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Abstract

A new technique based on low coherence optical interferometry is developed for
time-gated imaging through turbid media and the investigation of coherent photon
scattering processes. In coherence-gated transillumination, femtosecond pulses and
heterodyne detection time-resolve light transmitted through scattering media. Short
pulses from a modelocked titanium:sapphire laser enter a fiber-optic interferometer and
are split into a reference delay path and a sample transmission path. In highly scattering
media, the pulse propagating through the sample temporally broadens due to multiple
scattering. The transmitted and broadened sample pulse is recombined with the reference
pulse to produce coherent interference signal at a photodetector only for the component
of the transmitted pulse which temporally and coherently overlaps the reference pulse.

Coherence-gated transillumination is used to temporally profile the phase
coherent constituent of the on-axis, scattered pulse propagating through suspensions of
scattering microspheres. The transmitted light consists of an unscattered ballistic
component, and a later arriving, temporally broadened, diffuse component. The arrival
time and temporal profile of these components are investigated as functions of scattering
anisotropy and microsphere concentration. The ballistic peak power is found to attenuate
exponentially as the number of scattering mean-free-paths (MFPs), or increasing sample
thickness. The diffuse peak attenuates about a factor of 10 more slowly.

Time-gated imaging of hidden objects embedded in scattering microsphere
suspensions is demonstrated using both ballistic and early arriving diffuse light. The
reference path length is kept constant while the sample is raster scanned over each spatial
resolution element. A confocal imaging arrangement takes advantage of spatial rejection
of scattered light. Ballistic component images through 27 scattering MFPs of 1 um
diameter microspheres exhibit 100 pm spatial resolution. However, ballistic gated
images may only be obtained through relatively thin samples. Ballistic imaging through
tissue is revealed to be fundamentally limited by quantum noise and tissue damage
thresholds to samples thinner than about 4 mm. Purely spatial resolved confocal or
heterodyne imaging techniques are shown to be inferior to time-gated methods for
ballistic imaging. Diffuse light images may be obtained through comparatively thicker
samples due to the reduced attenuation rate with sample thickness, but at the expense of
reduced spatial resolution. The trade-off between spatial resolution and time-gate delay
is experimentally investigated and empirical resolution limits are established.

Thesis supervisor: Professor James G. Fujimoto
Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The aim of this thesis is to investigate optical imaging of biological tissue using
low coherence interferometry. The research assesses the potential of optical
interferometry for non-invasive transillumination imaging in scattering systems as well as
provides information about fundamental properties of light ransport through tissue and
other random media.

This thesis develops a coherence-gated transillumination system applicable to
fundamental studies of optical scattering and transillumination imaging through turbid
media. Transmission measurements of coherent light scattering in model uniform
scattering media are described, and the prospect of time-gated imaging of absorbing
objects embedded in highly scattering media is investigated.

Optical imaging through turbid biological media is a difficult problem because
muliiple light scattering and absorption in tissue severely limit image resolution. Despite
these limitations, optical transillumination has developed into a specialized diagnostic
method, especially in pediatric medicine for cranial and chest pathologies, where tissues
are relatively transparent and high resolution is not critical. Recently, there has been
interest in transillumination as an alternative or supplement to mammography for the
early diagnosis of breast cancer. Optical radiation is relatively safe and may be capable
of distinguishing malignant tissue before calcification based on the differential optical
properties of the surrounding neovascularization. Multiple light scattering, however,
precludes the submillimeter image resolution likely needed for transillumination to
become a widespread diagnostic tool for early tumor detection.



Recently, several optical imaging methods have emerged which improve
resolution by discriminating against spatial of’ temporal characteristics of multiply
scattered light. Spatially resolved discrimination methods, which are related to confocal
imaging, require transmitted light to have a certain directionality or spatial phase
coherence before detection.

A short pulse of light propagating through tissue will be severely lengthened due
to multiple scattering events and will lose image bearing information. However, a
shadowgram of objects embedded in the tissue may be reconstructed by temporally
isolating the early-arriving, or least scattered light from the later-arriving diffuse, or
multiply scattered light. Time-gated imaging techniques preferentially detect this early
light, which has taken a more direct path through the tissue. Incoherent time-gating
methods, including electronic, streak camera, and various nonlinear gating techniques, do
not require a uniform phase front across the entire detector aperture. In contrast, coherent
time-gating methods restrict the spatial and temporal coherence of detected light.
Coherent approaches are based on both traditional and electronic time-resolved
holographic and interferometric methods.

This thesis develops coherence-gated transillumination, a new coherent imaging
approach which takes advantage of both temporal and confocal directional rejection of
scattered light. The system is employed to investigate fundamental resolution and
sensitivity limits for the entire class of time and spatially resolved imaging techniques.

A specialized fiber-optic interferometer for coherence-gated transillumination
imaging has been constructed. Low temporal coherence light from a modelocked
titanium:sapphire laser is split into a reference fiber path and a sample wansmission path.
Scattered light emerging from the sample is recombined with the reference light at a
photodetector. Coherent interference between the reference and sample light only occurs
at the detector when the reference path length time delay matches the delay of light
exiting the sample to within the temporal coherence of the source. This coherence-gating
mechanism aliows time-resolved analysis of scattered light from the specimen by simply
changing the reference path length delay.

Two-dimensional, time-gated transillumination images are formed by raster
scanning the specimen over each spatial resolution element while setting the reference
arm path length to coherence-gate only the early arriving light transmitted through the



sample. A confocal imaging arrangement in the sample transmission path directionally
rejects scattered light and reduces incoherent background light at the detector.

Heterodyne light detection and narrowband signal modulation make the
coherence-gated interferometer very sensitive to weak light transmitted through the
specimen. The system can detect light as weak as 5 femtowatts, which is 10-13 of the
incident optical power of 50 mW.

Fundamental time-resolved studies of light scattering with the coherence-gated
transillumination interferometer have elucidated coherent scattering mechanisms and
tissue optical properties. Prior research employing incoherent, time-resolved detection
techniques indicates that a short pulse propagating through a scattering medium splits
into an early arriving, unscattered, or ballistic component, and a later arriving, temporally
broadened diffuse component. This same division has been observed with coherence-
gated transillumination in model scaitering media by profiling coherent interference
signal amplitude versus reference pulse time delay. The attenuation and profile of both
the ballistic and coherent diffuse components have been assessed as functions of
scattering cross section, anisotropy, and sample thickness. Model scattering media
consist of suspensions of microspheres of varying particle sizes and concentrations.

Preliminary studies of time-gated imaging through turbid media have focused or:
imaging standard resolution charts through model uniform scattering systems. Tissue
phantoms consist of calibrated size microsphere suspensions with well defined scattering
properties computed from Mie scattering theory. Image resolution has been investigated
as a function of time-gate delay.

Fundamental resolution and sensitivity limits on coherent and incoherent time-
gated imaging and non-gated confocal imaging through scattering media are established.



Chapter 2

Optical Imaging Through Turbid Media

2.1 Introduction

Optical imagirg of tissue offers the potential of a non-invasive diagnostic with
non-ionizing radiation and the possibility of using spectroscopic properties to distinguish
tissue type and probe metabolic function. In optically dense or thick tissue specimens,
however, absorption and multiple light scattering severely degrade image resolution.
Recently, several optical imaging methods have emerged which improve resolution by
discriminating against spatial or temporal characteristics of multiply scattered light. This
chapter provides an overview of these various imaging techniques.

Spatially resolved discrimination methods require transmitted light to have a
certain directionality or spatial phase coherence before detection and attempt to isolate
light which has traveled a more direct path through tissue. Time resolved discrimination
methods temporally separate the carly arriving, least scattered light from the later arriving
diffuse, or multiply scattered light, based on the total traversed optical path length. Time
resolved discrimination approaches may be classified as either incoherent or coherent
imaging systems.

The success of different imaging techniques may be compared by considering
image resolution versus sample thickness in number of mean-free-paths (MFPs) and
versus total optical energy delivered to each image resolution element during the
detection period.



2.2 Review of Incoherent Time-Gating Techniques

Incoherent time-gating methods do not require a uniform phase front across the
entire detector aperture and are sensitive only to the intensity of the incident light. Since
incoherent imaging methods do not restrict the phase of the detected light, these
approaches are potentially more sensitive to diffuse light than coherent time-gating
techniques. Incoherent gating methods rely either on electronic switching, or nonlinear
optical effects to temporally resolve light.

2.2.1 Streak Camera

The streak camera system temporally frofiles the intensity of light entering the
camera slit. Light incident on the slit hits a photocathode which emits electrons
proportional to the intensity. The electron beam is swept across a CCD camera which
produces an image corresponding to light intensity versus time. Time-gated images
through turbid media are created by taking a stre.k camera image for every rasolution
point on the sample and extracting an early portion of the arriving light. Two-
dimensional scanning is required. The temporal resolution in synchroscan mode is
typically limited!- to about 10 ps, meaning that submillimeter imaging is probably not
possible. However, the long gating times may be beneficial in increasing the amount of
diffuse light detected through very thick samples.

Temporal profiles of pulses 1 ps or shorter propagating through non-dairy creamer
and polystyrene particle suspensions have shown that the scattered pulse broadens out to
hundreds of picoseconds!2:4. One and two-dimensional images of opaque objects about
a centimeter wide have been demonstrated through milk, non-dairy creamer, and
polystyrene particle suspensions; however, the scattering parameters of these tissue
phantoms have not been well quantified!.24, Both multi-mode fiber and bulk optic
delivery systems have been used.

Low temporal resolution prevents isolation of ballistic light and limits streak
camera systems to imaging later arriving diffuse light. Yoo, et. al.3 have proposed that
the limited temporal resolution is not a handicap for imaging large objects through thick
scattering media. They integrate the intensity of the first 50 ps of the diffuse light, which
extends for several hundred picoseconds. A spatial resolution of a few millimeters is
demonstrated in images of centimeter sized transparent objects placed in a milk solution
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with a thickness of 12 forward scattering MFPs. A 5 mW colliding-pulse-modelocked
laser was used and the detection time was not reported.

2.2.2 Electronic Gating

Electronic gating methods employ commercial photon counting instruments to
temporally resolve light. The minimum temporai resolution is limited by electronic
switching times to 2 ps and two-dimensional scanning of either the specimen or the
source and detector is required. The systems described below employ multi-mode fiber
detection schemes so that light transmitted through the sample is only detected within a
certain acceptance angle. Like the streak came-a methods, electronic gating techniques
are limited to low temporal resolution; however, high temporal resolution may not be
needed for imaging large objects through thick scattering media.

Andersson-Engels, et. al.5 have used a 50 mW, 8 ps dye laser to resolve light
transmitted through 34 mm of breast tissue with 80 ps resolution. The transmitted light
extended to 3-4 ns, and had a time-resolved profile similar to a 35 mm piece of parafilm.
The first 100 ps of arriving light was gated to produce one-dimensional images of a
human hand, showing bones with about 5 mm resolution. Acquisition time was about 60
s per resolution element so that 3 J was deposited per pixel during detection.

Benaron, et. al.6 have extended the photon-counting technique, employing a 100
ps pulsed diode source and a novel image reconstruction technique. They create one and
two-dimensional shadowgrams, and three-dimensional tomographic images by plotting
the time of arrival of the first 0.01% of all photons for each image pixel. This time of
arrival transformation focuses on the early arriving light, but is a function of the shape of
the entire time resolved diffuse curve and may provide more contrast than strict time-
gating methods. The system can resolve light propagating through 4 cm of tissue with a
coilection time of 16 s per pixel. The optical power is not reported.

Like streak camera systems, electronic gating techniques are suited to diffuse light
imaging where high spatial resolution is not critical. So far, these methods have been the
on'y time-gating imaging techniques demonstrated on in vivo biological specimens.

2.2.3 Nonlinear Gating
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Virtually any nonlinear optical effect may be used in conjunction with short
pulses to gate early arriving light. Some nonlinear gating techniques can acquire the
entire two-dimensional image at once and do not require scanning the probe beam.
Femtosecond gating times may be achieved with ultrashort pulsed lasers and fast
nonlinear materials. Detection sensitivities are typcially limited by low nonlinear
conversion efficiencies and nonlinear gate rejection ratios. Nonlinear gating techniques
may be employed to achieve fast gating times without the coherence restrictions of
coherent imaging techniques. Most experimental work has focused on using these fast
gating times to image with the unscattered ballistic component of the transmitted pulse.

Time-gated imaging using the optical Kerr gate was first proposed by Duguay and
Mattick” in 1971. They temporally resolved reflections from the front and back of a pair
of glass slides. Wang, er. al.8 have subsequently used a CS7 Kerr shutter and 8 ps pulses
at 527 nm to generate two-dimensional images of a 100 um bar chart placed behind 3 mm
of chicken breast and 3.5 mm of human breast. The entire two-dimensional image was
obtained at once and no image scanning was required. A time-resolved scattering profile
is presented for light propagating through 21.7 scattering MFPs of 460 nm diameter
microspheres showing an unscattered ballistic peak at O ps delay and a diffuse peak
arriving 20 ps later. Images were obtained with 1.3 pJ energy deposited per pixel. The
dynamic range of an optical Kerr gate system is limited by the effectiveness of crossed
polarizers to eliminated ungated light. Residual ransmission is normally about 0.001%.
The material relaxation time of CS» restricts gating times to slower than 2 ps. The 2 ps
temporal resolution prevents gating only the ballistic light, meaning that diffraction
limited ballistic imaging in general cannot be achieved. The incomplete extinction of the
crossed polarizers limits imaging in highly diffuse media, where the intensity of late
arriving diffuse light can be orders of magnitude larger than the early arriving ballistic, or
forward scattered light.

Second harmonic generation (SHG) gating eliminates the crossed-polarizer
problems of the optical Kerr gate. The relatively fast nonlinearity allows femtosecond
gating times. However, unlike the Kerr gate, two-dimensional scanning is required.
SHG gating was originally employed by Fujimoto, er. al.9 for single point, time resolved
reflectance measurements in skin and cornea with 65 fs pulses and 15 pm spatial
resolution. A sensitivity to reflected light of 70 dB was obtained with 2 mW incident
power. More recently, Yoo, et. al.10 have used SHG to achieve submillimeter image
resolution of one-dimensional opaque objects through 28 scattering MFPs, computed
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from Mie theory, of 300 nm latex microspheres in suspension. A colliding pulse
modelocked laser outputted 100 fs pulses at 5 mW, which was amplified by a copper-
vapor laser to 5 mW ([sic.] This reported power is probably incorrect. The sample was
scanned over every image resolution element, with a detection bandwidth of 1 kHz. The
dynamic range of a SHG system is limited primarily by the noise from laser intensity
fluctuations and scattered second harmonic energy from the reference pulse so that shot
noise limited detection is almost impossible to achieve.

Transient stimulated Raman amplification!! has produced direct, two-dimensional
images of 300 pm opaque bars through 33 reduced MFPs of non-dairy creamer, and 26
MFPs of 300 nm latex microspheres (image not shown). The MFP of these phantoms
was empirically determined by measuring the attenuation of a He-Ne laser propagating
through a 100 um thin slice of the sample. Although 30 ps pulses were used, faster
gating times could be attained with femtosecond sources. The images were integrated
over 64 shots of Stokes converted light from a 5 Hz modelocked Nd:Yag laser so that 0.8
mJ was deposited over the entire image in 13 s. The sensitivity of stimulated Raman
amplification closely approaches the quantum shot noise limit. The author's statement
that measurement through the microsphere suspension closely approached the system
detectivity limit suggests that the dynamic range is slightly better than €26 = 113 dB.
Unlike the optical Kerr gate, or SHG gating, the stimulated Raman amplification system
allows a combination of two-dimensional image acquisition, shot noise limited
sensitivity, and fast gating times. However, the system is complex.

2.3 Review of Coherent Time-Gating Techniques

Coherent time-gating methods restrict the spatial and temporal coherence of
detected light and are based on both traditional and electronic time-resolved holographic
and interferometric methods. All coherent methods use a short coherence length light
source which is split into a reference and a sample beam. The sample beam passes
through the scattering media while the reference light propagates through a variable delay
path. The two beams are recombined and the interference signal is detected. The length
of the reference delay path is adjusted so that interference signal only occurs for the early
arriving component of the transmitted light.

