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ABSTRACT

Communication concentrators perform the basic network function of
merging many input flows into a single output flow. This requires
formating the data and encoding side information about when messages
start, what their lengths are and what their origins and destinations
are.

This thesis examines efficient ways of performing these functions,
the objective being to minimize the average message delay, or some other
queueing theoretic quantity, like the probability of buffer overflow.

The work is divided in four parts:
- encoding of the data;
- encoding of message lengths;’
- encoding of message starting times;
- encoding of message origins and destinations.
With respect to data encoding, an algorithm is given to construct
a prefix condition code that minimizes the probability of'buffer overflow.

Next a theory of variable length flags is developed and applied to




the encoding of message lengths.

For concentrators with synchronous outpﬁt streams, it is shown
that the concept of average number of protocol bits per message is
meaningless. Thus, in order to analyze the encoding of message starting
times, a class of flag strategies is considered in thch there is a
tradeoff between Aelay ;nd low priority traffic.

The problem of encoding message origins and destingtions is
attacked from two different points of view. Some strategies (variations
of the polling scheme) are analyzed and shown to be much more efficient
in heavy traffic than just using a header, as is usually done. &
simplified model is also developed. Its dnalyéis suggests that there

exist strategies to encode message origins and destinations that are

much more efficient than everything considered until now.

Name and Title of Thesis Supervisor:
Robert G. Gallager

Professor of Electrical Engineering
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Chapter I

Preliminaries

1. Introduction

The last decade has seen a tremendous development of computer
networks. Numerous books and paperrdéscribing and analyzing systems
have appeared (see Section 2).

From the operations research point of view, the most studied
problems are those of mod2l1ling the queueing phenomena in the net-
works, of routing the messages so as to minimize some cost, usually
the average message delay, and of laying out the network in some
optimal fashion.

Computer scientists have been concerned with the architecture
of the computers in the nodes, and with the protocol, i.e. control
messages exchanged between subsystems 6f the network. This is related
to the problems associated with distributed computation.

Presently the most important consideration in the design of
protocols is to get a working sys;em where no deadiock can occur.
Little attention has usually been paid to the effects of the overhead
produced by the.protocol on the performance of the network. However,
taking a queueing theorist view of the problemn, [Fleinrock et al.,
197@] pointed out that the effect was significant in the ARPANET.
[@allager, 1976] showed that information theory can be used to
produce basic lowerbounds on some of the information that is carried

in the protocol messages.
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Qur goal is to obtain results similar to those of Gallager,

but under less restrictive hypotheses. In particular, we will not
assume an infinite number of scurces and links of infinite capacity.
Thus we will take into account queueing effects and’interactions

‘ bétween sources. One will .find in this work concepts and methods
.from the fields of queueing theéry on one hand, and information and
coding theories on the other.

We do not plan to solve at once all the protocol problems in
a complete network. Instead, we pay attention only to the nodes, i.e.
the points in the network where different links join each other. From
oﬁr point of view a node can be decomposed in a "router' followed by
"concentrators" (see Figure 1.1).

The role of the router is to determine the destination of each
input bit and to send it, together with some associated information to
be described later, to the corresponding concentrator. The concentra-
tors merge the many input flows into one output flow.

We will not consider the structure or the optimization of the
router, instead we will regard it as a source, with known statistics,
to the concentrators.

Because their input is generally stochastic, concentrators
contain a buffer in which queueing phenomena occur. In addition to
transmitting the data they received, concentrators usually perform
other duties:

1°

they reformat'" the data. This may involve translating characters
from one code to another, merging packets into messages or

dividing messages into packets.
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2° they transmit service information to the downstream nodes:

- information about the line being idle or not;
- information about the origin and destination of the data.

3° they perform some kind of error control, typically implementing
an error detesction and retransmission system in conjunction with
sending error detecting parity bits to the downstream node.

4° they send flow control information tothe upstream nodes and/or
the router indicating that they are unable in some way to handle
the flow of data.

We will consider in this work only the first two functions; they
are related to what information theorists call "source coding, " whereas
the third one is more like "channel coding." The fourth function should
be studied with the routing question and is not touched here.

Note that classical source coding theory is interested in
“transmitting as little redundancy as possible. In compﬁter networks
the go%l is usually to minimize the average message.delay. These two
objectives are not always compatible, as we shall see.

Note at this point that we consider all higher level protocol
messages, like "end to end" messages to set-up a "session,“ and like
flow contr;l and routing messages, as regular data that must be trans-
mitted by a concentrator to another node, together with information
about its origin, destination and some error check.

The plan of this thesis is the following: in Section 2 of this
chapter, we will review previous works of interest while we present in
Section 3 an outline of the original contributions of this work. 'The
next four chapters describe in detail.the actual results. They are

organized as follows:




In Chapter 2, we examine how the concentrator should encode the
data sd as to minimize in some sense the message delays.

- In practical systems the data are often transmitted in batches,
called ''packets" or 'messages.'" We analyse in Chapter 3 a very efficient
way of encoding the length of these batches. This will introduce an
encoding technique, using flags, which will be used extensively in the
next two chapters.

In Chapter 4, we study efficient ways of solving a seemingly
trivial problem: how should a concentrator indicate to the downstream
node when it transmits idle bits. This simple problem will introduce
some conceptual difficulties that appear more strongly in Chapter 5.

Chapter 5 treats the problem of encoding message origins and
destinations. It has two distinct parts: in the first part we use a
simplified model to see what issues are involved. In the second part
we examine and compare different practical strategies for encoding the
origins and destinations while not degrading too much the average

message waiting time.
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2. Review of Previous Works

We rapidly review previous works of interest, considering
mainly works that give general ideas rather than technical details.
These last references are mentioned in the text as they are needed.

Should a reader need general information about computer networks,
the books of [Davies and Barber, 1973], [Abramson and Kuo, 1973] and
[Schwartz, 1977] are valuable.

[Kleinrock, 1976] is an excellent reference on queueing models
'fo’r camputer systems, while [Gerla and Kleinrock, 1977] present an over-
view of the problems of optimal static routing and network layout and
give a number of references. The subject of adaptive routing and
numerous references on related subjects appear in [Segéll, 19771 while
[Gallager, 1977] offers an actual adaptive decentralized loopfree algo-
rithm.

Many of the ideas used in high level protocols today were born
during the development of the ARPANET; suitable references are [Crocker,
1972], [Cexrf, 19771, [Kleinrock, 1976] and [Kleinrock and Opderbeck,
1977]. | '

Of course the ARPANET 1s well known for sending data in packets.
Another network that functions in a similar way is the CYCIADES, [Pouzin,
1973]. Same networks do not use this idea, but transmit the data
character by character, e.g. see [Tymes, 1971] and [Vander Mey, 1976].

The references just mentioned describe the background of this

thesis, but have no direct impact on it. We now review some works
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that have a stronger relation to it.

The motivating paper behind this thesis is the one by [Gallager,
1976] which showed that there is a trade off between the delay
incurred by a message and the amount of information necessary to
indicate its origin or destination. However, the delay-;here is a
"voluntary" delay in the sense that the concentrator sometimes chooses
not to send a message although the line is available. We will examine
how "involuntary" queueing delays can be exploited to minimize the
amount of protocol.

Another paper along these lines is [Rubin, 1976]. Rubin notes
that if some rate-distortion function exists for the output of a source,
and if the output of the source encoder is sent over a link for which a
relation exists between rate and average delay, one can obtain a delay-
distortion relation. This approach is not very useful, because it
neglects the delays added by the coding process and it assumes that the
" average delay on the link is only a function of the rate, and not of
other parameters of the coder output statistics. It is an unfortunate
fact that infcrmation theory is concerned only with rate.

A work that has a strong relation with this thesis is the one by
[Jelinek, 1968] and [Jelinek and Schneider, 1972]. They were the first
to show that a code with minimal redundancy is not necessarily optimal
as far as buffering problems are concerned. We will use some of their

ideas and extend their results in Chapter 2.




3. Outline of Original Contributions. 18

The goal of this thesis is to find efficient ways for a
concentrator to perform the source coding functions described in Section
1, and divided in four main sections:

- encoding of the data;

encoding of the message lengthsj;

encoding of the idle times;

- encoding of the message origins and destinations.
The objective is to minimize the average message delay, or some other
queueing theoretic quantity, like the probability of buffer overflow.
We review briefly our contributions in these fields.

In Chapter 2, we present an algorithm to construct a prefix
condition code minimizing the probability of buffer overflow. It is a
generalization of Huffman's procedure.

Variable length..flag strategies are studied exhaustively in
Chapter 3. We give coding and decoding algorithms using flags, analyze
their performance and sensitivity, and identify the classes of flags that
have some desirable properties. The main result is that if well chosen
flags are utilized to encode the length of a message, the expected number
of bits used is upperbounded by the entropy of the distribution of the
message length + .56 .

We study in Chapter 4 how to encode the message starting times to
minimize the average message delay. Unfortunately the best way of doing
this is still unknown. We wefe only able to show that the concept of
average number of protocol bits.per message 1is useless when the line is

synchronous. We also analyzed a practical strategy, using flags, to




encode the.starting tim;s; "This is a variation on the theme of the
M/G/1 queue.

Our main contributions are in Chapter 5, where we study the encod-
ing of the message origins; We first introduce a simplified model where
the objective is to minimize the entropy of the sequence of the origins
of the messages being transmitted. We also éhow that, ét least for this
model, the traditionaltmethods (e.g. forming packets or polling) are
‘far from being optimal. We give a‘lowerbound on the best achiewvable
performance and show how d&namic programming can be used to find the
optimal strategy.

We also apalyze four practical strategies to encode the origins.
They are based on well-known queueing strategies. Our main contributions
are a closed form expression for the waiting time in éyclic queues with
symmetric inputs, and a fast algorithm to compute the waiting times in
the asymetricbcase. We also solved the problem of optimal source

coding for an integer alphabet with Poisson distribution.
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Chapter 2

Source Coding to Minimize Delay

1. Introduction

We devote this chapter to the problem of source coding to mini-
mize delay. After presenting our model in Section 2, we consider briefly
in Section 3 how to find a code minimizing the average delay. The
problem of minimizing the probability of large delays or of buffer over-
flows is treated in Section 4. Finally, we review and generalize in
Section 5 the work of [Jelinek and Schneider, 1972], which is stronly

related to the topic of this chapter.

2. The Model

We propose the following model: an asynchronous memoryless
source emits symbols drawn from the alphabet {1,2,3,...,c} ; symbol
i has probability p; - The time intervals between two source emissions
are independent random variables with distribution function A . An
encoder maps the source symbols into codewords which are placed in an
output buffer of size M from which one letter is removed every unit
of time (first in, first out). The output codewords are formed by
letters from an alphabetvof size d and the codeword corresponding to
source symbol i hés length m. . Without loss of generality we can
assume that ¢ = d + k(d-1) for some integer k and that P; 2 Ps > 0.
In the following sections we consider the waiting time and

delay of symbols that do not cause buffer overflows. The waiting
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time is defined as the time difference between the moment a symbol
arrives at the encoder and the moment the corresponding codeword
starts leaving the buffer. The delay is the waiting time, plus the

length of the codeword. We do not consider what to do when the buffer is

empty or overflows; this is treated in Chapter 4.

3. Minimizing the Average Delay

Unfortunately, for most interemission processes, it is not

possible to compute the average delay. Sometimes, though,it is

feasible, e.g. if the buffer is infinite and if A(t) =1 - e'xt

t > 0 . In this case the average delay is equal to (this is a

M/G/lbqueue)

2 .
ACZ pym; - e Pimi)z)"' z p;my

E[D] = 1 -XA2Z p.m,
iti

ifor all codes such that A I p;m; < 1 . However, even in this
simple case we are unable to find an algorithm yielding a code
that minimizes this expression. We can only make three general
observations valid for all problems.

First, Huffman codes, which minimize the average codeword:
length, are robust for this application. They are optimal when
the load is light, because then the waiting time is negligable
compared to the average codeword length. When the load is heavy,
it is of primary importance to keep the system stable by mini-
mizing the average codeword length, i.e. utilizing a Huffman

code.,
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Next, by a simple eﬁchange argument, one sees that in an optimum
code m, > m. . (because P, 2-P1+1)'

Finally, as in Huffman codes, the codewords of the d 1least
likely symbols have the same length.

4, Minimizing the Probabilities of Buffer Overflow and of Long Delays

A. Introduction

[Kingman, 1970] showed that for infinite G/G/1 queues with
interarrival time distribution A and service time distribution B ,
the stationary probability Wc(x) that a symbol waits more than x

units of time is upperbounded by

=S OX

WC(X) <e
)
where s is the supremum of the values of s such that
A*(s) B*(-s) <1

Kingman's method yields the same result for finite queues.

From this, it is easy to upperbound the probability of buffer
overflow: denoting by w and b the waiting time and length of a code-
word we have

probability of buffer overflow

P(w+b > M)

P(w > M-b)

'. _<_ E(e_scM—b)) 0<s< s°

= B*C-s) Mo <s

A

By more complicated arguments, [Wyner, 1974] established that there

S

0
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. -soM -
exists a lowerbound decreasing like K e .

Applying these results to our model, we see that for every

cong C , the probability of buffer overflow is of the order of

e—s , where sO(C) is the supremum of the values of s such that
F(C,s) := A*(s) _g piesmi < 1 . Therefore it is desirable to find a
uniquely decodabiglcode with the largest so ; Before doing this; we

will bound this largest so

. o
B.” Bounds on the Largest s

This section can be considered as an extension to asynchronous

sources of results obtained by [Jelinek,  1968] and outlined in Section
c -m,

5 . For any uniquely decodable code f d *
i=1

4+ ], and by HYlder's inequality for all s > 0

na
c sm. c -m.

( I p. e illn +'s ( s d illn + s
. i .

i=1 i=1

Ind
Ind + s
P.

=1 1

< 1 [Gallager, 1968, p.

1 ™M O

>

_Thus for all uniquely decodable codes,

Ind ‘Ind+ s
c sm, c Ind+ s} 1Ind
A*(s) T p. e >A*(s) | Z p.
. i - . i
i=1 i=1
with equality for a given s iff
CInd CInd-
Ind + s c Ind + s
m, = m;(s) = - logg |\p; / j§1 Py

which is rarely possible, because m. must be integer. However, for
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every s , there is a uniquely decodable code with
* *
mi(s) + 1> m, z_mi(s)

Thus we can conclude that the largest ¥ is upperbounded by s

3

defined as the supremum of the values of s such that

Ind Ind+ s
c Ind +s]1lnd
A*Gs)L T py - <1
i=1

and lowerbounded by the supremum of the values of s such that
“Ind Ind+ s
s c Ind +s |Ind
e A*(s) z p; <1

Further, Su is achievable if m{(su) is an integer for all i :
Finally, we note that if we were encoding blocks of n input

g;ﬁbols, the largest s0 would still be upperbounded by Su ; and

lowerbounded by the supremum of the values of s such that

in d YInd + s

Ind+ s \Ind

P. <1
i=1 *

™Mo

e® A*(s)

This supremum increases to s, @S n grows.

c. An Algorithm to Construct an Optimal Prefix Condition Code

In this section we present an algorithm to construct a prefii
condition code with the largest achievable <° . It is well known
IGallager, 1968, p. 49] that no gain would be achieved by considering

non prefiX condition, uniquely decodable codes. The algorithm has two
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main steps that we describe first,
. c sm,
Step I finds a prefix condition code minimizing I p; e 1
i=1
for a given s > 0 by the following method. As [Huffman, 1952]

noticed a quarter of century ago,}%grgn optimal prefik condition code . where
the codewords corresponding to symbols ¢ - d + 1 to ¢ are the

longest and differ only in the last character. If ¢ =d , this

specifies an optimal code; if ¢ > d , this reduces the problem to
finding a prefix condition code of size ¢ - d + 1 minimizing

cad sm, s c S, _d+1
z p; © + (e z p.) e

i=1 i=c-d+1 *
observation and continuing we will eventually reach the point where the

Again we can make the same

code is completely specified.
One sees thHat for s = 0 this algorithm yields a Huffman code,
whereas for s large enough, it assigns codewords of length Ilogdc]-l

to the

[log, cl

d -1

most likely symbols, and codewords of length _flogd cl to the others.

By definition we will say that such a code is generated for s = « ;
Note that, depending on the actual implementation of the algo-

rithm, many different codes may be generated for a given s . They all

sm, ’

/
minimize p; © 1 but it may happen that all of them do not have the

neMo

i=1
0
same s

Step II computes the s° corresponding to a particular code.
Except in special cases this must be done by numerical methods, e.g.

the Newton-Raphson algorithm [Klerer and Korn,1967,p.2-59] . There are
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no special problems because the function f£(C,s) , defined at the

end of Section A, is convex in s for all codes C .

The main part of the algorithm is as follows: (see Fig. 2.1)

1 compute st
2 S, = su
3 jo:=1
. c S, _yme
4 Loop use Step I to find a code minimizing I p; e J
i=1

denote this code by Cj
5 use Step II to find the s° corresponding to Cj

denote this s° by sj
6 if s, = s, t

P j j-1 hen stop
7 else j := j+l
8 go to Loop

Of course, we must show that this algorithm will terminate after
a finite time, and that the last code generated is optimum. The proof

is simple. First we note that s > s, j > 1 because

j*l =73

f(Cj s sj) <1 (line 5), thus (line 4) f£(C , sj) <1l so

j+1
Siep T sup {s : f(Cj+1 , s) <1} Z_sj . Secondly, we observe that

- the maximum codeword length of any code generated by Step I is less than
¢, so the number of codes that can possibly be generated by Step I is
finite. These two remarks insure that the algorithm will terminate in
a finite time.

)

Let C, and s, be the last generated code and its s . We

must show that C, 1is optimal, If it is not, there will be a prefik
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FIGURE 2.1

Iterative Procedure to Find

a Code with Maximal s©

- o wanw

coccehovocs

PRI DB E T WG W TG DD PO WA O w W oW

corsOOew srPsrOoRPsTOD PO VOEBDOlTOE Do

So oo mm o cvsrancn e s oce e

lower bound




28
condition code C! and a corresponding s] with s! > s, . Thus
0<s,<%,so f(C},s,) =1 . Also, by convexity of £(C!,s) ,
f(Ch,se) < 1.

If f£(Cl,s,) <1, C, may not be the last code generated by
the algorithm (lines 4,5,6).

If f£(Cl,s,) =.1 and s, > 0 , by invoking the facts that
£(CL,0) =1, £f(C!,s!) <1 and the convexity of £(C!,s) we can
conclude that f(C!,s) = 1 se€ [0,s!] . By analyticity of f£(Cl,s)
s > 0 (Laplace-Stieltjes transform of a probability distribution),
£¥(C4,s) =1 s20,s0 sl == anda fortiori s = ®© ., From the
algorithm, C1 is the code described earlier that is generated by
Step I for s = . If for C; the waiting time is 0 with probabi-
lity one (i.e. ST = ), it is clear that the same will be true for

C1 , because the length of the longest codeword in C, is no longer

1
that the length of the longest codeword in any other code. Thus
®= sy =5, 35,,2 contradiction.

If f(Cl,s,) =1 and s, = 0 , then, as noted earlier, C

*

is an Huffman code, and as such minimizes Sl—-—-1‘:’(C,s)’ over all
s=0

ds
codes. The fact that s, = 0 implies that gg-f(C*,s)‘ >0 so
s=0
gg-f(c;,s) <=0 > 0 and by convexity either s! = 0 = s, , which is a
contradiction, or s! > 0 , gg-f(C;,s) = 0 . As in the previous

s=0
paragraph this leads to the conclusion that f(Cj,s) =1 s >0

and to a contradiction.
We have exhausted all possibilities and may conclude that C*

is optimal.

I
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Before leaving this section, we show that if one desires to find

*

a prefix condition code minimizing

p; g(m;)

oo

i=1
then the algorithm of Step I can be used only if g is linear or
exponential.
The following conditions on g must be met for the algorithm to
work:
-- g is non-decreasing,

so that if p; > pj s mi_<__mj in an optimal code;
-- g(m+l) = a gm) +b

so that at every step the size of the problem can be reduced

by 1 , while the form of the problem does not change.

These conditions imply that f must have one of the forms

gm) =ao + 8 o 1

|v

0

or g(m)

|v

am + 8 o

D. Numerical Results

A listing of a Fortran IV pr&gram implementing the two main steps
of the previous algorithm appear in Appendix C. This prégram was used
to compute the optimal code for a 128 symbol alphabet. The symbol
probabilities are equal to the relative frequencies measured in an air-
'line reservation system, ang are listed in Table 2;1f We are
grateful to Codex Corporation for furnishing these nuﬁbers.

We used two kinds of interarrival time distributions: determi-
nistic and exponential, This last one is a realistic modél of what

vhappens in practice, see [Fuchs and Jackson, 1969], or [Lewis and Hue,
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Symbol Probabilities Used in the Example

0.208593E 00
C.413809E-01
0.359989E-01
0.344146E-01
0.341741F-01
0.310807E-01
0.297105E-01
0.252622EF-01
0.250547EF-01
0.239848E-01
0.214987EF-01
0.205013E-01
0.204832E-01
0.204295E-01
0.203151E-01
0.185034E-01
0.,170439E-01
0.141916E-01
0.134732E-01
0.126853E-01
0.126820E-01
0.126658E-01
0.126555E-01
0.120663E-01
0.115880E-01
0.114259E-01
0.114121E-01
C.110366E-01
0.104807E-01
0.969496F-02
0.957297E-02
0.944445E-02
0.932216E-02
0.881332F-02
0.844231E-02
0.831517E-02
0.826121E-02
0.809219E-02
0.753829E-02
0.737234E-02
0.648664F-02
0.645882F-C2
0.602760£-02

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Table 2.1

0.543153E-02
0.532954E-02
0.515072E-02
0.510923E-02
0.495080E-C2
0.495080E-C2
0.431145E-02
C.41CS817E-02
0.410461E-02
0.381984E~-02
0.373736E-02
0.371647E-02
0.335328E-02
0.334189E-02
0.323951E-02
«321822E-02
0.289216E-02
0.279186E-02
0.271047E-02
0.261284E-C2
0.252630E-02
0.219340E-02
0.213528E-02
0.181754E-02
0.171922E-02
0.168040E-02
0. 155020E-02
0.143781E-02
C.143712%-02
0.142068E-02
0.136910E-02
C.13179CE-02
0.123206E-02
0.116750E-02
0.942039E-03
0.912136E-03
C.865797E-03
0.767177E-03
0.719054F-03
C.639347E-03
0.630138E-03
«£946907-03
0.583007E-03

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

30

0.4343284=-03
0.344279E-03
0.301999E-03
0.282097E-03
0.281404E-03
0.240114E-03
0.227836E-03
0.125453E-03
0.123671E-03
0.800050%-04
0.207934E~-05
0.3762612-05
0.100006E-04
0.514884E-05
0.23763%5E-05
0.237639E=-05
0.891145E-05
0.376261E-05
0.257442E-04
0.360418E-04
0.192091=2-04
0.514884E-05
0.207934E-05
0.308930E-014
0.171298E-04
0.960456E-05
0.514884E-05
0.297048E-06
0.178229E-04
0.236648E-04
0.306950E-05
0.554490E-05
0. 138622E2-05
0.378241E-04
0.653506E-05
0.306950E-05
0.930751E-05
0.116339E-04
0.196052F-04%
0.207934E-05
0. 116839E-04
0.415867E-05
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1972].

The results appear in Fig. 2.2 and 2.3. We give some additional
information here:
the binafy entropy of the alphabet is equal to 5.32 ;
the average codeword length of a Huffman code is equal to 5.35 ;
the number of iterations to reach the optimal code was generally
small (1 or 2) for Poisson arrivals, but larger (3 to 10) for.
deterministic arrivals;
the difference between the upperbound on s° , and the performance
of the optimal code is extremely small (of the order of 1%) in the
- Poisson arrival case. This is the reason why the upperbound does
| not appear in Fig. 2.3.
The avefage codeword length of the optimal code behaves in the

expected fashion; being largest in light traffic, but close to the

. average codeword length of the Huffman code in heavy traffic.
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5. Review and Generalization of Jelinek and Schneider's Work

Jelinek and Schneider considered the following problem: once
per time unit a memoryless source emits a letter from the alphabet
A: = {1,2,...,c} . Letter i in this alphabet has probability Pi>0 .
An‘encoder maps these source letters into codewords formed by letters
from the alphabet B::= {1,2,...,d} . The mapping is as follows: a
complete and proper set of N prefixes cj is defined for the
alphabet A (i.e. every sequence of letters from A starts with one
and only one cj ). Prefix cj has length rj and probability qj s
induced by the P; 's. Every cj is mepped into one codeword dj

formed by letters from B . Codeword dj has length mj and the

-m.
d J <1 (this is the
. ,

LI I

dj 's are uniquely decodable, so that .
J
{Kraft inequality see [Gallager, 1968, p. 47]). Eéch time the prefix
Cj is recognized by the encoder, codeword dj is placed in a buffer
of size B from which one letter is removed every time unit.A Jelinek
and Schneider address in detail the problem of what should be done
when the buffer is empty or overflows.
Their main result is the following: for every block to vari-

able length code (rj constant), or variable length to block code

(mj constant), there exists KI’KZ > 0 and so such that in the

stationary state, for all B >1,

o )
K, q~S B < Probability of buffer overflow < K, q7s B (1)
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where s° is less than or equal to the supremum Su of the values of

s such that

dS

| v
[ae]

p; 2

i=1

Su is positive>if the entropy (base d) of the source is less than one
(this ensures stability) and is finite if ¢ > d (otherwise there
need be no queueing effect). In the sequel, we always assume that Su
is positive and finite so that s, can be dfined as the largest root

of the equation

They give algorithms yielding codes with exponent s? arbitra-
?rily close to Sy * and conjecture that the same result would hold in
‘variable length to variable length coding. We show now that this
conjecture holds.

