
Intermediate Lower Bounds and Their Relationship
with Complexity Theory

by

Dylan McKay
B.S. Computer Science

B.S. Discrete Mathematics
Georgia Institute of Technology, 2015

M.S. Computer Science
Stanford University, 2016

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2020
Certified by. .

R. Ryan Williams
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Intermediate Lower Bounds and Their Relationship with

Complexity Theory

by

Dylan McKay

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

While Complexity Theory has been centered around several major open problems
about the relationships between complexity classes, showing resource lower bounds
which amount to much weaker versions of these separations still seems to be chal-
lenging. We examine some of these lower bounds and techniques for showing them.

We improve the techniques of Beame (1989) and use these results to show time-
space lower bounds for various circuit problems such as #SAT and a version of SAT
for which we are required to give witnesses to satisfiable formulas.

We reveal a surprising significance of lower bounds of this kind by presenting their
relationships with long-standing questions in Complexity Theory, notably by showing
that certain weak lower bounds against the Minimum Circuit Size Problem (MCSP)
and other compression problems would imply strong complexity class separations such
as P ̸= NP or NP ̸⊂ P/𝑝𝑜𝑙𝑦.

We further explore techniques for proving lower bounds as well as the connections
between lower bounds and the big picture of Complexity Theory. In doing so, we
explore the technique of proving fixed polynomial circuit size lower bounds through
improvements to the Karp-Lipton theorem and give surprising evidence that improve-
ments to the Karp-Lipton Theorem are (in some sense) the “only” way to prove fixed
polynomial size circuit lower bounds against PNP.

Thesis Supervisor: R. Ryan Williams
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I wish I could make this section as long as the rest of my thesis. There are so many

people I want to show gratitude for their part in my journey. Unfortunately, as I never

broke my habit of procrastination, I am left with little time for the thoroughness I

want to give. I am sure that I will leave out someone to whom I owe remembrance.

Alec Interrante, Alex Reid, Basil Grant, Courtney Reid, and Evan Vana. You

made Southern Poly feel like a new home, and you made it hard to leave. Watching

you all grow together after I left was strange and sometimes difficult. You are the

first family I found after leaving home, and I’m so grateful that I have managed to

find you all in my life again.

AJ Kolenc, Alec Clifford, Casey McArthur, Mark Petell, Ramon Romero, Robert

Kretschmar, and Vince Lugli. You were my family at Georgia Tech. You made this

scary next step in my life one that I could never regret. I grew so much with all of

you, and I had some of the best times of my life with you.

Kat and Nolan Hackett, Charlie Kilpatrick, Rachel Elliott, Andrey and Anna

Kurenkov, Charles Wang, Peter Woolfitt, and Alex Bettadapur. I still remember the

day Nolan invited me to come watch Primer with him and his friends. Since then, I

feel like I have become part of another family. This was a rare gift that I will cherish

forever.

Basil Grant, Justin Payne, Mark Fredricks, Chase Wilkins, Chris Hamrick, Chris

Nyberg, Joel Clewis, Zach Tenney, Zach Fultz, Evan Vana, Casey Price, Harrison

Smith, and Brent Dupont. Thank you for keeping me sane with the countless nights

of discord voice chats during the quarantine. Some of you are new friends I did not

expect to make during these times, and others are old friends who I am so happy I

have gotten the chance to bring back into my life.

My Stanford cohort. The beginning of graduate school was a hard adjustment for

me. It was one of the first times in my life where I felt I knew no one around me. I

cannot believe how lucky I was to meet all of you, and I cannot imagine how hard

things would have been without you. Some of you were role models for me, some of

5

you had a way of provoking me to think about great interesting things, and some of

you became my amazing friends.

My MIT cohort. Boston was a scary city that I did not want to be in when we

moved to MIT. It was cold and lonely, but many of you made the Stata center a

warm home for me. At the beginning, I came to know a few of you from staying

late, goofing off bouncing balls into the fifth floor “first year pit” from the sixth floor.

Then there were all the theory jams and music nights. There were the evenings spent

playing Super Smash Bros. Melee and others still spent watching lots of you play

chess.

Greg Bodwin. Thanks for being such a great role model, friend, and keyboardist.

Also, thanks for being so supportive of my drumming.

Rahul Ilango. Thanks for review part of my thesis for me, and thanks for being

a great friend. You are a bright star that has shone in my life only briefly so far, but

you have already made the theory group and MIT a better place for being there.

Chris Peikert, Dana Randall, István Miklós, Omer Reingold, Tim Roughgarden,

and Virginia Williams. You have all been mentors to me throughout my journey, and

you have been role models as I envisioned who I wanted to be. Thank you so much

for all of your guidance, wisdom, and support.

Ronitt Rubinfeld and Michael Sipser. Thank you so much for serving on my

committee and offering revisions to my thesis. Thank you again, Ronitt, for the

moments when you talked to me about teaching and presenting. You made me feel

like I was where I needed to be when you allowed me to give input for your class.

All of the theory group administrators, especially Rebecca Yadegar. Thank you

for all of your help making our lives easier.

Leslie Kolodziejski. Thank you for all of the listening and invaluable advice.

“Venkat” Venkateswaran. I remember sitting in Klaus, and you just started talking

to me. I don’t remember if I told you my recent interests if you heard about them

somehow, but one way or another you knew that I had become enamoured with

Gödel’s incompleteness theorems. You saw the situation much clearer than I did, and

you gave me a good push into the world of complexity theory. You suggested at take

6

Lance’s Automata and Complexity class and Dick’s Complexity Theory graduate class

at the same time, and you told me to ask them if I could do research with them. I

don’t know what all you knew then, but you saw me for what you knew I could be.

Most people are not lucky enough to have someone like that, and it is a gift that I

remember often and dearly. You also gave me my first big time teaching opportunity.

You and Lance somehow got the department to hire me as a research scientist and

appoint me as a lecturer for the Summer because you saw how badly I wanted to

teach. Thank you so much for all of this. I hope I get to have this kind of impact on

someone else someday.

Richard Lipton. Working with you was always fun. I would show up to your office

or follow you from class, and you would talk my ear off about whatever amazing ideas

had been going through your mind that morning. You taught my first complexity

theory class, and I think my view of complexity theory will always carry that. You let

me be a teaching assistant for your graduate complexity theory class, and your letter

was instrumental for my graduate school applications. No matter how jaded I become

with regards to research, I will always remember working with you as evidence that

research really can just be about having fun. I will always admire you and be grateful

for what you have done for me.

Lance Fortnow. You were my guide and a true mentor. You took me under your

wing and showed me a world to explore. You invited me into your home, and you

helped me figure out where to go with my life. You helped get me a job lecturing

for the Summer between undergrad and graduate school, and you found a way to

make the same generous offer when I thought about taking a semester off of graduate

school. You have always been there for me not only to teach me about research

and complexity theory, but for my career. You are a true role model and one of my

personal heroes. I am forever grateful for everything you have done for me.

Anna Kohler, Kim Mancuso, and all of my acting friends. During one of the

hardest periods of my life, I was coping with so much loss and so many feelings of

purposelessness. I found a family with a small group of actors at MIT. They put me

through some of the most intense work I have ever done. They brought me out of my

7

comfort zone and into a place where I felt connected and cared for. Thank you so

much for being with me through these dark times. I’ll always cherish the experiences

we had.

Music friends. Music continues to be one of the most important parts of my life.

Thank you all of my friends who keep pulling me back into music and sharing new

beautiful things with me.

Max Madzar and Bennett Kane. You supported me through our shared love of

music. You listened to my songs and you made me feel like everything was worth

something. These moments were the greatest gifts, and I received them more time

than I can remember thanks to you.

Chris Stookey. Over the years, visiting you has been as much a constant in my

life as visiting my family. Seeing you always felt like a certainty when I visited home.

You’re like a brother to me, and you have been there through all of the good times

and the bad.

AJ Kolenc. I remember meeting you and hearing about you in high school, but

for some reason, I just cannot remember how we became friends, let alone how we

became such great friends. You knew me better than anyone through high school and

college, and you were not just my closest friend. You were my sanity. You were a

constant source of joy and acceptance. I often miss the closeness of our old friendship,

but I love seeing who you have become.

Emily Kurtz. You are without a doubt one of my most sincere friends. You are

so often there for me when I need you, and I feel I can always count on you for

clarity. I have not seen you in years, but the all of our multiple-hour long phone calls

throughout grad school have been.

Fred Koehler and Nadine Javier. You two have been an integral part of my life for

my last couple of years at MIT. You have been support I badly needed and friends I

could count on.

Charles Wang. You are the quiet extrovert opposite my loud introvert. I can

still feel you pulling me out the the hole of depression, and I’m so grateful to have

someone like you in my life. If one were to figure your future based on our strange

8

series of co-locations, maybe you will find your way to Ohio in the future. Wherever

you go, I wish only the best for you.

Aleksander Makelov. You are my brother from another motherland. I wish we

never had to leave that house on Pine St. You are a true friend, and I hope that

someday you finally answer the question: “what does it even mean?”

Josh Alman. You stuck with me through my whole graduate school career. You

showed me the ropes. You were my first coauthor. I think there are many ways in

which we have become each other, and I cherish them. I will always miss taking the

long way home and standing on street corners, just to keep talking. I know you are

going great places, and I hope that I get to share some of them with you again.

To all of my extended family. Mama, Papa, Grandmommy, and all of my cousins,

aunts, and uncles. You have all been so unconditionally supportive. You all give and

ask for nothing in return, and you always have a way of making me feel like I am

worth something. You always have a way of making me feel loved.

Granddaddy. I think of you and miss you often. At your funeral, there were so

many things said about you that I did not know, but were as true of you as they were

of me. I am sad that I was blind to so many of these connections when you were still

with us, but I have to assume that you are responsible for so many of our similarities.

When I was little, you used to make me feel so clever. You used to tell everyone

about a joke you would tell to trick people and how I wouldn’t be tricked by it. You

encouraged me to go to Georgia Tech, and when I didn’t get in, you encouraged me

to transfer. I like to tell people the last war story I remember you telling me. It

was about a scout from the opposition marching a chicken through the jungle trying

to bait traps. I think a lot about how many lives you probably saved by having the

composure and patience to do nothing and you and your party laid hidden, watching

the man and the chicken and then the subsequent hundred-something men go by. I

miss you a lot, and I am grateful for everything I have because of you.

Robbie. You were an older brother to me. I still remember our last conversation

in which you commented on my receding hairline in your usual way of just being

blunt with no ill-intention. When the conversation was over, you said “bye”, as if you

9

somehow knew that this was a moment that called for more than “see ya.” I walked

back into my parents’ house, and you walked back into your dad’s house, and that

was it. I still look back to a night I sat outside with my guitar, trying to figure out

how to sing and play “smells like teen spirit” at the same time. It was a time when

I was so used to being told I was a bad singer that I knew I was a bad singer, and

I was miserably self-conscious teenager. You didn’t tell me I was bad. You told me

to sing louder, and I’ll always be grateful for that. I won’t curse here, even though I

know you would appreciate it a lot. I miss you a lot, and thanks for everything.

Mom and Dad. You saw me through this journey from beginning to end. There

is so much to say here that it is hard to pick anything. You have always tried so

hard to give me what you thought I needed in order to be what I wanted to be. This

thesis might not exist if Dad did not teach me fractions using paper plates while I

took baths, and it might not exist Mom did not buy me my first programming book

in high school. I love you both so much. I know how hard you have worked to give

me everything I have been given, and you have both given me all the support in

the world in my journey through academia. I wish I could give you a much more

grandiose entry here. Thank you for everything, and thank you again for all your

love.

Emily McKay. I remember the time I wrote you a letter as you were finishing high

school. A lot of times when I think about what I want to say to you when we talk,

I want share wisdom in a way that I thought I was able to back then. You are not a

kid anymore, though. I see who you have become, and I am so proud of you.

Ryan. Where do I begin? Ryan is the adviser for my PhD. He is a dear friend

and a mentor. When I first met you, I wanted to be just like you. You shaped my

philosophy on complexity theory. You shaped my philosophy on how to do research.

At times, you were my confidant, and at others you were my confidence. My helped

me find my feet as I grew, and even though I was always full of doubt, you never failed

to truly convince me that my doubts were unwarranted. You were my inspiration.

You still are my inspiration. I will miss hearing all of your amazing ideas which

connect two things that I never thought two connect. I will miss our music nights. I

10

will miss all of your concerns about how I treat myself and how I feel about myself.

I will miss random arguments about food and music, and I will miss the random

moments of solidarity through our southern kinship. I knew you were the adviser for

me from the day we met, and I am so grateful we found each other. Thank you for

revising my thesis and all our papers. Thank you for pushing me to be who you saw

I could be. Thank you helping me become who I am. Thank you for everything.

11

12

Contents

1 Introduction 15

2 Preliminaries 27

3 Nearly Quadratic Time-Space Lower Bounds Against Natural Prob-

lems 31

3.1 Introduction . 31

3.1.1 Intuition for the NOE Lower Bound 35

3.2 Preliminaries . 37

3.3 Lower Bound for NOE and Sorting 45

3.3.1 Beame’s Method (Without Random Oracles) 45

3.3.2 Lower Bounds With Random Oracles 49

3.3.3 Sort and Random Oracles . 51

3.4 Reductions . 54

3.5 Conclusion . 60

4 Hardness Magnification for Compression Problems 63

4.1 Introduction . 63

4.1.1 Our Results . 65

4.1.2 Intuition . 71

4.1.3 What Do These Results Mean? 73

4.2 Preliminaries . 75

4.2.1 An Intermediate Problem . 75

13

4.3 Efficient Oracle Circuit Family for MCSP 76

4.3.1 Other Compression Problems 80

4.4 Streaming Algorithm for MCSP . 82

4.4.1 Other Compression Problems 84

4.5 Consequences . 85

4.5.1 Other Compression Problems 88

4.6 Conclusion . 89

5 An Equivalence Between Fixed-Polynomial Circuit Size Lower Bounds

and Karp-Lipton Style Theorems 91

5.1 Introduction . 91

5.2 Preliminaries . 98

5.2.1 Infinitely Often and Robust Simulations 98

5.2.2 Non-deterministic Pseudo-Random Generators 98

5.2.3 Pseudorandom Generators from Strings of High Circuit Com-

plexity . 99

5.3 PNP Circuit Lower Bounds Equivalent to Karp-Lipton Collapses to PNP100

5.4 An Equivalence Theorem Under NP ⊂ P/𝑝𝑜𝑙𝑦 104

5.5 NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses 108

5.6 Consequence of Weak Circuit Lower Bounds for Sparse Languages in

NP . 111

5.7 Almost Almost-everywhere (MA ∩ coMA)/1 Circuit Lower Bounds . 115

5.8 Open Problems . 121

6 Concluding Thoughts – Lower Bounds and Hardness for MCSP 123

14

Chapter 1

Introduction

The P vs NP question has dominated Complexity Theory since its conception. It

has become so iconic that its influence can be seen not only in other fields but even in

pop culture. The question can be asked in many ways, such as: is there a polynomial

time algorithm for the Satisfiability Problem (SAT)? Answering the P vs NP question

would mean either showing that there is a polynomial time upper bound on the time

required to decide SAT, or (often considered the more likely outcome) showing that

every polynomial is a lower bound on the time required to decide SAT.

Our history in trying to answer this question has become great evidence that this

question is hard to answer. Many would call this an understatement, say that it is not

much of a stretch to claim this is a very hard question. Our difficulty in answering

this question has birthed a beautiful web of techniques and proofs as well as new areas

of study. It has also birthed a slew of questions that at times feel just as hopeless

to answer. We now turn our attention towards not just the mountain that is the P

vs NP question, but some of the questions that seem to lie at the ground level –

proving: intermediate lower bounds.

Intermediate lower bounds are those that, one way or another, we must prove

on our way to proving P ̸= NP or some other long sought-after result we covet as a

community. We do not offer a formal definition of intermediate lower bounds. We use

this notion simply as a way to capture the space between what we want to know and

what we currently know, and we have no intention of using this notion in a formal

15

argument.

Our work is centered around intermediate lower bounds with respect to three

conjectures or ideas.

SAT is hard for algorithms (P ̸= NP). Starting with the classic P vs NP

question, there is a wealth of intermediate lower bound questions for which we do not

have answers. If we cannot yet prove SAT cannot be computed by algorithms running

in polynomial time, can we at least prove that SAT cannot be decided in logarithmic

space? Or can we prove that SAT cannot be decided in time 𝑂(𝑛2)? Can we at least

prove that SAT cannot be decided in time logarithmic space when the machine is also

only allowed to run in time 𝑂(𝑛2)? It turns out that we do not yet know the answers

to any of these questions!

SAT is hard for circuits (NP ̸⊂ P/𝑝𝑜𝑙𝑦). A similar line of questions have come

from the somewhat ironic1 idea that circuits are “easy” to analyze – at least compared

to algorithms. Perhaps the road to proving P ̸= NP involves showing NP ̸⊂ P/𝑝𝑜𝑙𝑦.

It may very well be the case that we will not know that polynomial time algorithms

cannot decide SAT until we can show that polynomial size circuits cannot decide SAT.

While it may have once been an approach met with much optimism, it is still open

to prove NEXP ̸⊂ P/𝑝𝑜𝑙𝑦 or even that NP has a language which cannot be decided

by circuits of size 𝑂(𝑛2), both of which are intermediate lower bounds with respect

to the desired end result of NP ̸⊂ P/𝑝𝑜𝑙𝑦.

The Minimum Circuit Size Problem (MCSP) is hard. We now widen our

view and change our focus from SAT to the Minimum Circuit Size Problem (MCSP)

– the problem of finding the smallest circuit computing the function for a given truth

table. MCSP can be thought of as the algorithmic task of proving circuit lower

bounds. Obviously this is very important to us, not only because we would like to

prove or disprove circuit lower bounds, but because this problem has demonstrated

an enormous impact on our view of Complexity Theory, especially in regards to

randomness, derandomization, and nondeterminism. Lower bounds against MCSP

are crucial for many cryptography assumptions, and lower bounds for deciding MCSP

1This idea is ironic because our goal is to show that circuit analysis is hard.

16

may be as important as lower bounds for deciding SAT. Just as with SAT, we do not

know if MCSP can be decided by algorithms running in time 𝑂(𝑛2) or space 𝑂(log(𝑛)).

Some relevant examples of intermediate lower bounds can be found in Kannan

[62], Fortnow [43], Williams [90], and Beame [19], among others.

Our contributions. In this thesis, we study intermediate lower bounds.

Moreover, we study techniques for proving these lower bounds, as well as the re-

lationship between these lower bounds and the big picture of Complexity Theory.

We first show new intermediate lower bounds for various natural circuit problems.

We give lower bounds against the product of the length and space of branching pro-

grams solving some simple problems building on earlier work of Beame [19]. Our

results imply lower bounds on the product of time and space used by any random

access machine solving certain problems, and we show that they hold even for ran-

domized machines. We then give reductions from these simple problems to show

nearly quadratic lower bounds against the product of time and space for any ran-

domized random access machine evaluating a circuit with many output bits, solving

the satisfiability problem under the constraint that a satisfying assignment must be

produced, and #SAT (the problem of counting satisfying assignments to a boolean

formula). These lower bounds also hold for the problem of printing the truth table of

a formula. For some of the aformentioned problems, our lower bounds are curiously

tight; the lower bounds can also be “beaten” in slightly stronger models! More details

will be given in Section 1 and Chapter 3.

Next, we examine intermediate lower bounds against the Minimum Circuit Size

Problem (MCSP) and other compression problems. More specifically, we consider the

following family of circuit minimization languages. Let 𝑠 : N→ N in the following.

Definition 1.0.1 (MCSP[𝑠(𝑛)]). Given a truth table 𝑇 of size 𝑁 = 2𝑛, decide if there

is a circuit 𝐶 of size at most 𝑠(𝑛) whose truth table is 𝑇 .

Even for small 𝑠(𝑛) such as 𝑠(𝑛) = 𝑛10, there is strong evidence that MCSP[𝑠(𝑛)]

cannot be decided in polynomial time [79, 61]. We show somewhat surprisingly that

proving even very weak intermediate lower bounds against this language would allow

17

us to conclude coveted lower bounds. In fact, even showing MCSP[𝑛10] cannot be

computed by an algorithm using log𝑂(1)(𝑁) space and 𝑁 log𝑂(1)(𝑁) time would allow

us to conclude P ̸= NP! Thus, in a sense, such intermediate lower bounds are not

really 11 intermediate”, as they are already as difficult as problems like P vs NP.

More details will be given in Section 1 and Chapter 4.

Finally, we examine a long known method for proving circuit lower bounds for

problems in the polynomial hierarchy. Kannan [62] shows that PH does not have fixed

polynomial sized circuits. That is, for every constant 𝑘, there is language 𝐿 ∈ PH

such that 𝐿 does not have circuits of size 𝑂(𝑛𝑘). Next, the famous Karp-Lipton

theorem shows that, if NP has polynomial size circuits, then Σ𝑝
2 = PH [63].

This pair of facts yields a very simple argument that Σ𝑝
2 does not have fixed

polynomial size circuits! The argument given by Kannan is as follows. First, suppose

NP has polynomial size circuits. Then, Σ𝑝
2 = PH. Since PH does not have fixed

polynomial size circuits, we are done. On the other hand, suppose NP does not have

polynomial size circuits. Then Σ𝑝
2 does not have polynomial size circuits, let alone

fixed polynomial size circuits!

This “win-win” argument allows for quite a bit of generalization. Any new the-

orems in the same style as the Karp-Lipton Theorem produce new fixed-polynomial

size circuit lower bounds. We explore this technique and ultimately give strong evi-

dence that it is, in some sense, universal. More details will be given in Section 1 and

Chapter 5.

Organization of This Thesis

This thesis is divided into six chapters. Chapter 1 is an overview of the main ideas

presented in this thesis. Chapter 2 is brief preliminary chapter to direct the reader

towards resources and notions which are important to understand for this thesis.

Chapter 6 is a short exposition on some open problems motivated by bringing together

the results in the body of this thesis.

In the remainder of this section, we describe the body of this thesis and reintroduce

18

the previously mentioned ideas with some additional concreteness.

Nearly Quadratic Time-Space Lower Bounds Against Natural

Problems

In [19], Beame showed that the Unique Elements problem, and consequently the prob-

lem of sorting, cannot be computed by any branching program 𝑃 such that the prod-

uct of the space and length of 𝑃 is 𝑜(𝑛2). This implies that in fact these functions

cannot be computed by random access machines running in time 𝑡(𝑛) and space 𝑠(𝑛)

if 𝑡(𝑛)𝑠(𝑛) = 𝑜(𝑛2).

In Chapter 3, which is adapted from [71], we improve upon this idea first by

simplifying the lower bound proof, using the same ideas and techniques on a simpler

problem. We give an analogous lower bound against the Non-Occurring Elements

problem.

Definition 1.0.2 (Non-Occurring Elements (NOE)). Given a list 𝐿 of 𝑛 elements

each in the set {1, ..., 𝑛}, output a list of each element in the set {1, ..., 𝑛} which does

not occur in 𝐿.

We discuss a stronger model of branching programs that have access to a random

oracle, and show matching lower bounds against this model, even in the average case.

Lower bounds against this augmented model yield similar results against randomized

random access machines, showing that NOE and the above mentioned problems are

not computable by randomized random access machines running in time 𝑡(𝑛) and

space 𝑠(𝑛) for any 𝑡(𝑛) and 𝑠(𝑛) such that 𝑡(𝑛)𝑠(𝑛) = 𝑜(𝑛2). In other words, we show

that these problems require a time-space product of at least 𝑛2.

Definition 1.0.3. Let Π be a relational problem. We say that the time-space product

of Π is at least 𝑏(𝑛) if for every algorithm running in 𝑡(𝑛) time and 𝑠(𝑛) space for Π,

it must be the case that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑏(𝑛)).

We then give efficient local reductions from NOE to four natural circuit problems,

showing analogous lower bounds for each of them. The problems can be described as

follows:

19

∙ FCircEval: Given a boolean circuit with an arbitrary number of sink nodes,

produce the output of each sink node.

∙ Print-3SAT: Given a 3-CNF boolean formula 𝜙, produce a satisfying assignment

to 𝜙 or declare that there is not one if one does not exist.

∙ #2SAT: Given a 2-CNF boolean formula 𝜙, produce the number of satisfying

assignments to 𝜙.

∙ TTPrint: Given a CNF boolean formula 𝜙, produce the truth table of 𝜙. 2

For each of these problems, we show that there is some constant 𝑘 > 0 such that

there is no randomized random access machine computing any of these problems in

time 𝑡(𝑛) and space 𝑠(𝑛) for any 𝑡(𝑛)𝑠(𝑛) ≤ 𝑂(𝑛2/ log𝑘(𝑛)). For comparison, the best

known time lower bound for solving Circuit SAT in 𝑂(log 𝑛) space is 𝑛2 cos(𝜋/7)−𝑜(1) ≥

𝑛1.801 ([90, 29], building on [44]).

Hardness Magnification for Compression Problems

In Chapter 4, adapted from [70], we show that, not only are “intermediate lower

bounds” necessary to show coveted complexity class separations such as P ̸= NP, but

some similarly innocuous-looking bounds are sufficient for showing such complexity

class separations.

We first define a model of streaming algorithms using limited space and update

time, which are allowed to query oracles. These are roughly algorithms which may

only read the input once and must read their input bits in order. The efficiency of

such an algorithm can be measured by their update time – the time taken between

reading each bit of the input, as well as their space usage: the number of bits stored

by the algorithm. We then give efficient algorithms using oracles in PH for solving

MCSP[𝑠(𝑛)]. These algorithms can be viewed as reductions from MCSP[𝑠(𝑛)] to a

language 𝐷 ∈ PH, and importantly, these reductions have the following property:

2If 𝜙 has 𝑘 variables, the output of TTPrint will be length 2𝑘.

20

if 𝐷 ∈ P, then MCSP[𝑠(𝑛)] has streaming algorithms with update time and space

poly(𝑠(𝑛)). The contrapositive is:

Theorem 1.0.4. If MCSP[𝑠(𝑛)] does not have streaming algorithms with update time

and space 𝑝𝑜𝑙𝑦(𝑠(𝑛)), then P ̸= NP.

The real strength of this can be illuminated by the following corollary.

Corollary 1.0.5. If MCSP[𝑛10] does not have streaming algorithms with update time

and space log𝑂(1)(𝑁), then P ̸= NP.

Recalling it is already believed that MCSP[𝑛10] ̸∈ P, the hypothesis of Corollary

1.0.5 looks extremely plausible. We give similar reductions in the form of oracle

circuits from MCSP[𝑠(𝑛)] and other compression problems to languages in PH in

Theorem 4.1.1. This reduction gives us results similar to the above.

Theorem 1.0.6 (Weakening of Theorem 4.1.4). Let 𝑠(𝑛) ≥ 𝑛.

∙ If there exists an 𝜀 > 0 such that for every 𝑐 ≥ 1, the problem MCSP[2𝜀𝑛/𝑐] on

inputs of length 𝑁 = 2𝑛 does not have 𝑁1+𝜀-size 𝑂(1/𝜀)-depth TC0 circuits,

then NP ̸⊂ TC0.

∙ If MCSP[𝑠(𝑛)] on inputs of length 𝑁 = 2𝑛 does not have circuits of 𝑁 ·poly(𝑠(𝑛))

size and 𝑂(log𝑁) depth, then NP ̸⊂ NC1.

∙ If MCSP[𝑠(𝑛)] on inputs of length 𝑁 = 2𝑛 does not have circuits of 𝑁 ·poly(𝑠(𝑛))

size and poly(𝑠(𝑛)) depth, then NP ̸⊂ P/𝑝𝑜𝑙𝑦.

Subsequent work has included strengthening some of these results by replacing

compression problems (such as MCSP) with arbitrary sparse NP languages, but this

weakening comes at the cost of weaker lower bounds [36]. Informally, a sparse lan-

guage is one which does not have many strings. We examine some of these results in

Chapter 5, though the primary purpose of Chapter 5 is to present another relationship

between lower bounds.

21

An Equivalence Between Fixed-Polynomial Circuit Size Lower

Bounds and Karp-Lipton Style Theorems

If there is some fixed constant 𝑘 such that every function 𝑓 in a class 𝒞 can be com-

puted by circuits of size 𝑂(𝑛𝑘), we say 𝒞 has fixed polynomial size circuits. Likewise,

if this is not true of 𝒞, we say that 𝒞 does not have fixed polynomial size circuits or

that 𝒞 has fixed polynomial size circuit lower bounds.

In [62], Kannan shows that Σ𝑝
2 has fixed polynomial size lower bounds based on

the following ideas. PH does not have fixed polynomial size circuits, and, known as

the Karp-Lipton Theorem,

NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ Σ𝑝
2 = PH.

This is an early example of a proof of intermediate lower bounds, not only with

respect to the conjecture that NP ̸⊂ P/𝑝𝑜𝑙𝑦, but also the conjecture that NP does

not have fixed polynomial size circuits. It also introduces a scheme for proving new

fixed polynomial size circuit lower bounds. Letting 𝒞 be any class such that NP ⊆ 𝒞,

we consider a proposition in the style of the Karp-Lipton Theorem:

NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ 𝒞 = PH.

Showing such a theorem would allow us to conclude in the same way that 𝒞 does

not have fixed polynomial size circuits! Indeed, lower bounds against ZPPNP, S𝑝
2,

PP, and Promise-MA have been demonstrated this way [62, 26, 64, 30, 31, 89, 1, 80,

37].

An interesting question to consider: is this the “only way” to demonstrate fixed

polynomial size lower bounds against NP or other classes contained in the polynomial

hierarchy? With the ultimate goal of showing NP ̸⊂ P/𝑝𝑜𝑙𝑦 in mind, it is a necessary

intermediate step to show NP does not have fixed polynomial size circuits. We give

evidence that the answer to this question is yes!

In Chapter 5, adapted from [37], we show that new fixed polynomial size lower

22

bounds will actually require new theorems in the style of Karp-Lipton and that in

fact new fixed polynomial size lower bounds are equivalent to new theorems in the

style of Karp-Lipton. More precisely, we show that new circuit lower bounds against

PNP are equivalent to new Karp-Lipton style collapses to PNP.

Theorem 1.0.7 (PNP Circuit Lower Bounds are Equivalent to a Karp-Lipton Col-

lapse to PNP).

The following two statements are equivalent.

1. Fixed polynomial size circuit lower bounds against PNP:

∀𝑘,PNP ̸⊂ SIZE[𝑛𝑘]

2. Karp-Lipton Collapse to PNP:

NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ PH ⊂ i.o.-PNP/𝑛

In order to understand Theorem 1.0.7, we need to understand the claim PH ⊂

i.o.-PNP/𝑛. We give the definitions needed here in Chapter 5, but for now, an informal

unpacking of this statement should suffice. There are really two important ideas to

be considered.

∙ Advice: PNP/𝑛 denotes the class of languages decidable by polynomial time

machines with an NP oracle and 𝑛 bits of advice. That is to say that, for each

input length 𝑛, there is some string 𝑎 of 𝑛 bits such that given additional access

to this string causes our PNP machine to behave correctly. Note that this string

𝑎 should only depend on the input length 𝑛 rather than the input.

∙ Infinitely Often: We say a function 𝑓 ∈ i.o.-𝒞 if there is function 𝑓 ′ ∈ 𝒞 which

agrees with 𝑓 on infinitely many input lengths. This means that for each input

𝑥 of these input lengths, 𝑓(𝑥) = 𝑓 ′(𝑥). In the case of 𝑓 ∈ i.o.-PNP/𝑛, this is

equivalent to saying that there is some polynomial time machine 𝑀 with access

23

to an NP oracle and 𝑛 bits of advice which, on infinitely many input lengths,

decides 𝑓 correctly.

We additionally make progress towards the ultimate goal of showing that “circuit

lower bounds against NP are equivalent to Karp-Lipton style collapses to NP.” How-

ever, we have not yet reached this goal. In the following, think of “r.o” and “𝑐-r.o.”

as stronger versions of the notion “infinitely often.” We define these notions formally

in Section 5.2.

Theorem 1.0.8 (Paraphrased from Theorem 5.1.1). Assuming NP ⊂ P/𝑝𝑜𝑙𝑦, the

following are equivalent:

1. NP is not in SIZE[𝑛𝑘] for all 𝑘.

2. AM/1 is in c-r.o.-NP/𝑛𝜀 for all 𝜀 > 0 and integers 𝑐.3

That is, Arthur-Merlin games with 𝑂(1) rounds and small advice can be simu-

lated “𝑐-robustly often” in NP with modest advice, for all constants 𝑐.

3. NP does not have 𝑛𝑘-size witnesses for all 𝑘.

That is, for all 𝑘, there is a language 𝐿 ∈ NP, a poly-time verifier 𝑉 for 𝐿, and

infinitely many 𝑥𝑛 ∈ 𝐿 such that 𝑉 (𝑥𝑛, ·) has no witness of circuit complexity

at most 𝑛𝑘.

4. NP is not in AMTIME(𝑛𝑘) for all 𝑘.

That is, for all 𝑘, there is a language in NP which cannot be decided by an

Arthur-Merlin protocol running in 𝑂(𝑛𝑘) time.

5. (NP ∩ coNP)/𝑛𝜀 is not in SIZE[𝑛𝑘] for all 𝑘 and all 𝜀 > 0.

6. (AM∩ coAM)/1 is in c-r.o.-(NP∩ coNP)/𝑛𝜀 for all 𝜀 > 0 and all integers 𝑐.

The consequence of the following corollary of Theorem 1.0.8 can be thought of as

a weak Karp-Lipton style collapse of AM to NP.
3See the Preliminaries for a definition of “𝑐-robustly often”. Intuitively, it is a mild strengthening

of “infinitely often”.

24

Corollary 1.0.9 (NP Circuit Lower Bounds Equivalent to a Karp-Lipton Collapse

of AM to NP). NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘 if and only if (NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ AM

is in r.o.-c-NP/𝑛𝜀 for all 𝑐).

Finally, we conclude Chapter 5 with additional hardness magnification results

similar to those in Chapter 4. These results generalize hardness magnification from

compression problems to arbitrary sparse languages in NP.

Definition 1.0.10. A language 𝐿 is 𝑠(𝑛)-sparse if, for all 𝑛, |𝐿 ∩ {0, 1}𝑛| ≤ 𝑠(𝑛).

Notice that sparse languages are a proper generalization of compression problems

(or at least the decision versions of compression problems) in the following sense. If

𝐿 contains only strings which can be compressed to 𝑠(𝑛) bits, then 𝐿 must be 2𝑠(𝑛)-

sparse. Our prime example is of course MCSP[𝑠(𝑛)] which is 2𝑂(𝑠(𝑛) log(𝑛))-sparse. Now

consider Theorem 1.0.11.

Theorem 1.0.11. NEXP ̸⊂ P/𝑝𝑜𝑙𝑦 if and only if there exists an 𝜀 > 0 such that

for every sufficiently small 𝛽 > 0, there is a 2𝑛
𝛽 -sparse language 𝐿 ∈ NTIME[2𝑛

𝛽
]

without 𝑛1+𝜀-size circuits.

Aside from the generalization to sparse languages, there are some differences worth

noting between Theorems 1.0.6 and 1.0.11. Consider the following conjecture.

Conjecture 1.0.12. MCSP[𝑛10] does not have circuits of size 𝑛1.0000001.

If we managed to prove Conjecture 1.0.12, we could use Theorem 1.0.6 to conclude

NP ̸⊂ P/𝑝𝑜𝑙𝑦, while we could only use Theorem 1.0.11 to conclude NEXP ̸⊂ P/𝑝𝑜𝑙𝑦.

At the moment, it seems that generalization has come at the cost of the strength of

the lower bounds in the consequent of Theorem 1.0.11.

However, another important difference is that Theorem 1.0.11 is an equivalence!

As is a common theme in Chapter 5, this shows us that proving lower bounds against

some sparse NP languages is inescapable in our quest to prove NEXP ̸⊂ P/𝑝𝑜𝑙𝑦.

25

26

Chapter 2

Preliminaries

In this chapter, we present some basic preliminaries which are common themes in the

following chapters. Each chapter will still have its own preliminary section, some of

which may be redundant with this chapter.

Throughout this thesis, we assume basic familiarity with computational complex-

ity [13]. Maturity with ideas surrounding circuits and non-uniform computation, or-

acles, randomness and pseudo-randomness, and of course reductions will be essential

for understanding this work.

