK-PD model was designed to model. The latter hypothesis, if
true, would be remarkable since tumor volume could be broadly useful as a prognostic
marker of disease burden but is often (a) difficult to measure and (b) rarely observed
in electronic health record data and therefore difficult to regress onto. To test such
a hypothesis however, we would need access to a large dataset of patient records
and linked clinical trial data where tumor burden is measured; such data may prove
challenging to come by.

The work herein may be seen as a hybrid between the data intensive approach typically
adopted by deep learning where the goal is to learn correlation between random variable
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from scratch, and the approach made use of in knowledge-based systems (Szolovits,
1986, 1982; Szolovits et al. , 1988; Patil & Schwartz, 1982) where relationships between
random variables are prescribed. The issue with the former is that in data poor
regimes, learning functional relationships is hard; the issue with the latter is that it
can be brittle and sensitive to potential model misspecification. By grounding the
functional forms of the functions in a knowledge based system, whilst still making use
of data to guide the learning of relationships, we seek to obtain the benefits of both
paradigms.
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Chapter 8

Latent Representations of Privileged
Information

Chapter 6 introduced Deep Markov Models and Chapter 7 introduced intervention
effect functions, which when used in Deep Markov Models, improved generalization of
deep generative models trained on clinical data. An important question to ask at this
juncture is what can good unsupervised models of sequential, clinical data be used
for?

A motivating example we consider is the problem of building risk stratification tools for
rare diseases. In such problems, we are data limited due to the frequency by which the
disease manifests in the general population. In this chapter, we show that if one has
access to a model that can uncover patterns in time-varying data, then, by making use
of the inferred patterns, we can reduce the sample complexity of supervised learning.
Our approach opens a new set of algorithmic techniques to learn risk prediction models
from high-dimensional data when labelled data is scarce.

8.1 Introduction

Accurate models for predicting patient risk can have a large impact on clinical care and
practice. For diseases with no known cure, risk prediction models can guide ongoing
care and help clinicians and patients plan future therapy development (Razavian et al.
, 2015; Chen & Asch, 2017). In the selection of patient cohorts for clinical trials, risk
stratification tools can ensure a new drug’s effect is validated on a diverse group of
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people through cohort selection (Shivade et al. , 2013). A common approach to patient
risk stratification is to collect labelled patient data prior to treatment (baseline data)
and to regress onto an outcome of interest such as death or progression-event for a
disease. Approaches based on deep neural networks along these lines can work well,
and success stories abound (Gulshan et al. , 2016; Razavian et al. , 2015). But such
models are data-hungry. What happens when data is scarce?

In this work, we make use of privileged information (Vapnik & Vashist, 2009):
information (features) available during training but not available for prediction at test
time. In clinical settings, privileged data is often available but is rarely used for task
of risk stratification. For example, such information can take the form of prescribed
medications and patient treatment response as measured in terms of longitudinal
biomarkers relevant to the disease. This work aims to achieve two goals: (a) to build
models that capture the progression of a disease as observed in privileged data, and (b)
to learn representations from such models that contain information vital to building
accurate risk stratification models when data is scarce.

It is known that patients respond differently to the same medication. This heterogeneity
in response to medication can be driven by a patient’s underlying genetics as well
as their past medical history. The key assumption that we will make here is that
characterizing this heterogeneity can yield insight into disease progression and aid
prediction of patient outcomes. To operationalize these insights, we propose the
Privileged Information Variational Autoencoder (PIVAE), a deep generative model
which uses a latent variable to model the statistical variation in treatment effect that
remains constant across time. The model predicts patient outcomes of interest using
the latent variable while conditioning on baseline patient covariates.

Why should we expect gains from using privileged information? In the low-data regime,
there can be a high degree of uncertainty in the decision boundary for a prediction task
from baseline data alone. Intuitively, a representation of post-treatment observations
may decrease uncertainty by providing a different view of the prediction problem and
consequently improve accuracy. Building on learning using privileged information
(LuPI), our work serves as a case-study for how clinical domain knowledge can be
utilized to make deep learning in healthcare practical in the low data regime.

In this chapter we introduce the Privileged Information VAE (PIVAE), a conditional
deep generative model designed to capture statistical patterns in the effect of treatment
(or control signals) on a time-varying, multi-variate longitudinal sequences. We use
the PIVAE to form a representation of privileged data, which can be used to improve
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predictive performance for outcomes of interest in the low-data regime.

8.2 Setup

We begin by presenting background on learning risk prediction and learning using
privileged information.

Survival analysis. Survival analysis (Cox, 2018) is a popular tool used used to
estimate the time to a patient outcome of interest 𝑌 conditional on some covariates
𝑋 when the outcomes are censored (or unobserved). Censoring occurs if an patient
outcome is unknown due to incomplete information or if the patient leaves before
the end of the study. The survival analysis literature spans the gamut of non-
parametric models such as the Kaplan-Meier model (Kaplan & Meier, 1958), semi-
parametric models such as the the Cox-proportional hazards model (Cox, 1972) and
fully parameteric models such as the Weibull distribution (Klein & Moeschberger,
2006). To learn parameteric survival models via maximum likelihood we denote a
binary indication of censorship as 𝐶. In this setting, it is common to combine a log
survival function sf for censored events with a model log likelihood of observed events
using the binary censorship variable 𝐶 (Klein & Moeschberger, 2006) and maximize:

log 𝑝(𝑌 |𝑋,𝐶) = (1− 𝐶) log 𝑝(𝑌 |𝑋) + 𝐶 log sf(𝑌 |𝑋) (8.1)