To show that the theoretical 1limit on the exponent s® is the
same for the variable length to variable length codes as for the codes
considered by Jelinek and Schneider, it is enough to show that for
every code there exists a K1 > 0 such that for every B > 1

-s B
Pr (Buffer overflow) 2 K a v

Because we consider only the lowerbound, we can ignore the overhead
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associated with the recovery procedures that have to be used when the
buffer overflows or becomes empty.
Denote by

k

m the length of the kth

codeword placed in the buffer
k =1,2,3,...)
rk the length of the prefix corresponding to the kth codeword
nk the number of letters in the buffer after the kth codeword
has been 'placed in it.
Note that mk and rk are strongly dependent, but are independent of A

the m 's and ¥J 's j#k .

We have the relation

nk = Min [B, e+ Max[O0, nk‘1 - rk]] k =1,2,...
= Min [B, Max [mk, PORL I rk]]
and we assume n° = 0 .
Now defining
w’ =0
W = Min [B, Max[0, W<l nf rk]] k =1,2,...

we see that wk obeys the standard relation for the waiting time in

a queue and that surely nk z.wk k =0,1,2,...

Thus the probability of an overflow for the process nk is greater

than or equal to the probability of an overflow for the process wk
The results of [Wyner, 1974] can be applied to this last

process, thus for every code, there are K1 >0 and s° such that

o

)
Pr [Buffer overflow] > K 475 B where s° is the largest root of
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N s(m,-r.)
I q.d VR |
j=1
N s(m,-r.)
(2 qj d J is the Laplace-Stieltjes transform (base d) of
j=1
the distribution of r° - m" , n=1,2,...)

[Jelinek and Schneider, 1972] give a proof of the following
Lemma, attributed to Forney:

If Su is defined as before, then for all complete and proper

set of prefixes, 1 . Su
N 1+su j 1+su
z qj d =1

j=1

Now, HYlder's inequality yields

1 “u L Cu
N s, @ -r.)) I+s N -m \T¥s N 1+s T I+s
Tqd® JJ z d 7 > I gq d
j=1" j=1 j=1
N -m,
thus by the Lemma and the fact that I d 3 <1,
j=1
N s {m,-r.)
I q.d Ul >1
j=1
with equality if and only if
N -m
r d J=1
j:l 7
and 1
-mj ( --surj) 1+su
-d = . d
qJ
N s(m.-r.) ,
Now, the function I qj a I3 is a Laplace-Stieltjes transform
j=1

of a probability distribution, thus it is strictly convex (except in a
trivial case), and its value at 0 is 1. We have seen that its value

is greater than or equal to 1 at Su >0 , thus it is greater than 1 .
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for all s > S, » SO s° < s for all variable length to variable

u

length codes.
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Flag Encoding Schemes

1. Introduction

Consider the problem of finding a binary Huffman code to jointly
encode a binary random variable, which is equal to 1 with probability
.15, and another random variable which takes the values (0,1,2,...,7)
with equal probability. One readily finds that the following code is

a solution:

(0,0) 000 (1,0) 111000
0,1) 001 (1,1) 111001
(0,2) 010 (1,2) 111010
(0,3) 011 (1,3) 111011
(0,4) 100 (1,4) 111100
(0,5) 101 (1,5) 111101
(0,6) 1100 (1,6) 111110
0,7) 1101 (1,7) 111111

This code has an interesting structure: all codewords corresponding to
(1,i) start with 111 , followed by the binary representation of i .
(0,i) 1is encoded into the binary representation of i , except that a
0 1is inserted in third position if the first two digits are 11 . The
same pattern reappears in the joint Huffman encoding of a binary random
variable and a random variable taking with equal probability anyone of
2" values.

This structure offers the possibility of doing the coding in two
steps: first encoding the messages, then modifying the codewords, either
by using a prefix, called a flag, or inserting an extra symbol to avoid
confusion, to encode the binary random variable. The receiver will

recognize if a flag is present, possibly recognize and delete the extra
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character, then decode the message.

Often in computer communication networks and elsewhere, one
needs to jointly encode messages, furnished by an outside source, and
binary information generated locally, like an "acknowledgement" or "end
of transmission." This can be done easily by eventually introducing a
flag, known to the receiver, at the beginning of a message, or at some
other point decided in advance, and inserting extra symbols to avoid
confusion, if necessary. !

This strategy is attractive for many reasons: it is simple, does
not cause much delay, nor require much buffering because the message

is not truly reencoded and does not need to be known in its entirety.
It is optimal in some cases, as we have just seen, and can be made
adaptive, as we shall see later.

In this chapter, we will study this strategy in detail . We will
first give a very general algorithm that permits the use?gny flag at any
point in a message. Next we will study the performances of this
strategy and see how it can be optimized. In the following section
we examine the use of adaptive flags to encode messages and batch lengths.
Finally we will see how reducing the class of allowable flags can improve
performances.

Before doing thi;, we introduce some definitions. By flag we

‘mean any finite sequence (al...av) of symbols from the alphabet
{0,1,..,d}; v is called the length of the flag (v > 1) while
(al...av_l) is called the root p (p 1is possibly empty). We denote

by B the symbol, different fram o, that is inserted when necessary
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(al,az’ cee

to avoid ambiguities, and we will call the sequence
a1 > B) the antiflag.

Fixed-length flags are actually used in IBM Synchronous Data Link
Control to encode message lengths [Donnan and Kersey, 1974]. They are
analyzed in [Camrass and Gallager, 1976]. [Schalkwijk and Post, 1973]

used flags to encode data for transmission on the Binary Symmetric

Channel with Noiseless Feedback.
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2. General Flag Coding Algorithm

We consider the following situation: a semi-infinite sequence

(the data) (ul, u2 s -..) of d-ary symbols is furnished to an encoder,

together with a sequence (V1 R V2 s+..) of binary symbols. We give

an algorithm to jointly encode these two streams using flags, i.e. the

2

output (x1 » X7 ,...) will consist of the sequence (..ut..) plus

some flags or inserted symbols used to indicate the values of the
Vt 's.

We denote by (aﬁ,...,ai ) the flag to be used after ut if
Vt =1, by pt the root of thgs flag, and by Bt the symbol that
is to be inserted in case of possible confusion. We place no
restriction on the composition of the flags, except that of course

Bt#ag
t

Before giving the algorithms for coding and decoding we note
that they need the following features to be efficient:

a) we want to either use the flag corresponding to a Vt , Or
to make at most one insertion;

b) if d > 2 we want to make an insertion only when it is
necessary, i.e. when the next symbol is the same as the
last flag symbol or the insertion.

We will illustrate these two points. Throughout examples 1

to 3 we use d=3 and

vy = 4 (o

(0’0’0’0) B=2

Q
~t
]

Vz (O’O) B = 2
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Example 1: Violation of requirement a)

There we insert 62 in the middle of the first flag to indicate that
we are not transmitting the second flag. We transmit the second flag
in Xg and Xg - We have thus used both the flag and the insertion.

The correct way of proceeding is illustrated below.

Example 2:

1 1 1 2 1 1 1 2
ut ey 0y o @y 0p a, U
‘2
1 .
We realize that if X, is 0, Xz and Xy will be interpreted as
the second flag. We then repeat a; in Xg and continue the trans-
mission of the first flag, which will be decoded after the second.
If we had to transmit u1 =1 u2 =1
1 2

v =0 v =1

the output would be
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Example 3:
xl x2 x> x4
1 1 0 0
ul u2 a2 02
1 72
We see that here the second flag appears after u, . To insure that

2

the encoder does not repeat the second flag after u, in example 2

2
we introduce in the algorithm below the indicator variable wt which
is initially set to 1 , then to 0 as soon as an insertion or a flag
corresponding to vt are transmitted. Once w' = 0 no more flag
or insertion corresponding to vt can be sent.

Let us look now at the peculiarities introduced by requirement

b). Here we use d=3 and

1 1 1, _ 1

v, = 3 (al o, us) = (0, 0, 2) B =0
2 2 2
v, = 2 (al az) = (0, 0) B™ = 2
Example 4:
u1 =1 u2 =0 u3 =0 u4 =1
1 2

. . . . 1 2
No insertion is needed, neither for v~ , nor for v
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One sees that the change of value of u4 from 1 to 2 provokes the
appearance of two insertions. The point is that the decision to
insert 82 depends on the value of the next symbol, which itself
depends on the value of the next symbol!

The algorithm given below solves this problem by establishing
a first in first out stack of row vectors s =(sl,52,53) . Normal
flag or data characters occupy only the first element of the vector An
inserted character associated with vt is represented by the
ﬁriple (?,Bt,ut )

v
t

In the previous two examples, the stack would be

s(1) = (7,8%,62) = (2,2,0)
s(2) = (2,8],03) = (2,0,2)
s(3) = (ug,-5>-) = (1,-,-) Example 4

2,-,- Example 5
normal
As soon as a / character enters the stack, the subroutine
"cleanstack" is called. Starting from the end it compares s(j)

with s(j-1) . If sl(j—1)>= ? and @l(j) = sz(j—l) or 53(5‘1D s

s;(3-1) is replaced by s,(j-1) ; if s,(j-1) = ? but
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sl(j) # (52(j-1) and ss(j-l)) , s(j-1) 1is deleted and the stack

collapsed.

Thus in Example 4 the following transformation occurs

(?,2,0) (7,2,0) a,-,-
(¢,0,2) » (1,-,-) =~
(1,-,-).

whereas in Example 5
(7,2,0) (?,2,0) (2,-,-)
(2,0,2) > (0,-,-) > (0,-,-
(2,-,-) 2,-,- (2,-,-)

The stack is then emptied to yield part of the output sequence.
Before giving the algorithms we make precise 2 syntactic points:
-) (a

-} In a "do loop" of the form "For i := a step b until c do.."

l,.., ﬁJ) means the empty set if i > j

no statement is executed if (sign b) a > (sign b) ¢ .

Most of the notation has been explained above or is self

1

1
evident, except (0 ,...ﬁt ) . It represents the output of the

decoder. It is mimicked by the encoder. At every instant before

t" > t" + 1 , these sequences are equal in both encoder and receiver.

This, together with the fact that 01,...,ﬁt -1 is equal to

1 ut -1

U yenn, guarantees unique decodability of the (ut) sequence.

Unique decodability of the (vt) sequence is guaranteed because the

flag to be used after ut appears if and only if vt =1,



c2
c3
c4
c5
c6
c7
c8
c9
clo
cll
cl2
cl3
cl4
cl15
clé
cl7
clg
cl9

c20

L7

Coding Algorithm

Set the binary vafiables wi , 1>0, to 1
v0 and wO to O
Set the integer variables t , t' , tﬂ, stacksize to 0
For j := 0 Step 1 until t' -1 do
begin
if (ﬁt'_j+1,...,ﬁt') = pt'-j and wt'—j =1
then
begin
LRSI
stacksize := stacksize + 1

s
if vt )=

13 r_3
then s(stacksize) := (?,Bt J, u? J
j+1
else
begin
. L tr-j
sl(stack51ze).- aj+1
t! =t -]
cleanstack
end

end

else continue

end



c2l t' ;= t!' + 1

c22 if vi=1 and w'

=1
c23 then 0° :=af,
c24 else
c25 begin
c26 t:=t+1
c27 at' =t
c28 end
c29 stacksize := stacksize + 1

~F 1!
c30 sl(stacksize) = ut

c31 cleanstack

c32 go to ¢3



csl

cs2

cs3

cs4

cs5

cs6

cs7

cs8

cs9

csl0

csll

csl3

csl4

csl5

cslé

csl7

csl8

csl9

Clean Stack
so=en ore?

For i := stacksize Step -1 until 2 do
begin
if sl(i-l) =7
then
begin
if sl(i) = sz(i—l) or 51(1) = ssii-l)
then sl(i—l) 1= 52(1-1)
else
begin
stacksize := stacksize - 1
for j := i-1 Step 1 until stacksize do
s(j) = s(i+D)
end

end
else continue
end
. . . t"+i .
For i := 1 until stacksize do X = 51(1)

t!" ;= t" + stacksize

stacksize := 0

k9



dl

d2

d3

d4

ds

dé

d7

ds

do

d10

dll

di2

di3

di4

d1s

d1é6

d17

d18

d19

d20

d21

d22

d23

Decoding Algorithm

Set the binary variables 3t s ﬁz , «+. to O

Set the integer variables t' , t" to 0
t" o= " o+ 1

For j := 0 Step 1 until t'-1 do

begin .
if (ﬁt"j+1, ,ﬁt‘) = pt’_j and wt'Td -1
then
begin
VLIRS R
if X" = aglij
then
begin
gt o
t! =t -]
go to d3
end
else
begin
if xU = gt,—j
then t" := t" + 1

else continue
end

end

50
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d24 else continue
d25 end
d26 t' = t' + 1

d27 u 1= X

d28 go to d3

A program implementing these algorithms has been written in
Basic. Data and flag compositions were randomly chosen in a ternary
alphabet, for t=1 to 100 . The output of the coding program was
fed into the decoding program which decoded it correctly.

As final remark, we note that there is no reason for all
flags to be known in advance. All that is needed is that if the flag
t+i

corresponding to vt has length Ve s the flag corresponding to v

must either be known at time t , or it must be known that its length

3

is greater than v_-i , this for i=1,2,...,vt-l . This guarantees

t
that the transmission of the flag corresponding to Vt will not be

interrupted because of the flag used to signal vt+l .
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A. Method

We will investigate in this section the performances of the pre-
vious algorithm, and see how they can be optimized; more precisely, we
will study how to minimize the total average number of symbols used (flag
and inserted characters) because of the possible presence of a flag at
time t . ‘We denote by v the length of this flag, and by p the
probability that it will be used.

We have immediately that the average number of symbols used is
equal to pv + (1-p) Pr (insertion is needed).

We note that v > 1 whereas Pr (insertion is needed) <1, so
that a flag should never be used to indicate an event of probability
greater than .5 ; rather a flag should be used to indicate the
complement of this event. From now on we will assume p < .5 .

In general, Pr (insertion is needed) is a compiicated function
of the data process statistics, of the flag composition and of the
compositions and probabilities of insertion of the neighboring flags.

To avoid this difficulty we use a trick dear to information theorists,
i.e. we will average Pr (insertion is needed) over the ensemble of flég
compositions and insertion symbols. If the flag is not used after time

t
t , an insertion due to this flag will occur if the symbols (xF'+1,

Mayo "
xt v 1; xt +\)) are equal to the flag or the antiflag. If their

compositions are chosen randomly, the probability of an insertion is

247V

We will therefore minimize on v the function £(p,v) defined
by £(p,v) := pv + (1-p) 2d”° . We will denote by vo(p) a value of
v that minimizes f£(p,v)

We stress that the value of f(p,v) 1is an ensemble average over

.
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the composition of the flag, and that there is no guaranteevthat a
particular flag will perform as well. However, we are sure that for
every u and v processes there will be at least a flag composition that
will achieve this or a better result. Consequently, we danot claim
that vo(p) is the length of the flag which causes the use of the mini-
mum average number of symbols, but only that there is a flag of length
vo(p) which will use no more than an average of f(p,vo(p)) symbols

for each given u and v process.

B. Optimization and Performance Analysis

If we allow v to take real values, one checks that for p
fixed f(p,v) 1is convex in v , and takes its minimum value
p(logd l§2-+ logd (2 loge d) + logd e) at v = logd l;£—+ logd(z loge d).
Of course, vo(p) must be integer, and by convexity of f(p,v) one sees
that it must be equal to [@'(pf’ or LV'(P)+1J where v'(p) is such that
f£(p,v'(P)) = £(p,v'(p) + 1)

‘This equation yields

- d-
vi(p) = 1ogd lEE + 1ogd 2( dl)
se 0,y _ 1-p 2(d-1)
AY (P) = p-Ogd P + 1°gd d ]

or l}ogd E§E-+ log, 2(d-1)J

Moreover, for every p the value of f(p,vo(p)) (which is a piecewise
linear function of p (see fig.3.)) will be lowerbounded by the minimum

value on v of £(p,v) and upperbounded by £(p,v'(p)) thus

1-
p(logd —EE-+ logy (2 log, d) + logd e) ﬁ_f(p,v°(p))
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1-p d-1,  d
<p (logy o * logg 269+
Specializing these results to the case d=2 , we see that vo(p)
= I'log2 léEJ or Llog2 152 + 1] (figure 32) or equivalently v (p)

is such that

T

and the value of f(p,v°(p)) is lowerbounded by p(log, lI‘;E + 1.91393)

and upperbounded by p(log2 lé£-+ 2) .

It is interesting to compare the average number of bits (counting
a symbol as log2 d bits) used by this scheme to the binary entropy
Hp): = -p log2 p - (1-p) 1og2 (1-p) for the following reason: in
general H(p) is not a lowerbound to the average number of bits used
when a particular flag is utilized, because we are jointly encoding the
data and the fact that an event occurs. However if the entropy of the
data is log2 d bits per symbol, and if

the only event to be signalled is the one we are considering at
time t , H(p) is a loﬁerbound to the average number of bits used by
any scheme to indicate the possible occurrence of the event. Because
f(p,v) does not depend on any hypothesis about the data on the other
flags, H(p) is a lowerbound to (log2 d) f(p,v)

From this remark and the bounds developed earlier, one finds
immediately:

Max (0, p(logz(z loge d) + (1og2 e)) + log2 (1-p))

< (Qog, &) £(p, VO (p)) - H(p)



FIGURE 3,2 : OPTIMAL FLAG LENGTH AS A FUNCTION OF p
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<pog, & 5h + (tog, O ()
The last inequality uses the fact that log2 (1-p) < -p log2 e .
In particular, for d=2 we obtain
Max(0, p(1.91393) + log, (1-p)) < £(p, v'(@)) - ()
< 2p + 1og2 (1-p)
< .55730 p
For small p , for which 1og2 (1-p) = -p log2 e ,
47123 p < £(p, vO(p)) - H(p) < .55730 p . €))

o £, v2(p)) - H(p)
’ 2

.55730 . These facts will be used later.

As p goes to oscillates between .47123 and
For d=2 , then, flag schemes are quite efficient, but they dete-
riorate as d increases: the lowerbound on f£(p,v) - H(p) increases

like 1log, (log d) while the upperbound increases like 1log, d .
2 e P 2

C. Sensitivity Analysis

We will investigate here the sensitivity of the performance of the
flag schemes. Two issues are at hand: First, how does a wrong choice
of v degrade f£f(p,v) for a given p ? Second, if p is imperfectly
known, how does an error in the estimate of p affect the choice of the
flag length? We will treat these problems for d=2 only.

The first point is easy to treat. If one uses a flag of length
vo(p) + k in place of vo(p) the penalty is equal to f£(p, vo(p) + k)
- £(p, v (P)) |

o o}
= (k + 2-(\) (P)"l) - 2"(\) (P)"’k‘l))(p - S 1
v (PI+k

.
>

k>0
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- @1 -0 @1 gy L Pk <0

5, VP,
These are saw-toothed functions of p , and are plotted in figure 3.3
for k=1 and k=-1 . These expressions are exact but do not give much
insight, so we will derive simple upperbounds. We recall that £(p,V)
is a convex function of Vv , and that Vv'(p) _<__\)°(,p) <vi(p) + 1.

Thus, by convexity, for k > 0

£, V() + k) < S £(p, V" (p)+14K)
k+v' (p)+1-v~ (p) ’

V! (p)+1-° (p) o
*+ k+\)I')(P)+1~\)0(p) f(p,\) (P))

and

. o
£(p, V' (p)+1) < ~BIFLN (B) ey v’ (py+14k)
k+v! (p)+1-° (p) |

+

e £(p,v° (p))
| (k+v' (p)+1-v~ (p)
Adding these inequalities, one obtains
£(p,0°(p) + k) + £(p,v' () + 1) < £(p,v' () + 1 + k)
+ £0p,v° (p))
or
£p,V° @) + k) - £,V (P)) < £,V () + 1 + k)
-f(p,v'(p) + 1)
Computing the right hand side member, one gets
£, @) + k) - £, @) < k+ 278 1) p

Similarly, for k < 0 , one has

0 1
£(p,v° (p)*K) < — X £(p,v' (K)+k) + \’O(P)-V §2))
Vo(p)-vT(p)-k Vo (p)-v' (p) -k

£(p,v° ()
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o 1
£,V () < 5BV £y (p)a) ¢+ X
Vv (p)-v' (p)-k v (p)-v'(p)-k

£(p,v° (p))

Adding these inequalities, one obtains
£(p,V° (P)+k) + £(p,v" (P)) < £(p,V' (K)+K) + £(p,V° ()
and thus

£0p,v°(p)+k) - £, () < k +2 Do 2y p

These upperbounds are plotted in figure 3.3 for k=1 and k=-1 . The
penalty is always less then .5p if one uses flag length too large

by one symbol, whereas it is less than p if the 1éngth is too small
by one symbol. The same pattern appears for larger [k] s tﬁe penalty
increasing roughly like kp for k > 0 , but like 2-kp for k< 0.

It will be important later to have an upperbound on £(p,2) - H(p)
for p between 1/3 and 1/2 , i.e. in the region where v°(p) =1,
because flags of length 1 have some awkward properties, and we will
wish to use flags of length 2 instead. We want an ﬁpperbound of the
form 2ap > f(p,2) - H(p) . Because this function is convex, the tightest

upperbound of this form will equal it at p =1/3 or p=1/2 , so

o

Max (3 (£(1/3,2) - H(1/3)), 2 (£(1/2,2) - H(1/2))
= .5 (2)
The second point, the sensitivity of the optimal length to an
error in the estimate of p 1is more diffi;ult to assess, due to the
discontinuities in vo(p) (figure 3,2). A good rule of thumb is
that when p 1is overestimated or underestimated by about a factor of 2,

the resulting flag length is too small or too large by one symbol.
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4, Adaptive Flag Stategies to Encode Batch and Message Lengths

We consider the following problem: a batch of messages must be
transmitted on a noiseless binary »ink. We denote by m the random

number of messages in a batch, and by bl’b the lengths (number

greee
of bits) of these messages. Being motivated by the case whee a batch
would be the set of messages in a busy period of a G/G/1 queﬁe, we
model the bi 's as independent identically distributed random
variables, but we let the probability of having m messages in a
batch depend on the lengths of these messages as follows.
Let (Q,S,P) be a probability space.
bl’b2"" be a sequence of measurable functions b.: > IN-
m be a measurable function m:Q>IN""
Bi be the smallest ¢ - algebra making bi o
measurable
We require the bi 's and m to have the following properties:
the bi 's are independent and have a probability
mass function B
E(I

(w)IBiJ = E(I (w))

m(w)<i m(w)<i

b1 and m have finite means
In words, the second property says that the knowledge of bi
‘does - not give any information as to whether or not m is gsmaliler
than i .
Our problem is that not onlymust we transmit the messages, but
we must also indicate the number of messages in the batch and their

lengths. We assume the starting time of the transmission to be known




62

to the receiver. We will examine different schemes to furnish this
information, and we will evaluate their performances. Before doing this,
we characterize precisely what we mean, and compute the entropy of the
information we are sending.

We want to specify to the receiver which event from the countable
set A of disjoint events, A: ={{w: m(w) = k, by @) = xq,...,b @) =
xk}: k, ;1,...,xkalN++} , occurred. Note that UA = Q . To obtain a
simple expression when computing the entropy of A , it ié handy to

define the functions R, keN'" , by R N s R

P ({w: m(w)=k, bICw)=x1,...bk(w)=xk})
Rk(xl".’xk) = X
m B(x;)
i=1

if

n =%

Bm(xi) >0
i=1

13 otherwise

In words, Rk(bl,...,bk) is the conditional probability that the batch
contains k messages, given the lengths of the first k messages.
We often denote Rk(bl,...,bk) by Rk(g) .
It is now easy to write the entropy of A as
m(w)

E(-logy (Ry ) (0 (D) T~ B7(0; (02)))

H(A)

m(w)
E(- 2
i=

| 1o B" (b (@) - logy Ry o (b))
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= E(n) H(B) - E(log, Ry (s (B(9)))
by the theorem proved in Appendix A, which holds because of the
conditions imposed earlier on the bi 's and m . H(B) denotes

- B"() log, B™ (1)
i=1

This can be rewritten

@

H(A) = E(m) H(B) - E 3 R;(b(w) log, R; (B(w))

i=1
and can be put under the form _
° R, (b(0))
H(A) = E(m) H(B) + E £ R, ,(b(u)H|———| (3)
. i-1— c
i=1 R, . (b(w))
i-1—
with R := 1
0
c i
R, :=1- ¥ R, i>1
i 1 1 -

This form will be useful later.