Background from [13]. From Arora and Barak [13], Chapters 1 through 9 are

crucial. Of the later chapters in the book, Chapter 22: Why are circuit lowerbounds

so difficult? is likely the most important for our work. A reader of this thesis would

be further aided by comfort with any additional material, but especially the material

from Chapters 10, 12, 13, 15, and 16.

Relational Problems. Essentially every problem in this thesis is a relational

problem. By relational problem, we simply mean that for a relation 𝑅 ⊆ Σ*×Σ*, we

will be given some input 𝑥, and we will output some 𝑦 such that (𝑥, 𝑦) ∈ 𝑅 or give

an output which indicates that there is no such 𝑦. This exact way this is handled

may vary between contexts and will always be defined as part of the problem. If no

alphabet Σ is given, we assume the alphabet is {0, 1}. In this thesis, many of the

problems we will consider can be further placed into one or both of the following

categories:

27

∙ Decision problems, boolean functions, or languages. These are extremely com-

mon notions, and if the reader is not familiar with these, they would be advised

to revisit this thesis once they have acquired more maturity with these ideas.

These are simply problems for which the solution is always 0 or 1 (or some other

pair of symbols or strings denoting “yes” and “no”). Usually, when we refer to

a problem 𝐿 as a language, we mean to describe 𝐿 as the set of strings which

merit the “yes” answer. That is,

𝐿(𝑥) = 1 ⇐⇒ 𝑥 ∈ 𝐿.

∙ Function problems or functions. These are problems which, like decision prob-

lems, always have exactly one correct response for an input, but this input is

not necessarily restricted to being from some binary set. A decision problem is

trivially a function.

SAT is a great example of a well-known decision problem, and similarly, #SAT

is an example of a function problem. As these are very common categorizations of

problems, our purpose in delineating these categories is to point out examples of

problems in this thesis which are neither decision problems nor function problems.

Recall NOE from Chapter 1.

Reminder of Definition 1.0.2 Non-Occurring Elements (NOE). Given a list

𝐿 of 𝑛 elements each in the set {1, ..., 𝑛}, output a list of each element in the set

{1, ..., 𝑛} which does not occur in 𝐿.

Given a list 𝐿, NOE(𝐿) does not necessarily refer to one specific list. In fact, many

different lists may be satisfying responses from a machine computing NOE. Because

of this, we only use the notation NOE(𝐿) sparingly, and only when any valid list of

the non-occurring elements of 𝐿 would suffice. Moreover, we will only use NOE(𝐿) to

make claims about the set of non-occurring elements of 𝐿.

Another important relational problem appears in Chapter 4.

Definition 2.0.1 (search-MCSP[𝑠(𝑛)]). Given a truth table 𝑇 , do one of the following:

28

∙ Output a circuit 𝐶 of size at most 𝑠(𝑛) such that TruthTable(𝐶) = 𝑇 ,1 or

∙ If there is no such circuit, report that there is no circuit 𝐶 of size at most 𝑠(𝑛)

such that TruthTable(𝐶) = 𝑇 .

Just like in the case of NOE, when computing search-MCSP[𝑠(𝑛)], we are satisfied

with a wide variety of answers for some inputs, but we are also satisfied with the

answer that there is no such circuit. This will be a common theme with problems in

Chapter 4.

Restrictions to 𝑛 input bits. For any problem Π, unless otherwise denoted,

Π𝑛 is the 𝑛-bit boolean function which agrees Π on all inputs of length 𝑛.

Functions for truth tables and circuit complexity. Given a circuit or for-

mula 𝐶 deciding some 𝑛-bit boolean function, it will be convenient to be able to refer

to the truth table of 𝐶 as TruthTable(𝐶). More specifically, TruthTable(𝐶) ∈ {0, 1}2𝑛

is the evaluation of 𝐶 on all possible inputs sorted in lexicographical order.

For every string 𝑦, let 2ℓ be the smallest power of 2 such that 2ℓ > |𝑦|. We

define the circuit complexity of 𝑦, denoted as CircuitComplexity(𝑦), to be the circuit

complexity of the ℓ-input function defined by the truth-table 𝑦102ℓ−|𝑦|−1.

Similarly, given 𝑛-bit function Π𝑛, we will denote the size of the smallest circuit

computing Π𝑛 as SIZE(Π𝑛). For functions Π with unrestricted input lengths, we define

SIZE(Π)(𝑛) = SIZE(Π𝑛).

Circuit complexity classes. We assume basic familiarity circuit complexity

classes such as AC0, ACC0, TC0, and NC1. We assume these circuit classes are non-

uniform unless otherwise specified. An AC circuit family is any circuit family over

the basis of NOT, unbounded fan-in OR, and unbounded fan-in AND. For 𝑠 : N→ N,

SIZE[𝑠(𝑛)] is the class of languages decided by an infinite circuit family where the

𝑛th circuit in the family has size at most 𝑠(𝑛).

“Parity P”. ⊕P is the closure under polynomial-time reductions of the deci-

sion problem Parity-SAT: Given a Boolean formula, is the number of its satisfying

assignments odd?
1TruthTable(𝐶) is simply the truth table of 𝐶. There is a more formal definition given later in

this section.

29

Advice. For a deterministic or nondeterministic class 𝒞 and function 𝑎(𝑛), 𝒞/𝑎(𝑛)

is the class of languages 𝐿 such that there is an 𝐿′ ∈ 𝒞 and function 𝑓 : N→ {0, 1}⋆

with |𝑓(𝑛)| ≤ 𝑎(𝑛) for all 𝑥, such that 𝐿 = {𝑥 | (𝑥, 𝑓(|𝑥|)) ∈ 𝐿′}. That is, the advice

string 𝑓(𝑛) can be used to solve all 𝑛-bit instances within class 𝒞. For “promise”

classes 𝒞 such as MA and AM, 𝒞/𝑎(𝑛) is defined similarly, except that the promise

of the class is only required to hold when the correct advice 𝑓(𝑛) is provided.

Time-space lower bounds. Throughout this thesis, we will discuss how much

time or memory a machine must use when the other is restricted. For example, we

may wonder how much space a machine running in 𝑛1.5 time needs to compute NOE.

Reminder of Definition 1.0.3. Let Π be a relational problem. We say that the

time-space product of Π is at least 𝑏(𝑛) if for every algorithm running in 𝑡(𝑛) time

and 𝑠(𝑛) space for Π, it must be the case that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑏(𝑛)).

At times, we may instead say that a problem Π requires a time-space product or

has a time-space lower bound of 𝑏(𝑛), though the meaning is not changed.

30

Chapter 3

Nearly Quadratic Time-Space Lower

Bounds Against Natural Problems

3.1 Introduction

Infamously little progress has been made towards the resolution of P vs NP. It is still

open whether there are linear time algorithms for solving generic NP-hard problems

such as Circuit SAT although for certain NP-hard problems, non-linear lower bounds

on multitape Turing machines are known [78, 47]. In fact it remains open whether

Circuit SAT has a generic algorithm in a random-access machine model running in

𝑂(𝑛1.9999) time and 𝑂(log 𝑛) additional space beyond the input.1 Currently the best

known time lower bound for solving Circuit SAT in 𝑂(log 𝑛) space is 𝑛2 cos(𝜋/7)−𝑜(1) ≥

𝑛1.801 ([90, 29], building on [44]).

Other prominent work has used combinatorial methods to prove time-space lower

bounds for decision problems in P [22, 5, 24, 23, 82, 6, 77]. For general random-access

models of computation, modest super-linear (e.g. 𝑛 log 𝑛-type) time lower bounds for

explicit problems in P are known when the space is restricted to 𝑛.99 or less (for

randomized models as well [23, 77]). Thus for such problems, the time-space product

1Note that for multitape Turing machines, such lower bounds are not hard to show [80]. However,
these lower bounds rely on the sequential access of Turing machines on tapes; once random access
is allowed, these lower bounds break.

31

can be lower-bounded to nearly Ω(𝑛2) when the space is close to 𝑛; however, when

the space is 𝑂(log 𝑛), the best time lower bound against RAMs appears to be the

aforementioned 𝑛1.801 bound for Circuit SAT.

All the above cited lower bounds are for decision problems. For example, the SAT

lower bound applies to algorithms which are only required to determine if a given

formula is satisfiable or not. There are several well-studied extensions of SAT which

are function problems, outputting multiple bits:

1. How difficult is it to print a satisfying assignment, when one exists?

For 3CNF formulas, call this problem Print-3SAT. Of course, Print-3SAT has a

polynomial-time algorithm if and only if P = NP, but perhaps it is easier to

prove concrete lower bounds for it, compared to the decision version.

2. How difficult is #2SAT, in which we count the number of satisfying

assignments to a 2CNF? Since #2SAT is #P-complete, the problem should

intuitively be harder to solve than 3SAT.

3. How difficult is it to print the truth table of a CNF? Given a CNF

formula 𝐹 of 𝑛 variables and up to 2𝑛 size, 𝐹 can be evaluated on all possible

2𝑛 inputs in 4𝑛 · poly(𝑛) time and poly(𝑛) space (using a linear-time, log-space

algorithm for evaluating a CNF on a given input). Call this problem TTPrint

(for truth-table printing). Is this quadratic running time optimal? This

question is of considerable interest for SAT algorithms; for some circuit classes,

the only known SAT algorithms beating exhaustive search (e.g., [91]) proceed

by reducing SAT to a quick truth table evaluation.

In this chapter, we prove that for essentially any generic randomized computation

model using 𝑛𝑜(1) space but having constant-time access to a random oracle (i.e., a

random string of 2𝑛𝑜(1) bits), the above three problems all require nearly quadratic time

to compute with nonzero constant probability. We revisit a quadratic time-space lower

bound of Beame [20] for the Unique Elements problem, show that his technique can

be used to prove an analogous lower bound for an even “simpler” problem that we call

32

Non-Occurring Elements, extend the lower bound’s reach to include random oracles,

and give succinct reductions from Non-Occurring Elements to the above problems,

proving hardness for them.

Lower Bound for Non-Occurring Elements. Recall that in Chapter 1, we defined

Non-Occurring Elements. Recall as well that [𝑛] := {1, . . . , 𝑛}.

Reminder of Definition 1.0.2 (Non-Occurring Elements (NOE)). Given a list

𝐿 of 𝑛 elements each in the set [𝑛], output a list in any order containing each element

in the set [𝑛] which does not occur in 𝐿.

Observe it is easy to get a space-𝑂(𝑠(𝑛)) algorithm on the log(𝑛)-word RAM for

computing NOE with running time 𝑂(𝑛2/𝑠(𝑛)):

Partition [𝑛] into 𝑛/𝑠(𝑛) blocks of 𝑠(𝑛) elements each. Do 𝑛/𝑠(𝑛) passes

over 𝐿, where in the 𝑖th pass, check which numbers in the 𝑖th block do

not occur in 𝐿: this can be done in 𝑠(𝑛) bits of space by simply keeping

a bit vector.

Hence we would say NOE has time-space product 𝑂(𝑛2) for all 𝑛 ≤ 𝑡(𝑛) ≤ 𝑛2.

Our first main theorem builds on the aforementioned work of Beame to show that

this time-space product is optimal, even when programs have access to a random

oracle and can err with high probability.

Theorem 3.1.1. For all 𝑝 ∈ (0, 1], every random oracle 𝑛-way branching program

family of size 2𝑠(𝑛) and height 𝑡(𝑛) computing NOE with success probability 𝑝 has

𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑛2) for all sufficiently large 𝑛.

(Note, we need to formally define what a “random oracle branching program” even

means. For now, think of it as a non-uniform version of space-bounded computation

with constant-time access to a uniform random 2𝑠(𝑛)-bit string. The preliminaries

in Section 3.2 give full detailed definitions.) Using a standard translation of word

RAMs into branching programs, it follows that every probabilistic word RAM with a

random oracle and wordsize log(𝑛) computing NOE in time 𝑡(𝑛) and space 𝑠(𝑛) must

have 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑛2) in order to have constant success probability.

33

Lower Bound for Sorting and Circuit Evaluation. Informally, we say that a

reduction from a problem 𝐴 to a problem 𝐵 is succinct if any particular bit of the

reduction can be computed in poly(log 𝑛) time. (Definitions can be found in the Pre-

liminaries.) As a warm-up, in Theorem 3.3.8 of this chapter, we use a simple succinct

reduction to obtain an analogous random oracle lower bound for the problem of sort-

ing 𝑛 unordered elements from [𝑛], which we call Sort. (A tight lower bound without

random oracles was proved by Beame [20].) We combine the sorting lower bound with

another simple reduction to obtain an analogous lower bound for evaluating circuits.

Let FCircEval be the problem: given a circuit of size 𝑛 with at most 𝑛 inputs (all fixed

to 0-1 values) and at most 𝑛 outputs, determine its output. The decision version of

FCircEval is well-known to be P-complete.

Theorem 3.1.2. For all finite Σ, there is a 𝑘 > 0 such that the random oracle Σ-way

branching program time-space product of FCircEval is at least Ω(𝑛2/ log𝑘 𝑛).

As in the case of NOE, Theorem 3.1.2 implies analogous time-space lower bounds

on random access machines computing FCircEval. We note that without the “random

oracle” modifier, Theorem 3.1.2 is almost certainly folklore; it follows from our simple

reduction and the Ω̃(𝑛2) time-space product lower bound on sorting of Borodin and

Cook [25].

Lower Bound for Printing SAT Assignments. Any practical algorithm for

Satisfiability would need to print satisfying assignments when they exist. We give a

succinct reduction from Circuit Evaluation to the printing problem for 3SAT, proving

a nearly-quadratic time lower bound in the 𝑛𝑜(1) space setting.

Theorem 3.1.3. For all finite Σ, there is a 𝑘 > 0 such that the random oracle Σ-way

branching program time-space product of Print-3SAT is at least Ω(𝑛2/ log𝑘 𝑛).

Lower Bound for Computing Truth Tables of CNFs. We show that the triv-

ial algorithm for computing the truth table of a large CNF has optimal time-space

product, even for randomized algorithms.

34

Theorem 3.1.4. For all finite Σ, there is a 𝑘 > 0 such that the random oracle Σ-way

branching program time-space product of TTPrint for CNF formulas with 𝑛 clauses

and log(𝑛) + log log(𝑛) many variables is at least Ω(𝑛2/ log𝑘 𝑛).

The proof of Theorem 3.1.4 works by giving a succinct reduction from NOE to

TTPrint, constructing a CNF whose truth table encodes (at the bit level) the non-

occurring elements of a given list.

Lower Bound for #2SAT. Finally, we give a succinct reduction from the truth

table problem TTPrint for CNF formulas to counting SAT assignments to a given

2CNF, implying an analogous lower bound for #2SAT. In particular, we encode the

output 2CNF in such a way that the bits of its number of satisfying assignments

encode the value of the original CNF on various inputs.

Theorem 3.1.5. For all finite Σ, there is a 𝑘 > 0 such that the random oracle Σ-way

branching program time-space product of #2SAT is at least Ω(𝑛2/ log𝑘(𝑛)).

Lower Bounds Beyond? Finally, we note that the random oracle model we con-

sider may not be the most general possible one. We could also consider oracles where

the queries are on write-only storage that does not count towards the space bound.

Although such oracles are sometimes used in space-bounded complexity ([65]), it is

hard for us to see how such queries could help in the random oracle setting. In this

chapter’s conclusion (Section 3.5) we outline how to coherently define this sort of

oracle access in branching programs, and conjecture that our lower bounds also hold

in this “extended oracle” model.

3.1.1 Intuition for the NOE Lower Bound

Our proof of the NOE lower bound (Theorem 3.1.1) starts from Beame’s lower bound

for Unique Elements [20]. We generalize his proof, and use our generalization to show

that any function problem2 satisfying two basic properties has a non-trivial branching
2This also applies to relational problems, such as NOE, though for simplicity only describe the

criteria for function problems. Notice that we can treat NOE as a function which outputs a set for
the purpose of Theorem 3.1.6.

35

program lower bound, even when the branching program has access to a huge number

of random bits.

Theorem 3.1.6. Let {Σ𝑛} be a family of finite alphabets, {𝑓𝑛 : (Σ𝑛)
𝑛 → (Σ𝑛)

*} be a

family of functions, {𝐷𝑛} be a family of distributions where each 𝑛 is over strings in

(Σ𝑛)
𝑛, and let 𝑔 : N→ N satisfy the following properties.

1. [𝑓 typically has “long” outputs]. For all 𝜀 > 0, there is an 𝑛0 ≥ 0 such that

for all 𝑛 > 𝑛0, there is a 𝛿 > 0 such that

Pr
𝑥∈𝐷𝑛

[|𝑓𝑛(𝑥)| > 𝛿𝑔(𝑛)] > 1− 𝜀.

2. [Short random-oracle branching programs have low probability of

printing long substrings of 𝑓]. Let 𝑈𝑛 be the uniform distribution over

Σ𝑛 and let 𝑁 ≤ 2𝑠(𝑛) be an integer. There is an 𝜀 > 0 such that for all Σ𝑛-way

branching programs 𝑃 of height at most 𝑛/4,

Pr
(𝑥,𝑟)∼𝐷𝑛×𝑈𝑁

𝑛

[(𝑃 (𝑥𝑟) is a substring of 𝑓𝑛(𝑥)) ∧ (|𝑃 (𝑥𝑟)| ≥ 𝑚)] < 𝑒−𝜀𝑚.

Then, for all 𝑛 > 𝑛0 and 𝑝 ∈ (0, 1], and for every random oracle Σ𝑛-way branching

program of size 2𝑠(𝑛) and height 𝑡(𝑛) computing 𝑓𝑛 with success probability at least 𝑝

on inputs drawn from 𝐷𝑛, it must be that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑛 · 𝑔(𝑛)).

The intuition behind Theorem 3.1.6 is that, if a function 𝑓 on input 𝑥 requires a

long output (Property 1), then some (possibly many) “subprograms” of an efficient

branching program 𝑃 computing 𝑓 will need to produce somewhat-long output. But

by Property 2, this is “hard” for all short subprograms even with a random oracle:

they have low probability of correctly answering a large fraction of 𝑓 .

Beame’s original lower bound for Unique Elements [20] follows a similar high-

level pattern (as we review in Theorem 3.3.1). One of our insights is that the Non-

Occurring Elements problem satisfies stronger versions of the properties used in his

proof for Unique Elements; these stronger properties give us extra room to play with

36

the computational model in our lower bound against Non-Occurring Elements. Another

insight is that the conditioning on uniform random input in his argument can be

modified to accommodate very long auxiliary random inputs. Together, this allows

us to extend the lower bounds to models equipped with random oracles.

Why Random Oracles? Let us give one comment on the model itself. One may

wonder why it is even necessary to add random oracles to branching programs (BPs),

which are a non-uniform model of computation. Can’t we use Adleman’s argu-

ment [13] to show that the randomness can be hard-coded in the non-uniform model,

similarly to how BPP ⊂ P/𝑝𝑜𝑙𝑦?

Indeed, a BP with a random oracle can always be simulated by a deterministic

BP; however, the running time of the deterministic BP increases by a multiplicative

factor of Ω(𝑛) (hence, a time lower bound of Θ(𝑛2) on a deterministic BP says nothing

a priori about randomized BPs). Given a randomized BP for a decision problem with

constant success probability 1/2 < 𝑝 < 1, it is derandomized by taking Ω(𝑛) copies

of the BP (with independent random bits filled in each copy), and computing the

majority value of the BP outputs. The Ω(𝑛) copies are needed because one needs

to guarantee correctness over all 2𝑛 possible inputs: this increases the running time

by an Ω(𝑛) multiplicative factor. In our case, the situation is even more complicated

because we are concerned with function problems. The upshot is that 𝑛2 lower bounds

on random-oracle BPs give strictly more information than a typical randomized model

with one-way access to random bits, or a deterministic model.

3.2 Preliminaries

We assume basic familiarity with computational complexity [13]. Here we recall (and

introduce) various computational models and notations needed in this chapter.

All of our lower bounds are on the product of time and space for various problems.

For clarity, we define the time-space product as follows.

Reminder of 1.0.3. Let Π be a relational problem. We say that the time-space

37

product of Π is at least 𝑏(𝑛) if for every algorithm running in 𝑡(𝑛) time and 𝑠(𝑛)

space for Π, it must be the case that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑏(𝑛)).

Random Access Machines With Oracles. For this work, we consider random

access machines (RAMs) with access to an oracle and a write-only output tape. More

precisely, our RAMs can only append new characters to the end of their output tape.

Definition 3.2.1. Let 𝑂 be a language over a finite alphabet. An oracle RAM 𝑀𝑂

is a random access machine with an additional oracle tape. During a time step, in

addition to any normal RAM operations, an oracle RAM can read or write a character

to the oracle tape, can move the oracle tape head left or right, or can query the oracle

with the contents of the tape to obtain a uniform random bit. Additionally, 𝑀𝑂 has

a write-only output tape to which it can append a character in any step.

R-Way Branching Programs With Oracles and Output. Our lower bounds

for Non-Occurring Elements (Theorem 3.1.1) will be against a generalization of branch-

ing programs with a (large) alphabet of size 𝑅, often called 𝑅-way branching pro-

grams [25]. We recall the definition here.

Definition 3.2.2. Let 𝑅 ≥ 2 be an integer. An 𝑅-way branching program with

𝑛 inputs 𝑥1, . . . , 𝑥𝑛 as a directed acyclic graph with one source node in which every

non-sink node has out-degree 𝑅. Every non-sink node is labeled with an index 𝑖 ∈ [𝑛]

corresponding to an input variable, and each edge is labeled with an element of [𝑅]

such that no edge (𝑢, 𝑣) and (𝑢,𝑤) where 𝑣 ̸= 𝑤 share a label. Additionally, each

vertex 𝑣 is labeled with an instruction to print a value 𝑝(𝑣) (which may be the empty

string). The height of an 𝑅-way branching program 𝑃 is the length of the longest

path in its graph, and the size is the number of vertices. The computation path

of 𝑃 on input 𝑥 is the unique path 𝜋 = (𝑣0, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑘−1, 𝑣𝑘) such that 𝑣0

is the source node, 𝑣𝑘 is a sink node, and for all 𝑖 ∈ {0, . . . , 𝑘 − 1}, if vertex 𝑣𝑖 is

labeled 𝑗, then the label on (𝑣𝑖, 𝑣𝑖+1) is the value of 𝑥𝑗. The output of 𝑃 on input

𝑥, denoted as 𝑃 (𝑥), is the concatenation of the values printed by the vertices along

the computation path of 𝑃 on input 𝑥, i.e., 𝑝(𝑣0)𝑝(𝑣1) · · · 𝑝(𝑣𝑘).

38

Let Σ be a finite alphabet. For notational convenience, we call a 𝑃 a Σ-way

branching program if 𝑃 is a |Σ|-way branching program with edges labeled with

elements of Σ instead of [|Σ|].

Definition 3.2.3. A function 𝑓 : Σ* → Σ* has a Σ-way branching program of

height 𝑡(𝑛) and size 𝑆(𝑛) if for all 𝑛 ≥ 0, there is a Σ-way branching program 𝑃𝑛

of height 𝑡(𝑛) and size 𝑆(𝑛) such that for all 𝑥 ∈ Σ𝑛, 𝑃𝑛(𝑥) = 𝑓(𝑥).

We study a natural generalization of 𝑅-way branching programs with oracles

whose queries count towards the space bound. This is a natural set-up for the ran-

dom oracle setting, where random oracles model truly random hash functions. Let

𝑂 : Σ⋆ → {0, 1} in the following.

Definition 3.2.4. An 𝑂-oracle 𝑅-way branching program with 𝑛 inputs is an

𝑅-way branching program with the following additional properties. Each vertex is

labeled with either a variable index 𝑖 ∈ [𝑛] or with a string 𝑞𝑗 ∈ {0, 1}⋆ (where 𝑗 is an

integer ranging from 1 to the number of vertices in the program); we call the latter

Q-vertices (for “Query”). All 𝑄-vertices have two outgoing arcs, labeled with the two

possible query answers yes or no (i.e., 1 or 0). Computation on an 𝑂-oracle branching

program is defined analogously to usual branching programs, with the following extra

rule for 𝑄-vertices. Each time a 𝑄-vertex 𝑣 is reached during a computation, the

outgoing yes (i.e., 1) edge of 𝑣 is taken in the computation path if and only if the

label 𝑞𝑗 of 𝑣 satisfies 𝑂(𝑞𝑗) = 1.

Remark 3.2.5. Note that in the above definition, the oracle queries could be strings

of arbitrary length, but in a size-𝑆 branching program we are only allowed 𝑆 possible

distinct oracle queries over all possible inputs. So the above definition is more general

than the condition that “oracle queries count towards the space bound”. In the random

oracle setting, this distinction will make little difference; we might as well think of the

query strings as being of length about log2(𝑆).

It is natural to augment branching programs with oracles. Barrington and McKen-

zie [17], motivated by an approach to proving NC1 ̸= P, defined an oracle branching

39

program model in terms of finite automata, where instead of branching on individ-

ual input bits, the program can branch on (in principle) all possible 𝑛-bit inputs,

corresponding to oracle queries on the input. The usual branching program model

is captured in their model by a branching program with an oracle for the predicate

𝐵𝐼𝑇 (𝑥, 𝑖) which returns the 𝑖th bit of the input 𝑥. They proved exponential size lower

bounds for branching programs with certain weak oracles. Our oracle model is de-

signed to give a natural correspondence between 𝑂-oracle 𝑅-way branching programs

and word RAMs with wordsize log(𝑅) and oracle access to 𝑂.

It will be helpful to think of oracle branching programs as simply branching pro-

grams which receive the oracle as part of their input. The following proposition for-

malizes this:

Proposition 3.2.6. Let 𝑃𝑂 be an 𝑂-oracle Σ-way branching program with 𝑛 inputs,

height 𝑇 , and size 𝑆, and let 𝑞1, ..., 𝑞𝑚 be the set of all possible oracle queries appearing

at 𝑄-vertices of 𝑃𝑂. There is a Σ-way branching program 𝑃 ′ of height 𝑇 and size 𝑆

such that for all 𝑥 ∈ Σ𝑛, 𝑃𝑂(𝑥) = 𝑃 ′(𝑥𝑦), where 𝑦 = 𝑂(𝑞1), ..., 𝑂(𝑞𝑚).

Proof. The branching program 𝑃 ′ is simply a relabeling of 𝑃 in which every 𝑄-vertex

with label 𝑞𝑗 is instead labeled by the variable index 𝑛+ 𝑗.

Random Oracles. We will ultimately study 𝑅-way branching programs with ran-

dom oracles. All of our random oracles will have the form 𝑂 : Σ* → Σ for a finite

alphabet Σ. Thus we define random oracles as a random elements of the set (Σ* → Σ).

Definition 3.2.7. 𝒟Σ is the uniform distribution over functions in (Σ* → Σ). That

is, drawing some 𝑓 ∼ 𝒟Σ is equivalent to, for each 𝑥 ∈ Σ*, choosing an element of Σ

uniformly at random as 𝑓(𝑥).

We define computation with a random oracle branching program as follows.

Definition 3.2.8. A function 𝑓 has a random oracle branching program family

of height 𝑡(𝑛) and size 2𝑠(𝑛) with success probability 𝑝 ∈ (0, 1] if there is a family

of oracle branching programs {𝑃𝑂
𝑛 } such that the height of each 𝑃𝑂

𝑛 is at most 𝑡(𝑛),

40

the size of each 𝑃𝑂
𝑛 is at most 2𝑠(𝑛), and for all inputs 𝑥,

Pr
𝑂∼𝒟Σ

[︀
𝑃𝑂
|𝑥|(𝑥) = 𝑓(𝑥)

]︀
≥ 𝑝.

Borodin and Cook show that 𝑅-way branching programs of height 𝑂(𝑡(𝑛)) and

size 2𝑂(𝑠(𝑛)) can simulate time-𝑡(𝑛) space-𝑠(𝑛) RAMs of wordsize ⌊log2𝑅⌋ [25]. We

observe that their proof relativizes to allow oracle 𝑅-way branching programs to

simulate oracle RAMs with wordsize ⌊log2𝑅⌋.

Lemma 3.2.9. For every language 𝑂 and oracle RAM 𝑀𝑂 running in time 𝑡(𝑛) ≤

2𝑂(𝑠(𝑛)) and space 𝑠(𝑛) ≥ log(𝑛) with wordsize log(Σ), there is an oracle Σ-way branch-

ing program of height 𝑂(𝑡(𝑛)) and size 2𝑂(𝑠(𝑛)) such that 𝑀𝑂(𝑥) = 𝑃𝑂(𝑥) for all inputs

𝑥.

Proof. Without loss of generality, assume that at any step, 𝑀𝑂 either accesses its

input of length 𝑛 by writing an index 𝑗 ∈ [𝑛] to an “access register”, or 𝑀𝑂 queries

𝑂 by writing the character 𝑄 to the access register. Let the configuration of machine

𝑀 contain the description of the random access memory of 𝑀 , the state of 𝑀 , and

the character currently being output, if any. For integer 𝑛 ≥ 1, define a graph

𝐺𝑛 = (𝑉𝑛, 𝐸𝑛) as follows. Let 𝑉𝑛 be the set of triples (𝐶, 𝑖, 𝑗) such that 𝐶 is a possible

space-𝑠(𝑛) configuration of 𝑀 , 𝑖 ∈ {0, 1, . . . , 𝑡(𝑛)}, and 𝑗 ∈ [𝑛] ∪ {𝑄}.

Our corresponding branching program, has each vertex (𝐶, 𝑖, 𝑗) with 𝑗 ∈ [𝑛] la-

beled by 𝑗, and those (𝐶, 𝑖, 𝑗) with 𝑗 = 𝑄 are 𝑄-vertices, which we label with a string

𝑞𝑗 representing the content of the oracle tape of 𝑀𝑂 in configuration 𝐶.

For 𝑗 ∈ [𝑛], we put the edge ((𝐶1, 𝑖, 𝑗), (𝐶2, 𝑖 + 1, 𝑗′)) ∈ 𝐸𝑛 and label it with

a string 𝑝 if and only if 𝑀𝑂 in configuration 𝐶1 would transition to configuration

𝐶2 given that in configuration 𝐶1, 𝑗 is put in the access register, 𝑥𝑗 = 𝑝, and 𝑗′

is put in the access register in 𝐶2. For configurations making an oracle query, put

((𝐶1, 𝑖, 𝑄), (𝐶2, 𝑖 + 1, 𝑗′)) ∈ 𝐸𝑛 and label it with 𝑏 ∈ {0, 1} if and only if 𝑀𝑂 in

configuration 𝐶1 would transition to configuration 𝐶2 given that in configuration 𝐶1,

𝑄 is written on the access register in 𝐶1, the oracle query 𝑂 returns 𝑏, and 𝑗′ is written

on access register in 𝐶2.

41

Observe that |𝑉𝑛| ≤ 2𝑂(𝑠(𝑛)) · 𝑡(𝑛) · 𝑛 ≤ 2𝑂(𝑠(𝑛), assuming the size of the tape

alphabet and the number of states in the state machine of 𝑀𝑂 are constants. Further

observe that all paths in 𝐺𝑛 have length at most 𝑡(𝑛), since every step in the path

must be from some (𝐶, 𝑖, 𝑗, 𝑘) to some (𝐶 ′, 𝑖+1, 𝑗′, 𝑘′) and 𝑖, 𝑖+1 ∈ [𝑡(𝑛)]. Finally, the

oracle branching program 𝑃𝑂
𝑛 is defined to be the Σ-way branching program which

is the induced subgraph of 𝐺𝑛 containing all vertices reachable from 𝑣0 = (𝐶0, 0, 𝑗0)

(with the labels prescribed above), where 𝐶0 is the initial configuration of 𝑀𝑂, and 𝑗0

is the index of the input read in the initial configuration. We see that by construction,

for all 𝑥 ∈ Σ𝑛, 𝑃𝑂
𝑛 (𝑥) =𝑀𝑂(𝑥).

Lemma 3.2.9 immediately implies that 𝑅-way branching program lower bounds

provide analogous RAM lower bounds:

Proposition 3.2.10. Let 𝑓 : Σ* → Σ*. Suppose there is no 𝑅-way branching program

family of height 𝑂(𝑡(𝑛)) and size 2𝑂(𝑠(𝑛)) computing 𝑓 . Then there is no RAM of

wordsize log(𝑅) running in time 𝑡(𝑛) with space 𝑠(𝑛) computing 𝑓 .

Furthermore, if there is no random oracle 𝑅-way branching program family of height

𝑂(𝑡(𝑛)) and size 2𝑂(𝑠(𝑛)) computing 𝑓 with success probability 𝑝, then there is no oracle

RAM 𝑀𝑂 with wordsize log(𝑅) such that for all 𝑥 ∈ Σ⋆, Pr𝑂∼𝒟Σ
[𝑀𝑂(𝑥) = 𝑓(𝑥)] ≥ 𝑝.

Succinct Reductions. After our lower bound for NOE has been proved, we can

apply very efficient reductions from NOE to extend the lower bound to other problems.

For this purpose, we need some notation. In what follows, let 𝑓 , 𝑔, and 𝜋 be functions

from Σ* to Σ*.

Definition 3.2.11. We say 𝐴 has a 𝑡(𝑛)-time reduction with blowup 𝑏(𝑛) to 𝐵 if

there is a many-one reduction 𝑓 reducing 𝐴 to 𝐵 such that |𝑓(𝑥)| ≤ 𝑏(|𝑥|), and any

character in the string 𝑓(𝑥) can be computed by an algorithm running in time 𝑡(|𝑥|),

given the index 𝑖 = 1, . . . , |𝑓(𝑥)| of the character and random access to 𝑥.

Polylog-time reductions with quasi-linear blowup essentially preserve lower bounds

for our branching program model, up to polylog factors. The proof is relatively

straightforward.

42

Lemma 3.2.12. Let 𝜋 be an 𝑂(log𝑘(𝑛))-time reduction with blowup 𝑏(𝑛) from 𝑓 to

𝑔, and suppose 𝑔 has an oracle branching program family {𝑃𝑂
𝑛 } of height 𝑡(𝑛) and size

2𝑠(𝑛) with success probability 𝑝 > 0. Then 𝑓 has an oracle branching program family

{𝑄𝑂
𝑛 } of height 𝑡(𝑏(𝑛)) log𝑘(𝑛) and size 2𝑂(𝑠(𝑏(𝑛))+log𝑘(𝑛)) with success probability at

least 𝑝.

Proof. Suppose 𝜋 is an 𝑂(log𝑘(𝑛))-time reduction with blowup 𝑏(𝑛) ≤ 𝑂(𝑛 log𝑘(𝑛))

from 𝑓 to 𝑔 witnessed by a RAM 𝑅, and there is an oracle branching program family

{𝑃𝑂
𝑛 } and 𝑝 such that for all 𝑥, given a random oracle 𝑂, Pr𝑂[𝑃|𝑥|(𝑥) = 𝑔(𝑥)] ≥ 𝑝. By

Lemma 3.2.9, there is a branching program family 𝑅𝑛 of height 𝑂(log𝑘(𝑛)) and size

2𝑂(log𝑘(𝑛)) which computes the 𝑖-th character of 𝜋(𝑥) given 𝑥 and 𝑖, where |𝑥| = 𝑛.

For ease of notation, for any fixed 𝑖, we denote the branching program 𝑅𝑛(𝑥, 𝑖) as

𝑅𝑛,𝑖(𝑥). Note that 𝑅𝑛,𝑖(𝑥) has one output character in every computation path.

We now describe an oracle branching program family 𝑄𝑂
𝑛 of size 2𝑂(𝑠(𝑏(𝑛))+log𝑘(𝑛))

and height 𝑡(𝑏(𝑛)) · log𝑘(𝑛) such that for all 𝑥, Pr𝑂[𝑄|𝑥|(𝑥) = 𝑓(𝑥)] ≥ 𝑝. To construct

𝑄𝑂
𝑛 , we compose 𝑃𝑂

𝑛 and 𝑅𝑛 in the natural way. Start with the program 𝑃𝑂
𝑏(𝑛), with

the intention of using 𝑃𝑂
𝑏(𝑛) to compute 𝑔(𝜋(𝑥)). To do this, for each vertex 𝑣 in 𝑃𝑏(𝑛)

which would query the 𝑖-th character 𝑦𝑖 from 𝜋(𝑥), we replace 𝑣 with an instance of

𝑅𝑛,𝑖 (which makes queries to 𝑥 and prints 𝑦𝑖). However, we modify the instance of

𝑅𝑛,𝑖 so that, at every node 𝑤 where a character 𝜎 ∈ Σ would be output, we instead

put an edge from 𝑤 to the vertex 𝑢 in 𝑃𝑂
𝑏(𝑛) such that (𝑣, 𝑢) was an edge labeled 𝜎 in

𝑃𝑂
𝑏(𝑛). Finally, if the vertex 𝑣 had an instruction to output a character 𝜏 , the source

node of the instance of 𝑅𝑛,𝑖 replacing 𝑣 now outputs 𝜏 instead.

