
The Average-Case Complexity of Counting Cliques
in Erdős-Rényi Hypergraphs

by

Enric Boix

A.B., Princeton University (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2020

Certified by. .
Guy Bresler

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

The Average-Case Complexity of Counting Cliques in

Erdős-Rényi Hypergraphs

by

Enric Boix

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The complexity of clique problems on Erdős-Rényi random graphs has become a cen-
tral topic in average-case complexity. Algorithmic phase transitions in these problems
have been shown to have broad connections ranging from mixing of Markov chains
and statistical physics to information-computation gaps in high-dimensional statistics.
We consider the problem of counting 𝑘-cliques in 𝑠-uniform Erdős-Rényi hypergraphs
𝐺(𝑛, 𝑐, 𝑠) with edge density 𝑐 and show that its fine-grained average-case complex-
ity can be based on its worst-case complexity. We give a worst-case to average-case
reduction for counting 𝑘-cliques on worst-case hypergraphs given a blackbox solving
the problem on 𝐺(𝑛, 𝑐, 𝑠) with low error probability. Our approach is closely related
to [Goldreich and Rothblum, FOCS18], which showed a worst-case to average-case
reduction for counting cliques for an efficiently-sampleable distribution on graphs.

Our reduction has the following implications:

∙ Dense Erdős-Rényi graphs and hypergraphs : Counting 𝑘-cliques on 𝐺(𝑛, 𝑐, 𝑠)
with 𝑘 and 𝑐 constant matches its worst-case complexity up to a polylog(𝑛)
factor. Assuming ETH, it takes 𝑛Ω(𝑘) time to count 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠) if 𝑘
and 𝑐 are constant.

∙ Sparse Erdős-Rényi graphs and hypergraphs : When 𝑐 = Θ(𝑛−𝛼), for each fixed 𝛼
our reduction yields different average-case phase diagrams depicting a tradeoff
between runtime and 𝑘. Assuming the best known worst-case algorithms are
optimal, in the graph case of 𝑠 = 2, we establish that the exponent in 𝑛 of
the optimal running time for 𝑘-clique counting in 𝐺(𝑛, 𝑐, 𝑠) is 𝜔𝑘

3
− 𝐶𝛼

(︀
𝑘
2

)︀
+

𝑂𝑘,𝛼(1), where 𝜔
9
≤ 𝐶 ≤ 1 and 𝜔 is the matrix multiplication constant. In

the hypergraph case of 𝑠 ≥ 3, we show a lower bound at the exponent of
𝑘 − 𝛼

(︀
𝑘
𝑠

)︀
+ 𝑂𝑘,𝛼(1) which surprisingly is tight against algorithmic achievability

exactly for the set of 𝑐 above the Erdős-Rényi 𝑘-clique percolation threshold.

Our reduction yields the first average-case hardness result for a problem over Erdős-
Rényi hypergraphs based on a corresponding worst-case hardness assumption. More-

3

over, because we consider sparse Erdős-Rényi hypergraphs, for each 𝑛, 𝑘, and 𝑠 we
actually have an entire family of problems parametrized by the edge probability 𝑐 and
the behavior changes as a function of 𝑐; this is the first worst-to-average-case hardness
result we are aware of for which the complexity of the same problem over worst-case
versus average-case inputs is completely different. We also analyze several natural
algorithms for counting 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠) that establish our upper bounds in the
sparse case 𝑐 = Θ(𝑛−𝛼). The ingredients in our worst-case to average-case reduction
include: (1) several new techniques for the self-reducibility of counting 𝑘-cliques as a
low-degree polynomial; and (2) a finite Fourier analytic method to bound the total
variation convergence of random biased binary expansions to the uniform distribution
over residues in F𝑝.

Thesis Supervisor: Guy Bresler
Title: Associate Professor of Electrical Engineering and Computer Science

4

Acknowledgments

My greatest appreciation goes to Guy Bresler, who has been a wonderful advisor

over the last two years. Throughout, he has unfailingly supported me in my develop-

ment as a researcher, optimistically encouraged me to explore even the wildest ideas,

and constantly inspired me with his fantastic taste in problems. I would also like

to express my gratitude to my incredible coauthor, Matt Brennan, without whom

this master’s thesis would not have been written. Matt Brennan, Austin Stromme,

Dheeraj Nagaraj, Fred Koehler, Rares Buhai, and Sinho Chewi have been the funni-

est, the most nurturing, and quite simply the best group of office-mates that I could

have hoped for. I’m looking forward to many more late-night conversations once we

all get back on campus. I would like to thank my other coauthors in grad school,

Ben Edelman, Emmanuel Abbe, Jason Altschuler, Lior Eldar, Saeed Mehraban, and

Siddhartha Jayanti, for their friendship and their tenacity in tackling problems. I am

also greatly indebted to the MIT community as a whole, for being the fount of many

fantastic friendships. A special thank you goes to Sonia, Smita, and Imran for their

warm hospitality during the writing of this thesis. Finally, my parents, brothers, and

grandmother have always been a source of comfort and love.

And, last but not least: much of the material in this thesis is reprinted, with

permission, from [14] c○2019 IEEE.

5

6

Contents

1 Introduction 11

1.1 Related Work . 14

1.1.1 Clique Problems on Erdős-Rényi Graphs 14

1.1.2 Worst-Case to Average-Case Reductions 15

1.1.3 Comparison to Goldreich-Rothblum ’18 16

1.1.4 Subsequent Work . 17

1.2 Overview of Main Results . 17

1.3 Overview of Reduction Techniques 21

1.4 Notation and Preliminaries . 24

1.5 Organization . 24

2 Problem Formulations and Average-Case Lower Bounds 27

2.1 Clique Problems and Worst-Case Fine-Grained Conjectures 27

2.2 Average-Case Lower Bounds for Counting 𝑘-Cliques in 𝐺(𝑛, 𝑐, 𝑠) . . . 30

3 Worst-Case to Average-Case Reduction for 𝐺(𝑛, 𝑐, 𝑠) 37

3.1 Worst-Case Reduction to 𝑘-Partite Hypergraphs 39

3.2 Counting 𝑘-Cliques as a Low-Degree Polynomial 40

3.3 Random Self-Reducibility: Reducing to Random Inputs in F𝑁 41

3.4 Reduction to Evaluating the Polynomial on 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) 42

3.5 Reduction to Counting 𝑘-Cliques in 𝐺(𝑛, 𝑐, 𝑠) 47

3.6 Proofs of Theorems 2.2.1 and 2.2.2 48

7

4 Random Binary Expansions Modulo 𝑝 55

5 Algorithms for Counting 𝑘-Cliques in 𝐺(𝑛, 𝑐, 𝑠) 63

5.1 Greedy Random Sampling . 63

5.2 Sample Complexity and Runtime of Greedy Random Sampling 65

5.3 Post-Processing with Matrix Multiplication 70

5.4 Deterministic Iterative Algorithm for Counting in 𝐺(𝑛, 𝑐, 𝑠) 73

6 Extensions and Open Problems 75

8

List of Figures

1-1 Comparison of our algorithms and average-case lower bounds for count-

ing 𝑘-cliques in sparse Erdős-Rényi Hypergraphs 𝐺(𝑛, 𝑐, 𝑠) with 𝑐 =

Θ(𝑛−𝛼). Green denotes runtimes 𝑇 feasible for each 𝑘, blue denotes 𝑇

infeasible given that the best known worst-case algorithms are optimal

and gray denotes 𝑇 for which the complexity of counting 𝑘-cliques is

open after this work. The left plot shows the graph case of 𝑠 = 2 and

the right plot shows the hypergraph case of 𝑠 ≥ 3. For simplicity, all

quantities shown are up to constant 𝑂𝑘,𝛼(1) additive error. c○2019 IEEE. 20

3-1 Reduction To-ER-# for showing computational lower bounds for average-

case #(𝑘, 𝑠)-clique on Erdős-Rényi 𝐺(𝑛, 𝑐, 𝑠) hypergraphs based on

the worst-case hardness of #(𝑘, 𝑠)-clique. c○2019 IEEE. 54

9

10

Chapter 1

Introduction

A graph 𝐺 = (𝑉,𝐸) consists of a set of 𝑛 vertices, 𝑉 , and a set of edges, 𝐸 ⊆
(︀
𝑉
2

)︀
. A

𝑘-clique in 𝐺 is a subset 𝑆 ⊆ 𝑉 of 𝑘 pairwise-adjacent vertices, i.e.,
(︀
𝑆
2

)︀
⊆ 𝐸.

We answer the following fundamental question: is it harder to count the number

of 𝑘-cliques in an adversarially-chosen graph than in a uniformly-random graph? As

we discuss below, this question lies at the intersection of fine-grained complexity and

average-case complexity.

Fine-grained complexity In our analysis, we will think of 𝑘 as a small constant.

Thus, the naive brute-force algorithm that enumerates 𝑘-vertex subsets and checks

each one takes Θ(𝑘2
(︀
𝑛
𝑘

)︀
) = Θ(𝑛𝑘) = poly(𝑛) time. This runtime is polynomial in 𝑛,

so, from the point of view of classical complexity theory, the brute-force algorithm is

efficient and the case is closed.

However, the story does not quite end here: the exponential dependence in the

parameter 𝑘 is highly unsatisfying because it means that brute force is impractical

even for moderate values of 𝑘. A fine-grained complexity theorist would ask whether

faster algorithms are possible [77]. Is the exponential dependence in 𝑘 unavoidable?

What precisely is the best runtime that one can achieve for counting 𝑘-cliques? The

answer, it turns out, is that if the graph is adversarially chosen then a 𝑛Ω(𝑘) worst-case

runtime is unavoidable1 [20].

1Under standard complexity theory assumptions.

11

Average-case complexity However, we wish to understand how hard it is to count

𝑘-cliques when the graph is not adversarially chosen, but rather is chosen uniformly

at random. Is 𝑛Ω(𝑘) time still necessary, or can we speed up by exploiting the random

graph structure?

This is a question in average-case complexity, as opposed to classical worst-case

complexity, because the algorithm is not required to work for all possible inputs – just

for typical inputs drawn from a distribution [58]. The average-case and worst-case

complexities of a problem can differ wildly: sometimes solving a problem on a typical

random input is much easier than solving it on any, potentially adversarially-chosen

input. This phenomenon can be used to explain, for instance, why modern SAT

solvers can efficiently solve constraint satisfaction instances that arise in practice, even

though constraint satisfaction would be intractable if the instances were adversarially

crafted. On the other hand, many problems are conjectured to be intractable in both

the worst-case and average-case settings – indeed, the existence of such problems is

a necessary assumption of secure cryptography.

The average-case complexity of the 𝑘-clique counting on random graphs is of

particular interest (i) because it is a candidate problem that could be used as a basis

for constructions in the recently-minted field of fine-grained cryptography [8, 9, 45,

44, 57, 24] and (ii) because the study of clique problems on random graphs is known

to have an intimate connection to the computational complexity of high-dimensional

statistical inference [11, 55, 21, 47, 60, 17, 18, 16].

Informal statement of results A main result of this thesis is that, for any con-

stant 𝑘, counting 𝑘-cliques in a uniformly random graph is just as hard as counting

𝑘-cliques in an adversarially-chosen graph.

More generally, we consider the average-case complexity of counting 𝑘-cliques in

𝑠-uniform Erdős-Rényi hypergraphs 𝐺(𝑛, 𝑐, 𝑠), where every 𝑠-subset of the 𝑛 vertices

is a hyperedge independently with probability 𝑐. We reduce counting 𝑘-cliques on

worst-case hypergraphs to a blackbox solving the problem on 𝐺(𝑛, 𝑐, 𝑠) with low error

probability. Our reduction yields different average-case lower bounds for counting 𝑘-

12

cliques in 𝐺(𝑛, 𝑐, 𝑠) in the dense and sparse cases of 𝑐 = Θ(1) and 𝑐 = Θ(𝑛−𝛼), with

tradeoffs between runtime and 𝑐, based on the worst-case complexity of counting 𝑘-

cliques. We also derive improved algorithms for counting 𝑘-cliques on sparse 𝐺(𝑛, 𝑐, 𝑠)

and show that our average-case lower bounds often match algorithmic upper bounds.

Main proof ideas Worst-case-to-average-case reduction: Our reduction is based

on the classical random self-reducibility of low-degree polynomials [59] over large finite

fields F. This has also recently been applied in other contexts in average-case fine-

grained complexity [8, 44, 24]. The random self-reducibility of low-degree polynomials

is the theorem that, given access to a blackbox 𝑃 (𝑥) computing a degree-𝑑 polynomial

𝑃 (𝑥) on most inputs 𝑥 ∈ F𝑛, we can “correct” 𝑃 and efficiently compute 𝑃 (𝑦) for any

adversarial input 𝑦 ∈ F𝑛.

The original correction algorithm, due to Lipton [59], involves picking a random

𝑎 ∈ F𝑛 and computing 𝑓(1), . . . , 𝑓(𝑑 + 1) for 𝑓(𝑡) := 𝑃 (𝑦 + 𝑡𝑎). Assuming F is large

enough, 𝑦 + 𝑡𝑎 ∈ F𝑛 is uniformly random for each 𝑡 ∈ [𝑑 + 1]. Thus, with high

probability 𝑓(𝑡) = 𝑓(𝑡) := 𝑃 (𝑦 + 𝑡𝑎) for each 𝑡 ∈ [𝑑 + 1]. Since 𝑓(𝑡) = 𝑃 (𝑦) is a

degree-𝑑 polynomial in 𝑡, we can efficiently interpolate 𝑓(1), . . . , 𝑓(𝑑+ 1) to compute

𝑓(0) = 𝑃 (𝑦).

In order to apply this result to our case, we let 𝑃 (𝑥) be the function of the

adjacency matrix that counts 𝑘-cliques. This is a low-degree polynomial, so random

self-reduction applies. However, there is a large technical obstacle that we must

overcome: the above trick only proves that 𝑃 (𝑥) is hard to compute on random

elements in F𝑛 for some large field F, but we would like hardness for vectors of

independent Bernoulli variables in {0, 1}𝑛. The bulk of our proof is thus dedicated to

appropriately converting from random field elements in F to biased Bernoulli random

variables in {0, 1}.

Algorithms : Our fast algorithms for 𝑘-clique counting in sparse Erdős-Rényi hy-

pergraphs are based on an iterative greedy sampling procedure. In the graph case,

we obtain an extra speedup by applying a fast matrix multiplication postprocessing

trick similar to the algorithm of [64] for worst-case graphs.

13

1.1 Related Work

1.1.1 Clique Problems on Erdős-Rényi Graphs

The complexity of clique problems on Erdős-Rényi random graphs has become a

central topic in average-case complexity, discrete probability and high-dimensional

statistics. While the Erdős-Rényi random graph 𝐺(𝑛, 1/2) contains cliques of size

roughly 2 log2 𝑛, a longstanding open problem of Karp is to find a clique of size

(1 + 𝜖) log2 𝑛 in polynomial time for some constant 𝜖 > 0 [54]. Natural polynomial

time search algorithms and the Metropolis process find cliques of size approximately

log2 𝑛 but not (1 + 𝜖) log2 𝑛 [54, 46, 51, 61, 66]. A related line of research shows that

local algorithms fail to find independent sets of size (1+𝜖)𝑛 ln(𝑑)/𝑑 in several random

graph models with average degree 𝑑 similar to Erdős-Rényi, even though the largest

independent set has size roughly 2𝑛 ln(𝑑)/𝑑 [39, 23, 67]. In [32], it is shown that any

algorithm probing 𝑛2−𝛿 edges of 𝐺(𝑛, 1/2) in ℓ rounds finds cliques of size at most

(2− 𝜖) log2 𝑛.

A large body of work has considered planted clique (PC), the problem of finding

a 𝑘-clique randomly planted in 𝐺(𝑛, 1/2). Since its introduction in [56] and [51], a

number of spectral algorithms, approximate message passing, semidefinite program-

ming, nuclear norm minimization and several other polynomial-time combinatorial

approaches have been proposed and all appear to fail to recover the planted clique

when 𝑘 = 𝑜 (
√
𝑛) [3, 33, 62, 35, 5, 25, 28, 22]. It has been shown that cliques of

size 𝑘 = 𝑜 (
√
𝑛) cannot be detected by the Metropolis process [51], low-degree sum of

squares (SOS) relaxations [10] and statistical query algorithms [37]. Furthermore, the

conjecture that PC with 𝑘 = 𝑜 (
√
𝑛) cannot be solved in polynomial time has been

used as an average-case assumption in cryptography [52]. An emerging line of work

also shows that the PC conjecture implies a number of tight statistical-computational

gaps, including in sparse PCA, community detection, universal submatrix detection,

RIP certification and low-rank matrix completion [11, 55, 21, 47, 60, 17, 18, 16]. Re-

cently, [6] also showed that super-polynomial length regular resolution is required to

certify that Erdős-Rényi graphs do not contain cliques of size 𝑘 = 𝑜(𝑛1/4).

14

Rossman [71, 72] has studied the classical 𝑘-clique decision problem on sparse

Erdős-Rényi random graphs 𝐺 ∼ 𝐺(𝑛, 𝑐) at the critical threshold 𝑐 = Θ
(︀
𝑛−2/(𝑘−1)

)︀
,

where the existence of a 𝑘-clique occurs with probability bounded away from 0 and 1.

The natural greedy algorithm that selects a random sequence of vertices 𝑣1, 𝑣2, . . . , 𝑣𝑡

such that 𝑣𝑖+1 is a random common neighbor of 𝑣1, 𝑣2, . . . , 𝑣𝑖 can be shown to find a

clique of size ⌊(1 + 𝜖)𝑘/2⌋ if repeated 𝑛𝜖2𝑘/4 times. This yields an 𝑂
(︀
𝑛𝑘/4+𝑂(1)

)︀
time

algorithm for 𝑘-clique on 𝐺(𝑛, 𝑐). Rossman showed that bounded depth circuits

solving 𝑘-clique on 𝐺(𝑛, 𝑐) must have size Ω(𝑛𝑘/4) in [71] and extended this lower

bound to monotone circuits in [72]. A survey of this and related work can be found

in [73].

All of the lower bounds for the clique problems on Erdős-Rényi random graphs

above are against restricted classes of algorithms such as local algorithms, regular

resolution, bounded-depth circuits, monotone circuits, the SOS hierarchy and sta-

tistical query algorithms. One reason for this is that there are general obstacles to

basing average-case complexity on worst-case complexity. For example, natural ap-

proaches to polynomial-time worst-case to average-case reductions for NP-complete

problems fail unless coNP ⊆ NP/poly [36, 13, 12]. The objective of this work is to

show that this worst-case characterization of average-case complexity is possible in

a fine-grained sense for the problem of counting 𝑘-cliques in 𝑠-uniform Erdős-Rényi

hypergraphs 𝐺(𝑛, 𝑐, 𝑠) with edge density 𝑐.

1.1.2 Worst-Case to Average-Case Reductions

The random self-reducibility of low-degree polynomials serves as the basis for several

worst-case to average-case reductions found in the literature. One of the first appli-

cations of this method was to prove that the permanent is hard to evaluate on ran-

dom inputs, even with polynomially-small probability of success, unless P#P = BPP

[74, 19]. (Under the slightly stronger assumption that P#P ̸= AM, and with different

techniques, [34] proved that computing the permanent on large finite fields is hard

even with exponentially small success probability.) Recently, [8] used the polynomial

random self-reducibility result in the fine-grained setting in order to construct poly-

15

nomials that are hard to evaluate on most inputs, assuming fine-grained hardness

conjectures for problems such as 3-SUM, Orthogonal-Vectors, and/or All-

Pairs-Shortest-Paths. The random self-reducibility of polynomials was also used

by Gamarnik [38] in order to prove that exactly computing the partition function of

the Sherrington-Kirkpatrick model in statistical physics is hard on average.

If a problem is random self-reducible, then random instances of the problem are

essentially as hard as worst-case instances, and therefore one may generate a hard

instance of the problem by simply generating a random instance. Because of this,

random self-reducibility plays an important role in cryptography: it allows one to

base cryptographic security on random instances of a problem, which can generally

be generated efficiently. A prominent example of a random-self reducible problem

with applications to cryptography is the problem of finding a short vector in a lattice.

In a seminal paper, Ajtai [1] gave a worst-case to average-case reduction for this

short-vector problem. His ideas were subsequently applied to prove the average-

case hardness of the Learning with Errors (LWE) problem, which underlies lattice

cryptography [1, 70]. A good survey covering worst-case to average-case reductions

in lattice cryptography is [69].

There are known restrictions on problems that are self-reducible. For example,

non-adaptive worst-case to average-case reductions for NP-complete problems fail

unless coNP ⊆ NP/poly [36, 13, 12].

1.1.3 Comparison to Goldreich-Rothblum ’18

A motivating recent work by Goldreich and Rothblum [44] also considered worst-case

to average-case reductions for 𝑘-clique counting. They provided such a reduction

mapping to an efficiently sampleable distribution on graphs with a high min-entropy

of Ω̃(𝑛2). In contrast to [44], our objectives are to: (1) map precisely to the natural

distribution 𝐺(𝑛, 𝑐, 𝑠) for different edge densities 𝑐, including 𝑐 = Θ(1) and the sparse

case 𝑐 = Θ(𝑛−𝛼); and (2) to characterize the tradeoff between the time-complexity

of counting 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠) and the sparsity parameter 𝛼. Achieving this re-

quires new techniques for the self-reducibility of counting 𝑘-cliques as a low-degree

16

polynomial and a tight analysis of random biased binary expansions over F𝑝 with

finite Fourier analysis. However, our techniques also come at the cost of requiring

a low error probability (1/polylog(𝑛) in the dense case and 1/ poly(𝑛) in the sparse

case) for the average-case blackbox solving 𝑘-clique counting on 𝐺(𝑛, 𝑐, 𝑠). This is in

contrast to [44], where a very high error probability of 1− 1/polylog(𝑛) is tolerated.

It remains an interesting open problem to extend our results for 𝐺(𝑛, 𝑐, 𝑠) to tolerate

higher error blackboxes. This error tolerance and open problem are discussed fur-

ther in Section 2.2 and Chapter 6, and how our techniques relate to those in [44] is

discussed in Section 1.3 and Chapter 3.

1.1.4 Subsequent Work

Subsequent to the publication of our work, Goldreich [43] provided a simplified re-

duction for counting the parity of the number of cliques in the uniform 𝐺(𝑛, 1/2)

Erdős-Rényi graph case. Goldreich obtained error tolerance exp(−𝑘2) in this case,

which is an improvement over the error tolerance exp(−�̃�(𝑘2)) in our Theorem 2.2.2.

Dalirrooyfard, Lincoln, and Vassilevska Williams [24] generalize our techniques

to problems admitting what they call “good low-degree polynomials.” They apply

this generalization to obtain average-case hardness for counting the number of copies

of any graph 𝐻 as an induced subgraph of an Erdős-Rényi graph 𝐺. Furthermore,

they also prove that simple variations of the orthogonal vectors, 3-sum and zero-

weight 𝑘-clique problems are hard to count on average for uniform inputs. They use

these results to obtain average-case fine-grained hardness for various problems such

as counting the number of regular expression matchings.

1.2 Overview of Main Results

We provide two complementary main results on the fine-grained average-case com-

plexity of counting 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠). The precise formulations of the problems

we consider are in Section 2.1.

17

Worst-case to average-case reduction. We give a worst-case to average-case

reduction from counting 𝑘-cliques in worst-case 𝑠-uniform hypergraphs to counting

𝑘-cliques in hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠). This allows us to base the average-

case fine-grained complexity of 𝑘-clique counting over Erdős-Rényi hypergraphs on

its worst-case complexity, which can be summarized as follows. Counting 𝑘-cliques in

worst-case hypergraphs is known to take 𝑛Ω(𝑘) time assuming the Exponential Time

Hypothesis (ETH)2 if 𝑘 = 𝑂(1) [20]. The best known worst-case algorithms up to

subpolynomial factors are the 𝑂
(︀
𝑛𝜔⌈𝑘/3⌉)︀ time algorithm of [64] in the graph case of

𝑠 = 2 and exhaustive 𝑂(𝑛𝑘) time search on worst-case hypergraphs with 𝑠 ≥ 3. Here,

𝜔 ≈ 2.373 denotes the best known matrix multiplication constant.