Learning using privileged information (LuPI). In most machine learning prob-
lems, the training data used for model development, the validation data used for
hyperparameter tuning, and test data for evaluation all comprise the same set of
covariates and labels. With LUPI, at training time, we have access to privileged
information not available at validation or test time. Prior work in support vector
machine classification has shown that privileged information such as slack variables or
related correcting functions can improve learning(Vapnik & Vashist, 2009). Similar
results have been seen for problems in multi-class learning (Wang et al. , 2018).
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8.3 Privileged Information Variational Autoencoder

We seek a risk stratification tool for a single disease of interest. Such tools are often
built by using pre-treatment data (i.e. data about a patient prior to undergoing
therapy) to regress onto an outcome that characterizes patient risk (such as the time
to death). For rare diseases, this learning problem will typically lie in the low-data
regime which limits the use of more data-hungry non-linear models.

Fortunately, at training time, in addition to pre-treatment data, we often have post-
treatment data available. We will assume the latter is in the form of longitudinal
trajectories of treatments and their subsequent effects on bio-markers that track
disease progression. Such patient trajectories are often available when building risk
prediction models from Electronic Medical Record (EMR), registry or claims data.
This is privileged information that we will leverage to build our risk prediction models.

The central hypothesis of this work is twofold: first, that we can learn a representation
of privileged information which characterizes the progression of disease; and second,
that the representation provides a different view of the pre-treatment data that is
easier to correlate with patient outcomes.

But what principle guides the representation we seek? It is well known that there is
heterogeneity in the way a disease manifests itself and that a disease that we refer to
by a single name, could comprise many different sub-types. For example, Ahlqvist
et al. (2018) describes five different subgroups within diabetes and demonstrates
that patient outcomes vary by subgroup. We use privileged information to uncover
this latent subgroup. We seek a representation such that closeness in representation
space corresponds to similarity in progression patterns, and, we hypothesize, patient
outcomes of interest.

(Privileged) longitudinal data, 𝑈,𝑋: For patients in the training set, we assume
that we have access to a sequence of multivariate interventions 𝑈 = (𝑈1, . . . , 𝑈𝑇−1)

and multivariate, post-treatment biomarkers 𝑋 = (𝑋1, . . . , 𝑋𝑇 ) for 𝑇 > 0. The
biomarkers may be any combination of real-valued (e.g. laboratory measurements of
proteins), categorical (e.g. responses to survey data) or binary-valued (indications of
comorbidities). The PIVAE will seek to build representations, 𝑍, of these (privileged)
time-varying biomarkers.

Baseline data, 𝐵, corresponds to patient features prior to the start of therapy, used
in the prediction task—these are the only data available at test time. The set 𝐵
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will include co-morbidities, age, gender, demographics, genetic features. We assume
it is a statistic that when conditioned on, renders any future outcome independent
of any previous medical history in the patient’s record. We will also assume that
baseline biomarkers 𝑋0 and first therapy prescribed 𝑈0 form part of the pre-treatment
covariates available for risk-stratification.

Patient outcomes, 𝑌 : We pose risk stratification as the problem of estimating the
probability, using a suitable model, of a clinical outcome of interest, given their baseline
features. The outcome may be binary (will the patient survive for a year), ordinal
(will the patient survive for one, two or three years) or real-valued (time-to-adverse
event). 𝑌 can either be censored 𝐶 = 1 or observed 𝐶 = 0.

Figure 8-1: Learning with post-treatment information: (a) prediction of outcomes
from baseline data only. (b) the Privileged Information Variational Autoencoder (PIVAE)
(c) the PIVAE’s inference network.

We typically regress onto 𝑌 using 𝐵 at training time to learn 𝑝(𝑌 | 𝐵,𝑋0, 𝑈0) and
use the resulting function for test time prediction (Figure 8-1 (a)).

In Figure 8-1 (b), we visualize the Privileged Information Variational Autoencoder,
whose generative process we now describe:

𝑍 ∼ 𝑝(𝑍|𝐵,𝑋0, 𝑈0; 𝜃1); 𝑌 ∼ 𝑝(𝑌 |𝑍; 𝜃2);
𝑋𝑡 ∼ 𝑝(𝑋𝑡;𝑋𝑡−1, 𝑈𝑡−1, 𝑍; 𝜃3) 𝑡 = {1, . . . , 𝑇} (8.2)

𝑍 is a latent variable that serves as a summary statistic for all post-treatment
information whose prior depends on the pre-treatment set of variables (𝐵,𝑋0, 𝑈0).
The outcome 𝑌 is a function of 𝑍 (and optionally the pre-treatment variables).

Learning and Prediction: We maximize the likelihood of 𝑌,𝑋1, . . . , 𝑋𝑇 given
𝐵,𝑋0, 𝑈0, . . . , 𝑈𝑇 . For simplicity, we denote the set 𝑋1, . . . , 𝑋𝑇 as 𝑋1:𝑇 and 𝑈1, . . . , 𝑈𝑇
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as 𝑈1:𝑇 . For a single patient:

log 𝑝(𝑋1:𝑇 , 𝑌 |𝐵,𝑋0, 𝑈0:𝑇 , 𝐶)

= log

∫︁

𝑍

𝑝(𝑋1:𝑇 , 𝑌, 𝑍|𝐵,𝑋0, 𝑈0:𝑇 )

= log

∫︁

𝑍

𝑝(𝑋1:𝑇 |𝑍,𝑋0, 𝑈0:𝑇 )𝑝(𝑍|𝐵,𝑋0, 𝑈0)𝑝(𝑌 |𝑍,𝐶)