Observe that 𝑄𝑛 has the height of 𝑃𝑏(𝑛) with an additional log𝑘(𝑛) factor intro-

duced by the reduction subprograms, and the size is simply |𝑃𝑏(𝑛)| · |𝑅𝑛|. There-

fore the height of 𝑄𝑛 is 𝑡(𝑏(𝑛)) log𝑘(𝑛) and the size is 2𝑂(𝑠(𝑏(𝑛))+log𝑘(𝑛)). Finally, ob-

serve that the output behavior of 𝑄𝑂
𝑛 on 𝑥 is the same as 𝑃𝑂

𝑛 (𝜋(𝑥)), so for all 𝑥,

Pr𝑂∼𝒟Σ
[𝑄𝑛(𝑥) = 𝑓(𝑥)] ≥ 𝑝.

Definition 3.2.13. The random oracle Σ-way branching program time-space

product of 𝑓 is at least 𝑏(𝑛) if for every constant 𝑝 ∈ (0, 1] and every random

43

oracle branching program family of height 𝑡(𝑛) and size 2𝑠(𝑛) computing 𝑓 with success

probability 𝑝, it must be that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑏(𝑛)).

We also note that lower bounds on time-space products are roughly preserved by

polylog-time reductions of quasi-linear blowup.

Lemma 3.2.14. Let 𝜋 be an 𝑂(log𝑗(𝑛))-time reduction with blowup 𝑂(𝑛 log𝑗(𝑛))

from 𝑓 to 𝑔. Suppose there are 𝑘 and 𝑑 such that the random oracle Σ-way branching

program time-space product of 𝑓 is at least Ω(𝑛𝑑/ log𝑘(𝑛)). Then there is some 𝑘′

such that the random oracle Σ-way branching program time-space product of 𝑔 is at

least Ω(𝑛𝑑/ log𝑘
′
(𝑛)).

Proof. Suppose there is such a reduction 𝜋 from 𝑓 to 𝑔, and suppose that for all 𝑘′ > 0,

𝑔 has an oracle Σ-way branching program family of height 𝑡𝑘′(𝑛) and size 2𝑠𝑘′ (𝑛) with

success probability 𝑐 > 0 such that 𝑡𝑘′(𝑛)𝑠𝑘′(𝑛) = 𝑂(𝑛𝑑/ log𝑘
′
(𝑛)). By Lemma 3.2,

for all 𝑘′ ≥ 0, 𝑓 has an oracle Σ-way branching program family of height 𝑡′𝑘′(𝑛) and

size 𝑠′𝑘′(𝑛) such that 𝑡′𝑘′(𝑛)𝑠′𝑘′(𝑛) = 𝑂(𝑡(𝑛 log𝑗(𝑛)) log𝑗(𝑛)(𝑠(𝑛 log𝑗(𝑛)) + log𝑗(𝑛))) =

𝑂(𝑛𝑑 log(𝑑+2)𝑗(𝑛)/ log𝑘
′
(𝑛)) = 𝑂(𝑛𝑑/ log𝑘

′−(𝑑+2)𝑗(𝑛)). Letting 𝑘′ > 𝑘 + (𝑑 + 2)𝑗, we

arrive at a contradiction with our assumption.

For our #2SAT lower bound, we inspect a reduction of Hoffmeister, and note that

it is succinct.

Theorem 3.2.15 ([54]). There is a log(𝑛)-time reduction from #3SAT to #2SAT

with blowup �̃�(𝑛).

Finally, our lower bound for FCircEval exploits the fact that there are highly

efficient circuits for sorting 𝑛 items from [𝑛].

Theorem 3.2.16 ([18, 88, 40]). There is a 𝑘 such that Sort has 𝑂(log𝑘(𝑛)) time

uniform circuits of size 𝑂(𝑛 log𝑘(𝑛)).

Other Related Work. Besides the work cited earlier, there is an extensive lit-

erature on proving Ω̃(𝑛2) time-space product lower bounds for computing functions

in generic word-RAM-like models (usually by proving a 𝑅-way branching program

44

lower bound). The functions include matrix multiplication and the discrete Fourier

transform [93], generalized string matching [3], bit-vector convolution and integer

multiplication [4], universal hashing from 𝑛 bits to 𝑂(𝑛) bits [69], and computing

various functions over sliding windows [21].

3.3 Lower Bound for NOE and Sorting

In this section, we abstract out key properties of the Unique Elements problem that

were used in Beame’s proof of an Ω(𝑛2) time-space product lower bound for Unique

Elements against 𝑅-way branching programs [20]. This abstraction is useful in two

ways. First, it allows us to easily prove lower bounds for other problems, by simply

verifying that the key properties hold. Second, this level of abstraction helps us iden-

tify stronger generalizations of the lower bounds: average-case lower bounds against

𝑅-way branching programs and RAMs with random oracles.

3.3.1 Beame’s Method (Without Random Oracles)

To give intuition for our lower bound theorem for branching programs with random

oracles (Theorem 3.1.6), we begin with a similar but weaker theorem, which is an

abstraction of the technique used by Beame [20].

Theorem 3.3.1. Let {𝑓𝑛 : (Σ𝑛)
𝑛 → (Σ𝑛)

*} be a family of functions, {𝐷𝑛} be a family

of distributions, and 𝑔 : N→ N with the following properties.

1. [𝑓 typically has “long” outputs]. There is an 𝜀 > 0 and 𝛿 > 0 such that

Pr
𝑥∼𝐷

[|𝑓(𝑥)| > 𝛿𝑔(𝑛)] > 𝜀.

2. [Short branching programs have low probability of printing long sub-

strings of 𝑓]. There is an 𝜀 > 0 such that, for all Σ𝑛-way branching programs

𝑃 of height at most 𝑛/4, and for all 𝑚 ≥ 1,

Pr
𝑥∼𝐷

[𝑃 (𝑥) is a substring of 𝑓(𝑥) ∧ |𝑃 (𝑥)| ≥ 𝑚] < 𝑒−𝜀𝑚.

45

Then for 𝑛 > 𝑛0, every Σ𝑛-way branching program of size 2𝑠(𝑛) and height 𝑡(𝑛) for 𝑓𝑛

has 𝑠(𝑛)𝑡(𝑛) ≥ Ω(𝑛 · 𝑔(𝑛)).

Theorem 3.3.1 is motivated by the observation that if a function 𝑓 on input 𝑥

requires a long output (Property 1), then some (possibly many) subprograms of a

branching program 𝑃 computing 𝑓 need to output a large fraction of 𝑓 . But by

Property 2, this is “hard” for all short subprograms: they have low probability of

correctly answering a large fraction of 𝑓 .

Proof of Theorem 3.3.1. Let 𝑓,𝐷, 𝑔(𝑛), 𝜀, 𝛿 be given as above. We prove the lower

bound by demonstrating that any space-𝑆 branching program 𝑃 of sufficiently low

height 𝑇 has a nonzero probability of error on an input 𝑥 drawn from 𝐷. To do this,

we lower bound the probability of error by

Pr
𝑥∼𝐷

[|𝑓(𝑥)| > 𝛿𝑔(𝑛)]− Pr
𝑥∼𝐷

[(|𝑓(𝑥)| > 𝛿𝑔(𝑛)) ∧ (𝑃 (𝑥) = 𝑓(𝑥))] .

By Property 1 of the hypothesis, the first term is lower bounded by some constant 𝜀 >

0. The second term is at most Pr𝑥∼𝐷[|𝑃 (𝑥)| > 𝛿𝑔(𝑛)], giving us an error probability

of at least

𝜀− Pr
𝑥∼𝐷

[|𝑃 (𝑥)| > 𝛿𝑔(𝑛)].

We now upper-bound Pr𝑥∼𝐷[|𝑃 (𝑥)| > 𝛿𝑔(𝑛)].

Without loss of generality, let 𝑃 be layered, having size 2𝑆 in each layer, and

height 𝑇 . Partition 𝑃 into 4𝑇/𝑛 layers of height 𝑛/4. By the pigeonhole principle,

some layer must output at least 𝑛𝑔(𝑛)/4𝑇 elements of the output. There are at

most 2𝑆 such subprograms in that layer, and the probability that 𝑃 outputs at least

𝛿𝑔(𝑛) elements correctly is upper bounded by the probability that some layer outputs

𝑚 := 𝛿𝑛𝑔(𝑛)/4𝑇 elements correctly. As there are at most 2𝑆 such subprograms, by

a union bound over property 2 of the hypothesis, the probability that 𝑃 outputs all

elements correctly is upper bounded by

2𝑆𝑒−𝜀′𝛿𝑛𝑔(𝑛)/4𝑇

46

for some 𝜀′ > 0. This implies that the error probability of 𝑃 on an input 𝑥 drawn

from 𝐷 is at least 𝜀− 2𝑆𝑒−𝜀′𝛿𝑛𝑔(𝑛)/4𝑇 .

Finally, we observe that if 𝑆𝑇 ≤ 𝛼 · 𝑛𝑔(𝑛) for sufficiently small 𝛼 > 0, the term

2𝑆𝑒−𝜀′𝛿𝑛𝑔(𝑛)/4𝑇 becomes less than 𝜀. Thus there is some input length 𝑛 such that the

probability of error for 𝑃 on an input 𝑥 drawn from 𝐷 is nonzero. This implies that

𝑆𝑇 ≥ Ω(𝑛 · 𝑔(𝑛)).

Beame’s lower bound against Unique Elements follows from showing that Unique

Elements has the properties required by Theorem 3.3.1. In particular, on random

inputs Unique Elements has long outputs with high probability, and it is difficult to

guess even a small number of elements in the output of a random input, without

seeing most of the input. Instead of reproving the Unique Elements lower bound, we

give a lower bound against the problem Non-Occurring Elements (NOE) defined in the

introduction, as it admits a slightly easier analysis.

First let us verify Property 1 of Theorem 3.3.1, for the uniform distribution 𝑈𝑛
𝑛

and 𝑔(𝑛) = 𝑛.

Proposition 3.3.2 (Property 1 holds for NOE). For all 𝜀 > 0, there is a 𝛿 > 0 such

that for sufficiently large 𝑛,

Pr
𝑥∈𝑈𝑛

𝑛

[|NOE(𝑥)| > 𝛿𝑛] > 1− 𝜀.

Proof. The desired bound reduces to a weak version of a well-known Balls-and-Bins

bound (see [42, p.75] for a reference). In particular, when selecting 𝑚 integers from [𝑛]

uniformly at random, the number 𝑍 of integers in [𝑛] not selected (the non-occurring

elements) is tightly concentrated around its mean:

Pr[|𝑍 − 𝐸[𝑍]| > 𝑡] ≤ 2 exp(−2𝑡2/𝑚).

For our problem, we have 𝑛 = 𝑚 and 𝐸[𝑍] = 𝑛/𝑒. Let 𝑐 > 0 be a parameter, and let

47

𝑡 = 𝑐𝑛. Therefore we have

Pr[|𝑍 − 𝑛/𝑒| > 𝑐𝑛] ≤ 2 exp(−2𝑐2𝑛).

Complementing and rearranging variables, the inequality becomes Pr[𝑍 ≥ 𝑛/𝑒 −

𝑐𝑛] ≥ 1 − 2 exp(−2𝑐2𝑛). Finally, for any 𝜀 > 0, we can pick 𝑐 ∈ (0, 1/𝑒) such

that 𝜀 > 2 exp(−2𝑐2𝑛) for sufficiently large 𝑛. Letting 𝛿 ∈ (0, 1/𝑒 − 𝑐), we have

Pr[𝑍 > 𝛿𝑛] > 1− 𝜀.

Note that the bound of Proposition 3.3.2 is stronger than that required by The-

orem 3.3.1. This will be useful for the extension to random oracles later (Theo-

rem 3.1.6).

Next, we verify that for Non-Occurring Elements, Property 2 of Theorem 3.3.1 holds

as well. In fact, we prove a stronger statement that allows for extra side randomness

in the input (and therefore random oracle branching programs). This randomness

can be ignored in the application of Theorem 3.3.1.

Proposition 3.3.3 (Property 2 holds for NOE). For all integers 𝑛, 𝑘,𝑁 ≥ 0 and all

branching programs 𝑃 of height at most 𝑛/4 computing a function with 𝑚 outputs,

Pr
𝑥∼𝑈𝑛

𝑛 ,𝑟∼𝑈𝑁
𝑘

[𝑃 (𝑥𝑟) outputs 𝑚 non-occurring elements of 𝑥] < 𝑒−3𝑚/4.

Proof. Let 𝑄𝜋(𝑥) be the event that 𝑃 (𝑥) follows 𝜋. The desired probability equals

∑︁
comp. paths 𝜋 in 𝑃

Pr
𝑥,𝑟
[𝑄𝜋(𝑥𝑟)] · Pr

𝑥,𝑟
[𝑃 (𝑥𝑟) has 𝑚 non-occurring elements of 𝑥 | 𝑄𝜋(𝑥𝑟)].

We show that for all such 𝜋,

Pr
𝑥,𝑟
[𝑃 (𝑥𝑟) has 𝑚 non-occurring elements of 𝑥 | 𝑃 (𝑥𝑟) follows 𝜋] < 𝑒−3𝑚/4.

From this, it will follow that our desired probability is less than 𝑒−3𝑚/4.

For a path 𝜋, let 𝑞 be the number of distinct variable queries to 𝑥 and let 𝑞′ be

48

the number of distinct queries made to 𝑟. Notice that 𝑞 + 𝑞′ ≤ 𝑛/4. To bound the

probability that 𝑃 (𝑥𝑟) has at least 𝑚 non-occurring elements of 𝑥, given that 𝑃 (𝑥𝑟)

follows 𝜋, we simply count the relevant numerator and denominator.

The total number of 𝑥𝑟 that follow 𝜋 is 𝑛𝑛−𝑞 · 𝑘𝑁−𝑞′ : there are 𝑛 − 𝑞 unqueried

inputs of 𝑥, and 𝑁 − 𝑞′ unqueried inputs of 𝑟. The total number of 𝑥𝑟 that follow

𝜋, and for which the 𝑚 outputs of 𝜋 are non-occurring elements of 𝑥, is at most

(𝑛−𝑚)𝑛−𝑞 · 𝑘𝑁−𝑞′ : since the 𝑚 outputs are supposed to be non-occurring in 𝑥, none

of the remaining 𝑛 − 𝑞 unqueried variables can take on any of the 𝑚 outputs. By

simple manipulation, we have

(𝑛−𝑚)𝑛−𝑞𝑘𝑁−𝑞′

𝑛𝑛−𝑞𝑘𝑁−𝑞′
= (1−𝑚/𝑛)𝑛−𝑞 ≤ (1−𝑚/𝑛)𝑛−𝑛/4 ≤ (1−𝑚/𝑛)3𝑛/4 ≤ 𝑒−3𝑚/4.

This completes the proof.

3.3.2 Lower Bounds With Random Oracles

We are now ready to present our main lower bound theorem against branching pro-

grams with random oracles.

Restatement of Theorem 3.1.6. Let {𝑓𝑛 : (Σ𝑛)
𝑛 → (Σ𝑛)

*} be a family of func-

tions, {𝐷𝑛} be a family of distributions, and let 𝑔 : N → N satisfy the following

properties.

1. [𝑓 typically has “long” outputs]. For all 𝜀 > 0, there is an 𝑛0 ≥ 0 such that

for all 𝑛 > 𝑛0, there is a 𝛿 > 0 such that

Pr
𝑥∈𝐷𝑛

[|𝑓𝑛(𝑥)| > 𝛿𝑔(𝑛)] > 1− 𝜀.

2. [Short random-oracle branching programs have low probability of

printing long substrings of 𝑓]. Let 𝑈𝑛 be the uniform distribution over

Σ𝑛 and let 𝑁 ≤ 2𝑠(𝑛) be an integer. There is an 𝜀 > 0 such that for all Σ𝑛-way

49

branching programs 𝑃 of height at most 𝑛/4,

Pr
(𝑥,𝑟)∼𝐷𝑛×𝑈𝑁

𝑛

[(𝑃 (𝑥𝑟) is a substring of 𝑓𝑛(𝑥)) ∧ (|𝑃 (𝑥𝑟)| ≥ 𝑚)] < 𝑒−𝜀𝑚.

Then, for all 𝑛 > 𝑛0 and 𝑝 ∈ (0, 1], and for every random oracle Σ𝑛-way branching

program of size 2𝑠(𝑛) and height 𝑡(𝑛) computing 𝑓𝑛 with success probability at least 𝑝

on inputs drawn from 𝐷𝑛, it must be that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑛𝑔(𝑛)).

Theorem 3.1.6 prescribes a general scheme for proving time-space product lower

bounds against random oracle 𝑅-way branching programs, and thus against word

RAMs with random oracles as well.

Proof of Theorem 3.1.6. The proof is similar to Theorem 3.3.1; we focus on high-

lighting what is different. First, we note that by Proposition 3.2.6, it is sufficient

to demonstrate that for all 𝑛 > 𝑛0 and 𝑝 ∈ (0, 1], and for every Σ𝑛-way branching

program of size 2𝑠(𝑛) and height 𝑡(𝑛) where Pr𝑥∼𝐷𝑛,𝑟∼𝑈𝑁
𝑛
[𝑃 (𝑥𝑟) = 𝑓𝑛(𝑥)] > 𝑝, it must

be that 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑛𝑔(𝑛)).

As in Theorem 3.3.1, we establish the lower bound by demonstrating that every

𝑛/4-height branching program 𝑃 has a large probability of error on an input 𝑥 ∼ 𝐷𝑛.

In what follows, assume 𝑃 successfully computes 𝑓𝑛(𝑥) on inputs (𝑥, 𝑟) drawn from

𝐷𝑛×𝑈𝑁
𝑛 with probability at least 𝑝. By property 1 of the hypothesis, letting 𝜀 := 𝑝/2,

there is a 𝛿 such that Pr𝑥∈𝐷,𝑟∼𝑈𝑁
𝑛
[|𝑓(𝑥)| > 𝛿𝑔(𝑛)] > 1− 𝑝/2.

Analogously as in the proof of Theorem 3.3.1, we lower bound the probability of

error of 𝑃 on 𝐷𝑛 by

Pr
𝑥∼𝐷

[|𝑓(𝑥)| > 𝛿𝑔(𝑛)]− Pr
𝑥∼𝐷,𝑟∼𝑈𝑁

𝑛

[|𝑓(𝑥)| > 𝛿𝑔(𝑛) ∧ 𝑃 (𝑥𝑟) = 𝑓(𝑥)];

note that this probability is at least (1− 𝑝/2)− Pr𝑥∼𝐷,𝑟∼𝑈𝑁
𝑛
[|𝑃 (𝑥𝑟)| > 𝛿𝑔(𝑛)].

Applying a union bound over all 2𝑠(𝑛) subprograms of 𝑃 as before, but substituting

property 2 from the hypothesis, we determine by an analogous argument as Theo-

rem 3.3.1 that Pr𝑥∼𝐷,𝑟∼𝑈𝑁
𝑛
[|𝑃 (𝑥𝑟)| > 𝛿𝑔(𝑛)] is at most 2𝑠(𝑛)𝑒−𝜀𝛿𝑛𝑔(𝑛)/4𝑡(𝑛). Therefore

50

the error probability of 𝑃 on 𝐷𝑛 is at least

1− 𝑝/2− 2𝑆𝑒
−𝜀𝛿𝑛𝑔(𝑛)

4𝑡(𝑛) .

Finally, if we assume 𝑠(𝑛)𝑡(𝑛) ≤ 𝛼𝑛·𝑔(𝑛) for all 𝛼 > 0, we can tune 2𝑠(𝑛)𝑒−𝜀𝛿𝑛𝑔(𝑛)/(4𝑡(𝑛))

to be arbitrarily small: it is at most 2𝑠(𝑛)𝑒−𝜀𝛿𝑠(𝑛)/(4𝛼). Thus we can make the error

probability for 𝑃 on an input 𝑥 drawn from 𝐷𝑛 to be at least 1− 2𝑝/3, implying that

the success probability is at most 2𝑝/3 < 𝑝. This is a contradiction, so there is some

𝛼 > 0 (depending on 𝛿, 𝜀, and 𝑝) such that 𝑠(𝑛)𝑡(𝑛) > 𝛼𝑛 · 𝑔(𝑛).

Remark 3.3.4. If a function does not satisfy Property 2 of Theorem 3.1.6 but satisfies

a slightly weaker property, namely that there is an 𝜀 > 0 such that for all |Σ𝑛|-way

branching programs 𝑃 of height at most 𝑛/4,

Pr
𝑥∼𝐷𝑛

[𝑃 (𝑥) is a substring of 𝑓(𝑥) ∧ 𝑃 (𝑥) ≥ 𝑚] < 𝑒−𝜀𝑚,

we can still obtain an average case lower bound against 𝑓 for inputs drawn from 𝐷𝑛,

but not necessarily a lower bound against random-oracle branching programs. We

omit an exposition of this result, because we have not yet found applications of it.

We conclude this subsection with the lower bound for computing NOE with a

random oracle.

Restatement of Theorem 3.1.1. For every 𝑝 ∈ (0, 1], every random oracle 𝑛-way

branching program family of size 2𝑠(𝑛) and height 𝑡(𝑛) computing NOE with success

probability 𝑝 must have 𝑡(𝑛) · 𝑠(𝑛) ≥ Ω(𝑛2) for all sufficiently large 𝑛.

Proof. Applying Proposition 3.3.2 and 3.3.3 and set 𝐷𝑛 := 𝑈𝑛
𝑛 and 𝜀 := 3/4. Then

both properties 1 and 2 of Theorem 3.1.6 hold for Non-Occurring Elements.

3.3.3 Sort and Random Oracles

By reducing from Non-Occurring Elements to Sort, it follows that random oracle 𝑛-way

branching programs still require a time-space product of Ω(𝑛2) to sort a list 𝐿 ∈ [𝑛]𝑛.

51

Theorem 3.3.5. For any constant 𝑐 ∈ (0, 1], let {𝑃𝑂
𝑛 } be an oracle 𝑛-way branching

program family of size 2𝑠(𝑛) and height 𝑡(𝑛) such that for all 𝑛, 𝑥 ∈ [𝑛]𝑛,

Pr
𝑂∼𝒟[𝑛]

[𝑃𝑂
𝑛 (𝑥) = Sort(𝑥)] ≥ 𝑐.

Then, 𝑆𝑇 = Ω(𝑛2).

Proof. By contradiction. Assuming the premise is false, we show that Non-Occurring

Elements must have random oracle branching programs that are too efficient to exist.

Suppose there are 𝑐 > 0, {𝑃𝑂
𝑛 }, 𝑡(𝑛), 2𝑠(𝑛) such that 𝑡(𝑛)𝑠(𝑛) ≤ 𝑜(𝑛2) and the success

probability of 𝑃𝑂
𝑛 is at least 𝑐. We define a new the branching program family 𝑄𝑂

𝑛 ,

where 𝑄𝑂
𝑛 is constructed by taking the union of 𝑛 + 1 distinct copies of 𝑃𝑂

𝑛 , called

𝑃𝑂
𝑛,1, ..., 𝑃

𝑂
𝑛,𝑛+1, and modifying them as follows. Let the root node of 𝑃𝑂

𝑛,1 be the root

node of 𝑄𝑂
𝑛 . If vertex 𝑣𝑖,𝑗 in 𝑃𝑂

𝑛,𝑖 prints 𝑖, 𝑄𝑂
𝑛 instead prints nothing and transitions

to the corresponding vertex 𝑣𝑖+1,𝑗 in 𝑃𝑂
𝑛,𝑖+1. If 𝑣𝑖,𝑗 prints 𝑘 > 𝑖, then 𝑄𝑂

𝑛 prints 𝑖 and

transitions to 𝑣𝑖+1,𝑗. Finally, we remove all print instructions from 𝑃𝑂
𝑛,𝑛+1.

Observe now that, on any input 𝑥 and random oracle 𝑂 for which 𝑃𝑂
𝑛 (𝑥) sorts 𝑥,

𝑄𝑂
𝑛 (𝑥) prints the list of non-occurring elements of 𝑥 in sorted order. 𝑄𝑂

𝑛 essentially

enumerates the elements of its input 𝑥 in sorted order, keeping track of the least

number 𝑖 ≥ 1 it has not enumerated by being at a vertex in 𝑃𝑂
𝑛,𝑖. Finally, note that if

𝑃𝑂
𝑛,𝑖 attempts to print a number greater than 𝑖, then 𝑖 does not occur in the input 𝑥.

Furthermore, note the height of 𝑄𝑂
𝑛 is 𝑡′(𝑛) = 𝑂(𝑡(𝑛) + 𝑛) and its size is 2𝑠

′(𝑛) =

𝑂(2𝑠(𝑛)𝑛), giving a time space product of 𝑂((𝑡(𝑛)+𝑛)(𝑠(𝑛)+log(𝑛))). Since, without

loss of generality, 𝑡(𝑛) ≥ 𝑛 and 𝑠(𝑛) ≥ log(𝑛), it follows that the time-space product of

{𝑄𝑂
𝑛 } is 𝑡′(𝑛)𝑠′(𝑛) = 𝑂(𝑡(𝑛)𝑠(𝑛)). However, this would imply that 𝑡′(𝑛)𝑠′(𝑛) ≤ Ω(𝑛2),

contradicting the lower bound for NOE (Theorem 3.1.1).

To prove our lower bounds for other problems in the following section, we require

a somewhat stronger result: a nearly-quadratic time-space product lower bound for

computing the non-occurring elements of a list of 𝑛 items from [𝑛], as well as sorting

𝑛 items from [𝑛] for lists encoded over a finite alphabet Σ. By a reduction, we can

prove this using the general lower bounds of Theorem 3.1.1 and Theorem 3.3.5.

52

Lemma 3.3.6. Let {𝑓𝑛 : (Σ𝑛)
𝑛 → (Σ𝑛)

} be a family of functions, and let 𝑓Σ : Σ →

Σ* be such that 𝑓(⟨𝑥⟩Σ) =
⟨︀
𝑓|𝑥|(𝑥)

⟩︀
Σ
, where ⟨𝑠⟩Σ is 𝑠 encoded by a string over Σ.

Suppose {𝑓𝑛} requires a random oracle Σ𝑛 was branching program time-space product

of Ω(𝑛𝑑). Then there is some 𝑘 > 0 such that 𝑓Σ requires a random oracle Σ-way

branching program time-space product of Ω(𝑛𝑑/ log𝑘(𝑛)).

Proof. By contradiction. Suppose for all 𝑘 > 0, 𝑓Σ has random oracle Σ-way branch-

ing program family {𝑃𝑂
𝑛 } of height 𝑡(𝑛) and size 2𝑠(𝑛) with success probability 𝑝 > 0

where 𝑡(𝑛)𝑠(𝑛) ̸= Ω(𝑛𝑑/ log𝑘(𝑛)). We show that {𝑓𝑛} has a random oracle 𝑛-way

branching program family {𝑄𝑂
𝑛 } of height 𝑡′(𝑛) and size 2𝑠

′(𝑛) with success probabil-

ity 𝑝 > 0 where 𝑡′(𝑛)𝑠′(𝑛) ̸= Ω(𝑛𝑑/ log𝑘(𝑛)). To do this, we simply simulate 𝑃𝑂
𝑛 with

𝑄𝑂
𝑛 . We first consider the input 𝑙 ∈ [𝑛]𝑛 a length 𝑛⌈log|Σ|(𝑛)⌉ string where each num-

ber is represented by some string of characters from Σ. We then modify 𝑃𝑂
𝑛⌈log|Σ|(𝑛)⌉

as

follows. For each vertex 𝑣 which queries an input 𝑖, instead query input ⌊𝑖/ log|Σ|(𝑛)⌋.

Then, for all edges (𝑢, 𝑣) with label 𝛼 ∈ Σ in 𝑃𝑂
𝑛⌈log|Σ|⌉

, add an edge from 𝑢 to 𝑣

with label 𝛽 ∈ [𝑛] for all 𝛽 whose representation in base Σ contains 𝛼 at position 𝑖

mod ⌈log|Σ|(𝑛)⌉. Finally, we need only modify the output behavior of 𝑃𝑂
𝑛⌈log|Σ|(𝑛)⌉

. It

prints the representation of characters 𝜎 ∈ Σ𝑛 using characters from Σ. We need only

𝑂(log(𝑛)) extra bits of storage to remember the last ⌈log|Σ|⌉ characters 𝑃𝑂
𝑛⌈log|Σ|(𝑛)⌉

would have printed, and upon reaching enough characters, we simply print the corre-

sponding element of Σ𝑛 and remember that we have started a new character. As in

the proof of Theorem 3.3.5, we can do this by creating 𝑂(𝑛) copies of our modified

branching program and transitioning accordingly and letting this be 𝑄𝑂
𝑛 .

Finally, we see that by construction, {𝑄𝑛} computes {𝑓𝑛} with the success prob-

ability 𝑝. Further, we see that the height of 𝑄𝑛 is 𝑂(𝑡(𝑛 log(𝑛))) and the size is

2𝑂(𝑠(𝑛)+log(𝑛)). By our assumption, we see that 𝑡(𝑛 log(𝑛))(𝑠(𝑛)+ log(𝑛)) = Ω(𝑛𝑑) and

𝑡(𝑛 log(𝑛))(𝑠(𝑛) + log(𝑛)) ̸= Ω((𝑛 log(𝑛))𝑑/ log𝑑+1(𝑛)). However, this is a contradic-

tion.

From this we can conclude lower bounds for Non-Occurring Elements and Sort for

strings over finite alphabets. First we need to formally define these relations.

53

Definition 3.3.7 (Non-Occurring Elements and Sort over finite alphabets).

∙ Non-Occurring ElementsΣ : Σ* → Σ* (or NOEΣ) is a relation which maps the

encoding in Σ of a list ⟨𝐿⟩ (where 𝐿 ∈ [𝑛]𝑛 for some 𝑛) to ⟨NOE(𝐿)⟩.

∙ SortΣ : Σ* → Σ* is the function which maps the encoding of a list ⟨𝐿⟩ where

∃𝑛 ∈ N(𝐿 ∈ [𝑛]𝑛) to ⟨Sort(𝐿)⟩.

Now we can conclude Lemma 3.3.8.

Lemma 3.3.8. For all Σ, there is some 𝑘 > 0 such that, the random oracle Σ-way

branching program time-space product for both Non-Occurring ElementsΣ and SortΣ are

both at least Ω(𝑛2/ log𝑘 𝑛).

Proof. This follows directly from Theorems 3.1.1 and 3.3.5 and Lemma 3.3.6.

Remark 3.3.9. It will be important later that the branching program lower bounds

we have established hold even if we allow the branching program to make small per-

turbations on the output. For example, all above lower bound proofs still go through,

if we permit branching programs to output 0 at any node that does not already output

some other number. Thus our lower bounds hold for any branching program com-

puting Non-Occurring Elements or Non-Occurring ElementsΣ which prints the binary

representation of a list 𝐿, such that 𝐿 contains all non-occurring elements of 𝑥, along

with any number of elements which are 0.

3.4 Reductions

In this section, we give a series of reductions from NOE and Sort, showing nearly-

quadratic time-space product lower bounds for several natural circuit-analysis prob-

lems. Each of these reductions are efficient many-one reductions, requiring only

poly(log 𝑛)) time to look up any bit of the output of the reduction, and only cre-

ating problem instances of size �̃�(𝑛) from inputs of size 𝑛.

As a warm-up, we observe a very simple reduction from Sort{0,1} (sorting 𝑛 log(𝑛)-

bit strings) to FCircEval. Recall in the FCircEval problem, we are given a circuit of

54

size 𝑛 with at most 𝑛 inputs (all fixed to 0-1 values) and at most 𝑛 outputs, and want

to determine its output.

Restatement of Theorem 3.1.2. For all finite Σ, there is some 𝑘 > 0 such that

the random oracle Σ-way branching program time-space product of FCircEval is at least

Ω(𝑛2/ log𝑘 𝑛).

Proof. The idea is that, on an unsorted input, we can succinctly produce a circuit for

sorting, and simply ask FCircEval for its output.

We observe that there is an 𝑂(log 𝑛)-time reduction with blowup 𝑂(log𝑘 𝑛) from

Sort to FCircEval. Given a input list 𝑥 which we would like to sort, we simply produce

a circuit 𝐶 for Sort with 𝑥 hard-coded as the input. Any bit of the representation

can be computed in 𝑂(log 𝑛) time, as Sort has 𝑂(log 𝑛)-time uniform circuits of size

𝑂(𝑛 log𝑘 𝑛) and any bit of 𝑥 can trivially be produced in 𝑂(log 𝑛) time. By Lemmas

3.3.8 and 3.2.14, we conclude there is a 𝑘 > 0 such that FCircEval has a time-space

lower bound of Ω(𝑛2/ log𝑘 𝑛).

A straightforward corollary of Theorem 3.1.2 is a similar lower bound against a

seemingly weaker version of 3SAT.

Definition 3.4.1. Let Promise-Printing-Unique-SAT be the problem: given a circuit

𝐶 which is promised to have exactly one satisfying assignment, print the satisfying

assignment of 𝐶.

Lemma 3.4.2. For all finite Σ, there is some 𝑘 > 0 such that the random oracle Σ-

way branching program time-space product of Promise-Printing-Unique-SAT is at least

Ω(𝑛2/ log𝑘 𝑛).

Proof. We give a reduction from FCircEval to Promise-Printing-Unique-SAT. Given an

instance 𝐶 of FCircEval with only constant valued inputs and 𝑚 output bits 𝑦1, ..., 𝑦𝑚,

we define a new circuit 𝐶 ′(𝑥) with 𝑚 free input bits 𝑥1, ..., 𝑥𝑚 and one output bit.

The circuit 𝐶 ′ can be made such that 𝐶 ′(𝑥1, ..., 𝑥𝑚) = 1 if and only if 𝑥𝑖 = 𝑦𝑖 by

using only as many gates as needed to construct 𝐶, and 𝑂(𝑚) additional gates to

check equality of the output bits of 𝐶 with the free input bits and then to take the

55

conjunction of these equalities. Observe that |𝐶 ′| ≤ 𝑂(|𝐶|). Finally we see this

gives us an 𝑂(log(𝑛))-time reduction with blowup 𝑂(𝑛) from FCircEval to Promise-

Printing-Unique-SAT, since FCircEval(𝐶) = Promise-Printing-Unique-SAT(𝐶 ′), and each

bit of the description of 𝐶 ′ can be computed by simply looking up bits of 𝐶 directly or

deciding if they are part of the equality check or the conjunction of the equality checks

added to 𝐶. By Lemma 3.2.14, we can conclude that Promise-Printing-Unique-SAT

has a time-space lower bound of Ω(𝑛2/ log𝑘 𝑛).

To establish a connection with printing satisfying assignments for 3CNFs, we

consider the problem Promise-Printing-Unique-3SAT, which is just Promise-Printing-

Unique-SATrestricted to 3CNF formulas. By another straightforward reduction, it

follows that Promise-Printing-Unique-3SAT cannot be computed more efficiently than

FCircEval.

Lemma 3.4.3. For all finite Σ, there is some 𝑘 > 0 such that the random oracle

Σ-way branching program time-space product of Promise-Printing-Unique-3SAT is at

least Ω(𝑛2/ log𝑘 𝑛).