Coherent imaging techniques are able 1o achieve extremely fast gating times with
low temporal coherence sources. Since detected light must be phase coherent with the
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reference light, however, coherent detection techniques are probably less sensitive to
diffuse light than incoherent detection approaches. The fast gating and insensitivity to
diffuse light make the coherent methods ideal for ballistic ‘maging. However, these
methods may be less successful for imaging with the early arriving portion of the diffuse
light, where high temporal resolution and coherence loss may reduce the available signal

power.

2.3.1 Traditional Holography

Traditional time resolved holographic methods!2.13 use low coherence light and
conventional holographic film to record a holographic image only for early arriving light.
Scanning is not required since the entire holographic image is formed at once. Initial
imaging experiments have been performed with absorbing objects placed between glass
diffuser plates and parafilm tissue phantoms. A 1 cm high letter "C" with 2 mm
linewidth was placed between 3.7 mm of parafilm ana imaged with 0.08 mJ / cm? from a
modelocked dye laser for 200 ms. The source coherence time was 1.1 ps; however,
image resolution and sensitivity were not well quantified. A principle limitation of
traditional holographic techniques is that fringe visibility may be washed out if the late
arriving diffuse light is too intense relative to the coherent interference component.
Chemical bleaching must often be employed to remove incoherent film blackening. The
sensitivity of a traditional holographic technique strongly depends on the dynamic range
and quantum efficiency of the holographic film.

In another initial demonstration, Rebane and Feinberg!3 have used molecular
resonances to record the holographic image rather than film. The holographic medium
consisted of a polystyrene block doped with protophorphyrin and kept at 2° K in a liquid
helium bath. Text on the front and back of a frosted microscope slide was resolved with
500 fs coher=nce-time pulses from a dye laser. An exposure time of 2-3 minutes was
needed to record the hologram, during which 70-100 mJ / cm? was deposited on the
image. Resolution and sensitivity limits were not well described.

2.3.2 Electronic Holography

Electronic holography!3.16 ¢liminates the incoherent film blackening problems of
traditional holography and the complexities of using molecular resonances to record
images. The two-dimensional holographic image is directly formed onto a CCD camera,
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which normally has a higher quantum efficiency than film. Numerical image processing
techniques separate the interference signal from the incoherent background so that shot
noise limited detection is possible. The electronic holography technique is particularly
suited to signal averaging which may be necessary for coherent imaging techniques to
reduce the effects of image speckle noise. Two-dimensional images of 1 mm pins placed
behind 6 mm of chicken breast have been obtained using 120 fs pulses at 820 nm from a
70 mW modelocked titanium:sapphire laser. Seventy-five 100 ms exposures were
averaged and speckle decorrelation was produced after each exposure by translating or
pinching the sample. The technique, and similar images, have also been demonstrated in
the frequency domain, where a continuous-wave tunable dye laser is swept over a large
bandwidth and the image is obtained from Fourier reconstruction!’.

2.3.3 Low Coherence Interferometry

Interferometry with low temporal coherence light sources has been used in the
relatively transparent tissues of the eyel8-22 to resolve the distance of reflective
boundaries, and in the artery23 to profile coherent optical backscatter intensity versus
depth. Scanning the reference arm path length provides depth resolved information,
while a oroad bandwidth continuous-wave diode light source permits distance resolution
better than 20 um. Signal modulation and heterodyne detection allow shot noise limited
scnsitivity. Single-mode fiber optics provide spatial rejection of multiply scattered light.

Optical coherence tomography24 is an extension of low-coherence reflectometry
where the sample is scanned in a transverse dimension to produce a profile of optical
backscatter versus depth in a two-dimensional thin slice of tissue. Images of retinal and
arterial tissue have showed a penetration depth of about 1 mm with 70 uW of incident
power and a 4 cm /s longitudinal scanning rate. With these parameters, a detection
sensitivity of 90 dB has been attained.

The application of these methods to tissue transillumination has so far been
limited by the low incident optical power. Unlike holographic techniques, interferometric
methods require raster scanning the sample in two dimensions. However, since each
resolution point is obtained separately, confocal imaging principles may be used to
provide additional directional rejection of scattered light. In this case, speckle noise is
also reduced since light from different resolution elements does not interfere.
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2.4 Review of Spatial Rejection Imaging Techniques

Spatial rejection imaging methods discriminate against the directional and spatial
coherence properties of multiply scattered light. While time-gated imaging techniques
definitely reject light that has traveled a longer path length through a random medium, the
same is not true for spatially resolved methods. After propagation through a thick turbid
media, it is conceivable that some fraction of the multiply scattered light may be spatially
coherent at the detector aperture to degrade image resolution. Results from coherent
scattering experiments described in this thesis support this limitation.

Each of the spatially resolved imaging techniques described below has similar
properties and may be considered variants of the confocal imaging principle.

2.4.1 Confocal Imaging

In an ideal confocal scanning arrangement23.20, the turbid medium is located
between a point light source and an oppositely arranged point detector which are scanned
in tandem across the sample. Dilworth, et. al.27 have theoretically and experimentally
demonstrated that confocal scanning provides a resolution improvement over broad beam
transillumination, and have also developed a point-spread function deconvolution
algorithm. Initial studies have involved tape-strip objects embedded in unquantified
diffusers. The same group has recently extended their technique to three-dimensional
iraging by taking successive confocal images with the detector moved progressively off-
axis from the source, and numerically reconstructing the image28. Images of human
breasts have been obtained with this method, which mostly show blood vessels residing
near the surface.

Imaging with single-mode optical fibers may also be considered confocal??.
Thus, any incoherent or coherent time-gating technique which uses a pair of scanning
single-mode fibers for light delivery and reception also makes use of confocal spatial
rejection of multiply scattered light.

2.4.2 Optical Heterodyne Imaging

Optical heterodyne detection requires detected light to be phase coherent with a
reference beam over the spatial extent of the detector aperture. This wavefront alignment
requirement translates into a directional selectivity similar to confocal imaging and fully
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equivalent to detection with a single mode fiber. Sawatari39 first demonstrated the
advantages of heterodyne detection for scanning microscopy, including confocal imaging
properties, shot-noise limited detection, discrimination against incoherem background

light, and correlation of weak reflected light from the sample with a strong reference
beam.

Toida, et. al.31.32 have used the directional selection and sensitivity properties of
an optical heterodyne receiver for transillumination imaging. Using a continuous-wave
He-Ne laser with a sample beam power of 0.5 mW, a two-dimensional image of a bar
chart embedded in a milk-gelatin mixture was obtained by scanning the sample and
detecting the interference signal. A modelocked laser is not required and two-
dimensional scanning is necessary. The image demonstrates 400 pm resolution, although
the scattering medium was unquantified and the signal was thresholded into one of only
16 levels (thereby improving its appearance). The reported dynamic range was a shot
noise limited 100 dB with a 10 kHz detection bandwidth.

2.4.3 Spatial Incoherence Imaging

Imaging with spatially incoherent light may also provide confocal rejection of
scattered light!7.33, Unlike confocal or optical heterodyne imaging, however, the entire
two-dimensional image may be acquired at once. In this technique, light with reduced
spatial coherence propagates through the turbid media and is holog:aphically interfered
with a reference beam to create interference only for directionally selected light.
Preliminary images of a bar chart placed betweern ground glass diffusers have been
demonstrated.

2.5 Other Optical Imaging Techniques

2.5.1 Increasing Absorption

Imaging at wavelengths where absorption is significant preferentially attenuates
light which has traveled a longer path in the medium34. This concept has been
demonstrated by adding absorbing dye to a scattering suspension of 300 nm
microspheres. An image of a 2 mm size object placed behind 25 MFP (computed from
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Mie theory) of the scattering mcdium was obtained using a 15 mW colliding pulse
modelocked laser and a video cam<ra for detection.
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Chapter 3

Coherence-Gated Transillumination System

3.1 System Overview

Coherence-gated transillumination is an optical imaging method which
simultaneously discriminates against both temporal and directional characteristics of
multiply scattered light.

Short coherence length light and coherent interferometric detection temporally
resolve light transmitted through a specimen. Short pulses (100 to 400 fs) from a
modelocked titanium:sapphire laser enter a fiber-optic modified Mach-Zehnder
interferometer, depicted in Fig. 1. A fiber splitter directs these pulses onto a reference
mirror and a sample. Light retroreflected from the mirror recombines at another splitter
with temporally broadened light trans.aitted through the sample to create interference
signal only for the component of the transmitted pulse which temporally and coherently
overlaps the reference pulse. A modelocked titanium:sapphire laser was chosen because
of its high output power and broad wavelength tunability; however, short coherence
length continuous-wave or long pulse light sources may alsc be used.

In the sample path, light exiting the fiber is focused over a distance longer than
the sample thickness and symmetrically recoupled back into the interferometer. This
confocal arrangement provides spatially resolved rejection of scattered photons because
light must couple back into a single-mode fiber aperture before detection The coupling
requirement is also equivalent to the directional selection properties of another spatially
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resolved imaging technique based on an optical heterodyne receiver, as well as spatially
incoherent imaging techniques.

Piezoelectric Reference
Modelocked Phase 0 I
B =

i N

Sample
Dual Balanced
Detectors T
/g) Scanning
Lock-in Analog to]
Amplifie] | Digital Computer

Figure 3.1. Schematic diagram of the coherence-gated transillumination
system.

The coherence-gated transillumination system is highly sensitive to small amounts
of light transmitted through the sample. The modelocked laser source illuminates the
specimen with 50 mW of 830 nm light. The relatively strong reference beam multiplies
light emerging from the sample to create discernable interference at the detectors even
when the attenuation through the sample is severe. The system can detect coherent
transmitted light as small as 10-13 of the incident optical power, defining a 130 dB
dynamic range. A piezoelectric fiber stretcher phase modulates the interference signal at
10 kHz allowing lock-in demodulation to efficiently frequency filter the desired signal
from the surrounding noise. Dual balanced detectors cancel the effect of random laser
intensity fluctuations so that the quantum shot noise detection limit is achieved.

3.2 Spatial Rejection of Scattered Light

The single-mode fiber transmission arm of the interferometer behaves as a
confocal imaging system. In an ideal confocal transmission imaging arrangement, a point
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light source is scanned synchronously opposite a point detector over the object. Image
formation is coherent, and resolution is improved since both (he source and receiver lens
contribue to image construction!. In practice, most real confocal systems are only
partially coherent, since finite aperture detectors and sources must be used?.

In contrast, a scanuing fibe.-optic svstem is a completely coherent imaging
modality, since the single-mode detection fiber dem..nds a consistent phase across the
fiber face for fiber coupling3. Directional resolved rejection of scattered light occurs
because light must also scatter within the collection angle of the receiving lens to reach
the fiber face. This directional and spatial coherence requirement is similar to a bulk
optic heterodyne receiver4-6, and holography with spatially incoherent light”:8.

Since only one image pixel is obtained at a time, either the specimen or the
source-detector pair must be scanned in two dimensions. Compared to instantaneous
two-dimensional image acquisition, this point-by-point scanning reduces image
degradation caused by light scattered out of an illumination pixel into a different
detection pixel. For the same reason, a point scanning system should also exhibit
diminished image speckle compared to two-dimensional coherent, or holographic
imaging techniques.

3.3 Coherence-Gating and Temporal Resolution

The temporal resolution of the system conerence-gate is determined by the
coherence length of the light source. In this section, the coherence-gating properties of
the interferometric transillumination system will be examined and related to the light
source spectral bandwidth. The effect of fiber-arm group velocity dispersion and
nonlinear self-phase modulation on the coherence-gate temporal resolution and signal
strength will also be analyzed.

3.3.1 Notation and Definitions

The Fourier transform pair is defined according to the electrical engineering
convention:

o 0

3.1
oy 3.1)

1= [Fop
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F(w)= [ fe®a (3.2)

and the following Fourier transform relations will prove useful in the succeeding

sections:
eI (1) & F(w- wg) (3.3)
2 da?
: e 207 e 2 (3.4)

2702

Note that the gaussian waveform above has been defined with a characteristic width 20
equal to 2 standard deviations. For a gaussian waveform, the full-width-half-maximum
(FWHM) is related to the standard deviation through Atgyypy =20V2In2.

3.3.2 Interferometer Analyzed for a Single Fourier Component

The interferometer will first be analyzed for a single monochromatic Fourier
component of the source. Then, the analysis will be extended to finite bandwidth
sources. Light incident on the interferometer is split at the first fiber beamsplitter into a
reference and a sample path. Light retroreflected from the reference mirror is recombined
at a second beamsplitter with light transmitted through the sample. Defining the
reference and sample electric fields E; and Eg respectively incident on the second
beamsplitter as

Eg = ARe-j(ﬂRlR-wR')

Es =Ase-j(ﬂS‘S“wS')’ (3'5)

the fields E; and E; at the two balanced detectors may be computed from the scattering

E r jty\|E
A1 ]
Ez Jtor ES
The mean photocurrent / after balanced detection is given by the difference of the
individual detector photocurrents:

matrix as
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where we have assumed equivalent detectors, 7) is the detector quantum efficiency, e is
the electronic charge, and 1) is the intrinsic impedance of free space. !f the analyzing
beamsplitter is exactly 50/50, then rl=¢= 1/2 and the DC photocurrents from cach
detector exactly cancel leaving the interference terin

ne Re{jExEs)

hw No
ne 1 S[ n
= . L cod st Pt - (w5 - ek + 3
hw 1 2] (3.8)

As expected, the dezectors see interference fringes as the reference and sample arm path
lengths £p and ¢s are varied. These fringes oscillate in time at the difference frequency
(wg — wg), which in the present case is zero.

. . . . 3 3 -
Complete interference information is contained in the cross-spectral term EgEj.
Therefore, future analysis will focus on this term noting that its real part is basically
proportional to the signal photocurrent.

3.3.3 Source Power Spectral Bandwidth and Coherence-Gate Temporal Width in a
Dispersion Free Medium

The above analysis for a monochromatic source may be extended to a finite, broad
bandwidth source, such as a modelocked laser or a superluminescent diode, by
integrating the cross-spectral term E;ES over the harmonic content of the light source.
We redefine the fields incident on the analyzing beamsplitter as

Zﬂm(w)lm—wl)

_,.[
Ep = Age(w)e ‘!

Zﬂs"(w)lsrw‘}

] ,-[
E¢ = Age(w)e ‘ (3.9)
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where the sum in exponent allows each interferometer arm to be composed of many
segments of different lengths and propagation constants, e(w) represents the Fourier
transform of the source field, and Ag and Ag account for losses on each interferometer
path. The interference signal is the sum of the interference due to each plane wave
component, according to

1 «I ERES-‘119 = AgAg S(w)e - jag(w) 40 (3.10)
2 2n
where
Ap(w) = Zﬂs:(w)a’s;' - EﬁRi(a’)“’Rt- (3.11)
i J

S(w) = |e( wx2 is the source power spectral density, and A¢(w) is the phase mismatch for
each frequency component. Basically, Eq. (3.10) propagates each source frequency
component through the interferometer. Note that equal lengih path segments with
identical propagation constants in both interferometer arms will cancel in A¢(w) so that
the interferometric signal depends only on the difference in the referenc. and sample
paths. The left term of Eq. (3.10) is the interferometric photocurrent, which is
proportional to the cross-correlation of the reference and sample arm fields as a function
of reference and sample arm path mismatch. The right term is essentially an inverse
Fourier transform relation.

To see the time and frequency relationships more clearly, we examine the ideal
case where the reference and sample arm paths consist of a uniform, linear, and non-
dispersive material. We assume that tne source has a gaussian distributed power spectral
density:

_(“"“’20)
Sw)= | Zge (3.12)
w

with center frequency w, a standard deviation power spectral bandwidth equal to 20,
(rad/s), and normalized to unit power.