= log

∫︁

𝑍

𝑞(𝑍|𝑌,𝑋1:𝑇 , 𝑈1:𝑇 ;𝜑)

𝑇∏︁

𝑡=1

𝑝(𝑋𝑡|𝑋𝑡−1, 𝑍, 𝑈𝑡−1)
𝑝(𝑍|𝐵,𝑋0, 𝑈0)

𝑞(𝑍|𝑌,𝑋1:𝑇 , 𝑈1:𝑇 ;𝜑)
𝑝(𝑌 |𝑍,𝐶)

≥ E𝑞(𝑍|𝑌,𝑋1:𝑇 ,𝑈1:𝑇 ;𝜑)

[︃
𝑇∑︁

𝑡=1

log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑍, 𝑈𝑡−1)

+ log 𝑝(𝑌 |𝑍,𝐶)
]︂

−KL(𝑞(𝑍|𝑌,𝑋1:𝑇 , 𝑈1:𝑇 ;𝜑)||𝑝(𝑍|𝐵,𝑋0, 𝑈0)) (8.3)

where log 𝑝(𝑌 |𝑍,𝐶) is estimated as in Equation 8.1.

The inference network for the model is depicted in Figure 8-1 (c). A recurrent neural net-
work uses the concatenation of treatments and interventions in addition to a represen-
tation of the outcome to parameterize the variational distribution 𝑞(𝑍|𝑌,𝑋1:𝑇 , 𝑈1:𝑇 ;𝜑).

At test time, 𝑋1, . . . , 𝑋𝑇 , 𝑈1, . . . , 𝑈𝑇 are unobserved and we approximate the prediction
function 𝑃 (𝑌 |𝐵,𝑈0, 𝑋0) =

∫︀
𝑍
𝑝(𝑌 |𝑍)𝑝(𝑍|𝐵,𝑈0, 𝑋0) for prediction.

Overview: It is worth giving pause to why the PIVAE is a good fit for the problem
at hand.

Our first goal was to learn a representation of privileged information. The PIVAE does
this by modeling the likelihood of privileged data as a function of the latent variable
𝑍. At training time, the privileged data are observed and probabilistic inference (via
an inference network) is used to infer 𝑍 by maximizing a lower bound on the log
likelihood of the observed data. At prediction time, the privileged information is
unobserved. However, as leaves in a Bayesian network, they may be ignored and a
Monte-Carlo approximation to the prior-predictive (in this case, a marginalization of
latent variable 𝑍) is used to predict the outcome 𝑌 .

Our second goal was to build a model wherein the representation learned yielded
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insights into the progression of a disease. Patients respond differently to treatments
over time. The PIVAE hypothesizes that there is structure in the response to therapy
as observed in the longitudinal biomarkers and that we can uncover disease subtypes
by using a deep generative model to characterize variation in the response to therapy.

Parameterizations: We make the following choices for the conditional densities in
Equation 8.2.

Prior conditional 𝑝(𝑍;𝐵,𝑋0, 𝑈0, 𝜃1): 𝑍 ∼ 𝒩 (softmax(𝑊ℎ[𝐵;𝑋0;𝑈0] + 𝑏ℎ) *𝑊𝜇𝑝 ; Σ𝑝)

where [𝐴;𝐵] denotes the concatenation of 𝐴 and 𝐵. The prior mean is computed as a
weighted sum of learned protoype means in 𝑊𝜇𝑝 .

Outcome conditional 𝑝(𝑌 |𝑍; 𝜃2): If the prediction task is a regression, we parameterize
the outcome as a linear function of 𝑍: 𝑌 ∼ 𝒩 (𝑊𝑦𝑍 + 𝑏; Σ𝑦). When the event is
time-to-death (positive, real-valued number), we use a log normal distribution: i.e.
log 𝑌 ∼ 𝒩 (𝑊𝑦𝑍 + 𝑏; Σ𝑦).

Longitudinal data 𝑝(𝑋𝑡; 𝑓(𝑋𝑡−1, 𝑈𝑡−1, 𝑍; 𝜃3)): For the data considered here, all the
longitudinal biomarkers are real-valued. We therefore model the biomarkers at each
point in time as:

𝑋𝑡 ∼ 𝒩 (𝑋𝑡−1 + MLP(𝑍; 𝜃3)𝑇𝑈𝑡−1; Σ𝑥) (8.4)

8.4 Evaluation

We first study the PIVAE in the context of a synthetic setting designed to mimic our
application of interest.

8.4.1 Synthetic Data

Each patient has a six dimensional baseline state (𝐵), the first two components of
which are visualized in Figure 8-2 (left). At training time, we have access to two
biomarkers across time (𝑋) (the privileged information). The task is to predict each
patient’s time-to-death (𝑌 ). We assume that there are four distinct subtypes in the
disease (denoted as a categorical random variable 𝑆, here) and that each patient
belongs to a single subtype. A patient’s subtype will depend on which orthant of
the two-dimensional plane the first two components of the patient’s six-dimensional
baseline data lie in (seen in the different markers and colours in Figure 8-2 (left)).
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The subtype determines the pattern followed by the biomarkers (denoted 𝑋1, 𝑋2).
Time-to-death is a noisy function of each patient’s subtype as described in Equation
8.5.

The treatment vector at time 𝑡, 𝑈𝑡, for each patient includes the time elapsed from
the start of therapy, denoted by 𝑡𝑠, a one hot encoding of the line of therapy, and a
binary variable that is 1 if a treatment is given at the current time point or has been
given previously and 0 otherwise.