Proof. We present a reduction from Promise-Printing-Unique-SAT to Promise-Printing-

Unique-3SAT. Consider the standard reduction from Circuit SAT to 3SAT in which a

circuit 𝐶 with 𝑛 variables 𝑥1, ..., 𝑥𝑛 and 𝑚 gates is mapped to a CNF 𝜑 with 𝑂(𝑚)

clauses, variables 𝑥1, ..., 𝑥𝑛 and 𝑂(𝑚) extra variables. Assume without loss of gen-

erality, blowing up only an additional constant factor in size otherwise, that 𝐶 is

comprised only of NAND gates. In the traditional reduction from Circuit SAT to

3SAT, we use additional variables 𝑦1, ..., 𝑦𝑚 for each gate 𝑔1, ..., 𝑔𝑚. For each gate

𝑔𝑖 = ¬(𝑔𝑗 ∧ 𝑔𝑘), 𝑔𝑖 = ¬(𝑔𝑗 ∧ 𝑥𝑘), or 𝑔𝑖 = ¬(𝑥𝑗 ∧ 𝑥𝑘), we add to 𝜑 the constraints

(𝑦𝑖 = ¬(𝑦𝑗 ∧ 𝑦𝑘)), (𝑦𝑖 = ¬(𝑦𝑗 ∧ 𝑥𝑘)), or (𝑦𝑖 = ¬(𝑥𝑗 ∧ 𝑥𝑘)) accordingly, where each

requires only a constant number of clauses of width 3. It is important to note that

this reduction is not strictly speaking a many-one reduction as defined since the sat-

isfying assignment contains extra information. However, notice that printing the first

𝑛 bits of a satisfying assignment to 𝜑 in fact is sufficient for computing a satisfying

assignment to 𝐶, and observe that this reduction can be done in 𝑂(log𝑘(𝑛)) time with

56

blowup 𝑂(log𝑘(𝑛)) for some 𝑘. Just as our argument from lemma 3.2.14, we can con-

clude that Promise-Printing-Unique-3SAT requires a random oracle Σ-way branching

program time-space product of Ω(𝑛2/ log𝑘
′
(𝑛)) for some 𝑘′ > 0.

As a corollary, we can immediately conclude that the harder problem of Print-

3SAT also has a time-space lower bound of Ω(𝑛2/ log𝑘 𝑛) for some 𝑘.

Restatement of Theorem 3.1.3. For all finite Σ, there is some 𝑘 > 0 such that

the random oracle Σ-way branching program time-space product of Print-3SAT is at

least Ω(𝑛2/ log𝑘 𝑛).

Proof. Follows from the trivial reduction from Promise-Printing-Unique-3SAT to Print-

3SAT and Lemma 3.2.14.

Next, we show by a reduction directly from Non-Occurring Elements{0,1} that print-

ing the truth tables of CNF formulas with a small number of variables admits a

time-space lower bound similar to those above.

Restatement of Theorem 3.1.4. For all finite Σ, there is some 𝑘 > 0 such that

the random oracle Σ-way branching program time-space product of TTPrint for CNF

formulas with 𝑛 clauses and log(𝑛)+log log(𝑛) many variables is at least Ω(𝑛2/ log𝑘 𝑛).

Proof. We consider that the output of a machine computing NOE{0,1} can be a list

𝐿 which contains the non-occurring elements of its input as well as any number of

elements which are 0, as in Remark 3.3.9. We give a poly(log(𝑛))-time reduction with

blowup �̃�(𝑛) from Non-Occurring Elements{0,1} to TTPrint. That is, we will show that

given a list 𝐿 of 𝑛 elements from [𝑛], we can produce a CNF formula whose truth

table is a representation of a list 𝐿′ of 𝑛 strings each of log(𝑛) bits, where the 𝑖-th

string in 𝐿′ equals 𝑖 if 𝑖 ∈ [𝑛] − 𝐿, otherwise the 𝑖-th string equals all-zeroes. Then,

the lower bound for Non-Occurring Elements{0,1} will carry over to TTPrint.

Given a list 𝐿 ∈ {1, . . . , 𝑛}𝑛, we show how to efficiently construct a CNF formula

𝐹 with log(𝑛) + log log(𝑛) variables and 𝑂(𝑛) clauses such that the truth table of 𝐹

is the binary representation of the list of non-occurring elements of 𝐿 separated by

strings of 0’s.

57

Denote the first log(𝑛) variables of 𝐹 by 𝑥 = 𝑥1 · · ·𝑥log(𝑛). Letting 𝑏 ∈ {0, 1}log(𝑛),

we make a clause 𝐶𝑏(𝑥) expressing that 𝑥 ̸= 𝑏. In detail, suppose 𝑏 is represented by

the bit string 𝑏1, . . . , 𝑏log(𝑛). Then

𝐶𝑏(𝑥) := ((𝑥1 ⊕ 𝑏1) ∨ ... ∨ (𝑥log(𝑛) ⊕ 𝑏log(𝑛))).

Note for all 𝑖, we can think of 𝐶𝑏 as containing the literal 𝑥𝑖 if 𝑏𝑖 = 1, otherwise it

contains the literal 𝑥𝑖.

Given a list 𝐿 = ℓ1, . . . , ℓ𝑛 of elements of {0, 1}log(𝑛), we first construct a CNF

formula 𝐹 ′(𝑥) which says that 𝑥 is a non-occurring element of ℓ:

𝐹 ′(𝑥) := 𝐶ℓ1(𝑥) ∧ · · · ∧ 𝐶ℓ𝑛(𝑥).

Suppose we can construct a CNF formula 𝐷(𝑥, 𝑖) which is true exactly when the

𝑖-th bit of 𝑥 is 1, and define our output formula to be

𝐹 (𝑥, 𝑖) := 𝐹 ′(𝑥) ∧𝐷(𝑥, 𝑖)

where 𝑖 = 𝑖1 · · · 𝑖log log(𝑛). This 𝐹 would have log(𝑛) + log log(𝑛) variables, and its

truth table in lexicographical order could be viewed as a list of 𝑛 different log(𝑛)-bit

strings, each of which are either a non-occurring element of ℓ, or the all-zeroes string.

(This would complete our reduction.)

We show how to construct such a 𝐷(𝑥, 𝑖) with |𝑥| = log(𝑛) clauses. For each

variable of 𝑥, and 𝑗 = 1, . . . , |𝑥|, we construct a clause 𝐸𝑗 which is true if and only if

either 𝑖 ̸= 𝑗 or 𝑥𝑗 = 1. That is,

𝐸𝑗 = ((𝑖1 ⊕ 𝑗1) ∨ ... ∨ (𝑖log(|𝑥|) ⊕ 𝑗log(|𝑥|)) ∨ 𝑥𝑗).

Then we can define

𝐷(𝑥, 𝑖) :=

|𝑥|⋀︁
𝑗=1

𝐸𝑗.

58

The final formula 𝐹 (𝑥1, ..., 𝑥log(𝑛), 𝑖1, ..., 𝑖log log(𝑛)) is a width-(log(𝑛)+1) CNF of 𝑂(𝑛)

clauses, and all of the clauses of 𝐹 can be efficiently constructed in a local way.

Using the lower bound on truth table printing, we can now show the lower bound

for counting SAT assignments (Theorem 3.1.5). Again we do this by providing a

poly(log(𝑛))-time reduction with blowup �̃�(𝑛) from one problem to another. We

show how to modify a circuit 𝐶 to efficiently produce another circuit 𝐶 ′, such that

the bit representation of the number of satisfying assignments of 𝐶 equals the truth

table of 𝐶.

Lemma 3.4.4. Let 𝐶 be a circuit of size 𝑠 with 𝑛 input variables 𝑥1, . . . , 𝑥𝑛. Then,

there exists a circuit 𝐶 ′ of size 𝑂(𝑠 + 2𝑛) with input variables 𝑥1, ..., 𝑥𝑛, 𝑦1, ..., 𝑦2𝑛

such that #SAT(𝐶 ′) = TruthTable(𝐶). Moreover, there is an algorithm that given

such a circuit and index 𝑖 can produce the 𝑖-th bit of the description of 𝐶 ′ in time

�̃�(log(𝑠+ 𝑛+ 𝑖)).

Proof. Let 𝐶 be a circuit of size 𝑠 with inputs 𝑥1, ..., 𝑥𝑛. First we make a circuit

𝐷(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦2𝑛) which outputs 1 if and only if 𝑦 ≤ 2bin(𝑥), where bin(𝑥) is

the number in {1, . . . , 2𝑛} represented by the binary string 𝑥1 · · ·𝑥𝑛. Note that 𝐷 can

be constructed with 𝑂(2𝑛) gates (by standard arguments), and any particular gate of

𝐷 can constructed in poly(log(𝑛)) time. Finally, we define the circuit 𝐶 ′ on variables

𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦2𝑛 by

𝐶 ′(𝑥, 𝑦) := 𝐶(𝑥) ∧𝐷(𝑥, 𝑦).

Observe that the number of assignments satisfying 𝐶 ′ is Σ𝑥∈{0,1}𝑛𝐶(𝑥) · 2bin(𝑥), as for

each 𝑥 ∈ {0, 1}𝑛 there are 2bin(𝑥) assignments to 𝑦 ∈ {0, 1}2𝑛 such that 𝐶 ′(𝑥, 𝑦) = 1.

This is exactly the number represented in binary by TruthTable(𝐶).

From Lemma 3.4.4 and Theorem 3.1.4, we can conclude Lemma 3.4.5.

Lemma 3.4.5. For all finite Σ, there is some 𝑘 > 0 such that the random oracle Σ-

way branching program time-space product of #Circuit SAT is at least Ω(𝑛2/ log𝑘 𝑛).

From Lemma 3.4.5, we can conclude Lemma 3.4.6.

59

Lemma 3.4.6. For all finite Σ, there is some 𝑘 > 0 such that the random oracle

Σ-way branching program time-space product of #3SAT is at least Ω(𝑛2/ log𝑘 𝑛).

Proof. The standard reduction from #Circuit SAT to #3SAT can be implemented as

an 𝑂(log(𝑛))-time reduction with blowup �̃�(𝑛).

From Lemmas 3.4.6 and 3.2.15, we can conclude Theorem 3.1.5.

Restatement of Theorem 3.1.5. For all finite Σ, there is a 𝑘 > 0 such that

the random oracle Σ-way branching program time-space product of #2SAT is at least

Ω(𝑛2/ log𝑘 𝑛).

Proof. Lemma 3.2.15 gives an 𝑂(log𝑘(𝑛)) time reduction with blowup 𝑂(𝑛 log𝑘(𝑛))

from #3SAT to #2SAT. Hence, by Lemmas 3.4.6 and 3.2.14, we can conclude that

the random oracle Σ-way branching program time-space product of #2SAT is at least

Ω(𝑛2/ log𝑘(𝑛)).

3.5 Conclusion

In this chapter, we have extended a lower bound framework for branching programs,

lifting it to random oracles. We showed its utility for lower bound results by giving

several unorthodox reductions which show sharp relationships between counting satis-

fying assignments, printing truth tables of CNFs, printing satisfying assignments, and

evaluating circuits on given inputs. It would be interesting to find more applications

of the various encoding techniques used in our reductions. Perhaps they can be used

to show lower bounds for other models, or better algorithms.

Another interesting direction would be to explore other lower bound methods, such

as those for decision problems, and determine to what extent they can be “lifted”

to lower bounds with random oracles. To give one tantalizing example, although

it is known that deciding SAT requires 𝑛1.8 time on deterministic 𝑂(log 𝑛)-space

machines, and this chapter shows that printing SAT assignments requires 𝑛2−𝑜(1)

time on randomized 𝑂(log 𝑛)-space machines with constant error probability, it is

still open whether deciding SAT is in 𝑂(𝑛) time and 𝑂(log 𝑛) space on randomized

60

machines with two-sided error(!). Perhaps it is easier to find bridges between function

problems and decision problems when we consider efficient programs for NP problems

(rather than decision problems in P).

Lower Bounds for an Extended Oracle Model? Finally, our oracle model for

branching programs is not the most general that one could imagine (although for

the random oracle case, we suspect it does not matter). One can define a sensible

“extended oracle” model, where oracle queries can be as long as the height of the

branching program. (This model is not very practical in a truly space-bounded set-

ting, e.g. when we view a random oracle as a random hash function, but it would be

very interesting to prove lower bounds against.)

At a high level, here is how such an “extended oracle” model can be defined.

In each step, we allow the branching program to output an “oracle character” 𝜎

from the input alphabet of the oracle (along with its usual outputs). Instead of

labeling the query vertices of the branching program with specific query strings (as in

Definition 3.2.4), we instead label them with a special symbol 𝑄. The 𝑄-vertices still

have two outgoing arcs for their yes/no query answers. However, each time a 𝑄-vertex

𝑣 is reached during a computation, the outgoing yes edge of 𝑣 is now taken in the

computation path if and only if the string of oracle characters 𝑦 = 𝜎1 · · ·𝜎𝑡 output

since the previous 𝑄-vertex (or source node, if there is no previous 𝑄-vertex) satisfies

𝑄(𝑦) = 1. One can think of this as allowing the branching program “append-only”

access to an arbitrarily long oracle tape, for which it can ask queries, and for which

the oracle tape is reset to blank after each query (as in the oracle model of Ladner

and Lynch [65]).

With the above model, we can ask queries whose length is only bounded by the

height of the branching program (rather than the logarithm of its size). We strongly

believe that our lower bounds also hold for random oracles in this more powerful

model, but it appears difficult to prove. The main conceptual bottleneck is that,

unlike normal branching programs, we cannot easily partition these extended-oracle

branching programs into short independent branching programs: the oracle queries

61

have “memory” that can stretch all the way back to the source node.

62

Chapter 4

Hardness Magnification for

Compression Problems

4.1 Introduction

In this chapter, we show how extremely weak-looking lower bounds on solving canoni-

cal string compression problems would imply major separations in complexity theory.

Let 𝑠 : N→ N satisfy 𝑠(𝑛) ≥ 𝑛 for all 𝑛. We start by considering the following circuit

synthesis problem:

Problem: MCSP[𝑠(𝑛)]

Given: A function 𝑓 : {0, 1}𝑛 → {0, 1}, presented as a truth table of 𝑁 = 2𝑛

bits.

Decide: Does 𝑓 have a (fan-in two) Boolean circuit of size at most 𝑠(𝑛)?

We can naturally view MCSP as a compression problem: given a string, find a

small circuit whose truth table reproduces the string. MCSP seems to have first been

studied in the 1950s [85]. Note MCSP[𝑠(𝑛)] is only non-trivial for sufficiently small

𝑠(𝑛), e.g., 𝑠(𝑛) ≤ 2𝑛+1/𝑛 (otherwise, every input is a YES instance), and for such non-

trivial 𝑠(𝑛), MCSP[𝑠(𝑛)] is in NP. Moreover, there is an algorithm for MCSP[𝑠(𝑛)]

running in both 𝑠(𝑛)𝑂(𝑠(𝑛)) time and �̃�(𝑠(𝑛)+𝑛) space (enumerating all possible size-

63

𝑠(𝑛) circuits). No further improvements in the time complexity of MCSP[𝑠(𝑛)] are

known.

In 2001, Kabanets and Cai [61] revived the “modern” study of MCSP in theoretical

computer science, observing that the Natural Proofs barrier [79] strongly suggests that

MCSP[𝑛𝑐] is not in P for sufficiently large 𝑐; otherwise, strong one-way functions do

not exist.1 Thus it is widely believed that MCSP[poly(𝑛)] is not efficiently solvable,

although it is still open whether the general MCSP problem is NP-hard, despite much

recent work [74, 10, 53, 52, 9, 51, 50].2 MCSP has recently taken on larger significance

for cryptography, since Hirahara recently showed in a celebrated work [49] that there

is a worst-case to average-case reduction for the approximation version.

Considering the enormous difficulty of proving polynomial-time lower bounds on

problems in NP, we may ask if it is possible to prove instead that MCSP[poly(𝑛)]

cannot be solved in almost-linear time (e.g. 𝑁1+𝑜(1)) and sub-polynomial space (e.g.

𝑁 𝑜(1)). Over the years, there has been considerable progress in lower bounds for the

low time-space setting [22, 5, 23, 6, 44, 90, 29], so there is hope that such lower bounds

could be proved.

In this chapter, we show (among many other results) that an 𝑁 · poly(log𝑁)-

time lower bound on poly(log𝑁)-space deterministic streaming algorithms for

MCSP[𝑛𝑐] is already as difficult as separating P from NP! Note that determinis-

tic streaming algorithms are very restricted (one cannot even compute whether two

given 𝑁 -bit strings are equal with 𝑜(𝑁) space). Our result is one consequence of

a more general theorem proved about a generalization of MCSP, in which we allow

compression by circuits with oracle gates (as defined in prior work [10, 59]). This

“boosting” of a modest time-space lower bound for an NP problem to P ̸= NP can

be seen as a form of hardness magnification, a term recently coined by Oliveira and

Santhanam [76]. Intuitively, a hardness magnification result is a kind of “slippery

slope” theorem, showing how a very modest-looking lower bound for a believably-

1In particular, if MCSP[𝑛𝑐] ∈ P for all 𝑐 ≥ 1, then there are P-natural properties useful against
P/𝑝𝑜𝑙𝑦. For a more fine-grained discussion of the relationship, see Chow [39].

2Observe that MCSP[𝑛𝑐] can be solved in 2�̃�(𝑛𝑐) time, which is quasi-polynomial in the input
length 𝑁 = 2𝑛, so it is probably not NP-hard; nevertheless it is widely believed to not be in P.

64

hard problem counterintuitively implies incredibly strong lower bounds (perhaps for

a different hard problem). Other examples of similar phenomena are known, for

𝑛1−𝜀-approximations to Clique [83], low-depth circuit lower bounds for NC1 [11],

and sublinear-depth circuit lower bounds for P [67].

4.1.1 Our Results

To state our theorems, we first need a couple of concepts for “generalized” Boolean

circuits. Let 𝐴 : {0, 1}⋆ → {0, 1}. An 𝐴-oracle circuit has a gate basis of OR,

AND, NOT, and all finite slices of 𝐴 (the function 𝐴 restricted to inputs of a fixed

length). The MCSP𝐴[𝑠(𝑛)] problem asks, given 𝑓 : {0, 1}𝑛 → {0, 1} presented as

a truth table, whether 𝑓 has an 𝐴-oracle circuit of at most 𝑠(𝑛) gates. Its search

version, search-MCSP𝐴[𝑠(𝑛)], requires outputting an 𝐴-oracle circuit when it exists.

The Σ3SAT𝐴 problem asks, given an 𝐴-oracle formula 𝐹 (𝑥, 𝑦, 𝑧) as input (a Boolean

formula over Boolean variables with ∧, ∨, ¬ and 𝐴-oracle predicates), whether there

exists an assignment to 𝑥 such that for all assignments to 𝑦, there exists an assignment

to 𝑧 such that 𝐹 (𝑥, 𝑦, 𝑧) outputs true.

Our first main theorem constructs a super-efficient AC circuit family for MCSP𝐴

with short oracle calls to Σ3SAT𝐴:

Theorem 4.1.1 (Section 4.3). Let 𝑠(𝑛) ≥ 𝑛 and let ℓ(𝑛) ≥ 𝑠(𝑛)2 for all 𝑛, where

both are time constructible. Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is

a uniform AC circuit family for MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit inputs of �̃�(2𝑛 · 𝑠(𝑛)2) size

and 𝑂(𝑛/ log ℓ(𝑛)) depth with Σ3SAT𝐴 oracle gates, where each oracle gate takes only

�̃�(ℓ(𝑛)) bits of input.

Note there are three tunable parameters in Theorem 4.1.1: the oracle 𝐴, the

MCSP parameter 𝑠(𝑛), and a larger parameter ℓ(𝑛) which affects the circuit depth

and the fan-in of the oracle gates. By setting them appropriately, we can derive many

consequences regarding hardness magnification for MCSP.

Our second main theorem gives an efficient streaming algorithm for MCSP𝐴[𝑠(𝑛)],

assuming the algorithm has oracle access to Σ3SAT𝐴 and can make short queries to

65

the oracle.

Theorem 4.1.2 (Section 4.4). Let 𝑠(𝑛) ≥ 𝑛 for all 𝑛, where 𝑠(𝑛) is time constructible.

Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is a (one-pass) streaming

algorithm for search-MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit inputs running in 2𝑛 · �̃�(𝑠(𝑛)) time with

�̃�(𝑠(𝑛)2) update time and �̃�(𝑠(𝑛)) space, using an oracle for Σ3SAT𝐴 with queries of

length �̃�(𝑠(𝑛)).

One way to prove Theorem 4.1.2 would be to show that the circuit family derived

in Theorem 4.1.1 can be evaluated in a time and space-efficient way. We instead give

a direct proof (an explicit streaming algorithm).

Weak Streaming Lower Bounds for Compression Imply P ̸= NP. Applying

the assumption P = NP to the oracle calls in Theorem 4.1.2, we obtain a magnifica-

tion from modest streaming algorithm lower bounds all the way to P ̸= NP:

Theorem 4.1.3 (Section 4.5). If there is some time-constructible 𝑠(𝑛) ≥ 𝑛 and an

𝐴 ∈ PH such that search-MCSP𝐴[𝑠(𝑛)] is not solvable by a poly(𝑠(𝑛))-space streaming

algorithm with poly(𝑠(𝑛)) update time, then P ̸= NP.

(Note that we do not require streaming algorithms to read a fresh bit in each step;

the algorithm may work for some time before requesting the next bit of the stream.)

For example, if one can show that we cannot compress 𝑁 -bit strings to SAT-oracle

circuits of size 𝑁 𝑜(1) by streaming algorithms running in 𝑁1+𝜀 total time and 𝑁 𝜀

space for all 𝜀 > 0, then P ̸= NP. Note there is no information-theoretic barrier

to such a streaming algorithm, only a computational one: in 𝑁 𝜀 space, one could

easily hold a circuit of size 𝑁 𝑜(1). Let us stress that the hypothesis of Theorem 4.1.3

is widely believed to hold: if it were false, then MCSP is trivially in P (and much

more), implying that strong one-way functions do not exist and extremely strong

compression is possible efficiently.

Comparing Theorem 4.1.3 With [76].

Oliveira and Santhanam [76] show that if approximately solving MCSP[2
√
𝑛] (the

decision version of MCSP, with no oracle) to within an 𝑂(𝑛) factor requires Ω(𝑁)-

time by randomized algorithms with two-sided error, then BPP ̸⊆ NP (equivalent to

66

RP ̸= NP). In particular, their approximation version of MCSP only requires that

a candidate algorithm distinguish truth tables with circuit complexity at most 𝑠(𝑛),

from truth tables which need a constant fraction of entries modified in order to have

circuit complexity at most 𝑠(𝑛). Proving a lower bound against such a weak guarantee

seems intuitively much more difficult than proving a worst-case lower bound against

MCSP. (They only need an Ω(𝑁)-time lower bound, because — as in Srinivasan [83]

— a random sample of the input preserves the answer to the approximation problem

with high probability; this does not hold for the worst-case version.) While their

consequence is stronger (RP ̸= NP rather than P ̸= NP), the hypothesis of The-

orem 4.1.3 only requires a slightly super-linear time worst-case lower bound for the

search version of MCSP against deterministic streaming algorithms using sub-linear

space.

Weak Circuit Lower Bounds for Compression Imply Super Polynomial Cir-

cuit Lower Bounds. Applying Theorem 4.1.1 with different parameter settings,

we show how modest TC0 lower bounds for MCSPSAT imply NP ̸⊂ TC0, modest log-

depth circuit lower bounds imply NP ̸⊂ NC1, and larger-depth circuit lower bounds

imply NP ̸⊂ P/𝑝𝑜𝑙𝑦.

Theorem 4.1.4 (Section 4.5). Let 𝑠(𝑛) ≥ 𝑛, and let 𝐴 ∈ PH.

∙ If there exists an 𝜀 > 0 such that for every 𝑐 ≥ 1, search-MCSP𝐴[2𝜀𝑛/𝑐] on

inputs of length 𝑁 = 2𝑛 does not have 𝑁1+𝜀-size 𝑂(1/𝜀)-depth TC0 circuits,

then NP ̸⊂ TC0.3

∙ If search-MCSP𝐴[𝑠(𝑛)] on inputs of length 𝑁 = 2𝑛 does not have circuits of

𝑁 · poly(𝑠(𝑛)) size and 𝑂(log𝑁) depth, then NP ̸⊂ NC1.

∙ If search-MCSP𝐴[𝑠(𝑛)] on inputs of length 𝑁 = 2𝑛 does not have circuits of

𝑁 · poly(𝑠(𝑛)) size and poly(𝑠(𝑛)) depth, then NP ̸⊂ P/𝑝𝑜𝑙𝑦.

3Note that TC0 could be substituted with any other constant-depth circuit family, such as
AC0[6].

67

For example, if we find an 𝑐 ≥ 1 and 𝐴 in the polynomial-time hierarchy such that

compression of 𝑁 -bit strings to (log𝑁)𝑐-size 𝐴-oracle circuits cannot be performed

by 𝑁 · poly(log𝑁)-size 𝑂(log𝑁)-depth circuits, then we can conclude NP does not

have polynomial-size formulas. If the depth lower bound can be improved to arbitrary

polylogs, then already NP is not in P/𝑝𝑜𝑙𝑦.

Comparison With [76] and [75]. Oliveira and Santhanam show that lower bounds

of size 𝑁 ·poly(log𝑁) for formulas solving MCSP[𝑛𝑐] (decision version, with no oracle)

in an approximate or average-case setting would imply NP ̸⊂ NC1. While their

required formula lower bound is more modest, the “decision version”, “average-case”,

“approximate”, and “no oracle” restrictions would presumably make proving a lower

bound considerably more difficult. Oliveira, Pich, and Santhanam [75] show that

lower bounds on 𝑂(𝑛)-approximation to MCSP[2𝜀𝑛] (for all 𝜀 > 0) with 𝑁1+𝛿-size

circuits imply NP ̸⊂ P/𝑝𝑜𝑙𝑦, whereas our results show NP ̸⊂ P/𝑝𝑜𝑙𝑦 follows from

𝑁1+𝛿-size 𝑁 𝛿-depth circuit lower bounds on exactly solving MCSP[2𝜀𝑛]. However,

note that proving even lower bounds for 𝑂(𝑁)-size 𝑂(log𝑁)-depth circuits remains

an open challenge in complexity theory, even for functions with 𝑁Ω(1) outputs.

Comparison With [11]. It is also interesting to compare the TC0 results of Theo-

rem 4.1.4 with the work of Allender and Koucký on amplifying lower bounds for low-

depth circuit classes [11]. They showed that for some natural NC1 problems such as

Boolean Formula Evaluation, proving that there are no 𝑁1+𝜀-size 𝑂(1/𝜀)-depth TC0

circuits for those problems imply a full separation: NC1 ̸⊂ TC0. The first bullet

of Theorem 4.1.4 manages to prove an analogous result for some problems in PH!

Allender and Koucký also show unconditionally that for sufficiently large 𝑑, SAT does

not have 𝑛1+1/(3𝑑)-size 𝑑-depth uniform TC0 circuits. The proof of Theorem 4.1.4

implies that slightly stronger results for MCSPSAT[2𝑜(𝑛)] would separate NP and uni-

form TC0. (In fact, analogous statements hold for compression problems in PPP,

PSPACE, and EXP; see Theorems 4.1.5 and 4.1.6 below.)

Super-Polynomial Lower Bounds for Larger Complexity Classes. In gen-

eral, MCSP𝐴 gets “harder” as the oracles 𝐴 get more expressive. By choosing more

68

powerful oracles 𝐴 in the statement of Theorem 4.1.1, we obtain magnification for

problems in EXP, PSPACE, and PPP as well. Allender-Buhrman-Koucký-van

Melkebeek-Ronneburger [8] showed that MCSPQBF is PSPACE complete under ran-

domized poly-time Turing reductions: for all 𝛿 > 0, every PSPACE language can

be decided in randomized polynomial time with oracle calls to MCSPQBF[2𝛿𝑛].4 They

also showed MCSPEXP is EXP-complete under P/𝑝𝑜𝑙𝑦 and NP Turing reductions.

Impagliazzo, Kabanets, and Volkovich [59] gave an oracle 𝐴 ∈ PP such that MCSP𝐴

is PP-complete under randomized poly-time Turing reductions. For these complexity

classes 𝒞, Theorem 4.1.1 implies that modest lower bounds for MCSP𝐴 with 𝐴 ∈ 𝒞

already proves P ̸= 𝒞 and 𝒞. Here are two formalizations of this general statement.

Theorem 4.1.5 (Magnifying Streaming Lower Bounds for Harder MCSP Versions,

Section 4.5). Let 𝒞 be one of NP, PP, or PSPACE. Suppose there is a constructible

𝑠(𝑛) and oracle 𝐴 ∈ 𝒞 such that for all 𝑐 ≥ 1, search-MCSP𝐴[𝑠(𝑛)] on inputs of length

2𝑛 has no 𝑠(𝑛)𝑐-space streaming algorithm with update time 𝑠(𝑛)𝑐. Then P ̸= 𝒞.

Theorem 4.1.6 (Magnifying Low-Depth Circuit Lower Bounds for Harder MCSP,

Section 4.5). Let 𝒞 be one of NP, PP, or PSPACE. Suppose there is some 𝑠(𝑛) and

oracle 𝐴 ∈ 𝒞 such that for all 𝑐 ≥ 1, search-MCSP𝐴[𝑠(𝑛)] on inputs of length 2𝑛 has

no circuits of depth 𝑂(𝑛) and 2𝑛 · 𝑠(𝑛)𝑐 size. Then 𝒞 does not have polynomial-size

formulas (i.e., 𝒞 ̸⊂ NC1).

For instance, proving MCSPEXP[𝑛10] does not have quasi-linear size circuits of

logarithmic depth would imply EXP ̸⊂ NC1.

Kt and KT Complexity. Our techniques can also be applied to time-bounded

analogues of Kologorov complexity:

Problem: MKtP[𝑝(𝑁)] [66]

Given: A string 𝑥 ∈ {0, 1}𝑁 .

4Their result was not explicitly stated in this way, but it follows easily from padding.

69

Decide: Is there a Turing machine 𝑀 of description length 𝑐 that prints 𝑥 in at

most 𝑡 steps, where 𝑐+ log2(𝑡) ≤ 𝑝(𝑁)?

Problem: MKTP[𝑝(𝑁)] [7]

Given: A string 𝑥 ∈ {0, 1}𝑁 .

Decide: Is there a Turing machine 𝑀 of description length 𝑐 that, given 𝑖, prints

the 𝑖-th bit of 𝑥 in at most 𝑡 steps, where 𝑐+ 𝑡 ≤ 𝑝(𝑁)?

While MKTP[𝑝(𝑁)] is an NP problem like MCSP (in fact, the KT complexity

of a truth table, which minimizes the measure in the MKTP definition above, is

always within polynomial factors of the minimum circuit complexity [7]), MKtP[𝑝(𝑁)]

is a more difficult problem (due to the logarithm of running time). Furthermore,

MKtP has analogous properties to MCSPEXP: for large enough 𝑝(𝑁), MKtP[𝑝(𝑁)] is

complete for EXP under NP and P/𝑝𝑜𝑙𝑦 Turing reductions [8]. Thus MKTP and

MKtP are closely related to MCSP and MCSPEXP, respectively. We observe that

the proof strategy of Theorems 4.1.1 and 4.1.2 extend to MKTP and MKtP in an

analogous way (Theorems 4.3.2 and 4.4.2 for MKTP, Theorems 4.3.3 and 4.4.2 for

MKtP), leading to the following consequences:

Theorem 4.1.7 (Consequences for MKTP and MKtP). Let the function 𝑝(𝑁) ≥

log(𝑁) be time constructible.

∙ If MKTP[𝑝(𝑁)] is not solvable by a 𝑝𝑜𝑙𝑦(𝑝(𝑁))-space streaming algorithm with

poly(𝑝(𝑁)) update time, then P ̸= NP.

∙ If there is an 𝜀 > 0 such that for all 𝑐 ≥ 1, MKTP[𝑁 𝜀/𝑐] does not have 𝑁1+𝜀-size

𝑂(1/𝜀)-depth TC0 circuits, then NP ̸⊂ TC0.

∙ If MKTP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size 𝑂(log(𝑁))-depth circuits, then

NP ̸⊂ NC1.

∙ If MKTP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size poly(𝑝(𝑁))-depth circuits, then

NP ̸⊂ P/𝑝𝑜𝑙𝑦.

70

∙ If MKtP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size poly(𝑝(𝑁))-depth circuits, then

EXP ̸⊂ P/𝑝𝑜𝑙𝑦.

∙ If MKtP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size 𝑂(log(𝑁))-depth circuits, then

EXP ̸⊂ NC1.

∙ If there is an 𝜀 > 0 such that for all 𝑐 ≥ 1, MKtP[𝑁 𝜀/𝑐] does not have 𝑁1+𝜀-size

𝑂(1/𝜀)-depth TC0 circuits, then EXP ̸⊂ TC0.

As might be expected, the above claims also hold for the corresponding search

versions, MKTP and search-MKtP, and relativized versions with MKTP𝐴 and MKtP𝐴

hold with appropriate modifications.

Comparison With [76] and [75]. Both references [76] and [75] show that lower

bounds on approximating MKtP would imply lower bounds against EXP. Consider

the problem Gap-MKtP[𝛼(𝑁), 𝛽(𝑁)] where we are promised that the Kt complexity

of a given string of length 𝑁 is either at most 𝛼(𝑁) or at least 𝛽(𝑁), and we have

to distinguish the two cases. The first reference shows that if there is a 𝛿 > 0

and an 𝑁1+𝛿-size lower bound on Gap-MKtP[𝑁 𝜀, 𝑁 𝜀 + 5 log(𝑁)] for all 𝜀 > 0, then

EXP ̸⊂ P/𝑝𝑜𝑙𝑦. The second reference generalizes this connection to other circuit

classes 𝒞 ⊂ P/𝑝𝑜𝑙𝑦, showing that an 𝑁1+𝛿-size lower bound on 𝒞-circuits for Gap-

MKtP[𝑁 𝜀, 𝑁 𝜀 + 𝑐 log(𝑁)] for all 𝜀 > 0 would imply EXP ̸⊂ 𝒞. Theorem 4.1.7

strengthens several of the prior magnification results in multiple ways. In particular,

we show lower bounds on the exact MKtP problem (with no gap) against 𝑁1+𝜀-size

𝑁 𝜀-depth circuits are already sufficient for EXP ̸⊂ P/𝑝𝑜𝑙𝑦. Finally, [75] also show

other interesting connections of MKtP to other classes, e.g., 𝐵2 and 𝑈2 formula lower

bounds and AND-THR-THR-XOR circuit lower bounds, which we do not discuss here.

Our techniques do not seem to apply to these cases.

4.1.2 Intuition

To give a feeling for our results, let us describe the proof of Theorem 4.1.3 at a

high level: how minor streaming lower bounds on compression by circuits would

71

imply P ̸= NP. We proceed by proving the contrapositive: assuming P = NP, we

construct an extremely efficient streaming algorithm that can compress 2𝑛-bit strings

with small 𝑠(𝑛)-size circuits, where 𝑠(𝑛) ≥ 𝑛.

It would suffice to design a good streaming algorithm that always maintains a

circuit of size 𝑠(𝑛) that “agrees” with all bits it has seen so far, or reports when no

such circuit exists. Our first idea is to identify an intermediate problem that we call

Basic-Circuit-Merge,5 which is not too complex, but can help maintain such a circuit

over time. For simplicity, here let’s say that Basic-Circuit-Merge takes as input two

𝑠(𝑛)-size circuits 𝐶1 and 𝐶2, along with disjoint intervals 𝐼1, 𝐼2 ⊆ [1, 2𝑛] (specified in

𝑂(𝑛) bits), and produces a circuit 𝐶 ′ of size 𝑠(𝑛) which agrees with 𝐶1 on all inputs

𝑥𝑖 where 𝑖 ∈ 𝐼1, and agrees with 𝐶2 on all inputs 𝑥𝑗 where 𝑗 ∈ 𝐼2. (If there is no such

𝐶 ′, Circuit-Min-Merge reports that.) Now we observe:

∙ Basic-Circuit-Merge is computable in the polynomial-time hierarchy. In particu-

lar, the problem of printing bits from the description of a fixed 𝐶 ′ can be placed

in Σ3P, by guessing a 𝐶 ′ of size at most 𝑠(𝑛), checking for all inputs in 𝐼1

and 𝐼2 that 𝐶 ′ is consistent with 𝐶1 and 𝐶2 (respectively), and checking for all

𝐶 ′′ < 𝐶 (with respect to some ordering) that 𝐶 ′′ is not consistent with 𝐶1 and

𝐶2. Our assumption P = NP implies that Basic-Circuit-Merge has a poly(𝑠(𝑛))

time algorithm on inputs of length �̃�(𝑠(𝑛)).

∙ Armed with a poly(𝑠(𝑛))-time algorithm for Basic-Circuit-Merge, we can quickly

maintain a circuit of size 𝑠(𝑛) consistent with the input read: inductively sup-

pose that we have a circuit 𝐶 that is consistent with all previous bits read.

