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Abstract

Compilers are the workhorse that bridge the gap between human-readable and machine-
executable code.�e ultimate goal of a compiler is to �nd a legal translation that provides the
most optimizedmachine code sequence for a given hardware platform. However, the diversity
of modern programs, along with the advent of new and complex hardware architectures,
has strained the capabilities of current compilers, making development and maintenance
of automatic program optimizations in compilers exceedingly challenging. Despite this,
compiler optimizations are still hand-cra�ed, using technology that existed decades ago.

In this thesis, we show how to move towards more automated methods of constructing
compiler optimizations, using compiler auto-vectorization as an example.

Modern compilers perform vectorization using hand-cra�ed algorithms that typically
only �nd local solutions under linear performance models. First, we present goSLP, a frame-
work that uses integer linear programming to �nd a globally pairwise-optimal statement
packing strategy to achieve superior vectorization performance.

Next, we discuss how we can automatically learn how to vectorize. We present Vemal, the
�rst end-to-end learned vectorizer, which eliminates the need for hand-writing an algorithm.
�e key is to formulate the optimization problem as a sequential decision making process
in which all steps guarantee the correctness of the resultant generated code. Not only does
Vemal reduce the need for expert design and heuristics, but it also outperforms hand-cra�ed
algorithms, reducing developer e�ort while increasing performance.

Finally, we show how we can use data to learn non-linear performance models that are
better than the complex and incorrect hand-cra�ed models designed by experts, to enhance
the decision procedure used in Vemal. We present Ithemal, the �rst learned cost model for
predicting the throughput of x86 code. Ithemal more than halves the error-rate of complex
analytical models such as Intel’s IACA.

Both Vemal and Ithemal achieve state-of-the-art results and pave the way towards devel-
oping more automated and modern compiler optimizations with minimal human burden.

�esis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Compilers translate programs written in high-level programming languages to low-level

machine code that can be directly executed on a given hardware platform. �e ultimate

goal of a compiler is to �nd a legal, semantic-preserving translation that results in the most

optimized machine code. Usually, the compilation process is broken down into a number of

di�erent stages. Figure 1-1 shows a simpli�ed internal structure of a typical compiler.

Lexer

Parser

Sema

Front-end Back-end

Ins Select

Reg Alloc

Ins Sched

Input 
Program

Output 
ExecutableOpt 1 Opt 2 Opt NOpt i

Middle-end

Compiler Optimization (Transformation) Passes

High-level 
Language

IR
Optimized

IR

Low-level 
Hardware 

ISA

Figure 1-1: Internal structure of a typical optimizing compiler

First, the compiler front-end translates the high-level language program into an interme-

diate representation (IR) by performing tasks such as lexing, parsing and semantic analysis on

it. In the middle-end, this intermediate representation is next transformed through a number

of di�erent transformation passes with the objective of producing an optimized version of

the IR.�ese transformation passes are commonly known as compiler optimization passes

and are responsible for the quality of the compiler IR code produced. Finally, the optimized

compiler IR is lowered into low-level machine code with the help of target-speci�c compiler
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back-end passes such as instruction selection, register allocation, and instruction scheduling.

Every program transformation that happens inside the compilermust be semantic preserving,

be it lowering high-level language code into an IR, optimizing the IR, or lowering IR into

executable machine code.

Among the main design decisions that the compiler middle-end developers face are how

to design individual compiler optimizations, which subset of optimizations to apply and how

to order these optimizations (phase-ordering problem [150]). Usually, they employ manually

speci�ed, heuristic-driven solutions to answer these questions.

In this thesis, we introducemethods tomodernize the construction of individual compiler

optimization passes that determine the speed or the energy e�ciency of the �nal executable

code. Concretely, we propose methods to automate the construction of compiler optimiza-

tions by moving towards more featureless, data-driven learned techniques.

1.1 Compiler Optimizations

�e objective of any compiler optimization is to transform code such that the transformed

version is optimized in terms of some metric compared to the original input code. �is

metric is usually the average execution time, but any other metric such as average energy

consumption or worst-case execution time can be used in pass design. For the rest of the

thesis, we consider the objective of a given compiler optimization is to produce code that

achieves lower average execution time. Similar arguments or techniques can be adopted to

optimize for other metrics.

Another important aspect of any compiler transformation is that it should preserve input

IR semantics. More informally, it should preserve the correctness of the code. Hence, we

can restate the goal of any compiler optimization more precisely, which is to �nd semantic

preserving transformations that lowers the average execution time of the code.

Types of compiler optimization passes Historically, many compiler optimization (trans-

formation) passes have been proposed in the literature. A given optimization pass can uncover

a number of transformation opportunities or choices, and these choices can either be indepen-
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dent of each other or be mutually exclusive. Further, applying these transformation choices

may almost always lead to lower runtimes or may depend on the set of choices selected by

the optimization pass.

We categorize optimization passes suggested in the literature into two main �avors along

the two dimensions identi�ed above. Table 1.1 summarizes some of the salient di�erences

that characterize these two types.

Type I Type II
Transformation choices Mostly independent Mostly mutually-exclusive
Pro�tability Almost always pro�table Varies based on choices selected

Table 1.1: Characterization of compiler optimization passes

Also, it is important to note that transformation passes as a whole are not independent of

each other, but the transformation choices within a given transformation pass can be.

Type I optimizations Most transformation choices uncovered under these optimization

passes are independent of each other and are almost always pro�table irrespective of the

program context 1. Following is a non-exhaustive list of such transformations that are

suggested in the literature and can be found in production compilers such as LLVM [82].

• Data-�ow analysis based [70, 71] optimizations such as dead-code elimination, constant

propagation [73, 154], common sub-expression elimination [35] and unreachable code

elimination

• Loop strength reduction [36]

• Loop invariant code motion

• Scalar replacement of aggregates

• Argument promotion

• Peephole optimizations

�e main challenge of these optimization passes is to �nd the set of legal or correct trans-

formations. Once the set of legal transformations are found, they are usually applied without

consulting a pro�tability metric, since they are deemed to be pro�table irrespective of the
1�ere are corner cases that even these transformations can have a negative impact. Loop strength reduction

might hamper subsequent parallelization e�orts and loop invariant code motion might create too much register
pressure. However, in general they are considered to be always pro�table when applied in isolation.

3



program context. For example, let us consider the constant propagation transformation pass.

It is almost always pro�table to replace a computation with a constant wherever it is possible.

However, not all such opportunities are exposed by a given algorithm. Kildall’s [73] original

algorithm does not replace constants in conditional branches, whereas Wegman’s [154] sparse

conditional constant propagation algorithm considers the executability of a given branch and

hence �nds more opportunities for constant propagation. In either case, the challenge is to

�nd the set of correct transformations, but not on deciding whether they should be applied

or not.

Type II optimizations Optimizations that fall under this category usually have multiple

mutually exclusive correct transformation options with varying degrees of pro�tability and

possibly none of the choices may be pro�table. Following is a non-exhaustive list of such

transformations that are suggested in the literature.

• Loop transformations such as loop unrolling, loop unroll-and-jamming [25], loop

fusion, loop �ssion, loop skewing [156], loop interchange [157] and loop tiling. (Poly-

hedral model based transformations [78, 22] perform the same optimizations on a�ne

loop nests)

• Auto-vectorization techniques such as loop vectorization [113] and superword level

parallelism based vectorization [80]

• Auto-parallelization techniques [21, 8]

• Function inlining [28]

• Compiler back-end code generation related transformations such as instruction selec-

tion, register allocation, and instruction scheduling

�ese transformations are more challenging to apply compared to Type I optimizations.

Not only does the optimization algorithm need to �nd legal transformation opportunities, but

it also needs to ascertain which subset of these transformations should be applied tomaximize

a pro�tability metric. Also, it is important to note that some of these transformations can

be costly and can lead to program slowdowns. �e compiler optimization should try to

eliminate or minimize such cases wherever possible. As a result of this uncertainty, modern

production compilers such as LLVM turn o� some of the advanced Type II optimizations
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(e.g., loop unroll-and-jam) by default to avoid unpredictable slow downs of programs.

Example 1. Loop Unrolling:�e compiler needs to decide how many times each loop should

be unrolled (unroll factor). Its pro�tability depends on the cost savings realized due to

conditional branch elimination compared to the additional instruction cache pressure it

introduces.�e compiler should decide the unroll factor which maximizes cost savings or at

the very least try to decide on an unroll factor that does not lead to slowdowns.