S(w)4% =1, (3.13)
—oo 2T
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The reference and sample arm propagation constants S and Bgare assumed to be equal
and linear functions of frequency:

Bs(w) = Br(w) = B(awp )+ B'(wp (@ - wyp). (3.14)

The phase mismatch A¢(w) in Eq. (3.11) is then solely determined by the path length
mismatch AL = {g — £z through

A¢(w) = wo)AL + B'(wp)(w - wp)AL. (3.15)

The integral over the power spectral density in Eq. (3.10) becomes

_(w-0y)’
- o0 — _ d a) — w
I = AgAg ll’f—e """“f’j . 2%  Jw-wo)ary d@-w) (3.16)
0'2, —o0 2n
where the phase delay mismatch A7, and group delay mismatch Az are defined as
)
A[pz.ﬂ_(_gluz.él_ (317)
() vp

AL

A‘t'g = ﬁ'(wo)At' = v— (3.18)
8

vp is the center frequency phase velocity and v, is the group velocity in the lenguh
mismatched section of the interferometer. Eq. (3.16) is basically a statement of the
familiar Wiener-Khintchine theorem: the correlation function is equal to the inverse
Fourier transform of the power spectral density. Evaluating the Fourier transform in Eq.
(3.16), we find the interferometric photocurrent

2"%e”"""’““’. (3.17)

The photocurrent contains a gaussian envelope, with characteristic standard deviation
temporal width 20, (sec) inversely proportional to the power spectral bandwidth:

20, = —2— (3.18)
Uw
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The cnvelope falls off quickly with increasing group delay mismatch Aty and is
modulated by interference fringes which oscillate with increasing phase delay mismatch
At,. Thus, Eq. (3.17) defines the coherence-gating properties of the system. For a
particular reference arm path length, the detector only sees interference fringes for light
emerging from the sample arm at approximately zero group delay. Light arriving more
than to, carlier or later falls outside the temporal width of the coherence-gate and is
effectively rejected. Translating the reference arm changes the reference path length and
moves the coherence-gate in time. Time-resolved profiles of light emerging from
specimens placed in the transmission path may be obtained by plotting the interference
signal as a function of reference mirror delay.

The temporal width of the coherence-gate in Eq. (3.17) may alternatively be
expressed as a free space coherence length by assuming that the group velocity equals the
speed of light in free space. For a source with a center wavelength A and a FWHM
wavelength bandwidth AA, the FWHM free space coherence-gate length is

4In2 A%
Lewnm = AL (3.19)

3.3.4 Effect of Group Velocity Dispersion

In the Sec. 3.3.3, the medium in the interferometer paths was assumed to be
dispersion free. A fiber-optic interferometer, however, will have significant amounts of
dispersion. There also may be dispersion in the sample. To include group velocity
dispersion (GVD) in the analysis, the propagation constants Bg and f¢ in each
interferometer path are Taylor expanded to second order:

B(w) = B(wy) + B(wp ) - wp) + -;—ﬁ”(w—- w)’. (3.20)

We assume that the phase and group velocities are equal in the section of both anns
which have different path lengths, and that a GVD mismatch exists in a length L of the
sample and reference paths. The frequency dependent phase mismatch from Eq. (3.11)
is then

Ap(w) = [(wy)Al + B’ (wy )(w - wy )AL + %A,B"(w - '-)O)ZL (3.21)
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where A is defined as before, and AB”(w) = BS(w)— BR(w) is the GVD mismatch
between the two paths. Note that only the difference in GVD between the two
interferometer arms enters Eq. (3.21). Thus, the deleterious effects of dispersion may be
decreased by equalizing the GVD in both interferometer arms.

Inserting A¢(w) into the propagation equation (Eq. (3.10)) gives the photocurrent

—j - -A " L _
I = AgAge }woAer' S( -wo)e 13 B7(w- ‘00) /(w wg )At, ((u2 a)o) (3.22)
- n

where the phase delay mismatch At, and group delay mismatch Az, have been defined
in Egs. (3.17) and (3.18). The GVD mismatch multiplies the source power spectral
density S(@ — wyg) in a frequency dependent quadratic phase term. The interferometric
cross-correlation signal / looks like a short pulse, with Fourier transform S(w — @),
which propagates through a length L of dispersive medium with second order dispersion
equal to the difference in GVD between the interferometer arms. Thus, just as a short
pulse broadens and chirps after propagation through a dispersive medium, the
interferometric cross-correlation should also broaden and chirp due to GVD mismatch in
the two interferometer arms.

To establish the analogy further, we again assume that the source has a gaussian
power spectral density according to Eqs. (3.12) and (3.13). Using Eq. (3.22) to propagate
the spectrum through the interferometer, we obtain a modulated interferometric signal
with a complex gaussian envelope described by

2
Atg

2 .
[ = AgAg r‘(’i)e 2(L)" o= 0ATp (3.23)

where g is the standard deviation half-width of the dispersion-free coherence-gate from
Eq. (3.18). The characteristic width of the coherence-gate in the presence of dispersion,
I'(L), is a complex parameter and depends on both the propagation length L and the
dispersion-free half coherence-width o via

[(L)? = 02 + jAB"(wp)L. (3.24)

The real and imaginary components of l/l’(L)2 describe the broadening and chirping of
the interferometric cross-correlation, respectively, and are
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1 ‘7% . T(::lriticgl
3= F 4 J—273 (3.25)
r(L) Ot + Teritical Ot + Teritical

where we have defined the dispersion parameter

Teritical = ‘JAp”(w)L . (3.26)

Using the expression for l/ r (L)2 in Eq. (3.23) for the interferometric cross-
correlation, we discover the gaussian envelope is broadened to the new coherence-width
204:

4
25, =20,J1+[M) . (3.27)
O

The broadening factor becomes appreciable when the magnitude of the dispersion
parameter 7., becomes greater than the unbroadened half coherence-width 0. Fora
typical fused silica fiber at 800 nm, B” = 35 ps? / km[9). If the unbroadencd coherence
width 20, =100 fs, then coherence-width broadening becomes a factior if the
interferometer arm fiber arm lengths are mismatched by at least a length L/2 =4 cm.
For 7,,iiical > O, the amount of coherence broadening increases approximately linearly
with increasing propagation length

The chirping of the interferometric autocorrelation with increasing path length
mismatch A¢ may be described by differentiating the phase in the exponent of Eq. (3.23):

do 2 al 2
=20 - B(wg) - —<itical  AB*(wy)* AL, (3.28)
dat O'i + Tgrillcal

where k describes the spatial frequency of the interference fringes versus the distance
measure AL. For the positive dispersion mismatch regime AB”(wg) > 0, as the reference
arm path length is increased to examine progressively later arriving sample light, A
decreases, the wavenumber k increases, and interference fringes occur at the detector
more often. It is important 1o note that the spatial frequency bandwidth of the

interference signal does not change relative 10 the dispersion free case.

Dispersion mismatch also degrades the peak height of the interferometric
envelope which reduces the system dynamic range. The degradation in the photocurrent
amplitude is described by the multiplicative factor
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The reduction of the signal amplitude peak scales as the square root of the coherence-
width broadening. Assuming the dynamic range is measured in terms of the signal
squared, or photocurrent power, theu the loss in dynamic range scales linearly with the
coherence-width bioadening.

3.3.5 Effect of Fiber Self-Phase Modulation

If a short pulse laser is used as a broad bandwidth, low coherence source, the peak
pulse intensities may be strong enough to cause nonlinear effects in the fiber-optics. The
effect of nonlinear self-phase modulation (SFM), which causes pulse chirping and
spectral broadening in frequency, will be analyzed9-11.

SPM arises due to a nonlinear, intensity dependent refractive index
n= n0+n2|E|2. Since the effect is nonlinear, the power spectrum S(w) cannot be
propagated through the interferometer as if it were a short pulse as in the previous
section. The amount of SPM each interferometer arm will depend on the intensities in
the reference and sample path and in general will be unequal.

A general solution would require propagating each pulse separately down both
interferometer paths considering both SPM and GVD, and then analyzing the cross-
correlation of the pulses at the recombining beamsplitter. Accurate consideration of the
simultaneous effects of both SPM and GVD in general, however, requires numerical
solution of the nonlinear Schrodinger equation®. An incomplete and very approximate
analysis is developed here.

Consider first the action of SPM without the effects of GVD. An initially

unchirped gaussian pulse, with time-varying envelope
2

E(1) = Eoe”{a—z (3.30)

and center frecuency @ passing through a length L of nonlinear medium will undergo an
intensity dependent phase shift
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o(r) = %0-("0 +m|EP)L. (331)

This phase shift will produce an approximate frequency shift and chirp the pulse
according to
‘2
dAp(1 22t T
Aw(r)= 2288 _ %o, 332
(=== =—"ml|Eo[ e (3.32)
where Aw(t) is the instantaneous frequency shift. The instantaneous frequency of the
early portion of the pulse (¢ <0) is downshifted towards the red and the later arriving
portion (¢ > 0) is upshifted towards the blue. The temporal extent of the pulse remains
the same; however, its spectral bandwidth is broadened by (very approximately)

1
Abandwidth = 2Awm_2 2|b0| ——e 2 (3.33)

The addition of GVD either enhances or reduces the chirping effect of SPM. For
materials with negative dispersion (8” < 0), blue frequencies travel faster than red, and
the pulse tends to recompress itself during propagation, leading to soliton formation?. A
silica fiber at 800 nm, however, is in the positive dispersion regime (8” > 0), so that the
later arriving blue portion of the pulse will travel more slowly than the early arriving red
portion. Thus, the pulse further broadens and chirps in time, and the effects of GVD and
SPM act synergistically.

Numerical simulations and linear pulse compression experiments!2-14 have
demonstrated that the chirp due to SPM and positive GVD is approximately linear. Thus,
the effect of SPM on the temporal resolution and sensitivity of the transillumination
system may be approximately analyzed by neglecting the propagation through the fiber
system and just assuming that two gaussian pulses, with different bandwidths and
different amounts of chirp due to the combined action of SPM and GVD, are recombined
at the final beamsplitter.

The interferometer is sensitive to the cross-correlation of the two pulses, which
may be computed, similar to Eq. (3.16), from the inverse transform of the cross-spectral
power density. Following Eq. (3.16), the photocurrent is proportional to
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where the power spectrum S(w) has been replaced by the cross-spectrum E;(w)Es(w)
between the two pulses. A gaussian spectrum for both Egz(w) and Eg(w) will be
assumed such that

1 -(“’—"’0)2 5, 2
E (@)= J“(ﬁ)“ d0; gl (3.35)
X

where the subscript x will denote either the reference (R) or sample (S) pulse. The linear
chirp comes from the quadratic frequency dependent phase factor and is described by the
chirp parameter d,. The standard deviation power spectral bandwidth of each pulse is
20,, and the pulse energy is given by

e 2 dw
E —=P,. 3.36
j_wl x(@) 2r  * (3.36)

The inverse Fourier transform in Eq. (3.34) evaluates to the cross-correlation seen
at the interferometer output:

2
A‘ts

¢ 202, J@0ATp (3.37)

R
R™S

where the complex broadening and chirp parameter I” is defined by

L — T‘%“Ch"’l’ _ 1't.gn’ltcal
r Tunclurp * Teritical Tunchirp * Teritical

2Tyunchirp 18 the standard deviation coherence-gate width that would be obtained if both
pulses were unchirped, or had equal chirps:

1 1
+

— (3.39)
20'R 20R

Tunchirp =

while T4 describes the amount of chirp mismatch between the reference and sample
pulse:
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Teritical = ‘JSS - 5R . (3.40)

Equation (3.39) shows that, if both pulses have equal or no chirp, then the coherence-
width is primarily determined by the bandwidth of the narrower pulse. Thus, the
coherence-width will be determined by the fiber interferometer arm with the least SPM,
or smallest pulse encrgy. This results from the fact that the cross-spectral density of the
two pulses is equal to the product each pulse's Fourier transform, which is dominated by
the narrower bandwidth.

The minimum standard deviation coherence-width, 27,04, Will be broadened
with increasing chirp mismatch 7., between the pulses according to

1

= Yeritical 4
2tclu'rp - 2Tunchirp 1+ Tounchi . (3.41)
unchirp

The broadening becomes apparent when the magnitude of the chirp mismatch parameter
Teritical @PProaches the unbroadened half coherence-width 7,,.47p.

The spatial frequency, k, of the cross-correlation will be chirped with increasing
nath length mismatch A, similar to Eq. (3.28):

k=49 _ (wg) - el AB’(ep)’ AL, (3.42)

4 4
dAt Tunchirp * Teritical

Finally, the peak of the cross-correlation signal, which influences the

interferometer sensitivity, will decrease by the multiplicative factor

ZO'RO'S 1

|FNUR0'S o} + Us

(3.43)

FNy -

4
14 Teritical
Tunchirp

The first term on the right hand side of Eq. (3.43) describes the signal amplitude
degradation due to the bandwidth mismatch between the pulses. For a 3 dB degradation
in signal power (signal amplitude squared), the bandwidths of the reference and sample
pulse must be mismatched by a factor of about 3.7. The second term on the right hand
side of Eq. (3.43) is the signal loss due to chirp mismatch between the pulses, and as seen
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the in the previous section, the loss in signal amplitude scales as the square root of the
coherence-width broadening.

If a modelocked laser source is employed, then the deleterious effects of SPM
may be reduced by ensuring that the reference and sample pulses both have the same
bandwidth and chirp. The effect of SPM on a pulse will decrease with increasing
propagation distance, since increasing amounts of pulse chirping and broadening will
decrease the peak intensity. Thus, the input fiber to the interferometer should be long so
that most of the nonlinear effect occurs before the pulse is split into the reference and
sample arm paths. In the current transillumination system, the input fiber length is
greater than 2 m.

3.4 Signal Modulation

The coherence-gated interferometric signal is placed on an intermediate carrier
frequency by piezoelectric phase modulation to enhance detectivity and allow
narrowband detection above the predominant low frequency mechanical noise in the
system. This section describes this modulation and detection technique.

3.4.1 Narrowband Phase Modulation and AM Lock-In Detection

The reference arm path length is sinusoidally varied at a modulation frequency
w,, by a piezoelectric fiber stretcher mathematically described by

Al = AL+ Msinwp,t (3.44)

where M denotes the extent of the modulation. If M << A, then the modulation only
affects the interference fringes in Eq. (3.17) and the envelope of the coherence-gate
remains relatively constant, giving

2
Atg

2 1 N '
205 - AT, - ;
I < AR‘ASe Te Jwg Pe jﬁ(wo)'&lsmwm{.

(3.45)
For M << A, the time-varying phase term can be Taylor expanded:

¢ Blog)Msinwpt JB(wo )M sin @t (3.46)
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The actual photocurrent is then determined by the real part of the phase terms in Eq.
(3.45)

a7,

2
I < AgAge 207 [cos woAT, —sin AT, - B(w )M sin w,,,t] (3.47)
and consists of both a DC component and a time varying component at the modulation
frequency @,,.

Lock-in detection demodulates the sinusoidally varying component of the
photocurrent by correlating the interferometric signal with a reference signal at the
modulatior. frequency. The modulated component is obtained by subsequent low-pass
filtering, giving a DC signal proportional to

AT

0 N

LA S

20

AgAge sinwpAT, -%ﬁ(wo)M (3.48)

The modulation reduces the signal amplitude by a factor of

-;—B(wo)M. (3.49)

3.4.2 Quadrature Fluctuations

Eq. (3.48) shows that the demodulated interference signal disappears when
sinwpAt, = 0, or at the interferometric fringe peaks and valleys, and is at a maximum
when the two interferometer path phase delays are in quadrature. These periodic signal
drop-outs are undesirable and may be exacerbated by thermal fluctuations in the
interferometer path lengths over a distances of more than a quarter wavelength,

The signal amplitude may be averaged over the thermal fluctuations in arm
length, resulting in an approximate 6 dB loss of signal power. This averaging, however,
limits acquisition time to a few seconds per resolution point, since the thermal
fluctuations oscillate at about 1-2 Hz.
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Thermal Quadrature Fluctuations
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Figure 3.2. Quadrature fluctuations. (A) Demodulated interferometric
signal as a function of time showing thermal quadrature fluctuations. (B)
Demodulated interferometric signal versus time with the phase dithering
and averaging technique employed. Quadrature fluctuations are
significantly reduced. A 6 dB loss in peak signal power is incurred.

Faster acquisition may be obtained by inducing artificial path length variations in
the interferometer arms over a quarter of a wavelength which are faster than the thermal
variations. This phase dithering technique may be accomplished by superposing a low
frequency (10-100 Hz) modulation waveform on the piezoelectric transducer responsible
for phase modulation of the signal. The low frequency modulation should dither the
phase over at least a quarter of a wavelength during the acquisition time for each
resolution element to ensure that a signal maximum is reached. The signal detection
requires a bandwidth faster than the phase dithering frequency, so that the induced
quadrature fluctuations may be sampled and subsequently averaged.

In the current system, as the sample is raster scanned, an image point is taken
every 50 ms. The phase dithering frequency and amplitude are set so that the path length
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difference varies over a quarter of wavelength in 50 ms. Thus, for every image point, 10
signal samples are taken and averaged over the phase dithering, resulting in a data point
which is relatively unaffected by thermal quadrature variations. Figure 3.2 demonstrates
the benefits of this phase dithering and averaging, comparing the demodulated
interferometric signal versus time taken with and without the phase dithering technique
employed.