For the next block 𝐵 of 𝑠(𝑛) consecutive bits of the input, we can construct

a trivial DNF 𝐹 of size 𝑛 · 𝑠(𝑛) that is consistent with the inputs in 𝐵, and

run Basic-Circuit-Merge in poly(𝑠(𝑛)) time on 𝐶 and 𝐹 to produce a new circuit

that is consistent with all input read so far, including 𝐵. This uses poly(𝑠(𝑛))

update time per bit read, and poly(𝑠(𝑛)) space.

5We define a slightly different language called Stream-Merge for the proofs given in Section 4.4,
but Basic-Circuit-Merge is sufficient for explaining the idea here.

72

We conclude that if P = NP, then for all (reasonable) functions 𝑠(𝑛), we can compress

strings to size-𝑠(𝑛) circuits with a streaming algorithm using poly(𝑠(𝑛)) update time

and poly(𝑠(𝑛)) space.

The above approach can be generalized in many ways. For one, we can easily ex-

tend it to MCSP with oracle gates, by defining a stronger Circuit-Min-Merge problem

that can handle such gates. (For example, the SAT-oracle version of Circuit-Min-Merge

is in Σ4P, thus P = NP also implies efficient streaming algorithms for compression

with SAT-oracle circuits.) For another, the ideas can be extended to time-bounded

Kolmogorov complexity (both KT and Kt complexity), by defining appropriate ana-

logues of Circuit-Min-Merge which allow us to consistently maintain a short Turing

machine description of our input over time.

Extending the above outline to restricted circuit classes (rather than streaming

algorithms) is more involved. To show that (for example) NP ⊂ TC0 implies small

TC0 circuits for compression by 𝑠(𝑛)-size circuits, we need to make a few modifica-

tions we briefly describe at a high level (but require care to work). First, we allow

Circuit-Min-Merge to take in an unbounded number of circuits on disjoint intervals,

and its task is to “merge” all of them into one small circuit. Second, we build an 𝑂(1)-

depth “tree” of Circuit-Min-Merge oracle gates, where each oracle gate in poly(𝑠(𝑛))

inputs (and outputs of “child” gates feed into the inputs of “parent” gates), whose

leaves span the entire 2𝑛-length input, and where the output gate (the root of this

tree) either prints a small circuit for the input or reports that none exists. Finally,

applying the assumption NP ⊂ TC0, we argue that inserting poly(𝑠(𝑛))-size TC0

circuits for Circuit-Min-Merge in this tree (in place of the oracle calls) would yield

2𝑛 · poly(𝑠(𝑛)) size TC0 circuits for size-𝑠(𝑛) MCSP on inputs of length 2𝑛.

4.1.3 What Do These Results Mean?

As is the case with other “amplification” and “magnification” results [83, 11, 67, 72, 76],

the results described in this chapter have a strong “slippery slope” property: rather

innocent-looking lower bounds on solving compression problems contained in a class

𝒞 are in fact as hard as proving very strong complexity lower bounds for 𝒞.

73

It seems obligatory to ask: What are we to make of such theorems? Should

we seriously consider these results as suggesting an approach towards major lower

bounds such as EXP ̸⊂ TC0 and even P ̸= NP? Or, if we accept the somewhat

popular style of argument that “if 𝐴 implies 𝐵, and 𝐵 is hard to prove, then 𝐴 is

hard to prove”, should we believe we have found a new kind of barrier for proving

innocent lower bounds? In all honesty, we are not sure. However, two comments seem

significant.

1. The aforementioned magnification and amplification results collected so far con-

stitute a remarkable intuition-breaking phenomenon that demands closer at-

tention. In the case of [76, 75, 70] and this chapter, the magnification results

highlight the peculiar “weirdness” of MCSP, MKtP, and MKTP, showing how

extremely weak-looking lower bounds for these problems turn out to already

be as difficult as separating polynomially-strong complexity classes. In this re-

gard, we believe such theorems to be noteworthy contributions towards a better

understanding of these fundamental compression problems, and a better under-

standing of how close/far we are from proving major separations in complexity

theory.

2. It seems strange to call an implied consequence 𝐵 a “barrier” to establishing

𝐴, when everyone expects 𝐵 to be true (as is the case for all lower bound con-

sequences in this chapter). Certainly this is not the sort of barrier that arises

with relativization [16], natural proofs [79], and algebrization [2], where we ei-

ther have unconditionally true claims (a relativizing/algebrizing proof cannot

resolve P vs NP) or implied consequences we do not believe to be true (a natu-

ral proof of NP ̸⊂ P/𝑝𝑜𝑙𝑦 implies there are no strong one-way functions). It is

intriguing to wonder whether other impediments to complexity lower bounds (or

algorithms) follow from the algorithms and circuits constructed in this chapter.

(Recall that our main results are not implications per se, but rather uncondi-

tional constructions of fast algorithms and circuits with short calls to Σ3SAT.)

74

4.2 Preliminaries

Here we recall and define some notions useful for this chapter.

Streaming Algorithms. We use a standard model for streaming algorithms. A

space-𝑠(𝑛) streaming algorithm with update (and reporting) time 𝑢(𝑛) on an input

𝑥 ∈ {0, 1}𝑛 has a working storage of 𝑠(𝑛) bits. At any point, the algorithm can either

choose to perform one operation (from a standard palette of RAM operations) on

𝑂(1) bits in storage, or it can choose to read the next bit 𝑥𝑖 from the input (starting

with 𝑥1). The total time between two next-bit reads is at most 𝑢(𝑛), and the final

output is reported in 𝑂(𝑢(𝑛)) time.

4.2.1 An Intermediate Problem

In order to prove our main hardness magnification result for circuits Theorem 4.1.1 (in

Section 4.3), we define an intermediate problem Circuit-Min-Merge𝐴, and show that

Circuit-Min-Merge𝐴 can be solved efficiently using Σ3SAT𝐴 oracle gates. (A similar

problem will be defined for proving Theorem 4.1.2, in Section 4.4.)

Problem: Circuit-Min-Merge𝐴[𝑠(𝑛)]

Given: Descriptions of 𝐴-oracle circuits 𝐶1, . . . , 𝐶𝑡 with 𝑛 inputs and one output,

a list of integers (𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡) ∈ [2𝑛]× [2𝑛] such that 𝑎𝑖 < 𝑏𝑖 ≤ 𝑎𝑖+1 for all 𝑖.

Output: Either the string 1 ⟨𝐶 ′⟩ where 𝐶 ′ is the lexigraphically first minimum-

size 𝐴-oracle circuit of size at most 𝑠(𝑛) such that for all 𝑥 ∈ {0, 1}𝑛 and all 𝑖,

if 𝑎𝑖 ≤ 𝑥 < 𝑏𝑖 then 𝐶 ′(𝑥) = 𝐶𝑖(𝑥), or the all-0 string of length 100𝑠(𝑛) log(𝑠(𝑛))

when there is no such circuit.

(In the above, 100 is a placeholder for a sufficiently large constant 𝑐 for encoding

size 𝑠(𝑛) circuits in 𝑐𝑠(𝑛) log2(𝑠(𝑛)) bits; certainly 100 suffices.) Note that any bit of

the output string 1 ⟨𝐶 ′⟩ can be computed by a Σ𝐴
3 machine in �̃�(𝑚) time for inputs of

length 𝑚, by guessing and checking the (unique) circuit 𝐶 ′ in the output specification,

then verifying that every circuit 𝐶 ′′ that comes before 𝐶 ′ (with respect to the natural

75

ordering) fails the specification. By a standard reduction (described further in the

proof of Theorem 4.1.1), we can compute Circuit-Min-Merge𝐴[𝑠(𝑛)] with 100𝑠(𝑛) log(𝑛)

parallel queries to Σ3SAT𝐴 (where each query computes a bit of the output). Because

the queries can be done in parallel, we can then compute Circuit-Min-Merge𝐴[𝑠(𝑛)]

with either a low depth circuit with Σ3SAT𝐴 oracle gates, or Σ3SAT𝐴 oracle queries

in a streaming algorithm.

4.3 Efficient Oracle Circuit Family for MCSP

In this section, we give an efficient circuit family for MCSP𝐴[𝑠(𝑛)] with low fan-in

Σ3SAT𝐴 gates.

Reminder of Theorem 4.1.1. Let 𝑠(𝑛) ≥ 𝑛 and let ℓ(𝑛) ≥ 𝑠(𝑛)2 for all 𝑛, where

both are time constructible. Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is

a uniform AC circuit family for MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit inputs of �̃�(2𝑛 · 𝑠(𝑛)2) size

and 𝑂(𝑛/ log ℓ(𝑛)) depth with Σ3SAT𝐴 oracle gates, where each oracle gate takes only

�̃�(ℓ(𝑛)) bits of input.

For example, for any 𝜀 > 0, if 𝑠(𝑛) is at most 𝑂(2(1−𝜀)𝑛/2), then we can let

ℓ(𝑛) = 2(1−𝜀)𝑛 and our circuit will have constant depth.

To prove Theorem 4.1.1, we first show that there are small low-depth circuits

using Circuit-Min-Merge𝐴 oracle gates. (See the Preliminaries in Section 4.2.1 for the

definition of Circuit-Min-Merge𝐴.)

Lemma 4.3.1. Let 𝑠(𝑛) ≥ 𝑛 and let ℓ(𝑛) ≥ 𝑠(𝑛)2 for all 𝑛, where both are time con-

structible. There is a uniform AC circuit family for MCSP𝐴[𝑠(𝑛)] of �̃�(2𝑛 ·𝑠(𝑛)/ℓ(𝑛))

size and 𝑂(𝑛/ log ℓ(𝑛)) depth with Circuit-Min-Merge𝐴[𝑠(𝑛)] oracle gates, where each

oracle gate takes only ℓ(𝑛) bits of input.

Proof. Suppose 𝑠(𝑛) ≥ 𝑛 and ℓ(𝑛) ≥ 𝑠(𝑛)2 for all 𝑛, and both are time constructible.

For the sake of clarity, we use the letter “𝐺” to describe Circuit-Min-Merge𝐴 gates

used in the construction of our final circuit 𝐶2𝑛 , and the letter “𝐷” to describe bit-

descriptions of circuits. To simplify our description, we assume (without loss of

76

generality) that there is no “integer roundoff”, i.e., quantities like log𝑑(2𝑛) are integers.

Construction. Let 𝑇 be an input of 2𝑛 bits. To make the circuit 𝐶2𝑛 , we start by

taking 2𝑛 descriptions of 𝑛-input constant-size circuits 𝐷0
0, 𝐷

0
1, . . . , 𝐷

0
2𝑛−1 such that

𝐷0
𝑥(𝑦) = 𝑇 (𝑥) for all 𝑥, 𝑦 ∈ {0, 1}𝑛, each circuit encoding one bit of the input truth

table 𝑇 . Since these are constant-size circuits, the length of each descriptions 𝐷𝑖 is

at most 𝑠(𝑛) for almost all input lengths 𝑛.

Let 𝑑 = ℓ(𝑛)/(100𝑠(𝑛) log 𝑠(𝑛)). Our circuit 𝐶2𝑛 will include a 𝑑-ary tree of

Circuit-Min-Merge𝐴 gates 𝐺𝑖
𝑗 of fan-in ℓ(𝑛). At each layer, we divide the previous

layer of circuits into blocks of 𝑑 circuits. Then for each block of 𝑑 circuits, we use a

single Circuit-Min-Merge𝐴[𝑠(𝑛)] gate to combine the block into one output circuit.

To demonstrate, start with the bottom layer. Taking the constant-size circuits 𝐷0
𝑗

as input, we build a layer of 2𝑛/𝑑 circuits

𝐺1
0, . . . , 𝐺

1
(2𝑛/𝑑)−1,

where 𝐺1
𝑗 = Circuit-Min-Merge𝐴[𝑠(𝑛)](𝐷0

𝑗·𝑑, . . . 𝐷
0
(𝑗+1)·𝑑, (𝑗 · 𝑑, 𝑗 · 𝑑 + 1), . . . , ((𝑗 + 1) ·

𝑑 − 1, (𝑗 + 1) · 𝑑)). That is, each 𝐺1
𝑗 takes a contiguous block of 𝑑 descriptions from

the bottom layer, and outputs one circuit of size at most 𝑠(𝑛) consistent with these

𝑑 circuits (or reports that no such circuit exists).

We repeat this process on the descriptions output by the circuits 𝐺1
𝑗 : at each

new layer, we divide the previous layer of circuits into blocks of 𝑑 circuits, using

one Circuit-Min-Merge𝐴[𝑠(𝑛)] gate for each block. That is, for 𝑖 ∈ {1, . . . , log𝑑(2𝑛)}

at layer 𝑖, the Circuit-Min-Merge𝐴[𝑠(𝑛)] gate 𝐺𝑖
𝑗 takes as input circuit descriptions

𝐷𝑖−1
𝑗·𝑑 , . . . , 𝐷

𝑖−1
(𝑗+1)𝑑−1 along with the ordered pairs

(𝑗𝑑𝑖, 𝑗𝑑𝑖 + 𝑑𝑖−1), (𝑗𝑑𝑖 + 𝑑𝑖−1, 𝑗𝑑𝑖 + 2𝑑𝑖−1), . . . , ((𝑗 + 1)𝑑𝑖 − 𝑑𝑖−1, (𝑗 + 1)𝑑𝑖)

and outputs the description of a new circuit 𝐷𝑖
𝑗.

Finally, to get a circuit for MCSP, the output of the circuit 𝐶2𝑛 is the AND of

the first output bit of each 𝐺𝑖
𝑗 in the circuit. To get a circuit for search-MCSP, we

77

can AND the output gate of 𝐶2𝑛 with each bit of 𝐺log𝑑(2
𝑛)

0 . This circuit either prints

the all-zeroes string when no circuit exists, or prints a size 𝑠(𝑛) circuit for the entire

input.

Correctness. To prove that 𝐶𝑛 computes MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit inputs, we will

first prove by induction that, assuming small circuits exist for the input truth table 𝑇 ,

the circuit 𝐷𝑖
𝑗 output by gate 𝐺𝑖

𝑗 matches the input on bits 𝑗𝑑𝑖 through (𝑗+1)𝑑𝑖− 1.

By construction, the 𝑂(1)-size circuit 𝐷0
𝑗 matches 𝑇 on bit 𝑗 for every 𝑗. For 𝑖 > 0,

suppose that all circuits𝐷𝑖−1
𝑗 match 𝑇 on bits 𝑗𝑑𝑖−1 through (𝑗+1)𝑑𝑖−1−1. The circuit

𝐷𝑖
𝑗 is the output of 𝐺𝑖

𝑗 = Circuit-Min-Merge𝐴[𝑠(𝑛)] on circuits 𝐷𝑖−1
𝑗·𝑑 , . . . , 𝐷

𝑖−1
(𝑗+1)𝑑−1 with

ordered pairs

(𝑗𝑑𝑖, 𝑗𝑑𝑖 + 𝑑𝑖−1), (𝑗𝑑𝑖 + 𝑑𝑖−1, 𝑗𝑑𝑖 + 2𝑑𝑖−1), . . . , ((𝑗 + 1)𝑑𝑖 − 𝑑𝑖−1, (𝑗 + 1)𝑑𝑖).

This means that 𝐷𝑖
𝑗 matches 𝐷𝑖−1

𝑗𝑑 on bits 𝑗𝑑𝑖 through 𝑗𝑑𝑖 + 𝑑𝑖−1 − 1, and since 𝐷𝑖−1
𝑗𝑑

matches 𝑇 on bits (𝑗𝑑)𝑑𝑖−1 = 𝑗𝑑𝑖 through (𝑗𝑑 + 1)𝑑𝑖−1 − 1 = 𝑗𝑑𝑖 + 𝑑𝑖−1 − 1, we get

that 𝐷𝑖
𝑗 matches 𝑇 on these bits as well. Similarly, the bits on which 𝐷𝑖

𝑗 are forced

to match a 𝐷𝑖−1
* circuit are exactly those bits on which the 𝐷𝑖−1

* circuit matches 𝑇 ,

which means that the final circuit 𝐷𝑖
𝑗 matches 𝑇 on all bits covered by 𝐷𝑖−1

𝑗𝑑 through

𝐷𝑖−1
(𝑗+1)𝑑−1, which is 𝑗𝑑𝑖 through (𝑗 + 1)𝑑𝑖 − 1, completing the induction.

So for all 𝑖, 𝑗, the output of 𝐺𝑖
𝑗 is then the description of a circuit 𝐷𝑖

𝑗 of size at

most 𝑠(𝑛) whose truth table matches the desired truth table 𝑇 on bits 𝑗 · 𝑑𝑖 through

(𝑗 + 1) · 𝑑𝑖 − 1 (or 0100𝑠(𝑛) log 𝑠(𝑛) if such a circuit does not exist).

The final AND gate takes the first output bit of each of these 𝐺𝑖
𝑗 gates. We claim

that all of these bits are 1 if and only if the input truth table 𝑇 has a circuit of size

at most 𝑠(𝑛). To prove this, we need only show

1. Each gate 𝐺𝑖
𝑗 and 𝐺′ outputs 1 as its first bit if 𝑇 has a circuit of size at most

𝑠(𝑛).

2. Some 𝐺𝑖
𝑗 or 𝐺′ outputs 0 as its first bit if 𝑇 does not have a circuit of size at

most 𝑠(𝑛).

78

Suppose 𝑇 has an 𝐴-oracle circuit of size at most 𝑠(𝑛). Then this oracle circuit

serves as a witness for every Circuit-Min-Merge𝐴 computation in the circuit; by con-

struction, gate 𝐺𝑖
𝑗 outputs a circuit consistent with 𝑇 on bits 𝑗𝑑𝑖 through (𝑗 + 1)𝑑𝑖 if

such a circuit exists. However, the 𝑠(𝑛) size circuit which computes 𝑇 will obviously

be consistent with 𝑇 on these bits (as well as every other bit of 𝑇), which means that

the minimum circuit must have at most 𝑠(𝑛) gates. The minimum circuit may in fact

be smaller (which is likely the case for the constant circuits 𝐷0
𝑗), but can never be

larger than 𝑠(𝑛). So if all circuits 𝐺𝑖
𝑗 at layer 𝑖 output a circuit 𝐷𝑖

𝑗 which is of size at

most 𝑠(𝑛), then every circuit 𝐺𝑖+1
𝑗 at layer 𝑖 + 1 will output a circuit 𝐷𝑖+1

𝑗 which is

of size at most 𝑠(𝑛). By induction, for all 𝑖, 𝑗, 𝐺𝑖
𝑗 will output a valid circuit, with 1

as its first bit, which means that the AND gate at the top will output 1 as well.

Now suppose that 𝑇 has no 𝐴-oracle circuit of size 𝑠(𝑛). Then there should be

some place in the circuit where Circuit-Min-Merge𝐴 fails to combine the intervals into

a single small circuit. Start at the top Circuit-Min-Merge𝐴 gate 𝐺log𝑑(2
𝑛)

0 . If all 𝑑 inputs

to this gate are valid circuits, then the output of this circuit must still be 0100𝑠(𝑛) log 𝑠(𝑛),

since the output must be a size 𝑠(𝑛) circuit which matches 𝑇 on all input bits, and

we assumed that such a circuit does not exist. On the other hand, if one of the

inputs to the gate is not a valid circuit then we can move to layer log𝑑(2
𝑛) − 1 and

repeat this argument. Each time, either all inputs are valid circuits and the output

is 0100𝑠(𝑛) log 𝑠(𝑛) (the circuit does not exist for this interval), or we can recurse on one

of the invalid inputs. Since there are constant-size circuits at the bottom, there must

be some gate which outputs 0100𝑠(𝑛) log 𝑠(𝑛) with valid circuits as input, which will force

the AND to output 0 as well.

Recall the circuit 𝐶𝑛 is a 𝑑-ary tree of Circuit-Min-Merge𝐴 circuits with a single

AND gate at the top. This gives a total depth of log𝑑(2𝑛) + 1 = 𝑛/ log2(𝑑) + 1 =

𝑛/(log ℓ(𝑛)− log 𝑠(𝑛))+1 = 𝑂(𝑛/ log ℓ(𝑛)), and a size bound of 𝑂(2𝑛/𝑑) gates, which

is a little suboptimal. To get the optimal bound, we can increase the number of

circuits fed into the Circuit-Min-Merge𝐴 circuits at the bottom layer to 𝑂(ℓ(𝑛)/𝑛),

and maintain a fan-in of ℓ(𝑛) to each Circuit-Min-Merge𝐴 oracle gate. With this, the

size of the circuit can be reduced to 𝑂(2𝑛 · 𝑛/ℓ(𝑛)) ≤ �̃�(2𝑛/ℓ(𝑛)).

79

Finally, we explain why Theorem 4.1.1 follows (with the decision problem Σ3SAT𝐴

in place of Circuit-Min-Merge𝐴). First, recall that Circuit-Min-Merge𝐴 is a function

problem, outputting �̃�(𝑠(𝑛)) bits, where each output bit is computable by a Σ3

machine (making Σ3-style alternations) in �̃�(𝑛) time. By standard completeness

results (see for example, in [44]) there is a simple AC0 reduction of size �̃�(ℓ(𝑛) ·𝑠(𝑛))

from the Circuit-Min-Merge𝐴 problem to �̃�(𝑠(𝑛)) copies of Σ3SAT𝐴: we can directly

map Circuit-Min-Merge𝐴 instances with ℓ(𝑛) > 𝑠(𝑛)2 inputs and �̃�(𝑠(𝑛)) outputs to

�̃�(𝑠(𝑛)) instances of Σ3SAT𝐴 where each instance has length �̃�(ℓ(𝑛)). Hence each

Circuit-Min-Merge𝐴 oracle gate can be replaced by �̃�(ℓ(𝑛) · 𝑠(𝑛)) extra gates plus

�̃�(𝑠(𝑛)) Σ3SAT𝐴 gates of fan-in �̃�(ℓ(𝑛)). The size bound of Theorem 4.1.1 follows,

and the replacement does not affect the depth of our AC circuit by more than a

constant factor.

4.3.1 Other Compression Problems

Other compression problems similar to MCSP are amenable to the same kind of circuit

construction as Theorem 4.1.1. The most obvious example is MKTP𝐴[𝑠(𝑛)], which

has an oracle circuit construction that is nearly identical to that of Theorem 4.1.1

using instead oracle calls to the following intermediate problem which can (as before)

be reduced to Σ3SAT𝐴.

Problem: KT-Min-Merge𝐴[𝑝(𝑁)]

Given: Descriptions of 𝐴-oracle machines 𝑀1, . . . ,𝑀𝑠 with ⌈log(𝑛)⌉ inputs and

one output, a list of integers (𝑎1, 𝑏1), . . . , (𝑎𝑠, 𝑏𝑠) ∈ [𝑁]× [𝑁] such that 𝑎𝑖 < 𝑏𝑖 ≤

𝑎𝑖+1 for all 𝑖.

Output: Either a string 1 ⟨𝑀 ′⟩ where 𝑀 ′ is the lexigraphically first 𝐴-oracle

Machine 𝑀 ′ of minimum KT complexity such that for all 𝑥 ∈ [𝑛] and all 𝑖, if

𝑎𝑖 ≤ 𝑥 < 𝑏𝑖 then 𝑀 ′(𝑥) = 𝑀𝑖(𝑥) or a string of length 𝑝(𝑁) containing only the

character 0 when there is no such machine.

Using this, we get a theorem parallel to Theorem 4.1.1, replacing MCSP𝐴 with

80

MKTP𝐴.

Theorem 4.3.2. Let 𝑝(𝑁) ≥ log(𝑁) and let ℓ(𝑁) ≥ 𝑝(𝑁)2 for all 𝑁 , where both

are time constructible. Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There

is a uniform AC circuit family for MKTP𝐴[𝑝(𝑁)] of size �̃�(𝑁 · 𝑝(𝑁)2) and depth

𝑂(log(𝑁)/ log ℓ(log(𝑁))) with Σ3SAT𝐴 oracle gates, where each oracle gate takes only

ℓ(log(𝑁)) · 𝑝𝑜𝑙𝑦(log log(𝑁)) bits of input.

Note that from Theorem 4.3.2, it follows that there are even analogous circuits

computing the Kolmogorov complexity of a string, though this case is less interesting

as we already know that the corresponding oracle will have to be undecidable. An-

other more interesting example is MKtP𝐴, which is constructed again as above but

using oracles for the following intermediate problem.

Problem: Kt-Min-Merge[𝑝(𝑁)]

Given: 𝐴-oracle machines 𝑀1, . . . ,𝑀𝑠 with 𝑁 inputs and one output, a list of

integers (𝑎1, 𝑏1), . . . , (𝑎𝑠, 𝑏𝑠) ∈ [𝑁]× [𝑁] such that 𝑎𝑖 < 𝑏𝑖 ≤ 𝑎𝑖+1 for all 𝑖.

Output: Either a string 1 ⟨𝑀 ′⟩ where 𝑀 ′ is the lexigraphically first 𝐴-oracle

machine 𝑀 ′ of minimum Kt complexity such that for all 𝑥 ∈ [𝑁] and all 𝑖, if

𝑎𝑖 ≤ 𝑥 < 𝑏𝑖 then 𝑀 ′(𝑥) = 𝑀𝑖(𝑥) or a string of length 𝑝(𝑁) containing only the

character 0 when there is no such machine.

Observing that Kt-Min-Merge can naively be computed in time 2𝑂(𝑠(𝑛)), we again

find an analogous circuit for MKtP.

Theorem 4.3.3. Let 𝑝(𝑁) ≥ log(𝑁) and let ℓ(𝑁) ≥ 𝑝(𝑁)2 for all 𝑁 , where both

are time constructible. Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is a

language 𝐵 ∈ TIME[2𝑂(𝑝(𝑁))]𝐴 such that there is a uniform AC circuit family for

MKtP𝐴[𝑝(𝑁)] of �̃�(𝑁 · 𝑝(𝑁)2) size and 𝑂(log(𝑁)/ log ℓ(log(𝑁))) depth with 𝐵 oracle

gates, where each oracle gate takes only ℓ(log(𝑁)) · 𝑝𝑜𝑙𝑦(log log(𝑁)) bits of input.

Note that the parameters of the circuits have to be changed in a straightforward

way as an instance of MCSP𝐴 has an input length of 2𝑛, while the input lengths to

our other compression problems is simply 𝑁 .

81

4.4 Streaming Algorithm for MCSP

We now turn to the streaming algorithm for search-MCSP.

Reminder of Theorem 4.1.2. Let 𝑠(𝑛) ≥ 𝑛 for all 𝑛, where 𝑠(𝑛) is time con-

structible. Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is a (one-pass)

streaming algorithm for search-MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit inputs running in 2𝑛 · �̃�(𝑠(𝑛))

time with �̃�(𝑠(𝑛)2) update time and �̃�(𝑠(𝑛)) space, using an oracle for Σ3SAT𝐴 with

queries of length �̃�(𝑠(𝑛)).

Here we present an oracle reduction from the MCSP𝐴[𝑠(𝑛)] problem to a problem

related to Circuit-Min-Merge𝐴[𝑠(𝑛)].

Let 𝑥1, . . . , 𝑥2𝑛 be the list of 𝑛-bit strings in lexicographical order.

Problem: Stream-Merge𝐴[𝑠(𝑛)]

Given: A 𝑡-bit description of an 𝐴-oracle circuit 𝐶 with 𝑛 inputs and one output

where 𝑡 = 100𝑠(𝑛) log 𝑠(𝑛), an 𝑥𝑖 ∈ {0, 1}𝑛, and a 𝑡-bit string 𝑦 = 𝑦1 · · · 𝑦𝑡.

Output: Either the string 1 ⟨𝐶 ′⟩ where 𝐶 ′ is the lexicographically first

minimum-size 𝐴-oracle circuit of size at most 𝑠(𝑛) such that for all strings 𝑥 < 𝑥𝑖

we have 𝐶 ′(𝑥) = 𝐶(𝑥), and for all 𝑗 = 1, . . . , 𝑡, 𝐶 ′(𝑥𝑖+𝑗−1) = 𝑦𝑗, or the all-0 string

of length 𝑡 when there is no such circuit 𝐶 ′.

In other words, Stream-Merge takes a circuit 𝐶 as input, an input 𝑥𝑖, and 𝑡 extra

bits of a truth table, and tries to output a small circuit that agrees with 𝐶 on all

inputs less than 𝑥𝑖, and agrees with the 𝑡 extra bits on the 𝑡 inputs 𝑥𝑖, . . . , 𝑥𝑖+𝑡−1.

As with Circuit-Min-Merge𝐴 in Section 4.2.1 and Theorem 4.1.1, Stream-Merge𝐴[𝑠(𝑛)]

can be efficiently reduced to Σ3SAT𝐴 queries of length �̃�(𝑠(𝑛)).

Proof. Algorithm 1 presents the description of the streaming algorithm. Let 𝑡 =

100𝑠(𝑛) log 𝑠(𝑛). We start by building a circuit 𝐶0 of size at most 𝑠(𝑛) that is con-

sistent with the first 𝑡 bits of the given truth table 𝑇 , using 𝑂(𝑠(𝑛) log 𝑠(𝑛))-length

queries to the Stream-Merge𝐴 oracle. We repeat this process for each successive block

of 𝑡 bits of the input, attempting to generate a new circuit 𝐶𝑖+1 which is consistent

82

with both 𝐶𝑖 and the new block of the input. If at any step we fail to generate a

circuit 𝐶𝑖, we report that there is no circuit of size 𝑠(𝑛). Otherwise, at the end we

print a circuit 𝐶2𝑛/𝑡 whose truth table is the input.

Algorithm 1: The Streaming Algorithm
1 Given a truth table 𝑇 of size 2𝑛 = 𝑁 .
2 Let 𝐶 be a trivial circuit for the constant function 0 on 𝑛 bits.
3 for 𝑖← 1, . . . , 2𝑛/𝑡 do
4 Let 𝑦1, . . . , 𝑦𝑡 be the next 𝑡 bits of 𝑇 .
5 𝐶 ← Stream-Merge𝐴[𝑠(𝑛)](𝐶, 𝑥(𝑖−1)·𝑡+1, 𝑦1 · · · 𝑦𝑡).
6 if 𝐶 is not a valid circuit, then
7 report that there is no 𝐴-oracle circuit of size 𝑠(𝑛).

8 Report 𝐶 as an 𝐴-oracle circuit of size at most 𝑠(𝑛) computing 𝑇 .

The proof that this algorithm computes MCSP𝐴 is similar to the proof of cor-

rectness for the circuit of Theorem 4.1.1. The correctness of Algorithm 1 follows by

induction. If 𝑇 has an 𝐴-oracle circuit 𝐶 of size 𝑠(𝑛), then 𝐶 can serve as a witness

for every Stream-Merge𝐴 query in the algorithm: in iteration 𝑖 of the algorithm, if

𝐶𝑖−1 is a circuit of size 𝑠(𝑛) consistent with 𝑇 on the first (𝑖 − 1) · 𝑡 bits, then the

Stream-Merge𝐴 call outputs a circuit 𝐶𝑖 consistent with 𝑇 on the first 𝑖 · 𝑡 bits, if such

a circuit exists. A circuit 𝐶 of 𝑠(𝑛)-size for 𝑇 will be consistent with 𝑇 on these bits

for any 𝑖, which means the minimum circuit 𝐶𝑖+1 output by Stream-Merge𝐴 has size

at most 𝑠(𝑛). By induction, if 𝑇 has an 𝐴-oracle circuit of size at most 𝑠(𝑛), then

Algorithm 1 will produce this circuit and report that there is such a circuit.

On the other hand, if there is no such circuit for 𝑇 , then there is some 𝑖 =

1, . . . , 2𝑛/𝑡 such that there is a size-𝑠(𝑛) circuit consistent with 𝑇 on its first (𝑖− 1) · 𝑡

bits, but there is no size-𝑠(𝑛) circuit consistent with 𝑇 on its first 𝑖 · 𝑡 bits. (Such

a circuit exists trivially for 𝑖 = 1, but by assumption no such circuit exists for 𝑖 =

2𝑛/𝑡.) Let 𝑖′ be the first such index. For all iterations before this 𝑖′, Stream-Merge𝐴

successfully outputs a circuit of size 𝑠(𝑛), but in iteration 𝑖′ Stream-Merge𝐴 fails to

find such a circuit, and thus outputs 0100𝑠(𝑛) log 𝑠(𝑛). The algorithm will notice this

output is not a valid circuit, and report there is no 𝐴 oracle circuit of size 𝑠(𝑛).

It remains to show that Algorithm 1 uses small time and space. In each iteration

83

of the for-loop, we read 𝑡 more bits of 𝑇 , query the Stream-Merge𝐴 oracle, and check

that the 𝑡 bits of query answer encodes a valid circuit. Each of these tasks can be done

in 𝑂(𝑡) time. Therefore each iteration can be done in 𝑂(𝑡) time and space. Over 2𝑛/𝑡

iterations, the overall resource consumption is 𝑂(2𝑛) time and 𝑂(𝑡) ≤ 𝑂(𝑠(𝑛) log 𝑠(𝑛))

space, when we have access to a Stream-Merge𝐴 oracle.

When we only have access to a Σ3SAT𝐴 oracle instead, each Stream-Merge𝐴 call

of length 𝑡 can be converted into 𝑂(𝑡) sequential calls of length �̃�(𝑡) to Σ3SAT𝐴,

computable in �̃�(𝑡) time each. Thus when we have a Σ3SAT𝐴 oracle, the running

time is 2𝑛 · �̃�(𝑡), the worst-case update time is �̃�(𝑡2) (between the reading of a bit

from 𝑇 in one iteration to the next, we have to make 𝑂(𝑡) calls of length �̃�(𝑡)), and

the space usage is �̃�(𝑡).

Note the proof of Theorem 4.1.2 yields the following somewhat tighter result: a

linear-time streaming algorithm with an appropriate oracle 𝐵.

Theorem 4.4.1. Let 𝑠(𝑛) ≥ 𝑛 for all 𝑛, where 𝑠(𝑛) is time constructible. Let 𝐴 :

{0, 1}⋆ → {0, 1} be an arbitrary oracle. Let 𝑡(𝑛) = 100𝑠(𝑛) log 𝑠(𝑛). There is an

oracle 𝐵𝑛 : {0, 1}𝑡(𝑛) → {0, 1}𝑡(𝑛) whose output bits are computable in PH, and a

(one-pass) streaming algorithm for search-MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit inputs running in

𝑂(2𝑛) time and 𝑂(𝑡(𝑛)) space, using an oracle for 𝐵𝑛 with queries of length 𝑡(𝑛).

4.4.1 Other Compression Problems

Theorem 4.1.2 readily applies to compression problems other than MCSP. For ex-

ample, to model MKTP, we simply have to modify the definition of Stream-Merge in

Theorem 4.1.2 so that, rather than taking as input a size-𝑠(𝑛) circuit 𝐶 representing

the initial segment of a string, we take in a Turing machine 𝑀 with KT complexity at

most 𝑝(𝑁) (as in KT-Min-Merge in Theorem 4.3.2). Thus we can conclude Theorem

4.4.2:

Theorem 4.4.2. Let 𝑝(𝑁) ≥ log(𝑁) for all 𝑛, where 𝑝(𝑁) is time constructible.

Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is a streaming algorithm for

84

MKTP𝐴[𝑝(𝑁)] running in 𝑂(𝑁 · 𝑝(𝑁)) time and 𝑂(𝑝(𝑁)) space, using an oracle for

Σ3SAT𝐴 with queries of length at most 𝑂(𝑝(𝑁)).

Similarly, if we modify the definition of Stream-Merge so that the size-𝑠(𝑛) circuit

𝐶 is replaced by a Turing machine 𝑀 with Kt complexity at most 𝑝(𝑁) (as in Kt-Min-

Merge in Theorem 4.3.3), we obtain a similar streaming algorithm for MKtP𝐴[𝑝(𝑁)].

Theorem 4.4.3. Let 𝑝(𝑁) ≥ log(𝑁) for all 𝑁 , where 𝑝(𝑁) is time constructible.

Let 𝐴 : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There is a streaming algorithm for

MKtP𝐴[𝑝(𝑁)] running in 𝑂(𝑁 · 𝑝(𝑁)) time and 𝑂(𝑝(𝑁)) space, using an oracle for

TIME[2𝑂(𝑝(𝑁))]𝐴 with queries of length at most 𝑂(𝑝(𝑁)).