Our reduction is the first worst-case to average-case reduction to Erdős-Rényi hy-

pergraphs. It has different implications for the cases of dense and sparse hypergraphs,

as described next.

1. Dense Erdős-Rényi Hypergraphs. When 𝑘 and 𝑐 are constant, our reduction con-

structs an efficient 𝑘-clique counting algorithm that succeeds on a worst-case

input hypergraph with high probability, using polylog(𝑛) queries to an average-

case oracle that correctly counts 𝑘-cliques on a 1 − 1/ polylog(𝑛) fraction of

Erdős-Rényi hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠). This essentially shows that

𝑘-clique counting in the worst-case matches that on dense Erdős-Rényi hyper-

graphs. More precisely, 𝑘-clique counting on 𝐺(𝑛, 𝑐, 𝑠) with 𝑘, 𝑐 and 𝑠 constant

must take Ω̃
(︀
𝑛𝜔⌊𝑘/3⌋)︀ time when 𝑠 = 2 and Ω̃(𝑛𝑘) time when 𝑠 ≥ 3, unless there

are faster worst-case algorithms. Furthermore, our reduction shows that it is

ETH-hard to 𝑘-clique count in 𝑛𝑜(𝑘) time on 𝐺(𝑛, 𝑐, 𝑠) with 𝑘, 𝑐 and 𝑠 constant.

2. Sparse Erdős-Rényi Hypergraphs. Our reduction also applies with a different

multiplicative slowdown and error tolerance to the sparse case of 𝑐 = Θ(𝑛−𝛼),

where the fine-grained complexity of 𝑘-clique counting on 𝐺(𝑛, 𝑐, 𝑠) is very differ-

ent than on worst-case inputs. Our reduction implies fine-grained lower bounds

of Ω̃
(︁
𝑛𝜔⌈𝑘/3⌉−𝛼(𝑘

2)
)︁

when 𝑠 = 2 and Ω̃
(︁
𝑛𝑘−𝛼(𝑘

𝑠)
)︁

when 𝑠 ≥ 3 for inputs drawn

2ETH asserts that 3-SAT in the worst-case takes at least 2𝑐𝑛 time to solve for some constant
𝑐 > 0.

18

from 𝐺(𝑛, 𝑐, 𝑠), unless there are faster worst-case algorithms. We remark that

in the hypergraph case of 𝑠 ≥ 3, this lower bound matches the expected number

of 𝑘-cliques up to polylog(𝑛) factors.

Precise statements of our results can be found in Section 2.2. For simplicity, our

results should be interpreted as applying to algorithms that succeed with probability

1 − (log 𝑛)−𝜔(1) in the dense case and 1 − 𝑛−𝜔(1) in the sparse case, although our

results apply in a more general context, as discussed in Section 2.2. We discuss the

necessity of this error tolerance and the multiplicative slowdown in our worst-case to

average-case reduction in Section 2.2. We also give a second worst-case to average-

case reduction for computing the parity of the number of 𝑘-cliques which has weaker

requirements on the error probability for the blackbox on 𝐺(𝑛, 𝑐, 𝑠) in the dense case

of 𝑐 = 1/2.

We provide an overview of our multi-step worst-case to average-case reduction in

Section 1.3. The steps are described in detail in Chapter 3.

Algorithms for 𝑘-clique counting on 𝐺(𝑛, 𝑐, 𝑠). We also analyze several natural

algorithms for counting 𝑘-cliques in sparse Erdős-Rényi hypergraphs. These include

an extension of the natural greedy algorithm mentioned previously from 𝑘-clique to

counting 𝑘-cliques, a modification to this algorithm using the matrix multiplication

step of [64] and an iterative algorithm achieving nearly identical guarantees. These

algorithms count 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠) when 𝑐 = Θ(𝑛−𝛼) in time:

∙ �̃�
(︁
𝑛𝑘+1−𝛼(𝑘

𝑠)
)︁

if 𝑠 ≥ 3 and 𝑘 < 𝜏 + 1;

∙ �̃�
(︁
𝑛𝜏+2−𝛼(𝜏+1

𝑠)
)︁

if 𝑠 ≥ 3 and 𝜏 + 1 ≤ 𝑘 ≤ 𝜅 + 1; and

∙ �̃�
(︁
𝑛𝜔⌈𝑘/3⌉+𝜔−𝜔𝛼(⌈𝑘/3⌉

2)
)︁

if 𝑠 = 2 and 𝑘 ≤ 𝜅 + 1.

Here, 𝜏 and 𝜅 are the largest positive integers satisfying that 𝛼
(︀

𝜏
𝑠−1

)︀
< 1 and 𝛼

(︀
𝜅

𝑠−1

)︀
<

𝑠. We restrict our attention to 𝑘 with 𝑘 ≤ 𝜅 + 1 since the probability that the

largest clique in 𝐺 has size 𝜔(𝐺) > 𝜅 + 1 is 1/poly(𝑛). In the graph case of 𝑠 = 2,

these thresholds correspond to 𝛼 < 𝜏−1 and 𝛼 < 2𝜅−1 ≤ 2
𝑘−1

. At 𝑘 = 𝜏 + 1, the

19

Graphs (𝑠 = 2)

feasible

infeasible

open

𝜔𝑘
3 − 𝛼

(︀
𝑘
2

)︀
𝜔𝑘
3
−

𝜔𝛼
9

(︀ 𝑘
2

)︀

𝑘

log𝑛 𝑇

𝜔(𝐺)
𝑘

log𝑛 𝑇

𝑘-clique percolation 𝜔(𝐺)

Hypergraphs (𝑠 ≥ 3)

feasible

infeasible

open

𝑘
−
𝛼
(︀ 𝑘

𝑠

)︀
𝜏 + 1− 𝛼

(︀
𝜏+1
𝑠

)︀

Figure 1-1: Comparison of our algorithms and average-case lower bounds for counting
𝑘-cliques in sparse Erdős-Rényi Hypergraphs 𝐺(𝑛, 𝑐, 𝑠) with 𝑐 = Θ(𝑛−𝛼). Green
denotes runtimes 𝑇 feasible for each 𝑘, blue denotes 𝑇 infeasible given that the best
known worst-case algorithms are optimal and gray denotes 𝑇 for which the complexity
of counting 𝑘-cliques is open after this work. The left plot shows the graph case of
𝑠 = 2 and the right plot shows the hypergraph case of 𝑠 ≥ 3. For simplicity, all
quantities shown are up to constant 𝑂𝑘,𝛼(1) additive error. c○2019 IEEE.

first threshold becomes 𝛼 < 1
𝑘−1

which is exactly the 𝑘-clique percolation threshold

[27, 65, 29]. Given a hypergraph 𝐺, define two 𝑘-cliques of 𝐺 to be adjacent if they

share (𝑘−1) of their 𝑘 vertices. This induces a hypergraph 𝐺𝑘 on the set of 𝑘-cliques.

For graphs 𝐺 drawn from 𝐺(𝑛, 𝑐), [27] introduced the 𝑘-clique percolation threshold

of 𝑐 = 1
𝑘−1
· 𝑛− 1

𝑘−1 , above which a giant component emerges in 𝐺𝑘. This threshold

and extensions were rigorously established in [15]. Following the same heuristic as in

[27], our threshold 𝜏 + 1 is a natural extension of the 𝑘-clique percolation threshold

to the hypergraph case of 𝑠 ≥ 3.

A comparison of our algorithmic guarantees and average-case lower bounds based

on current best known worst-case algorithms for counting 𝑘-cliques is shown in Figure

1-1.

1. Graph Case (𝑠 = 2). In the graph case, our lower and upper bounds have

the same form and show that the exponent in the optimal running time is
𝜔𝑘
3
− 𝐶𝛼

(︀
𝑘
2

)︀
+ 𝑂𝑘,𝛼(1) where 𝜔

9
≤ 𝐶 ≤ 1 as long as 𝑘 ≤ 𝜅 + 1 = 2𝛼−1 + 1. As

shown in Figure 1-1, our upper and lower bounds approach each other for 𝑘

small relative to 𝜅 + 1.

2. Hypergraph Case (𝑠 ≥ 3). In the hypergraph case of 𝑠 ≥ 3, the exponents in

20

our lower and upper bounds are nearly identical at 𝑘−𝛼
(︀
𝑘
𝑠

)︀
+𝑂𝑘,𝛼(1) up to the

𝑘-clique percolation threshold. After this threshold, our lower bounds slowly

deteriorate relative to our algorithms until they become trivial at the clique

number of 𝐺 by 𝑘 = 𝜅 + 1.

Because we consider sparse Erdős-Rényi hypergraphs, for each 𝑛, 𝑘, and 𝑠 we actually

have an entire family of problems parametrized by the edge probability 𝑐 and the be-

havior changes as a function of 𝑐; this is the first worst-to-average-case hardness result

we are aware of for which the complexity of the same problem over worst-case versus

average-case inputs is completely different and can be sharply characterized over the

whole range of 𝑐 starting from the same assumption. It is surprising that our worst-

case to average-case reduction techniques – which range from the self-reducibility of

polynomials to random binary expansions – together yield tight lower bounds match-

ing our algorithms in the hypergraph case. The fact that these lower bounds are

tight exactly up the 𝑘-clique percolation threshold, a natural phase transition in the

Erdős-Rényi model, is also unexpected a priori.

Two interesting problems left open after our work are to show average-case lower

bounds with an improved constant 𝐶 in the graph case and to show tight average-

case lower bounds beyond the 𝑘-clique percolation threshold in the case 𝑠 ≥ 3. These

and other open problems as well as some extensions of our methods are discussed in

Chapter 6.

1.3 Overview of Reduction Techniques

For clarity of exposition, in this section we will restrict our discussion to the graph

case 𝑠 = 2, as well as the case of constant 𝑘.

A key step of our worst-case to average-case reduction uses the random self-

reducibility of multivariate low-degree polynomials – i.e., evaluating a polynomial

on any worst-case input can be efficiently reduced to evaluating it on several random

inputs. This result follows from a line of work [59, 36, 41, 42] that provides a method

to efficiently compute a polynomial 𝑃 : F𝑁 → F of degree 𝑑 ≤ |F|/20 on any worst-

21

case input 𝑥 ∈ F𝑁 , given an oracle 𝑃 : F𝑁 → F that agrees with 𝑃 on a 1
2

+ 1
poly(𝑁)

fraction of inputs. Thus, for any low-degree polynomial over a large enough finite

field, evaluating the polynomial on a random element in the finite field is roughly as

hard as evaluating the polynomial on any adversarially chosen input.

With the random self-reducibility of polynomials in mind, a natural approach is

to express the number of 𝑘-cliques in a graph as a low-degree polynomial of the 𝑛×𝑛

adjacency matrix 𝐴

𝑃 (𝐴) =
∑︁
𝑆⊂[𝑛]
|𝑆|=𝑘

(︁ ∏︁
𝑖<𝑗∈𝑆

𝐴𝑖𝑗

)︁
.

This polynomial has been used in a number of papers, including by Goldreich and

Rothblum [44] to construct a distribution on dense graphs for which counting 𝑘-

cliques is provably hard on average. However, the distribution they obtain is far from

Erdős-Rényi and also their approach does not yield tight bounds for sparse graphs.

The significant obstacle that arises in applying the random self-reducibility of

𝑃 is that one needs to work over a large enough finite field F𝑝, so evaluating 𝑃

on worst-case graph inputs in {0, 1}(
𝑛
2) only reduces to evaluating 𝑃 on uniformly

random inputs in F(𝑛
2)

𝑝 . In order to further reduce to evaluating 𝑃 on graphs, given

a random input 𝐴 ∈ F(𝑛
2)

𝑝 [44] uses several gadgets (including replacing vertices by

independent sets and taking disjoint unions of graphs) in order to create a larger

unweighted random graph 𝐴′ whose 𝑘-clique count is equal to 𝑘! · 𝑃 (𝐴) (mod 𝑝) for

appropriate 𝑝. However, any nontrivial gadget-based reduction seems to have little

hope of arriving at something close to the Erdős-Rényi distribution, because gadgets

inherently create non-uniform structure.

We instead consider a different polynomial for graphs on 𝑛𝑘 vertices with 𝑛𝑘×𝑛𝑘

adjacency matrix 𝐴,

𝑃 ′(𝐴) =
∑︁
𝑣1∈[𝑛]

∑︁
𝑣2∈[2𝑛]∖[𝑛]

· · ·
∑︁

𝑣𝑘∈[𝑘𝑛]∖[(𝑘−1)𝑛]

(︃ ∏︁
1≤𝑖<𝑗≤𝑘

𝐴𝑣𝑖𝑣𝑗

)︃
.

The polynomial 𝑃 ′ correctly counts the number of 𝑘-cliques if 𝐴 is 𝑘-partite with

vertex 𝑘-partition [𝑛] ⊔ ([2𝑛] ∖ [𝑛]) ⊔ · · · ⊔ ([𝑘𝑛] ∖ [(𝑘 − 1)𝑛]). We first reduce clique-

22

counting in the worst case to computing 𝑃 ′ in the worst case; this is a simple step,

because it is a purely worst-case reduction. Next, we construct a recursive counting

procedure that reduces evaluating 𝑃 ′ on Erdős-Rényi graphs to counting 𝑘-cliques in

Erdős-Rényi graphs. Therefore, it suffices to prove that if evaluating 𝑃 ′ is hard in

the worst case, then evaluating 𝑃 ′ on Erdős-Rényi graphs is also hard.

Applying the Chinese Remainder theorem as well as the random self-reducibility

of polynomials, computing 𝑃 ′ on worst-case inputs in {0, 1}(
𝑛𝑘
2) reduces to computing

𝑃 ′ on several uniformly random inputs in F(𝑛𝑘
2)

𝑝 , for several different primes 𝑝 each

on the order of Θ(log 𝑛). The main question is: how can one evaluate 𝑃 ′ on inputs

𝑋 ∼ Unif[F(𝑛𝑘
2)

𝑝] using an algorithm that evaluates 𝑃 ′ on 𝐺(𝑛, 𝑐, 2) Erdős-Rényi graphs

(i.e., inputs 𝑌 ∼ Ber(𝑐)⊗(𝑛𝑘
2))?

To this end we introduce a method for converting finite field elements to bi-

nary expansions: an efficient rejection sampling procedure to find 𝑌 (0), . . . , 𝑌 (𝑡) (for

𝑡 = poly(𝑐−1(1 − 𝑐)−1 log(𝑛))) such that each 𝑌 (𝑖) is close in total variation to

Ber(𝑐)⊗(𝑛𝑘
2), and such that 𝑋 =

∑︀𝑡
𝑖=0 2𝑖𝑌 (𝑖). The correctness of the rejection sam-

pling procedure is proved via a finite Fourier analytic method that bounds the total

variation convergence of random biased binary expansions to the uniform distribution

over residues in F𝑝. This argument can be found in Chapter 4, and as discussed there

the bounds we obtain are essentially optimal in their parameter dependence and this

in turns yields near-optimal slowdown in the reduction. The technique appears likely

to also be useful for other problems. For the unbiased case of 𝑐 = 1/2, this binary

expansions technique had previously appeared in [45].

Now we algebraically manipulate 𝑃 ′ as follows:

𝑃 ′(𝑋) =
∑︁
𝑣1∈[𝑛]

∑︁
𝑣2∈[2𝑛]∖[𝑛]

· · ·
∑︁

𝑣𝑘∈[𝑘𝑛]∖[(𝑘−1)𝑛]

∏︁
1≤𝑖<𝑗≤𝑘

(︁ ∑︁
𝑙∈{0,...,𝑡}

2𝑙 · 𝑌 (𝑙)
𝑣𝑖𝑣𝑗

)︁
=

∑︁
𝑓∈{0,...,𝑡}(

𝑘
2)

(︁ ∏︁
1≤𝑖≤𝑗≤𝑘

2𝑓𝑖𝑗
)︁(︁ ∑︁

𝑣1∈[𝑛]

∑︁
𝑣2∈[2𝑛]∖[𝑛]

· · ·
∑︁

𝑣𝑘∈[𝑘𝑛]∖[(𝑘−1)𝑛]

∏︁
1≤𝑖<𝑗≤𝑘

𝑌 (𝑓𝑖𝑗)
𝑣𝑖𝑣𝑗

)︁

=
∑︁

𝑓∈{0,...,𝑡}(
𝑘
2)

(︁ ∏︁
1≤𝑖≤𝑗≤𝑘

2𝑓𝑖𝑗
)︁
𝑃 ′(𝑌 (𝑓)).

23

Here 𝑌 (𝑓) is the 𝑛𝑘-vertex graph with entries given by 𝑌
(𝑓�̄��̄�)
𝑎𝑏 for 1 ≤ 𝑎 < 𝑏 ≤ 𝑛𝑘,

where �̄� = ⌈𝑎/𝑛⌉ and �̄� = ⌈𝑏/𝑛⌉. We thus reduce the computation of 𝑃 ′(𝑋) to the

computation of a weighted sum of poly(𝑐−1(1− 𝑐)−1 log(𝑛))(
𝑘
2) different evaluations of

𝑃 ′ at graphs close in total variation to Erdős-Rényi 𝐺(𝑛, 𝑐, 2) graphs. This concludes

our reduction. Notice that working with 𝑃 ′ instead of 𝑃 was necessary for the second

equality.

We also give a different worst-case to average-case reduction for determining the

parity of the number of 𝑘-cliques in Erdős-Rényi hypergraphs, as discussed in Section

2.2 and Chapter 3.

1.4 Notation and Preliminaries

A 𝑠-uniform hypergraph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) consists of a vertex set 𝑉 (𝐺) and a

hyperedge set 𝐸(𝐺) ⊆
(︀
𝑉 (𝐺)

𝑠

)︀
. A 𝑘-clique 𝐶 in 𝐺 is a subset of vertices 𝐶 ⊂ 𝑉 (𝐺) of

size |𝐶| = 𝑘 such that all of the possible hyperedges between the vertices are present

in the hypergraph:
(︀
𝐶
𝑠

)︀
⊆ 𝐸(𝐺). We write cl𝑘(𝐺) to denote the set of 𝑘-cliques

of the hypergraph 𝐺. One samples from the Erdős-Rényi distribution 𝐺(𝑛, 𝑐, 𝑠) by

independently including each of the
(︀
𝑛
𝑠

)︀
hyperedges with probability 𝑐.

We denote the law of a random variable 𝑋 by ℒ(𝑋). We use 𝑇 (𝐴, 𝑛) to denote the

worst-case run-time of an algorithm 𝐴 on inputs of size parametrized by 𝑛. We work

in the Word RAM model of computation, where the words have 𝑂(log 𝑛) bits. All

algorithms in this paper are randomized, and each (possibly biased) coin flip incurs

constant computational cost.

1.5 Organization

Chapter 2 formally defines the various 𝑘-clique problems considered, and states the

implications of the worst-case-to-average-case reduction proved in Chapter 3. Chap-

ter 4 analyzes random binary expansions modulo a prime, which is needed in the

worst-case-to-average-case reduction for sparse hypergraphs. Chapter 5 provides im-

24

proved algorithms for 𝑘-clique counting on sparse hypergraphs. And Chapter 6 con-

cludes with extensions and open problems.

25

26

Chapter 2

Problem Formulations and

Average-Case Lower Bounds

2.1 Clique Problems and Worst-Case Fine-Grained

Conjectures

In this section, we formally define the problems we consider and the worst-case fine-

grained complexity conjectures off of which our average-case lower bounds are based.

We focus on the following computational problems.

Definition 2.1.1. #(𝑘, 𝑠)-clique denotes the problem of counting the number of

𝑘-cliques in an 𝑠-uniform hypergraph 𝐺.

Definition 2.1.2. Parity-(𝑘, 𝑠)-clique denotes the problem of counting the number

of 𝑘-cliques up to parity in an 𝑠-uniform hypergraph 𝐺.

Definition 2.1.3. Decide-(𝑘, 𝑠)-clique denotes the problem of deciding whether or

not an 𝑠-uniform hypergraph 𝐺 contains a 𝑘-clique.

Both #(𝑘, 𝑠)-clique and Decide-(𝑘, 𝑠)-clique are fundamental problems that

have long been studied in computational complexity theory and are conjectured to

be computationally hard. When 𝑘 is allowed to be an unbounded input to the prob-

lem, Decide-(𝑘, 𝑠)-clique is known to be NP-complete [53] and #(𝑘, 𝑠)-clique

27

is known to be #P-complete [75]. In this work, we consider the fine-grained com-

plexity of these problems, where 𝑘 either can be viewed as a constant or a very

slow-growing parameter compared to the number 𝑛 of vertices of the hypergraph.

In this context, Parity-(𝑘, 𝑠)-clique can be interpreted as an intermediate prob-

lem between the other two clique problems that we consider. The reduction from

Parity-(𝑘, 𝑠)-clique to #(𝑘, 𝑠)-clique is immediate. And Decide-(𝑘, 𝑠)-clique

reduces to Parity-(𝑘, 𝑠)-clique with a 𝑂(𝑘2𝑘)-multiplicative time overhead:

Lemma 2.1.4. Given an algorithm 𝐴 for Parity-(𝑘, 𝑠)-clique that has error prob-

ability < 1/3 on any 𝑠-uniform hypergraph 𝐺, there is an algorithm 𝐵 that runs in

time 𝑂(𝑘2𝑘𝑇 (𝐴, 𝑛)) and solves Decide-(𝑘, 𝑠)-clique with error < 1/3 on any 𝑠-

uniform hypergraph 𝐺.

Proof. Let cl𝑘(𝐺) denote the set of 𝑘-cliques in hypergraph 𝐺 = (𝑉,𝐸). Consider the

polynomial

𝑃𝐺(𝑥𝑉) =
∑︁

𝑆∈cl𝑘(𝐺)

∏︁
𝑣∈𝑆

𝑥𝑣 (mod 2),

over the finite field F2.

If 𝐺 has a 𝑘-clique at vertices 𝑆 ⊂ 𝑉 , then 𝑃𝐺 is nonzero, because 𝑃𝐺(1𝑆) = 1.

If 𝐺 has no 𝑘-clique, then 𝑃𝐺 is zero. Therefore, deciding whether 𝐺 has a 𝑘-clique

reduces to testing whether or not 𝑃𝐺 is identically zero.

𝑃𝐺 is of degree at most 𝑘, so if 𝑃𝐺 is nonzero on at least one input, we claim

that it is nonzero on at least a 2−𝑘 fraction of inputs. The claim holds because if we

evaluate 𝑃𝐺 at all points 𝑎 ∈ {0, 1}𝑚, the result is a non-zero Reed-Muller codeword

in 𝑅𝑀(𝑘,𝑚), which has distance 2𝑚−𝑘, and block-length 2𝑚 [63].

We therefore evaluate 𝑃𝐺 at 𝑐·2𝑘 independent random inputs for some large enough

𝑐 > 0, accept if any of the evaluations returns 1, and reject if all of the evaluations

return 0. Each evaluation corresponds to calculating Parity-(𝑘, 𝑠)-clique on a

hypergraph 𝐺′ formed from 𝐺 by removing each vertex independently with probability

1/2. As usual, we boost the error of 𝐴 by running the algorithm 𝑂(𝑘) times for each

evaluation, and using the majority vote.

28

When 𝑘 is a constant, the trivial brute-force search algorithms for these problems

are efficient in the sense that they take polynomial time. However, these algorithms do

not remain efficient under the lens of fine-grained complexity since brute-force search

requires Θ(𝑛𝑘) time, which can grow significantly as 𝑘 grows. In the hypergraph

case of 𝑠 ≥ 3, no algorithm taking time 𝑂(𝑛𝑘−𝜖) on any of these problems is known,

including for Decide-(𝑘, 𝑠)-clique [78]. In the graph case of 𝑠 = 2, the fastest known

algorithms take Θ(𝑛𝜔⌈𝑘/3⌉) time, where 2 ≤ 𝜔 < 2.4 is the fast matrix multiplication

constant [48, 64]. Since this is the state of the art, one may conjecture that Decide-

(𝑘, 𝑠)-clique and #(𝑘, 𝑠)-clique take 𝑛Ω(𝑘) time in the worst case.