This is identical to the synthetic dataset used in Chapter 7. However, here the goal
is to do good supervised learning whilst treating the longitudinal data as privileged
information.

This dataset has the following properties that merit its use our study. First, subtype is
inferrable from both baseline data and (privileged) longitudinal information. Second,
time-to-death (outcome) is a nonlinear function of baseline data but is a simple linear
function of the subtype.

𝐵1...,6 ∼ 𝒩 (0; 𝐼), (8.5)

𝑌 =
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 +𝒩 (0, 0.5), 𝐵1 ≥ 0, 𝐵2 ≥ 0

7 +𝒩 (0, 0.5);𝐵1 ≥ 0, 𝐵2 < 0

9 +𝒩 (0, 0.5);𝐵1 < 0, 𝐵2 ≥ 0

5 +𝒩 (0, 0.5);𝐵1 < 0, 𝐵2 < 0

8.4.2 Evaluation

We compare the following models for this predictive task: Linear denotes a linear
parameterization of 𝑝(𝑌 |𝐵,𝑋0, 𝑈0), Random Forest denotes a random forest regression
for 𝑝(𝑌 |𝐵,𝑋0, 𝑈0). Since we know that the true regression function given baseline
data can be effectively represented by half-spaces, this is a very strong baseline for this
task. Chained assumes oracle access to the ground-truth subtype 𝑆 for each patient
and parameterizes 𝑝(𝑌 |𝐵,𝑋0, 𝑈0) = 𝑔(𝑌 |𝑓(𝑆|𝐵,𝑋0, 𝑈0)) where 𝑔 is a linear function
from subtype onto outcome, and 𝑓 is a random-forest that regresses onto subtype
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Figure 8-2: Visualizing synthetic data: Left: A visualization of patient’s baseline data
(coloured and marked by patient subtype). Each quadrant is annotated with [subtype]
(time-to-death). Right four plots: For patients from each of the subtypes, an example of
their longitudinal trajectories. The solid lines are trajectories had there been no treatment,
while the dotted lines over time represent trajectories with treatment response. The dashed
vertical line represents the therapy given at a particular point in time.
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Figure 8-3: Synthetic (held-out) data: (a) depicts the delta distribution implied by 𝑍
under a supervised PIVAE while (b)

∑︀
𝑛 𝑞(𝑍𝑛|𝑋,𝑈), (c)

∑︀
𝑛 𝑝(𝑍𝑛|𝐵,𝑋0, 𝑈0) visualize the

corresponding distributions from an unsupervised PIVAE. (d), (e) visualize different accuracy
metrics comparing the PIVAE to various baselines.

from baseline data. This is an approximation to the best achievable regression model.
PIVAE [supervised] (denoted with [sup]) corresponds to learning the PIVAE in a fully
supervised manner. i.e. via minimizing a Maximum A-Posteriori approximation to
E𝑝(𝑍|𝐵,𝑋0,𝑈0)[− log 𝑝(𝑌 |𝑍,𝐶)]. PIVAE [unsupervised] (denoted with [unsup]) learns by
maximizing Equation 8.2.

How do the different methods compare to one another? We evaluate performance
on mean square error (MSE) and 𝑅2 (coefficient of determination) as a function of
the number of training samples while keeping fixed the number of held-out data
at 300 points. We conduct a hyperparameter search over the number of latent
dimension (4, 10), number of hidden dimensions in 𝑝(𝑌 |𝑍,𝐶) (10, 50) and learning
rates (1𝑒− 3, 8𝑒− 3) identically for PIVAE [sup] and PIVAE [unsup] and selected the
best model using mean square error on held-out data as the metric.

In Figure 8-3 (d,e) we see that the linear models, as expected, perform poorly (since
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the outcome is not linear in the input). (Note that the MSE for the linear models
is >30, so therefore are not shown in the plot). Both random forests and PIVAE
[sup] do well when the number of training samples exceeds one-hundred but their
performance degrades in the low-data regime. In contrast, PIVAE [unsup], matches
the performance (in MSE and 𝑅2) of an oracle regression model with access to the
true underlying subtype.

What advantage does using of privileged information confer upon PIVAE [unsup]
relative to PIVAE [sup] in the small data regime? To answer this question we train,
on 25 patients, a supervised and unsupervised version of the PIVAE where 𝑍 is
two-dimensional. When PIVAE [sup] is via a MAP approximation to

E𝑝(𝑍|𝐵,𝑋0,𝑈0)[− log 𝑝(𝑌 |𝑍,𝐶)]

, we obtain a delta-distribution 𝑝(𝑍|𝐵,𝑋0, 𝑈0)). In Figure 8-3 (a) we visualize
this distribution evaluated on a held-out set. Although the PIVAE [sup] has be-
gun to separate out patients with varying outcome times, learning about subtype
structure, in the low-data regime, is difficult from baseline data alone. The same
representation 𝑝(𝑍|𝐵,𝑋0, 𝑈0) for PIVAE [unsup] is plotted in Figure 8-3 (c) where
we see that the model has successfully learned to map from baseline data onto
four distinct regions corresponding to subtype – why has this happened? Note
that the learning signal for 𝑝(𝑍|𝐵,𝑋0, 𝑈0) is derived from the minimization of
KL(𝑞(𝑍|𝑌,𝑋1:𝑇 , 𝑈1:𝑇 ;𝜑)||𝑝(𝑍|𝐵,𝑋0, 𝑈0)) (Equation 8.2). We plot the aggregate pos-
terior distribution in Figure 8-3 (b) which reveals that the inference network has
used privileged information to uncover the latent subtype. The minimization of KL
divergence consequently transfers this knowledge onto 𝑝(𝑍|𝐵,𝑋0, 𝑈0), allowing the
model to generalize effectively at test time. Note that the functions used in PIVAE
[sup] and PIVAE [unsup] are identical in their structure and number of parameters,
what differs is that at training time, the privileged information is used to construct a
view on data which when leveraged by the latter allows it to generalize better. This,
in effect, validates the utility of privileged information in the small data regime.