3.5 Noise Sources, Detection, and Dynamic Range

The dynamic range of the transillumination system is important for imaging
through thick samples. This section will review various noise sources, their statistical
properties, and the limits they impose on the system sensitivity to weak transmitted light.
A design procedure to achieve shot noise limited detection will be presented and trade-
offs between different system parameters, such as scanning velocity, spatial resolution,
and dynamic range will be discussed.

3.5.1 Notation and Definitions

The statistical expected value operator will be denoted by either ( ) or E{ }. The
operator is linear and commutes with differentiation. integration, and convolution.

A continuous time stochastic process p(r) describes a family of probability
distribution functions indexed by the variable ¢. Thus, p(f) represents a infinite sequence
of random variables, which, for a given experiment, defines a continuous function of
time.

All the noise sources analyzed here may be described by zero-mean, wide-sense
stationary (WSS) stochastic processes. A WSS stochastic process p(¢) has a constant
mean

E{p(l)} =m, (3.50)
and a statistical autocorrelation
Ry(n.12) = E{p(n)p(r2)} (3.51)

which is a function of 1, — 1) alone, so that
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Ry(n.12) = Ry(12 —1y) = Rp(7). (3.52)
The autocovariance is defined by
Kp(.12) = Ry(11.02) — E{p(01)} E{ (1)} (3.53)

and for zero-mean WSS processes is also a function of #; — ) and equal to the auto-
correlation:

Kp(n.t2)=K,y(1)=R,(1). (3.54)
The statistical power spectral density S(w) is the Fourier transform of the autocorrelation

S(@) = [13( eI g (3.55)

and the usual Fourier transform relations apply. S(w)dw gives the average power stored
in the frequency band dw. The total average power in a process p(¢) may be obtained
from

P = .[:SP(“’)%% = R,(0) = var{p(r)} = (p(t))2 (3.56)

and, as shown, is equal to the process variance.

The spectral density S(w) is defined for both positive and negative frequencies
and is a real and even function of @ by definition. Many diagnostic instruments such as
spectrum analyzers, however, do not distinguish between positive and negative
frequencies. For convenience, we define a positive frequency power spectral density
S*(w) such that

ST (w) = S(w)+ S(~w) = 25(w) w>0. (3.57)
This definition will allow direct comparison of theory with experiment.

White noise is a stochastic process which has equal power spectral density at all
frequencies, a delta-function autocorrelation, and may be described by

S(w)=4q (3.58)
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R(7)=6(1). (3.59)

If a zero-mean WSS stochastic process x(¢) with power spectral density S, (w) is
passed through a linear system described by the s-domain transfer function H(s), the
output stochastic process y(r) is also zero-mean WSS with power spectral density Sy(w)
given by

$,(@) = [H(jo )’ Sy(w). (3.60)

3.5.2 Thermal Noise!5-17

Thermal noise arises from the random motion of particles due to the thermal
energy in a system. In electrical circuits, resistive components are the only passive
elements which exchange energy with the environment. Thus, thermal noise is associated
with the transfer of energy and temperature equilibrium established between a resistor
and its surroundings.

The thermal noise density of an arbitrary resistor may be derived from

i

s
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Figure 3.3. Circuit representation of a noisy resistor connected to a
resonant LC harmonic oscillator.

thermodynamic reasoning. We assume that the resistor is connected to an arbitrary
lossless energy storage system, which in electrical circuits may be composed of
capacitors and inductors. The stored energy after thermal equilibrium is established must
then equal the energy provided by the resistor interacting with its environment. The
stadstical characteristics of this energy define the statistics of the noise process.

A noisy resistor may be modeled as the parallel combination of an ideal resistor
with resistance R, and a current source i, which represents the thermal noise or energy
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provided by the environment. We compute the power spectral density of the source i, by
assuming that the noisy resistor is connected to an arbitrary resonant LC circuit, as shown
in Fig. 3.3. The thermal energy stored in the LC circuit at the resonance frequency will
determine the power density of the thermal noise from the resistor at that particular
frequency. The parallel LC combination is the electrical analog of the familiar harmonic
oscillator; thus, the development of the thermal encrgy storage will parallel the derivatior
of the spectral characteristics of black-body radiation!8 or the classical specific heat of a
solid!9.

The LC storage element has a resonance frequency g = 1/+/LC. From quantum
theory!8, the energy levels available to a harmonic oscillator resonant at frequency Wy
are restrained to

En(w0)=(n+%)hw0 n=0,12... (3.61)

In thermal equilibrium at temperature T, the mean energy of the oscillator may be
computed from Boltzmann statistics as6.18

oo __E’l(wO)
zEn(ka kT A
_ n=0 _1 )
(E(wp)) =2 ST = Shwo + g — (3.62)
ze kT e kT -
n=0

This mean thermal energy is exactly the mean electrical energy stored in the circuit, so
that the following relationship holds:
Yy, Loy 2
(E(wy)) = 5L<z, )+ §C<vc ) (3.63)
where (1}2) and (vcz) are the variances of the zero-mean inductor current §; and capacitor
voltage v, respectively.

We want to relate the power spectral density S,n (w) of the noise current §, to the
mean energy (E(wo )) This relationship is possible through the linear system defined by
the circuit in Fig. 3.3, The s-domain transfer function H(s) between the noise current
I,(s) and the capaciior voltage V,.(s) is
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) _s 1

A= In(s) C52,204,
0

(3.64)

2
(04
where the quality factor Q is

Q0= R\/g . (3.65)

The transfer function between the noise current /,(s) and inductor current /;(s) is simply

L) _ 1
1,6) 5L H(s). (3.66)

Using Eq. (3.56), we rewrite Eq. (3.63) in terms of the power spectral densities S; (@)
and S, (@) of the inductor current and capacitor voltage, respectively:

1 (= do 1 _ (% dw
(E(wo)) = L .[_ms"(“’)ﬂ +>C J._“Svc(‘”)g; (3.67)

The linear system relates these spectral densities to the power spectrum of the noise
source through Eq. (3.60) and leads to

1 (= [HGUe) . o 1 (=, d
(E(ep)) = ELI:IT)LS"" @)+ ECLJH( jo)’s, @5 (368

We evaluate the integrals by supposing that we have chosen the inductance L to be very
small and the capacitance C to be very large so that Q approaches infinity. In this limit,

.2 . . .. .
|H( jw)| approaches a pair of delta functions centered at the positive and negative
resonance frequencies

Qli_r:uw|H(j‘cx))|2 = -;—g—[% &(w - wp) + %5((0 + wo)]Zn (3.69)
and the integrations simplify to
1
(E(w0)) = 3 R-S;, (wo)- (3.70)

43



Since the choice of resonance frequency is arbitrary, we can drop the zero subscript and
insert Eq. (3.62) to arrive at the expression for the power spectral density of the noise
current:

ho
Tho
ekl —1

how + w20. (3.71)

2
5,(@)=5,,(-0) = =

1
2

Any real resistor will be a noise source, providing a current with power spectral density
given by Eq. (3.71).

For normal electronic frequencies, we can neglect the term due to the zero-point
energy in Eq. (3.71) and Taylor expand the exponential. The noise current density is
approximated by white noise with density

Through Thevenin's theorem, a noisy resistor may also be modeled as an ideal resistor in
series with a zero-mean voltage source v,, with spectral density

S,, (@) = 24TR. (3.73)

3.5.3 1/f Noise 20

1/f noise, or flicker noise, is present in all active electronic devices and optical
systems. The power spectral density of flicker noise has a 1/ f frequency dependence and
its amplitude distribution is generally non-gaussian. The origins of 1/f noise are varied,
but it is often caused by traps associated with contamination and defects in semiconductor
materials. These traps capture and release carriers randomly with a certain time-constant,
creating a noise density that is concentrated at low frequencies. In optical set ups, 1/f
noise may also result from mechanical vibrations of optical mounts and components
which tend to resonate at low-frequencies.

The effect of 1/f noise may be reduced by modulating and detecting the desired
signal at a frequency above the effect of the predominant time-constants in the system,
where the flicker noise density is reduced compared to other sources.



3.5.4 Shot Noise 15.17

Shot noise arises from current fluctuations due to the quantization of light and
charge. A photodetector will emit charge corresponding to a mean rate defined by the
photocurrent; however, the time between specific emission events will be random. Thus,
on a microscopic scale, the fact that the charge must occur in finite increments induces
random fluctuations in the current. We expect that the amount of photodetector shot
noise should somehow be proportional to both the electronic charge and the mean
photocurrent.

We assume that the probability of a photon arrival (and consequently the emission
of an electron by the photodetector) during a given infinitesimal interval dr is
independent of all other intervals and equzl to Adr, where 1 is the mean arrival rate. The
electron emission times are therefore described by a Poisson distributed random
variable2! according to

e~ (aant

X (3.74)

Pr{k emissions in time Ar] =
The assumption of Poisson statistics for electron emission times is not fundamental and
may be derived from the quantum mechanical statistics of the single-mode photon
coherent state!8. The mean of the above Poisson density function defines the average
number of electrons emitted in a time interval As and equals AA:z. The correlation of
Poisson random variable x is

E{x?} = Anr+ (Anr)”. (3.75)

We will further assume that each emitted charge has an infinitesimal extent in
time, so that the photocurrent may be modeled as a sequence of delta functions, each with
area equal to the electronic charge e, which have Poisson distributed arrival times. The
time-average of this Poisson impulse process will equal the average photocurrent (i). To
arrive at the statistics of this process, we form the stochastic process ¢(r), which
represents the total amount of charge emitted by the photodetector between time 0 and 1.
For each given 1, q(¢) is a Poisson distributed random variable, so that its mean and
correlation are

E{q(r)} = eAs (3.76)
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E{q(r?} = e2[as+ (297 3.77)

respectively. To compute the stochastic process autocorrelation,
Ry(n.r) = E{q(r1)a(r2)}. we use the fact that for Poisson emissions, different time
intervals are statistically independent. For ) <13,

E{a(n)a(2)} = E{a(n)* |+ E{a(n)a(2) - a(n)]}
= E{q(fx )2} +E{q(n)}E{a(r2) - q(n)}

2
= e2[).tl +(An)" +AnA (2 -1 )] (3.78)

Since R, (#,52) = Ry(t2.1,) by definition, we have

Ry(n.12) = ez[x min(f),5) + lztltZ]. (3.79)

The Poisson impulse process which describes the shot noise photocurrent is the
time-derivative of the random process which describes the total charge. Defining the
stochastic process

i() = (“) (3.80)

we can immediately compute its mean E{i(r)}, which must equal the average
photocurrent (i)

E{i(0)} = s{ d’} 2 Elat) = et = () (3.81)

thereby defining the rate parameter A. The autocorrelation R;{t),;) of the shot noise
process is

Rlnis)= el - LU LLN 22 )

= *[48(7) - ] (3.82)

and is a function of T =1, — 1 alone. Thus, shot noise is WSS.
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The shot noise power spectral density S;(®) is just the Fourier transform of Eq.
(3.82) and is given by

S;(w) = e2[21tl26(w) + A] = (i)22n8(w) + ei). (3.83)

Neglecting the delta function at zero frequency which just results from the mean DC
value of the photocurrent, the shot noise associated with any photocurrent (i) is white,
and its power spectral density is proportional to the photocurrent and the electronic
charge via

S[(w) = e(i). (3.84)
Note that the noise power S;(w) scales as the square root of the photocurrent power (i)z.

The above analysis only applies for a constant mean photocurrent. This
assumption is justified for the transillumination system since in practice the light incident
on the photodetectors will be dominated by the constant light emitted from the reference
arm.

3.5.5 Local Oscillator Noise and Dual Balanced Detection

In a conventional interferometer with only one detector, the interferometric
photocurrent consists of two DC components and an interference component. Following
the results of Sec. 3.3.2, for an ideal plane wave light source the photocurrent is given by

1 1
] o< EA% +5A52'+COS[ﬁsls—ﬂRtR—((Ds—wR)t+§:| (3.85)
recalling that fields incident on the detector are
Eg = Age /PRERRY)

Eg = Age HPsts-as) (3.86)

Detection involves separating the interferometric component of the signal from the DC
components, which may be accomplished by phase modulation and narrowband lock-in
demodulation as described in Sec. 3.4.
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If the source has random intensity fluctuations at the phase modulation frequency,
then the amplitudes of the fields, Az and Ag, will actually vary with time and invade the
detection bandwidth which is centered around the modulation frequency. These intensity
fluctuations will then be indistinguishable from the real interference signal and will
degrade the dynamic range of the system. This effect is known as local oscillator noise.

Dual balanced detection reduces the effect of local oscillator noise by employing
two detectors and subtracting their photocurrents to cancel out the unwanted DC
components22, Cancellation of the DC components while preserving the interference
signal is possible because the interference signal is 180° out of phase at each detector.
This phase relation is evident from evaluating the scattering matrix presented earlier in

Eq. (3.6)

Dual balanced detection does not reduce shot noise. The zero-mean shot noise
stochastic processes from each detector are statistically uncorrelated, so that their noise
variances add when the photocurrents are subtracted.

3.5.6 Excess Intensity Noise

Excess intensity noise includes any noise source whose power spectral density
scales linearly with the mean photocurrent power (i)2. Examples include excess local
oscillator noise not canceled by balanced detection, and mechanical motion of optical
mounts that does not have a 1/ f character. The spectral density of the noise current may
be approximated as white over the frequency band of interest and may be modeled as

S;i(w) = ey(i)? (3.87)

where the noise parameter ¥ must usually be determined by experiment.

3.5.7 System Design for Shot Noise Limited Sensitivity

Figure 3.4 shows a schematic diagram of the dual balanced detection circuit. The
photocurrents are subtracted at a node, and the difference photocurrent is converted into a
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Figure 3.4. Schematic diagram of the dual balanced detectors and the
transimpedance amplifier.

voltage by a transimpedance amplifier. For low frequencies, the signal voltage v at the
output is equal to

v=(q-i)R (3.88)

where R is the amplifier feedback resistance, and i; and i, are the two detector
photocurrents. The capacitance C in parallel with the feedback resistance is necessary for
amplifier stability and causes the amplifier to roll-off at 20 dB/decade for frequencies
above the dominant pole at

1

= — 3.89
2nRC (-89

fe
For the component values R =1MQ and C = 0.01 pF, the transimpedance amplifier
bandwidth is f, =159 kHz.

The ability of the balanced detection circuit to cancel local oscillator fluctuations
was assessed by placing a sinusoidally modulated light source incident on both detectors.
The amount of cancellation was defined as the ratio of the output power with no detectors
blocked divided by the output power with one detector blocked. Figure 3.5 plots the
cancellation as a function of source modulation frequency showing that 60 dB of
cancellation is obtained at a modulation frequency of 10 kHz. The amount of
cancellation decreases quickly for frequencies above 10 kHz.
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Figure 3.5. Local oscillator intensity noise cancellation with dual
balanced detectors. More than 60 dB of cancellation is obtained at a
modulation frequency of 10 kHz.
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Figure 3.6. Thermal noise spectral density of the transimpedance
amplifier. The measured density is predicted by 4kTR = —138 dB V2/Hz.
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The thermal noise in the system is dominated by the thermal noise due to the large
feedback resistance in the amplifier. The noise power spectrum for the transimpedance
amplifier was measured by plotting the output voltage on a spectrum analyzer with both
detectors covered, shown in Fig. 3.6. The white component of the noise is measured at
-137 dB V2/Hz, which corresponds to the predicted thermal noise density
4kTR = —-138 dB V2/Hz for R=1MQ and T =300° K. Note that the spectrum
analyzer measures the power spectral density for both positive and negative frequencies
simultaneously so that the theoretical expressions for the spectral density derived in

earlier sections must be multiplied by two to compare with actual measurements
$*(w) = 25(w)).

An ideal detection system will only be limited by the shot noise arising from
random intensity and voltage fluctuations arising due to the quantization of hght and
charge. To achieve this shot noise limit, the system parameters must be chosen so that
the shot noise spectral density overwhelms the noise spectral density from other sources
in the detection bandwidth of interest.

First the phase modulation frequency, or detection band is selected so that it is
above the predominant, low frequency 1/f noise in the system. A modulation frequency
of 10 kHz was chosen as the highest frequency at which the balanced detectors could
achieve adequate cancellation.