Example 2. Function Inlining: �e compiler needs to decide which functions should be

inlined at which call sites. Its pro�tability depends on the cost savings realized due to call

overhead elimination and due to enabling of subsequent optimizations such as vectorization

and parallelization, compared to the additional register and instruction cache pressure it

introduces.�e compiler should decide which call sites it should inline functions into such

that it maximizes the cost savings while reducing the adverse e�ects introduced by the

transformation.

1.2 Anatomy of a Compiler Optimization

Figure 1-2 shows the general anatomy of a typical Type II optimization pass. It takes as input

a program represented in some compiler intermediate representation and �rst makes its

transformation decisions using its optimization decision making machinery, possibly with

the help of static analysis passes that uncover useful facts about dependencies, code patterns,

etc.�ese transformation decisions must maintain the correctness of the code or, in other

words, must be semantic-preserving. Finally, a�er the optimization decisions are made the

transformation machinery mutates the input code to re�ect the transformation decisions

taken by the compiler optimization pass.

It is important to note that code generation frameworks such as unimodular or polyhedral

models are part of the transformation machinery, and any algorithms such as PLUTO [22]

that make the transformation decisions for these frameworks are part of the optimization

decision making process. Similar to these code generation frameworks, modern domain

speci�c languages such as Halide [126] provide the transformation machinery for any user
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Figure 1-2: Anatomy of a Type II transformation pass

de�ned schedule of optimization commands, whereas techniques that automatically generate

Halide schedules [4, 105] are part of the optimization decision making process.

1.2.1 Optimization Decision Making

Optimization decision making process inside a typical Type II optimization can be viewed as

an interplay between three di�erent components: a transformation space, an optimization

strategy and a cost model.

• �e transformation space encapsulates the set of legal or correct transformations that

the optimization pass is intended to do. Usually this is exposed as a subspace of all

legal transformations available to the optimization pass.

• �e cost model provides a static prediction of the pro�tability of a set of program

transformations when the �nal code is executed on a given hardware platform.

• �e optimization strategy selects the set of transformations from the transformation

space that tries to maximize the pro�tability of the code according to the cost model.

�e optimization strategy can use the cost model to guide this process or make a binary

decision on whether to apply the transformation or not.
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Compared to Type II optimization passes, Type I passes typically do not employ opti-

mization strategies or cost models in their decision making machinery, since they assume

any optimization opportunity uncovered by the transformation space is pro�table. For the

rest of the thesis, we focus only on the more complex Type II optimization passes unless

otherwise stated. Following are a few example Type II optimization passes viewed under the

three components of optimization decision making.

Example 1. Loop Unrolling:�e objective of the loop unrolling transformation is to expand

the loop body to perform multiple iterations of the computation before evaluating the loop

condition. �e compiler needs to decide how many times it should unroll (unroll factor).

Possible unroll factors ranging from {1, 2, ..., L} constitute the transformation space for loop

unrolling, where L is the loop trip count. �e cost model of loop unrolling needs to take

into account both the bene�ts due to reduced branching and the e�ect of enabling other

optimizations down the compilation pipeline, such as auto-vectorization, as well as costs

such as added instruction cache and register pressure.�e job of the optimization strategy is

to select the unroll factor that maximizes the bene�t of performing this transformation on a

given hardware platform.

Example 2. Function Inlining :�e objective of the function inlining transformation is to

place the function body on call sites to minimize function call overhead.�e transformation

space constitutes of all call sites where function calls can be replaced with entire function

bodies. Note that to avoid in�nite inlining of recursive functions, special care should be

taken to limit the inline recursive depth.�e cost model of function inlining needs to take

into account both the bene�ts of eliminating function call overhead as well as the costs of

increasing the code size and register pressure.�e job of the optimization strategy is to select

the most pro�table subset of all inlining opportunities that span across the entire code base.

1.2.2 Challenges of Optimization Decision Making

�e e�cacy of a given optimization depends on how realistically you model the decision

making components of the optimization pass. Ideally, the transformation space should

capture all valid transformation opportunities that are available to the optimization pass
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and the cost model should capture accurate dynamic performance characteristics of each

transformation. Finally, the compiler optimization should ideally employ an optimization

strategy that guarantees �nding the set of transformations that results in the lowest possible

cost according to the cost model (optimal set of transformations). However, performing ideal

decision making is not feasible or tractable in most compiler designs.

Transformation Space �e set of all legal transformations available to a compiler optimiza-

tion may be uncountable. Deciding on which subset of transformations to consider from

an in�nite space without losing out on pro�table ones is challenging. Technically, for some

transformations achieving completeness in the transformation space is nearly impossible.

Further, identifying the correctness of a transformation may be non-trivial. For example,

for a language such as C++, some program semantics are le� unde�ned and in such cases

deciding which transformations preserve the original programmer intent may be challenging.

In some other cases, the semantics of certain operators have corner cases, and designing

transformation spaces that observe all nuances can be challenging. Aggravating this fact,

modern complex hardware architectures expose thousands of di�erent instructions, and

compilers usually lag behind and do not support generating code targeting newer instructions

(e.g., advanced AVX-512 instructions such as vector neural network instructions).

Also, at compile time, full information about the dynamic behavior of the program is

not available. As a result, transformation space designs need to be conservative and may

not expose certain transformations to the optimization strategy simply because it cannot

statically determine the correctness of all possible dynamic executions. Hence, designing

transformation spaces that are sound as well as precise can also be challenging.

Cost Model �e cost model should re�ect the cost of running the transformed code on a

real hardware platform. It is a known fact that reliable modeling of a modern-day computing

environment consisting of microprocessors, memory subsystems, and co-processors is a

di�cult task. Realizing this in the context of a compiler environment inwhich cost predictions

should be made quickly is even more di�cult.

Further, a cost model for a given optimization should have a priori knowledge about
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subsequent code transformations that may be applied to the IR code before hardware ISA

instructions are generated. Compiler middle-end transformation passes are far removed

from �nal machine-code generation and what happens in the rest of the compiler will have a

signi�cant impact on the generated code. Modeling these transformations inside the cost

model can be challenging.�erefore, compiler developers use approximate or pseudo-cost

models to aid in decision making. In Section 1.3.2, we discuss some of these approaches.

Optimization Strategy Finding the best transformation even on a reduced transforma-

tion space can be challenging. First, the transformation space can be extremely large and

non-uniform, even though it is �nite. Second, the optimization problem may be inherently

hard, meaning it may be an NP-Hard problem.�ird, devising an optimization strategy that

can reason about non-linear arbitrary cost models can be challenging.�erefore, compiler

developers usually employ optimization strategies that �nd approximate solutions to the op-

timization problem assuming an approximate cost model within a reasonable time. Deciding

on the trade-o� between compilation (solution) time and the completeness of the solution

can be tricky and is dependent on the use case of the compiled application. In Section 1.3.3,

we look at di�erent optimization strategies that have been adopted in the literature.

1.3 ExistingDesignsofOptimizationDecisionMakingCom-

ponents

Existing designs of optimization decision making components employ various approxima-

tions with varying degrees of freedom. For example, transformation spaces usually expose

only a limited subspace of all valid opportunities to the optimization strategy, and cost models

are built with various simplifying assumptions. Further, di�erent design methodologies are

used for constructing each component that are either general or are tied to the simplifying

assumptions made by the components.

In Sections 1.3.1 and 1.3.2, we discuss di�erent degrees of freedom and design method-

ologies employed in developing transformation spaces and cost models. In Section 1.3.3, we

explore di�erent design methodologies of optimization strategies suggested in the literature
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that are either general or tied to a speci�c transformation space or a cost model. Table 1.2

summarizes the taxonomy we use for categorizing each component and Chapter 6 gives a

comprehensive (but non-exhaustive) overview of techniques used in compiler optimizations

discussed in this thesis categorized according to our taxonomy .

Transformation Space Cost Model Optimization
Strategy

Degrees of
Freedom

Design
Methodology

Degrees of Freedom Design
Methodology

Design
Methodology

• Point
• Tuning
Knobs

• Exhaustive

• Manual
• Generated

• Integrated
• Linear
• Non-linear parametric
• Non-linear
non-parametric

• Manual
• Learned

• Manual
• Solver-aided
• Guided search
• Learned

Table 1.2: Categorization of optimization decision making components

1.3.1 Transformation Space

Transformation space designs can have di�erent degrees of freedom and may be de�ned

explicitly or implicitly within the compiler transformation pass.

Degrees of Freedom Historically, many compiler optimizations work with restricted trans-

formation spaces to reduce compilation times and for the ease of reasoning about the correct-

ness of the space of optimizations considered. We categorize the �exibility of transformation

spaces used in existing compiler designs as follows.