We will refer to the second term in (3) as the conditional
entropy of the number of messages given their lengths. It is smaller
than the entropy of the number of messages which itself is bounded by
E(m) H(1/E(m)), [Gallager, 1968, pp. 25 and 507]. This upperbound
is achieved if m 1is geometrically distributed and independent of the
message lengths. Because E(m) H(1/E(m)) 1is approximately equal to
logz(eE(m)) the second term in (3) is generally smaller than the
first.

We go on to the analysis of some coding schemes to transmit the

information in A, From the point of view of minimizing the expected
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codeword length, the optimum would be to jointly encode the numbér and
lengths of the messages. This method uses at most one more bit than
the theoretical minimum, but is generally infeasible, and can lead to
large delays because all messages must be known to the transmitter
before the appropriate codeword can be found.

It would be easier to encode separately the number of messages
and their lengths, in such a way that a message could be transmitted
and decoded correctly before all messages in the batch have been pro-
cessed by the transmitter. We will examine three strategies in this
class, using flags.

The first to strategies have in common that they transmit
sequentially each message together with a codeword indicating its
length. If the codewords are well chosen, this will fequire an average
numﬁer of bits between E(m) H(B) and E(m)(H(B)+1)
| To indicate the end of a batch, the first strategy transmits a
flag of length Vv after the last message, and makes appropriate
insertions in the other messages. By the usual random coding
argument, this will use an average of v+(E(mJ;1)2—(v—1L ECm)(ﬁ%ﬁj’*
a - Eféja?—(y_l) bits, so that, as we have seen earlier, the optimum
Vv = v°(1/E(m)) if E(m) >2 . If E(m) <2, the flag should be used
after a message if it is not the last in the batch. We do not consider
this case any further. From previous studies this choice of flag
length will use at most an average of logZ(E(m)-l) + 2 bits, which
lies between E(m) H(1/E(m)) and E(m) H(1/E(m)) + .55730. Thus this

strategy is efficient if the conditional entropy of the number of
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messages given their lengths is close to its maximum.

The second strategy, using variable flag lengths, is efficient
under all circumstances. The idea is that at the end of the trans-
mission of the ith message, both transmitter and receiver know
bl’bZ""’bi , and can compute Ri(E) and RE(E) . The cost of using
a flag of length Vv to indicate that message i is the last one in

the batch, given there are more than i-1 messages in the batch, is

R, (b) R (b) N
c Vv o+ S 2.2 . Thus Vv should be a function of
Rii® R, ®
(o] Ri(P) . 1 »C
bl’bZ""’bi' Vo= Ve if Ri(g) <% Ri_l(gj , and the
Ria®

strategy should be changed as indicated earlier if Ri(E) >4 R§

LB

Given Q_ this scheme uses less than

R, (b) R, (b)
i' } + z“ .55730  bits
R ®)J) Ry, )

We will incur this cost if the number of messages in the batch is

greater than 1i-1 , so the average total number of bits used is less

than
- R, (B)
E 2 (Ri_lcg) H S + Ri(h) .55730)
i=1 RS, (b)
@ R, (b)
i=1 RS, (&)

(by comparison with (3))
which As very efficient. Note that if Ri(g) / R;-I(E) << 1 for all i,

we have from formula (1) that the average number of bits used is

larger than
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R. (b)
_q (b, z — + .47123 , approximately.
1 Ri-l(y)

The only problem with this strategy is that in general it does
not meet the requirement of the general flag coding algorithm of
Section 2 that.if a flag of length Vv may be inserted at time t ,
flagsstarting at time t+i must either be of length greater than
v-i , or be known to both transmitter and receiver at time t . There
are two remedies to this: one is to assume that the message lengths
are larger than the longest flag, which often makes sense; the other
is to use a special class of flags developped in the next section.

They do not have this requirement, but two new problems arise then.

The averaging on the flag composition to get £f(p,v) does not work any-
more, and this special class does not contain flags of length one.

These difficulties can be overcome: on one hand, if for all j all
messages of length j are equally likely, f(p,v) will still be an
upperbound on the average number of bits used by a flag of length Vv
from this class; on the other hand we have shown in (2 ) that the
upperbound £(p,v(p)) - H(p) < p .55730 still holds if one uses flag
of length 2 instead of flags of unit length, thus the penalty for not
using the optimal length is not unbearable.

To conclude the analysis of this variable flag length algorithm,
we note that it can also be used to encode the length of a message. It
is sufficient to replace the word message by the word symbol in the
previous description, and to use flags from the special class mentioned

above. If for all j all messages of length j are equally likely,

the conclusion that the average number of bits used will be less than
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the entropy of the message length + ,55730 still holds.

The third strategy works only in the case where the messages
have a variable length. It is based on the observation by [Gallager,
1978] that any Huffman code can be modified so that a 2 symbol prefix,
say 00 , is not used, and so that the resulting redundancy is between
.41503 and 1. The strategy is as follows: transmit sequentially each
message together with a modified Huffman codeword indicating its length.
After the last message in the batch, send 00. The number of bits used
by this strategy lies between E(m) (H(B) + .41503)+ 2 and E(m) (H(B)
+ 1) + 2 . This strategy is indeed a flag strategy, so it must be less
efficient then the previous optimal algorithm, but it is eitremely easy

to implement.
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5. Desirable Flag.Compositions

As we have noted earlier, the algorithm given in Section 2 suffers
from the fact that insertions and flags may appear in the middle of
other flags, and cansequently that the vt 's are not necessarily
received in order, and that the flag corresponding fo vlc may have to
be specified before time t . This complicates the algorithm and removes
some freedom in using adaptive flags.

The problem of flags appearing in flags could be solved at the
expense of making more insertions, but this can lead to more than one
insertion per possible flag use and the analysis of Section 3 breaks
down. We will not pursue this approach. |

Instead we look at this in the context of Sections 3 and 4, where
the important parameter from the user's point of view is the flag length,
not the flag composition. We assume that we have a class of flags
containing at most one flag of each length and we use only flags from
this class in therfollowing algorithms. The main difference between
these algorithms and those of Section 2 is that flags are inserted at
once (c'l9, c'20, c'21) whereas in Section 2 a check was made between '
flag symbols to see if insertions were needed. Thus here no flags or
insertions will appear in flags. Of course these algorithms will not
work with all classes; we say that a class is allowable if the composi-
tions of the flags in the class are such that the decoding algorithm
yields the correct output for all associations of flags in the class

with vt



c'l0
c'll
~c'l2
c'l3
c'l4
c'l5
c'lé
c'17
c'18
c'l9
c'20
c'2l

c'22

Coding Algorithm

Set the integer variables t and t"
Set the integer variable 1 to -1

For j := 0 Step 1 until i do

begin
if (ut-j+1,...,ut) =_pF-j and
then
begin
t o=t o+ 1
L Bt-J
i:=3 -1
end

else continue

end
t i=t.+1
t" o=t + 1
t" t
X =u
i=1i+1
if vi=1
then
begin

for j=1 Step 1 until i

begin

to 0.



c'23

c'24
c'25
c'26
c'27
c'28
c'29
c'30
c'3l
c'32
c'33
c'34
c'35
c'36
c'37
c'38 else

c'39 go to

if (

t
u

-j+1 t t-j

then

el

end

se

begin

end

continue

for j=1 Step 1 until v_ do

begin

t

t" =t 4 1

end
continue

c'3

and at

70



a1
dr2
d'3
dr4
d's
d'é
dr7
d's
d'9
d'10
d'il
dri2
d'13
dr14
d 15
d'16
dr17
d'1s
d'19
d'20
d'21
q'22
d'23
d'24

d'25

71

Decoding Algorithm

Set the integer variables t and t" to 0
Set the integer variable i to -1
Set the binary variables 91 ,1>21 to 0
t" o=t o+ 1
For j := 0 Step 1 until i do
begin
it @I, e = et
then
begin
if xt" = Bt-j
then

begin

t" o= t"+l

end



d'26
dr27
d'28
d'29
d'30
d'3l

dr32

a

i

t .

else
end
end

else continue

(= i+l

d'33 go to d'4

continue

72
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Note that these algorithms are simpler than those. given in Section
2, and the flags are inserted and received in order. This eiplains the
role of i : if the last flag or .nsertion were sent at time t-i , it
is useless to search for a root in lines c¢'4, c'l5 and d'6 past t-i+l.
Thus the presence of i 1limits the scope of the search, and makes sure
that at most one insertion occurs for each flag.

We will now look at conditions for classes to be allowable. With-
out precautions, problems can arise in two cases because part of a flag

may be misinterpreted as another flag or an insertion

Case a)
M . L T3
q't“ “éti l Usgc
2 pt
& & & t (4 / ¢
&, | A Rigy | Kir2 LY, i “”t
. t t t+i t+i .
if (o e o o0l Y = (@ T, ...,0 t+i . .
i+l itV . 1 Vesi OF B ), i>1, iV g v,
the receiver may detect that a flag has been used at time t+i , or Bt+1,
when the flag is used at time t . The same problem occurs in
Case b)
& e e e «fe.
& |4, Kyt | Rani ey
(4 & ¢ ¢
®, |2 «, . «
L N Ye
t t t-1i t-i t-i . .
L) o= o > -
(ul ...avt_i_ ) (u1+i’ cee ’dvt-i orB ) ,i>1,1c¢% vyt < v,

If the flag compositions are such that these cases never arise, all flags
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and insertions will be correctly recognized, and thus also the data. So
a class is allowable if and only if cases a) and b) cannot occur. From
this we proceed to prove three results:
1) We give explicit conditions for a class containing only one flag
to be allowable, and we determine the number of such classes.
2) We show that no class containing a flag of length 1 and another
flag is allowable if d=2 , but many exist if d > 2 .
3) We prove that if d=2 there are only two kinds of allowable
classes containing a flag of length 2 .
To derive the first result, we note that if only one flag, (say
(al ees aj) with B8 being the possible insertion) is allowed in a
class, situation a) never occurs while situation b) will not occur for

j £ 2 or if the following j-2 inequalities are verified
(ul > o seees aj—l) # (az seses aj or B)

(al s az,..,aj_z) # (as,.., aj or B)

(@; 5 a5) # (aj-l’ o or'B) (4)
The igh condition may be interpreted as ''the flag does not have
period 1i" , because if it is not true, a; = @y .
%2 T %244
aj-i = aj or B

A flag satisfying all these conditions will be called strong; another
flag will be called weak. To check if a flag is strong, it is enough

to check the last [l%lf conditions, for if a flag has period 1i ,
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1<i f_[%d - 1, it has also period mi for some mi € {[%ﬂ, cee
j-3, j-21} .

It is of academic interest to know the number of strong flags of
length: j . We will compute how many among the dj—1 possible roots
satisfy (4) once aj and B have been chosen.

For pedagogical reasons we start by determining the number éf
roots such that , '

(al N ai) # (aj—l s wee s aj-l) , i=1,2,..fj-2 ‘(5)
These roots will be called strong and their number denoted by dj_ly(j—l);

the other roots will be called weak. If a root is weak, let io be the =

least 1 for which (5) does not hold. Then as we have seen, io 5_[1531.

Then (a,,...,0¢, ) = {0, . ,...,4. .) and is a strong root of a flag of
1 i, J-1 J-1 j-1-2i

length io+1 . For every such root there will be d distinct

weak roots of length j-1 can take all possible

(ui0+1""’aj—1—i

0
values). Thus the number of weak roots of length j-1 1is equal to
,‘_l
. [JZ ] . . .
Jha - vgay =z dywd
v i=1
or X
z
v =1 - ¢ X )
i=]1 d

k .
We see that v(2k) = y(2k+1) =1 - I Y(;) and that vy is a
i=1l d
decreasing non negative function of k , thus it has a limit, y(«) say,
as k increases. We will bound vy(~) , and show that it is positive.

From (6) one finds

Y(4k+2) = 2 - (1 + D)



with y(0) := 1 76

s0 Y = yke2) - 1+ D p XER

and because +y 1is a decreasing function

0

. 1 . 1
y(=) < y(4k+2) - (1 + ) v(=) . I 7
i=k+1 d
> n 1" Y(2k+2) "
Thus
Y(K+2) - ——te (2k42) < y(=) < y(4k+2)
(d-1) d
1 (4k+2) . (7)
- _ Y
@d-1) a%-1
In particular, for k=0 , using the fact that (2) =1 - %
1 1 1 1 1
0<1-+- v <1-2-L .2
4 g 47 42 d%-d+1

These bounds are extremely tight for d >> 1 .

We are grateful to Prof. Massey for pointing out that ﬁﬁielsen,
1973] obtained by a similar method but in a different context the
same expression for +y(i) , and the same lowerbound for «y(») . A
strong root is called fhere bifix-free. Tables of numerical values

are also given; in particular for d=2 ,

y(0) =1

v(2) = .5

y(4) = .375

y(6) = .3125

v(8) = .2881

y(w) = .2678 whereas from (7 ) with k=2

L2675 < y(«) <€ .2690
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Now that we have seen the mechanics of the prdof, we attack the
problem of finding the number of strong flags of length j , terminating
with a given aj and using a given B as possible insertion. We
define this number as dj-IS(j)
If a flag is weak, there is a smallest i ¢{2,3,...,1 + i%l }

such that

aj+1—i’ “h ,cxj or B)

(al,...,a.) = (

, i
On the other hand from every strong flag of length i one can build
‘o
2 d77“' distinct weak flags of length j > 2i , say (ai,..:,ag)
3 - - 1 - | -
by choosing af = al,...,ui =a, or B, aj-i+l = 0gseees aj =0

and choosing ai+1""’uj-i arbitrarily. From every strong flag of

length 1 such that a; = o, , ome can obtain the weak flag
(al,...,ai_l,ai,az,...,ai) of length 2i-1 . Noting, by induction

on i , that the fraction of strong flags of length i that have

a; = a, is 2/d , we can write in general

1
1+Lj-§-:-l-J

dla-sEy = oz 237 gl
i=2
thus J
Bl
§G) =1-2 3 dYs)
i=2

As was the case for y , § is a non increasing function of 1 ;

j s
2 ¢ d 1G(i) where &§(1) := 1 .
i=1

§(2j) = 8(2j-1) =1 +

(aR N}
1

We can thus write
2 1. ko
§(4k+3) =1 + 3+ -2(1+5) 3¢ d
d d” 420

(2i+1) 5 2141)
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and

5(=) t= lim 6(i) = 6(4ks3) - 2(1+1) @ a- (G5 2545y Yxs 0
i i=k+1

As before this permits bounding §(«)

1 1
§(4k+3) - §(2k+3) < &§(=) < 8(4k+3) -
a?k*204_1y/2 1+ d%%*204.1y/2

§(4k+3) k>0
Using the fact that &(3) = 1 - 2/d2 :

2 1 | 2 1
1-=)a - ) < 8(=) < (1 - =1 - .
a2 d?(d-1)/2 a? 1+ d2(d-1)/2

Of course for the binary case §&(i+l) = y(i)

This concludes the analysis of élasses:containing only one flag.
To show the second result mentioned above, note that situation a)
cannot be avoided if d=2 and if the flag used at time t has length
j > 1 while the flag used at time t+1 has unit length. On the
other hand, if d=3 and the flags are 0, 02, 022 etc. with "1"
being eventually inserted, situations a) and b) never occur.

We prove now the third result: suppose that d=2 and that a
class contains a flag of length 2 and other flags. If the root of
the flag of length 2 is "0" , situation a) is avoided only by
having all symbols in the other flags, except the first and the last,
be equal to '"1" . Because the flags must be strong, the first symbol
must be different from the penultimate. Thus we conclude that the
root of a flag must have the form (0,1,1,...,1) . .If the root of
the flag of length 2 is '"1" -, the same conclusion arises, with all

"0"s replaced by '"1" , and conversely. In both cases, the last
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symbol can be chosen freely independently in all flags. One checks

that these classes are allowable.
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Chapter 4

Encoding Message - Starting Times

1. Introduction

We consider in this chapter a seemingly trivial problem, which
was mentioned briefly in Section 2 of Chapter2 . We wiil not be able
to solve it completely, but we will gain some insight into the peculia-
rities of making information theoretic and coding theoretic statements
in a queuing environment.

The model is the following: an asynchrohous memoryless station-
ary source emits messages which are stored in an infinite buffer and
transmitted over a noiseless synchronous binary link with a capacity ofv
1 bit per unit of time. We assume that the interemission times and
message lengths are mutually independent random variables and that each
message contains a 'codeword" indicating its length. By this we mean
that if the receiver knows when a message starts it will be able to
detect the end of the message from the information provided by the mes-
sage itself. This can be done by prefixing a message with a codéword
indicating its length, or by using flags as explained in Chapter 3 , or
simply by using messages that are codewords from a prefix condition code,
as in Chapter 2 . We denote an interarrivél (service) time by a (b)
and by A (B) its probability distribution function, and assume

Ea > Eb >0
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2. Discussion of the Problem

Because the arrivals and lengths are random, it may happen that
the buffer becomes empty. The iine being synchronous, something must
still be sent out, and the receiver must be able to distinguish these
idle bits from the data bits. From another point of view, this is equi-
valent to recognizing when the line becomes busy, i.e. detecting the
message starting times. There are many possible strategies to do this,
the most obvious one being to transmit "0" 's when the line is idle, and
prefix every message with a "1" . Naturally one asks which is the
"best" strategy. We should first agree on the meaning of '"best."

If we define as protocol bit a bit which is not a message bit (in

the previous example, the idle bits "0'" and the prefik bits "1" would be
the protocol bits), it seems reasonable fo find the strategy which mini-
mizes the average number of protocol bits per message, i.e. the limit
(if it exists and is constant with probability one) as the time goes to -
infinity of the number of protocol bits sent to the number of message
arrivals. Unfortunately this criterion is most useless, for all strate-
gies resulting in a stable system have the same average number of proto-
col bits per message, and this number is equal to Ea - Eb .This is so
because if the system is stable, the law of large numbers says that the
average total number of bits per message is Ea , and Eb of these are
message bits.

This result is thus trivial, although surprising at first sight.
Its information theorgtic meaning is that although the amount of infor-

mation carried during an idle period may be small, it cannot be encoded
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efficiently. To give more sense to the concept of protocol bit, we can
do the following: suppose that we have at our disposition an infinite
reserve of "low priority" bits (chis could represent some kind of service
information) that we can transmit when we wish. Thus there is no reason
for the line to be idle, but we may still need protocol bits (defined as
bits that are not data nor low priority bits) to differentiate between
the two other kinds of bits. Note that, as before, for a stable systemn,
the expected number of protocol bits per message plus the expected
number of low priority bits per message equals Ea - Eb . We can now ask
the question: what is the infimum of the average number of protocol bits

" per message? The answer is 0 , and this can be approached by the follow-
ing strategy: send & (meant to be large) low pri&rity bits, then a
codeword indicating the number .n of message arrivals since the last
such codeword has been sent, then the n messages. Repeat the process.
The average number of protocol bits per message will be equal to the
expected codeword length divided by En., If the codewords are well

' chosen, the expected codeword length will be smaller than (En+1)H(1/(Eﬁ+1)+1
[Gallager, 1968, p. 507], thug?Zverage number of protocol bits per
message is smaller than (1+1/En)H(1AEn+1))+1/En. Clearly, as £ goes to © so
does En , thus the average number of protocol bits per message goes to
zero. The drawback of this strategy is that the average message waiting
time goes to infinity as £ increases.

A meaningful problem would thus be to find a coding scheme mini-

mizing the average message waiting time for a given average

number of protocol bits per message. We are unable to solve this pro-
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blem, or even to lowerbound the expected waiting time. We will be

content to study the following class of flag strategies:

Yes “No

Is the buffer empty?

Send a message
+ Send a flag
possible insertion

Send some Send some

low priority bits low priority bits

Ideally we should let this scheme be adaptive, i.e. we should
allow flag and low priority bit sequence lengths to be functions of the
times of reception and lengths of the previous messages, flags and low
priority bit sequences. This is known to the receiver. In light of the
results of Chapter 3 and of the fact thaf_this scheme sends flags when

the buffer is empty, which has a favorable influence on the meséage
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waiting time, one expects that the best scheme from this class must be
nearly optimal. Unfortunately this isstill too complex to analyze, and

here we restrict ourself to the following scheme:

5
L

No
—ﬂ)’li

Is the buffer empty?

Send a message
(¥t b be its length )

+
possible insertion

Send Eo(b)

low priority bits

Send flag
of length v,
Is the buffer empty?
Send 52 ' Send flag
low priority bits of length 21
Send El
low priority bits
) P I

We have thus removed much of the variability of the flag and low

priority bit sequence lengths, allowing only the length Eo(bj of the low
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priority bit sequence immediately following a message to be a function
length

of that message/and allowing the first flag and low priority bit sequence
in an idle period to be differentfbanthe others in the idle period. We
assume that with probability one a message is longer than Max (vl,vz) H
otherwise some messages cannot be considered as being received when they
are fully transmitted! |

fo be able to obtain analytical results we will also model the
arrival process as Poisson. The analysis will proceed in steps: in
Section 3 we will study a general queueing model whose parameters will
be identified in Section 4 so that it represénts the flag strategy we
want to examine. The main results will be given in Sectipn 5, while the

optimal function Eo(b) will be looked at in Section 6. We will give

numerical results in Section 7.
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3. M/G/1 Queues with Overhead

A. Introduction

We analyze here the following problem: arrivals in a queue follow
a Poisson process with rate A: = 1/Ea and the service times have
distribution B' . The first customer in a busy period suffers an extra
delay with distribution Fl , while the services of the other customers
are increased by a random amount with distribution F2 . We assume that
the interarrival times, service times and extra delays are all indepen-
dent. We will study the stationary distribution of the number of
customers in the queue, the mean waiting time, and the joint distribution

of the busy period length and of the number of customers in the busy

period.

B. Stationary Distribution of the Number of Customers in the Queue

Let X, be the number of customers in the queue right after the
th

n customer has left the system and let Hn be the probability mass
function of X, - We have the following recursive relation between the
X, 's: X, =X 1% (number of arrivals during nth service) - I

X
n-1>0
It is well known that the number of arrivals during the nth service. has

a generating function equal to FT(A—XZ)B’*(A-XZ) or FE(A—XZ)B'*(A-XZ),
depending on whether or not xﬁ_l = 0 . Denoting by H; the z-transform
of Hn , we have immediately

H;(z) = H;_I(O) Fi(k-kz) B'*(A-Az) + (H;_l(z) - H;_I(O))

F§(A-Az) B'*(A-)z) =




87
By classical methods [Karlin, 1975, pp. 96-102] one sees that the system

is ergodic if and only if X(Eb + Efz) <1 ; in this case the 2z trans-

form @* of the stationary distribution 1 must be equal to
I*(0) B'*(A-Az)(z Fi(k-lz) - F;(A—AZ])

=(2) = z - F5(A-Az) B'* (-Az)

and I*(1) must equal 1 , so, using L'Hopital's rule as z > 1,

1 - AE (b'+f2)

(0 = 13 E(E,T,)

B'*(A-Az) F;(A—Az)(z—l)

thus *(z) z - F§(A-2z) B™*(A-az)

1 - AE(b'+f2))

1 z Fi(A—Az) - FE(A—AZ)
1 + AE(fl—fz) FE(A-Az)(z-l)

If fi = F; , the second factor in brackets ie equal to one, and we
obtain the Pollaczek formula for M/G/1 queues with service distribution
* 1
F2 B |
I' is also the stationary distribution of the number of customers
in the queue at an arrival time [ Kleinrock, 1975, p. 176], and, because

the arrival process is Poisson, aiso at a random time.

C. Average Delay

Combiniﬁg the remark at the‘end of the last section with Little's
formula [Little, 1961], one obtains by differentiating 1nI*(z) the fol-
lowing formula for the average message delay, where the delay is.defined
as the difference between the times of service completion and message

arrival:
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2 2
A(ED'” + 2EF) Eb' + EE)) ) .

E(d) 1 - A(Eb" + Efz) 1+ A(Efl—Ef2)

Eb!' + Ef2 + %
_ s 2 .2
((Ef1 - Efz)(l AEfz) + % A(Ef1 Efz))

2 ! 2
A(Eb'™ + 2Ef2 Eb + Efz) 1

- 1
= Eb' + % T = X" ¥ EE,) T+ A(EE, - EE,)
(Bf, + % A(EES - E£2)) (D

D. Busy Periods

Denote by g and m respectively the length of and the number of
customers served in a busy period. We will characterize the function
GM*(s,z): = E[z"e >8] |

It is well known [Kleinrock, 1975] that if F1 = F2 , GM*(s,z) ,
there denoted GM;(s,zL,satisfies the relation

GM;(s,z) = zFE(s + A - XGMZ(S,Z)) B'*(s + A - XGM;(s,z))

We will express GM*(s,z) in terms of GM;(s,z) as follows: 1let

b1 and fl be the lengths of the first service and extra delay, and n,

be the number of arrivals during b1 and fl . We then have

n
B[ 8lb £, 0] = ze™S 11 ougx (s,2))

because the n, arrivals will generate n, independent busy periods

characterized by GMa . Averaging on n, bl’ and fl, one obtains
GM*(s,z) = z Fi(s + A - XGM;(s,z)) B¥(s + A - XGM;(S,Z))
Fi(s + A - AGM;(S,Z))

B EAGD) M3 (s,2)
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One obtains easily the moments

Efl + Eb!