As in the case of the oracle circuit (Theorem 4.3.3), the parameters of Algorithm

1 have to be changed in a straightforward way to accommodate the fact that we

have described the instances of MCSP𝐴 as length 2𝑛 strings, while we are describing

instances of other compression problems as length 𝑛 strings.

4.5 Consequences

We now present some consequences of the oracle streaming algorithm of Section 4.4

and the oracle circuits constructed in Section 4.3.

Reminder of Theorem 4.1.3. Let 𝑠(𝑛) ≥ 𝑛 be time constructible. If there is an

𝐴 ∈ PH such that search-MCSP𝐴[𝑠(𝑛)] is not solvable by a poly(𝑠(𝑛))-space streaming

algorithm with poly(𝑠(𝑛)) update time, then P ̸= NP.

Proof. We show that if P = NP, then such a streaming algorithm for MCSP𝐴[𝑠(𝑛)]

exists for all 𝐴 ∈ PH.

Suppose P = NP. Then the entire polynomial hierarchy collapses to P, which

means that for any possible 𝐴 ∈ PH, Σ3SAT𝐴 (and by extension Stream-Merge𝐴) can

be solved in polynomial time. Taking our streaming algorithm from Theorem 4.1.2,

every query to Stream-Merge𝐴[𝑠(𝑛)] can be replaced by some poly(𝑠(𝑛)) time com-

putation (all queries have length 𝑂(𝑠(𝑛) log 𝑠(𝑛))). As a result, we obtain (for any

85

𝐴 ∈ PH) a poly(𝑠(𝑛))-space streaming algorithm that takes poly(𝑠(𝑛)) update time,

completing the proof.

Reminder of Theorem 4.1.4. Let 𝑠(𝑛) ≥ 𝑛, and let 𝐴 ∈ PH.

∙ If there is an 𝜀 > 0 such that for every 𝑐 ≥ 1, the problem search-MCSP𝐴[2𝜀𝑛/𝑐]

on inputs of length 𝑁 = 2𝑛 does not have 𝑁1+𝜀-size 𝑂(1/𝜀)-depth TC0 circuits,

then NP ̸⊂ TC0.6

∙ If search-MCSP𝐴[𝑠(𝑛)] on inputs of length 𝑁 = 2𝑛 does not have circuits of

𝑁 · poly(𝑠(𝑛)) size and 𝑂(log𝑁) depth, then NP ̸⊂ NC1.

∙ If search-MCSP𝐴[𝑠(𝑛)] on inputs of length 𝑁 = 2𝑛 does not have circuits of

𝑁 · poly(𝑠(𝑛)) size and poly(𝑠(𝑛)) depth, then NP ̸⊂ P/𝑝𝑜𝑙𝑦.

Proof. Again, we prove these results by contrapositive. Let 𝒞 ∈ {TC0,NC1,P/𝑝𝑜𝑙𝑦}.

Since all circuit classes in 𝒞 are closed under complement, NP ⊂ 𝒞 implies the entire

polynomial hierarchy collapses to 𝒞. This would imply Circuit-Min-Merge𝐴[𝑠(𝑛)] ∈ 𝒞.

As a result, each copy of the Circuit-Min-Merge gate in the circuit constructed in

Lemma 4.3.1 can be replaced with a 𝒞-circuit of poly(ℓ(𝑛)) size (where ℓ(𝑛) is the

length of the queries to Circuit-Min-Merge). The proper 𝑠(𝑛) or ℓ(𝑛) will then yield a

circuit of the desired size and depth computing MCSP𝐴[𝑠(𝑛)].

∙ Let 𝒞 = TC0. For 𝑠(𝑛) = 𝑁 𝜀/𝑐 and ℓ(𝑛) = 𝑁2𝜀/𝑐, Lemma 4.3.1 gives a circuit

of size 𝑂(𝑁1+𝜀/𝑐) and depth 𝑂(log𝑁/ log𝑁2𝜀/𝑐) = 𝑂(𝑐/𝜀); replacing the oracle gates

with poly(𝑁2𝜀/𝑐) size TC0 circuits gives a circuit of size 𝑂(𝑁 ·poly(𝑁 𝜀/𝑐)) and depth

𝑂(𝑐/𝜀). Since this circuit exists for every 𝑐 ≥ 1, set 𝑐 large enough to obtain a TC0

circuit of 𝑁1+𝜀-size and 𝑂(1/𝜀)-depth.

∙ For 𝒞 = NC1 and ℓ(𝑛) = 𝑠(𝑛)3, Lemma 4.3.1 gives an 𝑂(𝑁)-size circuit of depth

𝑂(log𝑁/ log 𝑠(𝑛)). Replacing the oracle gates with poly(𝑠(𝑛)) size NC1 circuits gives

a circuit of size 𝑁 · poly(𝑠(𝑛)) and depth 𝑂((log𝑁/ log 𝑠(𝑛)) · log 𝑠(𝑛)) = 𝑂(log𝑁).

∙ Let 𝒞 = P/𝑝𝑜𝑙𝑦. For ℓ(𝑛) = 𝑠(𝑛)3, Lemma 4.3.1 again gives a circuit of size𝑂(𝑁)

and depth 𝑂(log𝑁/ log 𝑠(𝑛)). Replacing the oracle gates with poly(𝑠(𝑛)) size circuits

6Note that TC0 could be substituted with any other constant-depth circuit family, such as
AC0[6].

86

gives a circuit of size 𝑁 · poly(𝑠(𝑛)) and depth 𝑂((log𝑁/ log 𝑠(𝑛)) · poly(𝑠(𝑛))) =

poly(𝑠(𝑛)).

This completes the proof.

Now we turn to proving hardness magnification consequences for (harder) oracle

versions of MCSP.

Reminder of Theorem 4.1.5. [Magnifying Streaming Lower Bounds for Harder

MCSP Versions] Let 𝒞 be in {NP,PP,PSPACE}. Suppose there is a constructible

𝑠(𝑛) and oracle 𝐴 ∈ 𝒞 such that for all 𝑐 ≥ 1, search-MCSP𝐴[𝑠(𝑛)] on inputs of length

2𝑛 has no 𝑠(𝑛)𝑐-space streaming algorithm with update time 𝑠(𝑛)𝑐. Then P ̸= 𝒞.

Proof. Suppose P = 𝒞. To prove the contrapositive, we wish to show that for all

constructible functions 𝑠(𝑛) and oracles 𝐴 ∈ 𝒞, there exists a 𝑐 ≥ 1 such that

MCSP𝐴[𝑠(𝑛)] has an 𝑠(𝑛)𝑐-space streaming algorithm with update time 𝑠(𝑛)𝑐.

Since NP ⊆ 𝒞, we know that P = NP, so again the polynomial hierarchy collapses

to P, and since 𝐴 ∈ P as well Stream-Merge𝐴 can be solved in polynomial time.

Similar to Theorem 4.1.3, we can replace the oracle in the streaming algorithm with

a deterministic algorithm running in 𝑠(𝑛)𝑐 time for some constant 𝑐 on inputs of length

𝑂(𝑠(𝑛) log 𝑠(𝑛)). So Theorem 4.1.2 gives us an 𝑠(𝑛)𝑐-space streaming algorithm with

update time 𝑠(𝑛)𝑐.

Reminder of Theorem 4.1.6. [Magnifying Low-Depth Circuit Lower Bounds for

Harder MCSP] Let 𝒞 be in {NP,PP,PSPACE,EXP}. Suppose there is some 𝑠(𝑛)

and oracle 𝐴 ∈ 𝒞 such that for all 𝑐 ≥ 1, search-MCSP𝐴[𝑠(𝑛)] on inputs of length 2𝑛

has no circuits of depth 𝑂(𝑛) and 2𝑛 ·𝑠(𝑛)𝑐 size. Then 𝒞 does not have polynomial-size

formulas (i.e., 𝒞 ̸⊂ NC1).

Proof. Suppose 𝒞 has polynomial-size formulas. To prove the contrapositive, we

construct MCSP𝐴[𝑠(𝑛)] circuits of depth 𝑂(𝑛) and 2𝑛 · poly(𝑠(𝑛)) size.

Since NP ⊆ 𝒞, we can construct polynomial-size formulas for any problem in

PH𝐴, including Circuit-Min-Merge𝐴. Take the oracle circuit family constructed in

Lemma 4.3.1 of 𝑂(2𝑛 · 𝑠(𝑛)/ℓ(𝑛)) size and 𝑂(𝑛/ log ℓ(𝑛)) depth. Then, replace each

87

Circuit-Min-Merge𝐴 gate with a poly(ℓ(𝑛)) size formula, which will blow up both the

size and depth, but not by much. There are 𝑂(2𝑛) copies of this Circuit-Min-Merge𝐴

formula, so the size of the resulting circuit is about 𝑂(2𝑛 · poly(ℓ(𝑛)). Each of these

formulas will have depth 𝑂(log(ℓ(𝑛))) as well, which will increase the depth of the

circuit to 𝑂(𝑛/ log ℓ(𝑛) · log ℓ(𝑛)) = 𝑂(𝑛). So if we set ℓ(𝑛) = poly(𝑠(𝑛)), we obtain a

circuit of depth 𝑂(𝑛) and size 2𝑛 · poly(𝑠(𝑛)) size computing MCSP𝐴[𝑠(𝑛)] on 2𝑛-bit

inputs, which completes the proof.

4.5.1 Other Compression Problems

Most of the above theorems are consequences of the existence of the circuits and

streaming algorithm as given by Theorems 4.1.1 and 4.1.2. Because these circuits

and streaming algorithms exist for MKTP and MKtP as per Theorems 4.3.2, 4.3.3,

4.4.2, and 4.4.3, we can conclude analogues of many of the same results as above.

Reminder of Theorem 4.1.7. [Consequences for MKTP and MKtP] Let the function

𝑝(𝑁) ≥ log(𝑁) be time constructible.

∙ If MKTP[𝑝(𝑁)] is not solvable by a 𝑝𝑜𝑙𝑦(𝑝(𝑁))-space streaming algorithm with

𝑝𝑜𝑙𝑦(𝑝(𝑁)) update time, then P ̸= NP.

∙ If there is an 𝜀 > 0 such that for all 𝑐 ≥ 1, MKTP[𝑁 𝜀/𝑐] does not have 𝑁1+𝜀-size

𝑂(1/𝜀)-depth TC0 circuits, then NP ̸⊂ TC0.

∙ If MKTP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size 𝑂(log(𝑁))-depth circuits, then

NP ̸⊂ NC1.

∙ If MKTP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size poly(𝑝(𝑁))-depth circuits, then

NP ̸⊂ P/𝑝𝑜𝑙𝑦.

∙ If MKtP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size poly(𝑝(𝑁))-depth circuits, then

EXP ̸⊂ P/𝑝𝑜𝑙𝑦.

∙ If MKtP[𝑝(𝑁)] does not have 𝑁 ·poly(𝑝(𝑁))-size 𝑂(log(𝑁))-depth circuits, then

EXP ̸⊂ NC1.

88

∙ If there is an 𝜀 > 0 such that for all 𝑐 ≥ 1, MKtP[𝑁 𝜀/𝑐] does not have 𝑁1+𝜀-size

𝑂(1/𝜀)-depth TC0 circuits, then EXP ̸⊂ TC0.

We omit the proof of Theorem 4.1.7, as each claim follows easily from the argu-

ments given above for the analogous claims about MCSP𝐴 in Theorems 4.1.4, 4.1.5,

and 4.1.6 citing instead Theorems 4.3.2, 4.3.3, 4.4.2, and 4.4.3 for the existence of

efficient oracle circuits and streaming algorithms for MKTP and MKtP. Relativized

versions of Theorem 4.1.7 also hold for MKTP𝐴 and MKtP𝐴 with an oracle 𝐴; we

leave the details to the interested reader.

4.6 Conclusion

We conclude this chapter with a few related open problems.

∙ What is the moral of this story? What lessons do we draw from these

results? As we stated in the introduction, it does not seem right to call our

results a “barrier” to proving weak time-space lower bounds, because we believe

all of the consequential lower bounds of this chapter! Still, there ought to be

more consequences of the fact that certain “weak-looking” lower bound problems

are deceptive, and in fact are much stronger than they appear.

∙ Bounded Nondeterminism Problems? A key property of MCSP[𝑠(𝑛)] (and

related compression problems) is that the nondeterminism needed to solve the

problem is only 𝑂(𝑠(𝑛) log 𝑠(𝑛)) bits: the number of bits needed to write down a

circuit of size 𝑠(𝑛). When 𝑠(𝑛) ≤ 2𝑜(𝑛), MCSP[𝑠(𝑛)] is a problem with sub-linear

nondeterminism. It is natural to ask whether hardness magnification holds for

similar problems. For example, consider the SAT problem with 𝑠(𝑛) variables

and 2𝑛 clauses. Are there interesting consequences of proving weak time lower

bounds for such SAT problems, for algorithms using poly(𝑠(𝑛)) space?

∙ Truth tables presented differently? Our main results for MCSP rely on the

input truth table of 𝑓 being presented in a canonical way, namely as a 2𝑛-bit

89

string

𝑓(𝑥1) · · · 𝑓(𝑥2𝑛),

where 𝑥1, . . . , 𝑥2𝑛 is the list of 𝑛-bit strings in lexicographical order. Our results

can also extend to the case of other efficiently-computable orderings on strings.

What about when the truth table is presented in an arbitrary order, as a list of

pairs

(𝑥1, 𝑓(𝑥1)), . . . , (𝑥2𝑛 , 𝑓(𝑥2𝑛))

where 𝑥1, . . . , 𝑥2𝑛 is an arbitrary permutation of {0, 1}𝑛? Can similar hardness

magnification results be proved for this version of the problem? Note that, in

this representation, each Boolean function corresponds to (2𝑛)! distinct strings

of length Θ(𝑛2𝑛), so the underlying language MCSP[𝑠(𝑛)] is no longer as sparse

as it used to be.

90

Chapter 5

An Equivalence Between

Fixed-Polynomial Circuit Size Lower

Bounds and Karp-Lipton Style

Theorems

5.1 Introduction

Let 𝒞 be a complexity class containing NP. A longstanding method for proving fixed-

polynomial circuit lower bounds for functions in 𝒞, first observed by Kannan [62],

applies versions of the classical Karp-Lipton Theorem by splitting the proof into two

cases:

1. If NP ̸⊂ P/𝑝𝑜𝑙𝑦, then SAT ∈ NP ⊂ 𝒞 does not have polynomial-size circuits.

2. If NP ⊂ P/𝑝𝑜𝑙𝑦, then by a “collapse” theorem, we have PH ⊆ 𝒞. But for every

𝑘, there is an 𝑓 ∈ PH that does not have 𝑛𝑘-size circuits, so we are also done

in this case.

Such collapse theorems are called Karp-Lipton Theorems, as they were first dis-

covered by Karp and Lipton [63] in their pioneering work on complexity classes with

91

advice. The general theme of such theorems is a connection between non-uniform

and uniform complexity:

“𝒞 has (non-uniform) polynomial-size circuits implies a collapse of (uni-

form) complexity classes.”

Over the years, Karp-Lipton Theorems have been applied to prove circuit lower

bounds for the complexity classes NPNP [62], ZPPNP [26, 64], S2P [30, 31], PP [89,

1]1, and Promise-MA and MA/1 [81].2 Other literature on Karp-Lipton Theorems

include [92, 33, 34].

When one first encounters such a lower bound argument, the non-constructivity

of the result (the two uncertain cases) and the use of a Karp-Lipton Theorem look

strange.3 It appears obvious that one ought to be able to prove circuit lower bounds

in a fundamentally different way, without worrying over any collapses of the polyno-

mial hierarchy. It is easy to imagine the possibility of a sophisticated combinatorial

argument establishing a lower bound for PNP functions (one natural next step in such

lower bounds) which has nothing to do with simulating PH more efficiently, and has

no implications for it.

PNP Circuit Lower Bounds are Equivalent to Karp-Lipton Collapses to

PNP. We show that, in a sense, the above intuition is false: any fixed-polynomial-

size circuit lower bound for PNP would imply a Karp-Lipton Theorem collapsing

PH all the way to PNP. (There are some technicalities: the PNP simulation uses

small advice and only works infinitely often, but we believe these conditions can

potentially be removed, and they do not change the moral of our story.) We find this

result surprising; it shows that in order to prove a circuit lower bound for PNP, one

cannot avoid proving a Karp-Lipton Theorem for PNP in the process. A Karp-Lipton

Theorem is both necessary and sufficient for such lower bounds.
1Both Vinodchandran and Aaronson’s proofs of PP ̸⊂ SIZE[𝑛𝑘] use the Karp-Lipton-style the-

orem “PP ⊂ P/𝑝𝑜𝑙𝑦 then PP = MA”, which follows from [68]. Aaronson shows further that
“PP ⊂ P/𝑝𝑜𝑙𝑦 then PPP = MA”. From there, one can directly construct a function in PPP

without 𝑛𝑘-size circuits.
2Santhanam used the Karp-Lipton-style theorem “PSPACE ⊂ P/𝑝𝑜𝑙𝑦 implies PSPACE =

MA” to prove lower bounds against Promise-MA and MA with one bit of advice.
3Note Cai and Watanabe [32] found a constructive proof for NPNP.

92

Reminder of Theorem 1.0.7 (PNP Circuit Lower Bounds are Equivalent to

a Karp-Lipton Collapse to PNP).

PNP ̸⊂ SIZE[𝑛𝑘] for all 𝑘 if and only if (NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ PH ⊂ i.o.-PNP/𝑛).

One direction of Theorem 1.0.7 follows immediately from the classical lower bound

paradigm described above. In particular, assuming PNP ⊂ SIZE[𝑛𝑘] for some 𝑘 and

assuming NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ PH ⊂ i.o.-PNP/𝑛 we have

PH ⊂ i.o.-PNP/𝑛 ⊆ i.o.-SIZE[𝑂(𝑛)𝑘],

which contradicts known fixed-polynomial lower bounds for PH. The interesting

direction is the converse, showing that proving lower bounds against PNP implies

proving a Karp-Lipton collapse to PNP that is sufficient for the lower bound.

NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses. After ob-

serving Theorem 1.0.7, a natural question is whether such a theorem holds for NP

circuit lower bounds as well:

Does NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘 imply a Karp-Lipton Collapse to NP?

While we have not yet been able to prove this under the hypothesis NP ⊂ P/𝑝𝑜𝑙𝑦

as above, we can show it for stronger hypotheses. Another class of Karp-Lipton

Theorems (used in circuit lower bounds for PP [89, 1] and Promise-MA [81]) give

stronger collapses under hypotheses like PSPACE ⊂ P/𝑝𝑜𝑙𝑦: for any class 𝒞 which

is one of NEXP [60], EXPNP ([27] and [15]), EXP and PSPACE [15], PP [68] and

⊕P [59], we have:

If 𝒞 ⊂ P/𝑝𝑜𝑙𝑦 then 𝒞 ⊆MA.

We show how NP circuit lower bounds can be used to derandomize MA. In fact,

under the hypothesis NP ⊂ P/𝑝𝑜𝑙𝑦, we prove an equivalence between NP circuit

lower bounds, fast Arthur-Merlin simulations of NP, and nondeterministic deran-

domization of Arthur-Merlin protocols.

To state our results, we first define a variation of the “robust simulation” which

was originally introduced in [45]. For a complexity class 𝒞 and a language 𝐿, we say

93

𝐿 is in c-r.o.-𝒞 for a constant 𝑐, if there is a language 𝐿′ ∈ 𝒞 such that there are

infinitely many 𝑚’s such that for all 𝑛 ∈ [𝑚,𝑚𝑐], 𝐿′ agrees with 𝐿 on inputs of length

𝑛.4 (See Section 5.2.1 for formal definitions.)

Theorem 5.1.1. Theorem Assuming NP ⊂ P/𝑝𝑜𝑙𝑦, the following are equivalent:

1. NP is not in SIZE[𝑛𝑘] for all 𝑘.

2. AM/1 is in c-r.o.-NP/𝑛𝜀 for all 𝜀 > 0 and integers 𝑐.

That is, Arthur-Merlin games with 𝑂(1) rounds and small advice can be simu-

lated “𝑐-robustly often” in NP with modest advice, for all constants 𝑐.5

3. NP does not have 𝑛𝑘-size witnesses for all 𝑘.

That is, for all 𝑘, there is a language 𝐿 ∈ NP, a poly-time verifier 𝑉 for 𝐿, and

infinitely many 𝑥𝑛 ∈ 𝐿 such that 𝑉 (𝑥𝑛, ·) has no witness of circuit complexity

at most 𝑛𝑘.

4. For all 𝑘 and 𝑑, there is a polynomial-time nondeterministic PRG with seed-

length 𝑂(log 𝑛) and 𝑛 bits of advice against 𝑛𝑘-size circuits 𝑑-robustly often.6

5. NP is not in AMTIME(𝑛𝑘) for all 𝑘.

6. (NP ∩ coNP)/𝑛𝜀 is not in SIZE[𝑛𝑘] for all 𝑘 and all 𝜀 > 0.

7. (AM∩ coAM)/1 is in c-r.o.-(NP∩ coNP)/𝑛𝜀 for all 𝜀 > 0 and all integers 𝑐.

That is, under NP ⊂ P/𝑝𝑜𝑙𝑦, the tasks of fixed-polynomial lower bounds for NP,

lower bounds for (NP ∩ coNP)/𝑛𝜀, uniform lower bounds on simulating NP within

AM, and derandomizing AM in NP are all equivalent.

We recall another type of Karp-Lipton collapse was shown by [14]: NP ⊂ P/𝑝𝑜𝑙𝑦

implies AM = MA. An intriguing corollary of Theorem 5.1.1 is that fixed-polynomial
4The original definition of 𝐿 ⊆ r.o.-𝒞 requires that there is a single language 𝐿′ ∈ 𝒞 such that

for all 𝑐 there are infinitely many 𝑚’s such that for all 𝑛 ∈ [𝑚,𝑚𝑐], 𝐿′ agrees with 𝐿 on inputs of
length 𝑛.

5See the preliminaries section of this chapter (Section 5.2) for a definition of “𝑐-robustly often”.
Intutively, it is a mild strengthening of “infinitely often”.

6See the preliminaries section of this chapter (Section 5.2) for formal definitions.

94

lower bounds for NP would improve this collapse, from MA to 𝑐-r.o.-NP/𝑛𝜀 for all

𝑐:

Reminder of Corollary 1.0.9 (NP Circuit Lower Bounds Equivalent to a

Karp-Lipton Collapse of AM to NP). NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘 if and only if

(NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ AM is in 𝑐-r.o.-NP/𝑛𝜀 for all 𝑐).

Another consequence of Theorem 5.1.1 is that NP circuit lower bounds imply

better Karp-Lipton collapses from MA down to NP:

Theorem 5.1.2 (NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses).

Let 𝒞 ∈ {⊕P,PSPACE,PP,EXP}. Suppose NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘. Then for

all 𝜀 > 0, (𝒞 ⊂ P/𝑝𝑜𝑙𝑦 =⇒ 𝒞 ⊂ i.o.-NP/𝑛𝜀). In particular, polynomial-size circuits

for any 𝒞-complete language 𝐿 can be constructed in NP infinitely often, with 𝑛𝜀

advice.

Remark 5.1.3. By “circuits for 𝐿 can be constructed in NP infinitely often”, we mean

that there is a nondeterministic polynomial-time algorithm 𝐴 such that, for infinitely

many 𝑛, 𝐴 on input 1𝑛 outputs a circuit 𝐶𝑛 for 𝐿𝑛 on at least one computation path,

and on all paths where such a 𝐶𝑛 is not output, 𝐴 outputs reject.

Consequences of Weak Circuit Lower Bounds for Sparse Languages in NP.

Theorem 5.1.1 shows that assuming NP ⊂ P/𝑝𝑜𝑙𝑦, fixed-polynomial lower bounds

for NP imply AM = MA ⊆ i.o.-NP/𝑛𝜀. This is also the reason that we can only

show collapses to i.o.-NP/𝑛𝜀 in Theorem 5.1.2. It is interesting to ask whether the

𝑛𝜀 advice in the simulation can be eliminated or reduced. In the following, we show

that an 𝑛1.00001-size circuit lower bound for a polynomially-sparse language in NP

would imply an advice reduction, along with other interesting consequences.

Theorem 5.1.4 (Consequences of Weak Circuit Lower Bounds for Polynomially-S-

parse NP Languages). Suppose there is an 𝜀 > 0, a 𝑐 ≥ 1, and an 𝑛𝑐-sparse 𝐿 ∈ NP

without 𝑛1+𝜀-size circuits. Then MA ⊂ i.o.-NP/𝑂(log 𝑛), MA ⊆ i.o.-PNP[𝑂(log𝑛)],

and NE ̸⊂ SIZE[2𝛿·𝑛] for some 𝛿 > 0 (which implies NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘).

95

One step in the proof of Theorem 5.1.4 is a form of hardness condensation (as

termed by Impagliazzo [57]) for sparse NP languages. The goal of hardness conden-

sation [28, 58] is that, given a function 𝑓 on 𝑛 input bits with complexity 𝑆, we want

to construct a function ̃︀𝑓 on ℓ ≪ 𝑛 input bits that still has complexity roughly 𝑆.

We show how a hard 𝑆(𝑛)-sparse language in NTIME[𝑇 (𝑛)] can be “condensed” in

a generic way, based on the sparsity 𝑆(𝑛). We can efficiently build a PRG from the

harder condensed function.

Theorem 5.1.4 shows how a very weak lower bound (𝑛1+𝜀) for a sparse language

𝐿 ∈ NP would imply an exponential-size lower bound for NE (note, the converse

is easy to show). This is reminiscent of a recent line of work [76, 75, 70] (and the

previous chapter) on “hardness magnification” phenomena, showing that seemingly

weak circuit lower bounds for certain problems can in fact imply strong circuit lower

bounds which are out of reach of current proof techniques.

At a high level, the hardness magnification results in the above-cited papers show

how weak lower bounds on “compression problems” can imply strong complexity class

separations. These compression problems have the form: given a string, does it have a

small efficient representation? As an example, in the Minimum Circuit Size Problem

for size 𝑆(𝑚) ≪ 2𝑚, denoted as MCSP[𝑆(𝑚)], we are given a truth table of length

𝑁 = 2𝑚 and want to know if the function has a circuit of size at most 𝑆(𝑚). As an

example of hardness magnification, Theorem 4.1.4 of Chapter 4 shows that, if there

is an 𝜀 > 0 such that MCSP[2𝑚/ log⋆ 𝑚] is not in SIZE[𝑁1+𝜀], then NP ̸⊂ P/𝑝𝑜𝑙𝑦.

Thus a very weak circuit size lower bound for MCSP[2𝑚/ log⋆ 𝑚] would imply a super-

polynomial lower bound for SAT!

Sparsity Alone Implies a Weak Hardness Magnification. We identify a sim-

ple property of all efficient compression problems which alone implies a (weak) form of

hardness magnification: the sparsity of the underlying language. For any compression

problem on length-𝑁 strings where we ask for a length-ℓ(𝑁) representation (think of

ℓ(𝑁) ≤ 𝑛𝑜(1)), there are at most 2ℓ(𝑁) strings in the language. Scaling up the sparsity

of Theorem 5.1.4, we show that non-trivial circuit lower bounds for any NP problem

96

with subexponential sparsity already implies longstanding circuit lower bounds. In

fact, we have an equivalence:

Reminder of Theorem 1.0.11. NEXP ̸⊂ P/𝑝𝑜𝑙𝑦 if and only if there exists an

𝜀 > 0 such that for every sufficiently small 𝛽 > 0, there is a 2𝑛
𝛽 -sparse language

𝐿 ∈ NTIME[2𝑛
𝛽
] without 𝑛1+𝜀-size circuits.

It follows that an 𝑛1+𝜀-size circuit lower bound for MCSP[2𝑚/ log⋆ 𝑚] would imply

NEXP ̸⊂ P/𝑝𝑜𝑙𝑦 (but we got NP ̸⊂ P/𝑝𝑜𝑙𝑦 above). We remark while the lower

bound consequence here is much weaker than the consequences of prior work [76, 75,

70] (only NEXP ̸⊂ P/𝑝𝑜𝑙𝑦, instead of NP ̸⊂ P/𝑝𝑜𝑙𝑦), the hypothesis has much more

flexibility: Theorem 1.0.11 allows for any sparse language in NTIME[2𝑛
𝑜(1)

], while

the MCSP problem is in NTIME[𝑛1+𝑜(1)].7

Finally, we observe that Theorem 1.0.11 is similar in spirit to the Hartmanis-

Immerman-Sewelson theorem [48] which states that there is a polynomially-sparse

language in NP ∖P if and only if NE ̸= E. Theorem 1.0.11 can be interpreted as a

certain optimized, non-uniform analogue of Hartmanis-Immerman-Sewelson theorem,

in a different regime of sparsity.

Organization of the Chapter. In Section 5.2, we introduce the necessary prelim-

inaries for this chapter. In Section 5.3, we prove that fixed-polynomial circuit lower

bounds for PNP is equivalent to a (weak) Karp-Lipton theorem for P. In Section 5.4,

we prove our equivalence theorem for NP circuit lower bounds, fast simulations of

NP, and nondeterministic polynomial-time derandomization, under the hypothesis

NP ⊂ P/𝑝𝑜𝑙𝑦. In Section 5.5, we show how our equivalence theorem implies that

fixed polynomial circuit lower bounds for NP implies better Karp-Lipton theorems

for higher complexity classes. In Section 5.6, we prove the consequences of weak cir-

cuit lower bounds for sparse NP languages. In Section 5.7, we prove the key Lemma

5.4.1 showing almost everywhere lower bounds against MA∩ coMA/1, finishing the

proof of Theorem 5.1.1 from Section 5.4. Finally, in Section 5.8, we discuss some

interesting open questions stemming from this work.
7We remark that these results are not directly related to hardness magnification for NC1-complete

problems [12, 38], as the problems studied in these works are clearly not sparse.

97

5.2 Preliminaries

Here we review some notation and concepts that are of particular interest for this

chapter.

5.2.1 Infinitely Often and Robust Simulations

In this section, let C be a class of languages. Here we recall infinitely often and

robust simulations, the latter of which was first defined and studied in [45]. Robust

simulations expand on the notion of “infinitely often” simulations. A language 𝐿 ∈

i.o.-C (infinitely often C), if there is a language 𝐿′ in C such that there are infinitely

many 𝑛 such that 𝐿𝑛 = 𝐿′
𝑛. A language 𝐿 ∈ r.o.-C (robustly often C), if there is

a language 𝐿′ in C such that for all 𝑘 ≥ 1, there are infinitely many 𝑛 such that

𝐿𝑚 = 𝐿′
𝑚 for all 𝑚 ∈ [𝑛, 𝑛𝑘]. In this case, we say 𝐿′ r.o.-computes 𝐿.

𝑐-Robust Simulations. We consider a parameterized version of the robust simula-

tion concept which is useful for stating our results. Let 𝑐 ≥ 1 be an integer constant.

We say a language 𝐿 ∈ c-r.o.-C (𝑐-robustly often C) if there is an 𝐿′ ∈ C and

infinitely many 𝑛 such that 𝐿𝑚 = 𝐿′
𝑚 for all 𝑚 ∈ [𝑛, 𝑛𝑐]. In this case, we say 𝐿′

𝑐-r.o.-computes 𝐿. Note that 𝐿 ∈ r.o.-C implies 𝐿 ∈ c-r.o.-C for all 𝑐, but the

converse is not necessarily true.

More generally, a property 𝑃 (𝑛) holds 𝑐-robustly often (c-r.o.-) if for all integers

𝑘, there are infinitely many 𝑚’s such that 𝑃 (𝑛) holds for all 𝑛 ∈ [𝑚,𝑚𝑐].

5.2.2 Non-deterministic Pseudo-Random Generators

Let 𝑤(𝑛), 𝑠(𝑛) : N → N, and let C be a class of functions. We say a function family

𝐺, specified by 𝐺𝑛 : {0, 1}𝑤(𝑛)×{0, 1}𝑠(𝑛) → {0, 1}*∩{⊥}, is a nondeterministic PRG

against C if for all sufficiently large 𝑛 and all 𝐶 ∈ C , the following hold:

∙ For all 𝑦 ∈ {0, 1}𝑤(𝑛), either 𝐺𝑛(𝑦, 𝑧) ̸= ⊥ for all 𝑧’s (such a 𝑦 is called good),

or 𝐺𝑛(𝑦, 𝑧) = ⊥ for all 𝑧’s (a bad 𝑦).

98

∙ There is at least one good 𝑦 ∈ {0, 1}𝑤(𝑛).

∙ Suppose 𝑦 ∈ {0, 1}𝑤(𝑛) is good, 𝐶 has 𝑚 input bits, and |𝐺𝑛(𝑦, 𝑧)| ≥ 𝑚 for all

𝑧. Then ⃒⃒⃒⃒
Pr

𝑧∈{0,1}𝑠(𝑛)
[𝐶(𝐺𝑛(𝑦, 𝑧)) = 1]− Pr

𝑧∈{0,1}𝑚
[𝐶(𝑧) = 1]

⃒⃒⃒⃒
< 1/𝑛.

As usual, if 𝐶 takes less than |𝐺𝑛(𝑦, 𝑧)| inputs, 𝐶(𝐺𝑛(𝑦, 𝑧)) corresponds to

feeding 𝐶 with the first 𝑚 bits of 𝐺𝑛(𝑦, 𝑧).

Usually we are only interested in the seed length parameter 𝑠(𝑛) and the running

time 𝑇 (𝑛) of the PRG 𝐺𝑛 as a function of 𝑛. To be concise, we say 𝐺 is a 𝑇 (𝑛)-time

NPRG of seed length 𝑠(𝑛) against C .

We say 𝐺 is a i.o.-NPRG or r.o.-NPRG, if it only fools functions in C infinite

often or robustly often.

5.2.3 Pseudorandom Generators from Strings of High Circuit

Complexity

We will use the following strong construction of pseudorandom generators from hard

functions:

Theorem 5.2.1 (Umans [87]). There is a constant 𝑔 and a function 𝐺 : {0, 1}* ×

{0, 1}* → {0, 1}* such that, for all 𝑠 and 𝑌 satisfying CircuitComplexity(𝑌) ≥ 𝑠𝑔, and

for all circuits 𝐶 of size 𝑠,⃒⃒⃒⃒
Pr

𝑥∈{0,1}𝑔 log |𝑌 |
[𝐶(𝐺(𝑌, 𝑥)) = 1]− Pr

𝑥∈{0,1}𝑠
[𝐶(𝑥) = 1]

⃒⃒⃒⃒
< 1/𝑠.

Furthermore, 𝐺 is computable in poly(|𝑌 |) time.

Fortnow-Santhanam-Williams [46]. A work related to this chapter is that of

Fortnow, Santhanam, and Williams, who proved the equivalences NP ̸⊂ SIZE[𝑛𝑘]

for all 𝑘 ⇐⇒ PNP[𝑛𝑘] ̸⊂ SIZE[𝑛𝑐] for all 𝑘, 𝑐 and AM ̸⊂ SIZE[𝑛𝑘] for all 𝑘 ⇐⇒

99

MA ̸⊂ SIZE[𝑛𝑘] for all 𝑘. We use intermediate results of theirs in our equivalence

theorems (see the citations).

5.3 PNP Circuit Lower Bounds Equivalent to Karp-

Lipton Collapses to PNP

In this section we prove Theorem 1.0.7 (restated below).

Reminder of Theorem 1.0.7. PNP ̸⊂ SIZE[𝑛𝑘] for all 𝑘 if and only if (NP ⊂

P/𝑝𝑜𝑙𝑦 =⇒ PH ⊂ i.o.-PNP/𝑛).

We begin with a lemma on the simulation of poly-time functions with an NP

oracle. Essentially the lemma says that if functions with an NP oracle always output

strings of low circuit complexity, then we can simulate PNP extremely efficiently

in the polynomial hierarchy. This is similar in spirit to Fortnow, Santhanam, and

Williams’ result that PNP ⊂ SIZE[𝑛𝑘] implies NP ⊆ MATIME(𝑛𝑂(𝑘)) [46]; our

result is more complex in that we simulate all of PNP.

Lemma 5.3.1. Suppose there is a 𝑘 such that for all FPNP functions 𝑓 , the cir-

cuit complexity of 𝑓(𝑥) is at most |𝑥|𝑘 for all but finitely many 𝑥. Then PNP ⊆

Σ3TIME[𝑛𝑂(𝑘)].