• Point Spaces �e transformation space is implicitly de�ned by the greedy or heuristic-

driven optimization strategy. In this case, the transformation space is only limited to

the potential decisions explored by the greedy or heuristic-driven algorithm and hence

encodes a limited number of point solutions in the space of all possibilities.

Examples include the progression of constant propagation techniques fromKildall’s

original constant propagation [73] to sparse conditional constant propagation [154] and

so on, where each new proposed algorithm expanded the transformation opportunities

to a larger �xed set. Other optimization strategies that prescribe matching against
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common coding patterns also implicitly encode point spaces. For example, loop

vectorization techniques that handle certain code patterns such as interleaved memory

accesses [110] and irregular loop patterns [13] fall under this category.

• Tuning Knobs �e transformation space only encodes transformations for a speci�c

greedy or heuristic-driven optimization strategy but exposes various tuning knobs.

Example tuning knobs include the unroll factor in loop unrolling and the vectorization

and interleaving factors in loop vectorization.

• Exhaustive spaces �e transformation space encodes all possible transformation

opportunities that are available to the optimization pass. �is also includes trans-

formation spaces that exhaustively consider a well-de�ned subset of all possibilities,

especially when there are in�nitely many possibilities.

Examples include peephole optimizers generated by enumerating all possible peep-

hole rules up to a certain sequence length [15] and instruction selectors that exhaustively

consider selection rules for a well-de�ned subset of the hardware ISA instructions [24].

Also, most optimization strategies that use solvers exhaustively de�ne their search

spaces. For some examples, consider integer linear programming based register alloca-

tion [10] and instruction scheduling [155].

Note that a given compiler optimization pass can have a mix of di�erent transformation

spaces. For example, the current design of the superword level parallelism based vectorizer

in LLVM uses point spaces for seed selection and tuning knobs to limit the vectorization tree

depth.

Design Methodologies We �nd two main design methodologies explored in the literature

in designing transformation spaces.

• Manual �e transformation space is manually speci�ed by the compiler developer.

Most compiler optimizations in production compilers have manually speci�ed trans-

formation spaces. Examples include the seed instruction selection rules inside the

superword level parallelism based vectorizer. Unless exhaustively speci�ed, developers
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may need to update manually speci�ed transformation spaces periodically to account

for workload and hardware platform evolutions.

• Generated �e transformation space is automatically generated using program syn-

thesis or other automated techniques. Examples include generation of instruction

selection rules [24] and generation of peephole optimization rules [15].�is is not a

mainstream development strategy explored in production-level compilers.

1.3.2 Cost Model

Cost models or pro�tability metrics can either be a non-separable part of the transformation

pass or can be a standalone, reusable static cost prediction system that di�erent transformation

passes can use.

Degrees of Freedom Historically, compiler developers preferred simpli�ed cost models to

achieve fast query speeds and for ease of maintainability. We categorize various cost models

suggested in the literature based on their expressivity as follows.

• Integrated models �ese cost models are non-separable from the transformation

pass and are usually integrated with the optimization strategy. Examples include

optimization-speci�c cost thresholds and various numerical constants that determine

di�erent aspects of the optimization strategy. For example, LLVM’s loop unroll pass

has numerous numerical thresholds, including cost threshold for partial unrolling,

maximum unroll factor for partial unrolling and upper-bound trip count considered

for unrolling, among many others. Also, these models may be hierarchical, meaning

that certain costs are only relevant if the transformation is deemed pro�table according

to some other integrated cost metrics.

• Linear models �ese models assume the cost of a transformation can be given as

a linear combination of the cost of running each individual component of the code.

�ese components can be individual instructions and individual memory accesses,

etc. An example cost model is used in LLVM’s superword level parallelism based
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vectorizer, which assumes the cost of executing a list of instructions to be the addition

of execution times for running each instruction in isolation. It uses LLVM’s standalone

model, TargetTransformInfo, to query for individual instruction costs. Polyhedral

model based optimizations consider a�ne distances between array accesses as its cost

model [22]. �ese models are easier to reason about, but lack the expressivity to

realistically model modern-day hardware platforms.

• Non-linear parametric models �ese cost models consist of analytically speci�ed

non-linear components as well as unknown coe�cients or parameters that can be

tuned to suite a particular workload and hardware platform. A few examples of models

that learn these parameters from execution data include cost models for predicting

Halide program runtimes [4], vector code performance [146], and whole program

performance [61]. Generally, these models use hand-cra�ed features in their learning

processes.

Further, note that parameters in these models do not necessarily have to be learned

but can be hand speci�ed as well. Hence, compiler-related hardware scheduling mod-

els such as llvm-mca [42] also fall under this category.�ese models strike a balance

between generality and speci�city. In particular, the analytical components are shared

between di�erent workloads and hardware platforms, whereas parameterized compo-

nents can be speci�c to a workload class and hardware platform.

• Non-linear non-parametric models �ese are generally uninterpretable black-box

models that are trained to statically predict the cost of a transformation or a program.

�ese models do not have explicit parameterization 2 and the structure of the model

can change from one program to another. Generally, these models learn how to predict

the cost from scratch and typically use hand-cra�ed features. Examples include sparse

polynomial regression based performance prediction of small kernels [61].

Design Methodologies Existing cost models used in automatic program optimization are

either manually speci�ed or learned using hand-cra�ed features.
2We speci�cally mean interpretable parameters and we do not consider neural network weights as parame-

ters.
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• Manual Most compiler cost models are analytically speci�ed and fall under this

category.�ese models are interpretable but can have limitations that are intrinsic to

their designs due to simpli�ed modeling assumptions.

• Learned �ese cost models aremainly non-linear parametricmodels in which the pa-

rameters are learned instead of being manually speci�ed, or non-linear non-parametric

models where the entire model is trained from scratch.

1.3.3 Optimization Strategy

Various design methodologies are proposed in the literature for designing optimization

algorithms. We categorize them into four main categories: manual, solver-aided, guided

search, and learned.

• Manual �e optimization algorithms are designed and developed manually by com-

piler writers.�ese include greedy and heuristic-driven algorithms aswell as algorithms

that follow a custom search procedure.�ese algorithms generally implicitly encode

their transformation spaces inside the algorithm itself and hence usually only explore

a limited subspace of all transformation opportunities. For example, considering loop

transformations, algorithms ranging from greedy or heuristic-driven transformations

to frameworks such as unimodular transformations [14] that use manually speci�ed

transformation algorithms fall under this category.

• Solver-aided �ese optimization strategies get help from a solver to �nd a solution

to the compiler optimization problem.�e compiler developer’s job is to reduce the

compiler optimization problem into a form that can be fed into the solver and also to

�nd a good enough encoding strategy that biases the solver towards �nding a solution

in a reasonable time. In most cases, these solvers are sound and produce an optimal

solution to the encoded optimization problem. Developersmay opt to encode a reduced

version of the original optimization problem and hence the optimality of the solution

to the original optimization problem depends on the simplifying assumptions made

during the encoding stage.
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Integer linear programming (ILP) solvers are a popular choice for solver-aided

optimizations. Usually, they employ exhaustive transformation spaces but are only

limited to linear cost models. Larger transformation spaces lead to larger encodings

and larger search spaces, hence the developer may opt to simplify the transformation

space to arrive at a solution within a reasonable time. ILP based compiler optimizations

have been proposed for a plethora of problems including register allocation [17, 27, 10],

instruction scheduling [155] and polyhedral loop optimizations [22]. Other solvers that

are used in practice include constraint programming based solvers [94] and quadratic

programming solvers.

• Guided Search �ese include any compiler optimization algorithm that relies on

generic search based techniques such as genetic algorithms, Monte Carlo simulations

and gradient-based searches to �nd a pro�table optimization. Example compiler

optimizations include genetic algorithm based register allocation [145], tile size and

unroll factor selection [75], function inlining [26] and GPU code generation [91].

Program auto-tuners such as OpenTuner [9] and AutoTVM [30] also use evolutionary

algorithms to �nd better program optimizations.

�ese optimization strategies generally do not restrict the class of cost models

they allow and as such non-linear cost models with high degrees of freedom or even

runtime of the code can be used to guide their search. However, they do not guarantee

�nding the optimal solution in cases where complicated cost models are used.�ese

techniques are ubiquitous in compiler optimization literature and are used heavily,

however.