E(g) = 1= X(EE,+E5 ")

1+ X(Efl - Efz)

B = T, vmn) @

4. Identification of B', F, and F

In the analysis of the queueing system of the previous section we
have obtained expressions that involve the Laplace-Stieltjes transform
B'*, Fi and F; . We will identify them from the previous description
of the coding scheme.

B' will be the probability distribution function of b': =
b + Eo(b) , i.e. b' is the sum of the lengths of a message and of the
low priority bit sequence that immediately follows it.

f

2 will correspond to the extra delay for a message in the middle

of the busy period. In our scheme, fé will be equal to O or 1,

- (\)l ...1)
depending on whether or not an insertion is needed. So F§ =14+2 -
(e_s - 1) if the first ¥1—1 )bits of all messages are equally likely and

-{v,;-1
C el 1 (3)
Ef2 = Ef2 = 2 .

It is harder to compute Fi . We start by solving the following
Let

vproblem./ the times 0,t1,t5,.00 form a renéwal process, the probabi-
lity distribution function of t, being C1 (C1(0°)=0) , and the distri-
bution of t. - t, ; being C, (C2(0_)=0) , 1=2,3,... At a random

time t , independent of the renewal process and with distribution function

1. e->‘t s t >0, a "supervent'" occurs. We wish to find the Laplace-
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Stieltjes transform of the distribution F, of the random variable f

1 1
defined as follows:
f1 = m1nf(tn~t)_+ d11(t 4t) + dZI(t >t)
n 1— 1
t >t
I)-—

where d1 and d, are random variables independent of the renewal process
and of t , with distributions D1 apd D2 respectively. In other words,
fi is equal to the time between the occurrences of the superevent and the

following event, plus a random variable whose distribution is D if the

1
superevent occurs before the first event, and D, otherwise.
We have immediately:
-s(tl—t)
* -
Ff(s) = Pr(t < t;) E[e It j_tl] D¥ (s)
. =-s min (ti-t);
+P(t>t) Ele n " [t >t]D5() (a)
t >t
Il._
We compute now:
o -Atl -
= = *
Pr (t > tl) fo e d Cl(tl) Clcx) (5)
—S(t -t) t - - -b
Bl ' le<t]=—2— ac ) S ar a0
1 - Ci(l)
_ L GG -gm
A-s 1 - CI(X)

Similarly, because t is "memoryless,"

-s(t -t) y C50s) - C300)

Ele ’tn-l cttysm>1] =5 1 -C300)

The right hand side member is independent of n , given n > 1 ; thus
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E -5 ﬂfn (t -t) y C3(s) - cx)
[e

[t >t ] =
t >t A 1 A-s 1 - C;(A)

Plugging these results into ( 4 ), we obtain,

X T
Fi(s) = 55 [(C](s) - CF(A)) DI (s) + I—:"ngxj'(cé(s)

- C3(\) DX(s))]

and by differentiation,

Cx (M)
_ 1 1 *
Efl = -y + ECl + T:—C—ZWTECZ + (1 - C’i \)) Ed]_ * Cl M) Ed2
cxr()
2 _2 2 2 ! 2
Efl = ;7- - X-Efl + Ecl + ZECIEdl + T—r CE(A) (ECZ + 2Ec25d2)

2 2
+ (1 - C{(V)) Ed] + CI(N) Ed,

We will use the fact that

i) )

IAEES = 1 2 L (RZ
Efl + ékEfl =% X[Ec1 + 2Ec Ed; + T CE(A) (Ec2 + ZEGZEdz)

) 2 2
+ (1 - Ci(%)) Ed1 + Ci(k) Ed2 ]
We will need later the fact that
Pr(t > t.) =t E0N™, w12, (6)

for the same reason as ( 5 ).
In our coding scheme, the '"superevent'" will be the arrival of a

message. Ci will correspond to the distribution of the flag of length

: ‘ ~sV,

vi plus the low priority bit sequence of length Ei. Thus C* = e *
i

-sgi
e i=1,2 ., d, and d

1 2 will be equal to zero, except if an insertion
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is needed in the first message of a busy period, so Df = D; =

-v2+1 s 5 -(v2-1)
1 +2- (e °-1) , and Ed1 = Ed2 = Ed1 =2 , under the usual
assumptions.
Thus,
e'l(gl+v1) - (v,-1)
Efy = -M/A+ &y + vy Xy M2 ) 2
1 i © (7)
and
A 2 -(v,-1)
EE, + §-Bf§ =% Ay + B v 2w + € 2 +
e‘x(“1+£1) ) -(v,-1)
g,y (28 * 20p08)) 2 )
1l -e
-(v,-1)
+2 277 (8)

5. Main Result

Putting together all the results of the previous sections, we

obtain a formula for the average message waiting time as a function of

E,() » & 5 &, Vyand v, ¢ from (1), (3), (7) and (8)
-(Vl-l) —(Vl-l) 2
A2 + 22 (Eb + EEO) + Eb')

. -(v;-1)
1-AMEb+EE +2 )
, - .-1) e‘*(“1*513
(vl+£1) + 2(v1+£1) 2 + -k(v2+€2)
—l-e L.:.
-X(V1+§1)

e
&1 v V; T 0,E) Vy+E5) +
e

Ew = %

LN
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-(v,-1) -(v,-1) -(v,-1)
(% v 20,0802 2 yw2 22 !

-(v,~1) -(v,-1)
2 -2 1

)

2
We also obtain the average number of low priority bits per mes-

sage, which, after a little moment of reflection, must be equal to

EE 4 E(number of low priority bits in an idle period)
Em

where m has been defined as the number of messages in a busy period.

By substituting ( 3 ) and (7 ) in ( 2 ) one obtains

A +E)) SWyrl)  -(vy-1)

e
_)\(\)2‘}22) (g2+\)2) + 2 -2 )

A(gl ) o+
_ 1l -e
Em = ’(VI‘I)
1 -X(EDb+E Eo + 2

In the parlance of Section 4, the number of low priority bits in an

© idle period is equal to El + 1 52 if the superevent occurs between t,

and t Thus its expected value is equal -to
-A (\)1+{;’1)

g, + =2 3
1 -A (\)2+£2T 2
1l -¢€

i+l

as can be seen by using (6 ).

The expected number of low priority bits per message is thus equal to

-A(vy+E))

) € 2 1 ‘(\’1—1)

Bt T,y | K P B - 2 )

1 -e J
E go + -)\(\)1+§1) — (10)
A e (€y#v,)  =(,-1) - (v;-1)
gI + vI + -X(v2+£2) + 2 -2
1 -e
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What is left to do is to try tq minimize E(w) on £o(b) , El’
Ez,vl and v, while keeping the expected number of low priority bits per
message fixed. In the next section we will gain some insight into the
problem of optimizing on go(b) for EEO fixed. This will reduce the

problem to optimizing on Ego , El , 52 , vV, and Yy s which will require

1

numerical computations.

6. Optimization of & (b)

We decided to let the length Eo of the low priority bit sequence
following a message be a function of the length b of this message.
Denoting b + Eo{b) by b' , we see from formulas ( 9 ) and (10 ) that
the average message delay depends on E b' and E b'2 while the
expected number of low priority bits per message depends on E b' , The
question then arisesof how Eo(b) should be defined so as to minimize
E b'2 bfor given E b' and B .

We will solve this problem for the case where Eo may take non
integer values. This will give some insight and a lower bound for the
interesting case when EO' takes only integer values, which is an infinite
dimensional non linear integer programming problem.

We must find

min /> (b + gocb))z dB(b)
£, (b)

subject to the constraints:
g, (b) >0 . s

S, €, (P) dB(b) Z E(§))> 0 (11)

o]

O 80




95

We start by defining o as the only root of the equation

[ % (x-b) dB(b) = EE)

This root exists and is unique and positive because the function

f: (x-b)dB(b) is continuous (left and right derivatives exist every-
where), is equal to 0 at x=0 , is increasing if it is not equal to
0 , and goes to © as X increases.

We have

£ e, )2 aBE) = 12 (v, ()7 dBO) + 5 (46, ()7 dB ()

|v

fg(b+go(b))2 dB(b) + £ b2 dB(b) + 20 S E_(b) dB(b)

by non negativity of Eo

1442
(/o b+ £ (0) dB(D))

v

o 2 0
+ / b° dB() + 20 S_ & (b)dB(b)
fg‘dB(b) o @ "o

by the Schﬁarz inequality

@ /2 dB®) - EE )+ 2 E ) BN
- __0© Co)* To "o” +fab2 dB(b)
/5 dB(D)

+ 20 f: £ (b) dB(b)

by the\definition of a

(@ /% dB) - e ® dBCb))2 o
= 0 a0 + f b2 dB(b)
/% aB(d) ¢

+ 20 f: £, (b) dB(b)

o® /% dB(b) - 20 f3 £ () dB(b) + I b2 4B (b)

v
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+ 2 f: £, (b) dB(b)
= o® % aB(b) + I b2 dB(b)

This lower bound is achieved if

b+€o(b) = (0 b<a

b b>a

i.e. if £, (b) = ga—b ‘b<a
LO b>a

This Eo satisfies (11) with equality because of the definition of
o and is thus optimal. This result is intuitively_pleasing.

As noted above, the constraint that 50 must have integer
values makes the problem much more difficult, except if o happens
to be an integer. 1In general, constraint (11) will not be satisfied
with equality by an integer solution if go(bj is a deterministic

function of b .
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7. Numerical Results

Many qf the results of this chaptér have limited . practical
intérest. This is due to the fact that generally there are no low
priority bits to be sent. However, the analysis of he previous section
is relevantvas far as the use of flags is concerned. We will briefly
consider how the flag lengths should be chosen to minimize the average
waiting time when no low priority bits are sent. (Formula (9) with
_50 = 61 =&, = 0.)

We recall that we use a flag of length v, to indicate the end

1
of a busy period, while flags of length v, are sent during the residue
of the idle periods.

From numerical computations it appears that the choice v2=2 is.
never worse than v2=1 , and is in fact optimal in light traffic. 1In
heavy traffic the second flag is rarely used, so its optimal length
 increases somewhat to reduce the probability of an insertion in the first

message of a busy period. The effect on Ew is relatively negligeable,

as illustrated in Table 4.1.

v2=1 v2=2 v2=3
AEb = .5 v = 3
Ew = . 1.739 1.733 1.975
AEb = .95 v, = 9 ?
Ew = 80.971 80.724 80.646

‘Table 4.1
Influence of v, 6n Ew

Eb=8 Eb2=64
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The situation is much more complicated as far as vy is concerned.
—(vl—l) -(vl—l)

The presence of the expressions 2 Eb and A2 respectively
in the numerator and denominator of the first term of the right hand

side member of (9) makes the optimal v, an increasing function of Eb

and X . Contrary to the case of v, Ew is quite sensitive to the value

2

of vy s especially when the load is heavy:

if Eb = 8 Eb® = 64
vz = 2
AMEb = .95
then EBEw = 92.89 for v1=5
= 80.72. for v1=9

We illustrate in Tables 4.2 and 4.3 the behavior of the optimal

value of v, as the load increases for two different message length

1
statistics.
a) Eb = 8 Eb% = 64
b) Eb =5 Eb% = 30

The first case represents the transmission of single characters without
special source encoding, whereas the second is representative of the
message length statistics when some source coding (see Chapter II) is
performed. Note that we did not take into account the effects that occur
when flags are longer than messages.

We do not give exampleswith larger average message length:
except in very heavy traffic the improvement in performance brought by
the use of optimal length flags do not warrant the increased complexity.
It seems more sensible to send "0'" 's when the line is idle, and to

prefix every message with a "1'.




Table 4.2

Optimal v, as a Function of the Load

1

Eb=8  Eb>=64 v,=2
' optimal Ew for Ew for Ew for
A Eb v optimal v \)l=2 \)l=1o
.05 3 1.73 1.74 1.95
.10 3 1.99 2.01 2.43
.15 3 2.28 2.31 2.92
.20 3 2.61 2.65 3.43
.25 3 2.97 3.04 3.97.
.30 - 3 3.40 3.50 4.55
.35 3 3.89 4.02 5.18
.40 4 4.45 4.65 5.87
.45 4 5.11 5.41 6.64
.50 4 5.90 6.33 7.52
.55 4 6.87 7.50 8.55
.60 4 8.09 9.00 9.79
.65 5 9.66 11.02 11.34
.70 5 11.69 13.88 13.36
.75 5 14.55 18.23 16.13
.80 6 18.81 25.67 20.24
.85 6 25.83 41.26  27.01
.90 7 39.71 94.71  40.48

.95 9 80.72 o 80.84




100
Table 4.3

Optimal vl as a Function of the Load

Eb=5 Eb2=30 v,=2

optimal Ew for Ew for Ew for
A/Eb v optimal 2 V=2 v,=10
.05 3 1.69 1.69 2.05
.10 3 1.89 1.90 2.59
.15 3 2.12 2.14 3.13
.20 3 2.38 2.41 3.66
25 3 2.67 2.72 4.20
.30 3 3.00 3.09 4.74
.35 3 3.39 3.52 5.30
.40 3 3.85 4.04 5.89
.45 3 4.39 4.66 6.52
.50 4 5.03 5.44 7.22
.55 4 5.79 6.44 8.02
.60 4 6.75 7.76 8.97
.65 4 7.99 9.60  10.15
.70 5 9.62 12.30  11.67
.75 5 11.84 16.71  13.75
.80 6 15.19  25.17  16.83
.85 6 20.61 47.92  21.91
.90 7 31.26 321.00  32.02

.95 9 62.36 e 62.42
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Chapter 5

Encoding of Message Origins

1. Introduction

In the previous chapters we have examined ways to encode the
message contents and lengths, and to differentiate between idle and
message bits. We will study here how to encode message origins and

destinations in a simple case. The model is as follows:

Figure 5.1: The Model

Messages are sent from the asynchronous sources Si=’ i=1,2,..m , to a
concentrator containing an infinite buffer. From there they are trans-
mitted over a noiseless binary synchronous link to a "deconcentrator"
which sends the messagesto their destinatioms, Ri , i=1,2,...n . We
observe that in general the destinations must be indicated by the sources
to the concentrator, the origins and destinations must be indicated to

the deconcentrator, while the origins alone need to be indicated to the
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receivers.
To simplify the model, we can associate a virtual source and

receiver with each source-receiver pair, as in the following figure.

Ri1
Rln
le
Rmn
m Figure 5.2: Simplified Model
Each source sends messages only to the corresponding receiver
so it is enough to indicate to the deconcentrator the message origins.

We will consider only this reduced problem.

2. Basic Idea.

Assume now that there are M independent sources, and that.
messages from source i arrive at the concentrator in a Poisson manner
at rate X , so that, as seen by the concentrator, the probability that
the next message comes from source i is 1/M . Does this imply that
we need at least an average of 'logz M bits per message to indicate the
origins to the deconcentrator? The negative answer to this question

justifies the existence of this chapter.
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If the messages were sent out by the conéentrator in the order
they were received, log2 M would be a lowerbound to the average number
of bits per message. However, although in general messages from a
given source must be sent in the order they were received, to insure the
intelligibility of the sequence of messages, there is no reason for
messages from different sources to be transmitted in this fashion. It
is precisely the possibility of reordering the messages that permits a
decrease in the amount of information. We will illustrate by two
examples how easily this can be done. \

In both cases we assume as in Chapter 4 that each messagé contains
a codeword indicating its length, that the sources are ergodic, that the
mean interemission time of source i 1is E(ai) , and that the mean
length of messages from source i is ECbi) . In both techniques we
- queue the messages in a special buffer according to their origins.

In technique I we transmit a "0" if buffer 1 is empty; if not,
we transmit a "1" followed by a message. We go then to buffer
(i+1) mod M and repeat the process.

In technique II we still transmit a "0" if the buffer is empty;
if it is not empty we transmit all messages present, prefixing then with
a '"l1" . We go to buffer (i+l1) mod M and repeat the procedure.

In both cases, if the receiver is initially synchronizedxénd if
there is no transmission error, the receiver will be able to recognize
the origins of all messages.

By a reasoning similar to the one in Section 1 of Chapter 4, we

obtain the result that the average number of protocol bits (the '"0"s and
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the "1"s) per message is equal to

[

¢9)

I

[

for all techniques resulting in a stable system. One sees that in heavy
M ‘

traffic (I E bi/E a; :,l) this quantity will be very small. We
‘ i=1

recognize that amongst the protocol bits, some indicate that the line
is"idle" (all buffers are empty), while others effectively indicate the
origin of tﬁe messages, but the receiver is incapable of differentiating
between these two kinds.

The conceptual difficulty of defining a "protocol bit'' that we
met in Chapter 4 reappears even more strongly here. We could try to
reintroduce the concept of '"low priority bit" from Chapter 4 but this
does not appear to lead to very useful results. We will rather use two
other approaches: in Section 3 we will modify the model and neglect
completely the idlé bits, concentrating on the study of how the reorder-
ing of the messages can decrease the amount of information necessary to
specify their origins. In Sections 4 to 7 we will analyze some strate-

- gies to transmit the messages and their origins in an efficient manner,

the goal being to minimize the expected message delay.
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3. A Simplified Model

A. Introduction

To avoid the difficulties associated with the presence of idle
times in the usual queueing model, but still be in a position to study
the influence of the reordering of the messages on the amount of
information necessary to specify their origins, we study the following

model where we keep the number of messages in the queue constant.

B. Notation and Description of the Model

At time O a buffer contains N-1 messages, of which m. came

from source j , j 1,2,...,M .

At time 1 + %-, i=20,1,... , one and only one new message
enters, it comes from source j with probability pj independently of
the initial content of the buffer and of the previous arrivals. We
denote its origin by Xi .

At time 1 + %— one and only one message is removed from the

buffer. We denote its origin by Yi .

We denote by Si the state of the buffer at time i , i.e. S,

i
M
is a M-tuple (ml, mz,...,mM), jzl mj = N -1, where mj is the number
of messages from source j present in the buffer at time i . One sees
N+M-2
that the number of possible values of Si is N-1 [Feller, 1968,

p.-38], which we denote by ¢ . We index in some way the values of Si s

and denote them by s L The probability distribution of So

1’ 52,..

is known a priori. We denote it by the row matrix HO , whose jth

component is equal to Pr(So = sj).
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Similarly, S; denotes the state of the buffer at time 1 + %—.

N messages are present in the buffer at that time, so that S; can

+ _ fN+M-1 . : + + +
take ¢ = ( N ) different values denoted Sps SpsecesSoy e

Very often we will need to deal with sequences of inputs and

,X.

J_1) and we

outputs. x[i,j) denotes the sequence (Xi, Xi+1,...

define Y., . in a similar fashion.
[1,3)
It will prove useful to define a function U (for Unordering)
whose domain is the set of sequences X;. ., and Y .. . and whose values
[i,3) [i,3)
are M-tuples. The kth component of U(X[i j)) is the number of Xn
in X,. .
[1,3)
We can use U immediately to verify the relation

that are equal to k .

S, + UX;., .- UX,. .y)=S. i<j 1
1 ( [1:3)) ( [1:3)) J =J ( )
If a suitable probability distribution has been defined, H(Y[i j))
denotes the entropy of Y,. .. , i.e.
Py [i,j) * *°
H(Y . . = -z Pr (Y. ..\= .o lo Pr(Y,. ..= ..
Opi,5)) Voo s Ori,57 V1,5 108200 57 Vs, 5)))
' [lsJ)
To avoid the introduction of more symbols, we also use H 1in the

following sense: if ¢ 1is a s-tuple, <c¢ (c,5C5y...5C_) , with non
g P 1°%2 s

s
negative components, we define H(c) := - L s log2 c; - The meaning
i=1

of H(.) will always be clear from the context.

C. Objective

 The problem we wish to study is to find an "optimal" way of
making the Yi 's known to an observer watching the output of the buffer.

This involves two distinct points: first, at time i + %— the
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transmitter must decide what message to send out, i.e. the value of Yi .

There is a constraint on Yi : one can only send out a message that is
actually in the buffer. Mathematically this translates into the

stutement: ''all components of Si+ must be non negative,' and was

1
implicitly - taken into account when we determined the number of states.
Second, the receiver must be able to recognize Yi . To that effect we
allow a binary codeword of (variable) length n, to be transmitted in
front of every message, and we require that the knowledge of the code-

words transmitted at time j + j=0,1,2,...,i,and of Y

4 [0,1)
uniquely specifies Y, . ’
Our objective will be to minimize the "expected number of protocol
T-1 .
bits per message," h := lim sup E |% I n.| over all possible encoding

T T i=0
strategies, i.e. the choice of the message to be sent next, and the
choice of the codewords indicating what message is sent.
We will give some examples in Section D and a lower bound in

Section E. Finally we show in Section F how dynamic programming can be

used to find the "optimal" choice of the message to be sent next.

D. Examples of Strategies

The end of the previous section may be made clearer by consider-
ing the.following strategies.,
STRATEGY 1

We transmit the messages in the order they entered the buffer;
this is the only choice if N=1 . The probability that (Yi=k) = Py »

i > N, thus the best we can do is to use a Huffman code to indicate the

message origins, and the average number of protocol bits per message, h ,
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will be bounded by

H(p) <h < H(p) +1
where p := (P, Pysee-s Py

STRATEGY II

We do the following: at time .75 we send a Huffman codeword
specifying S; ; at times .75, 1.75, ..., N -.25 we transmit in some
prespecified order (e.g. all messages from source 1, followed by messages
from 2, etc.) all messages present in the buffer at time .5 . Note that
no codewords are needed at times 1.75, 2.75, ..., N - .25 . At time

N + .75 we transmit a codeword specifying st and repeat the procedure.

_ ‘o + .
The probability that Skn = (ml, Mys eees mM) », k>1, 1s equal to

. m m M
N 1 M ~
Mg PLoctro By o My 20 B omy s Nt
*N *N

N

*
tEﬁE__l,fvh < B N) * 1 here H(p N) denotes the entropy of the multi-

‘nominal probability distribution.

It is of interest to examine how this expression behaves as N

increases. We gan write

1 1 MoN Nt m N-m
p; log, p, - g log, Nl + = | ¥ L [ }p.(l—p.) log, m!
13 2 %3 N 2 N 5=1 m=1 mj*j j 2

*N
Hp ) _ _
N

™M=

j
To .get a lowerbound we use the log-convexity of the gamma function to
obtain

*
1 N
> -

=z
A

[{ I I

N~

1 1
- ! —
X pj log2 pj N log2 NI + N ; 1og2 (1 + ij)

» 5

The use of Stirling's formula [Feller, 1968, p. 52], tight if ’Np} >1

j 1

log(T (1+x)) > log Y2I + (x + %J log x - x log e
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1 .
1og2 (27N) + >N log2 P- (2)

1 J

2z
.
n ~mz

To obtain an upperbound, we use Stirling's formula for 1log m! together

with the inequality

m - ij
log m < log Np. + ———= log e
gmZ< log PJ Np. g
J
This yields »
/2TNp . Np. 2
|- J j log e m
log m! _f_log2 g+ m log e2 + 2ij + ij log e

This does not hold at m=0 when ij < ,43 but is otherwise satisfied.
*
Using this in the formula for H(p N) , and using Stirling's approxima-

tion for 1log N! , we obtain

*N M
H(p ) 2 M-1 1
N N log2 (2meN) + >N .E 1og2 P

1 J

- We can thus conclude that for this strategy, the expected number of

protocol bits per message is equal to %ﬁi log2 N+0 [%) .

STRATEGY III

Here we note that at time i + %— there is at least one source

N+M-1J
M

the binary representation of the index of this source, then the |

such that | messages from it are stored in the buffer. We send

N+M—lJ
M

messages. The average number of protocol bits per message is bounded by:

logy M . <(1og2 M)+ 1
T = (T
M M

Here for large N , h 1is approximately equal to MI¥:T'IOg2 M

which is better than in Strategy II. However, for small N , II may be
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better.

The two following strategies will be studied "+ the case M=2
and Py =P, = .5 . A comparison of all strategies for this case appears

in Table 5.1 .
STRATEGY IV

Strategy IV is essentially polling: one transmits as many
messages from source 1 as possible, until none remains in the buffer.
One transmits then a run of messages from source 2, then 1 again, etc.
The end of a run can be indicated by a flag as studied in Chapter III;

If N=1 , each run has a geometric probability distribution. 1In
general, the probability diStr;bution of a run is the distribution of the
sum of N independent geometric random variables, and thus a Pascal

distribution:

11" (n-1 |
Pr (xrun = n) = [5} {n-N] n=N, N+1, ...