The low-frequency s-domain transfer function between the input current /(s) and
output voltage V(s) of the transimpedance amplifier is just H(s) = V(s)//(s) = R. Thus,
using Eq. (3.60) and noting that different noise processes are statistically independent, the
positive frequency power spectral density S, (@) of the noise voltage at the output of the
transimpedance amplifier is equal to R? times the noise current input spectral density, or

SH(w) = 2¢(i)R? + 2ey(i)* R? + 4kTR
= 2e(V)R + 2ey(v)? + 4kTR (3.90)
where the terms represent, from left to right, the contributions from shot noise, excess
intensity noise, and thermal noise, respectively. (v) is the mean voltage output of the

amplifier, and in the limit where the reference arm light intensity dominates the weak
light emerging from the sample, (v) is proportional to the reference arm power. Note that
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for a dual detector system, (v) equals the sum of the magnitudes of the DC voltages at
each detector separately.

The transimpedance gain R and the reference arm power (v) are chosen so the
shot noise term in Eq. (3.90) is greater than the excess intensity noise and thermal noise.
To ensure that the shot noise eclipses the thermal noise, we require 2e(v)R > 4kTR, or

) > 2L 20,05V for T = 300° K. (391)
(4

This limit defines the absolute minimum reference arm power. The gain R must be
chosen so that the shot noise dominates the excess intensity noise, or

R > y(v). (3.92)

The upper limit on R is determined by the transimpedance amplifier stability and roll-off
frequency in Eq. (3.89). Ideally, the gain R should be as small as possible and the
reference arm power (v) should be as large as possible so that the resulting light intensity
will be strong enough to fall in the linear region of the detectors, and so that the reference
arm power will dominate the light emerging from the sample.

In practice, to construct the detector circuit, R is chosen before (v). Since the
excess intensity noise parameter ¥ is usually unknown, given R, the optimal value of (v)
must be determined experimentally. The procedure is to successively attenuate the
reference arm power (v) and examine the noise spectral density on the spectrum analyzer
until the white component equals the predicted shot noise value 2e(v)R. Attenuation of
the reference arm intensity reduces the excess intensity noise linearly with decreasing
signal power (v)2, but only affects the shot noise component as the square root. If (v)
needs to be decreased below the thermal noise limit of 0.05 V, then the amplifier gain R
should be increased, and the procedure repeated.

Figure 3.7 shows the measured noise spectral density at the output of the
transimpedance amplifier for R =1 MQ and the reference arm power optimally
attenuated so that the DC voltage from each detector separately is (v) =0.2 V. The l/f
component of the noise is negligible above 2 kHz. The white component of the spectral
density occurs at -127.5 dB V2/Hz, which is 1.5 dB above the shot noise level of
2e(v)R =-129 dB v? /Hz. The detection is significantly worse if only a single detector
is employed (Fig. 3.8). For a single detector, the spectrum is dominated by local
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oscillator and 1/ f noise, so that at the detection band of interest (10 kHz), the noise level
is-108 dB Vz/l-lz and more than 20 dB above the shot noise value.
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Figure 3.7. Shot noise and 1/ f noise spectral density with dual balanced
detection. At the detection band of 10 kHz, the system is within 1.5 dB of

the predicted shot noise limit 2e(v)R = —-129 dB v2/[Hz.
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Figure 3.8. Local oscillator noise without dual balanced detection. The
noise spectral density at 10 kHz is -108 dB V2/szhich is more than 20
dB above the shot noise density of 2e(v)R = —129 dB V2 /Hz.
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3.5.8 System Dynamic Range

The dynamic range, or signal-to-noise ratio (SNR) for any system is defined
simply as the maximum signal power Py, divided by the mean noise power £, .
From Eq. (3.56), the mean power of a noise process n(t) equals the integral of its power
spectral density S,(w) over all frequencies, or equivalently the noise process variance
var{n(t)}, so that the SNR is given by

SNR = Psignal - Psignal - Psignal (3.93)
Proise e do  var{n(r)} '
Sn(w)E;

For the coherence-gated transillumination system, the maximum electrical signal
power is equal to the square of the photocurrent signal evaluated at the peak of the
coherence-gate cross-correlation in Eq. (3.23). To simplify the expression for the signal
power, we neglect the degradations in signal amplitude caused by group velocity
dispersion (Eq. (3.29)), self-phase modulation (Eq. (3.41)), piezoelectric phase
modulation and lock-in detection (Eq. (3.49)), and quadrature fluctuations (Sec. 3.4.2),
although these effects may considered later by reducing the SNR by the respective
multiplicative degradation factors (squared). The maximum signal power Fy;pp, for the
ideal case is obtained for a sample which does not attenuate transmitted light, and is
given by

ne

2

2

R*PsP, 3.94
fl) STR ( )

Rsignal = (
where 7 is the detector quantum efficiency, @ is the optical frequency, R is the
ransimpedance amplifier gain, Pg is the time-averaged optical power incident on the
sample, and Py is the time-averaged optical power in the reference arm.

The mean noise power Py, depends on the noise spectral density S, (@) at the
output of the system and is function of the detection bandwidth. After the interference
signal is detected and amplified by the transimpedance amplifier, the signal is
demodulated and low-pass filtered by the lock-in amplifier. The demodulation and
filtering action may be described by a lincar system H(s). If the noise spectral density at
the output of the transimpedance amplifier is S, (w) (Eq. (3.90)), then the total system
noise spectral density S, (w) is, frorn Eq. (3.60),
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Su(@) = |H(jo)’ S, (@). (3.95)

For a shot-noise limited system (Sec. 3.5.7), S,() is white over the frequency range of
H(jw), and the noise power may be written

o d
Poise = J |H(1w)|2Sv(w)-i-$=S‘T(w)-NEB (3.96)

recalling that S} (@) = 25, (), and defining the noise equivalent bandwidth (NEB) as

2 do

NEB = j |H(jw .
0 2n

(3.97)

The noise power is proportional to NEB, which is a measure of the width of the dctection
bandwidth.

Since the system has been designcd for shot noise limited detection as in Sec.
3.5.7, the main contribution to S (@) is the shot noise voltage spectral density 2e(i)R2,
where the mean current (i) is proportional to the reference arm power Pg. Inserting Egs.
(3.96) and (3.94) into Eq. (3.93), the signal-to-noise ratio becomes

SNR = (—"—)—PL—. (3.98)
hw/2-NEB

In the shot noise limit, the dynamic range does not depend on the reference arm power

Pr. Equation (3.98) shows that the instrument sensitivity depends linearly on the power

Ps incident on the sample, and inversely on the detection bandwidth NEB. For the

transillumination system, the detection bandwidth is essentially the bandwidth of the final

low-pass filtering operation after demodulation.

3.5.9 Acquisition Speed, Dynamic Range, and Spatial Resolution

The required NEB of the detection system is determined by the trade-off between
acquisition speed and spatial resolution. Raster scanning the sample produces a time-
varying signal waveform. The maximum bandwidth of this waveform, determined by the
scanning velocity and spatial resolution, defines the minimum cut-off frequency of the
final low-pass filtering operation.
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Suppose that the final low-pass operation is an ideal, rectangular low-pass filter
with cutoff frequencv f.. The impulse response h(t) of such a filter is given by

h(s) = 313—(%"1‘-'—) (3.99)

The full width of the main lobe of h(t) is Ar = 1/ f, and defines the temporal resolution of
the low-pass filter. In other words, impulses in time at the input of the low-pass filter
may be localized at the output of the filter if they are separated by aboutt As seconds.
The spatial resolution Ax of the system is related to the temporal resolution Ar of the
filter through the scanning velocity v;:

Ax=vh =, (3.100)

c

Given a desired spatial resolution and scanning velocity, one can compute the necessary
filter bandwidth through the relation f, = v;/Ax.

To accurately digitize the signal, sampling must occur at the Nyquist rate 2/, to
prevent aliasing. Thus, the required distance between samples is Ad = Ax/2, or half the
spatial resolution.

The NEB of the ideal low-pass filter is just equal to f,, so that the signal-to-noise
ratio in Eq. (3.98) becomes

szwe:(l)fiﬁ. (3.101)
hw) 2 v

Since the scanning velocity determines the total acquisition time, the dynamic range
increases linearly with increasing acquisition time. The sensitivity also increases linearly
with decreasing spatial resolution.

For the current system, the scanning velocity is limited by the two-dimensional
translation stage to v, =1 mm/s. Since a spatial resolution of Ax =100 um is desired,
the minimum low-pass filter bandwidth is f. =10 Hz. The interferometer path length
phase is dithered at a low frequency to enable averaging over quadrature fluctuations, as
described in Sec. 3.4.2. In order 10 average over 10 samples, the filter cut-off was
increased by a factor of 10 to f, =100 Hz so that the filter could respond to signal
variations induced by the phase dithering. Although the filter bandwidth was increased
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by a factor or 10, the mean noise power was not affected because the 10 times signal
averaging reduced the noise spectral density by a corresponding 10 times. Averaging the
signal fluctuations, however, reduced the dynamic range by approximately 6 dB.

The actual dynamic range for these parameters was measured by placing neutral
density filters in the transmission path and was 130 dB. The spatial resolution was
determined by raster scanning an Air-force resolution chart (see Sec. 5.2.1), and was
measured to be about 100 um, as expected.
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Chapter 4

Coherence-Gated Light Scattering in Random Media

4.1 Introduction

The coherence-gated transillumination system is a useful tool for studying the
coherent scattering properties of model scattering media and biological tissues. A
scattering sample is inserted into the transmission arm of the interferometer. The
spatially and phase coherent component of the scattered light emerging from the
specimen is temporally profiled by plotting the magnitude of the interference signal
versus the reference arm path length, or equivalent coherence-gate time delay.

Coherent scattering profiles have been obtained with the transillumination system
for model scattering systems consisting of latex microsphere suspensions. Since the
complete electromagnetic field solution for scattering from a uniform sphere is known,
these studies permit correlation of analytically predicted scattering parameters with
experimentally observed scattering profiles. Time-resolved coherent scattering from
biological specimens has also been analyzed, although tissue inhomogeneities make these
profiles more difficult to interpret. These biological profiles may be compared to the
model scattering system to potentially establish or confirm tissue optical characteristics.

This chapter will present a brief introduction to Mie theory and radiative transport
theory for scattering from uniform spheres and random distributions of particles
respectively. Then, some previous results involving time-resolved incoherent scattering



will be reviewed. These results will then be compared to coherent scattering experiments
performed with the coherence-gated transillumination system.

4.2 Scattering Theory for Spherical Particles

Mie scattering theory is an exact solution for the scattering of a plane
electromagnetic wave by a single, homogenous, isotropic sphere. Since the theory is
based on a rigorous solution of Maxwell's equations, it includes the effects of
polarization, interference, and diffraction. This section will define the amplitude
scattering matrix, a convenient formalism for describing the scattered field radiating from
an arbitrary particle, and the scattering cross-section and anisotropy parameters.
Rayleigh scattering will be reviewed and placed in the scattering matrix formalism.
Finally, numerical solutions describing Mie scattering from various sized spheres will be
presented.

4.2.1 Amplitude Scattering Matrix!

The amplitude scattering matrix S relates the incident to the scattered field in the
far field approximation. Consider a scattering particle located at the origin with a plane
wave E; incident in the z direction (Fig. 4.1). In the far field, regardless of the shape of
the particle, the scattered wave E; is approximately transverse and has the form of a
time-harmonic spherical wave2:

ek

E,(r,0.9) = (6,9) 4.1)
where f(6,9) is a complex vector representing the amplitude, phase, and polarization of
the scattered field propagating in the direction defined by the scattering angle @ and the
azimuthal angle ¢ (which are the normal spherical coordinates).

The incident and scattered fields can each be split into two orthogonal
polarization components perpendicular and parallel to the scattering plane, defined as the
plane containing the k vectors of the incident and scattered waves. Then, the vector
function f(6,¢) becomes a scalar 2 x 2 complex matrix §(8,¢). The relation between
the complex amplitudes of the incident and scattered fields may be rewritten as

€1



E - jkr _ E
[ st ] =¢ S(0.¢)-[ E"] 42)
il

where

- NI
S(0,¢)=[ 11 12] 43)

and the subscripts Il and L denote the parallel and perpendicular polarization components

Scattered Wave

Incident Wave

Figure 4.1. Geometry of the general scattering problem. The incident
wave propagates in the 2 direction. @ is the scattering angle and ¢ is the
azimuthal angle. &;, €;,, €y and &, define the unit vectors for the
parallel and perpendicular polarizations of the incident and scattered
waves.

respectively of the incident or scattered field. For clarity this definition is different from
the scattering matrix presented in Ref. 1. The unit vectors in the parallel and
perpendicular directions for both the incident and scattered waves are shown in Fig. 4.1.
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For spherical particles, symmetry simplifies the amplitude scattering matrix so
that the off-diagonal matrix elements are nonexistent and S = S(8) is a function of the
scattering angle 6 alone:

Su(6) 0 ] 4.4)

(@) =[ 0 5u(0)

4.2.2 Rayleigh Scattering!-3

Rayleigh scattering is a special case of Mie theory, giving an analytical solution
for the scattered field valid for particles with dimensions much smaller than a
wavelength. In the Rayleigh limit, the incident electric field is assumed to have no
variation across the dielectric sphere. The incident field induces a time-harmonic dipole
moment in the particle, which consequently radiates a scattered field analogous to a
classical Hertzian dipole.

The electro-quasistatic dipole moment p for a dielectric sphere of volume V
experiencing a constant electric field E; is
em

E. 4.5
£ +2€, #)

where €; and ¢, are the dielectric constants of the sphere and the surrounding medium
respectively. The dipole moment is proportional to the volume of the particle and the
amplitude of the incident field. For the case of scattering, the incident field E; is a plane
wave with frequency @, so that the scattered field E; may be assumed to arise from the
radiation pattern of an ideal oscillating dipole with moment p. If E; is polarized in the Z
direction, then the expression for the scattered wave in the far field at a distance r and an
angle 6 from the particle is then
e Jkmr

2
Eg=—-+mP G (4.6)
aren, r

where k,, is the wavenumber in the medium and p is the magnitude of the induced
dipole. The scattered field is symmetric with respect to the azimuthal angle ¢ and
behaves like a plane wave polarized in the 6 direction propagating radially from the
particle. The scattered field is always exactly in phase with the excitation since the
induced dipole responds instantaneously to the incident field.
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To derive the amplitude scattering matrix for a Rayleigh particle, we instead
assume that the incidsnt wave is propagating in the Z direction. Thus, the incident field
must be transversely polarized in the x-y plane. In this geometry, the spherical coordinate
6 is exactly the scattering angle. The scattering matrix accounts for the polarization of
the incident and scattered waves by the division into components perpendicular and
parallel to the scattering plane. For Rayleigh particles, the scattering matrix S(6,¢) is

2
5(6,¢) = k. = Em |36 O] @7
Am £+ 2€,, 0 1

The polarization component parallel to the scattering plane has a cos 8 dependence on the
scattering angle, while scattering of the perpendicular polarization is completely
isotropic. As expected for a spherical particle, S(8,¢) is symmetric with respect to the
azimuthal angle ¢, and its off-diagonal matrix elements vanish.

The total scattering cross-section 0; is defined as the ratio of the total scattered
power divided by the incident intensity and has units of area. For Rayleigh scattering,

2
1| g—€p 2,4
o, =—|—=2"-"1 | V% 4.8

’ 6n(es+2£m] " %)

showing that the scattered power is proportional to the incident intensity and inversely
proportional to the fourth power of the wavelength.

The average cosine of the scattering angle, or the anisotropy parameter g, is
defined as

2
I|r(e,¢)| cos 04

g = (cos ) = 4%

; (4.9)
[Irce.o) a0
4r

and is an indication of the proportion of forward or backward directed scattering by the
particle. For isotropic, or symmetric scattering, g — 0; for highly forward scattering,
g — 1; and for highly backscattering, g = —1. The scattering for Rayleigh particles is
isotropic in the perpendicular polarization and symmetric about 90° for the parallel
polarization, so g = 0.



4.2.3 Mie Scattering Theory!3.4

The general Mie solution for scattering from a spherical particle of arbitrary size
is difficult and requires a series solution. The derivation will not be described here.
However, Ref. 1, Appendix A provides a useful FORTRAN program for numerically
evaluating the relevant scattering coefficients given the indices of refraction of the sphere
and the surrounding medium, the sphere diameter, and the incident wavelength.