To inspect what the PIVAE [unsup] (trained on 25 patients) learns, in Figure 8-4 (a)
we visualize values of ℎglobal in matrix form. Across all patients within a subtype,
we average the estimates of ℎglobal, binarize the result and insert it into a row of the
matrix visualized in the plot. We find that the global structure learned by the model
corresponds to the four patterns of variation exhibited by the biomarkers for each
subtype. We forward sample the longitudinal data from the model and visualize the
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Figure 8-4: Visualizing the learned model (a) Visualization of ℎglobal (each row
corresponds to the averaged, binarized ℎglobal of a patient within a subtype); (b, c, d, e) for
a single patient from each subtype, we sample the patient’s biomarker from the generative
model (conditioned on their baseline data), where we see a good fit to the ground truth

results in Figure 8-4 (b, c, d, e) where we validate that it forms a reasonable fit to the
ground truth for both biomarkers.

8.5 Related work

Our work is inspired by learning with privileged information (Vapnik & Vashist,
2009), who impose constraints on slack variables (available as privileged information)
to improve the generalization of support vector machines (SVMs). The underlying
principle espoused is the judicious use of additional information at training time to
improve test-time performance. However, rather than using privileged information to
modify the parameters of an existing classifier, we use generative models to capture
the content of privileged information into a representation that when conditioned on,
improves test-time generalization (Sohn et al. , 2015). Lopez-Paz et al. (2015) unify
model distillation and learning with privileged information with a framework called
generalized distillation. In the framework, the teacher typically predicts the outcome
using privileged information and the student uses the teacher’s prediction estimates to
improve learning. In our work, we rely on a generative model’s latent representation
to have the capacity to be a good teacher.

Unlike semi-supervised learning (SSL) with deep generative models (Kingma et al. ,
2014) , we have more information for all training points compared to SSL for which
we have unlabelled data at training time. In a similar vein, multi-task learning (MTL)
Caruana (1997) seeks to find a common representation to capture the similarity between
multiple prediction tasks (in this case, the prediction of longitudinal trajectories and
survival outcomes). However, MTL typically seeks to solve multiple prediction tasks
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at test time.

There is a rich history of jointly modeling longitudinal data and clinical outcomes
(Wu et al. , 2012). Unsupervised sequential models have been used to model diseases
like Chronic Kidney disease (Futoma et al. , 2016; Wang et al. , 2014b) and modeling
mobile health drug-use (Dempsey et al. , 2017). In addition to modeling sequential
data, Ranganath et al. (2015) use a time-varying latent variable to parameterize
the hazard function while predicting outcomes for heart patients. Schulam & Saria
(2016) propose a conditional Bayesian network that models the progression of a single
biomarker as a function of other observed data. They use latent variables as proxies
for the observed set of biomarkers. Our work differs from theirs in our explicit desire
to use heterogeneity in treatment effect as the means by which we uncover patterns in
data.

Gabler et al. (2009) discuss the importance of explicitly accounting for treatment
heterogeneity, particularly in the context of designing and evaluating clinical trials.
Smolenski et al. (2017) study the heterogeneity in the context of patients treated
for depression via video-conference. In child psychology, Mertens et al. (2017) study
heterogeneity of response to therapy for problematic behavior. To the best of our
knowledge, we are not aware of other work that uses deep generative models to capture
treatment heterogeneity.

8.6 Discussion

This chapter proposes the Privileged Information Variational Autoencoder. The model
captures representations of subtype in longitudinal patient data while correcting for
the effect of treatments. We show how the model’s latent representations can serve
both as a diagnostic tool to understand how disease behave as well as improve the
predictive performance of risk prediction tools.

Although our method is most useful at providing predictive gains in the low-data
regime, there are limitations to the model and care must be taken in its use for building
risk-prediciton models. First, within the prediction problem must exist a degree of
correlation between the variation in privileged information and the outcome of interest.
In such scenarios, the information captured in the latent variable be correlated to
the outcome and provide a kind of supervision to the risk-prediction model than
the outcome alone. Second, designing good deep generative models of privileged
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information often requires domain knowledge for the problem at hand. Validating
the approach by building a new risk prediction model on a real world dataset is an
important direction for future work.
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Chapter 9

Conclusion

We are constantly discovering new ways to measure phenomena occurring at a variety
of scales in the human body. As we do so, our notions of healthy and diseased changes.
While our understanding of the mechanisms that drive change over time in the human
body is constantly improving, there is much we do not know. In the absence of detailed
mechanistic knowledge about the data generating processes that drive, we conjecture
in this thesis that deep generative models, given sufficient data, may prove a capable
surrogate as a computational modeling tool for clinical questions of interest.

This thesis develops supervised, and unsupervised learning algorithms for models
of high-dimensional data designed to tackle some of the challenges that arise in the
context of healthcare. We return to the challenges highlighted in Chapter 1 and
outline how some of the work in this thesis addresses them.