~Its mean is equal to 2N , so we can bound the expected number of proto-
col bits per message by

Entropy of run _ h o< Entropy of run + .56
2N - ' 2N

The upper bound holds if the assumptions made in Section 4 of Chapter III
are satisfied.
We now turn our attention to evaluating the entropy. This can be

done numerically; results appear in Table 5.1. To obtain asymptotic

2 n-N n-N

o n
results we note that the entropy is equal to 2N - 3 {1) [n-l) 1og2[n—1).
n=N

N-
Writing log [2:;) = I log (n-N+i) - log (N-1)! , we see, from the
i=

convexity of 1log (n-N+i) , that - iog (ﬁ:;} is concave. By Jensen's
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2N-1) )
and, using

inequality we can lowerbound the entropy by 2N - log2 [ N

1og2 47N
2
log {g:é} = log (n-1)! - log (n-N)! - log (N-1)!, using the convexity of

Stirling's approximation, by Writing

the first term, using Stirling's approximation together with the formula

1oge x < x-1 for the second term, and Stirling's approximation for the

third, one can upperbound the entropy by (log2 4we2N)/2 . Thus, for

log2 N 1
+ 0 [

— N —) . This is about twice

Strategy IV, _h behaves like N

as good as Strategy II.
STRATEGY V

As mentioned earlier, we study this strategy only for M=2 with
P, = p2 = ,5 . Suppose that at time i + .5 we know that only-messages

from source J (3 = 1 or 2) are in the buffer. We can then send N of

them without any codeword, and the distribution of S§+i Qill be
binomial. We then alternate between messages from 1 and 2, until this
becomes impossible because the buffer contains only one kind of message.
We then signal the end of the run, e.g. by a flag.

The expected number of protocol bits per message is thus bounded

by

Entropy of run h < Entropy of run + ,56
N + E(run) -— N + E(run)

The upperbound holds if the assumptions made in Section 4 of Chapter III
are satisfied.

| It is of primary importance to study the stétistics of the run.
Assume that we try to send a message from source 1 at odd times, and a

. + .
message from source 2 at even times. Si performs a non-stationary
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~random walk: with probability .5, S;+1 = S; whereas with probability
+ + . . . + + .
.5, Si+1 = Si + (-1, 1) if i 1is odd, and Si+1 = Si + (1, -1) if

i is even. A run stops if s‘i’ = (0, N) with i odd, or (N, 0) with
i even. However, we note that as far as the statistics of the

remaining time in the run is concerned, being in state SZ = (k, N-k)
at time i is equivalent to being in state S;+l = (N-k, k) at time -

i+l , We can thus describe the process by the (N+1, N+1) transition

matrix

N =
N =

N
ST

N b=t
D]

DO} =

1
2

corresponding to the staﬁionary process:

U,N-1) SRR (AR (N.0)

A
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It is entirely feasible to compute the distribution of the time
until trapping in state (O0,N) if the initial probability distribution
of the state is binomial, by classical Markov chain methods e.g. [Howard,
1971, vol. I]. Results appear in Table 5.1, Fortunately, the mean time
- until trapping has a simple form. Denoting by g(ml, m2) the mean time
until trapping if the initial state is (ml,mZ) one finds the relations

g(0, m)) =0
g(ml, mz) =1+ %-(g(m2+l, m -1) + g(mz, ml)) my > 0
The solution to this system of equations 1is
g(ml, m2) = 2ml (2m2 + 1)
Averaging on the binomial distribution of the initial state, one finds
2

that the expected run is equal to N~ . It is now easy to upperbound

the entropy of the run: by [Gallager, 1968, p. 507] it is upperbounded
. 2 1 . . . .
by ((N” + 1) H[—i————} where H is the binary entropy, i.e.

N™ + 1

H(x) := H((x,1-x)) . This bound is extremely close to the actual value
(the relative difference is less than 1%), indicating that the
probability distribution of the run is nearly geometric. From the
results of Section 4 of Chapter III, fixed-length flags will be almost
optimal.

Because X H[i) j‘log2 ex , h 1is upperbounded by

log, (e(N> + 1)) + .56
L

- N% + N

The presence of N2 in the denominator makes this scheme markedly
superior to all others. Note that it is the combination of two features

that makes it efficient:
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-~ the fact that it does not attempt to send a message for N time
units after detecting that no such message is present;
-- the fact that it alternates between sources.

Strategy IV (polling) has the first feature, but not the second; we have

seen that the expected run is equal to 2N . If one uses pure alternat-
ing, the expected run will be equal to 1 + %-go + %—gl = 2N , instead

of N+N2 when both features are present.
There are strategies for which h behaves like (k log(N))/N2

+ 0 (}50 even when M » 2 . We describe now such a strategy for the
N

symmetric case (pi = i=1,2,...,M) . It is a generalization of

M
Strategy V.

One removes one message from each source in cycles (say 1,2,3,...
'&,1,2,,..) until this becomes impossible. One transmits theﬂ M~-1
codewords indicating the number of messages from each origin remaining
in the buffer, and those N messages. This being done the distribution
of the buffer state is multinomial and we start the procedure again,
removing one message from each source in cycles. We cal; the number of
me;sages transmitted‘during the cyclic part of this strategy a £E§ .

If one uses a flag strategy as described in Section 4 of Chapter
. III to indicate the end of a run, h will be upperbounded by

log, (e(E(run) + 1)) + .57 + (M-1) [log, N]

<
h < E(run) + N
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If one can show that E(run) is proportional tc N the desi
result will be obtained. E(run) can be computed as in Strategy V. If

g(ml,...,mM). denotes the expected run length if the initial state is

(ml,...,mM) , one has the relations

i
o

g (o, Myr veey mM)

it

1
1+ ﬁ'(g(m2+l, My, -..,m -1)

g(ml,m2’ LA 4 Inl\'l) l

+ g(mz, m3+1,...,m1—l) eee + g(mz, m3,...ml))

This can be solved numerically. For M=3 we obtain the expression

3ml (5m2

3 (ml +m

+ 1) (3m, +2)

g(ml, m,, m3) = 3 T m3) T1 - E(run) is equal to the

average.of g(.) over the multinomial distribution of the initial state.
If M=3 we obtain E(run) = N(N2 + 1)/(3N + 1) , which is approximately
equal to N2/3 for largé N ,‘as desired.

We are unable to solve this:system of equation for all N , but
. can lowerbound E({run) by the following method.

Let (mi, mg, ceey m&) dencte the state of the buffer at time

j + .5 . Assume that at time .5 the state distribution is multinomial,

and start removing the messages in cycles. In order to obtain the
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bound we remove the constraint that the mi 's . must be non negative.

Thus the buffer state performs a non-stationary random walk and

k .
Pr(run £ j) = Pr ( min (m ) <0) 3=0,1,...
Ofkfj (k+1l)mod M -
M .
< % Pr (min il < o)
i=1 KEIN :0<i+kM-1<j
3=0,1,...

We recall a version of Kolmogorov's inequality [Karlin, 1975,

p. 280]: If al, a2, ceo form‘a martingale and have a mean Ea > O
Var(a_)
then Pr (min (a,, a,, ..., &a_) <0) < . Here for each i
1" 72 n — — 2
(Ea)
: 3 - . . R +-—
the m%+kM 1 's , k=0,1,..., form a martingale and have mean N ; 1
. . . 1 1
and variance (N+i+kM-1) ﬁ(l - E? .
Thus
1 1
(N+3) T 1 - 54-)
Pr (run < j) <M > j=0,1,...
&
M
W2 - () M(M-1)
and Pr (run > x) > max (O, > ) x>0

N
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o0
E(xrun) = fo Pr(run > x) dx

1 - Mu-1))°
2 M(M=-1)

> N > M(M-1)

.

This shows that E(run) increases at least proportionally to N2 for

large N , as desired.
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Strategy
11 I1I v \

1 1 1 1
.75 1 .678 .599
.604 .5 .519 .390
.508 .S 423 .274
.440 .333 .358 .203
.389 .333 .312 .157
.350 .250 .276 .126
.318 .250 .248 .103
.292 .200 .226 .086
.271 .200 .208 .073
.252 .167 .192 .063
.237 .167 .179 .055
.223 .143 .167 .048
.211 .143 .158 .043
.200 .125 .149 .038
.190 .125 .141 .035

Table 5.1

.1 i .
1im = H|Y. as a function of N

M=2 Py = Py = .5
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E. A Lower Bound on h:

We have shown in Section D that simple strategies (i.e. II) can

make h decrease like M+§—1 ; more complicated strategies (i.e. V)
log2 N
yield a decrease proportional to > We will show here that h
N

cannot decrease faster>than ((M-l)/(M+N-1))2 . We will use in the
sequel many standard relationj between information theoretic expressions;
they can be found in [Gallager, 1968].

Assume that we have decided on a feasible strategy. We have that

for all T,
%-E bs n, > T H(Y o 0)
i=0 (0,1)
thus
. 1
h > 1lim sup T'H(Y[O,T))
>
p nlg |
> lim sup = I = H(Y[, . Y .oy ) t=1,2,3,...
e Wiopt [it, (i+1)t) [0,it)

(in fact we have equality, but this requires a little proof)

1 n-1
> lim sup ﬁ‘ z
N —>oo i:

1 \
. THO e, enyey 1Y q0, 50y Sit)

t=1,2,3,... (3)

1
We now lowerbound E'H(Y[it,(i+1)t)]Y[0,it)’ Sit)

1

1 | |
We have £ H(Y(3y 5.1y)1Y(0,16)2 Sied 2 € T ae, ety [it, (1) e)

Y[0,1t)> Sit)
where I(A;B) H(A) - H(A|B)

H(B) - H(B|A)
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2 IR e, 1)) 3V Ui, ey ey
Yro,1t)> Sit)
by the Data Processing Theorem
[Gallager, 1968, p. 80].

_1 | '

=g WU 9)) - HORX e Ganyey)
U [5e, enye))s Y[o,it)* Sied)

by independence of the Xir's.

Repeating relation (1)

Uit @+nt)? = Sasne * V0 ae, gene? - Sic

and remembering that S can take ¢ different values, we see

i+1)t

[it, G+1t)) 3 Sie o UX5e (enye))

most o .different values.

that for every U(Y can take at

Thus HUKX o

lit, a+06)) Ve, aenye))2 Y[o,16) Sie) < 108
Writing H(U(X[it (i+1)t))) = H(p*t) as in Section D, and replacing in

(3) one obtains

1o %t |
h > max - %-(H(p ) - log, ) (4)
t=1,2,.. '

This can easily be computed.

We are interested in an asymptotic relation for large N . Using

()
* - ‘ M
HE ") 2 75+ log(amt) + 3 L log, p,
h j:]_
11
e 02 M-1
with t=?7'r- ™ in (4)
I p
j=1 )
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one obtains (neglecting the integer constraint on t)

1
Moo
2Tr(1og2 e){ II p.}
h > i=1
= o g2/M-1
For M=2 , o=N,
21 (log, €) py P
o h > 2 ' 1 P2
e N
_ 834 if po=p
N2 1 2
One can show that
M-1
N+M-2 M+N-2
¢ (M-l)i[e M—l)
so 1
M |M-1
2n(log, € | T p.
> 27 =1 ) M= |2
- e3 M+N-2

F. "Optimal" Strategy

As explained in Section C, a strategy
-- a rule to determine the value of Yi ;

-- a code to indicate the value of Yi .

The first part is the most interesting.

into it by assuming that non integer codeword
only to the Kraft inequality [Gallager, 1968,

very easy to solve the second part.

consists of two parts:

We will gain some insight
lengths can be used subject

P- 47]; in that case it is

Let's assume that one has decided how to select that Yi 's; then

for all encoding strategies
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LTl
E ‘Eo n, 2_H(Y[O’T))
T-1 .
=B D Pl ot POy
710,1) i

¥(0,5¥10,1)) 1% (Pr(Yi=yiIY[O,i)=y[0,i)Iﬁ_
This lowerbound can be achieved by using at time i a codeword of length
“logy (Prl¥3=; ¥ (0,1)™ [0,1))

if Yi=yi and Y[O,i)=y[0,i)

This codeword provides just enough information to enable the receiver to
reéognize Yi . A consequence of this is that the conditional probabi-
lities
Pr(S.=s.|Y;n :1= ., and codewords transmitted between 0 § i
(53755 ¥ 10,4)™ [0,1) )

= Pr8i=s51¥10,5)10,1))
Note that this is not true for all encoding strategies: in Strategy II,
the codeword transmitted at time .75 specifies not only Yo’ but also
S: . Thus in general Pr(Sl=sj’YO=k , codeword transmitted at .75)
£ Pr (sl=sj |Y0=k) .

Now that we have ''solved'" the second part of the problem, we can
turn our attention to the first part: how should we choose the Yi 's
so as to minimize

lim sup l-H(Y ) = 1lim sup - 1~Til )X Pr(Y
T [0,T) T T

T-‘)OO

s =Y o
i=0 y{o,;) [O") [0,'))

'EE PrOril Yo,y 10, ) ORPT O3l Vs 0y 1000
i
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It turns out that this can be done by dynamic programming.

Unfortunately we need first to give some more definitions:

S

L~ denotes the unit simplex of RS>

1 denotes a column matrix of suitable dimension (depending on the

context) with all components equal to 1 .

ek denotes a row matrix »f suitable dimension (depending on the
\

th

3

context) with all components equal to 0 , except the Kk

which is equal to 1.

th ’
n.(yr, :4) 1is a M-tuple whose j  component is equal to
iv[0,1i)

Pr(S.=s.|Y L = o).
r(83=551¥70,1)7[0,1)’
Similarly,

H;(y[o i)) is a o+—tup1e whose jth component is equal to

+ o+
P85 Y10, 1) V10,13

By independence of the X, , ome can write:

. _ .
Hl(y[o,l)) - Hi(y[(),i)) P (5)
where P is a (o,o+) stochastic matrix whose element Pi' = Py if
+
s. =s, +e , and 0 3if there is no such k.
j i k
EXAMPLE: M= 2 N =2
o= 2 o = 3
if $; = (1,0) S, = (0,1)
+ + +
$; = (2,0) S, = (1,1) Sz = (0,2)
then
_(Pr P O
P = 0 pl Py fxx

A policy o, oa=1,Z,...1 (7 will be defined later), is charac-
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terized by a (o+,M) policy matrix A% with the following properties:

1) AY. =0 or 1

1]
M a
2) T Ai. =1
j:l J -
3) Agj =1 only if the state S; contains a message from Source i .

The significance of this is that if at time k+.5 the state is s; , one
will choose Yk := m such that Ajm = 1 . Properties 1) and 2)
guarantee that a unique such m exists, and 3) guarantees that.only
messages that are’actually in the buffer may be sent.
Matrix A% has the following additional properties, which are
,easy to verify
1) A% is stochastic
2) If policy o 1is used at time i , the conditional probability
that Yi = k given Y[O,i) = y[O,i) is eqqal to the kth

+ o o
component of Hi(y[O,i))A , or (by (5)) of Hi(y[D,i))P A .
EXAMPLE: M= 2 N = 2 as before.

There are only two policies, 1 and 2, with

1 0 1 0
Al 1o A= o 1
0o 1 0 1

"1" in state (2,0) and a "2" in

In both cases, one transmits a'
state (0,2) (there is no other choice); policy 1 transmits a "1" in
state (1,1) , whereas policy 2 transmits a "2."

If Hi(y[O,i)) = (pl, pz) , and if policy 1 is used,

(Pr(Yi=1lY Pr(Yi=2|Y

[0,1)~[0,1y" [0,1)~10,1)”)
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= (p, 0,) [P, P, O 10
172 1 2 1 0
0 P; Py 01

= (pl * Py Py Py P,y) kokx

Note that the number , T , of policies ;an be quite large: if
messages from k origins are present in state s; , the jth row of
a policy matrix can take k distinct values. The number of states with
messages from k origins present is in turn equal to {z) {E:i)
(with {§J== 0 if a < b ), where the.first factor is the number of
distinct choices of k origins, and the second factor represents the
number of ways of distributing N messages between k origins, in

such a way that each origin receives at least one message. This last

number is equal to the number of ways cf distributing N-k messages

. o (M) N-1
v B
T ke

between k origins. Thus there are ] distinct policies.
. k=1 .

EXAMPLE:

We have seen that if M=N=2 , there are 2 policies. In the

seemingly innocuous case M=4 , N=8 , there are about 6.22 1073 policies.

k%

Associated to policy o we define M (a*,c) transition

matrices Ba’k‘ k=1,2,...,M, by

a,k _

Bij ¢ 1 if and only if
sj =55 =8

-

a —
‘\Aik‘l

k 0] otherwise
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These matrices have the following properties; they are proved by direct

examination.

th

1) Ba’k u = k" column of A% H

2) If policy o is used at time i , Pr(Yi=k|Y

— + a k .
= Hi(y[o,i)) B’ u

[0,i)Y[0,i)

3) If policy o 1is used at time i ,

+ a,k
" 0ro,5)) B
Hi+1((y[0,i),k)) - n+( ) Ba’k‘ (6)
iY0,1) u
(this is Bayes' rule).
Property 2) justifies the appellation of '"transition matrix." Using (5),

(6) can be written as

a,k
Ty (g gy k) = o)) 7
i+l [0,i)°77” 1. (y ) P Ba,k
-~ HiY90,1) 4
EXAMPLE: M=2 N =2 as before.

Associated to policy 1 (defined earlier), we have the matrices

1 0 0 o0
Bl’l = [0 1 Bl’2 = 0 O
0 o0 0 1

é’é = 1 because state (0,1) can be obtained from

As an illustration, B
(1,1) by removing (1,0), and because if policy 1 is used, a '"1" is trans-
mitted if the state is (1,1).

Say policy 1 is used at time 1i ,

Hi(y[o’i)) = (pys 0,)
+ + o+ o+
Hi(y[O,i)) = (pl, pZ’ 93) = (DIPI: plpz + szl: szz)

Then if Yi =1
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+ . + o+ . +
pl 02 Dl 02

Hi+1 ((Y[O’i):l)) =

_ (PP P1P2 * PoPy
P1 ¥ PPy P1¥ PoPy

\

whereas if Yi =2

Ty (Opg,5),2) = (0,1)

Similar expressions result if policy 2 is used. *k ok

Although we are interested in minimizing lim sup l-H(Y )
Tow T T 700 [0,T)

.. . . .. 1 . .
1t 1s easler to first minimize T;T‘H(Y[O,T+l)) for some fixed T.

We have from (4)

T
A0, meny) == 202 Prpg 5370, 5y) Cro3 g, 1))
70,4
where CT—i(y[O,i)) 1= - 5 Pr(Yi=yi[Y[0’i)=y[0’i]) log, (pr (Y;=y;
i

VIY[O )70 i))) is called the expected immediate cost at time i ,
given that Y[O,i) = y[O,i)

Defining Do(y[O,T=1))

Di+10p0,7-1)) *= G 0o, 72490 * 3 Pr(¥p_i=¥r 3
T-i

IY[O,T-i)=y[O,T—i))'Di((y[O,T-i)’yT-i)) (7)
We have that H(Y[O,T+1)) = DT+1 . Di is called the cost to go at time
T-i+l . Using Bellman's principle of optimality [Bellman, 1957] we see
that this expression can be minimized by going backward in time: at
time T-i , for every sequence y[o T-i) we should find a strategy
2

such that the resulting values of pr(YT—i=kJY[O,T-i)zy[O,T—i))’
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k=1,2,...M , minimize Di+1(y[O,T—i)) .

In a first step we will minimize H(Y over all strategies

[0,T+1))
consisting of using at time 1 a policy a(y[o i)) . We will show
later that nothing is gained by using more general strategies.

At time T the receiver has computed HT(y[O t)) . If the trans-

mitter, which can also compute HT(y[O T)) , decides to use policy a ,
3

one checks that

One sees that there is a policy aO(HT(y[O,T)))’ depending on y[O,T)
o

through HTCY[O,T))’ that minimizes H(HT(Y[O,T)) P A7) over all

policies. We denote the minimum by VIGL{y[O,T))) . Thus V1 (called

the minimal cost to go at time T) is defined by

V (M := min H(I P A%
o
= 1 p A%, (8)
It is aesthetically pleasant to define VO(H) =0 )]
EXAMPLE: N =2 M=2 as before

If policy 1 is used,

P, P, 0471 O
P, P, |

H(P,P5)
whereas if policy 2 is used
One sees that policy 2 minimizes the expected immediate cost if

Kk
Py = )



129

As we have.seen earlier, the number of policies can be enormous.

We show now that at most M!

minimizes CO(Y[O,T))

policies need to be considered when one

THEOREM I
Let g be a policy minimizing the expected immediate cost
H( P Aa) for a given 1 in z° Denote the ith component of IIP by
. a .
o o
oy - Let (Tl, Toseees TM) f— IPA .

For the given II , for all

such that p; > 0 define the

relation > on {1,2,...,M} by :

such that si

{1,2,...,M} .

Vv A4

(V2PY * @

n

P .
if Ai? =1, then j >k for all k#j
contains a message from k .
Then > is a partial ordering of
Proof:
We must prove that if jl
j2
In-1
then it is not true that jn > j1 .

Without loss of generality,

messages from j, and %i mod -1

Because a

0 is optimal

Assume to the contrary that jn > jl.

assume that state s; contains
a
i=1,2,...n , and that AiJ‘? =1.
i

-T. . = T, . < =(t. -p)lo . -p) - . +p)log, (T, + 10.
Tjlogyy T Tjlogyy = -(fy -eplogfry -e) - (ry sy)logy(ry +e)  (10.2)
1 Z 2 a
otherwise . H(IPAY) © would be reduced by making Al? = 0 and
a 1
A =1,

lj2 -
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Relation (10.a) can be rewrjtten as

z (10.b)

The function x 1Og2X - (;+p)1og2(3+p) decreases with increasing g for p>0,

T. -p,)l1o T. -p - 1, log,T. < t. log.1. - (T. +p.)lo T. %p.)
(vJl 1) g2(31 ) i, 0825 255, 873, (32 pp)log, (15 +0y)

so (10.b) implies

> T,
)

Similarly

. ;2T i=1,2,...,n
I3 % mod nj1

Adding these inequalities one obtains

which is a contradiction.
Q.E.D.

Because a paftially ordered finite set can be totally ordered,.

we have the following theorem:

THEOREM II
There is a policy o minimizing H(I P Aa) which has the form

-- define an ordering * on {1,2,...,M}
- A:j =1 1if j 1s represented in S; and if j >k for ail
k#j represented in sz
There are at most M! such policies;
Q.E.D.

An algorithm that comes naturally to mind, but which does not
quite work, to define the ordering > 1is the following:
-- for j=1,2,...,M compute from I the probabilities pi s

k=1,2,...,M , that at time 1i+.5 the buffer contains at least one
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.k,

message from source k , but none from sources kl’k 51

g0

U . j -
Let kj := min {k : Py Zp, m 1,2,...,M} .

-- Define > on {1,2,...,M} by k, >k, > ... 3 ky -
The idea behind this algorithm is to send a message from the origin that
is the most likely to be represented in the buffer. If this is impossi-
ble (because no such message is in the buffer), we try the next most
likely origin and so on. |
Here is a counterexample showing that the resulting policy is not
necessarily optimal. | | o

EXAMPLE: N=2 M=23

Py = .2 P, = .6 Ps = 2

s = (1,0,0) s, = (0,1,0) s, = (0,0,1)

I = (.475, .05, .475)

+ + +

s; = (2,0,00 sy = (1,1,0) sy = (1,0,1)

+ + +

54 - (0,2)0) 55 = (031’1) 56 - C0,0,Z}
One finds

n" = (.095, .295, .19, .03, .295, .095)

p; = .58 pé = .62 pg = .58 Ky = 2
P} = .285 p2=0  pi = .285 k, = 1
P>=0  p>=0  pi= .09 kg =3

The resulting H()

-.62 log2 (.62) - .285 log2 (.285) .095 logz(.OQS)

t

1.26
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However, the ordering 1 > 352

results in the cost

H(.) ==,58 log2 (.58) - .39 log2 (.39) - .03 log2 (+03) = 1.13

* %%

At time T-1 , or more generally at time T-i , i=1,2,...,T ,

the receiver has computed HT-i(y[O,T—i)) . The transmitter must find
a policy oz(y[O T—i)) minimizing (from (7))

M

¢ Opo,7-1)) * o 37k IY (o 15y [0, 7-1))

Vi Uy 541 (g, 7oy 1)

We have seen earlier that if policy o is used

o
€1 U0, r-1)) = B ; 0o po5y) P A

k

a’
Pr (rp_3=% Y10, 1) [0,1-1)) = Tp=3Of0,7-4)) P BV u

a,k
Tri Opo,rei)) P B

T 341(0po, 121y = K

a’
Ty OUro,r-1p) PB7 v

Thus policy a(y[o T-i)) must minimize
3

o o,k
A3 Opo,roay) PAD + B Tps O pgy) P B

. a,k
Tr_ 0o, 7-1y) P B

) a b
T iOpo,7-1)) P B

V.
i

k

Clearly there is an optimal policy, ui(HT-i(y[O,T—i))) which depends

on y[O,T-i) only through HT-i(y[O,T~i)) . We define Vi+1(n) ,

the minimal cost to go at time T-i , by
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i e oy oy a,k P B
V. . (@) =min W@ PAJ + £ nmpB’ uv, |—2—ur
1""1 " k__l Ir P Ba’k
a = ! U (11)
a, () M a; (1), k . )k
= H(I P A )+ £ N PB u vV, |
k=1 1 aiUI)’ :
_ IPB u

At this stage we have done the following: we know how to mini-
mize H(Y[O,T)) in a recursive fashion over all.strategies consisting
6f using at time i a policy a(y[o,i)) . We have seen that in fact
there is an optimal policy that depends on Y(0,1) only through

. , . .
Hi(y[O,i)) . We will now prove some properties of the Vi s.