Proof. Let 𝐿 ∈ PNP be a language which can be computed by a 3SAT oracle machine

𝑀 in 𝑛𝑐 time, for a constant 𝑐. Without loss of generality, we may assume 𝑀 is a

single-tape machine.

The FPNP Function 𝑓sol. Consider the following FPNP function 𝑓sol:

FPNP function 𝑓sol for printing assignments to all satisfiable oracle
queries

∙ Given an input 𝑥, simulate the 3SAT oracle machine 𝑀 running on the input

𝑥.

100

∙ On the 𝑖-th step of the simulation, if 𝑀 makes an oracle query 𝜓 (𝜓 is a

3SAT instance) and 𝜓 is satisfiable, call the NP oracle multiple times to

construct a satisfying assignment for 𝜓, and print it. Letting 𝑚 be the

length of the assignment (note that 𝑚 ≤ 𝑛𝑐), we print 𝑛𝑐+1−𝑚 additional

ones.

∙ Otherwise, print 𝑛𝑐 + 1 zeros on the 𝑖-th step.

In the following we always assume 𝑛 is sufficiently large. For all 𝑥 with |𝑥| = 𝑛, by

assumption we know the string 𝑓sol(𝑥) has an 𝑛𝑘 size circuit. Let 𝜓 be a 3SAT query

made on 𝑖-th step which is satisfiable; 𝜓 has a satisfying assignment corresponding to

a sub-string of 𝑓sol(𝑥) starting from the position (𝑖 − 1) · (𝑛𝑐 + 1) + 1, and therefore

has circuit complexity at most 𝑂(𝑛𝑘) ≤ 𝑛𝑘+1. In particular, we can define a circuit

𝐸𝑖(𝑗) := 𝑓sol(𝑥)((𝑖− 1) · (𝑛𝑐 +1)+ 𝑗) whose truth table encodes a SAT assignment to

𝜓.

The FPNP Function 𝑓history. Next, we define a function FPNP function 𝑓history,

which prints the computation history of 𝑀 . More precisely, we can interpret 𝑓history(𝑥)

as a matrix cell(𝑥) ∈ Σ𝑛𝑐×𝑛𝑐 , such that cell(𝑖, 𝑗) represents the state of the 𝑗-th cell

of the working tape before the 𝑖-th step, and Σ is a constant-size alphabet which

represents all possible states of a cell. From our assumption, for an 𝑥 with |𝑥| = 𝑛,

we know that 𝑓history(𝑥) has an 𝑛𝑘-size circuit.

The Algorithm. Now we are ready to describe a Σ3 algorithm for 𝐿 running in

𝑛𝑂(𝑘) time. At a high level, the algorithm first guesses two circuits 𝐶history and 𝐶sol,

whose truth-tables are supposed to represent 𝑓history(𝑥) and 𝑓sol(𝑥), it tries to verify

that these circuits correspond to a correct accepting computation of 𝑀 on 𝑥. The

whole verification can be done in Π2TIME[𝑛𝑂(𝑘)], utilizing the fact that 𝑀 is making

3SAT queries. The formal description of the algorithm is given below.

101

A Σ3TIME[𝑛𝑂(𝑘)] algorithm for 𝐿

(1) Given an input 𝑥, guess two 𝑛𝑘-size circuits 𝐶history and 𝐶sol where the truth-

table of 𝐶history is intended to be 𝑓history(𝑥)), and the truth-table of 𝐶sol is

intended to be 𝑓sol(𝑥). Let cell ∈ Σ𝑛𝑐×𝑛𝑐 be the matrix (tableau) correspond-

ing to the truth-table of 𝐶history.

(2) We check that 𝐶history is consistent and accepting, assuming its claimed

answers to oracle queries are correct. In particular, we universally check

over all (𝑖, 𝑗) ∈ [𝑛𝑐] × [𝑛𝑐] that cell(𝑖, 𝑗) is consistent with the contents of

cell(𝑖− 1, 𝑗− 1), cell(𝑖− 1, 𝑗), cell(𝑖, 𝑗+1) when 𝑖 > 1, whether it agrees with

the initial configuration when 𝑖 = 1, and whether 𝑀 is in an accept state

when 𝑖 = 𝑛𝑐.

(3) We check that the claimed answers to oracle queries in 𝐶history are correct.

For convenience, we assume the query string always starts at the leftmost

position on the tape. We universally check over all step 𝑖 ∈ [𝑛𝑐]:

If there is no query at the 𝑖-th step, we accept.

(A) Let 𝜓 be the 3SAT query. If the claimed answer in 𝐶history for 𝜓 is

yes, we examine the corresponding sub-string of TruthTable(𝐶sol), and

check universally over all clauses in 𝜓 that it is satisfied by the corre-

sponding assignment in TruthTable(𝐶sol) (accepting if the check passes

and rejecting if it fails).

(B) If the claimed answer in 𝐶history for 𝜓 is no, we universally check over all

𝑛𝑘+1-size circuits 𝐷 that TruthTable(𝐷) is not an assignment to 𝜓, by

existentially checking that there is a clause in 𝜓 which is not satisfied

by TruthTable(𝐷).

102

Running Time. It is straightforward to see that the above is a Σ3TIME[𝑛𝑂(𝑘)]

algorithm.

Correctness. When 𝑥 ∈ 𝐿, there are 𝐶sol and 𝐶history such that TruthTable(𝐶sol)

and TruthTable(𝐶history) correspond to 𝑓sol(𝑥) and 𝑓history(𝑥), so all of the checks pass

and the above algorithm accepts 𝑥.

Let 𝑥 /∈ 𝐿. We want to show that all possible 𝑛𝑘-size circuits for 𝐶history and 𝐶sol

will be rejected. Assume for contradiction that there are circuits 𝐶history and 𝐶sol that

can pass the whole verification. By our checks in step (2) of the algorithm, 𝐶history

is consistent and ends in accept state; therefore, at least one answer to its oracle

queries is not correct. Suppose the first incorrect answer occurs on the 𝑖-th step.

Since 𝐶history is consistent and all queries made before the 𝑖-th are correctly answered,

the 𝑖-th query 𝜓 is actually the correct 𝑖-th query made by machine 𝑀 on the input

𝑥.

Therefore, if the correct answer to 𝜓 is yes but 𝐶history claims it is no, case (B)

will not be passed, as there is always a satisfying assignment that can be represented

by the truth-table of an 𝑛𝑘+1-size circuit. Similarly, if 𝐶history incorrectly claims the

answer is yes, then case (A) cannot be passed, as 𝜓 is unsatisfiable.

We are now ready to prove Theorem 1.0.7.

Proof of Theorem 1.0.7. Suppose (1) PNP does not have SIZE[𝑛𝑘] circuits for any

fixed 𝑘 and (2) NP ⊂ P/𝑝𝑜𝑙𝑦. By assumption (2), we have that for every 𝑐,

Σ3TIME[𝑛𝑐] ⊂ SIZE[𝑛𝑂(𝑐)]. Therefore, applying (1), PNP ̸⊆ Σ3TIME[𝑛𝑐] for every

𝑐. By the contrapositive of Lemma 5.3.1, for every 𝑘 there is a PNP function 𝐵 that

for infinitely many 𝑥 of length 𝑛, the circuit complexity of 𝐵(𝑥) is greater than 𝑛𝑘.

In other words, 𝐵(𝑥) outputs the truth tables of hard functions on infinitely many 𝑥.

Assumption (2) also implies a collapse of the polynomial hierarchy to ZPPNP [64].

By (2), we also have ZPPNP ⊂ P/𝑝𝑜𝑙𝑦, so every ZPPNP algorithm𝐴 has polynomial-

size circuits. Thus, by standard hardness-to-PRG constructions (e.g., Theorem 5.2.1)

there is a fixed 𝑘 such that a string of circuit complexity at least 𝑛𝑘 can be used

to construct a PRG that fools algorithm 𝐴 on inputs of length 𝑛. As shown above,

103

there is a function 𝐵 in PNP that can produce such strings on infinitely many inputs

𝑥. If the inputs 𝑥 that make 𝐵 produce high complexity strings are given as advice,

then the ZPPNP algorithm 𝐴 can be simulated in PNP/𝑛: first, call 𝐵 on the advice

𝑥 to generate a hard function, produce a PRG of seed length 𝑂(log 𝑛) with the

hard function, then simulate 𝐴 on the input and the pseudorandom strings output

by the PRG, using the NP oracle to simulate the NP oracle of 𝐴. Thus we have

ZPPNP ⊂ i.o.-PNP/𝑛.

Finally, we note that the 𝑛 bits of advice can be reduced to 𝑛𝜀 bits for any

desired 𝜀 > 0. For every 𝑘 > 0, we can find an FPNP function that outputs a

string of circuit complexity greater than 𝑛𝑘. Setting 𝑘′ = 𝑘/𝜀, we can use an 𝑛𝜀-

length input as advice, and still get a function that is hard enough to derandomize

((𝑛𝜀)𝑘
′
= (𝑛𝜀)𝑘/𝜀 = 𝑛𝑘).

5.4 An Equivalence Theorem Under NP ⊂ P/𝑝𝑜𝑙𝑦

In this section we prove Theorem 5.1.1 together with several applications.

First, we need a strong size lower bound for a language in (MA ∩ coMA)/1.

The proof is based on a similar lemma in a recent work [35] (which further builds

on [73, 81]). We present a proof in Section 5.7 for completeness.

Lemma 5.4.1 (Implicit in [35]). For all constants 𝑘, there is an integer 𝑐, and a

language 𝐿 ∈ (MA∩coMA)/1, such that for all sufficiently large 𝜏 ∈ N and 𝑛 = 2𝜏 ,

either

∙ SIZE(𝐿𝑛) > 𝑛𝑘, or

∙ SIZE(𝐿𝑚) > 𝑚𝑘, for an 𝑚 ∈ (𝑛𝑐, 2 · 𝑛𝑐) ∩ N.

We also need the following two simple lemmas.

Lemma 5.4.2. NP is not in SIZE[𝑛𝑘] for all 𝑘 iff NP/𝑛 is not in SIZE[𝑛𝑘] for all

𝑘.

104

Proof. The ⇒ direction is trivial. For the ⇐ direction, suppose NP is in SIZE[𝑛𝑘]

for an integer 𝑘. Let 𝐿 ∈ NP/𝑛, and 𝑀 and {𝛼𝑛}𝑛∈N be its corresponding nonde-

terministic Turing machine and advice sequence. Let 𝑝(𝑛) be a polynomial running

time upper bound of 𝑀 on inputs of length 𝑛.

Now, we define a language 𝐿′ such that a pair (𝑥, 𝛼) ∈ 𝐿′ if and only if |𝑥| = |𝛼|

and 𝑀 accepts 𝑥 with advice bits set to 𝛼 in 𝑝(|𝑥|) steps. Clearly, 𝐿′ ∈ NP from the

definition, so it has an 𝑛𝑘-size circuit family. Fixing the advice bits to the actual 𝛼𝑛’s

in the circuit family, we have an 𝑛𝑂(𝑘)-size circuit family for 𝐿 as well. This completes

the proof.

Lemma 5.4.3 (Theorem 14 [46]). Let 𝑘 be an integer. If NP ⊂ P/𝑝𝑜𝑙𝑦 and all NP

verifiers have 𝑛𝑘-size witnesses, then NP ⊆MATIME[𝑛𝑂(𝑘)] ⊂ SIZE[𝑛𝑂(𝑘)].

Proof. Assume all NP verifiers have 𝑛𝑘-size witnesses. By guessing circuits for the

witnesses to PCP verifiers, it follows that NP ⊆MATIME[𝑛𝑂(𝑘)] [46]. Furthermore,

we have MATIME[𝑛𝑂(𝑘)] ⊂ NTIME[𝑛𝑂(𝑘)]/𝑛𝑂(𝑘) ⊂ SIZE[𝑛𝑂(𝑘)]. The last step

follows from the assumption that NP ⊂ P/𝑝𝑜𝑙𝑦 (and therefore SAT ∈ SIZE[𝑛𝑐] for

a constant 𝑐).

Now, we are ready to prove our equivalence theorem (restated below).

Reminder of Theorem 5.1.1. Assuming NP ⊂ P/𝑝𝑜𝑙𝑦, the following are equiva-

lent:

1. NP is not in SIZE[𝑛𝑘] for all 𝑘.

2. AM/1 is in c-r.o.-NP/𝑛𝜀 for all 𝜀 > 0 and integers 𝑐.

3. NP does not have 𝑛𝑘-size witnesses for all 𝑘.8

4. For all 𝑘 and 𝑑, there is a poly-time nondeterministic PRG with 𝑛 bits of advice

against 𝑛𝑘-size circuits 𝑑-robustly often.9

8See the statement of Theorem 5.1.1 in the introduction for the definition of 𝑛𝑘-size witnesses.
9See the preliminaries section of this chapter (Section 5.2) for a full definition of nondeterministic

PRG and 𝑑-robustly often.

105

5. NP is not in AMTIME(𝑛𝑘) for all 𝑘.

6. (NP ∩ coNP)/𝑛𝜀 is not in SIZE[𝑛𝑘] for all 𝑘 and all 𝜀 > 0.

7. (AM∩ coAM)/1 is in c-r.o.-(NP∩ coNP)/𝑛𝜀 for all 𝜀 > 0 and all integers 𝑐.

Proof. We prove the following directions to show equivalence.

(2) ⇒ (1). Suppose (2) holds. For all 𝑘, let 𝐿 be the MA/1 language and let 𝑐 be

the corresponding constant 𝑐 guaranteed by Lemma 5.4.1. By (2) and the fact that

MA/1 ⊆ AM/1, there is an NP/𝑛 language 𝐿′ such that for infinitely many 𝑛’s, 𝐿′

agrees with 𝐿 on inputs with length in [𝑛, 𝑛2𝑐].

Let 𝜏 = ⌈log(𝑛)⌉. By the condition of Lemma 5.4.1, we know that for at least

one ℓ ∈ [𝑛, 𝑛2𝑐], we have SIZE(𝐿′
ℓ) ≥ ℓ𝑘. Since there are infinitely many such 𝑛, we

conclude that 𝐿′ is not in SIZE[𝑛𝑘]. Since 𝑘 can be an arbitrary integer, it further

implies that NP/𝑛 is not in SIZE[𝑛𝑘] for all 𝑘, and hence also NP is not in SIZE[𝑛𝑘]

for all 𝑘 by Lemma 5.4.2.

(1) ⇒ (3). We prove the contrapositive. Suppose NP has 𝑛𝑘-size witnesses for an

integer 𝑘. Then, by Lemma 5.4.3, NP ⊂ SIZE[𝑛𝑂(𝑘)].

(3) ⇒ (4). This follows directly from standard hardness-to-pseudorandomness con-

structions [87], more or less. Specifically, for all integers 𝑘 and 𝑑 and 𝜀 > 0, there is

a language 𝐿 ∈ NP without 𝑛𝑔𝑘𝑑/𝜀-size witnesses. Equivalently, there is a poly-time

verifier 𝑉 for 𝐿, such that there are infinitely many 𝑥 ∈ 𝐿 such that for all 𝑦 with

𝑉 (𝑥, 𝑦) = 1, it follows CircuitComplexity(𝑦) ≥ |𝑥|𝑔𝑘𝑑/𝜀.

For such an 𝑥 ∈ 𝐿 with |𝑥| = 𝑚, we can guess a 𝑦 such that 𝑉 (𝑥, 𝑦) = 1 and

apply Theorem 5.2.1 to construct a poly-time nondeterministic PRG with seed length

𝑂(log𝑚), which works for input length 𝑛 ∈ [𝑚1/𝜀,𝑚𝑑/𝜀] and against 𝑛𝑘-size circuits.

Note that advice length is |𝑥| = 𝑚 ≤ 𝑛𝜀.

106

(4) ⇒ (2). First, under the assumption that NP ⊂ P/𝑝𝑜𝑙𝑦, we have the collapse

AM/1 = MA/1 [14]. So it suffices to show that MA/1 ⊂ c-r.o.-NP/𝑛𝜀 for all 𝜀 > 0

and integers 𝑑.

Let 𝐿 ∈ MA/1. That is, for some constant 𝑘, there is an 𝑛𝑘-time algorithm

𝐴(𝑥, 𝑦, 𝑧, 𝛼) with one bit of advice 𝛼𝑛, such that

∙ 𝑥 ∈ 𝐿⇒ there is a 𝑦 of |𝑥|𝑘 length such that Pr𝑧[𝐴(𝑥, 𝑦, 𝑧, 𝛼𝑛) = 1] ≥ 2/3.

∙ 𝑥 /∈ 𝐿⇒ for all 𝑦 of |𝑥|𝑘 length, Pr𝑧[𝐴(𝑥, 𝑦, 𝑧, 𝛼𝑛) = 1] ≤ 1/3.

Fixing the 𝑥, 𝑦, 𝛼𝑛, we can construct a circuit 𝐶𝑥,𝑦,𝛼𝑛(𝑧) := 𝐴(𝑥, 𝑦, 𝑧, 𝛼𝑛) of size

𝑛2𝑘 in 𝑛2𝑘 time.

Now, by (4), for all 𝑑, there is a poly-time NPRG 𝐺 with seed length 𝑂(log 𝑛) and

advice length 𝑛𝜀 such that there are infinitely many 𝑚’s such that for all 𝑛 ∈ [𝑚,𝑚𝑑],

𝐺𝑛 fools 𝑛2𝑘-size circuits.

Applying 𝐺𝑛 to fool 𝐶𝑥,𝑦,𝛼𝑛 directly, we obtain a language 𝐿′ ∈ NP/𝑛𝜀 such that

there are infinitely many 𝑚 such that 𝐿′ agrees with 𝐿 on all input lengths in [𝑚,𝑚𝑑].

This completes the proof since 𝑑 can be made arbitrarily large.

(5) ⇒ (3). We prove the contrapositive. Suppose NP has 𝑛𝑘-size witnesses for an

integer 𝑘. By Lemma 5.4.3, it follows that

NP ⊆MATIME[𝑛𝑂(𝑘)] ⊆ AMTIME[𝑛𝑂(𝑘)].

(1) ⇒ (5). Again, we prove the contrapositive. We have

NP ⊆ AMTIME[𝑛𝑂(𝑘)] ⊂ NTIME[𝑛𝑂(𝑘)]/𝑛𝑂(𝑘) ⊂ SIZE[𝑛𝑂(𝑘)].

The last step follows from the assumption that NP ⊆ P/𝑝𝑜𝑙𝑦 (and therefore SAT ∈

SIZE[𝑛𝑐] for a constant 𝑐).

(6) ⇒ (1). (NP∩ coNP)/𝑛𝜀 is not in SIZE[𝑛𝑘] for all 𝑘 and 𝜀 > 0 implies NP/𝑛

is not in SIZE[𝑛𝑘] for all 𝑘, which in turn implies NP is not in SIZE[𝑛𝑘] for all 𝑘 by

Lemma 5.4.2.

107

(4) ⇒ (7). This follows similarly as the direction from (4) to (2).

(7) ⇒ (6). This follows similarly as the direction from (2) to (1). Note that [14]

also implies (MA ∩ coMA)/1 = (AM ∩ coAM)/1 under the assumption NP ⊂

P/𝑝𝑜𝑙𝑦.

5.5 NP Circuit Lower Bounds Imply Better Karp-

Lipton Collapses

Now we show a corollary of Theorem 5.1.1 that NP circuit lower bounds imply better

Karp-Lipton collapses.

Reminder of Theorem 5.1.2. Let 𝒞 ∈ {⊕P,PSPACE,PP,EXP}. Suppose

NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘. Then for all 𝜀 > 0, (𝒞 ⊂ P/𝑝𝑜𝑙𝑦 =⇒ 𝒞 ⊂ i.o.-NP/𝑛𝜀).

In particular, polynomial-size circuits for any 𝒞-complete language can be constructed

in NP on infinitely many input lengths with 𝑛𝜀 advice.

Proof of Theorem 5.1.2. We first prove it for ⊕P. Suppose for all 𝑘, NP ̸⊂ SIZE[𝑛𝑘]

and ⊕P ⊂ P/𝑝𝑜𝑙𝑦.

First, note that BPP⊕P ⊂ P/𝑝𝑜𝑙𝑦, implying PH ⊂ P/𝑝𝑜𝑙𝑦 by Toda’s the-

orem [84]. Therefore, by Theorem 5.1.1 together with our assumption, we have

MA ⊂ c-r.o.-NP/𝑛𝜀 for all 𝜀 > 0 and integers 𝑐. In particular, MA ⊂ i.o.-NP/𝑛𝜀

for all 𝜀 > 0. Now it suffices to show that ⊕P ⊂ P/𝑝𝑜𝑙𝑦 =⇒ ⊕P ⊆MA.

Let Π be the random self-reducible and downward self-reducible ⊕P-complete

language in [59]. By our assumption that ⊕P ⊂ P/𝑝𝑜𝑙𝑦, Π has a poly-size circuit

family.

Then we can guess-and-verify these circuits in MA. We first existentially guess a

circuit 𝐶𝑘 for Π on every input length 𝑘 = 1, . . . , 𝑛. 𝐶1 can be verified in constant time,

and each successive circuit can be verified via random downward self-reducibility:

given a circuit of length 𝑚 that computes Π𝑚 exactly, a circuit of length 𝑚 + 1 can

be checked on random inputs to verify (with high probability) its consistency with

108

Π𝑚+1 (which is computable using the downward self-reducibility and the circuit for

Π𝑚). Then we can apply the random self-reducibility to construct an exact circuit

for Π𝑚+1 from 𝐶𝑚+1 with high probability, as we already know 𝐶𝑚+1 approximates

Π𝑚+1 very well. Therefore, with high probability, we can guess-and-verify a circuit

for Π𝑛 via a poly-time MA computation. This puts ⊕P ⊆ MA. Combining that

with MA ⊂ i.o.-NP/𝑛𝜀 for all 𝜀 > 0, we can conclude that ⊕P ⊂ i.o.-NP/𝑛𝜀 for all

𝜀 > 0.

To construct a circuit for Π𝑛 in i.o.-NP/𝑛𝜀, note that by Theorem 5.1.4, for all

𝑘, we have an i.o.-NPRG fooling 𝑛𝑘-size circuits. We can pick 𝑘 to be a sufficiently

large integer, and use the i.o.-NPRG to derandomize the above process. This turns

out to be more subtle than one might expect.

Construction of poly-size circuits of Π𝑛 in i.o.-NP/𝑛𝜀. Let 𝑑 be a sufficiently

large constant. Since we only aim for an i.o.-construction, we can assume that our

i.o.-NPRG works for the parameter 𝑛, and fools all 𝑛𝑑-size circuits. Also, suppose we

have SIZE(Π𝑛) ≤ 𝑛𝑐 for all 𝑛 and a constant 𝑐.

We say a circuit 𝐶 𝛾-approximates a function 𝑓 , if 𝐶(𝑥) = 𝑓(𝑥) for at least a 𝛾

fraction of the inputs.

Again, suppose we already constructed the circuits 𝐶1, . . . , 𝐶𝑘 for Π1, . . . ,Π𝑘. This

time we cannot guarantee 𝐶𝑖 exactly computes Π𝑖. Instead, we relax the condition

a bit and ensure that 𝐶𝑖 (1 − 4/𝑛)-approximates Π𝑖 for all 𝑖 ∈ [𝑘]. Clearly, we can

check 𝐶1 ≡ Π1 directly so this can be satisfied when 𝑘 = 1.

We now show how to construct an approximate circuit for Π𝑘+1. First, using

the random self-reducibility of Π and the circuit 𝐶𝑘 approximating Π𝑘, there is an

oracle circuit 𝐸 of size poly(𝑛), which takes two inputs 𝑥 with |𝑥| = 𝑘 and 𝑟 with

|𝑟| = poly(𝑛), such that for all 𝑥,

Pr
𝑟

[︀
𝐸𝐶𝑘(𝑥, 𝑟) = Π𝑘(𝑥)

]︀
≥ 1− 1/2𝑛.

Also, by the downward self-reducibility of Π, there is an oracle machine 𝐷 of

poly(𝑘) size, such that 𝐷Π𝑘(𝑧) = Π𝑘+1(𝑧) for all 𝑧.

109

Now, consider the following circuit 𝐺(𝑥, 𝑟) for computing Π𝑘+1: the circuit sim-

ulates 𝐷Π𝑘 , while answering all queries 𝑤 to Π𝑘 using 𝐸𝐶𝑘(𝑤, 𝑟). For each input

𝑥 ∈ {0, 1}𝑘+1, let 𝑤1, 𝑤2, . . . , 𝑤poly(𝑛) be all queries to Π𝑘 made by running 𝐷 on the

input 𝑥 assuming all answers are correct, we can see that if 𝐸𝐶𝑘(𝑤𝑗, 𝑟) = Π𝑘(𝑤𝑗) for

all these 𝑤𝑗’s, then 𝐺(𝑥, 𝑟) = Π𝑘+1(𝑥). Therefore, we have

Pr
𝑟
[𝐺(𝑥, 𝑟) = Π𝑘+1(𝑥)] ≥ 1− poly(𝑛)/2𝑛,

for all 𝑥 ∈ {0, 1}𝑘+1.

Now, we guess a circuit 𝐶𝑘+1 of size (𝑘 + 1)𝑐 which is supposed to compute Π𝑘+1.

By an enumeration of all possible seeds to our NPRG, we can estimate the probability

𝑝good := Pr
𝑥∈{0,1}𝑘+1

Pr
𝑟
[𝐺(𝑥, 𝑟) = 𝐶𝑘+1(𝑥)].

within 1/𝑛 in poly(𝑛) time, as the expression [𝐺(𝑥, 𝑟) = 𝐶𝑘+1(𝑥)] has a poly(𝑛) size

circuit with inputs being 𝑥 and 𝑟. Let our estimation be 𝑝est. We have |𝑝good− 𝑝est| ≤

1/𝑛.

Putting the above together, we have⃒⃒⃒⃒
Pr

𝑥∈{0,1}𝑘+1
[Π𝑘+1(𝑥) = 𝐶𝑘+1(𝑥)]− 𝑝good

⃒⃒⃒⃒
≤ poly(𝑛)/2𝑛.

We reject immediately if our estimation 𝑝est < 1 − 2/𝑛 (note that if 𝐶𝑘+1 is the

correct circuit, 𝑝good would be larger than 1 − poly(𝑛)/2𝑛 > 1 − 1/𝑛, and therefore

𝑝est > 1−2/𝑛). So after that, we can safely assume that 𝐶𝑘+1 (1−4/𝑛)-approximates

Π𝑘+1.

Therefore, at the end we have an 𝑛𝑐-size circuit 𝐶𝑛 which (1− 4/𝑛)-approximates

Π𝑛, and we try to recover an exact circuit for Π𝑛 from 𝐶𝑛 by exploiting the random

self-reducibility of Π𝑛 again. Note that there is an oracle circuit 𝐸(𝑥, 𝑟), which takes

two inputs 𝑥 with |𝑥| = 𝑛 and 𝑟 with |𝑟| = poly(𝑛) such that for all 𝑥,

Pr
𝑟
[𝐸𝐶𝑛(𝑥, 𝑟) = Π𝑛(𝑥)] ≥ 2/3.

110

Now, we generate ℓ = 𝑛𝑂(1) strings 𝑟1, 𝑟2, . . . , 𝑟ℓ by enumerating all seeds to the

NPRG. We construct our final circuit 𝐶 to be the majority of 𝐸𝐶𝑛(𝑥, 𝑟𝑗) for all

𝑗 ∈ [ℓ]. It is not hard to see that 𝐶 computes Π𝑛 exactly, as our inputs {𝑟𝑗}𝑗∈[ℓ] fool

the expression
[︀
𝐸𝐶𝑛(𝑥, 𝑟) = Π𝑛(𝑥)

]︀
for all 𝑥 ∈ {0, 1}𝑛.

For the case of PP and PSPACE, one can implement the above procedure in the

same way, using the corresponding random self-reducible and downward self-reducible

#P-complete and PSPACE-complete problems (Permanent and the PSPACE-

complete language in [86]).

For the case of EXP, note that EXP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ EXP = PSPACE, so we

can proceed the same way as for PSPACE (since EXP = PSPACE, PSPACE-

complete languages are also EXP-complete).

5.6 Consequence of Weak Circuit Lower Bounds for

Sparse Languages in NP

Now, we are ready to prove the consequences of weak circuit lower bounds for sparse

NP languages. We first need the following lemma.

Lemma 5.6.1 (Hardness Verification from Circuit Lower Bounds for Sparse Lan-

guages in NTIME[𝑇 (𝑛)]). Let 𝑆ckt(𝑛), 𝑆sparse(𝑛), 𝑇 (𝑛) : N→ N be time constructible

functions. Suppose there is an 𝑆sparse(𝑛)-sparse language 𝐿 ∈ NTIME[𝑇 (𝑛)] without

(𝑛 · 𝑆ckt(𝑛))-size circuits. Then there is a procedure 𝑉 such that:

∙ 𝑉 takes a string 𝑧 of length 𝑛 · 𝑆sparse(𝑛) as input and an integer ℓ ≤ 𝑆sparse(𝑛)

as advice.

∙ 𝑉 runs in 𝑂(𝑆sparse(𝑛) · 𝑇 (𝑛)) nondeterministic time.

∙ For infinitely many 𝑛, there is an integer ℓ𝑛 ≤ 𝑆sparse(𝑛) such that 𝑉 (𝑧, ℓ𝑛) ac-

cepts exactly one string 𝑧, and 𝑧 has circuit complexity Ω(𝑆ckt(𝑛)/ log𝑆sparse(𝑛)).

Proof. Let 𝐿 be the NTIME[𝑇 (𝑛)] language in the assumption. Let𝑁 = 𝑛·𝑆sparse(𝑛).

We define a string List𝐿𝑛 ∈ {0, 1}𝑁 as the concatenation of all 𝑥 ∈ 𝐿𝑛 in lexicograph-

111

ical order, together with additional zeros at the end to make the string have length

exactly 𝑁 .

Now define a function 𝑓𝑛 on 𝑚 = log⌈𝑁 + 1⌉ bits, with truth-table List𝐿𝑛10
2𝑚−𝑁 .

We claim that SIZE(𝐿𝑛) ≤ 𝑂(SIZE(𝑓𝑛) · 𝑛 · log(𝑆sparse(𝑛))). To determine whether

𝑥 ∈ 𝐿𝑛, it would suffice to perform a binary search on the list List𝐿𝑛 . We construct a

circuit for 𝐿𝑛 which performs binary search using 𝑓𝑛. First, we hard-wire the length of

the list ℓ := |𝐿𝑛| ≤ 𝑆sparse(𝑛) into our circuit for 𝐿𝑛 so that the binary search can begin

with the correct range. A binary search on List𝐿𝑛 takes 𝑂(log𝑆sparse(𝑛)) comparisons,

and each comparison requires 𝑂(𝑛) calls to 𝑓𝑛 (to print the appropriate string). It

is easy to see that the circuit size required for the binary search is dominated by the

total cost of the comparisons; this proves the claim.

From the assumption, we know that for infinitely many 𝑛, 𝐿𝑛 has no circuit of size

𝑛 · 𝑆ckt(𝑛). By our upper bound on the circuit size of 𝐿𝑛, it follows that on the same

set of 𝑛, the function 𝑓𝑛 has circuit complexity at least Ω(𝑆ckt(𝑛)/ log𝑆sparse(𝑛)).

Now, we construct an algorithm 𝑉 that only accepts the string 𝑓𝑛 = List𝐿𝑛10
2𝑚−𝑁 .

We first need the integer ℓ = |𝐿𝑛| as the advice. Given a string 𝑌 of length 𝑁 , we

check that 𝑌 contains exactly ℓ distinct inputs in {0, 1}𝑛 in lexicographical order

with the correct format, and we guess an 𝑂(𝑇 (𝑛))-length witness for each input to

verify they are indeed all in 𝐿. It is easy to see that 𝑉 runs in 𝑂(𝑆sparse(𝑛) · 𝑇 (𝑛))

nondeterministic time, which completes the proof.

Remark 5.6.2. Note that the advice integer ℓ can be calculated directly with an

NP oracle by doing a binary search for ℓ, which takes 𝑂(log𝑆sparse(𝑛)) NP-oracle

calls. That is, one can also use a PNP[𝑂(log𝑆sparse(𝑛))] verifier without advice bits in the

statement of Lemma 5.6.1.

Remark 5.6.3. As mentioned in the introduction, the above proof can be seen as a

type of hardness condensation for all sparse NTIME[𝑇 (𝑛)] languages. The goal of

hardness condensation [28, 58] is that, given a hard function 𝑓 on 𝑛 input bits with

complexity 𝑆, we want to construct a function ̃︀𝑓 on ℓ≪ 𝑛 input bits that still has com-

plexity roughly 𝑆. The above proof shows any hard sparse language in NTIME[𝑇 (𝑛)]

112

can be “condensed” into a function representing its sorted yes-instances.

Combining Lemma 5.6.1 with Theorem 5.2.1, we obtain a construction of an

i.o.-NPRG.

Corollary 5.6.4 (NPRG from lower bounds against sparse NTIME[𝑇 (𝑛)] lan-

guages). Under the circuit lower bound assumption of Lemma 5.6.1, there is an

i.o.-NPRG 𝐺 with the properties:

∙ 𝐺 has 𝑂(log𝑆sparse(𝑛) + log 𝑛) seed length.

∙ 𝐺 takes 𝑂(log𝑆sparse(𝑛)) bits of advice.

∙ 𝐺 runs in 𝑆sparse(𝑛) · 𝑇 (𝑛) + poly(𝑛 · 𝑆sparse(𝑛)) time.

∙ 𝐺 fools circuits of size at most (𝑆ckt(𝑛)/ log𝑆sparse(𝑛))
Ω(1).

Now we are ready to prove Theorem 5.1.4.

Reminder of Theorem 5.1.4. Suppose there is an 𝜀 > 0, a 𝑐 ≥ 1, and an 𝑛𝑐-

sparse 𝐿 ∈ NP without 𝑛1+𝜀-size circuits. Then MA ⊂ i.o.-NP/𝑂(log 𝑛), MA ⊆

i.o.-PNP[𝑂(log𝑛)], and NE ̸⊂ SIZE[2𝛿·𝑛] for some 𝛿 > 0 (which implies NP ̸⊂

SIZE[𝑛𝑘] for all 𝑘).

Proof. First, by Corollary 5.6.4 and setting 𝑆ckt(𝑛) = 𝑛𝜀, 𝑆sparse(𝑛) = 𝑛𝑐 and 𝑇 (𝑛) =

poly(𝑛), there is an i.o.-NPRG with seed length 𝑂(log 𝑛) which takes 𝑂(log 𝑛) bits

of advice, runs in poly(𝑛) time, and fools circuits of size 𝑛Ω(𝜀) = 𝑛Ω(1). Note that

we can simply scale it up to make it fool circuits of size 𝑛𝑘 for any 𝑘, with only a

constant factor blowup on seed length and advice bits and a polynomial blowup on

the running time.

Applying the i.o.-NPRG to arbitrary Merlin-Arthur computations, we conclude

MA ⊂ i.o.-NP/𝑂(log 𝑛). Similarly, we conclude MA ⊆ i.o.-PNP[𝑂(log𝑛)] from Re-

mark 5.6.2.

Now we show NE ̸⊂ SIZE[2𝛿·𝑛] for some 𝛿 > 0. By Lemma 5.6.1, there is a

nondeterministic algorithm running in poly(𝑛) time, given 𝛼𝑛 = 𝑐 log 𝑛 bits of advice,

113

guess and verify a string of length 𝑛𝑐+1 which has circuit complexity at least 𝑛𝜀/2, for

infinitely many 𝑛. We say these infinitely many 𝑛 are good 𝑛.

Next, we define the following language 𝐿 ∈ NE: Given an input of length 𝑚, our

nondeterministic algorithm treats the first ℓ = 𝑚/4𝑐 bits a binary encoded integer

𝑛 ≤ 2ℓ. Then it treats the next 𝑐 log 𝑛 input bits 𝑎 as the advice, and tries to guess-

and-verify a string 𝑧 which passes the verification procedure in Lemma 5.6.1 with

advice 𝑎 and parameter 𝑛. Finally, it treats the next (𝑐 + 1) · log 𝑛 input bits as an

integer 𝑖 ∈ [𝑛𝑐+1], and accepts if and only 𝑧𝑖 = 1.