Heterogeneity, sparsity, missingness, and high-dimensionality: This thesis
makes use of latent variable deep generative models to capture patterns in high-
dimensional data. When the data comes from long-tailed distributions, as they often
do for problems in healthcare, deep generative models may underfit. In Chapter 4
(Krishnan et al. , 2018) we investigate and remedy this pathology. Being able to fit
these models well means that we can make use of the innovations in Chapter 3 to
investigate the parameters of the model and understand the correlations that exist
among features in high-dimensional data.

Temporal data: As diseases progress in a patient they manifest changes in clinical
observations which then prompt changes in downstream treatment. Deep markov
models (Krishnan et al. , 2017), in Chapter 6, are a flexible model family that
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practitioners can use for unsupervised learning of such data. The black-box variational
learning algorithm we derive can be scaled up to learn DMMs from millions of
datapoints through the use of GPUs.

Limited mechanistic knowledge: When modeling patient data from rare diseases,
DMMs may overfit. In Chapter 7, we combine ideas from pharmacology with deep
learning and design new neural architectures for use in the conditional probability
distributions of DMMs. We show that this judicious use of domain knowledge improves
the generalization of DMMs when data is scarce.

Dataset sizes: In Chapter 8 we show how deep generative models may be used
to capture salient structure in post-treatment, privileged information and in doing
so learn representations that can reduce the sample complexity of risk stratification
models that make predictions using pre-treatment data. Chapter 5 shows how to
fine-tune deep generative models with a little bit of supervision so that datapoints
that are similar have similar latent representations.

9.1 Future directions for deep generative modeling

Inference as prediction The idea of posing an optimization problem, such as
probabilistic inference in a graphical model, as prediction has roots that go back at
least to the wake-sleep algorithm (Hinton et al. , 1995). However, there remain many
questions of a statistical nature that arise from such a transformation. Statistical
learning theory tells us about how well classifiers generalize when applied to unseen
data. Little is known about whether such results may be extended to characterize
the generalization of inference networks. For amortized variational inference to find
footing within the statistical modeling workflow, we need ways to quantify the sample
complexity, and generalization of the coupled systems comprising the deep generative
model and the inference network. Such results will be necessary to trust the predictions
obtained from inference networks when deployed to tackle real-world problems in
domains such as healthcare.

Disentangled representation learning and identifiability The ability of deep
generative models to model complex log likelihoods has led researchers to question
whether this class of models can identify factors of variation in a dataset. In the
context of MNIST, a disentangled model will map digit identity to some subset of the
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latent variables and digit style to others.

Several studies (Siddharth et al. , 2017; Kingma et al. , 2014) make use of supervision to
control the information content captured by different latent variables – this is a powerful
approach when supervision is available. Others claim that disentanglement may be
obtained in a purely unsupervised manner, usually via some form of regularization on
the inference network (Higgins et al. , 2016; Kim & Mnih, 2018; Chen et al. , 2018).
However, the above studies leave open a crucial question: does there exist a coupling
of model and learning algorithm that guarantees disentanglement independent of
the dataset? Fortunately, and unsurprisingly, Locatello et al. (2019) show that in
the absence of assumptions about the inductive biases of the generative model or
the datasets that it is trained on, disentangled representation learning is impossible.
Where does that leave us?

One of the most promising directions for future research towards the goal of disentan-
gled representation learning is building deep generative models with identifiable latent
representations. Classical identifiability is a statistical property of a model under which
it is possible to uniquely determine the model parameters after observing an infinite
number of observations. However deep generative models typically rely on conditional
probability distributions defined using overparameterized neural networks rendering
the unique identification of parameters improbable. Indeed one of the rationales behind
the successes of neural networks is that overparameterization is crucial to learning
such models via stochastic gradient based methods(Allen-Zhu et al. , 2019). But if
we cannot identify the parameters of the model, perhaps we may identify the latent
representations uniquely given infinite data. One of the pioneering works towards
this end is that of (Khemakhem et al. , 2020) who make use of results from nonlinear
independent component analysis (ICA) (Hyvarinen & Morioka, 2017; Hyvärinen &
Pajunen, 1999; Hyvarinen et al. , 2019) to derive identifiability results for variational
autoencoders. The extension of such results towards Deep Markov Models presents
an intriguing opportunity to learn identifiable non-linear state space models where
we can uniquely determine low-dimensional patient trajectories for high-dimensional,
time-varying patient data.

Deep generative models with tractable likelihoods In this thesis, we made
use of latent variable models for unsupervised learning. Furthermore, we assumed
that latent variables had a lower dimensionality than the data. Dinh et al. (2016)
present an alternative approach to unsupervised learning with latent variables. They
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assume the latent variable has the same dimensionality of the data, and the generative
process comprises iterated, parameteric, transformations, each of which is constrained
to be volume preserving. The resulting model has a tractable and differentiable log-
likelihood and one can perform exact probabilistic inference by inverting each of the
transformations in the generative model to obtain the posterior distribution. Although
such models yield competitive results on image datasets, it would be interesting to
study their utility on tabular datasets such as those found in electronic health record
data.

The use of parameteric, volume preserving transformations has seen use not just in
density estimation, but also in variational inference. Indeed, one of the canonical ways
in which the complexity of the inference network may be improved is via normalizing
flows. We refer the reader to (Kobyzev et al. , 2019; Papamakarios et al. , 2019) for a
comprehensive review of such methods.

9.2 Future directions for machine learning in health-
care

In addition to the above methodological directions for future work, much remains to
be done before we can answer some of the most pressing questions posed by clinical
informatics.