• Learned �ese optimization strategies try to learn from a corpus of programs and

execution patterns to �nd generalizable optimization policies. We can use these policies

to optimize unseen programs from the same code distribution. Generally, most learned

models suggested in the literature use hand-cra�ed features and try to tune parameters

in a transformation space with tuning knobs. A notable exception includes featureless

tuning of existing compiler heuristics [39].�ey use a learned model that automatically

learns the features, but still requires the transformation space to be de�ned in terms
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of multiple tuning knobs.�ere have been original attempts at using reinforcement

learning to perform instruction scheduling [98] for an exhaustive transformation space,

eliminating the need for having a manually speci�ed optimization strategy. However,

they use hand-cra�ed features in its learning process.

1.3.4 Analysis of Existing Design Methodologies

Most compiler optimization problems are intrinsically hard, and each of these techniques

produces solutions of di�erent qualities and characteristics. Table 1.3 highlights some distin-

guishing characteristics of each design methodology at a high level.

In summary, we observe that manual designs achieve the fastest compilation times, since

they rarely perform searches over transformation spaces, whereas guided search techniques

exhibit the worst compilation times especially when they use actual program runtime as

the cost model. On the other hand, the solution qualities for guided search and learned

solutions are higher, since they usually usemore realistic costmodels or ground-truth runtime.

Compared to learned designs, guided search does not acquire transferable knowledge, which

in part is responsible for its slower compilation time.

We now delve deep into each design technique and discuss the distinguishing character-

istics and limitations in more depth.

Manual Solver-aided Guided search Learned
Compilation
speed

Very fast Slow Very Slow Moderate

Solution
quality

Generally
misses oppor-
tunities

Optimal w.r.t cost
model

Finds realistic opti-
mizations

Finds realistic opti-
mizations

Cost model
expressivity

integrated, lin-
ear

linear non-linear non-linear

Manual
e�ort

Very High Moderate (encod-
ing design)

Moderate (feature
engineering)

Moderate (feature en-
gineering)

Generalizability – – Not generalizable Generalizable to un-
seen programs from
the same distribution

Table 1.3: General distinguishing characteristics of various existing optimization strategy
designs

16



Manual design Updating manually speci�ed optimization algorithms would require con-

siderable developer e�ort, especially when targeting new workloads and emerging hardware

platforms.�e current trend in computer architecture leans towards developing more do-

main speci�c architectures and hardware–so�ware co-design approaches [56]. In such an

environment, it would require a considerable e�ort to build compilation toolchains, especially

when computer architectures undergo rapid changes and compiler optimizations are still

constructed manually.

Further, most manual speci�cations of transformation spaces, cost models, and opti-

mization strategies do not allow high degrees of freedom in their design to minimize the

complexity. Hence, they are by design incomplete, and in that sense, transformation spaces

may exclude pro�table transformations, cost models may not realistically model the under-

lying hardware, and optimization strategies may resort to unsound heuristics. Irrespective

of the �aws of the original design, the switching costs to move to a more complete design

may be prohibitive given that it requires considerable manual development e�ort.�erefore,

in practice manually written compiler optimizations may not even have the capability to

explore certain optimization opportunities.

However, manual designs usually have the fastest compilation times, and hence for compi-

lation tasks that require fast compilation times, this is still the preferred design methodology.

Most production compilers still use manually designed greedy or heuristic algorithms due to

this constraint.

Note that this constraint has been overcome in other disciplines by e�ciently using

existing hardware in their so�ware stacks to bene�t from parallel execution, cloud execution

and computation in specialized hardware. However, modern compiler designs still use the

same sequential execution model they used decades ago for compiling code and do not

utilize these available hardware resources e�ciently. In this thesis, we introduce techniques

(e.g., learned optimizations using neural networks) that can bene�t from newer and capable

hardware systems (e.g., GPUs) to make better and more-informed optimization decisions.

Solver-aided design Solver-aided compiler optimizations harness the search capabilities

of modern-day discrete solvers such as integer linear programming, constraint programming,
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and SMT solvers. �ese solvers do a best-e�ort analysis to produce the optimal solution

to the optimization problem within a reasonable amount of time. Hence, the optimization

pass is guaranteed to �nd the solution with the lowest cost (according to the cost model),

provided the solver runs until completion.

However, these solvers are only capable of handling certain types of cost models and

are also highly susceptible to errors within them. For example, integer linear programming

solvers can only encode optimization problems de�ned using piece-wise linear cost models,

even though modern-day execution environments cannot be realistically modeled using

linear models.�erefore, the optimal solution found by the solver may not be the optimal

solution under a more realistic cost model or under ground-truth measurements. Another

disadvantage of this approach is that solution times of discrete solvers can be unpredictable

and depend heavily on the problem encoding. Developers need to carefully design the

encoding of the problem, and usually this requires considerable human intuition.

Guided search based design �e main advantage of these techniques is that they usually

do not make assumptions about the cost models. Both evolutionary algorithms [145, 9] and

stochastic search techniques [136] have shown to generate code with superior optimizations

compared tomanual and solver-aided designs. Also, since these techniques can accept ground

truth runtimes or a more accurate non-linear cost model as input, they have the capability of

reaching the optimal solution eventually.

However, in practice these techniques require considerably more time to arrive at a

better solution and are generally not incorporated inside a compiler but are run separately to

optimize important kernels. Another disadvantage is that even though they are expensive,

they do not acquire knowledge from previous experiences. As a consequence, the guided

search technique should run from a clean slate for every new program, even if it is similar to

a previously optimized one. Further, most techniques work on transformation spaces with

tuning knobs that require a manually speci�ed baseline optimization algorithm. Notable

exceptions include stochastic super-optimization [136], which does not require a baseline

optimization strategy.�ey work on exhaustive transformation spaces and due to the cost of

the search, they are not incorporated inside compilers.
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Learned design Compared to guided search based techniques, learned optimization strate-

gies try to learn generalizable policies for optimization. Current designs of learned strategies

proposed in the literature use a training corpus of programs to automatically generate heuris-

tics or to learn how to select the best values for a set of tuning knobs. �e learned values

and heuristics are used to optimize multiple programs, usually from the same program

distribution, without having to retrain the model.�is is in contrast to guided search based

techniques that require the user to optimize programs from a clean slate each time. As a

result, learned techniques are usually faster than guided search based designs and can accept

arbitrary cost models.

However, similar to guided search based designs, the current designs of learned op-

timizations rely heavily on transformation spaces with tuning knobs. �is requires the

learned optimization strategy to be complemented with a manually speci�ed baseline greedy

algorithm. Also, they rely heavily on hand-cra�ed features that require a considerable devel-

opment e�ort. In this thesis, we show how to alleviate these limitations of learned techniques

to build state-of-the-art compiler optimizations with minimal human burden.

Limitations of Existing Techniques

As noted above, each design technique has its own pros and cons. Following are some of the

undesirable characteristics we want to eliminate from those design methodologies. Note that

the following list summarizes all the limitations and no one technique discussed above has

all of the following limitations.

• Considerable human development e�ort both in terms of initial development andmain-

tenance of compiler optimization passes.�is a�ects the adaptability of optimizations

to new workloads and hardware platforms.

• Inability to acquire knowledge from previous program optimization tasks.�is a�ects

solution times (compile times).

• Restrictions on the degrees of freedom when designing decision making components.

�is a�ects the quality of the �nal generated code (runtime performance).
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1.4 Our Approach: Towards Featureless Learned Compiler

Optimizations

�is thesis presents work we built towards proposing an automated, featureless, data-driven

learned design approach for constructing decision making components for a given compiler

optimization pass. Speci�cally, we show how to use advances in deep learning techniques and

sequential decision making to build novel compiler optimization strategies and cost models.

Figure 1-3 shows our general strategy towards building learned decision making compo-

nents. We model the optimization strategy as a sequential decision making process, in which

the transformation space is exposed as a set of actions for each state encountered during the

sequence of transformation decisions made by the optimization strategy.

�e optimization strategy forms the initial state of the sequential decision making process

from the input IR. Next, for a given state of the program, it queries the transformation space

to get the set of feasible transformations (action space). We use the representative power of

deep neural networks to automatically select the best action from this action space, given

the state of the program (learned agent). Next, the optimization strategy mutates the state

according to the selected action to arrive at a new state of the program. During training, we

use a learned cost model to evaluate the e�cacy of the transformation taken by the learned

agent. Concretely, the cost model gives an immediate reward to the agent to adjust its policy

during training.�e whole process is repeated until it reaches a terminal state in which there

are no more valid actions. When the process reaches a terminal state, it immediately passes

all the transformation decisions taken throughout the sequential decision making process to

the transformation machinery which performs the �nal program transformation.

Under this framework, our approach relies on the representative power of deep neural

networks to learn both the optimization strategy and the cost model without requiring any

analytical modeling or feature engineering.