THEOREM III

Vi(H) is a continuous function of I .

Proof:

By continuity of H(.) and induction on i .
Q.E.D.

THEOREM IV

Let A be a (s,t) stochastic matrix.
Then: T u H{%%) is a concave function of I  for @I ia the set of
s-tuples with non-negative components.

Proof:

Let Hl and H2 be two such s-tuples;

1 1
let (ql, cen s qt) 1= H] A

2 2
(ql, oo s qt) t= H2 A

Then: for ie[0,1]



A ' ‘ ]34'
(1-3) 1, u H T .

All, u H

—
=] B =]
s
AL

()
+

(I, + (1-2)1)A
(A + (1-11,) u H O, + Q-0L)u

oo

t

t 1 12
= A jzl qj log2 1[ T
I
% =1

.+(1-)q) B
t
I CREY
i=1 *
+ (1-1) _Z q,; log +
)=t Q§ [.2 CHEN BV }
i=1 .

< 0 because log X < x-1 .
~ Q.E.D.. -

If s=t and A is the unit matrix, this gives the well known

result that H(II) is a concave function of 0 for I in“ZS

COROLLARY IV.1: Let A be a (s,t) stochastic matrix and C be a
(r,s) nonnegative matrix.

HCA} is a concave function of NI for 1 in the set of

Then: TiCu H[
s-tuples with non negative components.
Proof:

The components of IIC are non negative and the composition of

a concave function and a linear- function is concave.
Q.E.D.

COROLLARY IV.2: For all (s,o) mnon negative matrix C , for all i >0,
NCu V., [Hg ] is a concave function of @I, for 1 in the set of s-
tuples with non negative components.

Proof:

By induction on 1 :
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V0 = 0 thus VO is concave

M ok
V., () = min [HCPAY) + 1 epBYNuv |
> k=1 -pB* S
¢ M a,k
* ! k=1 HCPBOL’ u

The terms in the right hand side member of this equation all are
concave by the previous corollary and induction on i . The minimum

of a set of concave functions is concave.
Q.E.D.

We are now in a position to prove that nothing is gained by
using more general strategies than what we have considered until now,

i.e. strategies where at time T-i one uses a policy determined by
710,1)
THEOREM V

Denote by Di+1(y[0,T-i)) the cost to go at time T-i if one
uses a given causal strategy (i.e. Pr(Yi=kIY[O,i)=y[O,i)’X[O,i)=x[0,i)’

= Pr(Y;=k lY Let

X4, 1+1) 7% (1, 1+1)) [0,1)™10,1)*%[0,1)%[0,1) -

Then: Di(y[O,T-i+1))z-Vi(HT—i+1(y[0,T-i+l)l) i=0,1,2,...,T+1

Proof:

By induction on i .

T 5
, D, >V,

-- Suppose D, 3_Vi , then from (7).
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Dis1Op0,1-1)) = G 00,1190 * B PO kYo 1 5y=yp0 14y)
D; (W[g 1_1)-K))
M !
2C0po,1-1y) 7 kfl Pri¥p_s=ki¥ro 124)™10,7-1)7
1)
VO a1 (O o5y 00 (12)
Let the (g+,M) matrix A* be defined by
* = =ilst =5t =
Ang = PrQlp ;=31Sp_3=s..Y 0 14370, 7-1))
An instant of reflexion will convince the reader that A* can be
written as a convex combination of policy matrices:
T o T
A* = L ¢ A, ¢, 20 I ¢ =1
a=1 a=1
. . . + . *k
Defining similarly the M (0 ,0) matrices B’ k=1,2,...,M
b B X 1= pr(s . o=s. , Y. .=k|Si_.=s .Y - )
y nj T TOTai#173%5 2 TroiTroiTSh Mo, T-1) T [0, T-1)
T
*
one has that B ko z Cy Ba’k
o=1
As before Pr(y —k]Y = ) = nt ( )B*’k
‘ : Yrog Mo, m-1)710,7-1) T r-1Y0,T-1) u
*,k
and by causality = HT_i(Y{O,T-l))p B’ u
*,k
I. .(y PB’
T-1 0,T-1
and, M1 (pg pqysK)) = 0.7-0
T-i+1““[0,T-1) _ )P B Ky
T-iY[0,T-1)
Thus from (12)
T a
. .JP A
D;s1Wpo,1-1y) 2B afl ¢y Opo,-1yP A

T
z

, . o,k
lo=1 Ca(nr—i(y[O,T-i))P B u)]

¢y (V10,7-1))PE"")

Q
HMAjll A

[

N =

v,
* a,k
Colp 3 pg,7-1))P8 W)

R
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By Theorem IV and Corollary IV.2, the right hand side is a concave

function of (Cl’CZ""’Cf) » and thus takes its minimal value at a

vertex of I' s Say e

. -
Thus
g, M B,k
Di+1070,7-1)) 2 HUp 3 Orpg p3))P AD # oy -1 00, 1-g))P B
8,k
v T-10,7-3y)P B
i K
Tr1Opo,7-1))F B770
2V O pgy)) by AD)

Q.E.D.
Vi(H) is naturally a nondecreasing function of i ; the next

theorem says something about the behavior of the increase.

THEOREM VI [Odoni, 1969]

min (3, (0 - V3 () 2 min (V3 (M) - vy (1)

i
max (Vipp (D = V(M) ng ;M - v, (M)
Proof:
From (11)
o, (1) M a,(I),k HPB“i(H)’k
Vi, (D) = H(T P A )+ kEIHPB u Vv, RO
IIPB u
Mo oa.(D),k o; (M),k
My, 31 npp uv, IBB
V.(I) <H(@PA ) i-17 o, (LK
1 mpg * u
M o; (M,k nPBai(H)’k nPBai(H)’k
soV; (M -V, (M S L AFY rvsis s B PO &, (DK
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and MIiIn V;,, @ -V, (M) Z_MIi[n v; @ -V, m)

The other statement is proved by replacing ai(H) by ai_l(H) .
Q.E.D,
Because the Vi 's are increasing, it is inconvenient to work
with them numerically. We note that ai(H) will still minimize the
right hand side member of (11) if Vi(H) is translated by a constant.

This leads to the definition of Gi and Vi as follows,

VO(H) =0
M o,k
Vi, (M i= min naea®y + @ mee* Ky v, @Lﬁ;— 10,1, ...
o k=1 IPB ’"u
(12)
Viep () i= v (D = vy, (ey)
One checks by induction that Vi+1(H) = Vi+l(H) - Vi+1(e1) , and that

vi(el) =0 for all i .
vi(H) can be interpreted as the relative cost of having a state
probability vector I at time T-i+l .

Theorem VI can be rewritten as

Min (\71(11) - vi_l(n))' < min (Giﬂ(n) - v, (M) i‘;i+1(el)
I I

f_m?lx (\?i”(n) - v, (D)

<max (v, (M - v; (D)
T

We turn now to the discussion of the infinite T case. It is
natural to assume that there exists functions o and v_, and a

constant g , such that

1im 0. = a
. i ©
1>

lim v, = v
. i 0

1>




139
im v, (e;) = g
1>

Then one would expect from (11) that the following relation holds:

M o,k
g + v _(II) = min H(HPAG) + I HPBa’ku v, Eg%;ﬁ{’ (13)
a k=1 mpPB***u
o, (M) ,k
o, My, ? HPB“m(H)’k 1IPB
= H(IIPA ) Vo |T o (),K
- PB u

—

The optimal strategy would be to use the policy aw(Hi(y[O i))) at all

. . .1 _
times i , and one expects lim T'H(Y[O,T)) =g .

T

This is made precise in the following theorem.

THEOREM VII

If there exists a bounded real valued function v, , a function

0]

o

# and constants g, and g, such that for T in g

M o,k
g, * v, () < min[HOPAY) + 3 pe%: Ky V*{EEEE_E_}}
o k=1 pE* Ky
o, () ,k
PR
o (D,K
1PB u

o, (). M a, (0),k
H(TIPA ) + I TIPB u v,
k=1

(14)

I A

g2 + v, ()
Then:

-- the entropy Ha(Y of Y[O T) corresponding to using policy

0,1
a*(Hi(y[O,i))) at all times i has the property that
o s 1 . 1
< 1lim inf = H_(Y < lim sup = H (Y < 15
By < Up InE oy (po,my) S 1im oW 7 H, (Vo 1)) S8 (19

and
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-- g < 1ir;_)inf T H.b(Y{O,T)) (16)

where Hb(Y[O,T)) results from a causal strategy.

Proof:

Let & := SHP v, (1) - inf v, (0) .

I
We define DO(H) =0
o, (I M o, (M),k
D;,; (M := H(IPA ) + I TPB u .

k=1
o, (T, k

IIPB

Di TORS i=0,1,...
IIPB u

From (7): Ha(Y[O,T)) = DT(HO) .

,

We have the relation

DO(H) < v, () - inf v, ()
H .

and by induction on i and (13)

~

Di(H) <i g, * v, (M) - igf v, (I i=1,2,...
We can conclude that

DT(Ho) . .0

T —~%8 77T
thus proving that
S g 1. . : '
lim sup = H (Y, <
Tom 0 T «Uo,m) < &

i.e. the right hand part of (15).

We also have the relation

V(1) - sup v, (1) < V(M)

and by induction on 1 and (14)



i g * v, (M) - sup v, (1) f_Vi(H) i=1,2,...
We can conclude that

ig) -2V, (1)

Now, if (16) is not true, there is a strategy such that

.. 1
= 1im inf = H, (Y + 2¢ e>0
g = Hpinf7 & 0,1))
But there is a T 3_821- such that
EH (Yr o) < lim inf & H(Y  .) + ¢
T U0, = 7 Y 0,m)

T
For that T ,

T gl > Hb(Y[O,T)) + 0+ 1

z VT(HO) + Q%1
which contradicts (17).

Thus (16) is true, and the left hand part of (15) follows.

Q.E.D.

This theorem asserts that if one can find functions
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a7)

3

and constants g, and g8, » ©.8. by using algorithm (12), one can bound

the optimal performance, and one can find a strategy performing within

g8, = 81 » of the optimum. Theorem VI guarantees that g8, - & does

not increase as one progresses in algorithm (12). Note that convergence

can be hastened in (12) by damping [Schweitzer, 1971], i.e. defining

Vi+1(H) 1= A(vi+1(n) - vi+1(e1)) + (1-2) vi(H) for some well chosen

A in  (0,1] .

COROLLARY VII.1: If there is a bounded real valued function v_, a

function o and a real number g such that (13) is satisfied, the

strategy consisting of using policy am(Hi(y[O i))) at all times 1
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is optimal, and limiﬁ(Y[O’T)) =g .
—»co

T
- Proof:

Make . g8 =8 =¢ in Theorem VII.
Q.E.D.

Note that nothing in this corollary guarantees the existence of
an optimal strategy.

Note also that if a policy a(Hi) is used at all times i , the
Hi 's themselves form a stationary Markov Process in the simplex of
HIG, and the probability distribution of Hi can be coﬁputed‘ Our -
problem can be seen as a Markovian decisioﬁ theory problem with obser-
vable state (i.e. Hi) . These problems have been extensively studied
especially in the finite dimensional case (see [Kushner, 1971]).
Contrary to what is usually done, the proof of Theorem VII carefully
avoids the use of the stationary distribution of the Hi 's, which is

not guaranteed to exist, because the hypotheses are not very restrict-

~ive.
EXAMPLE: M=2 N =2 as before

Let T = (p;p,)

Equation (12) takes the form, where we use vm(pl) in place of
v, ((py,0,))

A

P4P

. 11

g + v, (o)) = min| H(p +o;p,) + (1-p;)p, Vv, (0) +(P1+01P2)Vw[5113;§; J
J

p1+p1 (pz"Pl) )
Hoypy) + pypy V(1) *+ (1-pyp) V| =7 P1Pq

/

The first argument in min(.,.) corresponds to policy 1, the second

to policy 2.

* k%
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We have solved numerically this example for different values of
Py by discretizing the unit simplex of Elz (51 points) and using the

algorithm (12 ). Results appear in Table 5.2.

Table 5.2
g := lim l—H(Y ) corresponding to an optimal strategy
e T [0,T) |
' M=2 N=2
Py g
5 .60
6 .58
.7 .51
.8 .41
9 .25
.95 .14

In all cases, an optimal strategy turns out to be:

use policy 2 when Dl =.5
Note that, if P, = .5 , this is exactly what Strategy V of Section C
does.

For P; # .5 this result shows that the strategy of always mini-
mizing the expected immediate cost is not optimal.

It would be pleasant to prove analytically that the strategy
described above is optimal. In the case Py =P, = .5 ,this would
involve finding a bounded function v, and g verifying

P p

g+ ValP) =H (D) + o Va(l) + 3(2-°)) vw(—z-l;—p—l—)

for Dl < .5, and a similar expression for 01 2.5 . By symmetry one




1hh

»

 expects v, (x) = v (1-x) , so v, and g must‘éatisfy

gy L0 1 1-py.
= —_—) b — 0) + =—(2- .
g + Vm(pl) ( 2) ) Vm( ) 2( pl)vco 2--01 >

| Py < .5
In this expressions, all the arguments of  v_  are between 0 and .5.
Once this function is found, one should prove that it satisfies (13).

Before closing this section, we make a brief historical review.
Our problem is essentially the problem of controlling a Partially
Observable Markov Process. We solve it by working in the simplex of
R° , where the Hi 's form a Markov Process if a policy ai(ni) is
used at times i . The problem is thus ''reduced'" to a Markov decision
problem with observable state. The idea of doing this has become
classical starting with [Drake, 1962]. One can find more references in
Section 4 of [Platzman, 1976]. This last work is an attempt to control
Partially Observable Markov Processes without making the trensformation
to th; I space, and is also an excellent review of the state of the
art.

We should point out that the.Partially Observable Markov
Processes studied in the literature are simpler than what is considered
here, because their immediate cost is only a function of the state of
the original process, and the policy. Thus the expected immediate cost

at time T-i if policy o 1is used has the form

a
€ O10,7-1)? = "r-1 0o, 1-1)) - @
for some column o-tuple qa .
DO 3 _ o .
Th}s compares with Ci(y[O,T-i))— H(HT—i(y[O,T-i)) PA7) in qur case,

However the nice properties of cor.tinuity and concavity of the functions
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\ (1) in the simpler problem are conserved here. [Plai:zman, 19761

k for an optimal

gives sufficient conditions on the matrices PBY
solution to exist in the simpler case; it seems that these conditions
would still be sufficient here. However, théy are extremely cumbersome

to verify.

G. Suggestions for Future Work.

Although it is not of immediate practical use, it would be
ﬁo:_:thwhile to prove that an optimal solﬁtion exists, that it verifies
(13), ard that v_- is continuous and concave.

It would be especially interesting to find analytic expressions
for v_ and o, at least for simple cases. We conjecture that
voo(ek) = vm(el) » ¥=1,2,...,0, i.e. that the relative values of perfect
state knowledge are the same, regardless of the state. V

One should try to prove or disprove the possibility that an o (1)
always belongs to the special class of policies considered in Theorem II.

Finally, we assumed until now that the p; 's were known. One
should find robust strategies (e.g. é minimexstrategy) that could be used
when the source statistics are. imperfectly known.
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4. Analysis of Practical Strategies

A. Notation and Organization

Throughout Sections 4 to 8 we will consider a model where source
i, i=1,2,.. M, emits messages in a Poisson manner with rate
Ai 1= l/Eai,kT = i?l Ai ,where every message contains a codeword
indicating its leng;h and where the lengths of the messages from source
i have a probability distribution Bi . We assume that the message
lengths and interarrival times are independent random variables. We
will attempt to compute the expected message waiting time for different
strategies indicating the message origins.

In Section B we will quickly study the equivalent of strategy I
of Section 3.B: the concentrator transmits the messages in the order

es :

- they were received, and prefix/each of them with a codeword indicating
its: origin.

In Section 5 we analyse some variants of Strategy II of Section
3.B,; periodically the concentrator sends a codeword indicating the
state of its buffer, then empties it. This will lead to a source coding
problem of independent interest that will be treated in Section 6.

Section 7 will see the computation of the average message
waiting time invcyclic strategies, where the concentrator serves all
messages from source i present in thg buffer, then all messages from

source i+l , and so on. Finally we will discuss all results in

Section 8.
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B. Analysis of the First-In-First-Out Strategy

‘We send the messages in the order they were received, prefiking
a message from source i with a codeword of length n. . We must
also specify what to‘do when the line is idle. In that case we use
the same policy as in Section 2 of Chapter 4 , i.e. we insert a flag
of length v, at the end of a busy period, then flags of length v,
if no arrival occurred during the transmission of the previous flag.
Note that the flags and the codewords must be chosen jointly, so that
thé probability of an insertion in a message will depend.on the origin
of the message. We denote by pg the probability that the flag of
length Vj causes an insertion in a message from source i .

We will use the formulas developed in Chapter 4 to compute the

average message delay with the following identification:

b' = 0 (we include tHe message lengths in f1 and f2)

"

f2 message length + codeword length + possible insertion

due to the flag of length v

1
thus
1 M 1

Efy = 3= 2 A (Bb; + ny)+ p3)

T i=1

M
1 2 1 1

Efz = X—-.Z Ki(E(bi+ni) +py ¥ 2piE(bi+ni))

T i=1
fl will be defined as in Section 4.4 with
c. =V, j=1,2.,

IS T

d1 = d2 = message length + codeword length + possible inser-

tion due to the flag of length Vv,



148

1 e—)\T\f)1 1 M
thus Ef, = - =~ + V, + ———Vy_ + & T A.(Eb, + n, + p.)
1 AT 1 —ATvZ 2 XT 121 i i i i
1-e
. 1 2 2 M 2
Efl + 5 )\TEfl = \)1 + AZvI/AT iElki(Ebi + N, + pi)
e-ATvl ) M )
+ — v, + 2\)2/,\T .Z xi(Ebi+ni+pi)_
T 2 i=1
1 -e¢
;M 2, 2 2
+ X;-iil A By )% + pf + 2plE(b,+n.))

and one obtains from formula (1) of Chapter 4 that the average message

delay is given by

M
2
, M L g2y M ERymy) T g ZpgElbsm;))
E(d) = 5 T A.(Eb.+n.) + = —
XT i=1 i 2 M
1 - ¥ A, (Eb,+n.+p!)
. A i B |
Ay i=1
v, M T v, M
2 1 2 e 2,72 2
AU I A;p; + ———— (V5#2:= I A.p.)+
. 1 AT s T A -ATvl 2 XT j=1 L1
+ L l-e .
2 e'AT\)l
v, + v, +
1 —ATVZ 2
1 -e
M
1 2
IRV Y
T i=1 (3)
1 M 2
= I A.(p: -pH
AT j=1 01 i
If vy =V, the last term simplifies to
Vi M >‘i @)
5=+ L =—p!
2 i=1 XT i
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It is of interest to see how E(d) behaves in light and in
heavy traffic. In light traffic, the second term is negligible, so one

sees that the codewords should zome from a Huffman code,so as to
M

minimize Z A.,n, . V. and v, should be small, say V

My 1 2 =V,=1, or
i=1 .

1
v1=v2=2 , as we will discuss in Section 4.7. If all Ai 's are more
or less equal,

1
T

and increases with log,M .

E(d) = Zki Ebi + logzM + 1.5

]

In heavy traffic the second term will dominate, and it will be
of primary importance to maximize its denominator, thus again using a
Huffman code, and using a large Yy - If all Ai 's are more or less
equal, we can have stability if Zki(Ebi+1og2M) <1 . Thus if Ebi is

of the order of logzM or smaller, the maximum throughput of the system

will be much reduced by the presence of the codewords.

5. Strategies Indicating the Buffer State.

A. Introduction

We study in this section a class of strategies where periodically
the concentrator samples the buffer, makes known the state of the buffer
to the deconcéntrator, then transmits all the messages that were present
in the buffer at the sampling time.

In addition to the notation introduced in Section 4.A, we call

the time intervals between two sampling points the scanning times, and

we denote them by S5 i=1,2,.. We denote by m; the number of
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arrivals from source j during S; and by v, the (variable) length
of the codeword used to indicate the state of the buffer, i.e. the m%'s
j=1,2,..M at the end of s - Note that s is known to the receiver.
Thus an interesting problem is to find a code minimizing E(vJsi).
This code will be very complicated, because it will jointly encode the
m§ 's. Howeveri}%iz m; 's are conditionally independent given S: s
nothing will be lost by encoding separately, ekcept some redundancy.
If we encode the m§ separately, the problem is to find a minimum
average codeword length code for a Poisson random variable. This is
still challenging because the number of codewords will be infinite, so
that Huffman's procedure [Huffman, 1952] cannot be applied directly.
We solve this problem in Section 6. |
Here our goal is to find the average message delay, and we pro-

ceed to do so.

B. Statistics of the Scanning Times

Because the arrivals are Poisson, the scanning times form a
Markov chain which is irreducible because,for any value of S5» there
is a non zero probability of no arrivals during S5

We have the relation

-XS

E(e 1+1|mi,m§...m§,si) = E(e'x¥1mim§...m§,si)
M m?
I (B*(x)) ’ X220 (5
j=1 -

Of course we want to average this, which is possible analytically only

—m - . -
if E(e T]mi...m;,si) has a sufficiently simple form. In particular
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it is not possible if

T results from the algorithm of Section 6. We

-X . .
will restrict ourselves to strategies where E(e “T|m1 s eees m; S.
1 s 1)
has the form
o
* 6
R VOjCXJ (Vlj(XJ) | : ()
j=1
M
We will also require that ¢ E VOj > 0 . Otherwise infinitely many
j=1

scanning times could take place in no time. Without causing any

S,
difficulty we could add a factor (V*(x)) 1 in (4) , but this would
be fruitless. We will examine codes that have the above property after

finishing the analysis of the scanning t%mes statistics.
the

i . .
We can now average (5) on mj ,/number of Poisson arrivals

during S to obtain

-xsi+1l M
- *
Ele Ss jH VOj (x){ exp s

M
z
=1 =

5o Xj(Vij(x)Bg(x)-l)}

-XS.

oot i o Re x > 0 (7)
noting {E e by Si(x) we have

i+l

(M M
S* _(x) = Rl VBj(x)} S;[.Z Aj(l - Vij(x) Bg(x))] Re x > 0

J=1 j=1
M
Sns * P
Defining Vo(x). = ‘g Vaj(x)
j=1
fo(x): = X )
1 M :
£ XxX): = ¢ A1 - Vf.(x) B*(x)) Re x > 0
i 1 .i-1 .
£ (x): = £ (£ () i>1 Re x > 0

We can rewrite (-77) as
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S*(x) = V(£ (X)) S*(£r(x)) Re x > 0 152
i 5=0 0 o =
M .
We will show now that if pp = b )\J.(Ev1j + Eb) <1 and if
j=1
lim H V*(pT x) =1, then, for x real, S*(x) := lim S*(x) is
X+o i=o ise T

independent of S; and is continuous at 0 . Thus [feller, 1966, p.

431] the process o is positive recurrent and S* is given by

S*(x) = I V*(fJ(x)) Re x > 0
j=o -

which is suitable for numerical computation. The proof is simple:
M

convexity one has immediately that fl(x) < J[ (Vij(y)B*(y)) }
j= 1
=pp X . Thus £ (x) <ppx and lim £ (x) =0, so lim S}(£" (x)) =
i»ro ise

«© .
To be able to use the reference just mentioned we need 1lim [ V*(fJ(x))

X0 j=1
= 1 , which is insured by 1lim H V*(p x) = 1, because V*(x) is
0
Xy0 j=0
decreasing and upperbounded by 1 for x> 0 . Note that this condition

and the continuity of S*(x) at 0 are guaranteed if E Vg < but

this is not necessary.

Note also that if p, =1, f1(x) = x + o(x) ; thus if T v*(fJ(x))
J =0

converges to a number different from 0 , S* will depend on Sg , where-
as if S*(x) =0 x> 0 , S* is not the Lapalce-Stieltjes transform of
a probability distribution. At any rate, the process s is not
positive recurrent if or = 1.

From (5), if the process is positive recurrent, S* satisfies the

relation



S*(x) = VX(x) S*

H M

j=1

and is a decreasing function of x , as is V; .

Thus ( 8) implies that
M
x> T A.(1 -Vr.(x) BX*(x)) X >
R - Vi 0 BE)

A (- V() B ())
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(8)

0 ¢

Dividing by x and taking the limit as x¥o , we have that or <1.

We can conclude that <1

Pr

s; Pprocess to be positive recurrent.

is sufficient; we still need a condition on V; .
M
L Ev

assume that pT <1 and
1 9

.

J
the stationary system (i.e. S; = S*) |
Taking the values at x=0

one finds

A.(E V,. + Eb.
J( 1j J)

M
Es L A, E . + b.
() T 25 B0y v b))

2
E 52 = (E5)2 +

of the derivatives of S*

is a necessary condition for the

We are unable to prove that it

From now on we will

. < o _ and we will consider only

in (8)

(9
M

+ X var (v _.)
j=1 >

M
1 -
j=1

C. Description of the Code

.Z lj(E vl

2

.+ Eb,
j Py

A coding scheme that satisfies ( 6) is to use a unary code to

i
encode each mj .