Multi-scale, multi-modal deep generative models Over the next decade, med-
ical institutions will collect a large amount of fine-grained data about the human body
across different scales. At the micro scale, the collection of RNA and DNA sequencing
data will give us a view into the cellular health of a patient. At the macro scale, the
compilation of diagnosis codes, medical images and procedures will offer insights into
the health of a patient’s organ system. At the population scale, infection counts and
community wellness data aggregated by non-governmental agencies will characterize
the general health of large groups of people. Building hierarchical models of data at
multiple scales and multiple modalities is a rich area for innovative applications of
deep generative models (Shi et al. , 2019; Wu & Goodman, 2018; Wang et al. , 2014a),
and new algorithms for inference and learning.

Success in this arena can inform solutions to new prediction problems that cannot
solely be answered using data at a single scale. For example, a model looking to
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predict how likely a patient is to contract a life threatening C.difficile infection might
require a patient’s medical history at the macro scale, as well as the prevailing rates
of infection in the hospital ward at the population scale.

Inductive biases for clinical data Hierarchical models are only part of the solution
to decision making with multi-modal, multi-scale data. The other part of the solution
lies in developing new parameterizations for the conditional probability distributions
used in deep generative models. Many problems in healthcare will be fundamentally
data limited, either due to the nature of the disease or due to socio-technical constraints
on data access. Good inductive biases can prove crucial in building models that
generalize well in the low-data regime. In Chapter 7, we saw the dramatic improvements
obtained from the use of a judiciously chosen intervention effect function. Coming
up with good neural architectures for deep neural networks that parameterize models
of data such as lab results, x-rays, DNA and immunomics will no doubt require the
expertise of pharmacologists, radiologists, geneticists and immunologists.

Disease progression Disease progression modeling (Cook & Bies, 2016) encom-
passes the use of discrete (Sukkar et al. , 2012) or continuous-time (Wang et al. , 2014b)
statistical models to uncover patterns in longitudinal patient data. The ability of deep
generative models to model data from millions of patients, each one with a potentially
high-dimensional set of covariates, means that we are no longer computationally
limited in which diseases we choose to study. Making use of sequential deep generative
models to subtype low-dimensional patient trajectories (while correcting for variation
in biomarkers due to treatments) can give clinicians insights into strata that exist
within their patient populations. Characterizing the strata may then reveal known or
unknown aspects of the disease, or give clinicians new ways to group patients.

Causal Inference There are several opportunities wherein the innovations within
this thesis can play a role towards tackling problems of a causal nature. The one
we highlight is the use of deep generative models as structural equation models
(Pearl, 2012). Under the appropriate conditions where the sequential causal effect is
identifiable (Pearl et al. , 2009), the DMM may be viewed as a structural equation
model and be used to ask counterfactual queries of how patients behave under various
treatment plans. Such a tool can give clinicians the ability to gauge the success of
a chosen longitudinal treatment plan not just in terms of the primary biomarkers
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used to characterize disease burden, but also in terms of biomarkers that characterize
related comorbidities.

Clinical Deployment On a more humbling note, while there many known unknowns
in the application of machine learning for problems in healthcare, there are a far greater
number of unknown unknowns. The careful deployment, study and characterization
of decision support tools powered by machine learning is vital to shed light on what
problems remain to be characterized before patients and doctors can make use of the
insights learned from data.
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Appendix A

Model configurations

We detail the model configurations used in the experiments within Chapter 5. We
present the architectures in a format used by Keras (Chollet et al. , 2015).

A.0.1 Pinwheel Dataset

Encoder: 𝑝(𝑧|𝑥):

∙ 𝑥→ Dense(20, ‘relu’)

∙ ℎ1 → Dense(20, ‘relu’) → ℎ2

∙ ℎ2 → Dense(1) → 𝜇

∙ ℎ2 → Dense(1) → log Σ

Decoder: 𝑝(𝑥|𝑧):

∙ 𝑧 → Dense(20, ‘relu’)

∙ ℎ1 → Dense(20, ‘relu’)

∙ ℎ2 → Dense(2) → 𝜇obs
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Reasoning Model: 𝑝(𝑧|𝑄):

∙ {𝑥1, . . . , 𝑥𝑄} → 𝑝(𝑧|𝑥) (Elementwise)

∙ {[𝜇1, log Σ1], . . . , [𝜇𝑄, log Σ𝑄]}
→ PermutationEquivariant(20,‘elu’)

∙ {ℎ11, . . . , ℎ1𝑄} → PermutationEquivariant(20,‘elu’)

∙ {ℎ21, . . . , ℎ2𝑄} → PermutationInvariant(1) → 𝜇

∙ {ℎ21, . . . , ℎ2𝑄} → PermutationInvariant(1) → log Σ

A.0.2 MiniImagenet Dataset

Embedding Network 𝑓(𝑥)→ 𝑥′:

∙ 𝑥→ ResNet18 (He et al. , 2016) Conv Layers (see below) → ℎ1

∙ ℎ1 → AveragePooling → 𝑥′

Encoder: 𝑝(𝑧|𝑥′):

∙ 𝑥′ → Dense(512, ’relu’) → ℎ1

∙ ℎ1 → Dense(128, ’linear’) → 𝜇

∙ ℎ1 → Dense(128, ’linear’) → 𝜎

Decoder: 𝑝(𝑥′|𝑧):

∙ 𝑧 → Dense(512, ’relu’) → ℎ1

∙ ℎ1 → Dense(256, ’linear’) → 𝜇𝑜𝑏𝑠
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Reasoning Model: 𝑝(𝑧|𝑄):

∙ {𝑥1, . . . , 𝑥𝑄} → 𝑝(𝑧|𝑥) (Elementwise)

∙ {[𝜇1, log Σ1], . . . , [𝜇𝑄, log Σ𝑄]}
→ PermutationEquivariant(2048,‘linear’)

∙ {ℎ21, . . . , ℎ2𝑄} → PermutationInvariant(128) → 𝜇

∙ {ℎ21, . . . , ℎ2𝑄} → PermutationInvariant(128) → log Σ

Training Details:

We take |𝑄𝑠|= 1, |𝑄𝑛𝑠|= 5, learning rate = 5𝑒− 5.