Once the amplitude scattering matrix has been obtained, the cross-section g; may
be calculated from the matrix components for a general spherical particle as follows:

2 2
o5 = j(lslll +[S2| )dﬂ
4n

1
- ;z_[_l(|s, (O +[522(0) Ja(cos6)

(4.10)
Similarly, the anisotropy parameter g = (cos6) is given by
1
g=— (|S“|2 + |322|2)cos 6dQ
GS
4r
n (! 2 2
=— S1(OX” +(592(6)" |cos 6d 6
5. | 106X #[522(6) cosbu(eos0) )

For Rayleigh particles, these expressions reduce to the results given in Sec. 4.2.2.

Figures 4.2, 4.3, and 4.4 plot the Mie theory solution for 100 nm, 1 pm, and 10
pm latex particles suspended in water illuminated by an incident field at A = 830 nm.
The amplitude and phase of the perpendicular (S7;) and parallel (Sy)) polarization
components (with respect to the scattering plane) of the amplitude scattering matrix are
plotted versus the scattering angle 6. The components of the scattering matrix
correspond to the normalized amplitude of the scattered field as a function of scattering
angle. For the 100 nm particles in the Rayleigh limit (Fig. 4.2), the numerical Mie theory
solution closely corresponds to the analytical expressions obtained in Sec. 4.2.2. The

anisotropy g =0.066, and the cross-section o, =2.0x 10713 cm?,

The scattering
appears isotropic, with very little phase variation with scattering angle. For 1 um
particles with diameter on the order a wavelength (Fig. 4.3), the scattering is

predominantly forward directed (g = 0.960) and the cross-section is significantly larger
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(o5, =14x 1078 cm?). The phase of the scattered field varies approximately 45° over
the scattering angles corresponding to the forward scattering lobe. Finally, for 10 pm
particles with diameter much greater than a wavelength (Fig. 4.4), the scattering is very
highly forward directed (g =0.998), and the cross-section has increased to
g, =15x 1076 cm?. The phase of the scattered field varies rapidly with the scattering
angle. Thus, as particle size increases, the scattering becomes increasingly forward
directed, the cross-section increases so more power is scattered, and the phase of the
scattered field varies increasingly more with the scattering angle.

Magnitude
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Figure 4.2. Mie scattering solution for a 100 nm diameter sphere
(8 =0.066). (A) Amplitude of the parallel and perpendicular polarization
components of the scattered field. (B) Phase of the parallel and
perpendicular polarization components.
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Figure 4.3. Mie scattering solution for a 1 pm diameter sphere
(8 =0.960). (A) Amplitude of the parallel and perpendicular polarization
components of the scattered field. (B) Phase of the parallel and
perpendicular polarization components.
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Figure 4.4. Mie scattering solution for a 10 pm diamcter sphere
(g =0.998). (A) Amplitude of the parallel and perpendicular polarization
components of the scattered field. (B) Phase of the paraliel and
perpendicular polarization components.

4.3 Radiative Transport Theory

An exact solution of Maxwell's equations is not feasible to describe scattering by
biological tissue and other inhomogenous random media. Radiative transport theory is a
heuristic approximation to the scattering problem and deals with the transport of energy
through turbid media, rather than the propagation of electromagnetic fields. Since only
the intensity enters the formulation, diffraction and interference effects are ignored. The
theory also assumes that there is no interaction between successive scattering events.

This section will briefly describe the transport equation and its diffusion
approximation, which is commonly used to model light propagation through biological
specimens and describe tissue optical properties.
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4.3.1 Bcltzmann Transport Equation*

The transport equation used to describe light propagation through tissue relies on
the fundamental quantity 1(r,§) known as the specific intensity. The specific intensity
has MKS units of Wm2 sr”’! and represents the intensity per unit steradian (solid angle)
at the position r in the direction of the unit vector §. /(r,8) is decreased by absorption
and scattering in the media, but increased by light that is scattered from other directions
§’ into the direction §. The transport equation is the continuity relation which describes
these interactions and is given by

§-VI(r.8) = —(ug + ps)I(r.8) + J'p(ﬁ,é’)!(r.é’)dﬂ +8(r,8). (4.12)
Ar

where u, is the absorption coefficient, u; is the scattering coefficient, dQ is the
differential solid angle in the direction of §’, p(5,8’) is the normalized scattering phase
function, and $(r,8) is the distributed source function. The transport equation may be
intuitively understood as follows. The term §-VI(r,S§) is the differential increase in the
specific intensity in the direction §. The specific intensity is decreased by losses p,/(r,S)
and u/(r,8) due to absorption and scattering out of §, respectively. The term

" J' p(8.8°)(r.8')dQ (4.13)
4n

represents the increase in intensity due to scattering from directions 8’ back into §, and
S(r,S) describes any sources at r also emitting light into§.

The absorption and scattering coefficients ¢, and y; have units of inverse length
and describe the attenuation of light due to absorption and scattering. One may view p,
and u; as the probability of an absorption or scattering event occurring per unit distance
of propagation. Thus, the intensity of light which has not been either scattered or
absorbed after propagating a distance z through a random medium is reduced by a factor
of

¢ (Haths) (4.14)

from the incident intensity. The mean-free-path (MFP) between an absorption or
scattering event is given by either 1/u, or /i, respectively.
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The phase function p(8,§’) is the probability density function for scattering from §
into §’ and is normalized so that

[pspa=1 (4.15)
an

If the scattering is symmetric about the direction § of the specific intensity, then the phase
function is only a function of the scattering angle @ between § and §’. Usually the phase
function is not known precisely, so its effects are lumped into a single anisotropy
parameter, g, defined by

g= j p(5,8°)(s-8)dQ = Jp(&)cos 6dQ2 = (cos 6). (4.16)
an 4n

g is a convenient description of the anisotropy of a single scattering event and is
analogous to the anisotropy parameter defined for Mie theory. Thus, for complete
forward scattering g — 1, for isotropic scattering g — 0, and for complete backscattering
g - -1

The radiant energy fluence rate @(r) at any point r is found by integrating the
specific intensity over all 4 steradians and has units of W m2:

o(r) = fl(r,é)an. 4.17)
4n

4.3.2 Diffusion Approximation4-12

In the multiple scattering limit, the transport equation may be simplified into the
more tractable diffusion equation. The diffusion approximation is applicable far from
tissue boundaries or sources when scattering dominates absorption.

The specific intensity /(r,§) may be divided into two components:

I(r,8) = 1.(r,8)+I4(r.8). (4.18)

1.(r.5) represents all the light which has not yet interacted with the medium and
exponentially attenuates with propagation distance according to Eq. (4.14). 1,4(r,S) is the
remaining scattered portion of the intensity containing light which has been scattered at
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least once. If I4(r,8) is approximated by the first two terms of a Taylor expansion, then
the transport equation can be simplified to a steady-state diffusion equation:

~DV2(r) + p 0(r) = s(r) (4.19)

where s(r) is a source term, ¢(r) is the total diffuse fluence rate given by

o(r) = IlArj)dQ (4.20)
ar

and D is the diffusion coefficient:

= ! -
b 3[#0 +#s(l "g)] .

4.21)

If the diffusion approximation is valid, and if one can cnly make measurements of
14(r,8) and not I.(r,), then both the scattering coefficient u; and the anisotropy
gcannot be independently determined. Only the combined factor p(1 - g) appears in the
diffusion equation. Therefore, it is customary to define a reduced scattering coefficient
M’ such that

Mg =pus(l1-g). (4.22)

Equation (4.22) highlights the fact that anisotropic scattering (g # 0) described by a
scattering coefficient g is indistinguishable from isotropic scattering (g = 0) described
by a reduced scattering coefficient ug. The diffuse intensity for an anisotropic scattering
system may be analyzed as an equivalent isotropic system. A transport, or forward
scattering mean-free-path may be defined such that

1

mfp = (4.23)
forard ™ it 1s(1-3)

representing the mean-free-path between absorption and scattering events in the
equivalent isotropic system,

The diffusion equation in Eq. (4.19) is a steady-state equation and valid only after
equilibrium has been established. To analyze the transient dynamics of the fluence
¢(r,t), a time-dependent term may be phenomenologically added to the expression:
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-DV2¢(r-r)+1§¢(r.r)+ua¢(r.r)-—- s(r.1). (4.24)
c

Recall that the diffusion approximation is only valid in the multiple scattering limit, so
that Eq. (4.24) only applies for times much greater than the mean-free-time between
scattering cvents after all the sources have been turned on. Equation (4.24) has been
solved analytically for a homogencus slab yielding expressions for the reflection and
transmission of a short pulse!2,

4.3.3 Transport Coefficients for Mie Scatterers and Biological Tissue

The diffusion approximation of radiative transport theory reduces the properties of
the scattering medium to three parameters: the absorption and scattering coefficients y,
and W, and the anisotropy parameter g. While these parameters clearly cannot describe
many of the characteristics of a turbid media, they are standard, intuitive, and permit a
quick comparison of the optical properties of various biological tissues. The transport
parameters may be measured by many techniques, including steady-state and time-
resolved optical reflectance and transmittance!3-16,

In general, u,, p; and g depend on the wavelength. For biological tissue, the
wavelengths between 600 and 1300 nm are known as the "therapeutic window" because
these wavelengths fall outside the absorption bands of hemoglobin, melanin, and water so
that light has the deepest penetration into tissue. For light in the therapeutic window,
typical values of the transport parameters are p, =1 cm’!, Hs =100 cm’!, and g=10.9.
Thus, a typical tissue has a MFP between absorption events of 1 ¢m, and a MFP between
scattering events of 100 pum, and a forward scattering MFP of 1 mm. For most tissue,
scattering dominates absorption and each scattering event is highly forward directed. A
good summary of tissue optical properties for various wavelengths and tissues is provided
in Ref. 16.

The transport coefficients may also be related to the scattering amplitude matrix
obtained from Mie theory for scattering from spheres. If the spheres are not absorbing
then the absorption coefficient u, = 0. If each scattering event is independent, then the
scattering coefficient g is proportional to the scattering cross section 6 computed from
Mie theory, and the number density N of particles in the medium:

Uy =Na,. (4.25)
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Thus, the mean-free-path between scattering events is ;! = (No,)—l. The anisotropy
parameter g is interchangeable between Mie and transport theory. As seen carlier, g — 0
in the Rayleigh limit for small spheres. As the particle size increases, the scattering
becomes more forward directed, and g — 1.

Since scattering dominates absorption in tissue, suspensions of Mie scatterers
provide a convenient and quantitative tissue phantom for scattering experiments. The
anisotropy and number of scattering MFPs may be varied to approximate various tissue
types by using spheres of different diameters and concentrations.

4.3.4 Monte Carlo Simulation!7-20

Monte Carlo simulation is based on radiative transport theory and improves on the
approximations in diffusion theory. Light distribution in tissue is calculated by
probabalisticaily propagating individual photons during discrete units of time. For each
time interval, a given photon has a probability of absorption or scatter defined by the
ransport coefficients p, and p, respectively. The direction of each scattering event, if
one occurs, is determined by a random number weighted by an assumed phase function.

Unlike diffusion theory, Monte Carlo methods are applicable near tissue
boundaries and sources, for all times, and for few scattering events. A complete phase
function is assumed and not compressed into a single anisotropy parameter. However,
the computational resources required by a Monte Carlo program can be considerable.
Comparisons of diffusion theory with Monte Carlo simulation have shown that results are
similar in the regime where diffusion theory is valid.

4.4 Review of Time-Resolved Incoherent Scattering Studies

Time-resolved studies of short laser pulses transmitted through turbid media have
so far been limited to incoherent detection and time-gating techniques. Experiments
show that a short pulse propagating through a scattering system emerges in two
components: an early arriving, unscattered, or ballistic component, and a later arriving,
multiply scattered and temporally broadened diffuse component.

Yoo and Alfano2! have used an 8 ps resolution streak camera to temporally
profile an 80 fs pulse propagating through a slab of random media consisting of various
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sizes and concentrations of latex microspheres suspended in water. The concentration of
microspheres was measured in the number of mean-free-paths (MFPs), computed from
Mie theory, contained in the 1 cm thickness of scattering media. An early arriving
ballistic component is observed for concentrations below 15 MFPs, while both a ballistic
and later arriving and temporally broadened diffuse component appear for concentrations
above 15 MFPs. The diffuse component overwhelms the ballistic component above 25
MFPs. The temporal displacement between the ballistic and diffuse peaks decreases as
the size of the scatterers increases, from 20 ps for 330 nm diameter spheres, to 0 ps for
15.8 um spheres. The diffuse pulse extends for hundreds of picoseconds for various
diameters and concentrations. The authors observe that the temporal spread of the
diffuse constituent is narrower for larger spheres and claim the effect is due to anisotropic
scattering.

Kuga, et. al.22 performed similar experiments with 109 nm, 481 nm, 2.02 um and
5.7 um diameter microsphere suspensions using a Kerr gate with 20 ps resolution. The
authors observed broadening of the transmitted pulse for high sphere concentrations, but
were unable to resolve separate ballistic and diffuse components due to the low temporal
resolution of their system. The ballistic peak attenuated by 1/e for every scattering MFP,
regardless of sphere size. The broadened, diffuse peaks attenuated approximately 10
times slower in the exponential, also fairly independent of particle diameter and
anisotropy. A diffuse peak was not observed for 109 nm particles possibly due to
geometric factors or low dynamic range, according to the authors.

Hebden?3 has recently repeated the above experiments with a 10 ps resolution
streak camera and various concentrations of 1.3 pm microspheres. Diffuse light was
observed for concentrations above 20 MFPs, and extended for more than 100 ps. The
ballistic component attenuated exponentially with increasing numbers of scattering MFPs
computed from Mie theory, as observed by Kuga, ef. al.. Comparison with diffusion
theory!2 revealed that the theory was a good predictor of diffuse pulse shape, and less
accurate predicting attenuation or arrival time, although results are not reported.

Liu, er. al.2* have analyzed the arrival time of the ballistic component propagating
through various concentrations of 91 nm diameter microspheres with an 85 fs resolution
second harmonic gate. The delay time increased with increasing microsphere
concentration and was predicted accurately by assuming that the propagating laser pulse

experienced the average refractive index of the microsphere suspension.
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The temporal profile of the diffuse component has been investigated by Yoo, et.
alll A swreak camera was used to analyze the diffuse light emerging from various size
and concentration microsphere suspensions illuminated by 100 fs pulses. Diffusion
theory was unable to predict the diffuse pulse shape when the concentration of
microspheres was less than 10 forward scattering MFPs. The deviation from theory
occurred mostly for early times (< 300 ps) and for anisotropically scattering particles, as
expected.

4.5 Coherence-Gated Scattering in Microsphere Suspensions

Coherent scattering experiments were performed with suspensions of scattering
microspheres of varying concentrations and diameters. A cuvette containing the
microspheres suspended in water was placed in the transmission path of the coherence-
gated transillumination system. Short pulses of light incident on the sample emerged
temporally broadened due to multiple scattering events in the suspension. The magnitude
of the coherent interference signal was recorded for the on-axis transmitted light while
the reference path length was varied to progressively increase the coherence-gate delay.
In this manner, a time-resolved plot of the directionally selected and phase coherent
constituent of the transmitted pulse was obtained.

In the following sections, experimentally obtained coherence-gated scattering
profiles for 1 um, 10 um and 100 nm dianmeter spheres will be presented and discussed.
The implications of these profiles for time and spatially resolved transillumination
imaging will be addressed in Ch. 5.

4.5.1 1 pm Microspheres

Figure 4.5 plots the normalized magnitude of the interference signal amplitude
versus normalized coherence-gate delay for increasing concentrations of 1 pm diameter
latex microspheres suspended in water (g = 0.960, o, =1.4 x 1078 cmz). The 1 prn
sphere diameter i< on the order of the optical wavelength. The concentration is measured
in the number of scattering mean-free-paths (MFPs), computed from Mie theory,
contained in the L = 5 mm length cuvette. For readability, the signal amplitude for each
concentration is normalized to the same peak height, however, the absolute magnitudes
attenuate with increasing microsphere concentration. The normalized delay parameter is
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defined as ct/nL, where ¢ is the actual time delay, c¢/n is the speed of light in the medium,
and L is the sample thickness. The concentration and delay parameter are both
normalized to the sample length L and the plots may be easily extended to specimens of
differing thicknesses.