Supporting this conjecture, Razborov [68] proves that monotone circuits require

Ω̃(𝑛𝑘) operations to solve Decide-(𝑘, 2)-clique in the case of constant 𝑘. Monotone

circuit lower bounds are also known in the case when 𝑘 = 𝑘(𝑛) grows with 𝑛 [2, 4]. In

[30], Decide-(𝑘, 2)-clique is shown to be W[1]-hard. In other words, this shows that

if Decide-(𝑘, 2)-clique is fixed-parameter tractable – admits an algorithm taking

time 𝑓(𝑘, 𝑠) ·poly(𝑛) – then any algorithm in the parametrized complexity class W[1]

is also fixed-parameter-tractable. This provides further evidence that Decide-(𝑘, 2)-

clique is intractable for large 𝑘. Finally, [20] shows that solving Decide-(𝑘, 2)-

clique in 𝑛𝑜(𝑘) time is ETH-hard for constant 𝑘1. We therefore conjecture that

the 𝑘-clique problems take 𝑛Ω(𝑘) time on worst-case inputs when 𝑘 is constant, as

formalized below.

Conjecture 2.1.5 (Worst-case hardness of #(𝑘, 𝑠)-clique). Let 𝑘 be constant. Any

randomized algorithm 𝐴 for #(𝑘, 𝑠)-clique with error probability less than 1/3 takes

time at least 𝑛Ω(𝑘) in the worst case for hypergraphs on 𝑛 vertices.

Conjecture 2.1.6 (Worst-case hardness of Parity-(𝑘, 𝑠)-clique). Let 𝑘 be con-

stant. Any randomized algorithm 𝐴 for Parity-(𝑘, 𝑠)-clique with error probability

less than 1/3 takes time at least 𝑛Ω(𝑘) in the worst case for hypergraphs on 𝑛 vertices.

1These hardness results also apply to Decide-(𝑘, 𝑠)-clique for 𝑠 ≥ 3 since there is a reduction
from Decide-(𝑘, 2)-clique to Decide-(𝑘, 𝑠)-clique in 𝑛𝑠 time. The reduction proceeds by starting
with a graph 𝐺 and constructing an 𝑠-uniform hypergraph 𝐺′ that contains a 𝑠-hyperedge for every
𝑠-clique in 𝐺. The 𝑘-cliques of 𝐺 and 𝐺′ are in bijection. This construction also reduces #(𝑘, 2)-
clique to #(𝑘, 𝑠)-clique.

29

Conjecture 2.1.7 (Worst-case hardness of Decide-(𝑘, 𝑠)-clique). Let 𝑘 be con-

stant. Any randomized algorithm 𝐴 for Decide-(𝑘, 𝑠)-clique with error probability

less than 1/3 takes time at least 𝑛Ω(𝑘) in the worst case for hypergraphs on 𝑛 vertices.

The conjectures are listed in order of increasing strength. Since Conjecture 2.1.7

is implied by ETH, they all follow from ETH. We also formulate a stronger version of

the clique-counting hardness conjecture, which asserts that the current best known

algorithms for 𝑘-clique counting are optimal.

Conjecture 2.1.8 (Strong worst-case hardness of #(𝑘, 𝑠)-clique). Let 𝑘 be con-

stant. Any randomized algorithm 𝐴 for #(𝑘, 𝑠)-clique with error probability less

than 1/3 takes time Ω̃(𝑛𝜔⌈𝑘/3⌉) in the worst case if 𝑠 = 2 and Ω̃(𝑛𝑘) in the worst case

if 𝑠 ≥ 3.

2.2 Average-Case Lower Bounds for Counting 𝑘-Cliques

in 𝐺(𝑛, 𝑐, 𝑠)

Our first main result is a worst-case to average-case reduction solving either #(𝑘, 𝑠)-

clique or Parity-(𝑘, 𝑠)-clique on worst-case hypergraphs given a blackbox solving

the problem on most Erdős-Rényi hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠). We discuss this

error tolerance over sampling Erdős-Rényi hypergraphs as well as the multiplicative

overhead in our reduction below. These results show that solving the 𝑘-clique prob-

lems on Erdős-Rényi hypergraphs 𝐺(𝑛, 𝑐, 𝑠) is as hard as solving them on worst-case

hypergraphs, for certain choices of 𝑘, 𝑐 and 𝑠. Therefore the worst-case hardness as-

sumptions, Conjectures 2.1.5, 2.1.6 and 2.1.8, imply average-case hardness on Erdős-

Rényi hypergraphs for #(𝑘, 𝑠)-clique and Parity-(𝑘, 𝑠)-clique.

Theorem 2.2.1 (Worst-case to average-case reduction for #(𝑘, 𝑠)-clique). There

is an absolute constant 𝐶 > 0 such that if we define

Υ#(𝑛, 𝑐, 𝑠, 𝑘) ,
(︀
𝐶(𝑐−1(1− 𝑐)−1)(𝑠 log 𝑘 + 𝑠 log log 𝑛)(log 𝑛)

)︀(𝑘
𝑠)

30

then the following statement holds. Let 𝐴 be a randomized algorithm for #(𝑘, 𝑠)-

clique with error probability less than 1/Υ# on hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠).

Then there exists an algorithm 𝐵 for #(𝑘, 𝑠)-clique that has error probability less

than 1/3 on any hypergraph, such that

𝑇 (𝐵, 𝑛) ≤ (log 𝑛) ·Υ# · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)

For Parity-(𝑘, 𝑠)-clique we also give an alternative reduction with an improved

reduction time and error tolerance in the dense case when 𝑐 = 1/2.

Theorem 2.2.2 (Worst-case to average-case reduction for Parity-(𝑘, 𝑠)-clique).

We have that:

1. There is an absolute constant 𝐶 > 0 such that if we define

Υ𝑃,1(𝑛, 𝑐, 𝑠, 𝑘) ,

(︂
𝐶(𝑐−1(1− 𝑐)−1)(𝑠 log 𝑘)

(︂
𝑠 log 𝑛 +

(︂
𝑘

𝑠

)︂
log log

(︂
𝑘

𝑠

)︂)︂)︂(𝑘
𝑠)

then the following statement holds. Let 𝐴 be a randomized algorithm for Parity-

(𝑘, 𝑠)-clique with error probability less than 1/Υ𝑃,1 on hypergraphs drawn from

𝐺(𝑛, 𝑐, 𝑠). Then there exists an algorithm 𝐵 for Parity-(𝑘, 𝑠)-clique that has

error probability less than 1/3 on any hypergraph, such that

𝑇 (𝐵, 𝑛) ≤ Υ𝑃,1 · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)

2. There is an absolute constant 𝐶 > 0 such that if we define

Υ𝑃,2(𝑠, 𝑘) , (𝐶𝑠 log 𝑘)(
𝑘
𝑠)

then the following statement holds. Let 𝐴 be a randomized algorithm for Parity-

(𝑘, 𝑠)-clique with error probability less than 1/Υ𝑃,2 on hypergraphs drawn from

𝐺(𝑛, 1/2, 𝑠). Then there exists an algorithm 𝐵 for Parity-(𝑘, 𝑠)-clique that

31

has error probability less than 1/3 on any hypergraph, such that

𝑇 (𝐵, 𝑛) ≤ Υ𝑃,2 · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)

Our worst-case to average-case reductions yield the following fine-grained average-

case lower bounds for 𝑘-clique counting and parity on Erdős-Rényi hypergraphs based

on Conjectures 2.1.5 and 2.1.8. We separate these lower bounds into the two cases

of dense and sparse Erdős-Rényi hypergraphs. We remark that, for all constants

𝑘, an error probability of less than (log 𝑛)−𝜔(1) suffices in the dense case and error

probability less than 𝑛−𝜔(1) suffices in the sparse case.

Corollary 2.2.3 (Average-case hardness of #(𝑘, 𝑠)-clique on dense 𝐺(𝑛, 𝑐, 𝑠)). If

𝑘, 𝑐, 𝜖 > 0 are constant, then we have that

1. Assuming Conjecture 2.1.5, then any algorithm 𝐴 for #(𝑘, 𝑠)-clique that has

error probability less than (log 𝑛)−(𝑘
𝑠)−𝜖 on Erdős-Rényi hypergraphs drawn from

𝐺(𝑛, 𝑐, 𝑠) must have runtime at least 𝑇 (𝐴, 𝑛) ≥ 𝑛Ω(𝑘).

2. Assuming Conjecture 2.1.8, then any algorithm 𝐴 for #(𝑘, 𝑠)-clique that

has error probability less than (log 𝑛)−(𝑘
𝑠)−𝜖 on Erdős-Rényi hypergraphs drawn

from 𝐺(𝑛, 𝑐, 𝑠) must have runtime at least 𝑇 (𝐴, 𝑛) ≥ Ω̃
(︀
𝑛𝜔⌈𝑘/3⌉)︀ if 𝑠 = 2 and

𝑇 (𝐴, 𝑛) ≥ Ω̃(𝑛𝑘) if 𝑠 ≥ 3.

Corollary 2.2.4 (Average-case hardness of #(𝑘, 𝑠)-clique on sparse 𝐺(𝑛, 𝑐, 𝑠)). If

𝑘, 𝛼, 𝜖 > 0 are constant and 𝑐 = Θ(𝑛−𝛼), then we have that

1. Assuming Conjecture 2.1.5, then any algorithm 𝐴 for #(𝑘, 𝑠)-clique that has

error probability less than 𝑛−𝛼(𝑘
𝑠)−𝜖 on Erdős-Rényi hypergraphs drawn from

𝐺(𝑛, 𝑐, 𝑠) must have runtime at least 𝑇 (𝐴, 𝑛) ≥ 𝑛Ω(𝑘).

2. Assuming Conjecture 2.1.8, then any algorithm 𝐴 for #(𝑘, 𝑠)-clique that has

error probability less than 𝑛−𝛼(𝑘
𝑠)−𝜖 on Erdős-Rényi hypergraphs drawn from

𝐺(𝑛, 𝑐, 𝑠) must have runtime at least 𝑇 (𝐴, 𝑛) ≥ Ω̃
(︁
𝑛𝜔⌈𝑘/3⌉−𝛼(𝑘

𝑠)
)︁

if 𝑠 = 2 and

𝑇 (𝐴, 𝑛) ≥ Ω̃
(︁
𝑛𝑘−𝛼(𝑘

𝑠)
)︁

if 𝑠 ≥ 3.

32

For Parity-(𝑘, 𝑠)-clique, we consider here the implications of Theorem 2.2.2

only for 𝑐 = 1/2, since this is the setting in which we obtain substantially different

lower bounds than for #(𝑘, 𝑠)-clique. As shown, an error probability of 𝑜(1) on

𝐺(𝑛, 1/2, 𝑠) hypergraphs suffices for our reduction to succeed.

Corollary 2.2.5 (Average-case hardness of Parity-(𝑘, 𝑠)-clique on 𝐺(𝑛, 1/2, 𝑠)).

Let 𝑘 be constant. Assuming Conjecture 2.1.6, there is a small enough constant

𝜖 , 𝜖(𝑘, 𝑠) such that if any algorithm 𝐴 for Parity-(𝑘, 𝑠)-clique has error less

than 𝜖 on 𝐺(𝑛, 1/2, 𝑠) then 𝐴 must have runtime at least 𝑇 (𝐴, 𝑛) ≥ 𝑛Ω(𝑘).

We remark on one subtlety of our setup in the sparse case. Especially in our

algorithms section, we generally restrict our attention to 𝑐 = Θ(𝑛−𝛼) satisfying 𝛼 ≤

𝑠
(︀

𝑘
𝑠−1

)︀−1
, which is necessary for the expected number of 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠) to

not tend to zero. However, even when this expectation is decaying, the problem

#(𝑘, 𝑠)-clique as we formulate it is still nontrivial. The simple algorithm that

always outputs zero fails with a polynomially small probability that does not appear

to meet the 1/Υ# requirement in our worst-case to average-case reduction. A simple

analysis of this error probability can be found in Lemma 5.1.1. Note that even

when 𝛼 > 𝑠
(︀

𝑘
𝑠−1

)︀−1
, greedy-random-sampling and its derivative algorithms in

Chapter 5 still has guarantees and succeeds with probability 1 − 𝑛−𝜔(1). We now

discuss the multiplicative overhead and error tolerance in our worst-case to average-

case reduction for #(𝑘, 𝑠)-clique.

Discussion of the Multiplicative Slowdown Υ#. In the sparse case of 𝑐 =

Θ(𝑛−𝛼), our algorithmic upper bounds in Chapter 5 imply lower bounds on the nec-

essary multiplicative overhead. In the hypergraph case of 𝑠 ≥ 3 and below the 𝑘-clique

percolation threshold, it must follow that the overhead is at least Υ# = Ω̃
(︁
𝑛𝛼(𝑘

𝑠)
)︁

=

Ω̃
(︁
𝑐−(𝑘

𝑠)
)︁
. Otherwise, our algorithms combined with our worst-case to average-case

reduction would contradict Conjecture 2.1.8. Up to polylog(𝑛) factors, this exactly

matches the Υ# from our reduction. In the graph case of 𝑠 = 2, it similarly must

follow that the overhead is at least Υ# = Ω̃
(︁
𝑛

𝜔𝛼
9 (𝑘

𝑠)
)︁

= Ω̃
(︁
𝑐−

𝜔
9 (𝑘

𝑠)
)︁

to not contradict

33

Conjecture 2.1.8. This matches the Υ# from our reduction up to a constant factor in

the exponent.

Discussion of the Error Tolerance 1/Υ#. Notice that our worst-case to average-

case reductions in Theorems 2.2.1 and 2.2.2 require that the error of the average-case

blackbox on Erdős-Rényi hypergraphs go to zero as 𝑘 goes to infinity. This error

requirement can be seen to be unavoidable when 𝑘 = 𝜔(log 𝑛) in the dense Erdős-

Rényi graph case of 𝐺(𝑛, 1/2). The expected number of 𝑘-cliques in 𝐺(𝑛, 1/2) is(︀
𝑛
𝑘

)︀
· 2−(𝑘

2), which is also an upper bound on the probability that 𝐺(𝑛, 1/2) contains

a 𝑘-clique by Markov’s inequality.

If 𝑘 , 3 log2 𝑛, then the probability of a 𝑘-clique is less than 𝑛𝑘 · 2−𝑘2/2 = 2−𝑘2/6.

The algorithm that always outputs zero therefore achieves an average-case error of

2−𝑘2/6 for #(𝑘, 2)-clique on 𝐺(𝑛, 1/2). However, this trivial algorithm is useless for

solving #(𝑘, 2)-clique on worst-case inputs in a worst-case to average-case reduc-

tion. For this particular 𝑘 = 3 log2 𝑛 regime, our #(𝑘, 2)-clique reduction requires

average-case error on 𝐺(𝑛, 1/2) less than 1/Υ# = 2−𝑂(𝑘2 log log𝑛). Our Parity-(𝑘, 2)-

clique reduction is more lenient, requiring error only less than 2−𝑂(𝑘2 log log log𝑛) on

𝐺(𝑛, 1/2). Thus, the error bounds required by our reductions are quite close to the

2−𝑘2/6 error bound that is absolutely necessary for any reduction in this regime. In

the regime where 𝑘 = 𝑂(1) is constant and on 𝐺(𝑛, 1/2), our Parity-(𝑘, 2)-clique

reduction only requires a small constant probability of error and our #(𝑘, 2)-clique

reduction requires less than a 1/ polylog(𝑛) probability of error. We leave it as an in-

triguing open problem whether the error tolerance of our reductions can be improved

in this regime.

Finally, we remark that the error tolerance of the reduction must depend on 𝑐.

By a union-bound on the 𝑘-subsets of vertices, the probability that a 𝐺(𝑛, 𝑐) graph

contains a 𝑘-clique is less than (𝑛/𝑐𝑘/2)𝑘. For example, if 𝑐 = 1/𝑛 then the probability

that there exists a 𝑘-clique is less than 𝑛−Ω(𝑘2). As a result, no worst-case to average-

case reduction can tolerate average-case error more than 𝑛−𝑂(𝑘2) on 𝐺(𝑛, 1/𝑛) graphs.

And therefore our reductions for #(𝑘, 2)-clique and for Parity-(𝑘, 2)-clique are

34

close to optimal when 𝑐 = 1/𝑛, because our error tolerance in this case scales as

𝑛−𝑂(𝑘2 log log𝑛).

35

36

Chapter 3

Worst-Case to Average-Case

Reduction for 𝐺(𝑛, 𝑐, 𝑠)

In this section, we give our main worst-case to average-case reduction that trans-

forms a blackbox solving #(𝑘, 𝑠)-clique on 𝐺(𝑛, 𝑐, 𝑠) into a blackbox solving #(𝑘, 𝑠)-

clique on a worst-case input hypergraph. This also yields a worst-case to average-

case reduction for Parity-(𝑘, 𝑠)-clique and proves Theorems 2.2.1 and 2.2.2. The

reduction involves the following five main steps, the details of which are in Sections

3.1 to 3.5.

1. Reduce #(𝑘, 𝑠)-clique and Parity-(𝑘, 𝑠)-clique on general worst-case hyper-

graphs to the worst-case problems with inputs that are 𝑘-partite hypergraphs

with 𝑘 parts of equal size.

2. Reduce the worst-case problem on 𝑘-partite hypergraphs to the problem of

computing a low-degree polynomial 𝑃𝑛,𝑘,𝑠 on 𝑁 , 𝑁(𝑛, 𝑘, 𝑠) variables over a

small finite field F.

3. Reduce the problem of computing 𝑃𝑛,𝑘,𝑠 on worst-case inputs to computing 𝑃𝑛,𝑘,𝑠

on random inputs in F𝑁 .

4. Reduce the problem of computing 𝑃𝑛,𝑘,𝑠 on random inputs in F𝑁 to computing

𝑃𝑛,𝑘,𝑠 on random inputs in {0, 1}𝑁 . This corresponds to #(𝑘, 𝑠)-clique and

37

Parity-(𝑘, 𝑠)-clique on 𝑘-partite Erdős-Rényi hypergraphs.

5. Reduce the average-case variants of #(𝑘, 𝑠)-clique and Parity-(𝑘, 𝑠)-clique

on 𝑘-partite Erdős-Rényi hypergraphs to non-𝑘-partite Erdős-Rényi hypergraphs.

These steps are combined in Section 3.6 to complete the proofs of Theorems 2.2.1

and 2.2.2. Before proceeding to our worst-case to average-case reduction, we establish

some definitions and notation, and also give pseudocode for the counting reduction

in Figure 3-1 – the parity reduction is similar.

The intermediate steps of our reduction crucially make use of 𝑘-partite hyper-

graphs with 𝑘 parts of equal size, defined below.

Definition 3.0.1 (𝑘-Partite Hypergraphs). Given a 𝑠-uniform hypergraph 𝐺 on 𝑛𝑘

vertices with vertex set 𝑉 (𝐺) = [𝑛]× [𝑘], define the vertex labelling

𝐿 : (𝑖, 𝑗) ∈ [𝑛]× [𝑘] ↦→ 𝑗 ∈ [𝑘]

If for all 𝑒 = {𝑢1, . . . , 𝑢𝑠} ∈ 𝐸(𝐺), the labels 𝐿(𝑢1), 𝐿(𝑢2), . . . , 𝐿(𝑢𝑠) are distinct, then

we say that 𝐺 is 𝑘-partite with 𝑘 parts of equal size 𝑛.

In our reduction, it suffices to consider only 𝑘-partite hypergraphs with 𝑘 parts

of equal size. For ease of notation, our 𝑘-partite hypergraphs will always have 𝑛𝑘

vertices and vertex set [𝑛] × [𝑘]. In particular, the edge set of a 𝑘-partite 𝑠-uniform

hypergraph is an arbitrary subset of

𝐸(𝐺) ⊆ {{𝑢1, . . . , 𝑢𝑠} ⊂ 𝑉 (𝐺) : 𝐿(𝑢1), . . . , 𝐿(𝑢𝑠) are distinct}

Taking edge indicators yields that the 𝑘-partite hypergraphs on 𝑛𝑘 vertices we con-

sider are in bijection with {0, 1}𝑁 , where 𝑁 , 𝑁(𝑛, 𝑘, 𝑠) =
(︀
𝑘
𝑠

)︀
𝑛𝑠 is this size of this

set of permitted hyperedges. Thus we will refer to elements 𝑥 ∈ {0, 1}𝑁 and 𝑘-partite

𝑠-uniform hypergraphs on 𝑛𝑘 vertices interchangeably. This definition also extends

to Erdős-Rényi hypergraphs.

38

Definition 3.0.2 (𝑘-Partite Erdős-Rényi Hypergraphs). The 𝑘-partite 𝑠-uniform

Erdős-Rényi hypergraph 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) is a distribution over hypergraphs on 𝑛𝑘 ver-

tices with vertex set 𝑉 (𝐺) = [𝑛] × [𝑘]. A sample from 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) is obtained by

independently including hyperedge each 𝑒 = {𝑢1, . . . , 𝑢𝑠} ∈ 𝐸(𝐺) with probability 𝑐 for

all 𝑒 with 𝐿(𝑢1), 𝐿(𝑢2), . . . , 𝐿(𝑢𝑠) distinct.

Viewing the hypergraphs as elements of 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) as a distribution on {0, 1}𝑁 ,

it follows that 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) corresponds to the product distribution Ber(𝑐)⊗𝑁 .

3.1 Worst-Case Reduction to 𝑘-Partite Hypergraphs

In the following lemma, we prove that the worst-case complexity of #(𝑘, 𝑠)-clique

and Parity-(𝑘, 𝑠)-clique are nearly unaffected when we restrict the inputs to be

worst-case 𝑘-partite hypergraphs. This step is important, because the special struc-

ture of 𝑘-partite hypergraphs will simplify future steps in our reduction.

Lemma 3.1.1. Let 𝐴 be an algorithm for #(𝑘, 𝑠)-clique, such that 𝐴 has error

probability less than 1/3 for any 𝑘-partite hypergraph 𝐺 on 𝑛𝑘 vertices. Then, there

is an algorithm 𝐵 for #(𝑘, 𝑠)-clique with error probability less than 1/3 on any

hypergraph 𝐺 satisfying that 𝑇 (𝐵, 𝑛) ≤ 𝑇 (𝐴, 𝑛) + 𝑂(𝑘𝑠𝑛𝑠). Furthermore, the same

result holds for Parity-(𝑘, 𝑠)-clique in place of #(𝑘, 𝑠)-clique.

Proof. Let 𝐺 be an 𝑠-uniform hypergraph on 𝑛 vertices. Construct the 𝑠-uniform

hypergraph 𝐺′ on the vertex set 𝑉 (𝐺′) = [𝑛]× [𝑘] with edge set

𝐸(𝐺′) =
{︁
{(𝑣1, 𝑡1), (𝑣2, 𝑡2), . . . , (𝑣𝑠, 𝑡𝑠)} : {𝑣1, . . . , 𝑣𝑠} ∈ 𝐸(𝐺) and

1≤𝑣1<𝑣2<···<𝑣𝑠≤𝑛

1≤𝑡1<𝑡2<···<𝑡𝑠≤𝑘

}︁
The hypergraph 𝐺′ can be constructed in 𝑂(𝑘𝑠𝑛𝑠) time. Note that 𝐺′ is 𝑘-partite

with the vertex partition 𝐿 : (𝑖, 𝑗) ∈ [𝑛] × [𝑘] ↦→ 𝑗 ∈ [𝑘]. There is also a bijective

correspondence between 𝑘-cliques in 𝐺′ and 𝑘-cliques in 𝐺 given by

{𝑣1, 𝑣2, . . . , 𝑣𝑘} ↦→ {(𝑣1, 1), (𝑣2, 2), . . . , (𝑣𝑘, 𝑘)}

39

where 𝑣1 < 𝑣2 < · · · < 𝑣𝑘. Thus, the 𝑘-partite 𝑠-uniform hypergraph 𝐺′ on 𝑛𝑘

vertices has exactly the same number of 𝑘-cliques as 𝐺. It suffices to run 𝐴 on 𝐺′

and to return its output.

A corollary to Lemma 3.1.1 is that if any worst-case hardness for #(𝑘, 𝑠)-clique

and Parity-(𝑘, 𝑠)-clique general 𝑠-uniform hypergraphs immediately transfers to

the 𝑘-partite case. For instance, the lower bounds of Conjectures 2.1.5, 2.1.6, and 2.1.8

imply corresponding lower bounds in the 𝑘-partite case. Going forward in our worst-

case to average-case reduction, we may restrict our attention to 𝑘-partite hypergraphs

without loss of generality.