A.0.3 MNIST Dataset

Encoder: 𝑝(𝑧|𝑥):

∙ 𝑥→ Flatten() → ℎ1

∙ ℎ1 → Dense(500, ’relu’) → ℎ2

∙ ℎ2 → Dense(500, ’relu’) → ℎ3

∙ ℎ3 → Dense(2) → 𝜇

∙ ℎ3 → Dense(2) → 𝜎

Decoder: 𝑝(𝑥|𝑧):

∙ 𝑧 → Dense(500, ’relu’) → ℎ1

∙ ℎ1 → Dense(784, ’sigmoid’) → ℎ2

∙ ℎ2 → Reshape((28,28)) → 𝜇
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Reasoning Model: 𝑝(𝑧|𝑄):

∙ {𝑥1, . . . , 𝑥𝑄} → 𝑝(𝑧|𝑥) (Elementwise)

∙ {[𝜇1, log Σ1], . . . , [𝜇𝑄, log Σ𝑄]}
→ PermutationEquivariant(20,‘relu’)

∙ {ℎ21, . . . , ℎ2𝑄} → PermutationInvariant(2) → 𝜇

∙ {ℎ21, . . . , ℎ2𝑄} → PermutationInvariant(2) → log Σ

Training Details: We take |𝑄𝑠|= 5, |𝑄𝑛𝑠|= 5, learning rate = 1𝑒− 4.
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Appendix B

Model configurations

We detail the model configurations used in the experiments within Chapter 6.

In each instance, we detail the model architecture used in the generative model
(comprising a transition and emission function) as well as the model used for posterior
inference. “L” denotes a linear layer with the values in parenthesis denoting the
dimensions of the transformation. “NL” denotes the application of a non-linearity
(specified in the caption). Since parameters in the model are shared across time, we
describe the architecture at a single time-step. The row denoted “Inference” is the
architecture used for performing inference. In the case of the bidirectional RNN, we
concatenate the outputs from the forward and reverse RNN to perform prediction
of the posterior means and log covariances. The recognition network predicts the
posterior mean and log-covariance. The two quantities are predicted with a shared
base network feeding into a separate final linear layer (i.e the last linear layer in the
row “Inference” is different for the function used to predict the posterior mean and the
posterior log-covariance). Square braces indicate a vector concatenation operation.

Table B.1 describes the model architecture used in the synthetic experiments. We
detail the architectures used for inference in “MF-LR” and “ST-LR”. The other inference
algorithms involve different structures in the LSTM-RNN module but are otherwise
identical. The “combiner function” is detailed by the mapping from [ℎ𝑡; 𝑧𝑡−1]→𝜇𝑞.

Table B.2 describes the architecture used for the polyphonic dataset and in Table B.3,
we describe the architecture used for experiments on medical data.
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Table B.1: Synthetic Experiments (ReLU was used as the non-linearity)

Inference (MF-LR) 𝑥𝑡 →LNL120→LNL2020 →LNL2020 →bLSTM22020
→LNL4020 →LNL2020 →LIN201 →𝜇𝑞 or log 𝜎2

𝑞

Inference (ST-LR) 𝑥𝑡 →LNL120→LNL2020 →LNL2020 →bLSTM22020
→LNL4020 →ℎ𝑡

[ℎ𝑡; 𝑧𝑡−1] →LNL20+120 →LNL2020→LIN201 →𝜇𝑞 or log 𝜎2
𝑞

Emission Fixed

Transition Fixed

Table B.2: Polyphonic Experiments (Tanh was used as the non-linearity).

Inference 𝑥𝑡 →LNL88200→LNL200200 →LNL200200 →LSTM2200200
→LIN200200 →𝜇𝑞 or log 𝜎2

𝑞

Emission Z→LNL200200 →LNL200200 →LNL200200 →LIN200200 →Sigmoid

Transition (𝜇𝑝) Z→LNL200200 →LNL200200 →LIN200200

Transition (log 𝜎2
𝑝) Z→LNL200200 →LNL200200 →LIN200200

Table B.3: Medical Experiments (Tanh was used as the non-linearity). We describe
the “E:NL-T:NL” model. The observations were 48 dimensional of which there were 4
lab indicators that we treat separately to perform do-calculus.

Inference [𝑥𝑡;𝑢𝑡] →LNL48+8200→LNL200300 →LNL200200
→bLSTM2200200 →LIN40020 →𝜇𝑞 or log 𝜎2

𝑞

Emission (Lab Indicators 𝑖𝑡 ) 𝑧𝑡 →LNL20200 →LIN2004 →Sigmoid

Emission (Lab Values, Diagnosis Codes) [𝑧𝑡; 𝑖𝑡] →LNL20+4200 →LIN20044 →Sigmoid

Transition (𝜇𝑝) [𝑧𝑡;𝑢𝑡] →LNL20+8200 →LNL200200 →LIN20020

Transition (log 𝜎2
𝑝) Fixed with dimension 20 (Sampled from Uniform(-1,1)
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