In the transmission arm of the interferometer, light emerging from a single mode
fiber (5 um core diameter) was focused by a 12 mm focal length diode collimating
objective onto the center of the cuvette containing the microspheres, located 11.4 cm
away from the lens. The beam diameter was approximately 50 pum at the focus and 1.1
mm at the lens and the numerical aperture was 0.01. Light exiting the cuvette was
symmetrically recoupled back into the single mode fiber interferometer by an identical
objective lens. The full length confocal parameter of the focused beam was 5.6 mm,
meaning that the beam diameter was approximately constant over the L = 5 mm length
cuvette.

The incident optical power on the microsphere suspensions was 38 pW attenuated
at the interferometer input for concentrations from 0 to 15 MFPs, and 50 mW for
concentrations from 20 to 50 MFPs. The full-width-half-maximum (FWHM) of the time-
resolved profile for light propagating through water (0 MFPs in Fig. 4.5) is 750 fs and
defines the temporal resolution of the system for low incident optical powers. For 50
mW incident power, the temporal resolution is improved to 400 fs due tc nonlinear self-
phase modulation in the fiber optics (see Sec. 3.3.5).

According to Fig. 4.5, the phase coherent constituent of the transmitted light
consists of two components: an early arriving ballistic component, and a later arriving,
temporally broadened, diffuse component. The ballistic component arrives with almost
no delay relative to water and represents completely unscattered light. The broadened
diffuse component consists of the fraction of multiply scattered light which retains
enough spatial and phase coherence to permit both confocal and coherent detection,
respectively. The division into ballistic and diffuse components is qualitatively similar to
earlier studies described above of time-resolved scattering with incoherent gating
techniques. Here, however, the diffuse component displays a notably reduced temporal
extent (1 normalized delay unit equals 22 ps for this geometry) due to loss of phase
coherence and spatial rejection of scattered light. The peak of the diffuse component
arrives later and broadens with increasing sphere concentration, similar to the results
observed by Kuga, et. al.22 for incoherent detection.
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Figure 4.5. Coherence-gated scautering profiles for various concentrations

of 1 um microspheres (g = 0.960, o, = 1.4 x 1078 cm?) measured in the
number of scattering MFPs contained in the L = 5 mm length cuvette. The
normalized signal amplitude for each concentration is plotted versus the
normalized delay parameter ct/nL, where ¢ is the tiine delay, ¢/n is the
speed of light in the medium, and L is the sample thickness.
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Figure 4.6 displays the natural logarithm of the signal power for each of the
coherence-gated profiles in Fig. 4.5 so that signal attenuation may be considered. The
signal power is normalized to water (0 MFPs). The inset of Fig. 4.6 plots the attenuation
of the ballistic and diffuse peak powers derived from the log plot for increasing numbers
of scattering MFPs, or equivalent sample thickness. The ballistic component attenuates
exactly by 1/e for every additional scattering MFP (least squares fit slope = -1.01), as
expected assuming that the ballistic peak consists of completely unscattered light. The
diffuse component is not visible below 20 MFPs. The ballistic and diffuse components
have equal heights at about 25 MFPs, after which the ballistic peak is dominated by the
diffuse peak. Yoo, et. al.2! and Kuga, et. al.22 also observed this transition from ballistic
to diffuse dominated detected light to occur between 15 and 25 MFPs for a variety of
particle sizes with incoherent detection. The inset also shows that the diffuse light
attenuates about a factor of 10 more slowly (least squares slope = -0.115), than the
ballistic light with increasing sphere concentration. This result is also consistent with the
incoherent detection studies of Kuga, et. al.22 Note that this logarithmic attenuation rate
is almost a factor of 3 greater than the forward scattered attenuation rate of
—(1-g) = —0.04 predicted from diffusion theory.

The amount of detected diffuse light presumably depends on a many factors,
including the solid angle of detection and the temporal width of the coherence-gate. The
experiments reported here were performed with the transmission beam focused through
the sample. Since the confocal parameter was longer than the sample thickness, no
difference in detected light was seen compared to experiments performed with a
collimated beam. The detected diffuse power did increase linearly with increasing
coherence-gate temporal width.,
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Figure 4.6. Coherence-gated scattering profiles for 1 pm microspheres
displayed on a natural log scale. Inset: Attenuation of the ballistic and
diffuse component peak signal power as a function of the number of
scattering MFPs, or equivalent sample thickness.
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4.5.2 10 pm Microspheres

Coherence-gated scattering profiles of 10 um microspheres (g = 0.998,
g, =15x 1076 cm2) show characteristics similar to the 1 pm particles discussed earlier.
The linear scattering amplitude profiles, shown in Fig. 4.7, are qualitatively the same,
with the transmitted light again separated into a ballistic and a diffuse component.

Figure 4.8 compares the normalized arrival time of the diffuse peak for 1 pm and
10 pm diameter spheres. For the 10 pm particles, the diffuse component arrives earlier
and is almost coincident with the ballistic peak for 20 and 25 scattering MFPs. This
effect is a manifestation of the very highly forward scattering nature of particles much
larger than the optical wavelength. Since scattering events are very forward directed, the
average diffuse path length through the sample decreases. For both sizes of particles, the
diffuse components are increasingly delayed for increasing concentrations of scattering
spheres, or equivalently, increasing sample thickness.

The highly forward scattering also causes a narrowing of the temporal extent of
the diffuse component for the 10 pm compared to the 1 pum particles. Figure 4.9 details
the normalized full-width-half-maximum (FWHM) cAt/nL of the diffuse peak for both 1
pum and 10 pm particles plotted versus the concentration of scattering microspheres. For
both particle sizes the FWHM increases with increasing concentration (or sample
thickness). However, the diffuse peak is always narrower for the 10 um particles due to
the predominantly forward scattering. Both the earlier arrival time (Fig. 4.8) and the
reduction in temporal width (Fig. 4.9) for larger compared to smaller sized particles were
observed by Yoo, et. al2! and Kuga, er. al.22 with incoherent detection.
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Figure 4.7. Coherence-gated scattering profiles for various concentrations

of 10 um microspheres (g = 0.998, o, = 1.5 x 1076 cm2) measured in the

number of scattering MFPs contained in theL = 5 mm length cuvette. The
normalized signal amplitude for each concentration is plotted versus the
normalized delay parameter ct/nL, where ¢ is the time delay, c/n is the
speed of light in the medium, and L is the sample thickness.
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Figure 4.8. Normalized arrival time ct/nL of the diffuse peak for 1 um

and 10 pm particles, plotted versus the concentration of microspheres
measured in the number of scattering MFPs. The cuvette length was
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Figure 4.9. Normalized full-width-half-maximum (FWHM) cAt/nL of
the diffuse peak for 1 and 10 pm diameter spheres as a function of
scattering concentration measured in the number of MFPs. At is the
actual temporal FWHM, c¢/n is the speed of light in the medium, and
L =5 mm is the cuvette length.

82



Ln(Signal Power)

-10 -

10 — -15 —

Ln(Maximum Signal Power)

M -20 -
5
-15 = 25 -

ballistic

diffuse

|
0

1T 1
10 20 30 40 50

Scattering MFPs

-0.2 0.0 0.2 04 0

6
Normalized Delay (ct/nL)

0.8 1.0

Figure 4.10. Coherence-gated scattering profiles for 10 pm microspheres
displayed on a natural log scale. Inset: Attenuation of the ballistic and
diffuse component peak signal power as a function of the number of

scattering MFPs, or equivalent sample thickness.
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The logarithmic plot of ballistic and diffuse component attenuation for 10 um
spheres is shown in Fig. 4.10. As expected, the ballistic light exponentially attenuates
exactly with increasing scattering MFPs (least squares slope = -0.989). The diffuse
component becomes predominant at about 20 MFPs, and attenuates about a factor of 7
more slowly than the ballistic component (slope = -0.140). Since the scattering is so
highly forward directed for 10 pm compared to 1 pm spheres, one would expect that the
diffuse component would attenuate more slowly for the 10 um spheres. The reduced
MEFP is 500 times longer than the scattering MFP for 10 um particles, and only 20 times
longer for 1 um particles. However, the experimenial results show that the diffuse
attenuation is approximately the same for both particles. The observed attenuation rate is
about a factor of 500 more se vere than the diffusion theury forward scattering attenuation
rate of —(1-g)=—0.002. Kuga, er. al.22 have reported similar results with incoherent
detection. For 0.481 um, 2.02 pm, and 5.7 pum particles, the diffuse logarithmic
attenuation rate was always about a factor of 10 less rapid than the ballistic attenuation,
and largely independent of the anisotropy g.

4.5.3 100 nm Microspheres

100 nm microspheres are in the Rayleigh scattering limit for particles small
compared to a wavelength (g =0.066, g; = 2.0 x 10713 cm?). Figure 4.11 plots the
coherent scattering amplitude profiles for various concentrations of these microspheres
versus normalized delay ct/nL. Only a ballistic peak is observed out to coherence-gate
delays as large as 250 ps. The lack of a diffuse component is most likely due to the
limited dynamic range of the system and the scattering geometry. A 4 cm length by 1 cm
width cuvette was used to suspend the microspheres. Since the scattering is nearly
isotropic, a large proportion of the diffuse light probably escaped through the cuvete
edges and remained undeected by the system. The mirumum cuvette length was
constrained because the concentration of microspheres could not be so dense that multiple
particles existed in a cubic wavelength. This constraint ensures that successive scattering
=vents are noninteracting.

The expanded time scale in Fig. 4.11 clearly shows the narrowing of the
coherence-gate temporal width due to nonlinear self-phase modulation. Concentrations
of microspheres ranging from 0-10 MFPs were profiled with 40 uW incident power,
while 46 mW was incident on concentrations from 1° 30 MFPs. The arrival time of the
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Figure 4.11. Coherence-gated scattering profiles for various concen-

trations of 100 nm microspheres (g =0.066, o =2.0x10"1 cm?)

measured in the number of scattering MFPs contained in theL = 4 cm
length cuvette. The normalized signal amplitude for each concentration is
plotied versus the normalized delay parameter ct/nL, where ¢ is the time
delay, ¢/n is the speed of light in the medium, and L is the sample
thickness.

85



ballistic peak increases with increasing concentration of microspheres, consistent with the
incoherent detection results of Liu, er. al.24 The delay may be explained by assuming
that the ballistic light sees the average refractive index of the suspension since the
particles are much smaller than a wavelength. The average index increases linearly with
the number of scattering MFPs resulting in a delayed arrival time. Figure 4.12 displays
the normalized arrival time of the ballistic peak versus the concentration of scattering
microspheres in measured in number of scattering MFPs. The arrival time is linearly
dependent ou. the particle concentration, as expected.
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Figure 4.12. Normalized arrival time ct/nL of the ballistic peak versus
the concentration of 100 nm microspheres measured in the number of
scattering MFPs contained in the L = 4 cm length cuvette.

Figure 4.13 details the attenuation of the ballistic peak with sample thickness, or
number of scattering MFPs. The ballistic peak attenuates exponentially with the number
of scattering MFPs (least squares slope = -0.83). However, the atienuation does not go
exactly as the number of MFPs as expected. This deviation may be accounted for by
noting that even for a 4 cm length cuvette, there were still multiple particles contained
within a cubic wavelength for most of the dilutions used. Thus, successive scattering
events may have interacted, reducing the effective cross-section of each particle.
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Figure 4.12. Coherence-gated scattering profiles for 100 nm
microspheres displayed on a natural log scale. Inset: Attenuation of the
ballistic and diffuse component peak signal power as a function of the
number of scattering MFPs, or equivalent sample thickness.
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Chapter 5

Coherence-Gated Transillumination Imaging

5.1 Introduction

Two-dimensional shadowgram images of hidden objects embedded in scattering
media may be obtained by using the coherence-gating properties of the transillumination
system to temporally isolate the early arriving portion of light transmitted through the
specimen. The reference path length delay is fixed so that the coherence-gate selects the
least scattered light emerging from the sample. The specimen is raster scanned over each
spatial resolution element.

The coherence-gated light scattering experiments described in Ch. 4 demonstrate
that the directionally selected and phase coherent constituent of light transmitted through
a scattering media consists of an early arriving, unscattered ballistic component, and a
later arriving, temporally broadened, diffuse component. Imaging hidden objects with
coherence-gated ballistic light is iilustrated with the transillumination system and results
in high resolution images. However, ballistic light images may only be acquired through
relatively thin specimens due to signal attenuation. A fundamental sensitivity limit on
ballistic imaging through turbid media is established for any optical imaging technique.

Images through thick samples may be obtained at the expense of reduced
resolution by coherence-gating the forward scattered, or early arriving portion of the
diffuse component, since the attenuation of diffuse light with sample thickness is less
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severe. The trade-off between image resolution and increasingly later coherence-gate
delay is experimentally investigated, and empirical resolution limits are proposed.

5.2 Ballistic Light Imaging

High resolution images of opaque objects in scattering media have been obtained
with the coherence-gated transillumination system by setting the coherence-gate to select
only the ballistic light and reject all diffuse light. Since the ballistic component of the
transmitted light is completely unscattered, ballistic gated images are theoretically
diffraction limited. As seen in Ch. 4, the ballistic component intensity attenuates
exponentially with increasing number of scattering MFPs, or sample thickness. In light
of this attenuation law, a fundamental shot noise limit may be established for ballistic
imaging with any detection method. Purely spatially resolved imaging methods are
shown to be inferior to time-gating methods for ballistic imaging.

5.2.1 Resolution Chart Between Microspheres

As an initial demonstration, a standard Air Force resolution chart was imaged
between two 5 mm length cuvettes containing 1 pum diameter latex microspheres
suspended in water. While this model scattering suspension only approximates the
behavior of actual tissue, its scattering parameters may be accurately computed from Mie
theory to allow quantitative assessment of system perforrance. Recall that Figs. 4.5 and
4.6 plot the time-resolved coherence-gated scattering profiles for various concentrations
of these ! um microspheres.

Figure 5.1 shows images of the test chart obtained with the coherence-gated
transillumination system with and without the scattering microspheres for various
coherence gate delays. Each 130 x 100 pixel image took 13 minutes to acquire. The
upper left image is a view of the resolution chart through water alone and is provided for
reference. While keeping the reference pulse delay constant, scattering microspheres
were added until the total length of the medium equaled 27 scattering mean-free-paths
computed from Mie theory (NoL =27, where N = 1.9 x 10" cm3 is the number density
of particles, 0= 1.4x1078 cm? is the scattering cross section of a single particle
computed from Mie theory, and L =1 cm is the thickness of scattering medium). The
lower right figure displays the resulting image obtained with 45 mW optical power
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incident on the scattering microspheres and an optical coherence-gate delay set to isolate
only the ballistic light. The resolution chart is almost perfectly reconstructed with a 125
pm spatial resolution indicated by the group II, element 1 bars, demonstrating that the
early light still retains image information. This image represents the highest resolution
ever obtained through a similarly dense scattering media. With a slightly non-optimal
coherence-gate (0.3 ps reference delay) the chart is degraded but still visible (lower left).
With a 1.3 ps gate delay, the image consists entirely of diffuse light and no bars are
resolved (upper right).

Since the ballistic component is completely unscattered, ballistic image resolution
is theoretically diffraction limited. In practice, the resolution depends on the bandwidth
of the low-pass frequency filter used for signal demodulation. Larger bandwidths
increase resoluiion by reducing pixel size (see Eq. (3.100)), but also reduce sensitivity to
transmitted light (Eq. (3.98)). For this particular application, the trade-off between
scanning velocity and image resolution was designed to achieve approximately 100 um
spatial resolution (see Sec. 3.5.9).

5.2.2 Fundamental Sensitivity Limits

Figure 4.6 details the exponential attenuation of the ballistic and diffuse peaks
versus increasing number of scattering MFPs, or equivalent sample thickness. Although
ballistic gating provides high resolution images, the transmitted ballistic component
attenuates by 1/e for every additional scattering MFP. Similar results for ballistic peak
attenuation have been obtained with incoherent detection techniques. This fast
exponential decrease for linearly increasing sample thickness means that ballistic images
may only be acquired through relatively thin samples.

A fundamental limit on both coherent and incoherent ballisuc imaging through
turbid media may be ¢stablished by noting that the presence or absence of ballistic light
must be discernible from random intensity variations due to quantization. For the case of
ideal detection, this shot noise limit may be computed from Eq. (3.98) by assuming a
signal-to-noise ratio of 1 as the detectivity limit, and that the transmitted ballistic power
attenuates according to exp(—uL), where 1/ 4 is the mean-free-path between photon
absorption or scattering events and L is the sample thickness. With these substitutions,
the shot noise limit in Eq. (3.98) becomes
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1=(l)ﬂ' (5_1)
hw/2-NEB

The sample power divided by the detection bandwidth, P /NEB, is approximately the
total optical energy E delivered to each resolution element on the sample during detection
(equal to P; multiplied by the detection period). If ideal detectors are assumed (7 = 1),
then Eq. (5.1) simplifies to

Lo L) 52
) )

describing the maximum sample thickness through which a ballistic image may be
obtained for a given incident energy £ and a MFP 1/ u.