3.2 Counting 𝑘-Cliques as a Low-Degree Polynomial

A key step in our worst-case to average-case reduction is to express the number of

𝑘-cliques as a low-degree polynomial in the adjacency matrix. As mentioned in the

introduction, a similar step appears in the worst-case to average-case reduction of

Goldreich and Rothblum [44].

In particular, the number of 𝑘-cliques of a 𝑘-partite hypergraph 𝐺 with edge

indicators 𝑥 ∈ {0, 1}𝑁 is a degree-𝐷 polynomial 𝑃𝑛,𝑘,𝑠 : {0, 1}𝑁 → Z where 𝐷 ,

𝐷(𝑘, 𝑠) =
(︀
𝑘
𝑠

)︀
. We identify the 𝑁 coordinates of 𝑥 ∈ {0, 1}𝑁 with the 𝑠-subsets

of [𝑛] × [𝑘] with elements with all distinct labels, and for an 𝑠-vertex hyperedge

𝑆 ⊂ 𝑉 (𝐺), the variable 𝑥𝑆 denotes the indicator variable that the hyperedge 𝑆 is in

the hypergraph 𝑥. The number of 𝑘-cliques in 𝐺 is given by

𝑃𝑛,𝑘,𝑠(𝑥) =
∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆⊂[𝑘]
|𝑆|=𝑠

𝑥𝑢𝑆
(3.1)

For any finite field F, this equation defines 𝑃𝑛,𝑘,𝑠 as a polynomial over that finite field.

For clarity, we write this polynomial over F as 𝑃𝑛,𝑘,𝑠,F : F𝑁 → F. Observe that for

any hypergraph 𝑥 ∈ {0, 1}𝑁 , we have that

𝑃𝑛,𝑘,𝑠,F(𝑥) = 𝑃𝑛,𝑘,𝑠(𝑥) (mod char(F))

40

where char(F) is the characteristic of the finite field. We now reduce computing

#(𝑘, 𝑠)-clique and Parity-(𝑘, 𝑠)-clique on a 𝑘-partite hypergraph 𝑥 ∈ {0, 1}𝑁 to

computing 𝑃𝑛,𝑘,𝑠,F(𝑥) for appropriate finite fields F. This is formalized in the following

two propositions.

Proposition 3.2.1. Let 𝑥 ∈ {0, 1}𝑁 denote a 𝑠-uniform hypergraph that is 𝑘-partite

with vertex labelling 𝐿. Let 𝑝1, 𝑝2, . . . , 𝑝𝑡 be 𝑡 distinct primes, such that
∏︀

𝑖 𝑝𝑖 > 𝑛𝑘.

Then, solving #(𝑘, 𝑠)-clique reduces to computing 𝑃𝑛,𝑘,𝑠,F𝑝𝑖
(𝑥) for all 𝑖 ∈ [𝑡], plus

𝑂(𝑘 log 𝑛) additive computational overhead. Moreover, computing 𝑃𝑛,𝑘,𝑠,F𝑝𝑖
(𝑥) for all

𝑖 ∈ [𝑡] reduces to computing #(𝑘, 𝑠)-clique, plus 𝑂(𝑡𝑘 log 𝑛) computational overhead.

Proof. Note that 𝑃𝑛,𝑘,𝑠(𝑥) ≤ 𝑛𝑘 since there are at most 𝑛𝑘 cliques in the hypergraph.

So the claim follows from the Chinese Remainder Theorem and the fact that for any

𝑖 ∈ [𝑡], it holds that 𝑃𝑛,𝑘,𝑠,F𝑝𝑖
(𝑥) ≡ 𝑃𝑛,𝑘,𝑠(𝑥) (mod 𝑝𝑖).

Proposition 3.2.2. Let F be a finite field of characteristic 2. Let 𝑥 ∈ {0, 1}𝑁 be a

𝑠-uniform hypergraph that is 𝑘-partite with vertex labelling 𝐿. Then solving Parity-

(𝑘, 𝑠)-clique for 𝑥 is equivalent to computing 𝑃𝑛,𝑘,𝑠,F(𝑥).

Proof. This is immediate from 𝑃𝑛,𝑘,𝑠,F(𝑥) ≡ 𝑃𝑛,𝑘,𝑠(𝑥) (mod char(F)).

3.3 Random Self-Reducibility: Reducing to Random

Inputs in F𝑁

Expressing the number and parity of cliques as low-degree polynomials allows us to

perform a key step in the reduction: because polynomials over finite fields are random

self-reducible, we can reduce computing 𝑃𝑛,𝑘,𝑠,F on worst-case inputs to computing

𝑃𝑛,𝑘,𝑠,F on several uniformly random inputs in F𝑁 .

The following well-known lemma states the random self-reducibility of low-degree

polynomials. The lemma first appeared in [42]. We follow the proof of [8] in order to

present the lemma with explicit guarantees on the running time of the reduction.

41

Lemma 3.3.1 (cf. Theorem 4 of [42]). Let F be a finite field with |F| = 𝑞 elements.

Let 𝑁,𝐷 > 0. Suppose 9 < 𝐷 < 𝑞/12. Let 𝑓 : F𝑁 → F be a polynomial of degree at

most 𝐷. If there is an algorithm 𝐴 running in time 𝑇 (𝐴,𝑁) such that

P𝑥∼Unif[F𝑁][𝐴(𝑥) = 𝑓(𝑥)] > 2/3,

then there is an algorithm 𝐵 running in time 𝑂((𝑁 +𝐷)𝐷2 log2 𝑞+𝑇 (𝐴,𝑁) ·𝐷) such

that for any 𝑥 ∈ F𝑁 , it holds that P[𝐵(𝑥) = 𝑓(𝑥)] > 2/3.

Proof. Our proof of the lemma is based off of the proof that appears in [8]. The only

difference is that in [8], the lemma is stated only for finite fields whose size is a prime.

Suppose we wish to calculate 𝑓(𝑥) for 𝑥 ∈ F𝑁 . In order to do this, choose 𝑦1, 𝑦2
𝑖.𝑖.𝑑∼

Unif[F𝑁], and define the polynomial 𝑔(𝑡) = 𝑥 + 𝑡𝑦1 + 𝑡2𝑦2 where 𝑡 ∈ F. We evaluate

𝐴(𝑔(𝑡)) at 𝑚 different values 𝑡1, . . . , 𝑡𝑚 ∈ F. This takes 𝑂(𝑚𝑁𝐷 log2 𝑞+𝑚 ·𝑇 (𝐴,𝑁))

time.

Suppose that we have the guarantee that at most (𝑚−2𝐷)/2 of these evaluations

are incorrect. Then, since 𝑓(𝑔(𝑡)) is a univariate polynomial of degree at most 2𝐷, we

may use Berlekamp-Welch to recover 𝑓(𝑔(0)) = 𝐴(𝑥) in 𝑂(𝑚3) arithmetic operations

over F, each of which takes 𝑂(log2 𝑞) time.

Since 𝑔(𝑡𝑖) and 𝑔(𝑡𝑗) are pairwise independent and uniform in F𝑁 for any distinct

𝑡𝑖, 𝑡𝑗 ̸= 0, by the second-moment method, with probability > 2/3, at most (𝑚−2𝐷)/2

evaluations of 𝐴(𝑔(𝑡)) will be incorrect if we take 𝑚 = 12𝐷.

Lemma 3.3.1 implies that if we can efficiently compute 𝑃𝑛,𝑘,𝑠,F on at least a 2/3

fraction of randomly chosen inputs in F𝑁 , then we can efficiently compute the poly-

nomial 𝑃𝑛,𝑘,𝑠,F over a worst-case input in F𝑁 .

3.4 Reduction to Evaluating the Polynomial on 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘)

So far, we have reduced worst-case clique-counting over unweighted hypergraphs to

the average-case problem of computing 𝑃𝑛,𝑘,𝑠,F over 𝑘-partite hypergraphs with ran-

dom edge weights in F. It remains to reduce from computing 𝑃𝑛,𝑘,𝑠,F on inputs

42

𝑥 ∼ Unif
[︀
F𝑁
]︀

to random hypergraphs, which correspond to 𝑥 ∼ Unif
[︀
{0, 1}𝑁

]︀
.

Since {0, 1}𝑁 is an exponentially small subset of F𝑁 if |F| > 2, the random weighted

and unweighted hypergraph problems are very different. In this section, we carry out

this reduction using two different arguments for Parity-(𝑘, 𝑠)-clique and #(𝑘, 𝑠)-

clique. The latter reduction is based on the total variation convergence of random

binary expansion modulo 𝑝 to Unif[F𝑝] and related algorithmic corollaries from Chap-

ter 4.

We first present the reduction that will be applied in the case of Parity-(𝑘, 𝑠)-

clique. Given a map 𝑎 :
(︀
[𝑘]
𝑠

)︀
→ {0, 1, . . . , 𝑡 − 1}, let 𝑎* : [𝑁] → {0, 1, . . . , 𝑡 − 1}

denote the map induced by the labels 𝐿 : 𝑉 (𝐺)→ [𝑘] of the vertices, when the indices

of [𝑁] are identified with the possible 𝑘-partite hyperedges of 𝐺. Explicitly, if 𝜐 is

a bijection between [𝑁] and the set of possible 𝑘-partite hyperedges of 𝐺 under the

labelling 𝐿, then define 𝑎*(𝑖) = 𝑎(𝐿(𝜐(𝑖))) for all 𝑖 ∈ [𝑁]. Recall that 𝐷 =
(︀
𝑘
𝑠

)︀
is the

degree of 𝑃𝑛,𝑘,𝑠. The following lemma will be used only for the Parity-(𝑘, 𝑠)-clique

case:

Lemma 3.4.1. Let 𝑝 be prime and 𝑡 ≥ 1. Suppose 𝐴 is an algorithm that computes

𝑃𝑛,𝑘,𝑠,F𝑝(𝑦) with error probability less than 𝛿 , 𝛿(𝑛) for 𝑦 ∼ Unif
[︀
F𝑁
𝑝

]︀
in time 𝑇 (𝐴, 𝑛).

Then there is an algorithm 𝐵 that computes 𝑃𝑛,𝑘,𝑠,F𝑝𝑡
(𝑥) with error probability less than

𝑡𝐷 · 𝛿 for 𝑥 ∼ Unif
[︁
F𝑁
𝑝𝑡

]︁
in time 𝑇 (𝐵, 𝑛) = 𝑂

(︀
𝑁𝑡4(log 𝑝)3 + 𝑡𝐷 · 𝑇 (𝐴, 𝑛)

)︀
.

Proof. We give a reduction computing 𝑃𝑛,𝑘,𝑠,F𝑝𝑡
(𝑥) where 𝑥 ∼ Unif

[︁
F𝑁
𝑝𝑡

]︁
given black-

box access to 𝐴. Let 𝛽 be such that 𝛽, 𝛽𝑝, 𝛽𝑝2 , . . . , 𝛽𝑝𝑡−1 ∈ F𝑝𝑡 forms a normal basis

for F𝑝𝑡 over F𝑝. Now for each 𝑖 ∈ [𝑁], compute the basis expansion

𝑥𝑖 = 𝑥
(0)
𝑖 𝛽 + 𝑥

(1)
𝑖 𝛽𝑝 + · · ·+ 𝑥

(𝑡−1)
𝑖 𝛽𝑝𝑡−1

.

One can find a generator for a normal basis 𝛽 ∈ F𝑝𝑡 in time 𝑂((𝑡2+log 𝑝)(𝑡 log 𝑝)2)

by Bach et al. [7]. Computing 𝑥(0), . . . , 𝑥(𝑡−1) then takes time 𝑂(𝑁𝑡3(log 𝑝)3) because

𝑁 applications of Gaussian elimination each take at most 𝑂(𝑡3) operations over F𝑝. 1

Note that since 𝑥 is uniformly distributed and 𝛽, 𝛽𝑝, . . . , 𝛽𝑝𝑡−1 form a basis, it follows
1For a good survey on normal bases, we recommend [40].

43

that 𝑥(0), 𝑥(1), . . . , 𝑥(𝑡−1) are distributed i.i.d according to Unif
[︀
F𝑁
𝑝

]︀
. For any map

𝑏 : [𝑁] → {0, 1, . . . , 𝑡 − 1} define 𝑥(𝑏) ∈ F𝑁
𝑝 as 𝑥

(𝑏)
𝑖 = 𝑥

(𝑏(𝑖))
𝑖 for all 𝑖 ∈ [𝑁]. Observe

that for any fixed map 𝑏, the vector 𝑥(𝑏) is uniform in F𝑁
𝑝 . We now expand and

redistribute the terms of 𝑃𝑛,𝑘,𝑠,F𝑝𝑡
as follows.

𝑃𝑛,𝑘,𝑠,F𝑝𝑡
(𝑥) =

∑︁
{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)

∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

𝑥𝑢𝑆

=
∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

(︃
𝑡−1∑︁
𝑖=0

𝑥(𝑖)
𝑢𝑆
𝛽𝑝𝑖

)︃

=
∑︁

𝑎:([𝑘]
𝑠)→{0,...,𝑡−1}

⎛⎜⎜⎝ ∑︁
{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)

∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

(︁
𝑥(𝑎(𝑆))
𝑢𝑆

𝛽𝑝𝑎(𝑆)
)︁⎞⎟⎟⎠

=
∑︁

𝑎:([𝑘]
𝑠)→{0,...,𝑡−1}

⎛⎜⎝ ∏︁
𝑆∈([𝑘]

𝑠)

𝛽𝑝𝑎(𝑆)

⎞⎟⎠
⎛⎜⎜⎝ ∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

𝑥(𝑎(𝑆))
𝑢𝑆

⎞⎟⎟⎠
=

∑︁
𝑎:([𝑘]

𝑠)→{0,...,𝑡−1}

⎛⎜⎝ ∏︁
𝑆∈([𝑘]

𝑠)

𝛽𝑝𝑎(𝑆)

⎞⎟⎠𝑃𝑛,𝑘,𝑠,F𝑝

(︀
𝑥(𝑎*)

)︀

As observed above, it holds that 𝑥(𝑎*) ∼ Unif
[︀
F𝑁
𝑝

]︀
for each 𝑎. Thus, computing

𝑃𝑛,𝑘,𝑠,F(𝑥) reduces to evaluating 𝑃𝑛,𝑘,𝑠,F𝑝 on 𝑡𝐷 uniformly random inputs on in F𝑁
𝑝

and outputting a weighted sum of the evaluations. The desired bound on the error

probability follows from a union bound.

We now give the reduction to evaluating 𝑃𝑛,𝑘,𝑠 on random hypergraphs drawn

from 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) in the case of #(𝑘, 𝑠)-clique.

Lemma 3.4.2. Let 𝑝 be prime and let 𝑐 = 𝑐(𝑛), 𝛾 = 𝛾(𝑛) ∈ (0, 1). Suppose

that 𝐴 is an algorithm that computes 𝑃𝑛,𝑘,𝑠,F𝑝(𝑦) with error probability less than

𝛿 , 𝛿(𝑛) when 𝑦 ∈ {0, 1}𝑁 is drawn from 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘). Then, for some 𝑡 =

𝑂(𝑐−1(1 − 𝑐)−1 log(𝑁𝑝/𝛾) log 𝑝), there is an algorithm 𝐵 that evaluates 𝑃𝑛,𝑘,𝑠,F𝑝(𝑥)

with error probability at most 𝛾 + 𝑡𝐷 · 𝛿 when 𝑥 ∼ Unif
[︀
F𝑁
𝑝

]︀
in time 𝑇 (𝐵, 𝑛) =

44

𝑂
(︀
𝑁𝑝𝑡 log(𝑁𝑝/𝛾) + 𝑡𝐷 · 𝑇 (𝐴, 𝑛)

)︀
.

Proof. We give a reduction computing 𝑃𝑛,𝑘,𝑠,F𝑝(𝑥) where 𝑥 ∼ Unif
[︀
F𝑁
𝑝

]︀
given blackbox

access to 𝐴. We first handle the case in which 𝑝 > 2. For each 𝑗 ∈ [𝑁], apply the

algorithm from Lemma 4.0.3 to sample 𝑥
(0)
𝑗 , 𝑥

(1)
𝑗 , . . . , 𝑥

(𝑡−1)
𝑗 ∈ {0, 1} satisfying

𝑑TV

(︁
ℒ(𝑥

(0)
𝑗 , . . . , 𝑥

(𝑡−1)
𝑗),Ber(𝑐)⊗𝑡

)︁
≤ 𝜖 , 𝛾/𝑁 and

𝑡−1∑︁
𝑖=0

2𝑖𝑥
(𝑖)
𝑗 ≡ 𝑥𝑗 (mod 𝑝)

By Lemmas 4.0.2 and 4.0.3, we may choose 𝑡 = 𝑂(𝑐−1(1− 𝑐)−1 log(𝑁𝑝/𝛾) log 𝑝) and

this sampling can be carried out in 𝑂(𝑁𝑝𝑡 log(𝑁𝑝/𝛾)) time. By the total variation

bound, for each 𝑗 we may couple (𝑥
(0)
𝑗 , . . . , 𝑥

(𝑡−1)
𝑗) with (𝑍

(0)
𝑗 , . . . , 𝑍

(𝑡−1)
𝑗) ∼ Ber(𝑐)⊗𝑘,

so that P[𝑥
(𝑖)
𝑗 = 𝑍

(𝑖)
𝑗 ∀𝑖, 𝑗] ≥ 1− 𝛾. Moreover, we have 𝑥

(𝑖)
𝑗 ⊥⊥ 𝑥

(𝑘)
𝑙 whenever 𝑗 ̸= 𝑙, so

we may choose the 𝑍
(𝑖)
𝑗 so that 𝑍

(𝑖)
𝑗 ⊥⊥ 𝑍

(𝑘)
𝑙 whenever 𝑗 ̸= 𝑙.

As in the proof of Lemma 3.4.1, given any map 𝑏 : [𝑁]→ {0, . . . , 𝑡− 1}, we define

𝑍(𝑏) ∈ {0, 1}𝑁 by 𝑍
(𝑏)
𝑗 = 𝑍

(𝑏(𝑗))
𝑗 , for all 𝑗 ∈ [𝑁]. We also note that for any fixed 𝑏, the

entries 𝑍
(𝑏)
1 , . . . , 𝑍

(𝑏)
𝑁 are independent and distributed as Ber(𝑐). Therefore,

𝑍(𝑏) ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘)

Now compute the following quantity, similarly to the calculations in Lemma 3.4.1:

𝑃𝑛,𝑘,𝑠,F𝑝(𝑍) ,
∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

(︃
𝑡−1∑︁
𝑖=0

2𝑖 · 𝑍(𝑖)
𝑢𝑆

)︃

=
∑︁

𝑎:([𝑘]
𝑠)→{0,...,𝑡−1}

⎛⎜⎜⎝ ∑︁
{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)

∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

(︀
2𝑎(𝑆) · 𝑍(𝑎(𝑆))

𝑢𝑆

)︀⎞⎟⎟⎠

=
∑︁

𝑎:([𝑘]
𝑠)→{0,...,𝑡−1}

⎛⎜⎝ ∏︁
𝑆∈([𝑘]

𝑠)

2𝑎(𝑆)

⎞⎟⎠
⎛⎜⎜⎝ ∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

𝑍(𝑎(𝑆))
𝑢𝑆

⎞⎟⎟⎠
=

∑︁
𝑎:([𝑘]

𝑠)→{0,...,𝑡−1}

⎛⎜⎝ ∏︁
𝑆∈([𝑘]

𝑠)

2𝑎(𝑆)

⎞⎟⎠𝑃𝑛,𝑘,𝑠,F𝑝(𝑍(𝑎*)).

45

We may use algorithm 𝐴 to evaluate the 𝑡𝐷 values of 𝑃𝑛,𝑘,𝑠,F𝑝(𝑍(𝑎*)), with proba-

bility < 𝑡𝐷 · 𝛿 of any error (by a union bound). Computing 𝑃𝑛,𝑘,𝑠,F𝑝(𝑍) reduces to

computing a weighted sum over the 𝑡𝐷 evaluations. Conditioned on the event that

𝑥
(𝑖)
𝑗 = 𝑍

(𝑖)
𝑗 ∀𝑖, 𝑗, then 𝑃𝑛,𝑘,𝑠,F𝑝(𝑥) = 𝑃𝑛,𝑘,𝑠,F𝑝(𝑍), because

𝑃𝑛,𝑘,𝑠,F𝑝(𝑥) =
∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

𝑥𝑢𝑆

=
∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

(︃
𝑡−1∑︁
𝑖=0

2𝑖 · 𝑥(𝑖)
𝑢𝑆

)︃

=
∑︁

{𝑢1,...,𝑢𝑘}⊂𝑉 (𝐺)
∀𝑖 𝐿(𝑢𝑖)=𝑖

∏︁
𝑆∈([𝑘]

𝑠)

(︃
𝑡−1∑︁
𝑖=0

2𝑖 · 𝑍(𝑖)
𝑢𝑆

)︃
= 𝑃𝑛,𝑘,𝑠,F𝑝(𝑍).

Since P[𝑥
(𝑖)
𝑗 = 𝑍

(𝑖)
𝑗 ∀𝑖, 𝑗] ≥ 1− 𝑡 ·𝛾, by a union bound with the error in calculation we

have computed 𝑃𝑛,𝑘,𝑠,F𝑝(𝑥) with probability of error ≤ 𝛾 + 𝑡𝐷 · 𝛿. The claim follows

for the case 𝑝 > 2.

If 𝑝 = 2, then the proof is almost identical, except that since 2 ≡ 0 (mod 2),

we may no longer use the result on random binary expansions of Lemma 4.0.3.

In this case, for each 𝑗 ∈ [𝑁] we sample 𝑥
(0)
𝑗 , . . . , 𝑥

(𝑡−1)
𝑗 ∈ {0, 1}𝑁 such that each

𝑑TV(ℒ(𝑥
(0)
𝑗 , . . . , 𝑥

(𝑡−1)
𝑗),Ber(𝑐)⊗𝑡) ≤ 𝜖 , 𝛾/𝑁 , and so that

𝑡−1∑︁
𝑖=0

𝑥
(𝑖)
𝑗 = 𝑥𝑗 (mod 𝑝).

By Lemma 4.0.4, we may choose 𝑡 = 𝑂(𝑐−1(1−𝑐)−1 log(𝑁/𝛾)), and we may sample in

time 𝑂(𝑁𝑡 log(𝑁/𝛾)). Again, we couple the 𝑥(𝑖)
𝑗 variables with variables 𝑍(𝑖)

𝑗 ∼ Ber(𝑐)

such that the event 𝐸 that 𝑥(𝑖)
𝑗 = 𝑍

(𝑖)
𝑗 for all 𝑖, 𝑗 has probability P[𝐸] ≥ 1−𝛾 and such

that 𝑍(𝑖)
𝑗 is independent of 𝑍(𝑘)

𝑙 whenever 𝑗 ̸= 𝑙. By a similar, and simpler, calculation

to the one for the case 𝑝 > 2, we have that 𝑃𝑛,𝑘,𝑠,F2(𝑍) = 𝑃𝑛,𝑘,𝑠,F2(𝑥) conditioned on

46

𝐸, where

𝑃𝑛,𝑘,𝑠,F2(𝑍) ,
∑︁

𝑎:([𝑘]
𝑠)→{0,...,𝑡−1}

𝑃𝑛,𝑘,𝑠,F2(𝑍
(𝑎*)).

This can be calculated using the algorithm 𝐴 similarly to the 𝑝 > 2 case, because

each 𝑍(𝑎*) is distributed as 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘).

3.5 Reduction to Counting 𝑘-Cliques in 𝐺(𝑛, 𝑐, 𝑠)

So far, we have reduced Parity-(𝑘, 𝑠)-clique and #(𝑘, 𝑠)-clique for worst-case

input hypergraphs to average-case inputs drawn from the 𝑘-partite Erdős-Rényi dis-

tribution 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘). We now carry out the final step of the reduction, showing

that Parity-(𝑘, 𝑠)-clique and #(𝑘, 𝑠)-clique on inputs drawn from 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘)

reduce to inputs drawn from the non-𝑘-partite Erdős-Rényi distribution 𝐺(𝑛, 𝑐, 𝑠).

Recall that a hypergraph 𝐺 drawn from 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) has vertex set 𝑉 (𝐺) = [𝑛]× [𝑘]

and vertex partition given by the labels 𝐿 : (𝑖, 𝑗) ∈ [𝑛]× [𝑘] ↦→ 𝑗 ∈ [𝑘].