Our approach overcomes the undesirable characteristics mentioned in Section 1.3.4 in

the following ways.

• Our featureless, learning-based techniques require minimal human input for initial
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Figure 1-3: Design of learned optimization decision making components

design as well as for subsequent changes to the trained model. As compiler work-

loads and hardware platforms change, the compiler can also adapt by �ne tuning its

learnedmodels by automatically learning new deep representations. Nomanual feature

engineering or re-engineering is required.

• Learning-based techniques intrinsically capture knowledge from the training corpus

on how to optimize for unseen programs within the same program distribution. Hence,

they do not need to start optimizing a given program from a clean slate.

• We use exhaustive transformation spaces and expose them sequentially as valid actions

for each state in our sequential decision making setting.

Vectorization as an example

In this thesis, we use compiler auto-vectorization, speci�cally superword level parallelism

based auto-vectorization to show how this general approach can be used in the context of

an important compiler optimization pass. To build towards this general strategy, we �rst

show how to use traditional solver-aided techniques to build an auto-vectorizer with certain

optimality guarantees, assuming amanually speci�ed linear costmodel. Next, we demonstrate

how to use sequential decision making to model compiler auto-vectorization and show that

a deep neural network based policy can learn to imitate the solver-aided solution. In both

these systems, we use exhaustive transformation spaces and they do not require a manually
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speci�ed baseline algorithm. Finally, we describe how to build compiler cost models from

scratch using execution data with the aid of a suitable deep neural network architecture. All

these systems outperform state-of-the-art, manually speci�ed systems used in practice with

minimal developer burden. A similar philosophy and techniques can be adopted to develop

learned, featureless decision making components for other Type II compiler optimizations.

1.4.1 Contributions

We �rst present a solver-aided vectorization strategy with certain optimality guarantees

that outperforms a strong compiler baseline. Next, we present the �rst end-to-end learned

vectorizer as well as the �rst end-to-end learned cost model, developed according to the

methodology described in Section 1.4. More speci�cally our contributions are as follows:

• Solver-aided vectorization

– Integer linear programming aided superword level parallelism (SLP) based vec-

torization strategy, goSLP, that performs pairwise-optimal statement packing,

assuming a linear cost model.

– Dynamic programming algorithm that minimizes the insertion of vector permu-

tation instructions.

– Comprehensive evaluation on commonly used compiler benchmark suites against

LLVM’s SLP vectorizer. We show appreciable performance gains across a number

of benchmarks under goSLP.

• Learned vectorization

– Formulating statement packing problem of SLP vectorization as a Markov Deci-

sion Process.

– �e �rst learned vectorization strategy, Vemal, that learns to vectorize from

scratch by imitating the solver-aided solution goSLP. Vemal uses a graph neural

network based policy and does not require featurization.

– Evaluation on commonly used compiler benchmark suites to show the e�cacy of

the learned strategy.
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• Learned cost model

– �e �rst timing infrastructure capable of timing x86 basic blocks in isolation with

arbitrary memory accesses and an associated supervised dataset.

– �e �rst learned cost model, Ithemal, that learns to predict throughput of a basic

block using a hierarchical recurrent neural network based deep neural network

architecture. Ithemal requires no featurization.

– Comprehensive evaluation against state-of-the-art analytical models used for

basic block throughput prediction. We show that Ithemal more than halves the

error rate of these models while requiring signi�cantly less development e�ort.

Table 1.4 shows the contributions of this thesis under the taxonomy of optimization

decision making components introduced in Section 1.2.

Transformation
Space

Optimization Strategy Cost Model

goSLP (solver-
aided vector-
ization)

SLP vectorization
opportunities
(independent and
isomorphic
instructions)

Integer Linear Programming
based statement packing and
Dynamic Programming based
vector permutation selection

Linear cost model

Vemal
(learned
vectorization)

Markov Decision Process formu-
lation and solution via imitation
learning

–

Ithemal
(learned cost
model)

– – Learned basic block
throughput predictor
using deep neural
networks

Table 1.4: Contributions of the thesis categorized

1.5 Dissertation Overview

�is dissertation consists of the following chapters.

• Chapter 1: Introduction introduces the two types of compiler optimization passes

and the three components of compiler optimization decision making. We categorize

each component of optimization decision making using the degrees of freedom each
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supports and on the design methodology. Next, we introduce the featureless, learned

approach for designing decision making components and describe how the rest of the

thesis demonstrates this paradigm used in the context of compiler auto-vectorization.

• Chapter 2: Compiler Auto-Vectorization introduces di�erent types of compiler auto-

vectorization techniques suggested in the literature. We formally de�ne the subprob-

lems of SLP auto-vectorization and point out the inadequacies of existing techniques.

• Chapter 3: goSLP: Solver-aided SLP Vectorization discusses how we use integer

linear programming to arrive at a pairwise optimal statement packing strategy assuming

a linear cost model and how we use dynamic programming to perform optimal vector

permutation selection. goSLP shows how to leverage the capabilities of modern solvers

to automatically come up with better optimization strategies compared to manually

speci�ed heuristic solutions.�is work appeared under this publication [99].

• Chapter 4: Vemal: Learned SLP Vectorization discusses how the statement packing

problem of SLP vectorization can be modeled as a sequential decision making process.

We show how to learn an optimization policy in this context by imitating the pairwise

optimal strategy of goSLP using imitation learning. �is work appeared under this

publication [104].

• Chapter 5: Ithemal: Learned Compiler Cost Model shows how a properly cra�ed

neural network design can learn to predict the throughput of basic blocks. We show

Ithemal is more accurate than state-of-the-art analytical models and can be retrained

with minimal e�ort to target di�erent microarchitectures.�is work was published

in [103] and [32].

• Chapter 6: RelatedWork details di�erent loop and SLP vectorization strategies sug-

gested in the literature and how they di�er in terms of the three components of optimiza-

tion decision making. We also discuss di�erent cost models and hardware architecture

models suggested in the literature that emit predictions at various granularities. Finally,

we end the chapter with a discussion on how machine learning techniques are used in

compilers in general.
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• Chapter 7: Conclusion and Future Work concludes the thesis by showing the poten-

tial of Vemal and Ithemal as preliminary work on redesigning the way we construct

compiler optimizations. It lays out future strategies that we can follow to fully realize the

goal of building the next-generation compiler framework, Compiler 2.0, with learned

components that require minimal human e�ort both to develop and to maintain.
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Chapter 2

Background: Auto-Vectorization

Modern microprocessors have introduced single instruction multiple data (SIMD) or vec-

tor instruction sets to accelerate various performance critical applications by performing

computations on multiple data items in parallel. Moreover, they have introduced multiple

generations of vector instruction sets, each either increasing vector width or introducing

newer computational capabilities. Intel has introduced MMX (64 bit), SSE/SSE2/SSE3/SSE4

(128 bit), AVX/AVX2 (256 bit) and most recently AVX512 (512 bit) instruction sets [66].

Other examples include AMD’s 3DNow! [112], IBM’s VMX/Altivec [63], ARM’s Neon [11]

and Scalable Vector Extensions [144] and RISC-V “V” Vector Extensions [37]. In order to use

these SIMD units, programmers must either hand-code platform speci�c assembly (or use

thin-wrapper compiler intrinsics), which is tedious, error-prone and results in non-portable

code, or use existing compiler auto-vectorization schemes that automatically convert serial

code written by programmers in mid- to high-level languages into vector code that runs on

parallel hardware.

�e rest of the chapter is organized as follows. In Section 2.1, we present the two dominant

forms of auto-vectorization schemes that are used in modern-day compilers, namely, loop

vectorization and superword level parallelism (SLP) based vectorization. Section 2.2 presents a

formal speci�cation of the SLP auto-vectorization problem, and Section 2.3 compares existing

SLP vectorization algorithms on an example to show how manually speci�ed optimization

strategies can lead to suboptimal vectorization schemes.�is motivates us to build the more

automated SLP vectorization schemes that are described in subsequent chapters.
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2.1 Types of Auto-Vectorization

�ere are two �avors of auto-vectorization schemes suggested in the literature. Traditionally

compilers supported loop based vectorization strategies aimed at exploiting coarse-grained

parallelism that is available in large amounts in programs. In 2000, Larsen and Amarasinghe

[80] introduced a new form of parallelism known as superword level parallelism (SLP) that

is available at a much �ner granularity. It is available statement-wise and can be exploited

even when loop based parallelism is not abundantly available, making it suitable for vector

code generation targeting �xed-width vector instruction sets.