Equation (5.2) may be intuitively understood by noting that the quantity E/hw is
the number of photons delivered to each resolution element during detection. For a
sample of length L and MFP 1/ u, the average number of exiting photons N ,at each
resolution element, assuming that there is no hidden object blocking the photon path, is
given by

E
N,=—eH. (5.3
P ko )
To determine whether a hidden object is in the photon path, the sample must be thin
enough so that N ,is at least 1, since a photodetector will only see discrete photons. In
fact, Eq. (5.2) s:ates that N p should be at least 2 to account for statistical variations in

photon arrival time during the detection period.

The maximum sample thickness for ballistic imaging may be estimated by
inserting some typical values for tissue optical properties into Eq. (5.2) and considering
tissue damage thr sholds. We assume 800 nm light, a 100 x 100 pixel image with 500
pm spaual resolution, and 10 minutes total acquisition time. For a scanning system, the
ANSI Z136 standard maximum permissible exposure for skin at 800 nm is 1.5 J / cm?
given the detection period of 60 ms per pixel. Thus, the maximum energy E deposited to
each 2.5x1073 cm? area pixel is 3.6 mJ. The photcn ene gy hw at 800 nm is
2.5x10719 . Using these values in Eq. (5.2, the maximum tissue thickness is
calculated to be L = 40 MFPs.
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Assuming a generous 100 pum MFP for skin, the maximum ballistic image tissue
thickness is limited to about 4 mm. Since all of the assumed parameters above except for
the MFP appear in the logarithm of Eq. (5.2), the 4 mm limit is very robust. Similarly,
linear increases in optical power, data acquisition time, or number of averages only affect
the maximum thickness as the logarithm and do not alter the limit appreciably. The shot
noise limit is fundamental for any classical optical imaging technique which attempts to
use ballistic light.

5.2.3 Limits of Spatial Rejection Techniques

The combined directional and temporal coherence selection of coherence-gated
transillumination enables a comparison of both time and spatially resolved imaging
techniques. Ballistic imaging with solely spatially resolved imaging methods, such as
confocal imaging, optical heterodyning, and spatial incoherence techniques, cannot reach
the quantum shot noise limit because a substantial amount of diffuse light may be
spatially coherent at the detector aperture when enough scattering has occurred. The
performance of spatial resolved techniques may be simulated with the coherence-gated
transillumination system by integrating the interference signal magnitude over all
coherence-gate delays. According to coherence-gated scattering profiles in Fig. 4.5, for
high resolution images, spatial resolved methods are confined to the regime where the
ballistic component intensity overwhelms the time-integrated diffuse component
intensity, or in this case to specimens thinner than about 15 to 20 MFPs (less than
approximately 2 mm of tissue assuming a 100 pm MFP).

5.3 Forward Scattered Diffuse Light Imaging

Most medical diagnostic applications require imaging through tissues
substantially thicker than achievable by ballistic gating. Figure 4.6 shows that the
transmitted diffuse peak exponentially attenuates about a factor of ten more slowly than
the ballistic peak with increasing sample thickness. Thus, while ballistic gated images
are restricted to tissues with millimeter thicknesses, the phase coherent constituent of the
diffuse light can penetrate tissues on the order of centimeters thick. The early arriving
component of the diffuse light represents multiply scattered light that is predominantly
forward directed. This forward scattered light retains less image information than the
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unscattered ballistic component, but still has traveled a relatively direct path through the
specimen compared to the later arriving portion of the diffuse light.

In this section, the trade-off between resolution and coherence-gate delay is
experimentally investigated. A simple geometric limit for the worst case spatial
resolution for a given gate delay is derived. Experimental results suggest a potentially
useful empirical expression for the best case resolution given a certain gate delay.

5.3.1 Diffuse Imaging Resolution

Since quantum noise prohibits ballistic imaging through thick turbid media, early
arriving diffuse light must be used, at the expense of reduced spatial resolution.
Incoherent time-gating techniques have demonstraied that centimeter size objects may be
imaged by gating the first 10 to 100 ps of incoherent diffuse light!4. The coherent
scattering profiles in Fig. 4.6, however, show that directional (confocal) and phase
coherence selection alone is already sufficient to eliminate diffuse light after only about
20 ps for a 5 mm thick object.

Millimeter level image resolution is probably contained only in the most forward
scattered diffuse light. To quantify the relationship between photor. arrival time and
image resolution for forward scattered diffuse light, one-dimensional images were
acquired of varying width opaque bars placed in the center of a 1 cm length cuvette
containing 25 MFPs of 1 pm latex microspheres suspended in water. A sequence of one-
dimensional images was acquired for each bar for progressively later coherence-gate
delays. Figure 5.2 displays the resulting two dimensional datasets as false color images
for a 500 um, a 1 mm, and a 2 mm diameter bar. The coherence-gate delay increases
horizontally to the right in each image and is measured in the length of water (mm)
required to produce the equivalent optical delay. Each 100 x 100 pixel image was 5 times
averaged to reduce the contribution of speckle noise and required 40 minutes of
acquisition time.

The ballistic peak is conspicuous at zero delay in each image and sharply defines
the boundaries of each object. As the coherence-gate delay is increased, the object
boundaries become progressively obscured as more and more diffuse light is detected
which has taken paths around the object. For spatial resolution elements (pixels) blocked
by the bar, the diffuse light creeps inward toward the middle due to light paths around the
object destroying resolution as the coherence-gate delay increases .
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The profile of the late arriving diffuse light is affected for spatial resolution
clements far from the object. A reduction in diffuse tail irtensity expands in a cone-like
manner for increasingly late coherence-gate delays. Resolution elements far from the
object are only affected once the coherence-gate delay is late enough so that a wandering
diffuse light path travels enough transverse distance encounter the bar.

Recall that Fig. 4.6 plots the coherence-gated scattering profile for 25 MFPs of 1
Hm microspheres suspended in a 5 mm length cuvette with no intervening bar. In the
images of Fig. 5.2, the ballistic peak appears narrower and more distinct from the diffuse
light compared to the profile in Fig. 4.6. Part of the narrowing is due to the fact that the
FWHM temporal coherence-gate width At was 230 fs for the images in Fig. 5.2, and only
400 fs for the profiles in Fig. 4.6. The ballistic peak also appears narrower in Fig. 5.2
because a 10 mm instead of 5 mm length cuvette was used. The longer cuvette reduces
the normalized coherence-gate width parameter cAt/nL, providing an apparent additional
factor of 2 increase in temporal resolution.

It is instructive to consider a simple geometric limit on the worst case spatial
resolution possible for a given coherence-gate delay. If confocal spatial rejection is
employed, then photons will only be detected if they exit the sample at approximately the
same transverse spatial coordinate at which they entered. Given a sample of length L, we
assume that the coherence-gate is set to only accept delayed photons which have traveled
a total distance

Cct
Logie = L(l + ZZ) (5.4)

where ct/nL is the normalized delay parameter defined in Sec. 4.5. The photon paths
which deviate the most in the transverse direction define the worst case spatial resolution,
and fall on an ellipsoid with foci at the photon entrance and exit points. The worst case
full width spatial resolution 2Ax equals the transverse diameter of this ellipsoid taken at
the center of the sample, and is given by

2 2

L LY
2Ax =2, 84 —(— . 55
\/( 2 2J (>-2)

In terms of a normalized full width resolution parameter 2Ax/L, Eq. (5.5) simplifies to
the worst case geometric limit
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where we have assumed in the approximation that ct/nL << 1 for the forward scattered
component of the diffuse light (also see Figs. 4.5 and 4.7). Since ct/nL << 1, Eq. (5.6)
says that the geomertric resolution limit is slightly worse than a purely linear degradation
of resolution with increasing delay, which would be described by

e, Sl (5.7)

The actual degradation in resolution for increasing coherence-gate delay was
empirically determined for the 2 mm bar image displayed in Fig. 5.2. The full width
resolution for a given delay was calculated by hand as the transition length, from
minimum to maximum interference signal amplitude, of the image of one edge of the bar.
Fig. 5.3 plots the experimentally observed normalized resolution parameter 2Ax/L versus
the normalized coherence-gate delay cr/nL. The normalized coherence-gate delay
extends out to an actual distance delay of ct/n =0.53 mm, since the sample length
L =10 mm. The observed resolution is seen to fall in between the geometric limit and
linear degradation, computed from Eqs. (5.6) and (5.7) respectively.

For all gate delays shown, the observed resolution is never better than the linear
degradation case. Thus, the linear degradation defined by Eq. (5.7) is potentially useful
as a best case normalized full width resolution estimate for a given normalized
coherence-gate delay. More experimental investigation is needed to determine whether
this limit holds for different scattering anisotropies and for incoherent detection time-
gating techniques. However, it is reasonable to assume that the resolution provided by
incoherent detection methods as a function of time-gate delay will not be significantly
different than the results shown here for coherent detection.
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Figure 5.3. Experimentally observed degradatica of spatial resolution
with increasing coherence-gate delay for a 2 mm opaque bar placed in the
center of a 1 cm cuvette containing 25 MFPs of 1 um diameter
microspheres suspended in water. Normalized full width resolution

2Ax/L is plotted versus normalized delay ct/nL.. The worst case
geometric limit curve and linear resolution degradation curve defined by
Egs. (5.6) and (5.7) respectively are plotted for reference.

5.3.2 Diffuse Imaging Thickness

It is tempting to formulate a fundamental limit on forward scattered diffuse
imaging thickness by considering the attenuation of the diffuse peak with increasing
numbers of scattering MFPs. With coherence-gated transillumination, the diffuse peak
was observed to exponentially attenuate about a factor of 10 more slowly with sample
thickness than the ballistic peak for both 1 um and 10 um particles (Figs. 4.6 and 4.8).
Kuga, er. al.5 have also reported that the diffuse peak attenuates a factor of 10 more
slowly for particle diameters of 0.481 pum, 2.02 yum, and 5.7 um with an incoherent
detection technique. Thus, it appears that the diffuse peak attenuation is largely
independent of scattering anisotropy for both coherent and incoherent detection methods.
If in fact the attenuation rate remains constant for very large numbers of MFPs, then the
shot noise limit on diffuse imaging tissue thickness will be approximately 10 times the
ballistic limit, ci about 4 cm.

101



It is not clear, however, that the diffuse attenuation rate will remain constant as
the number of MFPs is increased. Diffusion theory predicts that the attenuation rate for
forward scattered light should go as the forward scattering MFP which is 25 times longer
than the scattering MFP for 1 um microspheres and 500 times longer for 10 um particles.
The experiments performed here and by Kuga, et. al.3 were limited to concentrations less
than 50 MFPs which is equivalent to only a few forward scattering MFPs, so that
diffusion theory may not be valid. In the thick sample limit, it is possible that the diffuse
peak attenuation rate will level off to the less severe forward scattering MFP attenuation
rate predicted by diffusion theory.

102



References

1. K.M. Yoo, B. B. Das, and R. R. Alfano, "Imaging of a translucent object hidden in
a highly scattering medium from the early portion of the diffuse component of a
transmitted ultrafast laser pulse,” Opt. Lett. 17, 958-960 (1992).

2. J. C. Hebden, R. A. Kruger, and K. S. Wong, "Time resolved imaging through a
highly scattering medium," Appl. Opt. 30, 788-794 (1991).

3. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, "Time-resolved
transillumination for medical diagnostics,” Opt. Lett. 15, 1179-1181 (1990).

4. D. A. Benaron, M. A. Lennox, and D. K. Stevenson, "2-D and 3-D images of thick
tissue using time-contrained times-of-flight and absorbance (ic-TOFA)
spectrophotometry,” unpublished manuscript.

5. Y. Kuga, A. Ishimaru, and A. P. Bruckner, "Experiments on picosecond pulse
propagation in a diffuse medium," J. Opt. Soc. Am. 73, 1812-1815 (1983).

103



Chapter 6

Summary and Conclusions

Coherence-gated transillumination has been developed as a new coherent imaging
technique which takes advantage of both temporal and confocal directional rejection of
scattered light. The system achieves a quantum shot noise limited 130 dB detection
sensitivity to transmitted light with 50 mW incident on the sample. Two-dimensional
raster scanning of the specimen is required; however, this is not a limitation since in a
given detection time, the same optical energy may be delivered to a sample as in a two-
dimensional imaging technique.

Using coherence-gated transillumination, time-resolved coherent scattering
profiles have been investigated for the first time with a coherent detection method.
Calibrated suspensions of 1 pm, 10 pm, and 100 nm diameter latex microspheres have
been used and scattering profiles have been related to parameters derived from Mie
scattering theory. Consistent with earlier studies of time-resolved scattering using
incoherent detection, light transmitted through a scattering media emerges in two distinct
components: an early arriving, unscattered ballistic peak, and a later arriving, temporally
broadened diffuse component. Compared to previous results with incoherent detection
methods, the coherent diffuse component displays a markedly reduced temporal extent
due to the combined spatial and phase coherence requirement on detected light.

Coherence-gated scattering experiments have shown that the arrival time and
temporal width of the diffuse peak depends on the scattering anisotropy. Diffuse light
propagating through highly forward scattering, large diameter spheres arrives earlier and
displays a narrower temporal extent compared to smaller sized particles.
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The attenuation of the ballistic and diffuse component peak powers has been
investigated as a function of sample thickness defined in number of scattering mean-free-
paths (MFPs). The ballistic peak, consisting of completely unscattered light,
exponentially attenuates by exactly a factor of 1/e for every additional scattering MFP,
limiting detectable ballistic light transmission to relatively thin samples. The transmitted
diffuse peak power dominates the ballistic light for samples thicker than about 25 MFPs,
fairly independent of scattering anisotropy. Compared to the ballistic light, the diffuse
peak attenuates about a factor of 10 more slowly in the exponential with increasing
sample thickness also relatively independent of scattering anisotropy. Quantitatively
similar results have been observed with incoherent detection methods.

Two-dimensional transillumination images of hidden objects embedded in
scattering media were demonstrated with the coherence-gated transillumination system.
High resolution (100 um) images of an Air Force resolution test chart were obtained by
coherence-gating the ballistic component of light transmitted through 27 scattering MFPs
of 1 um microspheres suspended in water.

The spatial resolution of ballistic imaging is theoretically diffraction limited;
however, imaging with ballistic light is virtually impossible through thick objects due to
the fast exponential attenuation of the ballistic component with increasing sample
thickness. The quantum shot noise detection limit and tissue damage thresholds restrict
ballistic images to about 4 mm thick tissue samples. Linear increases in optical power,
detection time, or number of averages only affect this maximum thickness as the
logarithm and do not alter the limit appreciably.

The combined temporal and directional rejection of scattered light with the
coherence-gated transillumination system allows a comparison of time and spatially
resolved imaging techniques. A spatial resolved imaging technique will see light
detected by the coherence-gated transillumination system integrated over all possible
coherence-gate delays. Coherence-gated scattering experiments in microsphere
suspensions have shown that ballistic imaging is impossible for solely spatial resolved
imaging techniques, such as confocal imaging, because a substantial amount of diffuse
light may be coherent at the detector when the sample is thicker than about 20 MFPs.

Since ballistic gated imaging is fundamentally limited to thin samples, diffuse
light must be used to penetrate thick specimens. The diffuse peak was found to attenuate
about factor of 10 more slowly in the exponential compared to ballistic light, making
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possible images threugh tissues of centimeter magnitude thicknesses. Spatial resolution
is sacrificed for increasingly late time-gate delays. The degradation in resolution for
increasing coherence-gate delay was empirically characterized for various sized opaque
bars placed in 25 scattering MFPs of 1 pm diameter microspheres. The spatial resolution
for a given gate delay was found to be bounded above and below by a simple worst case
geometrical resolution limit, and an empirically determined best case limit.

The fundamental signal attenuation and resolution limits described in this thesis
indicate that time-gated optical transillumination through real biological tissue will
necessarily involve reduced spatial resolution imaging using the forward scattered portion
of the diffuse transmitted light. Given the constraints described here, the stage is now set
to investigate whether specific biomedical imaging problems can be solved with optical
imaging systems optimally designed to operate within these limits.

106