Lemma 3.5.1. Let 𝛿 = 𝛿(𝑛) ∈ (0, 1) be a non-increasing function of 𝑛 and let

𝑐 = 𝑐(𝑛) ∈ (0, 1). Suppose that 𝐴 is a randomized algorithm for #(𝑘, 𝑠)-clique

such that for any 𝑛, 𝐴 has error probability less than 𝛿(𝑛) on hypergraphs drawn from

𝐺(𝑛, 𝑐, 𝑠) in 𝑇 (𝐴, 𝑛) time. Then there exists an algorithm 𝐵 solving #(𝑘, 𝑠)-clique

that has error probability less than 2𝑘 · 𝛿(𝑛) on hypergraphs drawn from 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘)

and that runs in 𝑇 (𝐵, 𝑛) = 𝑂
(︀
2𝑘 · 𝑇 (𝐴, 𝑛𝑘) + 𝑘𝑠𝑛𝑠 + 𝑘2𝑘

)︀
time.

Proof. It suffices to count the number of 𝑘-cliques in 𝐺 ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) given blackbox

access to 𝐴. Construct the hypergraph 𝐻 over the same vertex set 𝑉 (𝐻) = [𝑛]× [𝑘]

by adding each edge 𝑒 = {𝑣1, 𝑣2, . . . , 𝑣𝑠} ∈
(︀
[𝑛]×[𝑘]

𝑠

)︀
such that |{𝐿(𝑣1), . . . , 𝐿(𝑣𝑠)}| < 𝑠

independently with probability 𝑐. In other words, independently add each edge to

𝐺 containing two vertices from the same part of 𝐺. It follows that 𝐻 is distributed

according to 𝐺(𝑛𝑘, 𝑐, 𝑠). More generally, for every 𝑆 ⊂ [𝑘], 𝐻𝑆 is distributed according

to 𝐺(|𝐿−1(𝑆)|, 𝑐, 𝑠) where 𝐻𝑆 is the restriction of 𝐻 to the vertices 𝐿−1(𝑆) ⊂ 𝑉 (𝐻)

with labels in 𝑆. Note that 𝐻 can be constructed in 𝑂(𝑘𝑠𝑛𝑠) time.

47

Now observe that for each 𝑆 ̸= ∅, it holds that 𝑛 ≤ |𝐿−1(𝑆)| ≤ 𝑛𝑘 and the

algorithm 𝐴 succeeds on each 𝐻𝑆 with probability at least 1 − 𝛿(𝑛). By a union

bound, we may compute the number of 𝑘-cliques |cl𝑘(𝐻𝑆)| in 𝐻𝑆 for all 𝑆 ⊂ [𝑘] with

error probability less than 2𝑘 · 𝛿(𝑛). Note that this can be done in 𝑂
(︀
2𝑘 · 𝑇 (𝐴, 𝑛𝑘)

)︀
time. From these counts |cl𝑘(𝐻𝑆)|, we now to inductively compute

𝑡𝑑 , |{𝑆 ∈ cl𝑘(𝐻) : |𝐿(𝑆)| = 𝑑}|

for each 𝑑 ∈ [𝑘]. Note that 𝑡0 = 0 in the base case 𝑑 = 0. Given 𝑡0, 𝑡1, . . . , 𝑡𝑑, the next

count 𝑡𝑑+1 can be expressed by inclusion-exclusion as

𝑡𝑑+1 =
∑︁

𝑇⊂[𝑘],|𝑇 |=𝑑+1

|{𝑆 ∈ cl𝑘(𝐻) : 𝐿(𝑆) = 𝑇}|

=
∑︁

𝑇⊂[𝑘],|𝑇 |=𝑑+1

⎛⎝|cl𝑘(𝐻𝑇)| −
𝑑∑︁

𝑖=0

∑︁
𝑈⊂𝑇,|𝑈 |=𝑖

|{𝑆 ∈ cl𝑘(𝐻) : 𝐿(𝑆) = 𝑈}|

⎞⎠
=

⎛⎝ ∑︁
𝑇⊂[𝑘],|𝑇 |=𝑑+1

|cl𝑘(𝐻𝑇)|

⎞⎠− 𝑑∑︁
𝑖=0

(︂
𝑘 − 𝑖

𝑑 + 1− 𝑖

)︂
|{𝑆 ∈ cl𝑘(𝐻) : |𝐿(𝑆)| = 𝑖}|

=
∑︁

𝑇⊂[𝑘],|𝑇 |=𝑑+1

|cl𝑘(𝐻𝑇)| −
𝑑∑︁

𝑖=0

(︂
𝑘 − 𝑖

𝑑 + 1− 𝑖

)︂
𝑡𝑖

After 𝑂(𝑘2𝑘) operations, this recursion yields the number of 𝑘-cliques 𝑡𝑘 = |{𝑆 ∈

cl𝑘(𝐻) : |𝐿(𝑆)| = 𝑘}| = |cl𝑘(𝐺)| in the original 𝑘-partite hypergraph 𝐺, as desired.

Repeating the same proof over F2 yields an analogue of Lemma 3.5.1 for Parity-

(𝑘, 𝑠)-clique, as stated below.

Lemma 3.5.2. Lemma 3.5.1 holds when #(𝑘, 𝑠)-clique is replaced by Parity-

(𝑘, 𝑠)-clique.

3.6 Proofs of Theorems 2.2.1 and 2.2.2

We now combine Steps 1-5 formally in order to prove Theorems 2.2.1 and 2.2.2.

48

Proof of Theorem 2.2.1. Our goal is to construct an algorithm 𝐵 that solves #(𝑘, 𝑠)-

clique with error probability < 1/3 on any 𝑠-uniform hypergraph 𝑥.

We are given an algorithm 𝐴 that solves #(𝑘, 𝑠)-clique with probability of error

< 1/Υ# on hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠).

We will construct the following intermediate algorithms in our reduction:

∙ Algorithm 𝐴0 that solves #(𝑘, 𝑠)-clique with error probability < 1/3 for any

worst-case 𝑘-partite hypergraph.

∙ Algorithm 𝐴1(𝑥, 𝑝) that computes 𝑃𝑛,𝑘,𝑠,F𝑝(𝑥) for any 𝑥 ∈ F𝑁
𝑝 and for any prime

𝑝 such that 12
(︀
𝑘
𝑠

)︀
< 𝑝 < 10 log 𝑛𝑘, with worst-case error probability < 1/3.

∙ Algorithm 𝐴2(𝑦, 𝑝) for primes 12
(︀
𝑘
𝑠

)︀
< 𝑝 < 10 log 𝑛𝑘 that computes 𝑃𝑛,𝑘,𝑠,F𝑝(𝑦)

on inputs 𝑦 ∼ Unif[F𝑁
𝑝] with error probability < 1/3.

∙ Algorithm 𝐴3(𝑧) that computes 𝑃𝑛,𝑘,𝑠(𝑧) on inputs 𝑧 ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) with error

probability < 𝛿. (The required value of 𝛿 will be determined later on.)

We construct algorithm 𝐵 from 𝐴0, 𝐴0 from 𝐴1, 𝐴2 from 𝐴3, and 𝐴3 from 𝐴.

1. Reduce to computing #(𝑘, 𝑠)-clique for 𝑘-partite hypergraphs. We use Lemma

3.1.1 to construct 𝐵 from 𝐴0, such that 𝐵 runs in time

𝑇 (𝐵, 𝑛) = 𝑇 (𝐴0, 𝑛) + 𝑂((𝑛𝑘)𝑠).

2. Reduce to computing 𝑃𝑛,𝑘,𝑠,F𝑝 on worst-case inputs. We use Proposition 3.2.1

to construct 𝐴0 from 𝐴1 such that 𝐴0 runs in time

𝑇 (𝐴0, 𝑛) ≤ 𝑂(𝑇 (𝐴1, 𝑛) · log 𝑛𝑘 + (log 𝑛𝑘)2).

The algorithm 𝐴0 starts by using a sieve to find the first 𝑇 primes 12
(︀
𝑘
𝑠

)︀
< 𝑝1 <

· · · < 𝑝𝑇 such that
∏︀𝑇

𝑖=1 𝑝𝑖 > 𝑛𝑘. Notice that 𝑝𝑇 ≤ 10 log 𝑛𝑘, so this step takes

time 𝑂((log 𝑛𝑘)2). Then, given a 𝑘-partite hypergraph 𝑥 ∈ {0, 1}𝑁 , the algorithm

49

𝐴0 computes 𝑃𝑛,𝑘,𝑠(𝑥) by computing 𝑃𝑛,𝑘,𝑠,F𝑝𝑖
(𝑥) for all 𝑝𝑖, boosting the error of 𝐴1

by repetition and majority vote. Since 𝑇 = 𝑂((log 𝑛𝑘)/(log log 𝑛𝑘)), we only need to

repeat 𝑂(log log 𝑛𝑘) times per prime; this yields a total slowdown factor of 𝑂(log 𝑛𝑘).

Once we have computed 𝑃𝑛,𝑘,𝑠(𝑥), we recall that it is equal to the number of 𝑘-cliques

in 𝑥.

3. Reduce to computing 𝑃𝑛,𝑘,𝑠,F𝑝 on random inputs in F𝑁
𝑝 . We use Lemma 3.3.1

to construct 𝐴1 from 𝐴2 such that 𝐴2 runs in time

𝑇 (𝐴1, 𝑛) = 𝑂((𝑁+𝐷)𝐷2 log2 𝑝+𝐷·𝑇 (𝐴2, 𝑛)) = 𝑂(𝑛𝑠

(︂
𝑘

𝑠

)︂2

log2 log 𝑛𝑘+

(︂
𝑘

𝑠

)︂
·𝑇 (𝐴2, 𝑛)).

4. Reduce to computing 𝑃𝑛,𝑘,𝑠 on random inputs in {0, 1}𝑁 We use Lemma 3.4.2

to construct 𝐴2 from 𝐴3 such that 𝐴2 runs in time

𝑇 (𝐴2, 𝑛) = 𝑂(𝑁𝑝𝑡 log(𝑁𝑝) + 𝑡(
𝑘
𝑠) · 𝑇 (𝐴3, 𝑛)),

for some 𝑡 = 𝑂(𝑐−1(1− 𝑐)−1)𝑠(log 𝑛)(log 𝑝)). For this step, we require the error prob-

ability 𝛿 of algorithm 𝐴3(𝑧) on inputs 𝑧 ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) to be at most 1/(4𝑡𝐷) =

1/(4𝑡(
𝑘
𝑠)).

5. Reduce to computing #(𝑘, 𝑠)-clique for 𝐺(𝑛, 𝑐, 𝑠) hypergraphs We use Lemma

3.5.1 to construct 𝐴3 from 𝐴 such that 𝐴3 runs in time

𝑇 (𝐴3, 𝑛) = 𝑂((𝑛𝑘)𝑠 + 𝑘2𝑘 + 2𝑘 · 𝑇 (𝐴, 𝑛𝑘)),

and such that 𝐴3 has error probability at most 𝛿 < 2𝑘/Υ#.

As in the theorem statement, let Υ#(𝑛, 𝑐, 𝑠, 𝑘) , (𝐶(𝑐−1(1− 𝑐)−1)𝑠(log 𝑛)(log 𝑘 +

log log 𝑛))(
𝑘
𝑠), where 𝐶 > 0 is a large constant to be determined. If we take 𝐶 large

enough, then 4𝑡(
𝑘
𝑠) · 2𝑘 ≤ Υ#. In this case, the error 𝛿 of 𝐴3 will be at most 1/(4𝑡(

𝑘
𝑠)),

50

which is what we needed for the fourth step. Putting the runtime bounds together,

𝑇 (𝐵, 𝑛) = 𝑂((𝑛𝑘)𝑠 + (log 𝑛𝑘)2 + (log 𝑛𝑘) · (𝑛𝑠𝑡𝑘

(︂
𝑘

𝑠

)︂2

(log 𝑛)2 +

(︂
𝑘

𝑠

)︂
· (4𝑡)(

𝑘
𝑠) · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)))

= 𝑂(𝑛𝑠𝑘3

(︂
𝑘

𝑠

)︂2

(𝑐−1(1− 𝑐)−1)(log 𝑘 + log log 𝑛) log4 𝑛 + (log 𝑛) ·Υ# · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)),

if we choose 𝐶 > 0 large enough. Hence,

𝑇 (𝐵, 𝑛) = 𝑂((log 𝑛) ·Υ# · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)),

as
(︀
𝑘
𝑠

)︀
≥ 3 without loss of generality.

Proof of Theorem 2.2.2. The proof of item 1 of Theorem 2.2.2 is analogous to the

proof of Theorem 2.2.1, except that it does not use the Chinese remainder theorem.

Moreover, special care is needed in order to ensure that the field F over which we

compute the polynomial 𝑃𝑛,𝑘,𝑠,F in the intermediate steps is large enough that we may

use the random self-reducibility of polynomials.

Our goal is to construct an algorithm 𝐵 that solves Parity-(𝑘, 𝑠)-clique with

error probability < 1/3 on any 𝑠-uniform hypergraph 𝑥.

We are given an algorithm 𝐴 that solves Parity-(𝑘, 𝑠)-clique with probability

of error < 1/Υ𝑃,1 on hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠).

We will construct the following intermediate algorithms in our reduction:

∙ Algorithm 𝐴0 that solves Parity-(𝑘, 𝑠)-clique with error probability < 1/3

for any worst-case 𝑘-partite hypergraph.

∙ Algorithm 𝐴1(𝑤) that computes 𝑃𝑛,𝑘,𝑠,F2𝜅
(𝑤) on inputs 𝑤 ∼ Unif[F𝑁

2𝜅] for 𝜅 =

⌈log2(12
(︀
𝑘
𝑠

)︀
)⌉, with error probability < 1/3.

∙ Algorithm 𝐴2(𝑦) that computes 𝑃𝑛,𝑘,𝑠,F2(𝑦) on inputs 𝑦 ∼ Unif[F𝑁
2] with error

probability < 𝛿2. (The required value of 𝛿2 will be determined later on.)

∙ Algorithm 𝐴3(𝑧) that computes 𝑃𝑛,𝑘,𝑠,F2(𝑧) on inputs 𝑧 ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) with

error probability < 𝛿3. (The required value of 𝛿3 will be determined later on.)

51

We construct algorithm 𝐵 from 𝐴0, 𝐴0 from 𝐴1, 𝐴2 from 𝐴3, and 𝐴3 from 𝐴.

1. Reduce to computing Parity-(𝑘, 𝑠)-clique for 𝑘-partite hypergraphs. We use

Lemma 3.1.1 to construct 𝐵 from 𝐴0, such that 𝐵 runs in time

𝑇 (𝐵, 𝑛) = 𝑇 (𝐴0, 𝑛) + 𝑂((𝑛𝑘)𝑠).

2. Reduce to computing 𝑃𝑛,𝑘,𝑠,F2𝜅
on random inputs in F𝑁

2𝜅. Note that by Proposi-

tion 3.2 if we can compute 𝑃𝑛,𝑘,𝑠,F2𝜅
for worst-case inputs, then we can solve Parity-

(𝑘, 𝑠)-clique. We use Lemma 3.3.1 to construct 𝐴0 from 𝐴1 such that 𝐴0 runs in

time

𝑇 (𝐴0, 𝑛) = 𝑂(𝜅2(𝑁 + 𝐷)𝐷2 + 𝐷 · 𝑇 (𝐴1, 𝑛)) = 𝑂(𝑛𝑠

(︂
𝑘

𝑠

)︂2

log2 𝜅 +

(︂
𝑘

𝑠

)︂
· 𝑇 (𝐴1, 𝑛))

3. Reduce to computing 𝑃𝑛,𝑘,𝑠,F2 on random inputs in F𝑁
2 .We use Lemma 3.4.1 to

construct 𝐴1 from 𝐴2 such that 𝐴1 runs in time

𝑇 (𝐴1, 𝑛) ≤ 𝑂(𝑁𝜅4 + 𝜅(𝑘
𝑠) · 𝑇 (𝐴2, 𝑛)),

and has error probability at most 𝛿2 ·𝜅(𝑘
𝑠) on random inputs 𝑤 ∼ Unif[F𝑁

2𝜅]. Thus, 𝐴2

must have error probability at most 𝛿2 < 1/(3𝜅(𝑘
𝑠)) on random inputs in 𝑦 ∼ Unif[F𝑁

2]

for this step of the reduction to work.

4. Reduce to computing 𝑃𝑛,𝑘,𝑠,F2 on random inputs in {0, 1}𝑁 We use Lemma 3.4.2

to construct 𝐴2 from 𝐴3 such that 𝐴2 runs in time

𝑇 (𝐴2, 𝑛) = 𝑂(𝑁𝑡 log(𝑁/𝛾) + 𝑡(
𝑘
𝑠) · 𝑇 (𝐴3, 𝑛)),

for some 𝑡 = 𝑂(𝑐−1(1 − 𝑐)−1(𝑠 log(𝑛) + log(1/𝛾))). The error probability of 𝐴2 on

random inputs 𝑧 ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘) will be at most 𝛿2 < 𝛿3·𝑡(
𝑘
𝑠)+𝛾. Since we require error

probability at most 𝛿2 ≤ 1/(3𝜅(𝑘
𝑠)) of algorithm 𝐴2(𝑧) on inputs 𝑧 ∼ 𝐺(𝑛𝑘, 𝑐, 𝑠, 𝑘), we

set 𝛾 = 1/(10𝜅(𝑘
𝑠)) and require 𝛿3 ≤ 1/(10(𝑡𝜅)(

𝑘
𝑠)), which is sufficient. For this choice

52

of 𝛾, we have 𝑡 = 𝑂(𝑐−1(1− 𝑐)−1(𝑠 log(𝑛) +
(︀
𝑘
𝑠

)︀
log(𝑠 log 𝑘))).

5. Reduce to computing #(𝑘, 𝑠)-clique for 𝐺(𝑛, 𝑐, 𝑠) hypergraphs We use Lemma

3.5.2 to construct 𝐴3 from 𝐴 such that 𝐴3 runs in time

𝑇 (𝐴3, 𝑛) = 𝑂((𝑛𝑘)𝑠 + 𝑘2𝑘 + 2𝑘 · 𝑇 (𝐴, 𝑛𝑘)),

and such that 𝐴3 has error probability at most 𝛿3 < 2𝑘/Υ𝑃,1.

As in the theorem statement, let

Υ𝑃,1(𝑛, 𝑐, 𝑠, 𝑘) ,

(︂
𝐶(𝑐−1(1− 𝑐)−1)𝑠(log 𝑘)(𝑠 log 𝑛 +

(︂
𝑘

𝑠

)︂
(log log

(︂
𝑘

𝑠

)︂
))

)︂(𝑘
𝑠)

for some large enough constant 𝐶.

If we take 𝐶 large enough, then (𝜅𝑡)(
𝑘
𝑠) ≤ 1

10
· 2−𝑘 · Υ𝑃,1, as desired. In this case,

the error of 𝐴0 on uniformly random inputs will be at most 1/3, which is what we

needed. Putting the runtime bounds together,

𝑇 (𝐵, 𝑛) = 𝑂(𝑛𝑠

(︂
𝑘

𝑠

)︂2

log2 𝜅 + 𝑛𝑠𝑡 log(𝑛𝑠𝜅(𝑘
𝑠)) + 𝑛𝑠

(︂
𝑘

𝑠

)︂
𝜅4 +

(︂
𝑘

𝑠

)︂
· (4𝜅𝑡)(

𝑘
𝑠) · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠))

= 𝑂(𝑛𝑠(𝑡𝑘

(︂
𝑘

𝑠

)︂2

log2 𝑠 log 𝑘 +

(︂
𝑘

𝑠

)︂
𝜅4) + Υ𝑃,1 · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)),

if we choose 𝐶 > 0 large enough. Since
(︀
𝑘
𝑠

)︀
≥ 3 without loss of generality,

𝑇 (𝐵, 𝑛) = 𝑂(Υ𝑃,1 · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)).

For item 2 of the theorem, we restrict the inputs to come from 𝐺(𝑛, 1/2, 𝑠), and we

achieve a better error tolerance because algorithm 𝐴3 is the same as 𝐴2. This means

that we may skip step 4 of the proof of item 1. In particular, we only need 𝛿3 =

𝛿2 ≤ 1/(3𝜅(𝑘
𝑠)). So algorithm 𝐴 only needs to have error < 1/Υ𝑃,2, for Υ𝑃,2(𝑘, 𝑠) ,

(𝐶𝑠 log 𝑘)(
𝑘
𝑠). It is not hard to see that, skipping step 4, the algorithm 𝐵 that we

construct takes time 𝑇 (𝐵, 𝑛) = 𝑂(Υ𝑃,2 · (𝑇 (𝐴, 𝑛𝑘) + (𝑛𝑘)𝑠)).

53

Algorithm To-ER-#(𝐺, 𝑘,𝐴, 𝑐)

Inputs : 𝑠-uniform hypergraph 𝐺 with vertex set [𝑛], parameters 𝑘, 𝑐, algorithm 𝐴 for
#(𝑘, 𝑠)-clique on Erdős-Rényi hypergraphs with density 𝑐.

1. Construct an 𝑠-uniform hypergraph 𝐺′ on vertex set [𝑛]× [𝑘] by defining

𝐸(𝐺′) =
{︁
{(𝑣1, 𝑡1), (𝑣2, 𝑡2), . . . , (𝑣𝑠, 𝑡𝑠)} : {𝑣1, . . . , 𝑣𝑠} ∈ 𝐸(𝐺) and

1≤𝑣1<𝑣2<···<𝑣𝑠≤𝑛

1≤𝑡1<𝑡2<···<𝑡𝑠≤𝑘

}︁
.

Since 𝐺′ is 𝑘-partite, view it as an indicator vector of edges 𝐺′ ∈ {0, 1}𝑁 for 𝑁 :=
𝑁(𝑛, 𝑘, 𝑠) =

(︀
𝑘
𝑠

)︀
𝑛𝑠.

2. Find the first 𝑇 primes 12
(︀
𝑘
𝑠

)︀
< 𝑝1 < · · · < 𝑝𝑇 such that

∏︀𝑇
𝑖=1 𝑝𝑖 > 𝑛𝑘.

3. Define 𝐿 : (𝑎, 𝑏) ∈ [𝑛]× [𝑘] ↦→ 𝑏 ∈ [𝑘], and

𝑃𝑛,𝑘,𝑠(𝑥) =
∑︁

{𝑢1,...,𝑢𝑘}∈𝑉 (𝐺′)
𝐿(𝑢𝑖)=𝑖 ∀𝑖

∏︁
𝑆⊆[𝑘]
|𝑆|=𝑠

𝑥𝑢𝑆

For each 1 ≤ 𝑡 ≤ 𝑇 , compute 𝑃𝑛,𝑘,𝑠(𝐺
′) (mod 𝑝𝑡), as follows:

(1) Use the procedure of [42] in order to reduce the computation of 𝑃𝑛,𝑘,𝑠(𝐺
′) (mod 𝑝𝑡)

to the computation of 𝑃𝑛,𝑘,𝑠 on 𝑀 = 12
(︀
𝑘
𝑠

)︀
distinct inputs 𝑥1, . . . , 𝑥𝑀 ∼ Unif[F𝑁

𝑝𝑡].

(2) For each 1 ≤ 𝑚 ≤𝑀 , compute 𝑃𝑛,𝑘,𝑠(𝑥𝑚) (mod 𝑝𝑡) as follows:

(i) Use the rejection sampling procedure of Lemma 4.0.3 in order to sam-
ple (𝑌 (0), . . . , 𝑌 (𝐵)) close to (Ber(𝑐)⊗𝑁)⊗𝐵 in total variation distance, such
that 𝑥𝑚 ≡

∑︀𝐵
𝑏=0 2𝑏 · 𝑌 (𝑏) (mod 𝑝𝑡). It suffices to take 𝐵 = Θ(𝑐−1(1 −

𝑐)−1𝑠(log 𝑛)(log 𝑝𝑡)).
(ii) For each function 𝑎 :

(︀
[𝑘]
𝑠

)︀
→ {0, . . . , 𝐵}, define 𝑌

(𝑎)
𝑆 = 𝑌 𝑎(𝐿(𝑆)) for all

𝑆 ∈ [𝑁] ⊂
(︀
[𝑛]
𝑠

)︀
. Note that for each 𝑎, the corresponding 𝑌 (𝑎) is approxi-

mately distributed as Ber(𝑐)⊗𝑁 . Use algorithm 𝐴 and the recursive counting
procedure of Lemma 3.5.1 in order to compute 𝑃𝑛,𝑘,𝑠(𝑌

(𝑎)) for each 𝑎.
(iii) Set 𝑃𝑛,𝑘,𝑠(𝐺

′)←
∑︀

𝑎:([𝑘]
𝑠)→{0,...,𝐵} 2|𝑎|1 · 𝑃𝑛,𝑘,𝑠(𝑌

(𝑎)).