2.1.1 Loop Vectorization

Loop vectorization dates back to Cray-era supercomputers, where compilers tried to automat-

ically exploit massively parallel vector units in Cray machines. Loop vectorization techniques

automatically converted serial loop computations into parallel operations that were executed

in parallel in vector machines achieving considerable performance boosts. For example,

consider the serial loop computation in Listing 2.1 shown in C-like pseudocode. Once the

compiler establishes there are no loop-carried dependencies and each iteration of the loop

body is independent of each other, it can safely convert the serial loop into a loop with a set

of vector operations as shown in Listing 2.2. Note that the compiler needs to emit a clean-up

loop to handle cases where the loop trip count is not a multiple of the number of elements

that get computed in parallel in vector units. �eoretically, this should speedup the loop

computation shown in Listing 2.1 by a factor close to the number of vector elements that get

computed in parallel in vector units (vectorization factor).

for(int i = 0; i < N; i++){
C[i] = A[i] + B[i];

}

Listing 2.1: Scalar code with a loop

//vectorized loop; vector unit computes
on four data elements in parallel

for(int i = 0; i < N; i+=4){
C[i:i+4] = A[i:i+4] + B[i:i+4];

}
//clean-up loop
for(int i = floor(N/4)*4; i < N; i++){

C[i] = A[i] + B[i];
}

Listing 2.2: Code a�er loop vectorization
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From the initial loop vectorization techniques targeting massively parallel vector ma-

chines to techniques targeting short SIMD units in modern day microprocessors, many

loop vectorization techniques have been proposed in the literature. Early e�orts include

Texas Instrument’s auto-vectorizing compiler [153], Massachusetts Computer Associate’s

Vectorizer [85], and the source-to-source Fortran vectorizer [7]. Recently, improvements to

loop vectorizers have been suggested, mainly by increasing the considered transformation

space.�ey explore new vectorization opportunities under alignment constraints [44], by

performing outer loop transformations [109], by handling data interleavings in loops [110]

and by exploiting mixed SIMD parallelism [159, 81]. A more detailed categorization of loop

vectorization techniques is presented in Chapter 6.

2.1.2 Superword Level Parallelism (SLP) based Vectorization

Superword level parallelism (SLP) is a type of �ne-grained parallelism present in code that

is suitable for SIMD code generation. Larsen and Amarasinghe [80] �rst exploited SLP to

develop a compiler auto-vectorization algorithm. �e original algorithm packs together

independent and isomorphic scalar statements (statements that perform the same operation)

to form vector packs that are later converted into individual vector instructions.

SLP vectorization applies beyond loops to any straight-line code segment that is data-

parallel and hence produces more vector code. For example, consider the code snippet shown

in Listing 2.3.�e loop vectorizer does not vectorize this code segment, since it is outside of a

loop. However, since the set of scalar statements are performing the same operation on inde-

pendent data items, the SLP vectorizer identi�es this as a potential vectorizable opportunity

and produces the vector code shown in Listing 2.4. Also, note that SLP vectorization can be

considered as the more general form of vectorization, and in Section 2.2.3, we show how to

achieve loop vectorization by �rst unrolling the loop and then SLP vectorizing the loop body.

//straight-line code
C[0] = A[0] + B[0];
C[1] = A[1] + B[1];
C[2] = A[2] + B[2];
C[3] = A[3] + B[3];

Listing 2.3: Scalar straight-line code

//SLP vectorized code
//vectorization factor = 4
C[0:4] = A[0:4] + B[0:4];

Listing 2.4: Code a�er SLP vectorization
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2.2 SLP Vectorization

We �rst formulate the SLP vectorization problem, taking inspiration from the original speci-

�cation in [80].

2.2.1 Problem Speci�cation

Consider a program with an arbitrary control �ow graph. Assume a given basic block BB of

the program consists of scalar statements 𝒮 .�e objective of the SLP vectorization problem

is to form a set of ordered vector packs from 𝒮 for each basic block BB in the control �ow

graph, such that the overall pro�tability of the vectorization scheme for the entire control

�ow graph is maximized according to some pro�tability metric.�e ordered vector packs

are later converted into vector instructions during the compiler code generation phase.

De�nition 1. A vector pack is a set of scalar statements, P = {S1, S2, ...., Sn} belonging to
𝒮 of a given basic block, that adhere to the following constraints. We denote any pack P

of scalar statements that adhere to these constraints by the predicate CI(P). Here, n is the

vectorization factor.

For each Si and S j( j ≠ i) ∈ P,

• Si and S j must be isomorphic: performing the same operation on the same data types,

which results in values of the same type.

• Si and S j must be independent: Si and S j cannot be directly or transitively dependent,

meaning that they cannot be reachable by one another in the same data-dependency

graph. Dependencies can be formed through intermediate values or through memory

accesses.

• Si and S j must be schedulable into a pack:�is is especially important when forming

packs ofmemory access statements, duringwhich time reorderingmay be restricted due

to the presence of aliased reads and writes and other memory reordering constraints.

• If Si and S j accessmemory, their accesses should either be to adjacentmemory locations,

or they should adhere to gather and scatter memory access patterns supported by the

vector instructions of the target hardware architecture.
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De�nition 2. A ordered vector pack is a vector pack where its constituent scalar statement

ordering is �xed. It can be considered an n-tuple of scalar statements < S1, S2, ...Sn >.

De�nition 3. An vector pack set, PS = {P1, P2, ..., Pn}, is a set of vector packs that adhere to
the following constraints. We denote any two packs Pi , Pj that satisfy these constraints by the

predicate CII(Pi , Pj).

For each ordered vector pack Pi and Pj( j ≠ i) ∈ PS,

• Pi and Pj must be schedulable: there should not be any circular dependencies between

the two vector packs, for example if Si ,1, Si ,2 ∈ Pi and S j,1, S j,2 ∈ Pj, it should not be the

case that Si ,1 δ S j,1 and S j,2 δ Si ,2. Further, all dependencies between statements in the

two vector packs should be able to be preserved in a valid scheduling.

• Pi and Pj are not overlapping: ∀Si ∈ Pi Ô⇒ Si ∉ Pj. �at is, a single statement can

only belong to one vector pack.

Objective �e goal of a given SLP vectorization algorithm is to �nd the set of ordered

vector packs for all basic blocks in a given control �ow graph, such that a given pro�tability

metric is maximized. A relaxed goal would be to �nd an SLP vectorization scheme that is

pro�table compared to the scalar code before the transformation.

Pro�tability Metric �is should capture both the bene�ts and costs of SLP vectorization.

• Bene�ts: Replacing a set of scalar statements by a vectorized statement reduces the

binary size, the amount of dynamic instructions executed, as well as typically reduces

memory access tra�c.�e pro�tability metric or the cost model should capture the

above bene�ts of executing vectorized statements in place of scalar statements.

• Costs: In certain cases, introducing vector statements in place of scalar statements is

costly.

– Packing overhead cost: Consider the case when the compiler creates a vector

pack, but the de�nitions of its operands are not packable. In such cases, the
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operands need to be explicitly inserted or packed into vector form using vector

packing instructions. An example is shown in code sequences (a.1) and (a.2) in

Figure 2-1. When forming a vector pack of values {a3,a4}, the compiler needs

to pack operands a1 and a2 together using an explicit vector packing instruction,

since a1 and a2 are computed using non-isomorphic statements.

– Unpacking overhead cost: Consider the case where at least one use of a vector

pack is not packable. In such cases, the individual scalar values should be un-

packed from their vector form using vector unpacking instructions to maintain

semantic equivalence. For example, consider the code sequences (b.1) and (b.2)

in Figure 2-1. Statement computing value a3 is not packable with any other state-

ment, but it uses both values a1 and a2 in its computation. Hence, if the compiler

forms a vector pack of values {a1,a2}, it needs to be unpacked using vector

unpacking instructions as shown in code sequence (b.2).

– Permutation overhead cost: If the constituent scalar statement orderings of

two adjacent ordered vector packs in the same use-def chain do not match, the

compiler needs to explicitly emit overhead vector permutation instructions to

correct the mismatch. Consider the code sequences (c.1) and (c.2) in Figure 2-

1. Forming an ordered vector pack of values <a3,a4> requires forming the

ordered operand vector pack of values <a2,a1>. However, vectorizing the �rst

two statements forms the ordered vector pack of values <a1,a2>. To correct this,

the compiler emits a vector permutation instruction that reverses the order of

the constituent values in the ordered vector pack of values <a2,a1>.