* - Uk = a
In that case Voi(x) Vli(x) e

X Note that
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it is not necessary to transmit all the codewords at the beginning of

i

the scanning time. We can tramsmit first the codeword specifying m; o,

then the mi messages from source 1, etc. A more efficient form of
the same code is to prefix every message with a "1'", and to transmit
at "0'" when all messages from source 1 have been transmitted. This
has a favorable effect on the message waiting times.

We will consider a generalization of this strategy, using
flags. We transmit first all messages from source 1, then a flag of

length v then all messages from source 2, etc. Under the usual

l 3

assumptions (see Chapter 3)

—(vj-l) .
Vsj(x) = exp(-xvj) s Vij(x)= 1-2 1-e™)

j=1,2...M

D. The Waiting Time

If the service discipline for each source is first in first out,
the waiting time we of a message arriving from source i u units
of time before the end of a scanning time of length;is equal to u
plus the sum of the lengths and insertions of the messages from sources
1,2,...i-1 that arrive during =z , plus the sum of the lengths and
insertions of the messages from i that are already in the queue, plus
the flags 1,2,...i-1 plus a possible insertion. Thus

-XW, i-1

E(e “lu,z) = e ™ expl-z £ A,(1 - V¥, (x) BY(x)
j=1 1j j

i-1
exp(- (=) A (1 - VE; (0 B00). T V5 00.Vgy () Re x 2.0
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u is uniformly distributed between O and z , because the arrivals
are Poisson, so
-W.X i-1 i-1

* z) = I VB.(X) exp(-z I
j:l J j:l

exP(‘ZAi(l - V,il(x) B;(X))) - exp(_zx)

z(x + Xi(Vij(x) B;(x) - 1))

Vi ()

Using the statistics of 2z developed in Appendix B one obtains:

i-1 i
I Vx.(x) {S*[ oA (1 - VE,(X) B#(x))] -
~XW. . 0j . j 1j ]
WE(x): = E(e ) = =1 i=1 :

Es(x + Ai(Vii(x) B;(x) - 1))

i-1
S*[x + Ji:l )\j (1 - V"iJ (x) B;.‘(x))}

*
. Vli(x)
Differentiating one obtains the moment
i-1 2 {1 + p, i-1
E s i
= . z
Ewl jzl EVOJ + F e { 5 + ) pj]+ E'Vli (10)

where Pyt = )\i(Evli + Ebi)
One can find from this an expression for the average message waiting
M
time, Ew := %— bX Xi Ewi . In general this expression is quite long
T i=1

to write and depends on the ordering of the sources. The only state-

ment that we are able to make about the ordering that minimizes the
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average waiting time is that if Ev,. = Ey

03 0i and p; = pj one should
have Al 3_A2 > .. z_kM , Or equivalently, Evll + Eb1 5-EV12 + Ebz.i
. i_Ele + EbM , as expected.
that
1f A=A, EVOi = EVO and P; = P and Ev,,=Ev,, one checks /
M-1 Es’
Bw = == BV + 255 (1 + op)
If in addition E(v1j + bj)2 = @ and var vOj = 02 , we can use (9)
and (10) to obtain
2
A )
- M-1 I AEVO 1+pT , AT@ +Mo“/Es .
2 0 1-op 2 2(1-p..) V1
T . T
2
Ev MEv A0 +c6°/Es
= - 0 + 0 + T + Ev (11)
2 1 - or 2(1 - pT) 1

Thus if in our coding scheme we use flags of length v , and if the
“sources are identical, the average waiting time is given by

2 -(v-1) -(v-1)
My XT(Eb + 2Eb 2 + 2 )

EW = 2- (\)-1) +
1 - An(Eb + 2‘(v"1)) 1 - Ap(Eb + 2~ (v-1),

Y,
2

One sees that in light traffic the first two terms will dominate,
especially when M is large. In heavy traffic, the presence of the
protocol does not affect the capacity of the line if one chooses v

large enough.
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For finite source alphabets, the Huffman coding algorithm
[Huffman, 1952] yields a minimum expected codeword length code
satisfying the prefix condition. Although it cannot be applied
directly to countably infinite alphabets, its optimality can be
used to develop optimal codes fq; these sources, as [Golomb,1966]

and [Gallager and Van Voorhis, 1975] did in
the case of geometric probability distributions. We show that for
a large class of probability measures, including those whose tail
decreases faster than geometrically with a ratio equal to .618,
the coding problem can be reduced to a finite one, to which Huffman's
procedure is applicable. This result hinges on the observation
that if the tail of a probability measure decreases monotonically,
no matter how fast, the codeword lengths of an optimum code must
not increase faster than linearly, with slope 1, for otherwise
some prefixes will not be used. This leads to the coding procedure

developed in Theorem 1.

Theorem 1

Let p(.) be a probability measure on the set of nonnegative
Assume

integers. /  there is a nonnegative integer m such that for all

j >mand i < j , the following hold:

p@) > p0G) (1a)
p(A) > I p@ (1b)

T k=j+l
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Then a binary prefix condition code with minimum average codeword
length for the alphabet consisting of the nonnegative integers with
the above probabilities is obtained by the following procedure:
Consider the reduced alphabet with letters 0,1, ..., m+l whose

Pe

probabilities are

1 -

p, (m+1) p(i)

e =

i=0

Apply Huffman's coding procedure [Huffman,1952] to this reduced
alphabet. Denote by Cl(i) and Kl(i) respectively the codeword and
codeword length for letter i (Cl(i) is a sequence of Kl(i) binary
symbols) 0 < i < m+l.

From there, construct the codewords C(i) for the original

alphabet by

C(i) = Cl(i) is<m
(2)
C(@) = {Cl(m+1),(i—m—1)*0, 1} i>m
where n*0 denotes a sequence of n 0's.
Moreover, with this procedure the average codeword length £
for the original alphabet is given by
m
Z=E(@{) + 21(m+1) -m+ I (Zl(i) - £l(m+1) +m - i)p(i)
i=0
(o]
where E(i) = ip(i) < m+2
i=0

Proof

It is a simple matter to check that Z is as given, and that,

because of hypothesis (1b), E(i) 1is finite:
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E(1) = Z r plk) + z r p
i=0 k=i+l i=m+1 k=i+l
m [oe] o0
< I . pk) + X p(i-1)
i=0/ k=i+1 i=m+1
< m+2

The codewords Cl(i) satisfy the prefix condition, so it is clear
that the codewords C(i) also do. We show now that this code has
minimum average length, using the same technique as Gallager and

Van Voorhis [3].

Let the letters 0,1 ..., m+r of the "r-reduced" alphabet have

probabilities:
p.(1) = p(i) i < m+r
[>2]
py(m+r) = 2 p(i)
i=m+r

The hypothesis ensures that, as long as r 1is greater than or equal
- to 1, the smallest probabilities are pr(m+r—1) and pr(m+r).
Applying Huffman's procedure to the r-reduced alphabet, one verifies
that the codeword lengths of the first m+r letters in this
alphabet are the same as the lengths of the corresponding code-words
given in (2). So, denoting by Z;' the average codeword length for
the r-reduced alphabet, Z;' converges to £ as r grows.

Let Z; be the minimum average codeword length for the original
alphabet, the minimum being taken over all uniquely decodable codes, so
that z:i I;: We claim that @;'E_fg'because we can obtain a uniquely

decodable code for the r-reduced alphabet by taking as codewords for

letters 0 to m+r-1 the corresponding codewords in the optimum code,
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and choosing as codeword for letter m+r the shortest remaining code-
word in the optimum code. The average codeword length of the code so
obtained is not larger than E;', and is not smaller than E;i, since
Huffman's procedure yields an optimal code. We conclude that

% <& , but ¢ converges to g as r increases, so § <

Tr— 0 — 0

- .
Recalling that 2> %  , L= 2 . ' Q.E.D.
The question then arises: how rapidly must p(.) decrease in
order to satisfy the hypothesis? A sufficient condition is that it
satisfies p(i) > p(i+l1) + p(i+2) for 1large i ; a weaker condition
is that it decreases at least as fast as gi where g = %{¢5—1)=.61803
If p(i) = p(i+l) + p(i*2) , then p(i) = p(0) g' , and hypothesis
(1b) is satisfied with equality for all i and j = i+l ;
Iq particular, the coding procedure developed in Theorem 1 is

optimum when the probability measure is Poisson:

Ale-x

il

p(i) = i=0,1,.

The only problem is to find the smallest suitable value for m (as
defined in Theorem 1). One checks easily that p(i) increases with

i to a maximum value of p(r) , where r = [Al-1, and then decreases
(Ix] denotes the smllest integer not smaller than x). If n is the
smallest positive integer such that p(n) < p(0) , the smallest we can
hope m 'to be is n-1 (a smaller m will not satisfy hypothesis (la)).
Fortunately, this is so, and we can upperbound this m by Jer] - 1,
as the following theorem will show. The size of the reduced alphabet
for which we must execute Huffman's procedure and maintain a codeword

table is thus a reasonable function of X . In table53we present A as a




10

11

12

13

14

upper limit of A
for that m

1.0000
1.4142
1.8171
2.2133

2.6051
2.9937

3.3800
3.7643
4.1471
4.5287
4.9092
5.2888
5.6676
6.0458

6.4234

Table 5.3

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

upper limit of A
for that m

161

6.8004
7.1770
7.5531
7.9289

8.3043
8.6794

9.0542

9.4287

9.8030
$10.177
10.550
10.924
11.298
11.671

12.044

Relation between A and m for Poisson distributions
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function of m for small values of A . In particular, if ) <1 , then
m=0 so that the optimum code is unary and its average codeword length

is equal to 1+X .

Theorem 2
e ?

If p(i) = A

i=0,1,.

and m 1is the smallest nonnegative integer such that p(m+l) <p(0) ,
then
a) PA]l -2<m< Jer] -1
b) p() > = p@) i>m
j=i+l
and thus (1) is satisfied by this m .

Proof

a) We will first upperbound m . By Stirling's inequality [Feller,

1968, p. 52]

. it Lo it .
i! > = . (2ni) > = i=1,2,3...

e €

If i >eXx, them i! > . , so that p(0) > p(i) and thus m+l < feal.
(A more careful analysis shows that when ) is large, m is approxi-
mately equal to ex - % log 2mex - 1 .)

To lowerbound m , we note that the logarithm function is

. i
concave downward so that log l%l-= log %— T J 3;%

i
r logj =
j=1 j=

1
1 . . 1 .
I-log it If p(i) <p(0) , then I-log i! > log ) so that

log l%l-z_log A, (3)

m+2
2

and thus > A,




o 1 op el A
jeivl T U cPS DN T B
2 3
. A A A
<p() {i+1 + O |

* ”
G+? @’

A

i+l
. . . . A 1
From inequality (3), if p(i) <p(0) , TS and

This yields the desired result.
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7. Analysis of Cyclic Strategies

A. Introduction

We give in Sections A to F a complete analysis of the average
message waiting time for two important cyclic queueing systems. No
explicit reference té the application of these systems to the encoding
of message origins is made before Section G.

Communication and computer systems in which a single server is
shared among several queues are common. For example, in a concentrator,
messages arriving from many sources must be sent on one output line. In
time-shared computer systems, a central computer must provide service
to several users. The queueing models presented here may be useful in
the analyses of these and similar problems.

Consider a node with M incoming communication links and one
outgoing link. Digital messages arriving on link i are queued in a
buffer i of infinite capacity. Periodically a "server'" empties the
queues and transmits the messages on the outgoing link. We will study
the average waiting time in each queue under two service disciplines.

In the first, referred to as;b§1ease wait'" discipline, the server
serves only those messages already present in queue i when he arrives,

then switches to queue i+l , which takes a random time, and goes on in
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cycle, visiting each queue once in a cycle. In the second discipline, the
"exhaustive service" discipline, the server empties queue 1 completely,
then spends a random time switching to i+l and continues the cycle. The
random time between queues can be viewed as being used for transmission

of protocol.

In both cases the ith queue is characterized by a Poisson input
with parameter Ai messages per time unit and a service time with mean
%T time units per message and second moment @i . The switching times to
qieue i have mean Vi time units and variance Ui... We assume all
interarrival, service and switching times to be independent.

Approximate studies have been made by [Leibowitz, 1961] and
[Kruskal, 1969]. [CocPer and Murray, 1969] and [Cooper, 1970] studied
both disciplines in the case of zero switching times. [Eisenberg, 1972]
considered a more general configuration for therserver cycle and allowed
_non zerc switching times. He solved the problem of the exhaustive ser-
‘vice discipline . [Konheim.and Meister, 1974] solved the discrete-time
equivalent of the exhaustive service problem in the case where the queues
are identical. In addition, numerous authors referred to in [Eisenbérg,
1972] studied the system of queues when M=2

This research was pursued before the publication of [Carsten et
al, 1977], which analyzes the ''please wait'" case by a method similar to
ours. The rate of convergence of the algorithm presented in the paper
just mentioned is not as claimed there, as will be shown in Section F.

Our solution differs from previous studies in the fact that we
use a direct approach, without trying to find the Laplace-Stieltjes
transforms of the waiting time distributions. We will show that we can

find all average waiting times by solving a single system of about M2




linear equations and we present a practical method of doing so. We 166
remark that our results can be applied to the case of zero switching
times and have a very simple form when the queues are identical.

In many communication systems, like computer networks, beside
transmitting messages, one must also convey their origins or destinations.
This can significantly increase the incurred delay. We will show how
the previous queueing disciplines can be applied to reduce this over-
head.

In Section B we present some relations valid for both disciplines.
The '"'please-wait'" case is treated in Section C and the mexhaustive-
service" discipline in Section D. In Section E we present the simple
modification that must be made to the previous results when the arrival
processes are compound Poisson processes. In Section F, we propose to
use an iterative algorithm to solve the system of equations and show

that it converges. The application described above will be treated in

Section G.

B Some Relations Valid for Both Disciplines

Results in this section are very general. They hold not only for
the two service disciplines we consider, but also for many others, e.g.
if one limits in some way the number of messages that can be served in
one scan, as long as the system of queues remains stable.

We consider the system as being in the stationary state and the
server as undergoing an alternance of switching periods of length s
(- < i < =) and service periods of length ti , the ith service period

being spent in queue i mod M. (See Fig.5.3) From there we define the
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ith scanning time by

i-1
s.:= t, + b} (c, + t,) + c.
i-M K=i-M+1 k k i

i-1

z (t, + ¢ ) )
Kei-M k k+1

n

and the ith intervisit time by

i-1 .
V. = )3 (c, +t,) + c. )
P geiamer K

In the steady state, we have the following relations between the means

and variances of the service period lengths:

E[ti] = E[ti mod M] ' (3)

var (ti) = var (ti mod M)

and similarly for the switching, intervisit and scanning times. From

(3) the average of (1) is independent of i , and

E[si] = E[s]

We can find the value of E[s] by the following reasoning. Let T be

the time for n scanning times relative to queue M to take place.

Say T = Syt Som*orer tSuM o Denote by m;n the number of messages

arriving in queue j during T , by m?ut the number of messages

leaving queue j and by zjl s 232 ,.,zjmoutthe lengths of these
j
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messages.

We then have

~ mout
T M n 1 J
55 05T cimaen tw Lk by
j=1 | M i=1 0T M= J
- . out
M n m m9Ut mJ
=z |is LA L z
= .5 Sama-n tan T TIno Tout %55
j=1| ™ i=1 myt o el

Let us see what happens as n goes to infinity. We show in Section

H that if
M A
i
Eopg <l oy =),
i=1 i
the queueing system is stable and the process {SiM’ i=...,-1,0,1}
is ergodic; thus %- goes to E[s] with probability one as n
n
. 1
increases. By the law of large numbers, H-izl cj+M(i-l) goes to
i pout
m " 1 j 1
v, , —%— to A, and I &, to =— , all with probability
J T J out . ji .
mj i-1 j
out '
m,
one. —%ﬁ— goes to 1 if the system is stable. So we obtain:
m,
J
M
z vj
Bl) = Ig— )
1 - Z p.
j=1
- M
This expression is meaningful only if

z Py < 1 , as expected.

i=1
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One finds similarly that

EVy1= (- p; oq ) Els]

and
E[t.] = 05 1o y Els]
M M
From now on we will assume X Py <1, I Vi > 0 and we will use
i=1 i=1

the index j where we should use j mod M .

C' Waiting Times for the '"Please Wait' Discipline

We proceed in three steps. First we will express the average
waiting times as functions of the moments of the scanning times. We
find then a relation between the moments of the scanning times and those
of the service period lengths. Finally we show that these are related
to the solution of a certain system of linear equations.

Suppose we observe a meséage entering queue i and we note
that it arrives u units of time before the end of a scanning time
(relative to i) of length 2z and that it finds n messages in front of
it. u, z and n are random variables. For a first in first out
servicesand conditioned on n , u and z ; the Laplace-Stieltjes trans-
form of the distribution of the waiting time of our message is

-W. X A '
E(e 1 n,u,z) = (B§ (x))n e UX
where B; is the Laplace-Stieltjes transform of the distribution

function of the service time of a message in queue i .
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We will now remove the conditioning. Averaging on n , the

number of Poisson events in a period of length z-u , we obtain

-W.X o (chz—U))n

. (z-
Be 1 w,2) 3 (z-u)

B )" e o™

n!
n=0

=veki(z—u)[Bi(x)—l] o UX

The arrival process being Poisson, u is uniformly distributed between
0 and z so
W) A2 (87 00-1]

E(e z) =L ¢ : -
2 X+ A B - A

-ZX

If the scanning times relative to the ith queue have a distribution
function Pr[sifx] = Si(i) with Lapiace—Stieltjes transform S; , we
show in Appendix A that Pr[z<x] = fg)VB[s]dSi(y) (this would be a
ﬁell known result of renewal theory if the scanning times relative to
the it" queue were independent); from there

S* (. (1-B* (x))) - S*(x)
1 i1 i 1
Wix)=£Tg X+ XBI) — X

Differentiating one finds the average waiting time in queue i :

2
E[s;] (1 +p;) Q@+ ) (1+ p.) var(s;)
E[wi] = = E[s] +
2 E[s] 2 2E[s]
(5)
Let us find now a relation between var(si) and var(ti) . If n. is

the (random) number of messages present in queue i when the service
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starts, ti is the sum of n, independent service times,

= n_
S0 E[ti | ni—n] 0

i

n[@i -—7] + N

2 . 1
E[ti ‘ ni—n] =
Yy

=

i

n, in turn is the number of arrivals in queue i during s

so E[ni|5i=s] = Ais
E[n?ls.=s] = A?sz +A.s
i'7i S R 1
and
E[t, |s,=s] =p,s 6)
2
var (ti) ='Aiei E[s] + p; var (si) )

As announced we now reduce the problem of evaluating (5) to
solving a system of linear equationms.

From (1) we have

var (si) i-1  i-1
= ¥ > Rk. (8)
E[s] k=i-M j=i-M I
e . E[(ti + ci+1)(tj + Cj+1]] - E[ti.+.ci+l].E[tj.+ °j+l]
e ij° ETs]
©)
clearly R,. = R..
ij ji
Ris = Rygar 5o k= ... -1,0,1, ... , (10)

but in general Rij # Rij+M
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The reason for dividing by E[s] in (8) appears before formula (16).

From (9) and then (7) and (8) we obtain

var (ti) ,Var.(ci+l)

Ris = BT * ~E[s]
i-1 i-1 .. 0.
2 i+l .
=A. 0, + pf X - R., +
S 1 i j=i-M k=i-M jk * E[s] (11

If i >3 R,

E[ti (tj + cj+1)] - E[ti] E[tj + cj+1]

B ELt; [t} 5 fop,q), k<i 10y + 5]

- B[ B[ty 0t} , fep, ), k<i]] B[t + 5]
The outéide expectations are on the t, 's and‘ck+1 's , k<i.
By (6) and (1)

o i-1
Rij = Elpy sz_M (b + Cppp) (5 + c5,4)]
i-1
- P k=f_M E[t) + ¢y q] Elty + ey 4]
i-1 ] .
=Py oo Rkj i>3j (12)

If we define the set I as '{(i,j) s:Z2 1 <isM, i-Mel <5 f_i}
we can obtain a system of M2 linear equationsin the M2 unknowng

R.. (i,j) € I by rewriting (11) and (12) as

i
: . 2
M i-l jal g
Ry; = Pi [Z R, .+2 2 IR ] 420, 4 il
j=1 3 jeiael geiw I B 1 ELS]

(3)
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j i-1 (i,j) eI
R.=p. ( I R, + I R.) i# (14)
Y i IR gy M

and using relation (10) where necessary.We present in Section 6 a
practical way of solving this system.

From (5), (8) and (11) we obtain for the average waiting time in queue

2
E[s](1 +_pi) 1+ pi) 054 ‘
E[wiJ = 2 + 2p2 [Rii - (liei + ET;TJ] (15)
i
i=1,2, M
For example when M=2 we have the system
2 "qg
R11 = pl [Rll + R22 + 2R10] + llel +
E[s]
: s
Rpz = Pp IRy + Ryy + 2Ry, ] + 2.0, +
E[s]
Rio = #1 [Ry; * Ry,]
Ryp = Pp [Ryy + Ryql
which yields
E 2 e
(11@1+'—9(1-0102'92(1+0102))+fA2@2*““901(170192f201)
R o E[SJ . e E[S]

11
(lmpl—pZ)(1+pl+p2+plpz(1+pl+p2+201p2))

and
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c2 , 02
S Cl+p [0 )Cl+plpz+20192+2p2)+(k2 2+——-) (1-0,05*20)

[s1¢ +p1 ........ [g ........... Hy -
E[wl]
2 In the case of vanishing switching times so that E[s] and
O-
- become null, the system (13), (14) remains valid and
s

E[wi] = 2p [R - Aiei] i=1,...,M (16)
i

In the important case where ghe queues are identical, or more
o .2
. . _ i o .
precisely if 0; = P and A0 ¢t BT~ A0 + E[sT ° i=1,2,...M we

find that for (i,j) ¢ I

S
ii o
Rij = oD, i#j
and ..62
_— (1-(M-1)p) . [A0+ ETE]J
ii (1+p) (1-Mp) P
so that = ETT¥QET (v(1+p) +A0) + 2 3
Blv;] = Bls] 520+ 5y Do+ “—T] M (17)

The vi's need not be equal for relation (17) to hold. We see that

the part of the delay due to the switching times is equal to

| 42
(1+p) M - Mv(1+p)
Els] 5%+ sy BT T 2000 3

If the queues are not identical, the overhead is more difficult to
. 2 :
assess. However, if the Ui’s are all zero, one deduces from formula

(15) that the existence of switching times causes an extra delay
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— for messages in the i~ queue. Other moments, like the

average queue lengths and the means and variances of the number of

customers served in one scan can easily be computed from the previous

results.

D. Waiting Time for the "Exhaustive Service" Discipline

The method used in this section is very similar to the one used

in Part C.
The customers present in queue i when ti starts have
arrived during vy o [Avi-Itzhak, Maxwell and Miller, 1965] and

[Eisenberg, 1972] found an expression for the average waiting time in

queue: 2
A CELVI] 0 E[vi] ~var (v,)
Elw;] = 2(1-p;) 2E[v 1 2(1 o1 ytrTz " 2E[v.] (18)

If n customers are present in queue i when service starts we can

regard t. as composed of n independent 'M/G/1 busy periods"

s .. .6,
[Takdcs, 1962] each with mean ﬁ—T%tB—j- and second moment ——— .

3
(l‘pi)
Using this observation and a reasoning similar to the one used in Part

C, one finds
Py
l-pi

E[tilvi=v] = v (19)

A1@1

var (ti) = E[ ]+(1 var (vi) 20)
Elp) :
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Let us now find the system of equations:

from (2) :
var . (v.) i-1 i-1 G?
S S K., + =F
ETsT ™ 5oiel keiomer JF EISI (21)
E[(t, + ¢.)(t. + ¢.)] - E[t. +.c.] E[t. + c.]
where K..:= = = J - = J J

ij Els]

and has the same properties as Rij in (9) (10).

Using (20), (21), (19) and (2)

. . 2
A. O, 0. i-1 i-1 P . O
2 i |2 i
K., = =%+ (—) z T K., + (—)
11 (1-pi)2 I-0  joiMel keiomel JK 1-p  ETS]
2 2
0 o’ o
+ 2 1 1 + 1
l-pi Els] = Els]
1 c? p? il i-1
T T O 1 Lo Kl
(1-e;) E[s]  (1-p;)" j=i-M+l k=i-M+l J
(22)
and by (19) and (2)
pi i-1
= X Kk' . .
1 1-0 poimer X i>j (23)

Defining the set J by J = {(i,j) € 22;1 <i<M, i-M+2 < j < i}

We obtain a system of M(M-1) 1linear equations in the unknown Kij

(i,j) € J Dby rewriting (22) and (23) as
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02
1 i
ii - [ A + ]
2
11 (1"01) 171 E[S]
2
- Py M i1 -
t————1[3 K.+2 7% sl k.
cl—pi)z j=1 1J j=i-M+2 k=i-M+l jk] 24)
j#l
) | j : k) I i3 . (25)
.« s = — Z r. + z ) i > J
e ke K k=j+1 M3

From (18), (21) and (22)

2
E[Wi] = 2 + 2 - 2 [Alei + ]
2p.- 2pi ) EIS]
i
i=1 ... M
As in part Cthis solution remains valid when the switching times vanish.
' 2
N C52

When p.=p and 1,0, * BT = A0 + E[s]T Ve obtain for (i,j) ¢ J

K - Ky L.
ij = I-(M-1) r>1
2
(1-(M-1)p) [A0 + E%ETJ
R ey Ty
so that
2
Elw;] = E[s] 500+ o= Do + gy ] (26)

i=1,2,..M

The difference between the result for the '"please wait' discipline (18)
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and this one is PE[s] . This corresponds to the fact that the fraction
of messages arriving in a queue that the server is emptying, i.e. p

>

is delayed an extra scanning time in the "please wait" case.