4. Since 0 ≤ 𝑃𝑛,𝑘,𝑠(𝐺
′) ≤ 𝑛𝑘, use Chinese remaindering and the computations of 𝑃𝑛,𝑘,𝑠(𝐺

′)
(mod 𝑝𝑖) in order to calculate and output 𝑃𝑛,𝑘,𝑠(𝐺

′).

Figure 3-1: Reduction To-ER-# for showing computational lower bounds for
average-case #(𝑘, 𝑠)-clique on Erdős-Rényi 𝐺(𝑛, 𝑐, 𝑠) hypergraphs based on the
worst-case hardness of #(𝑘, 𝑠)-clique. c○2019 IEEE.

54

Chapter 4

Random Binary Expansions Modulo 𝑝

In this section, we consider the distributions of random binary expansions of the form

𝑍𝑡 · 2𝑡 + 𝑍𝑡−1 · 2𝑡−1 + · · ·+ 𝑍0 (mod 𝑝)

for some prime 𝑝 and independent, possibly biased, Bernoulli random variables 𝑍𝑖 ∈

{0, 1}. We show that for 𝑡 polylogarithmic in 𝑝, these distributions become close

to uniformly distributed over F𝑝, more or less regardless of the biases of the 𝑍𝑖.

This is then used to go in the other direction, producing approximately independent

Bernoulli variables that are the binary expansion of a number with a given residue.

The special case of this argument in which the Bernoulli variables are unbiased has

already appeared in an earlier work by Goldreich and Rothblum [45]. In that case, the

proof of correctness is much simpler, because the Fourier-analytic tools used below

can be avoided.

Our argument uses finite Fourier analysis on F𝑝. Given a function 𝑓 : F𝑝 → R,

define its Fourier transform to be 𝑓 : F𝑝 → C, where 𝑓(𝑡) =
∑︀𝑝−1

𝑥=0 𝑓(𝑥)𝜔𝑡𝑥 and

𝜔 = 𝑒2𝜋𝑖/𝑝. In this section, we endow F𝑝 with the total ordering of {0, 1, . . . , 𝑝 − 1}

as elements of Z. Given a set 𝑆, let 2𝑆 = {2𝑠 : 𝑠 ∈ 𝑆}. We begin with an simple

claim showing that sufficiently long geometric progressions with ratio 2 in F𝑝 contain

a middle residue modulo 𝑝.

Claim 4.0.1. Suppose that 𝑎1, . . . , 𝑎𝑘 ∈ F𝑝 is a sequence with 𝑎1 ̸= 0 and 𝑎𝑖+1 = 2𝑎𝑖

55

for each 1 ≤ 𝑖 ≤ 𝑘 − 1. Then if 𝑘 ≥ 1 + log2(𝑝/3), there is some 𝑗 with 𝑝
3
≤ 𝑎𝑗 ≤ 2𝑝

3
.

Proof. Let 𝑆 = {𝑥 ∈ F𝑝 : 𝑥 < 𝑝/3} and 𝑇 = {𝑥 ∈ F𝑝 : 𝑥 > 2𝑝/3}. Observe that

2𝑆 ∩ 𝑇 = ∅ and 𝑆 ∩ 2𝑇 = ∅, which implies that no two consecutive 𝑎𝑖 can be in 𝑆

and 𝑇 . Therefore if (𝑎1, 𝑎2, . . . , 𝑎𝑘) contains elements of both 𝑆 and 𝑇 , there must

be some 𝑗 with 𝑎𝑗 ∈ (𝑆 ∪ 𝑇)𝐶 and the claim follows. It thus suffices to shows that

(𝑎1, 𝑎2, . . . , 𝑎𝑘) cannot be entirely contained in one of 𝑆 or 𝑇 . First consider the case

that it is contained in 𝑆. Define the sequence (𝑎′1, 𝑎
′
2, . . . , 𝑎

′
𝑘) of integers by 𝑎′𝑖+1 = 2𝑎′𝑖

for each 1 ≤ 𝑖 ≤ 𝑘 − 1 and 𝑎′1 ∈ [1, 𝑝/3) is such that 𝑎′1 ≡ 𝑎1 (mod 𝑝). It follows

that 𝑎′𝑖 ≡ 𝑎𝑖 (mod 𝑝) for each 𝑖 and 𝑎′𝑘 ≥ 2𝑘−1 ≥ 𝑝/3. Now consider the smallest 𝑗

with 𝑎′𝑗 > 𝑝/3. Then 𝑝/3 ≥ 𝑎′𝑗−1 = 𝑎′𝑗/2 by the minimality of 𝑖, and 𝑝/3 ≤ 𝑎𝑗 ≤ 2𝑝/3

which is a contradiction. If the sequence is contained in 𝑇 , then (−𝑎1,−𝑎2, . . . ,−𝑎𝑘) is

contained in 𝑆 and applying the same argument to this sequence proves the claim.

We now prove the main lemma of this section bounding the total variation between

the distribution of random binary expansions modulo 𝑝 and the uniform distribution.

Lemma 4.0.2. Let 𝑝 > 2 be prime. Suppose that 𝑐 ≤ 𝑞0, 𝑞1, . . . , 𝑞𝑡 ≤ 1 − 𝑐 for

some 𝑐 ∈ (0, 1/2] and 𝜖 > 0. Then there is an absolute constant 𝐾 > 0 such that

if 𝑡 ≥ 𝐾 · 𝑐−1(1 − 𝑐)−1 log(𝑝/𝜖2) log 𝑝 and 𝑍𝑖 ∼ Ber(𝑞𝑖) are independent, then the

distribution of 𝑆 =
∑︀𝑡

𝑖=0 𝑍𝑖 · 2𝑖 (mod 𝑝) is within 𝜖 total variation distance of the

uniform distribution on F𝑝.

Proof. Let 𝑓 : F𝑝 → R be the probability mass function of
∑︀𝑡

𝑖=0 2𝑖𝑍𝑖 (mod 𝑝). By

definition, we have that

𝑓(𝑥) =
∑︁

𝑧∈{0,1}𝑡+1

(︃
𝑡∏︁

𝑖=0

𝑞𝑧𝑖𝑖 (1− 𝑞𝑖)
1−𝑧𝑖

)︃
1

{︃
𝑡∑︁

𝑖=0

𝑧𝑖 · 2𝑖 ≡ 𝑥 (mod 𝑝)

}︃

This definition and factoring yields that 𝑓(𝑠) is given by

𝑓(𝑠) =

𝑝−1∑︁
𝑥=0

𝑓(𝑥)𝜔𝑠𝑥 =
𝑡∏︁

𝑖=0

(︁
1− 𝑞𝑖 + 𝑞𝑖 · 𝜔2𝑖·𝑠

)︁
56

Note that the constant function 1 has Fourier transform 𝑝·1{𝑠=0}. By Cauchy-Schwarz

and Parseval’s theorem, we have that

4 · 𝑑TV (ℒ(𝑆),Unif[F𝑝])
2 = ‖𝑓 − 𝑝−1 · 1‖21 ≤ 𝑝 · ‖𝑓 − 𝑝−1 · 1‖22 = ‖𝑓 − 1{𝑠=0}‖22

=
∑︁
𝑠 ̸=0

𝑡∏︁
𝑖=0

⃒⃒⃒
1− 𝑞𝑖 + 𝑞𝑖 · 𝜔2𝑖·𝑠

⃒⃒⃒2
Note that |1− 𝑞 + 𝑞 · 𝜔𝑎| ≤ 1 by the triangle inequality for all 𝑎 ∈ F𝑝 and 𝑞 ∈ (0, 1).

Furthermore, if 𝑎 ∈ F𝑝 is such that 𝑝/3 ≤ 𝑎 ≤ 2𝑝/3 and 𝑞 ∈ [𝑐, 1 − 𝑐], then we have

that

|1− 𝑞 + 𝑞 · 𝜔𝑎|2 = (1− 𝑞)2 + 𝑞2 + 2𝑞(1− 𝑞) cos(2𝜋𝑎/𝑝)

= 1− 2𝑞(1− 𝑞) (1− cos(2𝜋𝑎/𝑝))

≤ 1− 2𝑐(1− 𝑐) (1− cos(4𝜋/3))

= 1− 3𝑐(1− 𝑐)

since cos(𝑥) is maximized at the endpoints on the interval 𝑥 ∈ [2𝜋/3, 4𝜋/3] and 𝑞(1−𝑞)

is minimized at the endpoints on the interval [𝑐, 1 − 𝑐]. Now suppose that 𝑡 is such

that

𝑡 ≥
⌈︂

log(4𝜖2/𝑝)

log(1− 3𝑐(1− 𝑐))

⌉︂
· ⌈1 + log2(𝑝/3)⌉ = Θ

(︀
𝑐−1(1− 𝑐)−1 log(𝑝/𝜖2) log 𝑝

)︀
Fix some 𝑠 ∈ F𝑝 with 𝑠 ̸= 0. By Claim 4.0.1, any ⌈1 + log2(𝑝/3)⌉ consecutive terms of

the sequence 𝑠, 2𝑠, . . . , 2𝑡𝑠 ∈ F𝑝 contain an element between 𝑝/3 and 2𝑝/3. Therefore

this sequence contains at least 𝑚 =
⌈︁

log(4𝜖2/𝑝)
log(1−3𝑐(1−𝑐))

⌉︁
such terms, which implies that

𝑡∏︁
𝑖=0

⃒⃒⃒
1− 𝑞𝑖 + 𝑞𝑖 · 𝜔2𝑖·𝑠

⃒⃒⃒2
≤ (1− 3𝑐(1− 𝑐))𝑚 ≤ 4𝜖2

𝑝

57

by the inequalities above. Since this holds for each 𝑠 ̸= 0, it now follows that

4 · 𝑑TV (ℒ(𝑆),Unif[F𝑝])
2 ≤

∑︁
𝑠 ̸=0

𝑡∏︁
𝑖=0

⃒⃒⃒
1− 𝑞𝑖 + 𝑞𝑖 · 𝜔2𝑖·𝑠

⃒⃒⃒2
< 4𝜖2

and thus 𝑑TV (ℒ(𝑆),Unif[F𝑝]) < 𝜖, proving the lemma.

We now briefly discuss the tightness of the bounds on 𝑡 in the lemma above and

how the case of 𝑐 = 1/2 differs from 𝑐 ̸= 1/2. Note that if 𝑞𝑖 = 1/2 for each 𝑖, then∑︀𝑡
𝑖=0 𝑍𝑖 · 2𝑖 is uniformly distributed on {0, 1, . . . , 2𝑡+1 − 1}. It follows that

𝑑TV (ℒ(𝑆),Unif[F𝑝]) =
∑︁
𝑥∈F𝑝

⃒⃒
𝑝−1 − P[𝑆 = 𝑥]

⃒⃒
+

=
𝑎(𝑝− 𝑎)

2𝑡+1𝑝
≤ 𝑝

2𝑡+1

if 0 ≤ 𝑎 ≤ 𝑝− 1 is such that 2𝑡+1 ≡ 𝑎 (mod 𝑝). Therefore 𝑆 is within total variation

of 1/poly(𝑝) of Unif[F𝑝] if 𝑡 = Ω(log 𝑝). However, note that for 𝑐 constant and

𝜖 = 1/poly(𝑝), our lemma requires that 𝑡 = Ω(log2 𝑝). This raises the question: is

the additional factor of log 𝑝 necessary or an artefact of our analysis? We answer this

question with an example suggesting that the extra log 𝑝 factor is in fact necessary

and that the case 𝑐 = 1/2 is special.

Suppose that 𝑝 is a Mersenne prime with 𝑝 = 2𝑟 − 1 for some prime 𝑟 and for

simplicity, take 𝑞𝑖 = 1/3 for each 𝑖. Observe by the triangle inequality that

⃒⃒⃒
𝑓(1)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒∑︁
𝑥∈F𝑝

(︀
𝑓(𝑥)− 𝑝−1

)︀
· 𝜔𝑥

⃒⃒⃒⃒
⃒⃒ ≤ ⃦⃦𝑓 − 𝑝−1 · 1

⃦⃦
1

= 2 · 𝑑TV (ℒ(𝑆),Unif[F𝑝])

Now suppose that 𝑡 = 𝑎𝑟− 1 for some positive integer 𝑎. As shown in the lemma, we

have ⃒⃒⃒
𝑓(1)

⃒⃒⃒2
=

𝑡∏︁
𝑖=0

⃒⃒⃒⃒
2

3
+

1

3
· 𝜔2𝑖

⃒⃒⃒⃒2
=

[︃
𝑟−1∏︁
𝑖=0

(︂
5

9
+

4

9
· cos

(︂
2𝜋

𝑝
· 2𝑖

)︂)︂]︃𝑎
where the second equality is due to the fact that the sequence 2𝑖 has period 𝑟 modulo

58

𝑝. Now observe that since 5
9

+ 4
9
· cos(𝑥) ≥ 𝑒−𝑥2 , we have that

𝑟−1∏︁
𝑖=0

(︂
5

9
+

4

9
· cos

(︂
2𝜋

𝑝
· 2𝑖

)︂)︂
≥ exp

(︃
−4𝜋2

𝑝2

𝑟−1∑︁
𝑖=0

22𝑖

)︃
= exp

(︂
−4𝜋2

𝑝2
· 22𝑟 − 1

3

)︂
= Ω(1)

which implies that 𝑎 should be Ω(𝑟) for 𝑓(1) to be polynomially small in 𝑝. Thus

the extra log 𝑝 factor is necessary in this case and our analysis is tight. Note that

in the special case of 𝑐 = 1/2, the factors in the expressions for 𝑓(𝑠) are of the form
1
2

+ 1
2
· 𝜔2𝑖·𝑠 which can be arbitrarily close to zero. We remark that the construction,

as stated, relies on there being infinitely many Mersenne primes. However, it seems

to suggest that the extra log 𝑝 factor is necessary. Furthermore, similar examples can

be produced with 𝑝 that are not Mersenne, as long as the order of 2 modulo 𝑝 is

relatively small.

We now deduce several simple consequences of our lemma on random binary

expansions that are used in the analysis of our reductions.

Lemma 4.0.3. Let 𝑝 > 2 be prime. Suppose that 𝑐 ≤ 𝑞1, 𝑞2, . . . , 𝑞𝑡 ≤ 1− 𝑐 for some

𝑐 ∈ (0, 1/2] and that 𝑍𝑖 ∼ Ber(𝑞𝑖) are independent. Let 𝑌 =
∑︀𝑡

𝑖=0 𝑍𝑖 · 2𝑖 and for each

𝑥 ∈ F𝑝, let 𝑌𝑥 ∼ ℒ(𝑌 |𝑌 ≡ 𝑥 (mod 𝑝)). Consider 𝑌𝑅, where 𝑅 is chosen uniformly

at random with 𝑅 ∼ Unif[F𝑝]. If 𝑆 = 𝑌 (mod 𝑝) is as in the previous lemma and

∆ = 𝑑TV (ℒ(𝑆),Unif[F𝑝]) < 𝑝−1, then it holds that

1. 𝑑TV(ℒ(𝑌),ℒ(𝑌𝑅)) ≤ ∆.

2. Given 𝑥 ∈ F𝑝, we may sample ℒ(𝑌𝑥) within 𝛿 total variation distance in 𝑂
(︁

𝑡 log(1/𝛿)
𝑝−1−Δ

)︁
time.

Proof. Note that the 𝑥→ 𝑌𝑥 defines a Markov transition sending 𝑆 → 𝑌 and 𝑅→ 𝑌𝑅.

The data-processing inequality yields 𝑑TV(ℒ(𝑌),ℒ(𝑌𝑅)) ≤ 𝑑TV(ℒ(𝑆),ℒ(𝑅)) = ∆,

implying the first item.

The second item can be achieved by rejection sampling from the distribution ℒ(𝑌)

until receiving an element congruent to 𝑥 modulo 𝑝 or reaching the cutoff of

𝑚 =

⌈︂
log 𝛿

log(1− 𝑝−1 + ∆)

⌉︂
= 𝑂

(︂
log(1/𝛿)

𝑝−1 −∆

)︂
59

rounds. Each sample from ℒ(𝑌) can be obtained in 𝑂(𝑡) by sampling 𝑍0, 𝑍1, . . . , 𝑍𝑡

and forming the number 𝑌 with binary digits 𝑍𝑡, 𝑍𝑡−1, . . . , 𝑍0. If we receive a sam-

ple by the 𝑚th round, then it is exactly sampled from the conditional distribution

ℒ(𝑌𝑥) = ℒ(𝑌 |𝑌 ≡ 𝑥 (mod 𝑝)). Therefore the total variation between the output of

this algorithm and ℒ(𝑌𝑥) is upper bounded by the probability that the rejection sam-

pling scheme fails to output a sample. Now note that the probability that a sample

is output in a single round is

P[𝑆 = 𝑥] ≥ 𝑝−1 − 𝑑TV (ℒ(𝑆),Unif[F𝑝]) = 𝑝−1 −∆

by the definition of total variation. By the independence of sampling in different

rounds, the probability that no sample is output is at most

(1− P[𝑆 = 𝑥])𝑚 ≤
(︀
1− 𝑝−1 + ∆

)︀𝑚 ≤ 𝛿

which completes the proof of the second item.

We conclude this section with a sampling result similar to Lemma 4.0.3, but for

the 𝑝 = 2 case.

Lemma 4.0.4. Let 𝑅 ∼ Unif[F2], and let 𝜖 > 0 and 𝑐 ∈ (0, 1). Then there ex-

ists 𝑡 = 𝑂(𝑐−1(1 − 𝑐)−1 log(1/𝜖)), so that in 𝑂(𝑡 log(1/𝜖)) time one may sample

𝑋1, . . . , 𝑋𝑡 supported on {0, 1}, such that 𝑅 =
∑︀𝑡

𝑖=1𝑋𝑖 (mod 2), and such that

𝑑TV(ℒ(𝑋),Ber(𝑐)⊗𝑡) < 𝜖.

Proof. Let 𝑍1, . . . , 𝑍𝑡
𝑖.𝑖.𝑑∼ Ber(𝑐). By induction on 𝑡, one may show that

P

[︃
𝑡∑︁

𝑖=1

𝑍𝑖 ≡ 0 (mod 2)

]︃
=

1

2
− (1− 2𝑐)𝑡

2

Let 𝑡 = ⌈log(𝜖/8)/ log(|1−2𝑐|)⌉+1 = 𝑂(𝑐−1(1−𝑐)−1 log(1/𝜖)), so that 𝑑TV(ℒ(
∑︀𝑡

𝑖=1 𝑍𝑖),ℒ(𝑅)) ≤

60

𝜖/8. Sample the distribution

𝑋 ∼ ℒ

(︃
𝑍
⃒⃒⃒ 𝑡∑︁

𝑖=1

𝑍𝑖 ≡ 𝑅 (mod 2)

)︃

within 𝜖/2 total variation distance by rejection sampling. This takes time 𝑂(𝑡 log(1/𝜖)),

because it consists of at most 𝑂(log(1/𝜖)) rounds of sampling fresh copies of 𝑍 ∼

Ber(𝑐)⊗𝑡 and checking if
∑︀𝑡

𝑖=1 𝑍𝑖 = 𝑅. By triangle inequality, it suffices to show that

𝑑TV(ℒ(𝑋),Ber(𝑐)⊗𝑡) ≤ 𝜖/2. This is true because for any 𝜔 ∈ {0, 1}𝑡,

P[𝑋 = 𝜔] = P

[︃
𝑍 = 𝜔|

𝑡∑︁
𝑖=1

𝑍 ≡
𝑡∑︁

𝑖=1

𝜔𝑖 (mod 2)

]︃
· P

[︃
𝑅 ≡

𝑡∑︁
𝑖=1

𝜔𝑖

]︃

=
P[𝑍 = 𝜔]

2 · P
[︀∑︀𝑡

𝑖=1 𝑍 ≡
∑︀𝑡

𝑖=1 𝜔𝑖 (mod 2)
]︀ .

Hence (1 − 𝜖/4)P[𝑍 = 𝜔] ≤ P[𝑋 = 𝜔] ≤ (1 + 𝜖/4) · P[𝑍 = 𝜔] for all 𝜔 ∈ {0, 1}, and

so 𝑑TV(ℒ(𝑋),ℒ(𝑍)) = 𝑑TV(ℒ(𝑋),Ber(𝑐)⊗𝑡) ≤ 𝜖/2, as desired.

61

62

Chapter 5

Algorithms for Counting 𝑘-Cliques in

𝐺(𝑛, 𝑐, 𝑠)

In this section, we consider several natural algorithms for counting 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠)

with 𝑐 = Θ(𝑛−𝛼) for some 𝛼 ∈ (0, 1). The main objective of this section is to show

that, when 𝑘 and 𝑠 are constant, these algorithms all run faster than all known al-

gorithms for #(𝑘, 𝑠)-clique on worst-case hypergraphs and nearly match the lower

bounds from our reduction for certain 𝑘, 𝑐 and 𝑠. This demonstrates that the average-

case complexity of #(𝑘, 𝑠)-clique on Erdős-Rényi hypergraphs is intrinsically differ-

ent from its worst-case complexity. As discussed in Section 2.2, this also shows the

necessity of a slowdown term comparable to Υ# in our worst-case to average-case re-

duction for #(𝑘, 𝑠)-clique. We begin with a randomized sampling-based algorithm

for counting 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠), extending well-known greedy heuristics for finding

𝑘-cliques in random graphs. We then present an improvement to this algorithm in

the graph case and a deterministic alternative.

5.1 Greedy Random Sampling

In this section, we consider a natural greedy algorithm greedy-random-sampling

for counting 𝑘-cliques in a 𝑠-uniform hypergraph 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠) with 𝑐 = Θ(𝑛−𝛼).

63

Given a subset of vertices 𝐴 ⊆ [𝑛] of 𝐺, define cn𝐺(𝐴) to be

cn𝐺(𝐴) = {𝑣 ∈ 𝑉 (𝐺)∖𝐴 : 𝐵 ∪ {𝑣} ∈ 𝐸(𝐺) for all (𝑠− 1)-subsets 𝐵 ⊆ 𝐴}

denote the set of common neighbors of the vertices in 𝐴. The algorithm greedy-random-sampling

maintains a set 𝑆 of 𝑘-subsets of [𝑛] and for 𝑇 iterations does the following:

1. Sample distinct starting vertices 𝑣1, 𝑣2, . . . , 𝑣𝑠−1 uniformly at random and pro-

ceed to sample the remaining vertices 𝑣𝑠, 𝑣𝑠+1, . . . , 𝑣𝑘 iteratively so that 𝑣𝑖+1 is

chosen uniformly at random from cn𝐺(𝑣1, 𝑣2, . . . , 𝑣𝑖) if it is nonempty.

2. If 𝑘 vertices {𝑣1, 𝑣2, . . . , 𝑣𝑘} are chosen then add {𝑣1, 𝑣2, . . . , 𝑣𝑘} to 𝑆 if it is not

already in 𝑆.

This algorithm is an extension of the classical greedy algorithm for finding log2 𝑛 sized

cliques in 𝐺(𝑛, 1/2) in [54, 46], the Metropolis process examined in [51] and the greedy

procedure solving 𝑘-clique on 𝐺(𝑛, 𝑐) with 𝑐 = Θ
(︀
𝑛−2/(𝑘−1)

)︀
discussed by Rossman

in [73]. These and other natural polynomial time search algorithms fail to find cliques

of size (1 + 𝜖) log2 𝑛 in 𝐺(𝑛, 1/2), even though its clique number is approximately

2 log2 𝑛 with high probability [61, 66]. Our algorithm greedy-random-sampling

extends this greedy algorithm to count 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠). In our analysis, we

will see a phase transition in the behavior of this algorithm at 𝑘 = 𝜏 for some 𝜏

smaller than the clique number of 𝐺(𝑛, 𝑐, 𝑠). This is analogous to the breakdown of

the natural greedy algorithm at cliques of size log2 𝑛 on 𝐺(𝑛, 1/2).