First, it is easy to verify 𝐿 ∈ NE, as the algorithm runs in poly(𝑛) ≤ 2𝑂(ℓ) ≤ 2𝑂(𝑚)

nondeterministic time. For the circuit complexity of 𝐿, we know that for the “good”

values on 𝑛, on inputs of length of 𝑚 = 4 · 𝑐 · ⌈log 𝑛⌉, if we fix the first 𝑚/4𝑐 bits

to represent the integer 𝑛, and the next 𝑐 log 𝑛 bits to the actual advice 𝛼𝑛, 𝐿 would

compute the hard string of length 𝑛𝑐+1 on the next (𝑐 + 1) · log 𝑛 bits. Therefore,

SIZE(𝐿𝑚) ≥ 𝑛𝜀 ≥ 2Ω(𝑚) for infinitely many 𝑚, which completes the proof.

Finally, we prove Theorem 1.0.11.

Reminder of Theorem 1.0.11. NEXP ̸⊂ P/𝑝𝑜𝑙𝑦 if and only if there is an

𝜀 > 0 such that for all sufficiently small 𝛽 > 0, there is a 2𝑛
𝛽 -sparse language 𝐿 ∈

NTIME[2𝑛
𝛽
] without 𝑛1+𝜀-size circuits.

Proof. (⇒) This direction is easy to prove using standard methods. Suppose that

NEXP ̸⊂ P/𝑝𝑜𝑙𝑦; this implies NE ̸⊂ P/𝑝𝑜𝑙𝑦. Therefore, there is a language 𝐿 ∈

NTIME[2𝑛] that does not have 𝑛2/𝛽-size circuits. Define a padded language 𝐿′ =

{𝑥10|𝑥|1/𝛽−1|𝑥 ∈ 𝐿}. It is easy to see that 𝐿′ ∈ NTIME[2𝑚
𝛽
], by running the NE

algorithm for 𝐿 on its first 𝑛 = 𝑂(𝑚𝛽) input bits. From the circuit lower bound on

𝐿, it follows that 𝐿′ does not have 𝑛2/𝛽 = 𝑚2-size circuits.

(⇐) First, it follows from Impagliazzo-Kabanets-Wigderson [60] that, if for every

𝜀 and integer 𝑘, there is an i.o.-NPRG with seed length 𝑛𝜀, 𝑛𝜀 advice bits, and 2𝑛
𝜀

running time that fools 𝑛𝑘-size circuits, then NEXP ̸⊂ P/𝑝𝑜𝑙𝑦.

Setting 𝑆ckt(𝑛) = 𝑛𝜀, 𝑆sparse(𝑛) = 2𝑛
𝛽 and 𝑇 (𝑛) = 2𝑛

𝛽 in Corollary 5.6.4, there is

an i.o.-NPRG with seed length 𝑂(𝑛𝛽), takes 𝑂(𝑛𝛽) bits of advice, and runs in 2𝑂(𝑛𝛽)

114

time that fools circuits of size 𝑛Ω(𝜀/𝛽) = 𝑛𝜀′ for 𝜀′ > 0. By setting 𝑚 = 𝑛𝜀′/𝑘, we

obtain an i.o.-NPRG with seed/advice length 𝑂(𝑚𝛽·𝑘/𝜀′) and running time 2𝑂(𝑚𝛽·𝑘/𝜀′),

which fools circuits of size 𝑚𝑘. Therefore, by [60], it follows that NEXP ̸⊂ P/𝑝𝑜𝑙𝑦.

5.7 Almost Almost-everywhere (MA∩coMA)/1 Cir-

cuit Lower Bounds

Here we provide a proof for Lemma 5.4.1 for completeness. The proof is based on a

similar lemma from [35].

Preliminaries

A crucial ingredient of the proof is a PSPACE-complete language [86] satisfying

strong reducibility properties, which is also used in the fixed-polynomial lower bounds

for MA/1 and promiseMA [81], and the recent new witness lemmas for NQP and

NP [73].

We first define these reducibility properties.

Definition 5.7.1. Let 𝐿 : {0, 1}* → {0, 1} be a language, we define the following

properties:

∙ 𝐿 is downward self-reducible if there is a constant 𝑐 such that for all sufficiently

large 𝑛, there is an 𝑛𝑐 size uniform oracle circuit 𝐴 such that for all 𝑥 ∈ {0, 1}𝑛,

𝐴𝐿𝑛−1(𝑥) = 𝐿𝑛(𝑥).

∙ 𝐿 is paddable, if there is a polynomial time computable projection Pad (that

is, each output bit is either a constant or only depends on 1 input bit), such

that for all integers 1 ≤ 𝑛 < 𝑚 and 𝑥 ∈ {0, 1}𝑛, we have 𝑥 ∈ 𝐿 if and only if

Pad(𝑥, 1𝑚) ∈ 𝐿, where Pad(𝑥, 1𝑚) always has length 𝑚.

∙ 𝐿 is same-length checkable if there is a probabilistic polynomial-time oracle

Turing machine 𝑀 with output in {0, 1, ?}, such that, for any input 𝑥,

115

– 𝑀 asks its oracle queries only of length |𝑥|.

– If 𝑀 is given 𝐿 as an oracle, then 𝑀 outputs 𝐿(𝑥) with probability 1.

– 𝑀 outputs 1−𝐿(𝑥) with probability at most 1/3 no matter which oracle is

given to it.

We call 𝑀 an instance checker for 𝐿.

Remark 5.7.2. Note that the paddable property implies SIZE(𝐿𝑛) is non-decreasing.

The following PSPACE-complete language is given by [81] (modifying a con-

struction of Trevisan and Vadhan [86]).

Theorem 5.7.3 ([81, 86]). There is a PSPACE-complete language 𝐿PSPACE which

is paddable, downward self-reducible, and same-length checkable.

We also need the following folklore theorem which is proved by a direct diagonal-

ization against all small circuits.

Theorem 5.7.4. Let 𝑛 ≤ 𝑠(𝑛) ≤ 2𝑜(𝑛) be space-constructible. There is a universal

constant 𝑐 and a language 𝐿 ∈ SPACE[𝑠(𝑛)𝑐] that SIZE(𝐿𝑛) > 𝑠(𝑛) for all sufficiently

large 𝑛.

Definitions

We need the following convenient definition of an MA ∩ coMA algorithm, which

simplifies the presentation.

Definition 5.7.5. A language 𝐿 is in MA ∩ coMA, if there is a deterministic

algorithm 𝐴(𝑥, 𝑦, 𝑧) (which is called the predicate) such that:

∙ 𝐴 takes three inputs 𝑥, 𝑦, 𝑧 such that |𝑥| = 𝑛, |𝑦| = |𝑧| = poly(𝑛) (𝑦 is the

witness while 𝑧 is the collection of random bits), runs in 𝑂(𝑇 (𝑛)) time, and

outputs an element from {0, 1, ?}.

∙ (Completeness) There exists a 𝑦 such that

Pr
𝑧
[𝐴(𝑥, 𝑦, 𝑧) = 𝐿(𝑥)] ≥ 2/3.

116

∙ (Soundness) For all 𝑦,

Pr
𝑧
[𝐴(𝑥, 𝑦, 𝑧) = 1− 𝐿(𝑥)] ≤ 1/3.

Remark 5.7.6. (MA ∩ coMA) languages with advice are defined similarly, with 𝐴

being an algorithm with the corresponding advice.

Note that by above definition, the semantic of (MA∩ coMA)/1 is different from

MA/1 ∩ coMA/1. A language in (MA ∩ coMA)/1 has both an MA/1 algorithm

and a coMA/1 algorithm, and their advice bits are the same. While a language in

MA/1 ∩ coMA/1 can have an MA/1 algorithm and a coMA/1 algorithm with

different advice sequences.

Proof for Lemma 5.4.1

Now we are ready to prove Lemma 5.4.1 (restated below).

Reminder of Lemma 5.4.1. For all constants 𝑘, there is an integer 𝑐, and a

language 𝐿 ∈ (MA∩coMA)/1, such that for all sufficiently large 𝜏 ∈ N and 𝑛 = 2𝜏 ,

either

∙ SIZE(𝐿𝑛) > 𝑛𝑘, or

∙ SIZE(𝐿𝑚) > 𝑚𝑘, for an 𝑚 ∈ (𝑛𝑐, 2 · 𝑛𝑐) ∩ N.

Proof. Let 𝐿PSPACE be the language specified by Theorem 5.7.3. By Theorem 5.7.4,

there is an integer 𝑐1 and a language 𝐿diag in SPACE(𝑛𝑐1), such that SIZE(𝐿diag
𝑛) ≥ 𝑛𝑘

for all sufficiently large 𝑛. By the fact that 𝐿PSPACE is PSPACE-complete, there is

a constant 𝑐2 such that 𝐿diag
𝑛 can be reduced to 𝐿PSPACE on input length 𝑛𝑐2 in 𝑛𝑐2

time. We set 𝑐 = 𝑐2.

The Algorithm. Let 𝜏 ∈ N be sufficiently large. We also let 𝑏 to be a constant

to be specified later. Given an input 𝑥 of length 𝑛 = 2𝜏 and let 𝑚 = 𝑛𝑐, we first

provide an informal description of the (MA ∩ coMA)/1 algorithm which computes

the language 𝐿. There are two cases:

117

1. When SIZE(𝐿PSPACE
𝑚) ≤ 𝑛𝑏. That is, when 𝐿PSPACE

𝑚 is easy. In this case, on

inputs of length 𝑛, we guess-and-verify a circuit for 𝐿PSPACE
𝑚 of size 𝑛𝑏 and use

that to compute 𝐿diag
𝑛 .

2. Otherwise, we know 𝐿PSPACE
𝑚 is hard. Let ℓ be the largest integer such that

SIZE(𝐿PSPACE
ℓ) ≤ 𝑛𝑏. On inputs of length 𝑚1 = 𝑚 + ℓ, we guess-and-verify a

circuit for 𝐿PSPACE
ℓ and compute it (that is, compute 𝐿PSPACE

ℓ on the first ℓ

input bits while ignoring the rest).

Intuitively, the above algorithm computes a hard function because either it com-

putes the hard language 𝐿diag
𝑛 on inputs of length 𝑛, or it computes the hard language

𝐿PSPACE
ℓ on inputs of length 𝑚1. A formal description of the algorithm is given in Al-

gorithm 2, while an algorithm for setting the advice sequence is given in Algorithm 3.

It is not hard to see that a 𝑦𝑛 can only be set once in Algorithm 3.

The Algorithm Satisfies the MA∩coMA Promise. We first show the algorithm

satisfies the MA ∩ coMA promise (Definition 5.7.5). The intuition is that it only

tries to guess-and-verify a circuit for 𝐿PSPACE when it exists, and the properties of

the instance checker (Definition 5.7.1) ensure that in this case the algorithm satisfies

the MA ∩ coMA promise. Let 𝑦 = 𝑦𝑛, there are three cases:

1. 𝑦 = 0. In this case, the algorithm computes the all zero function, and clearly

satisfies the MA ∩ coMA promise.

2. 𝑦 = 1 and 𝑛 is a power of 2. In this case, from Algorithm 3, we know that

SIZE(𝐿PSPACE
𝑚) ≤ 𝑛𝑏 for 𝑚 = 𝑛𝑐. Therefore, at least one guess of the circuit

is the correct circuit for 𝐿PSPACE
𝑚 , and on that guess, the algorithm outputs

𝐿diag
𝑛 (𝑥) = 𝐿PSPACE

𝑚 (𝑧) with probability at least 2/3, by the property of the

instance checker (Definition 5.7.1).

Again by the property of the instance checker, on all possible guesses, the al-

gorithm outputs 1 − 𝐿diag
𝑛 (𝑥) = 1 − 𝐿PSPACE

𝑚 (𝑧) with probability at most 1/3.

Hence, the algorithm correctly computes 𝐿diag
𝑛 on inputs of length 𝑛, with re-

spect to Definition 5.7.5.

118

Algorithm 2: The MA ∩ coMA algorithm
1 Given an input 𝑥 with input length 𝑛 = |𝑥|;
2 Given an advice bit 𝑦 = 𝑦𝑛 ∈ {0, 1};
3 Let 𝑚 = 𝑛𝑐;
4 Let 𝑛0 = 𝑛0(𝑛) be the largest integer such that 𝑛𝑐

0 ≤ 𝑛;
5 Let 𝑚0 = 𝑛𝑐

0;
6 Let ℓ = 𝑛−𝑚0;
7 if 𝑦 = 0 then
8 Output 0 and terminate

9 if 𝑛 is a power of 2 then
10 (We are in the case that SIZE(𝐿PSPACE

𝑚) ≤ 𝑛𝑏.);
11 Compute 𝑧 in 𝑛𝑐 time such that 𝐿diag

𝑛 (𝑥) = 𝐿PSPACE
𝑚 (𝑧);

12 Guess a circuit 𝐶 of size at most 𝑛𝑏;
13 Let 𝑀 be the instance checker for 𝐿PSPACE

𝑚 ;
14 Flip an appropriate number of random coins, let them be 𝑟;
15 Output 𝑀𝐶(𝑧, 𝑟);
16 else
17 (We are in the case that SIZE(𝐿PSPACE

𝑚0
) > 𝑛𝑏

0 and ℓ is the largest integer
such that SIZE(𝐿PSPACE

ℓ) ≤ 𝑛𝑏
0.);

18 Let 𝑧 be the first ℓ bits of 𝑥;
19 Guess a circuit 𝐶 of size at most 𝑛𝑏

0;
20 Let 𝑀 be the instance checker for 𝐿PSPACE

ℓ ;
21 Flip an appropriate number of random coins, let them be 𝑟;
22 Output 𝑀𝐶(𝑧, 𝑟);

Algorithm 3: The algorithm for setting advice bits
1 All 𝑦𝑛’s are set to 0 by default;
2 for 𝜏 = 1→∞ do
3 Let 𝑛 = 2𝜏 ;
4 Let 𝑚 = 𝑛𝑐;
5 if SIZE(𝐿PSPACE

𝑚) ≤ 𝑛𝑏 then
6 Set 𝑦𝑛 = 1;
7 else
8 Let ℓ = max{ℓ : SIZE(𝐿PSPACE

ℓ) ≤ 𝑛𝑏};
9 Set 𝑦𝑚+ℓ = 1;

119

3. 𝑦 = 1 and 𝑛 is not a power of 2. In this case, from Algorithm 3, we know that

SIZE(𝐿PSPACE
ℓ) ≤ 𝑛𝑏

0. Therefore, at least one guess of the circuit is the correct

circuit for 𝐿PSPACE
ℓ , and on that guess, the algorithm outputs 𝐿PSPACE

ℓ (𝑧)

(𝑧 = 𝑧(𝑥) is the first ℓ bits of 𝑥) with probability at least 2/3, by the property

of the instance checker (Definition 5.7.1).

Again by the property of the instance checker, on all possible guesses, the al-

gorithm outputs 1 − 𝐿PSPACE
ℓ (𝑧) with probability at most 1/3. Hence, the

algorithm correctly computes 𝐿PSPACE
ℓ (𝑧(𝑥)) on inputs of length 𝑛, with re-

spect to Definition 5.7.5.

The Algorithm Computes a Hard Language. Next we show that the algorithm

indeed computes a hard language as stated. Let 𝜏 be a sufficiently large integer,

𝑛 = 2𝜏 , and 𝑚 = 𝑛𝑐. According to Algorithm 3, there are two cases:

∙ SIZE(𝐿PSPACE
𝑚) ≤ 𝑛𝑏. In this case, Algorithm 3 sets 𝑦𝑛 = 1. And by previous

analyses, we know that 𝐿𝑛 computes the hard language 𝐿diag
𝑛 , and therefore

SIZE(𝐿𝑛) > 𝑛𝑘.

∙ SIZE(𝐿PSPACE
𝑚) > 𝑛𝑏. Let ℓ be the largest integer such that SIZE(𝐿PSPACE

ℓ) ≤

𝑛𝑏. By Remark 5.7.2, we have 0 < ℓ < 𝑚.

Note that SIZE(𝐿PSPACE
ℓ+1) ≤ (ℓ + 1)𝑑 · SIZE(𝐿PSPACE

ℓ) for a universal constant

𝑑, because 𝐿PSPACE is downward self-reducible. Therefore,

SIZE(𝐿PSPACE
ℓ) ≥ SIZE(𝐿PSPACE

ℓ+1)/(ℓ+ 1)𝑑 ≥ 𝑛𝑏/𝑚𝑑 ≥ 𝑛𝑏−𝑐·𝑑.

Now, on inputs of length 𝑚1 = 𝑚 + ℓ, we have 𝑦𝑚1 = 1 by Algorithm 3 (note

that 𝑚1 ∈ (𝑚, 2𝑚) as ℓ ∈ (0,𝑚)). Therefore, 𝐿𝑚1 computes 𝐿PSPACE
ℓ , and

SIZE(𝐿𝑚1) = SIZE(𝐿PSPACE
ℓ) ≥ 𝑛𝑏−𝑐·𝑑.

We set 𝑏 such that 𝑛𝑏−𝑐𝑑 ≥ (2𝑚)𝑘 ≥ 𝑚𝑘
1 (we can set 𝑏 = 𝑐𝑑 + 3 · 𝑐𝑘), which

completes the proof.

120

5.8 Open Problems

We conclude this chapter with three interesting open questions stemming from this

work.

1. Are fixed-polynomial circuit lower bounds for NP equivalent to a Karp-Lipton

collapse of PH to NP?

Formally, is NP ̸⊂ SIZE[𝑛𝑘] for all 𝑘 equivalent to (NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒

PH ⊂ i.o.-NP/𝑛)? Recall we showed that similar Karp-Lipton-style collapses

do occur, assuming NP circuit lower bounds (e.g., (PSPACE ⊂ P/𝑝𝑜𝑙𝑦 =⇒

PSPACE ⊂ i.o.-NP/𝑛)), and we showed that NP ̸⊂ SIZE[𝑛𝑘] implies a type

of collapse of AM into NP.

2. It is also a prominent open problem to prove that ZPPNP
𝑡𝑡 ̸⊂ SIZE[𝑛𝑘] for some

constant 𝑘 [41] (that is, prove lower bounds for ZPP with nonadaptive queries

to an NP oracle). Is this lower bound equivalent to a Karp-Lipton collapse of

PH?

The difficulty is that, assuming ZPPNP
𝑡𝑡 ̸⊂ SIZE[𝑛𝑘], it appears that we may

obtain a good simulation of BPPNP
𝑡𝑡 , but we presently have no Karp-Lipton

Theorem collapsing PH to BPPNP
𝑡𝑡 (indeed, lower bounds for this class are also

open). Furthermore, [41] observe that NP ⊂ P/𝑝𝑜𝑙𝑦 does imply the (small)

collapse BPPNP
𝑡𝑡 = ZPPNP

𝑡𝑡 ; it is unclear how a circuit lower bound against

ZPPNP
𝑡𝑡 would aid a further collapse.

3. In light of our Theorem 1.0.11, is it possible to show interesting hardness mag-

nification results for non-sparse versions of MCSP (say, MCSP[2𝑚/𝑚2])?

Currently, we only know hardness magnification results when the circuit size

parameter is 2𝑜(𝑚) [76, 75, 70].

121

122

Chapter 6

Concluding Thoughts – Lower

Bounds and Hardness for MCSP

In this thesis, we have presented two kinds of results which seem quite harmonious.

∙ Nearly-quadratic lower bounds on the product of time and space needed for

solving various problems, including a few circuit analysis problems.

∙ Strong consequences of much weaker lower bounds for another circuit analysis

problem (MCSP[𝑛10]).

If only MCSP had found its way into Chapter 3, we may have ended up with a

much catchier thesis title (like “P ̸= NP”). Unfortunately, our lower bounds remain

intermediate for the time being.

Proving lower bounds against MCSP. There is an inherent dissonance that

exists between Chapters 3 and 4. In Chapter 3, the problems for which we would

really like to prove intermediate lower bounds are compression problems. Consider

the following restatement of Corollary 1.0.5.

Proposition 6.0.1 (Strengthening of Corollary 1.0.5). If search-MCSP[𝑛10] does not

have streaming algorithms with update time and space log𝑂(1)(𝑁), then P ̸= NP.

When we proved NOE requires a time-space product of Ω(𝑛2), we very crucially

relied on the fact that a random instance of NOE requires a long output. While

123

this is true for the general search-MCSP problem, it is not true for the versions of

search-MCSP like search-MCSP[𝑛10]. In fact, random inputs fall into the “no such

circuit exists” category with overwhelmingly high probability. Moreover, we crucially

use the fact that the object we are searching for in search-MCSP[𝑛10] is small, in our

proof of Proposition 6.0.1.

However, this path may still hold some use for us. It is still open an open problem

to prove the general search-MCSP (the problem of finding a minimum size circuit

of a given truth table) requires a time-space product of at least 𝑛2/ log𝑂(1)(𝑛). As

mentioned above, random inputs are extremely likely to produce long outputs for

search-MCSP. There may be difficulty in reproducing the remainder of the analysis in

showing that short branching programs cannot output a large portion of the output,

but there does not seem to be any barrier standing in our way. Nevertheless, we still

do not know hardness magnification results (along the lines of Chapter 4) for general

search-MCSP.

Giving reductions to MCSP. A significant ongoing venture is to relate MCSP

to other well-studied problems, especially via reductions. Before recently, the com-

mon wisdom among complexity theorists was that finding reductions other natural

problems to MCSP, especially for the goal of proving MCSP is NP-hard, is not a task

worth attempting (at least as a long term venture). After all, Levin famously delayed

publishing his original work on NP-completeness while he attempted to prove MCSP

was NP-hard. There are even results showing that certain types of reductions from

SAT to MCSP would give new circuit lower bounds [61, 74]. It is even open to give

reduction from MKTP to MCSP, despite their tremendous similarities!

However, recent work by Ilango [55] and Ilango, Loff, and Oliviera [56] might

inspire some researchers to pursue reductions to MCSP. We now examine what might

come of trying to give new reductions to MCSP, even from simple problems like NOE

or Sort.

Unfortunately, much like trying to prove lower bounds against search-MCSP[𝑛10]

directly, we run into the same annoying concern we ran into before. The reductions we

gave in Chapter 3 required that our target problems also required long outputs! We

124

took an instance of NOE and produced an instance of Print-3SAT or #SAT which had

an equally long output. In order to overcome this, we would need to use a different

size parameter, or we could try coming up with a style of reduction that skirts this

issue.

There is another option, though. When we fail to find reductions or algorithms,

this often gives us the opportunity to consider impossibility results! Could we prove

that there are no super-efficient reductions from NOE or Sort to search-MCSP? It

might be quite easy, considering that NOE and Sort are both not affected by permu-

tations on their inputs, but truth tables are not at all robust to this behavior (certain

if reductions are required to be local, this intuition might be a path to the answer).

What might it mean if there are no super-efficient reductions from NOE or Sort to

search-MCSP?

There may additionally be an avenue here to find new results of the flavor of

Murray and Williams [74], in which they conclude that efficient (logtime uniform

AC0) NP-hardness reductions to MCSP would lead to strong circuit lower bounds.

Perhaps we simply note the fact that sufficiently strong reductions from any of our

problems for which we have nearly quadratic time-space lower bounds to versions

of MCSP and other compression problems would give breakthroughs. With enough

finagling, there may be a gem yet to be discovered.

125

126

Bibliography

[1] Scott Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE
Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague,
Czech Republic, pages 340–354, 2006.

[2] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. TOCT, 1(1):2:1–2:54, 2009.

[3] Karl Abrahamson. Generalized string matching. SIAM Journal on Computing,
16(6):1039–1051, 1987.

[4] Karl Abrahamson. Time-space tradeoffs for algebraic problems on general se-
quential machines. Journal of Computer and System Sciences, 43(2):269 – 289,
1991.

[5] Miklós Ajtai. Determinism versus nondeterminism for linear time rams with
memory restrictions. Journal of Computer and System Sciences, 65(1):2–37,
2002.

[6] Miklós Ajtai. A non-linear time lower bound for boolean branching programs.
Theory of Computing, 1(8):149–176, 2005.

[7] Eric Allender. When worlds collide: Derandomization, lower bounds, and Kol-
mogorov complexity. In 31th IARCS Conf. Found. of Software Tech. and Theoret.
Comput. Sci. (FSTTCS’01), volume 2245, pages 1–15, 2001.

[8] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and
Detlef Ronneburger. Power from random strings. SIAM Journal on Comput-
ing, 35(6):1467–1493, 2006. Preliminary version in FOCS’02.

[9] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit
minimization and related problems. In MFCS, pages 54:1–54:14, 2017.

[10] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle cir-
cuit size problem. Computational Complexity, 26(2):469–496, 2017. Preliminary
version in STACS’15.

[11] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. JACM, 57(3), 2010.

127

http://dx.doi.org/10.1109/SFCS.2002.1181992
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21

[12] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. J. ACM, 57(3):14:1–14:36, 2010.

[13] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[14] Vikraman Arvind, Johannes Köbler, Uwe Schöning, and Rainer Schuler. If NP
has polynomial-size circuits, then ma=am. Theor. Comput. Sci., 137(2):279–282,
1995.

[15] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, pages 21–31, 1991.

[16] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =?
NP question. SIAM J. Comput., 4(4):431–442, 1975.

[17] David A Mix Barrington and Pierre McKenzie. Oracle branching programs and
Logspace versus P. Information and Computation, 95(1):96–115, 1991.

[18] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring),
pages 307–314, 1968.

[19] Paul Beame. A general sequential time-space tradeoff for finding unique elements.
In STOC, pages 197–203. ACM, 1989.

[20] Paul Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM Journal on Computing, 20(2):270–277, 1991.

[21] Paul Beame, Raphaël Clifford, and Widad Machmouchi. Element distinctness,
frequency moments, and sliding windows. In FOCS, pages 290–299. IEEE, 2013.

[22] Paul Beame, Thathachar S Jayram, and Michael Saks. Time-space tradeoffs for
branching programs. Journal of Computer and System Sciences, 63(4):542–572,
2001.

[23] Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off
lower bounds for randomized computation of decision problems. Journal of the
ACM (JACM), 50(2):154–195, 2003.

[24] Paul Beame and Erik Vee. Time-space tradeoffs, multiparty communication
complexity, and nearest-neighbor problems. In STOC, pages 688–697. ACM,
2002.

[25] Allan Borodin and Stephen Cook. A time-space tradeoff for sorting on a general
sequential model of computation. SIAM Journal on Computing, 11(2):287–297,
1982.

128

[26] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and
Christino Tamon. Oracles and queries that are sufficient for exact learning.
J. Comput. Syst. Sci., 52(3):421–433, 1996.

[27] Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse
oracles and the exponential hierarchy. In Foundations of Software Technology
and Theoretical Computer Science, 12th Conference, New Delhi, India, December
18-20, 1992, Proceedings, pages 116–127, 1992.

[28] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems
harder. In 21st Annual IEEE Conference on Computational Complexity (CCC
2006), 16-20 July 2006, Prague, Czech Republic, pages 73–87, 2006.

[29] Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs for
time-space lower bounds. Computational Complexity, 24(3):533–600, 2015.

[30] Jin-yi Cai. Sp
2 is subset of ZPPnp. J. Comput. Syst. Sci., 73(1):25–35, 2007.

[31] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori
Ogihara. Competing provers yield improved karp-lipton collapse results. Inf.
Comput., 198(1):1–23, 2005.

[32] Jin-yi Cai and Osamu Watanabe. On proving circuit lower bounds against the
polynomial-time hierarchy. SIAM J. Comput., 33(4):984–1009, 2004.

[33] Venkatesan T Chakaravarthy and Sambuddha Roy. Oblivious symmetric alterna-
tion. In Annual Symposium on Theoretical Aspects of Computer Science, pages
230–241. Springer, 2006.

[34] Venkatesan T. Chakaravarthy and Sambuddha Roy. Arthur and merlin as oracles.
Computational Complexity, 20(3):505–558, 2011.

[35] Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for
ACC circuits. Electronic Colloquium on Computational Complexity (ECCC),
26:31, 2019.

[36] Lijie Chen, Ce Jin, and R Ryan Williams. Hardness magnification for all sparse
np languages. In 2019 IEEE 60th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 1240–1255. IEEE, 2019.

[37] Lijie Chen, Dylan M McKay, Cody D Murray, and R Ryan Williams. Relations
and equivalences between circuit lower bounds and karp-lipton theorems. In 34th
Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[38] Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits “just be-
yond” known lower bounds. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 34–41, 2019.

129

[39] Timothy Y. Chow. Almost-natural proofs. J. Comput. Syst. Sci., 77(4):728–737,
2011.

[40] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

[41] Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. On pseudodeterministic
approximation algorithms. In 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,
UK, pages 61:1–61:11, 2018.

[42] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for
the analysis of randomized algorithms. Cambridge University Press, 2009.

[43] Lance Fortnow. Nondeterministic polynomial time versus nondeterministic log-
arithmic space: Time-space tradeoffs for satisfiability. In Proceedings of Com-
putational Complexity. Twelfth Annual IEEE Conference, pages 52–60. IEEE,
1997.

[44] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas.
Time-space lower bounds for satisfiability. JACM, 52(6):835–865, 2005.

[45] Lance Fortnow and Rahul Santhanam. Robust simulations and significant sepa-
rations. Inf. Comput., 256:149–159, 2017.

[46] Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed-polynomial size
circuit bounds. In Proceedings of the 24th Annual IEEE Conference on Com-
putational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 19–26,
2009.

[47] Etienne Grandjean. Linear time algorithms and np-complete problems. SIAM
J. Comput., 23(3):573–597, 1994.

[48] Juris Hartmanis, Neil Immerman, and Vivian Sewelson. Sparse sets in NP-
P: EXPTIME versus NEXPTIME. Information and Control, 65(2/3):158–181,
1985.

[49] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within
NP. Electronic Colloquium on Computational Complexity (ECCC), 25:138, 2018.

[50] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. Np-hardness
of minimum circuit size problem for OR-AND-MOD circuits. In CCC, pages
5:1–5:31, 2018.

[51] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of
MCSP and its variants. In CCC, pages 7:1–7:20, 2017.

[52] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem
as oracle. In CCC, volume 50, pages 18:1–18:20, 2016. Available at ECCC.

130

https://eccc.weizmann.ac.il/report/2015/198/

[53] John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum
circuit size problem. In 35th IARCS Conf. Found. of Software Tech. and Theoret.
Comput. Sci. (FSTTCS’15), volume 45 of LIPIcs, pages 236–245, 2015.

[54] Christian Hoffmann. Exponential time complexity of weighted counting of inde-
pendent sets. CoRR, abs/1007.1146, 2010.

[55] Rahul Ilango. Approaching MCSP from above and below: Hardness for a condi-
tional variant and acˆ0[p]. In Thomas Vidick, editor, 11th Innovations in Theo-
retical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, volume 151 of LIPIcs, pages 34:1–34:26. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[56] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit
minimization for multi-output functions. In Shubhangi Saraf, editor, 35th Com-
putational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 22:1–22:36. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[57] Russell Impagliazzo. Personal Communication, 2018.

[58] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson.
Uniform direct product theorems: Simplified, optimized, and derandomized.
SIAM J. Comput., 39(4):1637–1665, 2010.

[59] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of
natural properties as oracles. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 7:1–7:20, 2018.

[60] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an
easy witness: exponential time vs. probabilistic polynomial time. J. Comput.
Syst. Sci., 65(4):672–694, 2002.

[61] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In STOC,
pages 73–79, 2000.

[62] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control, 55(1-3):40–56, 1982.

[63] Richard Karp and Richard Lipton. Turing machines that take advice.
L’Enseignement Mathématique, 28(2):191–209, 1982.

[64] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having
small circuits. SIAM J. Comput., 28(1):311–324, 1998.

[65] Richard E Ladner and Nancy A Lynch. Relativization of questions about log
space computability. Mathematical Systems Theory, 10(1):19–32, 1976.

131

[66] Leonid A. Levin. Randomness conservation inequalities; information and inde-
pendence in mathematical theories. Information and Control, 61(1):15–37, 1984.

[67] Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against
polynomial time with applications. In CCC, pages 1–9, 2012.

[68] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[69] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational com-
plexity of universal hashing. Theoretical Computer Science, 107(1):121 – 133,
1993.

[70] Dylan M McKay, Cody D Murray, and R Ryan Williams. Weak lower bounds on
resource-bounded compression imply strong separations of complexity classes. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 1215–1225, 2019.

[71] Dylan M McKay and Richard Ryan Williams. Quadratic time-space lower bounds
for computing natural functions with a random oracle. In 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[72] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit
lower bounds. Electronic Colloquium on Computational Complexity (ECCC),
24:144, 2017.

[73] Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic
quasi-polytime: an easy witness lemma for NP and NQP. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, pages 890–901, 2018.

[74] Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of comput-
ing circuit complexity. In CCC, volume 33 of LIPIcs, pages 365–380. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[75] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification
near state-of-the-art lower bounds. In 34th Computational Complexity Confer-
ence, 2019.

[76] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural
problems. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 65–76. IEEE, 2018.

[77] Jakob Pagter. On Ajtai’s lower bound technique for R-way branching programs
and the hamming distance problem. Chicago J. Theor. Comput. Sci., 2005.

132

[78] Wolfgang J. Paul, Nicholas Pippenger, Endre Szemerédi, and William T. Trot-
ter. On determinism versus non-determinism and related problems (preliminary
version). In FOCS, pages 429–438, 1983.

[79] Alexander Razborov and Steven Rudich. Natural proofs. JCSS, 55(1):24–35,
1997.

[80] Rahul Santhanam. Lower bounds on the complexity of recognizing SAT by
Turing machines. Inf. Process. Lett., 79(5):243–247, 2001.

[81] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J.
Comput., 39(3):1038–1061, 2009.

[82] Martin Sauerhoff and Philipp Woelfel. Time-space tradeoff lower bounds for
integer multiplication and graphs of arithmetic functions. In STOC, pages 186–
195. ACM, 2003.

[83] Aravind Srinivasan. On the approximability of clique and related maximization
problems. J. Comput. Syst. Sci., 67(3):633–651, 2003.

[84] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J.
Comput., 20(5):865–877, 1991.

[85] B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force
searches) algorithms. Annals of the History of Computing, 6(4):384–400, Oct
1984.

[86] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case com-
plexity via uniform reductions. Computational Complexity, 16(4):331–364, 2007.

[87] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput.
Syst. Sci., 67(2):419–440, 2003.

[88] Dieter Van Melkebeek et al. A survey of lower bounds for satisfiability and
related problems. Foundations and Trends R○ in Theoretical Computer Science,
2(3):197–303, 2007.

[89] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput.
Sci., 347(1-2):415–418, 2005.

[90] R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo inte-
gers. Computational Complexity, 17(2):179–219, 2008.

[91] Ryan Williams. Nonuniform ACC circuit lower bounds. JACM, 61(1):2, 2014.

[92] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform
classes. Theor. Comput. Sci., 26:287–300, 1983.

[93] Yaacov Yesha. Time-space tradeoffs for matrix multiplication and the discrete
fourier transform on any general sequential random-access computer. Journal of
Computer and System Sciences, 29(2):183–197, 1984.

133

	Introduction
	Preliminaries
	Nearly Quadratic Time-Space Lower Bounds Against Natural Problems
	Introduction
	Intuition for the NOE Lower Bound

	Preliminaries
	Lower Bound for NOE and Sorting
	Beame's Method (Without Random Oracles)
	Lower Bounds With Random Oracles
	Sort and Random Oracles

	Reductions
	Conclusion

	Hardness Magnification for Compression Problems
	Introduction
	Our Results
	Intuition
	What Do These Results Mean?

	Preliminaries
	An Intermediate Problem

	Efficient Oracle Circuit Family for MCSP
	Other Compression Problems

	Streaming Algorithm for MCSP
	Other Compression Problems

	Consequences
	Other Compression Problems

	Conclusion

	An Equivalence Between Fixed-Polynomial Circuit Size Lower Bounds and Karp-Lipton Style Theorems
	Introduction
	Preliminaries
	Infinitely Often and Robust Simulations
	Non-deterministic Pseudo-Random Generators
	Pseudorandom Generators from Strings of High Circuit Complexity

	¶NP Circuit Lower Bounds Equivalent to Karp-Lipton Collapses to ¶NP
	An Equivalence Theorem Under NPP/poly
	NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses
	Consequence of Weak Circuit Lower Bounds for Sparse Languages in NP
	Almost Almost-everywhere (MAcoMA)/1 Circuit Lower Bounds
	Open Problems

	Concluding Thoughts – Lower Bounds and Hardness for MCSP