2.2.2 Problem Decomposition

Problem speci�cation of SLP vectorization can be decomposed into three di�erent subprob-

lems: statement packing, permutation selection and statement scheduling.

Statement Packing

�is subproblem only considers forming unordered vector packs for each basic block in the

control �ow graph.�e goal is tominimize unpacking and packing overhead while increasing
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// (a.1) before SLP vectorization
a1 = b1 * c1;
a2 = b2 - c2;
a3 = a1 + d1;
a4 = a2 + d2;

// (a.2) SLP with packing overhead
a1 = b1 * c1;
a2 = b2 - c2;
{a1, a2} = pack(a1, a2);
{a3, a4} = {a1, a2} + {d1, d2};

// (b.1) before SLP vectorization
a1 = b1 + c1;
a2 = b2 + c2;
a3 = a1 + a2;

// (b.2) SLP with unpacking overhead
{a1, a2} = {b1, b2} + {c1, c2};
a1 = unpack({a1, a2}, 0);
a2 = unpack({a1, a2}, 1);
a3 = a1 + a2;

// (c.1) before SLP vectorization
a1 = b1 * c1;
a2 = b2 * c2;
a3 = a2 - c1;
a4 = a1 - c2;

// (c.2) SLP with permutation overhead
<a1, a2> = <b1, b2> * <c1, c2>;
<a2, a1> = perm(<a1, a2>, {1, 0});
<a3, a4> = <a2, a1> - <c1, c2>;

Figure 2-1: Costs of SLP vectorization. Assume that values b1,b2 and c1, c2 and d1, d2 are
vectorizable. For ease of presentation, we show vector packs of values instead of statements.
Code sequence (a.2) shows non-isomorphic values a1 and a2 packed into vector form using
explicit vector packing instructions that are used in computing vector pack {a3,a4}. Code
sequence (b.2) shows unpacking of vectorized pack of values {a1,a2} to be used in the scalar
statement that computes value a3. Code sequence (c.2) shows how a vector permutation
instruction is used to reverse the order of the ordered vector pack of values <a1,a2>.

the bene�t of executing vectorized statements.

Space If there are n instructions in a basic block and if vector packs of size k are formed,

asymptotically there are O((nk)) packing decisions to be made. Say that we are selecting m

packs out of all valid packing opportunities, then there are O(((
n
k)
m )) options, and naively

searching through the entire space is not tractable. In essence, we are selecting an optimal

subset of vector packs from all legal vector packing opportunities, which is shown to be

NP-hard in the general case [106].

Permutation Selection

�is subproblemdeals with determining the ordering of statements in a given set of unordered

vector packs. Essentially, a�er this stage all unordered vector packs will be converted to

ordered vector packs.�e goal is tominimize the insertion of vector permutation instructions

in places where the ordering of uses and de�nitions of vectorized statements do not match.
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Space If there are n statements in a vector pack, there are n! amount of feasible permutations

of statement orderings for each vector pack. If N such vector packs are connected with each

other in one data-dependency graph, there are (n!)N total combined permutations, out of

which we need to select the most pro�table.

Statement Scheduling

�is subproblem deals with scheduling ordered vector packs amidst the remaining scalar

statements.�e goal is to produce a scheduling that maximizes instruction level parallelism.

With the common adoption of out-of-order execution cores, statement scheduling has be-

come less relevant and many modern day vectorizers delegate this to the compiler back-end

instruction scheduler.

If optimization decisions for all three subproblems are made jointly, then the SLP vec-

torization algorithm has the potential to make optimal vectorization decisions, provided a

realistic cost model. However, in practice these problems are solved independently to have

tractable compilation times.

2.2.3 Generality of SLP Vectorization

SLP vectorization is a general vectorization technique that can even perform loop vector-

ization with the aid of a preprocessing loop unrolling transformation. Consider the ex-

ample code snippet shown in Listing 2.1. Assume that the compiler can unroll the loop

by a factor of 4, producing the code shown in Listing 2.5. Now, if one considers the in-

ner loop body of the unrolled loop, the compiler can �nd isomorphic and independent

scalar statements that are amenable to SLP vectorization. For example, the SLP vector-

izer can create vector packs of loads and stores, P1 = {C[i],C[i+1],C[i+2],C[i+3]},

P2 = {A[i],A[i+1],A[i+2],A[i+3]}, P3 = {B[i],B[i+1],B[i+2],B[i+3]} and trans-

form the scalar addition into a vector addition, resulting in the code shown in Listing 2.6.

Note that, this is identical to the code shown in Listing 2.2 a�er loop vectorization.

Similarly, in general if the compiler is able to unroll the loop to expose enough data-
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level parallelism within the loop body, SLP vectorization can achieve the same resultant

code as that of the loop vectorizer. However, in practice, this requires an intelligent loop

unroller that knows about the functionality of the SLP vectorizer and only unrolls if there are

vectorization opportunities in the loop body. Rocha et al. [131] propose a vectorization-aware

unrolling technique speci�cally addressing this problem. Alternatively, a combination of

a loop unrolling and loop rerolling pass can be used pre- and post-SLP vectorization to

achieve the same e�ect. In conclusion, SLP vectorization can be seen as a general form of

vectorization that can subsume loop vectorization with the aid of a su�ciently intelligent loop

unrolling preprocessing pass. Currently, both vectorizers co-exist in modern-day compilers,

mainly due to engineering and historical reasons.

//unrolled loop
for(int i = 0; i < N; i+=4){

C[i] = A[i] + B[i];
C[i+1] = A[i+1] + B[i+1];
C[i+2] = A[i+2] + B[i+2];
C[i+3] = A[i+3] + B[i+3];

}
//clean-up loop
for(int i = floor(N/4)*4; i < N; i++){

C[i] = A[i] + B[i];
}

Listing 2.5: Unrolled loop code

// After SLP vectorizing the inner loop
for(int i = 0; i < N; i+=4){

C[i:i+4] = A[i:i+4] + B[i:i+4];
}

//clean-up loop
for(int i = floor(N/4)*4; i < N; i++){

C[i] = A[i] + B[i];
}

Listing 2.6: Code a�er SLP vectorizing the
loop unrolled code

2.3 Analysis of Existing SLP Vectorization Schemes

Many di�erent SLP vectorization strategies are proposed in the literature. �ey expose

transformation spaces of di�erent degrees of freedom, employ di�erent optimization strate-

gies from greedy or heuristic-driven to local search based algorithms, and use simpli�ed

pro�tability metrics or cost models. Optimization decision making components of these

techniques are usually manually speci�ed and can lead to certain missed SLP vectorization

opportunities. Chapter 6 presents a comprehensive overview of existing SLP vectorization

techniques viewed under our taxonomy.
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2.3.1 Shortcomings of Existing Algorithms

�e quality of the generated vector code depends strongly on the vectorization strategy used

by the compiler and the use of manually speci�ed greedy algorithms or local heuristics may

lead to suboptimal vectorization decisions. Speci�cally, let us focus on the statement packing

subproblem of the SLP vectorization and compare a few strategies suggested in the literature

with the optimal solution.

Example Consider the code listing in Figure 2-2(a). Sets {S1, S2, S3} and {S4, S5, S6} contain
independent statements with isomorphic operations that are amenable to SLP vectorization.

Assume statements SL1 up to SL7 load consecutive values from memory and the target vector

width is equal to twice the width of a loaded value. Figure 2-2(a) shows all possible statement

packing opportunities that are available to the compiler on the right. It consists of all con-

tiguous pairs of loads and all possible combinations of selecting two statements from each

isomorphic group of divisions and subtractions.

�e main challenge for a given vectorization algorithm is to select the best set of statement

pairs to pack that results in the most pro�table vectorization strategy. Figure 2-2(d) and

Figure 2-3(d) show the vectorized code and its dependency graph, respectively, that exploits

SLP in the most pro�table manner. For this example, we de�ne the pro�tability metric to be

the total number of statements of the code snippet (the lower the number of statements the

better). Even though this is a degenerate case of a linear cost model, it serves to witness the

limitations of existing vectorization schemes. Table 2-4 summarizes the pro�tability of each

vectorization scheme in terms of this pro�tability metric.