Before analyzing greedy-random-sampling, we state a simple classical lemma

counting the number of 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠). This lemma follows from linearity of

expectation and Markov’s inequality.

Lemma 5.1.1. For fixed 𝛼 ∈ (0, 1) and 𝑠, let 𝜅 ≥ 𝑠 be the largest positive integer

satisfying 𝛼
(︀

𝜅
𝑠−1

)︀
< 𝑠. If 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠) where 𝑐 = 𝑂(𝑛−𝛼), then E[|cl𝑘(𝐺)|] =

(︀
𝑛
𝑘

)︀
𝑐(

𝑘
𝑠)

and 𝜔(𝐺) ≤ 𝜅 + 1 + 𝑡 with probability at least 1 − 𝑂
(︁
𝑛−𝛼𝑡(1−𝑠−1)(𝜅+2

𝑠−1)
)︁

for any fixed

nonnegative integer 𝑡.

64

Proof. Let 𝐶 > 0 be such that 𝑐 ≤ 𝐶𝑛−𝛼 for sufficiently large 𝑛. For any given set

{𝑣1, 𝑣2, . . . , 𝑣𝑘} of 𝑘 vertices in [𝑛], the probability that all hyperedges are present

among {𝑣1, 𝑣2, . . . , 𝑣𝑘} and thus these vertices form a 𝑘-clique in 𝐺 is 𝑐(
𝑘
𝑠). Linearity

of expectation implies that the expected number of 𝑘-cliques is E[|cl𝑘(𝐺)|] =
(︀
𝑛
𝑘

)︀
𝑐(

𝑘
𝑠).

Now consider taking 𝑘 = 𝜅 + 2 + 𝑡 and note that

E[|cl𝑘(𝐺)|] =

(︂
𝑛

𝑘

)︂
𝑐(

𝑘
𝑠) ≤ 𝑛𝑘𝑐(

𝑘
𝑠) ≤ 𝐶(𝑘

𝑠) · exp

(︂(︂
1− 𝛼

𝑠

(︂
𝑘 − 1

𝑠− 1

)︂)︂
𝑘 log 𝑛

)︂
≤ 𝐶(𝑘

𝑠) · exp

(︂(︂
1− 𝛼

𝑠

(︂
𝜅 + 1

𝑠− 1

)︂)︂
𝑘 log 𝑛− 𝛼

𝑠
· 𝑡
(︂
𝜅 + 1

𝑠− 2

)︂
𝑘 log 𝑛

)︂
≤ 𝐶(𝑘

𝑠)𝑛−𝛼𝑡(1−𝑠−1)(𝜅+2
𝑠−1)

since 𝑘 ≥ 𝜅+ 2 and
(︀
𝜅+1+𝑡
𝑠−1

)︀
≥
(︀
𝜅+1
𝑠−1

)︀
+ 𝑡
(︀
𝜅+1
𝑠−2

)︀
by iteratively applying Pascal’s identity.

Observe that 𝜅 = 𝑂(1) and thus 𝐶(𝑘
𝑠) = 𝑂(1). Now by Markov’s inequality, it

follows that P[𝜔(𝐺) ≥ 𝑘] = P[|cl𝑘(𝐺)| ≥ 1] ≤ E[|cl𝑘(𝐺)|], completing the proof of the

lemma.

In particular, this implies that the clique number of 𝐺(𝑛, 𝑐, 𝑠) is typically at most

(𝑠!𝛼−1)
1

𝑠−1 + 𝑠− 1. In the graph case of 𝑠 = 2, this simplifies to 1 + 2𝛼−1. In the next

subsection, we give upper bounds on the number of iterations 𝑇 causing all 𝑘-cliques in

𝐺 to end up in 𝑆 and analyze the runtime of the algorithm. The subsequent subsection

improves the runtime of greedy-random-sampling for graphs when 𝑠 = 2 through

a matrix multiplication post-processing step. The last subsection gives an alternative

deterministic algorithm with a similar performance to greedy-random-sampling.

5.2 Sample Complexity and Runtime of Greedy Ran-

dom Sampling

In this section, we analyze the runtime of greedy-random-sampling and prove

upper bounds on the number of iterations 𝑇 needed for the algorithm to terminate

with 𝑆 = cl𝑘(𝐺). The dynamic set 𝑆 needs to support search and insertion of 𝑘-

cliques. Consider labelling the vertices of 𝐺 with elements of [𝑛] and storing the

65

elements of 𝑆 in a balanced binary search tree sorted according to the lexicographic

order on [𝑛]𝑘. Search and insertion can each be carried out in 𝑂(log |cl𝑘(𝐺)|) =

𝑂(𝑘 log 𝑛) time. It follows that each iteration of greedy-random-sampling there-

fore takes 𝑂(𝑛 + 𝑘 log 𝑛) = 𝑂(𝑛) time as long as 𝑘 = 𝑂(1). Outputting |𝑆| in

greedy-random-sampling therefore yields a 𝑂(𝑛𝑇) time algorithm for #(𝑘, 𝑠)-

clique on 𝐺(𝑛, 𝑐, 𝑠) that succeeds with high probability.

We now prove upper bounds on the minimum number of iterations 𝑇 needed for

this algorithm to terminate with 𝑆 = cl𝑘(𝐺) and therefore solve #(𝑘, 𝑠)-clique.

Theorem 5.2.1. Let 𝑘 and 𝑠 be constants and 𝑐 = Θ(𝑛−𝛼) for some 𝛼 ∈ (0, 1). Let

𝜏 be the largest integer satisfying 𝛼
(︀

𝜏
𝑠−1

)︀
< 1 and suppose that

𝑇 ≥

⎧⎨⎩2𝑛𝜏+1𝑐(
𝜏+1
𝑠)(log 𝑛)3(𝑘−𝜏)(1+𝜖) if 𝑘 ≥ 𝜏 + 1

2𝑛𝑘𝑐(
𝑘
𝑠)(log 𝑛)1+𝜖 if 𝑘 < 𝜏 + 1

for some 𝜖 > 0. Then greedy-random-sampling run with 𝑇 iterations terminates

with 𝑆 = cl𝑘(𝐺) with probability 1−𝑛−𝜔(1) over the random bits of greedy-random-sampling

and with probability 1− 𝑛−𝜔(1) over the choice of random hypergraph 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠).

Proof. We first consider the case where 𝑘 ≥ 𝜏 + 1. Fix some 𝜖 > 0 and let 𝑣 =

(𝑣1, 𝑣2, . . . , 𝑣𝑘) be an ordered tuple of distinct vertices in [𝑛]. Define the random

variable

𝑍𝑣 = 𝑛(𝑛− 1) · · · (𝑛− 𝑠 + 2)
𝑘−1∏︁

𝑖=𝑠−1

|cn𝐺(𝑣1, 𝑣2, . . . , 𝑣𝑖)|

Consider the following event over the sampling 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠)

𝐴𝑣 =
{︁
𝑍𝑣 ≥ 2𝑛𝜏+1𝑐(

𝜏+1
𝑠)(log 𝑛)3(𝑘−1−𝜏)(1+𝜖) and {𝑣1, 𝑣2, . . . , 𝑣𝑘} ∈ cl𝑘(𝐺)

}︁
We now proceed to bound the probability of 𝐴𝑣 through simple Chernoff and union

bounds over 𝐺. In the next part of the argument, we condition on the event that

{𝑣1, 𝑣2, . . . , 𝑣𝑘} forms a clique in 𝐺. For each 𝑖 ∈ {𝑠 − 1, 𝑠, . . . , 𝑘 − 1}, let 𝑌𝑣,𝑖 be

the number of common neighbors of 𝑣1, 𝑣2, . . . , 𝑣𝑖 in 𝑉 (𝐺)∖{𝑣1, 𝑣2, . . . , 𝑣𝑘}. Note that

𝑌𝑣,𝑖 ∼ Bin
(︁
𝑛− 𝑘, 𝑐(

𝑖
𝑠−1)
)︁

and that |cn𝐺(𝑣1, 𝑣2, . . . , 𝑣𝑖)| = 𝑘 − 𝑖 + 𝑌𝑣,𝑖. The standard

66

Chernoff bound for the binomial distribution implies that for all 𝛿𝑖 > 0,

P
[︁
|cn𝐺(𝑣1, 𝑣2, . . . , 𝑣𝑖)| ≥ 𝑘 − 𝑖 + (1 + 𝛿𝑖)(𝑛− 𝑘)𝑐(

𝑖
𝑠−1)
]︁
≤ exp

(︂
− 𝛿2𝑖

2 + 𝛿𝑖
· (𝑛− 𝑘)𝑐(

𝑖
𝑠−1)
)︂

Now define 𝜅𝑖 to be

𝜅𝑖 = (𝑛− 𝑘)−1𝑐−(𝑖
𝑠−1) · (log 𝑛)1+𝜖

for each 𝑖 ∈ {𝑠− 1, 𝑠, . . . , 𝑘− 1}. Let 𝛿𝑖 =
√
𝜅𝑖 if 𝑖 ≤ 𝜏 and 𝛿𝑖 = 𝜅𝑖 if 𝑖 > 𝜏 . Note that

for sufficiently large 𝑛, 𝛿𝑖 < 1 if 𝑖 ≤ 𝜏 and 𝛿𝑖 ≥ 1 if 𝑖 > 𝜏 . These choices of 𝛿𝑖 ensure

that the Chernoff upper bounds above are each at most exp
(︀
−1

3
(log 𝑛)1+𝜖

)︀
for each

𝑖. A union bound implies that with probability at least 1 − 𝑘 exp
(︀
−1

3
(log 𝑛)1+𝜖

)︀
, it

holds that

|cn𝐺(𝑣1, 𝑣2, . . . , 𝑣𝑖)| < 𝑘 − 𝑖 + (1 + 𝛿𝑖)(𝑛− 𝑘)𝑐(
𝑖

𝑠−1) < (1 + 2𝛿𝑖)(𝑛− 𝑘)𝑐(
𝑖

𝑠−1)

for all 𝑖 and sufficiently large 𝑛. Here, we used the fact that 𝛿𝑖(𝑛−𝑘)𝑐(
𝑖

𝑠−1) = 𝜔(1) for

all 𝑖 by construction and 𝑘 = 𝑂(1). Observe that (1 + 2𝛿𝑖)(𝑛− 𝑘)𝑐(
𝑖

𝑠−1) ≤ 3(log 𝑛)1+𝜖

for all 𝑖 ≥ 𝜏 + 1. These inequalities imply that

log𝑍𝑣 < log 𝑛𝑠−1 +
𝜏∑︁

𝑖=𝑠−1

log
(︁

(1 + 2𝛿𝑖)(𝑛− 𝑘)𝑐(
𝑖

𝑠−1)
)︁

+ 3(𝑘 − 1− 𝜏)(1 + 𝜖) log log 𝑛

< log 𝑛𝜏+1 + (log 𝑐)
𝜏∑︁

𝑖=𝑠−1

(︂
𝑖

𝑠− 1

)︂
+

𝜏∑︁
𝑖=𝑠−1

log(1 + 2𝛿𝑖) + 3(𝑘 − 1− 𝜏)(1 + 𝜖) log log 𝑛

≤ log
(︁
𝑛𝜏+1𝑐(

𝜏+1
𝑠)
)︁

+ 3(𝑘 − 1− 𝜏)(1 + 𝜖) log log 𝑛 + 2
𝜏∑︁

𝑖=𝑠−1

𝛿𝑖

≤ log
(︁
𝑛𝜏+1𝑐(

𝜏+1
𝑠)
)︁

+ 3(𝑘 − 1− 𝜏)(1 + 𝜖) log log 𝑛 + 𝑜(1)

The last inequality holds since 𝜏 = 𝑂(1) and since 𝛿𝑖 . (log 𝑛)
1
2
+ 𝜖

2𝑛− 1
2
+ 1

2
𝛼(𝜏

𝑠−1) = 𝑜(1)

for all 𝑖 ≤ 𝜏 because of the definition that 𝛼
(︀

𝜏
𝑠−1

)︀
< 1. In summary, we have shown

that for sufficiently large 𝑛

P
[︁
𝑍𝑣 ≥ 2𝑛𝜏+1𝑐(

𝜏+1
𝑠)(log 𝑛)3(𝑘−1−𝜏)(1+𝜖)

⃒⃒⃒
{𝑣1, 𝑣2, . . . , 𝑣𝑘} ∈ cl𝑘(𝐺)

]︁
≤ 𝑘 exp

(︂
−1

3
(log 𝑛)1+𝜖

)︂
= 𝑛−𝜔(1)

67

for any 𝑘-tuple of vertices 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑘). Now since P [{𝑣1, 𝑣2, . . . , 𝑣𝑘} ∈ cl𝑘(𝐺)] =

𝑐(
𝑘
𝑠), we have that P[𝐴𝑣] ≤ 𝑐(

𝑘
𝑠)𝑛−𝜔(1) = 𝑛−𝜔(1) for each 𝑘-tuple 𝑣. Now consider the

event

𝐵 =
{︁
𝑍𝑣 < 2𝑛𝜏+1𝑐(

𝜏+1
𝑠)(log 𝑛)3(𝑘−1−𝜏)(1+𝜖) for all 𝑣 such that {𝑣1, 𝑣2, . . . , 𝑣𝑘} ∈ cl𝑘(𝐺)

}︁
Note that 𝐵 =

⋃︀
𝑘-tuples 𝑣 𝐴𝑣 and thus a union bound implies that P[𝐵] ≥ 1 −∑︀

𝑣 P[𝐴𝑣] ≥ 1− 𝑛𝑘 · 𝑛−𝜔(1) = 1− 𝑛−𝜔(1) since there are fewer than 𝑛𝑘 𝑘-tuples 𝑣.

We now show that as long as 𝐵 holds over the random choice of 𝐺, then the

algorithm greedy-random-sampling terminates with 𝑆 = cl𝑘(𝐺) with probabil-

ity 1 − 𝑛−𝜔(1) over the random bits of greedy-random-sampling, which com-

pletes the proof of the lemma in the case 𝑘 > 𝜏 + 1. In the next part of the

argument, we consider 𝐺 conditioned on the event 𝐵. Fix some ordering 𝑣 =

(𝑣1, 𝑣2, . . . , 𝑣𝑘) of some 𝑘-clique 𝒞 = {𝑣1, 𝑣2, . . . , 𝑣𝑘} in 𝐺. Note that in any one

of the 𝑇 iterations of greedy-random-sampling, the probability that the 𝑘 ver-

tices 𝑣1, 𝑣2, . . . , 𝑣𝑘 are chosen in that order is exactly 1/𝑍𝑣. Since the 𝑇 iterations of

greedy-random-sampling are independent, we have that

P [𝑣 is never chosen in a round] =

(︂
1− 1

𝑍𝑣

)︂𝑇

≤ exp

(︂
− 𝑇

𝑍𝑣

)︂
= 𝑛−𝜔(1)

since 𝑇 is chosen so that 𝑇 ≥ 𝑍𝑣(log 𝑛)3(1+𝜖) for all 𝑘-tuples 𝑣, given the event 𝐵. Since

there are at most 𝑛𝑘 possible 𝑣, a union bound implies that every such 𝑣 is chosen in

a round of greedy-random-sampling with probability at least 1 − 𝑛𝑘 · 𝑛−𝜔(1) =

1 − 𝑛−𝜔(1) over the random bits of the algorithm. In this case, 𝑆 = cl𝑘(𝐺) after the

𝑇 rounds of greedy-random-sampling. This completes the proof of the theorem

in the case 𝑘 ≥ 𝜏 + 1.

We now handle the case 𝑘 < 𝜏 + 1 through a nearly identical argument. Define 𝜅𝑖

as in the previous case and set 𝛿𝑖 =
√
𝜅𝑖 for all 𝑖 ∈ {𝑠− 1, 𝑠, . . . , 𝑘− 1}. By the same

argument, for each 𝑘-tuple 𝑣 we have with probability 1 − 𝑛−𝜔(1) over the choice of

68

𝐺 that

log𝑍𝑣 < log 𝑛𝑠−1 +
𝑘−1∑︁

𝑖=𝑠−1

log
(︁

(1 + 2𝛿𝑖)(𝑛− 𝑘)𝑐(
𝑖

𝑠−1)
)︁

< log 𝑛𝑘 + (log 𝑐)
𝑘−1∑︁

𝑖=𝑠−1

(︂
𝑖

𝑠− 1

)︂
+ 2

𝑘−1∑︁
𝑖=𝑠−1

𝛿𝑖

= log
(︁
𝑛𝑘𝑐(

𝑘
𝑠)
)︁

+ 𝑜(1)

where again 𝛿𝑖 . (log 𝑛)
1
2
+ 𝜖

2𝑛− 1
2
+ 1

2
𝛼(𝜏

𝑠−1) = 𝑜(1) for all 𝑖 ≤ 𝑘−1 < 𝜏 . Define the event

𝐵′ =
{︁
𝑍𝑣 < 2𝑛𝑘𝑐(

𝑘
𝑠)(log 𝑛)1+𝜖 for all 𝑣 such that {𝑣1, 𝑣2, . . . , 𝑣𝑘} ∈ cl𝑘(𝐺)

}︁
Note that 𝑇 is such that 𝑇 ≥ 𝑍𝑣(log 𝑛)1+𝜖 for all 𝑣 if 𝐵′ holds. Now repeating the

rest of the argument from the 𝑘 ≥ 𝜏 + 1 case shows that P[𝐵′] ≥ 1− 𝑛−𝜔(1) and that

greedy-random-sampling terminates with 𝑆 = cl𝑘(𝐺) with probability 1−𝑛−𝜔(1)

over its random bits if 𝐺 is such that 𝐵′ holds. This completes the proof of the

theorem.

Implementing 𝑆 as a balanced binary search tree and outputting |𝑆| in greedy-

random-sampling therefore yields the following algorithmic upper bounds for #(𝑘, 𝑠)-

clique with inputs sampled from 𝐺(𝑛, 𝑐, 𝑠).

Corollary 5.2.2. Suppose that 𝑘 and 𝑠 are constants and 𝑐 = Θ(𝑛−𝛼) for some

𝛼 ∈ (0, 1). Let 𝜏 be the largest integer satisfying 𝛼
(︀

𝜏
𝑠−1

)︀
< 1. Then it follows that

1. If 𝑘 ≥ 𝜏 + 1, there is an �̃�
(︁
𝑛𝜏+2−𝛼(𝜏+1

𝑠)
)︁

time randomized algorithm solving

#(𝑘, 𝑠)-clique on inputs sampled from 𝐺(𝑛, 𝑐, 𝑠) with probability at least 1 −

𝑛−𝜔(1).

2. If 𝑘 < 𝜏 + 1, there is an �̃�
(︁
𝑛𝑘+1−𝛼(𝑘

𝑠)
)︁

time randomized algorithm solving

#(𝑘, 𝑠)-clique on inputs sampled from 𝐺(𝑛, 𝑐, 𝑠) with probability at least 1 −

𝑛−𝜔(1).

By Lemma 5.1.1, the hypergraph 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠) has clique number 𝜔(𝐺) ≤ 𝜅 + 2

with probability 1− 1/poly(𝑛) if where 𝜅 ≥ 𝑠 is the largest positive integer satisfying

69

𝛼
(︀

𝜅
𝑠−1

)︀
< 𝑠. In particular, when 𝑘 > 𝜅 + 2 in the theorem above, the algorithm

outputting zero succeeds with probability 1−1/poly(𝑛) and #(𝑘, 𝑠)-clique is trivial.

For there to typically be a nonzero number of 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠), it should hold

that 0 < 𝛼 ≤ 𝑠
(︀
𝑘−1
𝑠−1

)︀−1
. In the graph case of 𝑠 = 2, this simplifies to the familiar

condition that 0 < 𝛼 ≤ 2
𝑘−1

. We also remark that when 𝑘 < 𝜏 + 1, the runtime

of this algorithm is an �̃�(𝑛) factor off from the expected number of 𝑘-cliques in

𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠).

5.3 Post-Processing with Matrix Multiplication

In this section, we improve the runtime of greedy-random-sampling as an algo-

rithm for #(𝑘, 𝑠)-clique in the graph case of 𝑠 = 2. The improvement comes from the

matrix multiplication step of Nes̆etr̆il and Poljak from their 𝑂
(︀
𝑛𝜔⌊𝑘/3⌋+(𝑘 (mod 3))

)︀
time

worst-case algorithm for #(𝑘, 2)-clique [64]. Our improved runtime for greedy-random-sampling

is stated in the following theorem.

Theorem 5.3.1. Suppose that 𝑘 > 2 is a fixed positive integer and 𝑐 = Θ(𝑛−𝛼)

where 0 < 𝛼 ≤ 2
𝑘−1

is also fixed. Then there is a randomized algorithm solving

#(𝑘, 2)-clique on inputs sampled from 𝐺(𝑛, 𝑐) with probability 1− 𝑛−𝜔(1) that runs

in �̃�
(︁
𝑛𝜔⌈𝑘/3⌉+𝜔−𝜔𝛼(⌈𝑘/3⌉

2)
)︁

time.

Proof. Label the vertices of an input graph 𝐺 ∼ 𝐺(𝑛, 𝑐) with the elements of [𝑛]. Con-

sider the following application of greedy-random-sampling with post-processing:

1. Run greedy-random-sampling to compute the two sets of cliques 𝑆1 =

cl⌊𝑘/3⌋(𝐺) and 𝑆2 = cl⌈𝑘/3⌉(𝐺) with the number of iterations 𝑇 as given in

Theorem 5.2.1.

2. Construct the matrix 𝑀1 ∈ {0, 1}|𝑆1|×|𝑆1| with rows and columns indexed by the

elements of 𝑆1 such that (𝑀1)𝐴,𝐵 = 1 for 𝐴,𝐵 ∈ 𝑆1 if 𝐴 ∪ 𝐵 forms a clique of

𝐺 and all labels in 𝐴 are strictly less than all labels in 𝐵.

3. Construct the matrix 𝑀2 ∈ {0, 1}|𝑆1|×|𝑆2| with rows indexed by the elements of

𝑆1 and columns indexed by the elements of 𝑆2 such that (𝑀2)𝐴,𝐵 = 1 for 𝐴 ∈ 𝑆1

70

and 𝐵 ∈ 𝑆2 under the same rule that 𝐴 ∪ 𝐵 forms a clique of 𝐺 and all labels

in 𝐴 are strictly less than all labels in 𝐵. Construct the matrix 𝑀3 with rows

and columns indexed by 𝑆2 analogously.

4. Compute the matrix product

𝑀𝑃 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀2

1 if 𝑘 ≡ 0 (mod 3)

𝑀1𝑀2 if 𝑘 ≡ 1 (mod 3)

𝑀2𝑀3 if 𝑘 ≡ 2 (mod 3)

5. Output the sum of entries ∑︁
(𝐴,𝐵)∈𝒮

(𝑀𝑃)𝐴,𝐵

where 𝒮 is the support of 𝑀1 if 𝑘 ≡ 0 (mod 3) and 𝒮 is the support of 𝑀2 if

𝑘 ̸≡ 0 (mod 3).

We will show that this algorithm solves #(𝑘, 2)-clique with probability 1 − 𝑛−𝜔(1)

when 𝑘 ≡ 1 (mod 3). The cases when 𝑘 ≡ 0, 2 (mod 3) follow from a nearly identical

argument. By Theorem 5.2.1, the first step applying greedy-random-sampling

succeeds with probability 1−𝑛−𝜔(1). Note that (𝑀𝑃)𝐴,𝐵 counts the number of ⌊𝑘/3⌋-

cliques 𝐶 in 𝐺 such that the labels of 𝐶 are strictly greater than those of 𝐴 and less

than those of 𝐵 and such that 𝐴 ∪ 𝐶 and 𝐶 ∪𝐵 are both cliques. If it further holds

that (𝑀2)𝐴,𝐵 = 1, then 𝐴 ∪ 𝐵 is a clique and 𝐴 ∪ 𝐵 ∪ 𝐶 is also clique. Therefore

the sum output by the algorithm exactly counts the number of triples (𝐴,𝐵,𝐶) such

that 𝐴 ∪ 𝐵 ∪ 𝐶 is a clique, |𝐴| = |𝐶| = ⌊𝑘/3⌋, |𝐵| = ⌈𝑘/3⌉ and the labels of 𝐶 are

greater than those of 𝐴 and less than those of 𝐵. Observe that any clique 𝒞 ∈ cl𝑘(𝐺)

is counted in this sum exactly once by the triple (𝐴,𝐵,𝐶) where 𝐴 consists of the

lowest ⌊𝑘/3⌋ labels in 𝒞, 𝐵 consists of the highest ⌈𝑘/3⌉ labels in 𝒞 and 𝐶 contains

the remaining vertices of 𝒞. Therefore this algorithm solves #(𝑘, 2)-clique as long

as Step 1 succeeds.