E. Generalization to Compound Poisson Processes

To be complete, we investigate here the simple modifications
that must be brought to the previous theory when the arrival processes
are modeled as compound Poisson processes. This is sometimes a
realistic model when data sources emit messages in clusters separated by
long idle periods. In this case the ith queue is characterized by the
following statistics: clusters of messages arrive in a Poisson manner,
at a rate of Ai clusters per unit of time. A cluster is composed of
a random number of messages. Let the mean number and mean square number
of messages in a cluster be & and Z; respectively. The message
iengths and switching times have the same means and variances as in
previous sections, and we assume all interarrival, service and switching
times, and the number of messages in a cluster, to be independent.

If we consider the set of messages present in a cluster as a
supermessage, with mean length and mean square length of gi/ﬁi and
giei +>l§-(§i—gi) [Karlin and Taylor, 1975, p. 13] respectively, the
supermes%ages will arrive in a Poisson manner so that the analysis of
sections 2, 3 and 4 remains valid, as far as the scanning, intervisit
and service period lengths, and the waiting times of the supermessages

are concerned. All we need to do is replacev.i—- by'»*i- and 0; by
i i
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6.6{ +.l—-(c. - Ei) in all formulas.

The average waiting time of a message is equal to the average
waiting time of the corresponding supermessage, plus a term taking into
account the average time necessary to serve other messages in the same
cluster. The average extra delay suffered by the nth message served in
a cluster is equal to (n-1) %T" so the average sum of the extra Qelays
suffered by all messages in a zluster contianing ekactly n messages is
equal to El%ﬁ%l. . Averaging on n and dividing by the average number

i
of migsages in a cluster yields an average message extra delay of
Lyo-

1
2%, W

F. Properties of the Systems of Equations

In the first part of this section, we present alternate forms
for the systems of equations (13) (14) and (24) (25). These new systems
contain more unknowns but have a simpler structure, which is useful when
the time comes to solve them numerically. In the second part we show
‘that all systems considered in this paper can be solved by an efficient
iterative algorithm.

Using equation (12) we can rewrite (11) as
2

i-1 'Ui+1
Rig e I Rys * 040; * g7 (27

Defining the set I' by I':= {(i,j) ¢ 22[1 <i<M, i-M { j < i} we
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-can obtéin a set of M(M+l) equations in the unknowns Rij (i,j) € 1!

by rewriting (12) and (27) as

- 2,

j ’ .
R..=p, ( L R, + T R.,)+6 (0, +et
ij 91 (k=i-M jk k=j+1 kj) 13( i’i " E[s] 28)

(5i. =1 if i=j
J 0 otherwise)

and using relation (10) when necessary.

Similarly the equations (22) (23) can be rewritten as

B E
K.. = K., + K .
00105 peimel TR kejer K
8 1 GZZL
+ 0, ————= [X.0, + ] (29)
ij (l_pi)z ii E[s]
or
. . 2
[ 3 ; 1+98.. Lo iy
K.. = 0. K., + 1+ 6. ——[r0, +
ij 1 ociomel jk k=j+1 Kk] ij 1-pi i’i  Els]

for (i,j) such that 1 <i <M, i-M+1 < j <i
(30)
The system (28) can be rewritten in matrix form as
R=AR+B ' (31)
where R is a column matrix formed by the Rij , (A,5)e I" . A
straightforward computation of the solution of (31) can become quite
lengthy, A being a M(M+1) by M(M+1) matrix. Instead, the form of
equation (31) suggests an iterative procedure, wherein the nth estimate

35 th .
of R,R_, is expressed in terms of the (n-1) estimate by
n
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”~

Rn = ARn-l + B

By inspecting equation (28) one checks that each iteration requires

2

only M3+M +M additions and M2+M multiplications. The variables that

need to be stored are tge elements of ﬁn'and §n+l , together with the
pi's and the .Xiei + ;%g%-'s , i.e. a total of 2M(M+2) wvariables. A
variant to the algorithm exists (see the specialized tekts, e.g. [Varga,
1962]) that reduces this number to M(M+3) . 1In either case this is far
from the M4 that one could expect. It is known that ﬁh converges
to the solution R when the norms of all eigenvalues of A are less
than 1 . Fortunately, this is the case when the system of queues is
stable, as we shall see.

If p; > 0 i=1,2 ... M, one can check that the matrix A is

an irreducible nonnegative matrix in the sense that all its elements

are nonnegative and it cannot be rewritten as

A1 0
A= (with Al and A2 square)

As A

by any permutations of rows followed by the same permutations of
columns. Among the numerous properties of this type of matrik
[Gantmacher, 1960, Ch. 13], we use the following: the eigenvalue of A

with the largest norm, o , is real, positive, and bounded as follows:
(A), R (A).R
min —Tﬁ%—- < 0 < max —Ugi— (32)
k k & T k k

for all non zero vectors R with elements > 0 .

We denote by (A)k and (R)k the kth row of A and R. Now, if we use
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in (32) a vector R with its elenents Rij set equal to piP: 5 We

J
find that

p; <1 : - (33)

If some oy 's = 0 , one verifies easily that relation (33) still
holds. A similar algorithm can be used to find the solution of the
systems (13) (14), (24) (25), (29) (30). One finds by the same method

the following relations about the dominant eigenvalue a .

Systems -Relations
M M 2
(13) (14) 1> I CH >a >z s
i=1 i=1
M M 2
M 2Pk LRk
(24) (25) 1> ¢ p; > max - > o > min 1o
, i=1 K Pk k °x
p, #0
k
M M
M PPk Pk
(29) 1> 2 p, > max '1 - > o > min =——
i=1 k Pk k Pk
p, #0
k
M
(30) 1> z p., = O
i=1 1t
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G. Application to the Encoding of the Message Origins

In the light of the strategy used in Section 5 it is clear how
the cyclic strategies developed here can be used to indicate the message
origins. It suffices to queue the messages from ofigin i in a special
buffer that is emptied in a cyclic fashion, and to indicate the end of
the service with a flag of length v, o If the probability of insertion
is known, it is possible to apply‘the previous results to compute the
system performances.

In particular, if the queues are identicél énd the probability
of insertion equal to 2-(v—1), one obtains from (17) and (26)

-(v-1) 2 -(v-1)
Mv(l + A(Eb + 2 ) A (Eb” + 2Eb 2 +
Bw =2 07D ’ ), M

+
201 - M + 27 (V71 201 -

2_ (V—l))

(
MrEb + 2~ (Vg

for the '"please wait'" discipline, and

-(v-1)_ - (v-1)
- - (v-1),Mu(1 - A(Eb + 2~ (V-1 . Ap(0 + 2Eb 2 +2 )
2(1 - MA(Eb + 5~ (v-1) 2(1 - MA(EDb + 2-Cv—1))

J

Ew

for the "exhaustive service." The firstterm takes into account the
possible insertion in frontof a message. Here b refers to the length
of a message, exclusive of any insertion.
two
We note that in light traffic the first/terms will dominate in

both cases, whereas the presence of the protocol does not affect the

capacity of the link if long enough flags are used.
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H. Condition for Stability

We show here that if £ p; < 1 , the queueing system is stable,and

the process {s y j=...,-1,0,1,...} formed by the lengths of the

jM+1

scanning times relative to queue i is ergodic.

To keep the argument short, we will prove these results only in
the case where, with probability one, all service and switching times
take only a countable number of values, so that the state spaces of the
Markov Processes defined below are countable.

. T The

We define dk.— (tk > Crel 2 Trer 0 vce YreMer o ck+M)

~dy 's form a non stationary Markov Process and by (6)

0 0
000 I
0 1
a d
E[dk+lldk—d] *
0 1
0 Py Px Px Py
vk 0 0 @ 0//

for the "please wait' case. If the 'exhaustive service" discipline is
used, the expression is similar except that the first Ox in the
square matrix above is replaced by 0 , and the others by pk/(l-pk)

(by (19)). In both cases we can write

E[d,,ld;=d] = B+ A _d
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We consider now the process d k=...,-1,0,1,... for 1i.

i+kM °

fixed. It forms a stationary Markov chain, all values of the form

(0, c*

i+l °? 0,c¢

T
* * * t
Tep 2o 0, ci+M) , where the cj s have non

zero probability, are accessible in one step from all states, so the

process is either recurrent or transient. One finds that

EdiaenM[iern =4 =Ci * Ajumg Ajame2 =0 A4

for some C; - If the eigenvalue of 4. with the

i+M-1 AiaM-2 " A4

largest norm, o , is less than one, for any initial conditions,the

mean of di+ is uniformly bounded, so the process is positive

KM 5
recurrent. Using the same technique as in Section F, specifically %M
: : T y
formula (32) with test vector (pi, 0, §i+1’ 0, P M-1’ 0)" , one
checks that o is <, =, > 1 with I p.
j=1
If the d. are ergodic, then, a fortiori, so are the
i+kM _ ) .
"SS5 M !'s because they are equal to the sum of the elements of the %.
d 's.

i+kM
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8. Comparison of the Practical Coding Schemes

In the previous sections we have analysed four different
practical coding schemes. Which one is the best’ If the input
statistics are known, the performances can be computed and the various
parameters optimized. Only then can one decide. It is however
possible to makelsome general statements, as we will do here. For the
sake of simplicity we assume that all sources have the same
statistics, that all flags have length v
and that the probability of insertion is 2~ G-1)

For convenience we reproduce here the formulas for the average
waiting time:

I. First In First Out: (formulas3 &4 of Section ¢ )

Ew =32’- 2'(\)'1) + En +

MAE(b+m)2 + 2 E(ben) 2- O71) 4 o~ (v-1)y
2(1 - MA(E(B+n) + 2~ V1Y

We recall that n is of the order of logzM .

II. Sampling: (formula 11 of Section 5 )

Ew = - §-+ 2_(V—1) + My Y
1 - MA(Eb + 27V

. Ma(Eb® + 2b 2~ (-1 - (v-1)y
2(1 - MaEb + 2~ (0" Dyy

III. Please Wait: (formula 5 of Section 7 )

Ew = 2‘(v—1) . Mu(l + x(Eb + 2“(v-1))
2(1 - My(Eb + 27 (071)yy
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. MA(EbZ + 28b 2~ (V1) L o= (v-1)y
2(1 - Ma@Eb + 27071y

IV. Exhaustive Service: (formula 26 of Section 7 )

“ gy = o~ (-1 Mv(1 - A(Eb + 2‘(V'i)
2(1 - MaEb + 2771y

. mEp? + 2mp 277D pm 071y
2(1 - MA(Eb + 2~ VDY,

One sees immediately that, when the different origins have the
same statistics, strategy III is better than II if M > 1 , but not as
good as strategy IV. The relative difference between III and IV is
generally small. If M > 1 , the overhead in strategy II is double
the overheads in III and IV. If M=1 , II is equivalent to III.

In light traffic,strategy I is better than IV, because

2. logzM f-ME" However, strategy IV performs better in heavy traffic;

5
if v 1is large enough.,the presence of the protocol does not diminish
the traffic that strategy IV can handle. All of this is consistent with
what was said in Section 3: in light traffic it is hardly possible to
reorder the messages, thus strategy I must be almost optimal. In
contrast, strategy IV works well when many messages from each origin are
served in every scan, because the flag is used only once for each batch.

Note that as indicated in Chapter 3 , strategies II, III and IV would

work better if the flag lengths were allowed to vary from message to
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message in a. batch, according to the probability (as computed by the
receiver) that the batch will terminate after the present message.

The observation that Strategy I works well in'light traffic
and Strategy IV in heavy traffic suggests a hybrid scheme, similar to
what [Hayes, 1976] and [Capetanakis, 1977] use in another éontext.
The idea is to group the M origins in M' groups (M' < M), say
origins 1 and 2 in group 1, 3 and 4 in group 2, etc. Strategy IV (or
ITI or III) is used to differentiate between the groups, while prefixes
are used to indicate the origins inside of a group. In the example
just mentioned, messages from odd origins would be prefixed with a
"0'", the others with a "1". By varying the size of M' one obtains
a continuum of possibilities, ranging from M' = 1 (optimal in light
traffic) to M' = M (best in heavy traffic). The performances of
this scheme can be obtained by modifying in a trivial fashion the
results for Strategy IV (or II or III).

Another point that we will investigate is the relation between
the average message waiting time and the average number of protocol
bits per message, denoted by h , which is equal to 1/MA - Eb (formula
(1) of Section 2). To be able to compare these results with those of
Section 3 we will rather compute the relation between the average number
of protocol bits per message and the average number of messages waiting
for service, Em , which by Little's formula [Little, 1961] is given by
Em =M X Ew .

As we have noted earlier, some of the protocol bits convey
information about idle times, and some about message origins. In Section

3, all protocol bits transmit information about the origins. The
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comparison with Section 3 will still be meaningful in heavy traffic,
-where the encoding of the origins uses up most of the protocol bits.

This is clear in the case of Strategy I.

There,
Bn = 2% 4 102”1 4 ygn
+ MA(E(b+n)2 + 2E(b+n) 5= (v-1) 2—(v—1))
2(h - En - 2—(V"1))
or

(E(b+n)2 + 2E(b+n) o-(v-1) | 2—(v-1])
.E_.n.l.. - - 2“(\)'1) - E

Y
MA T 2

h=En+ 2 OV 4
: 11

The first term represents information about the origins. As Em
increases, so does the optimal v and h tends to En , as should be,

In the case of Strategy II, the third term in the formula for Ew
will dominate‘in heavy tréffic. We will thus have

Em;_..__M_\L____
h- 2”71

h = 2-(\)-1) + My
Em

Optimizing on v ~and neglecting the integer constraint, one finds that
the optimal v is gifen by v = log2 (2 1oge 2 Em/M) ., This value of
v justifies the approximation of"Ew by fhe third term in the formula
above. Using this value in the formula for h , one obtains

: M Em
h = Eﬁ-logz (Ze(loge 2) Krﬂ

which has exactly the same form as what was found for Strategy II of
Section 3.D, except that a factor %—is missing here. This is easy to
explain qualitatively: the only difference between the situations

in Section 3.0 and in this section is that the number of messages
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served in one scan is variable here, which causes a loss of efficiency

because 19%—-)5-'15 a convex function.
The cases of Strategies III and IV are similar, we treat IV only.

The second term in the expression for Ew will eventually dominate,

Neglecting the term 2701 40 the numerator, we obtain
Em = Mv(ll— AEb)
2¢h - 270D
or ' '
h2mO-1) "_241 (1 - AEb)

The optimal v is given by

4(10ge 2) Em
vVElog T M

and the resulting h 1is equal to

. (1 - AEb) M_ . 4e(loge 2) Em
ST 2 Em %% @ - M

This is about twice as efficient as Strategy II, but less efficient
by a factor of two fhan the comparable strategy of Section 3.D.

We cén thus cpnélude that although in heawy traffic stiategy
IV is the most efficient of the strategies we analyzed, it is probabiy far
from being optimal, as indicated by the results of section 3. Nevertheless
enormous gains can be realized by using it in heavy traffic, as illustrated
_in thé following numerical example.v

Fixed length messages arrive at a
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concentrator in a Poisson manner, at a rate A on each of M input
lines. We want to transmit on a noiseless binary, synchronous output
link not only the messages, but also their origins. |

Usually this is done by prefixing messages with an address. In
some cases this scheme significantly increases the average delay
incurred by the messages, as a numerical ekample will show.

Let us use as time unit the interval necessary to transmit one
bit on the output link and. let us take M=16 , the length‘ %—= 50 and

1

A =.Tﬁﬁﬁ" If we naively forget about the addresses, we obtain from the

formula of the mean waiting time in a M/D/1 queue:

1.2
MA ()
Elw] = 5 (1_§p) = 100

If we use a 4 bit address and prefix all messages with a "1" to
distinguish them from idle periods during which we transmit '"0" 's, the
length becomes 55 (a 10% overhead) but the delay becomes

“ 1 2
16 1666'(55)

16 55
1000

Elw] = 5 .5 = 202

1

(the term .5 takes into account the synchronous nature of the output
link). The presence of the addresses doubles the mean waiting time in
queue.

Another simple way of transmitting the origin of the messages is
to use the cyclic, exhaustive service discipline. We queue messages in

a buffer corresponding to their origin, prefix them with a "1" so that
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their length is now 51 bits, process every queue in turn and when it is
empty transmit a '"0" . Our "switching time" has thus mean Vv = 1 and

variance 62 = 0 . From formula (26) of Section 7.

B[] = L16°1 (1 - 51/1000) , 1 16 1/1000 (51)°
"z, 165l A )
1000 1000

= 154

The improvement is due to the fact that this way of transmitting the
address is naturally adaptive. When many messages are waiting in queue,
few bits per messége are needed to indicate the origin. Of course; this
strategy works well only when the traffic is heavy, but this is precisely
the time when it is worth reducing queueing delays. As the traffic

- growth heavier, this scheme works better and better.

9. Suggestions for Future Work

We have shown in Section 8 that the "sampling" and '"polling"
strategies behave in the same way in the fixed length queue and variable
length queue cases. Unfortunately we know from Section 3 that they are
rather inefficient. One would expect that the efficient strategies for
the fixed queue length case will also perform well in a variable length
queue eﬁvironment. Their analysis is not easy, because they introduce
much memory in the queueing system, but should be attempted.

On a more abstract level, the state of a queue can be regarded
as forming a partially observable Markov process when the input process
is Poisson. One should be able to use the same method as in Section 3

and determine a strategy that minimizes the entropy of the output sequence,
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Aggendix A

A. Theorem about Random Sums

We prove here a theorem that is used in Section 4 of Chapter 3.

Let (@ , S, P) be a probability space. We recall that if
x : @ > R is a measurable function, E|x|<» ,and if B is a o-
algebra included in § , 'E(xﬂB) is defined as a B-measurable
function such that Jfp E(x|B) dP = fp xdP  for every B in B . One
can show l?oob, 1953, pp. 16 and 32] that E(x!B) exists, that any
two versions of it are equal almost everywhere, and that if 2z is
a g-measurable function with E|xz|<» , E(xz|B) = z E(x|B) almost
everywhere. These facts are used below.

Let m i be a measurable function m : @ » N

bl’bz”" be a sequence of measurable functions
E(Jb;)<»  ieN"" b, :a-+R

Bi be the émallest c-algebra for which bi is
measurable

Bi be the smallest g-algebra for which bi+1’
bi+2"" are measurable

B(i) be the smallest o-algebra for which

bl’bZ""’bi are measurable

then

I\III@IV——__—.)V )
I
I oo VI




where

II

I1I

IV

VI

VIt

Proof

VI' is a technical condition to insure that E [
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Eb, =a if P(n>1i) >0 ie NV
m 1is independent of the bi 's
the b. 's are mutually independent
Eb, =a if P(m>1i) >0 ienN™
{w : mw) =i}t ¢ B (1)
i.e. m 1is a Markov time

++

Eb, =a if P(m> i) >0 ieN

iy
E(Im=i|B ) = B(I_.) a.e.

i.e. the event m=i 1is independent of b. .,b. .,..
i+1’71i+2

Eb, =2 if P(m>1i) >0 ieNT

E(Im<i]Bi) = E(I ;) a.e.

i.e. the event m<i is independent of bi

) )

E(b, I a E(I

m>i m>i

a E(m)

T
N~ g
[

o
[

) ——

n

r n ‘
E z ‘bil} <
\i=1

well defined.

I =111 this should be clear;

IT =111 it is enough to show that

i -
¥BeB T, sy E(I ) dP = dp

fB Im=i




IT1 =) 1V

IV::_—_}V

VI

}w

or P({y : m(y) = iHP(B) = P({p : m(y)=1lNB)
This follows from the fact that B ¢ Bi , and
that by II

fw:m) = i) e 8

and the bi 's are mutually independent.

E(Im<i{Bi)
i-1 |

= I E(I__.|[B.)
j=1 m=j' i
i-1

L E(I__.) by III because B.C B for j<i
j=1 m=j i

= E(Im<i)
E(b; Ip,g) = E(E(; T 5(B;))
= E(bi EClmZi!Bi))
=Eb, E(Imz;) by IV
= a E(Imzi) by IV
m oo
El ¢ b.{=E] z b, I .
. i . i mei
i=] 1=1 =)
= .Z E(b1 Im>i) by VI'
i=1 pals
= .Z a ECIm>i) by V
i=1 pi
= a E(m)
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Note that we do not need to assume E(Ibi|)<w and

VI' if P(b, > 0) =1 ice N** , and if we allow
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the value »

If the bi 's are independent and identically distributed, and
some technical conditions are met, it is well known that I=VI,
while IIf:=9VI (also known as Wald's theorem) is proved at different
places in EJeller, 1966]. [Doob, 1953]proves that II=3VI

The theorem given here is very simple, and its hypothesis
minimal; that IV=3VI is somewaht surprising, we give an example

illustrating it.

prob. m b b b

1 2 3
3/16 1 0 -1 2
1/16 1 16 7 2
1/16 2 0 -1 0
3/16 2 0 7 0
4/16 3 0 -1 0
4/16 3 0 -1 2

We have E b1 =Eb,=Eb, =1

2 3
Em-= 9/4
Pm < Z}b2 =-1) =% =Pm < 2)
P(m < S’]b3 =2)=%=Pmc< 3)
Thus, surely enough,
m 3 1 1 3 4 4
Ei£1b1=‘i‘6‘0+—l-é*16+fé-(—l)+-1-"67+-]3-(..1)+T—61
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although

Pm=2|b=2) = 0 # P(m=2) = % ,

thus hypothesis III is not met.
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Appendix B

We prove here a theorem used in Sections 5 and 7 of Chapter 5.
The method is similar for both cases, we will give the details for Section
5 and sketch the proof for Section 7 .
M

We know that if op < 1 and if EV . < « , the process

=1 Y

{si,m;} ,» 1=0,1,... (j fixed) 1is Markovian and positive recurrent, thus
ergodic; E S and E m; are finite. For x given, consider the random

variables

i i
z.(s.,m,): =m. I
1@1 J) J osisx

The z'i process is also ergodic, because if a set A of sequences

{zi} is shift invariant, so is the set A':

i i
{{Sismj} . {zi(si:mj)}ﬁ A}

A' has the same probability as A, i.e. 0 or 1.

Theorem

The 1limit, as the time increases, of the fraction f(t) of
messages from origin j that arrived in the queue during scanning times
of length less than or equal to x is almost surely equal to

1O Jjj y ds(y)

Proof: Denoting by oft) the number of complete scanning times up to

time t , we have that
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a(t)-1 . alt)

z m, Is <x I M, Is <
i=0 1 7= < fer) < 120 J 543
a(t) i a(t)-1 i
bR m. % m.
i=0 : i=0 J

By the strong ergodic theorem, the ratio of the numerators over o(t)
goes with probability one to E m; %; x = Xj Jﬁ y dS(y) while the ratio
i_

of the denominator to a(t) goes with probability one to Aj Es.

Q.E.D.

Note that this would be a well known result of renewal theory
if the scanning times were independent, and if the arrivals did not
interact with the lengths of the scanning times.

The proof for Section 7 goes along the same lines, the main
difference is that the process {m;,si} must be replaced by a pfocess
of larger size, similarly as we did for the di process in Section ,

to retain the Markov property.
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Appendix C

This appendix contains the listing of FORTRAN IV subroutines
MOHUFF and LSEQl which implement respectively Steps I and II of tﬁe algo-
rithm presented in Section 4.C of Chapter II.

MOHUFF is a straight translation in FORTRAN of the algorithm
given in Step I. It works best when the symbols are listed in order of
decreasing probabilities.

LSEQl computes the largest root of thevequation A*(s) B*(-s) =1,
using the Newton.. Raphson algorithm [Klerer and Korn, 1967, p. 2-59].
Because this algorithm works best with functions whose ratio of the second
derivative to the first derivative has small absolute value, the sub-
routine computes the largest root of the equation 1log A*(s) + log B*{s)=0.

In lines 14 to 18 the program searchesfor a starting point larger
than the largest root. Because the Laplace-Stieltjes transforms of pro-
bability.distributions are log-convex, the sequence of values produced by
the algorithm from this starting point will converge monotonely to the
largest root. The algorithm itself occupies lines 19 to 28.

Function evaluations take place in lines 33 to 66. Subroutine
INTTIM, which must be provided by the user, computes 1log A*(s) and
%g-log A*(s) . If IND=1, B*(s) 1is set equal to the lowerbound devel-
oped in Section 4.3 of Chapter II, and the program computes Sy If

(

IND = 2, B*(s) = % p; e®
i=1

m , and the program computes the corresponding

o . . . . .
s~ . When m, 1is constant, the same objective is attained more

efficiently by setting IND to 3. -
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