It suffices to analyze the additional runtime incurred by this post-processing. Ob-

serve that the number of cliques output by a call to greedy-random-sampling with

71

𝑇 iterations is at most 𝑇 . Also note that if 𝛼 ≤ 2
𝑘−1

, then 𝜏 ≥ ⌊𝑘
2
⌋ − 1. If

𝑘 ≥ 3, then it follows that 𝜏 + 1 ≥ ⌊𝑘
2
⌋ ≥ ⌈𝑘

3
⌉. It follows by Theorem 5.2.1 that

max{|𝑆1|, |𝑆2|} = �̃�
(︁
𝑛⌈𝑘/3⌉+1−𝛼(⌈𝑘/3⌉

𝑠)
)︁
. Note that computing the matrix 𝑀𝑃 takes

�̃� (max{|𝑆1|, |𝑆2|}𝜔) = �̃�
(︁
𝑛𝜔⌈𝑘/3⌉+𝜔−𝜔𝛼(⌈𝑘/3⌉

2)
)︁

time. Now observe that all other steps

of the algorithm run in �̃�
(︁
𝑛2⌈𝑘/3⌉−2𝛼(⌈𝑘/3⌉

𝑠)
)︁

time, which completes the proof of the

theorem since the matrix multiplication constant satisfies 𝜔 ≥ 2.

We remark that for simplicity, we have ignored minor improvements in the runtime

that can be achieved by more carefully analyzing Step 4 in terms of rectangular matrix

multiplication constants if 𝑘 ̸= 0 (mod 3). Note that the proof above implicitly

used a weak large deviations bound on |cl𝑘(𝐺)|. More precisely, it used the fact

that if greedy-random-sampling with 𝑇 iterations succeeds, then |cl𝑘(𝐺)| ≤ 𝑇 .

Theorem 5.2.1 thus implies that |cl𝑘(𝐺)| is upper bounded by the minimal settings

of 𝑇 in the theorem statement with probability 1− 𝑛−𝜔(1) over 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠).

When 𝑘 ≤ 𝜏 + 1, these upper bounds are a polylog(𝑛) factor from the expectation

of |cl𝑘(𝐺)|. The upper tails of |cl𝑘(𝐺)| and more generally of the counts of small

subhypergraphs in 𝐺(𝑛, 𝑐, 𝑠) have been studied extensively in the literature. We refer

to [76, 50, 49, 26] for a survey of the area and recent results. Given a hypergraph

𝐻, let 𝑁(𝑛,𝑚,𝐻) denote the largest number of copies of 𝐻 that can be constructed

in an 𝑠-uniform hypergraph with at most 𝑛 vertices and 𝑚 hyperedges. Define the

quantity

𝑀𝐻(𝑛, 𝑐) = max

{︂
𝑚 ≤

(︂
𝑛

𝑠

)︂
: ∀𝐻 ′ ⊆ 𝐻 it holds that 𝑁(𝑛,𝑚,𝐻 ′) ≤ 𝑛|𝑉 (𝐻′)|𝑐|𝐸(𝐻′)|

}︂

The following large deviations result from [31] generalizes a graph large deviations

bound from [49] to hypergraphs to obtain the following result.

Theorem 5.3.2 (Theorem 4.1 from [31]). For every 𝑠-uniform hypergraph 𝐻 and

every fixed 𝜖 > 0, there is a constant 𝐶(𝜖,𝐻) such that for all 𝑛 ≥ |𝑉 (𝐻)| and

𝑐 ∈ (0, 1), it holds that

P [𝑋𝐻 ≥ (1 + 𝜖)E[𝑋𝐻]] ≤ exp (−𝐶(𝜖,𝐻) ·𝑀𝐻(𝑛, 𝑐))

72

where 𝑋𝐻 is the number of copies of 𝐻 in 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠).

Proposition 4.3 in [31] shows that if 𝐻 is a 𝑑-regular 𝑠-uniform hypergraph and

𝑐 ≥ 𝑛−𝑠/𝑑 then 𝑀𝐻(𝑛, 𝑐) = Θ(𝑛𝑠𝑐𝑑). This implies that

P
[︂
|cl𝑘(𝐺)| ≥ (1 + 𝜖)

(︂
𝑛

𝑘

)︂
𝑐(

𝑘
𝑠)
]︂
≤ exp

(︁
−𝐶 ′(𝜖) · 𝑛𝑠𝑐(

𝑘−1
𝑠−1)
)︁

as long as 𝑐 ≥ 𝑛−𝑠!(𝑘−𝑠)!/(𝑘−1)!. This provides strong bounds on the upper tails of

|cl𝑘(𝐺)| that will be useful in the next subsection.

5.4 Deterministic Iterative Algorithm for Counting

in 𝐺(𝑛, 𝑐, 𝑠)

In this section, we present an alternative deterministic algorithm it-gen-cliques

achieving a similar runtime to greedy-random-sampling. Although they have

very different analyses, the algorithm it-gen-cliques can be viewed as a determin-

istic analogue of greedy-random-sampling. Both are constructing cliques one

vertex at a time. The algorithm it-gen-cliques takes in cutoffs 𝐶𝑠−1, 𝐶𝑠, . . . , 𝐶𝑘

and generates sets 𝑆𝑠−1, 𝑆𝑠, . . . , 𝑆𝑘 as follows:

1. Initialize 𝑆𝑠−1 to be the set of all (𝑠− 1)-subsets of [𝑛].

2. Given the set 𝑆𝑖, for each vertex 𝑣 ∈ [𝑛], iterate through all subsets 𝐴 ∈ 𝑆𝑖 and

add 𝐴 ∪ {𝑣} to 𝑆𝑖+1 if 𝐴 ∪ {𝑣} is a clique and 𝑣 is larger than the labels of all

of the vertices in 𝐴. Stop if ever |𝑆𝑖+1| ≥ 𝐶𝑖+1.

3. Stop once 𝑆𝑘 has been generated and output 𝑆𝑘.

Suppose that 𝐶𝑡 are chosen to be any high probability upper bounds on the number

of 𝑡-cliques in 𝐺 ∼ 𝐺(𝑛, 𝑐, 𝑠) such as the bounds in Theorem 5.3.2. Then we have the

following guarantees for the algorithm it-gen-cliques.

Theorem 5.4.1. Suppose that 𝑘 and 𝑠 are constants and 𝑐 = Θ(𝑛−𝛼) for some

𝛼 ∈ (0, 1). Let 𝜏 be the largest integer satisfying 𝛼
(︀

𝜏
𝑠−1

)︀
< 1 and 𝐶𝑡 = 2𝑛𝑡𝑐(

𝑡
𝑠) for

73

each 𝑠 ≤ 𝑡 ≤ 𝑘. Then it-gen-cliques with the cutoffs 𝐶𝑡 outputs 𝑆𝑘 = cl𝑘(𝐺) with

probability 1− 𝑛−𝜔(1) where

1. The runtime of it-gen-cliques is 𝑂
(︁
𝑛𝜏+2−𝛼(𝜏+1

𝑠)
)︁

if 𝑘 ≥ 𝜏 + 2.

2. The runtime of it-gen-cliques is 𝑂
(︁
𝑛𝑘−𝛼(𝑘−1

𝑠)
)︁

if 𝑘 < 𝜏 + 2.

Proof. We first show that 𝑆𝑘 = cl𝑘(𝐺) with probability 1−𝑛−𝜔(1) in it-gen-cliques.

By a union bound and Theorem 5.3.2, it follows that |cl𝑡(𝐺)| < 𝐶𝑡 for each 𝑠 ≤ 𝑡 ≤ 𝑘

with probability at least 1−(𝑘−𝑠+1)𝑛−𝜔(1). The following simple induction argument

shows that 𝑆𝑡 = cl𝑡(𝐺) for each 𝑠 − 1 ≤ 𝑡 ≤ 𝑘 conditioned on this event. Note that

cl𝑠−1(𝐺) is by definition the set of all (𝑠− 1)-subsets of [𝑛] and thus 𝑆𝑠−1 = cl𝑠−1(𝐺).

If 𝑆𝑡 = cl𝑡(𝐺), then each (𝑡+1)-clique 𝒞 of 𝐺 is added exactly once to 𝑆𝑡+1 as 𝐴∪{𝑣}

where 𝑣 is the vertex of 𝒞 with the largest label and 𝐴 = 𝒞∖{𝑣} ∈ cl𝑡(𝐺) are the

remaining vertices. Now note that the runtime of it-gen-cliques is

𝑂

(︃
𝑘−1∑︁

𝑡=𝑠−1

𝑛𝐶𝑡

)︃
= 𝑂

(︂
max

𝑠−1≤𝑡≤𝑘−1
(𝑛𝐶𝑡)

)︂
=

⎧⎨⎩𝑂
(︁
𝑛𝜏+2−𝛼(𝜏+1

𝑠)
)︁

if 𝑘 ≥ 𝜏 + 2

𝑂
(︁
𝑛𝑘−𝛼(𝑘−1

𝑠)
)︁

if 𝑘 < 𝜏 + 2

since 𝑘 = 𝑂(1). To see the second inequality, note that log𝑛(𝐶𝑡+1/𝐶𝑡) = 1− 𝛼
(︀

𝑡
𝑠−1

)︀
.

This implies that 𝐶𝑡+1 > 𝐶𝑡 if 𝑡 ≤ 𝜏 and 𝐶𝑡 is maximized on 𝑠 ≤ 𝑡 ≤ 𝑘 when 𝑡 = 𝜏 +1.

This completes the proof of the theorem.

We remark that in the case of 𝑘 < 𝜏 +1, it-gen-cliques attains a small runtime

improvement over greedy-random-sampling. However, greedy-random-sampling

can be modified to match this runtime up to a polylog(𝑛) factor by instead generating

the (𝑘 − 1)-cliques of 𝐺 and applying the last step of it-gen-cliques to generate

the 𝑘-cliques of 𝐺. We also remark that it-gen-cliques can also be used instead

of greedy-random-sampling in Step 1 of the algorithm in Theorem 5.3.1, yield-

ing a nearly identical runtime of �̃�
(︁
𝑛𝜔⌈𝑘/3⌉−𝜔𝛼(⌈𝑘/3⌉−1

2)
)︁

for #(𝑘, 2)-clique on inputs

sampled from 𝐺(𝑛, 𝑐).

74

Chapter 6

Extensions and Open Problems

In this chapter, we outline several extensions of our methods and problems left open

after our work.

Improved Average-Case Lower Bounds. A natural question is whether tight

average-case lower bounds for #(𝑘, 𝑠)-clique can be shown above the 𝑘-clique per-

colation threshold when 𝑠 ≥ 3 and if the constant 𝐶 in the exponent of our lower

bounds for the graph case of 𝑠 = 2 can be improved from 1 to 𝜔/9.

Raising Error Tolerance for Average-Case Hardness. A natural question is

whether the error tolerance of the worst-case to average-case reductions in Theorems

2.2.1 and 2.2.2 can be increased. We remarked in the introduction that for certain

choices of 𝑘, the error tolerance cannot be significantly increased – for example, when

𝑘 = 3 log2 𝑛, the trivial algorithm that outputs 0 on any graph has subpolynomial

error on graphs drawn from 𝐺(𝑛, 1/2), but is useless for reductions from worst-case

graphs. Nevertheless, for other regimes of 𝑘, such as when 𝑘 = 𝑂(1) is constant,

counting 𝑘-cliques with error probability less than 1/4 on graphs drawn from 𝐺(𝑛, 1/2)

appears to be nontrivial. It is an open problem to prove hardness for such a regime.

In general, one could hope to understand the tight tradeoffs between computation

time, error tolerance, 𝑘, 𝑐, and 𝑠 for 𝑘-clique-counting on 𝐺(𝑛, 𝑐, 𝑠).

75

Hardness of Approximating Clique Counts. Another interesting question is

whether it is hard to approximate the 𝑘-clique counts, within some additive error

𝑒, of hypergraphs drawn from 𝐺(𝑛, 𝑐, 𝑠). Since the number of 𝑘-cliques in 𝐺(𝑛, 𝑐, 𝑠)

concentrates around the mean 𝜇 ≈ 𝑐(
𝑘
𝑠)𝑛𝑘 with standard deviation 𝜎, one would have

to choose 𝑒≪ 𝜎 for approximation to be hard.

Inhomogeneous Erdős-Rényi Hypergraphs. Consider an inhomogeneous Erdős-

Rényi hypergraph model, where each hyperedge 𝑒 is independently chosen to be in the

hypergraph with probability 𝑐(𝑒). Also suppose that we may bound 𝑐(𝑒) uniformly

away from 0 and 1 (that is, 𝑐(𝑒) ∈ [𝑐, 1− 𝑐] for all possible hyperedges 𝑒 and for some

constant 𝑐). We would like to prove that #(𝑘, 𝑠)-clique and Parity-(𝑘, 𝑠)-clique

are hard on average for inhomogeneous Erdős-Rényi hypergraphs. Unfortunately,

this does not follow directly from our proof techniques because step 5 in the proof

of Theorems 2.2.1 and 2.2.2 breaks down due to the inhomogeneity of the model.

Nevertheless, steps 1-4 still hold, and therefore we can show that #(𝑘, 𝑠)-clique

and Parity-(𝑘, 𝑠)-clique are average-case hard for 𝑘-partite inhomogeneous Erdős-

Rényi hypergraphs – when only the edges 𝑒 that respect the 𝑘-partition are chosen to

be in the hypergraph with inhomogeneous edge-dependent probability 𝑐(𝑒) ∈ [𝑐, 1−𝑐].

76

Bibliography

[1] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 99–108.
ACM, 1996.

[2] Noga Alon and Ravi B Boppana. The monotone circuit complexity of boolean
functions. Combinatorica, 7(1):1–22, 1987.

[3] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden
clique in a random graph. Random Structures and Algorithms, 13(3-4):457–466,
1998.

[4] Kazuyuki Amano and Akira Maruoka. A superpolynomial lower bound for a
circuit computing the clique function with at most (1/6) log log n negation
gates. SIAM Journal on Computing, 35(1):201–216, 2005.

[5] Brendan PW Ames and Stephen A Vavasis. Nuclear norm minimization for the
planted clique and biclique problems. Mathematical programming, 129(1):69–89,
2011.

[6] Albert Atserias, Ilario Bonacina, Susanna F de Rezende, Massimo Lauria, Jakob
Nordström, and Alexander Razborov. Clique is hard on average for regular
resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 866–877. ACM, 2018.

[7] Eric Bach, James Driscoll, and Jeffrey Shallit. Factor refinement. Journal of
Algorithms, 15(2):199–222, 1993.

[8] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Average-case fine-grained hardness. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 483–496. ACM, 2017.

[9] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Proofs of work from worst-case assumptions. In Annual International Cryptology
Conference, pages 789–819. Springer, 2018.

[10] Boaz Barak, Samuel B Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur
Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for
the planted clique problem. In Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, pages 428–437. IEEE, 2016.

77

[11] Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for
sparse principal component detection. In COLT, pages 1046–1066, 2013.

[12] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and
Trends R○ in Theoretical Computer Science, 2(1):1–106, 2006.

[13] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions
for np problems. SIAM Journal on Computing, 36(4):1119–1159, 2006.

[14] Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case com-
plexity of counting cliques in erdős-rényi hypergraphs. In 2019 IEEE 60th An-
nual Symposium on Foundations of Computer Science (FOCS), pages 1256–1280.
IEEE, 2019.

[15] Béla Bollobás and Oliver Riordan. Clique percolation. Random Structures &
Algorithms, 35(3):294–322, 2009.

[16] Matthew Brennan and Guy Bresler. Optimal average-case reductions to
sparse pca: From weak assumptions to strong hardness. arXiv preprint
arXiv:1902.07380, 2019.

[17] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and compu-
tational lower bounds for problems with planted sparse structure. In Conference
On Learning Theory, pages 48–166, 2018.

[18] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Universality of computa-
tional lower bounds for submatrix detection. arXiv preprint arXiv:1902.06916,
2019.

[19] Jin-Yi Cai, Aduri Pavan, and D Sivakumar. On the hardness of permanent. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 90–99.
Springer, 1999.

[20] Jianer Chen, Xiuzhen Huang, Iyad A Kanj, and Ge Xia. Strong computational
lower bounds via parameterized complexity. Journal of Computer and System
Sciences, 72(8):1346–1367, 2006.

[21] Yudong Chen. Incoherence-optimal matrix completion. IEEE Transactions on
Information Theory, 61(5):2909–2923, 2015.

[22] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted
problems and submatrix localization with a growing number of clusters and sub-
matrices. Journal of Machine Learning Research, 17(27):1–57, 2016.

[23] Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random
graphs. Random Structures & Algorithms, 47(3):436–486, 2015.

[24] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New
techniques for proving fine-grained average-case hardness. arXiv preprint
arXiv:2008.06591, 2020.

78

[25] Yael Dekel, Ori Gurel-Gurevich, and Yuval Peres. Finding hidden cliques in
linear time with high probability. Combinatorics, Probability and Computing,
23(1):29–49, 2014.

[26] Robert DeMarco and Jeff Kahn. Tight upper tail bounds for cliques. Random
Structures & Algorithms, 41(4):469–487, 2012.

[27] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique percolation in random
networks. Physical review letters, 94(16):160202, 2005.

[28] Yash Deshpande and Andrea Montanari. Finding hidden cliques of size
√︀
𝑁/𝑒 in

nearly linear time. Foundations of Computational Mathematics, 15(4):1069–1128,
2015.

[29] Sergey N Dorogovtsev, Alexander V Goltsev, and José FF Mendes. Critical
phenomena in complex networks. Reviews of Modern Physics, 80(4):1275, 2008.

[30] Rod G Downey and Michael R Fellows. Fixed-parameter tractability and com-
pleteness ii: On completeness for w [1]. Theoretical Computer Science, 141(1-
2):109–131, 1995.

[31] Andrzej Dudek, Joanna Polcyn, and Andrzej Ruciński. Subhypergraph counts in
extremal and random hypergraphs and the fractional q-independence. Journal
of combinatorial optimization, 19(2):184–199, 2010.

[32] Uriel Feige, David Gamarnik, Joe Neeman, Miklós Z Rácz, and Prasad Tetali.
Finding cliques using few probes. arXiv preprint arXiv:1809.06950, 2018.

[33] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden
clique in a semirandom graph. Random Structures and Algorithms, 16(2):195–
208, 2000.

[34] Uriel Feige and Carsten Lund. On the hardness of computing the permanent of
random matrices. In Proceedings of the twenty-fourth annual ACM symposium
on Theory of computing, pages 643–654. ACM, 1992.

[35] Uriel Feige and Dorit Ron. Finding hidden cliques in linear time. In 21st In-
ternational Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in
the Analysis of Algorithms (AofA’10), pages 189–204. Discrete Mathematics and
Theoretical Computer Science, 2010.

[36] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets.
SIAM Journal on Computing, 22(5):994–1005, 1993.

[37] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao.
Statistical algorithms and a lower bound for detecting planted cliques. In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
655–664. ACM, 2013.

79

[38] David Gamarnik. Computing the partition function of the sherrington-
kirkpatrick model is hard on average. arXiv preprint arXiv:1810.05907, 2018.

[39] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse ran-
dom graphs. In Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 369–376. ACM, 2014.

[40] Shuhong Gao. Normal bases over finite fields. Doctoral thesis, Waterloo, 1993.

[41] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi
Wigderson. Self-testing/correcting for polynomials and for approximate func-
tions. In Proceedings of the twenty-third annual ACM symposium on Theory of
computing, pages 33–42. ACM, 1991.

[42] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials.
Inf. Process. Lett., 43(4):169–174, 1992.

[43] Oded Goldreich. On counting t-cliques mod 2. 2020.

[44] Oded Goldreich and Guy Rothblum. Counting t-cliques: Worst-case to average-
case reductions and direct interactive proof systems. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 77–88. IEEE,
2018.

[45] Oded Goldreich and Guy N Rothblum. Worst-case to average-case reductions
for subclasses of p. 2017.

[46] Geoffrey R Grimmett and Colin JH McDiarmid. On colouring random graphs.
In Mathematical Proceedings of the Cambridge Philosophical Society, volume 77,
pages 313–324. Cambridge University Press, 1975.

[47] Bruce E Hajek, Yihong Wu, and Jiaming Xu. Computational lower bounds for
community detection on random graphs. In COLT, pages 899–928, 2015.

[48] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978.

[49] Svante Janson, Krzysztof Oleszkiewicz, and Andrzej Ruciński. Upper tails for
subgraph counts in random graphs. Israel Journal of Mathematics, 142(1):61–92,
2004.

[50] Svante Janson and Andrzej Ruciński. The infamous upper tail. Random Struc-
tures & Algorithms, 20(3):317–342, 2002.

[51] Mark Jerrum. Large cliques elude the metropolis process. Random Structures &
Algorithms, 3(4):347–359, 1992.

[52] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs,
Codes and Cryptography, 20(3):269–280, 2000.

80

[53] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[54] Richard M Karp. Probabilistic analysis of some combinatorial search problems.
In Algorithms and Complexity: New Directions and Recent Results. Academic
Press, 1976.

[55] Pascal Koiran and Anastasios Zouzias. Hidden cliques and the certification of
the restricted isometry property. IEEE Transactions on Information Theory,
60(8):4999–5006, 2014.

[56] Ludek Kucera. Expected complexity of graph partitioning problems. Discrete
Applied Mathematics, 57(2-3):193–212, 1995.

[57] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key
cryptography in the fine-grained setting. In Annual International Cryptology
Conference, pages 605–635. Springer, 2019.

[58] Leonid A Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

[59] Richard J Lipton. New directions in testing. Distributed Computing and Cryp-
tography, 2:191–202, 1989.

[60] Zongming Ma and Yihong Wu. Computational barriers in minimax submatrix
detection. The Annals of Statistics, 43(3):1089–1116, 2015.

[61] Colin McDiarmid. Colouring random graphs. Annals of Operations Research,
1(3):183–200, 1984.

[62] Frank McSherry. Spectral partitioning of random graphs. In Foundations of
Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 529–
537. IEEE, 2001.

[63] David E Muller. Application of boolean algebra to switching circuit design and
to error detection. Transactions of the IRE professional group on electronic
computers, 3:6–12, 1954.

[64] Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419,
1985.

[65] Gergely Palla, Imre Derényi, and Tamás Vicsek. The critical point of k-clique
percolation in the erdős–rényi graph. Journal of Statistical Physics, 128(1-2):219–
227, 2007.

[66] B Pittel. On the probable behaviour of some algorithms for finding the stability
number of a graph. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 92, pages 511–526. Cambridge University Press, 1982.

81

[67] Mustazee Rahman and Balint Virag. Local algorithms for independent sets are
half-optimal. The Annals of Probability, 45(3):1543–1577, 2017.

[68] Alexander A Razborov. Lower bounds for the monotone complexity of some
boolean functions. In Soviet Math. Dokl., volume 31, pages 354–357, 1985.

[69] Oded Regev. The learning with errors problem.

[70] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM), 56(6):34, 2009.

[71] Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 721–730.
ACM, 2008.

[72] Benjamin Rossman. The monotone complexity of k-clique on random graphs. In
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
193–201. IEEE, 2010.

[73] Benjamin Rossman. Lower bounds for subgraph isomorphism, 2016.

[74] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction
bound. Journal of complexity, 13(1):180–193, 1997.

[75] Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410, 1979.

[76] Van H Vu. A large deviation result on the number of small subgraphs of a random
graph. Combinatorics, Probability and Computing, 10(1):79–94, 2001.

[77] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings of the ICM. World Scientific, 2018.

[78] Raphael Yuster. Finding and counting cliques and independent sets in r-uniform
hypergraphs. Information Processing Letters, 99(4):130–134, 2006.

82