Larsen’s algorithm �e original SLP vectorization algorithm initially forms vector packs

for each adjacent pair of loads {{SL(i), SL(i+1)} ∶ 1 ≤ i ≤ 6}. It then follows the def-use chains

seeded by these vector packs to form additional vector packs {S4, S5}, {S1, S2}, {S2, S3} and
{S6, S4} in that order. Finally, during the scheduling phase, the vectorizer traverses each

scalar statement starting from the top of the basic block. If a given scalar statement is

part of a vector pack, the vectorizer replaces it with the �rst vector pack that contains it

according to the order the packs were formed. Following this greedy scheduling process,
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(a) Code example and candidate vector packs

(b) Larsen’s algorithm 

SL1:  L[1] = load(x+1)
SL2:  L[2] = load(x+2)
SL3:  L[2] = load(x+2)
SL4:  L[2] = load(x+2)
SL5:  L[2] = load(x+2)
SL6:  L[6] = load(x+6)
SL7:  L[7] = load(x+7)
S1  :  A1 = L[5] / L[2]
S2  :  A2 = L[6] / L[3]
S3  :  A3 = L[7] / L[4]
S4  :  A4 = L[1] - A2
S5  :  A5 = L[2] - A3
S6  :  A6 = L[3] - A1

{SL1, SL2}
{SL2, SL3}
{SL3, SL4}
{SL4, SL5}
{SL5, SL6}
{SL6, SL7}

{S1, S2}
{S2, S3}
{S1, S3}

{S4, S5}
{S4, S6}
{S5, S6}

Loads

Divisions

Subtractions

{SL1,SL2} :  {L[1], L[2]} = vload(x+1, x+2)
{SL3,SL4} :  {L[3], L[4]} = vload(x+3, x+4)
{SL5,SL6} :  {L[5], L[6]} = vload(x+5, x+6)
           SL7:  L[7] = load(x+7)
           UP1:  U1 = unpack( {L[3],L[4]} , 1)
           UP2:  U2 = unpack( {L[1],L[2]} , 2)
           P1    :  V1 = pack(U2 , U1)
    {S1,S2} :  {A1,A2} =  {L[5], L[6]} / V1

           UP3:  U3 = unpack( {L[3],L[4]} , 2)
           S3  :  A3 = L[7] / U3

           UP4:  U4 = unpack( {A1,A2} , 2)
           P2    :  V2 = pack(U4 , A3)
    {S4,S5}  :  {A4,A5} = {L[1],L[2]} - V2

            UP5:  U5 = unpack( {A1,A2} , 1)
            S6  :  A6 = U1 - U5

           SL1:  L[1] = load(x+1)
{SL2,SL3} :  {L[2], L[3]} = vload(x+2, x+3)
           SL4:  L[4] = load(x+4)
{SL5,SL6} :  {L[5], L[6]} = vload(x+5, x+6)
           SL7:  L[7] = load(x+7)
    {S1,S2} :  {A1,A2} =  {L[5], L[6]} / {L[2],L[3]}
           S3  :  A3 = L[7] / L[4]
           UP1:  U1 = unpack( {A1,A2} , 1)
           UP2:  U2 = unpack( {A1,A2} , 2)
           P1    :  V1 = pack(A3 ,U1)
           S4  :  A4 = L[1] - U2 

    {S5,S6}  :  {A5,A6} = {L[2],L[3]} - V1

            

(c) Liu’s algorithm 

{SL1,SL2} :  {L[1], L[2]} = vload(x+1, x+2)
{SL3,SL4} :  {L[3], L[4]} = vload(x+3, x+4)
           SL5:  L[5] = load(x+5)
{SL6,SL7} :  {L[6], L[7]} = vload(x+6, x+7)
           UP1:  U1 = unpack( {L[1],L[2]} , 2)
           S1  :  A1 = L[5] / U1

    {S2,S3} :  {A2,A3} =  {L[6], L[7]} / {L[3],L[4]}
    {S4,S5}  :  {A4,A5} = {L[1],L[2]} - {A2,A3}
           UP2:  U2 = unpack( {L[3],L[4]} , 1)
           S6  :  A4 = U2 - A1
   
            

(d) Optimal 

Figure 2-2: Comparison of SLP auto-vectorization strategies. (a) code example and all possible
candidate vector packs available to the compiler. (b)-(d) code snippets show the vector code
produced using di�erent vectorization algorithms. Vector code (b) under the original SLP
vectorization algorithm [80] (c) under holistic SLP vectorization algorithm [92] (d) under
optimal statement packing. Statements in green show vector packs materialized by each
strategy and statements in blue and red show overhead packing and unpacking instructions
respectively. Figure 2-3 visualizes the dependency graphs for each case.

load statements SL1 up to SL6 are replaced by vector loads {{SL(i), SL(i+1)} ∶ i ∈ {1, 3, 5}} and
vector packs {S1, S2}, {S4, S5} replace their constituent scalar statements. Figure 2-2(b) shows

the vectorized code for Larsen’s algorithm and Figure 2-3(b) shows the dependency graph of

formed vector packs.

Larsen’s algorithm misses more pro�table vectorization schemes for two main reasons.
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{SL5,SL6}

(a) Scalar code (b) Larsen’s algorithm 

(c) Liu’s algorithm (d) Optimal 

{SL2,SL3}

{S1,S2}

{SL5,SL6} {SL2,SL3}

{S1,S2}

{S3,S1}

{S5,S6}

{S4,S5}

{SL3,SL4}

{SL1,SL2}

{SL6,SL7} {SL3,SL4}

{S2,S3}

{S4,S5}

{SL1,SL2}

S1 S6

S4

S3

{S2,S3}

S6
SL7

SL1 SL2 SL3 SL4

SL5 SL6 SL7

S1 S2 S3

S4 S5 S6

SL1

SL4 SL7

S3

SL5

Figure 2-3: Figures (a)-(d) show dependency graphs of scalar code and of di�erent vectoriza-
tion strategies for the example code sequence listed in Figure 2-2(a). (a) dependency graph for
scalar code (b) dependency graph when using the original SLP vectorization algorithm [80]
(c) dependency graph when using the holistic SLP vectorization algorithm [92] (d) depen-
dency graph for optimal statement packing. Arrows show dependencies between vector packs
or scalar statements. Groupings with solid circles show vectorized packs. Groupings with
dotted circles show statements that are packed explicitly using vector packing instructions
and dotted lines show unpacking of values from vector packs.

First, it forms packs of vectorized loads irrespective of whether there are any vectorized uses

for them or not, and packs with no vectorized uses (excluding vector packs of stores) are

not removed from the �nal scheduling. For instance, it forms the vectorized load {SL3, SL4}
even though it is not used by any subsequent vectorized pack. Next, the scheduling phase

38



scalar vector packing unpacking total
No vectorization 13 13
Larsen’s algorithm 3 5 2 5 15
Liu’s algorithm 5 4 1 2 12
Optimal 3 5 0 2 10

Figure 2-4: Statement breakdown under each vectorization strategy for the code listing in
Figure 2-2(a). Note that unpacking of a value is only needed once, even though it may be
used multiple times in subsequent statements.

chooses to vectorize the �rst vector pack associated with a given scalar statement without

looking forward to see whether vectorizing it would be bene�cial for the code sequence

as a whole. If other statements in the vector pack have more pro�table alternative packing

opportunities they are missed. For instance, vectorizing {S2, S3} is more bene�cial compared

to {S1, S2} since it can be directly used in {S4, S5}.�ese greedy decisions lead to additional

packing and unpacking overhead (Table 2-4) compared to the vectorization strategy shown

in Figure 2-2(d) and yields an unpro�table vectorization scheme.

Liu’s algorithm Holistic SLP vectorization algorithm [92] enumerates all statement pack-

ing opportunities available in a given basic block and greedily selects the best using a local

heuristic.�is generates the �nal vector packs shown in Figure 2-3(c), which can be realized

using 12 statements as shown in Figure 2-2(c).

�e holistic SLP vectorization algorithm prioritizes vectorizing vector packs that can

be used by multiple other vector packs. In this example, the vector pack {SL2, SL3} has

the potential to be used by two vector packs ({S1, S2}, {S5, S6}) and is vectorized �rst.�e

algorithm runs until all pro�table vectorizable opportunities are exhausted.

Holistic SLP vectorization [92] does not look forward along def-use chains to see if the

current selection is pro�table at the global level and hence can miss vectorization oppor-

tunities with longer vectorized chains. For instance, it is bene�cial to vectorize {SL3, SL4}
compared to {SL2, SL3} as it leads to a longer vector sequence even though the latter can be

used in two vector packs.�is shows that even when we enumerate all packing possibilities,

it is not trivial to select the best possible packing strategy using local greedy heuristics.�e

greedy selection of vector packs at a local level searches only a limited subspace of all available
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combinations, leading to suboptimal packing decisions.

Optimal Solution �e optimal groupings are shown in Figure 2-3(d), which can be realized

using 10 statements as shown in Figure 2-2(d). In Chapter 3, we show how to arrive at this

optimal solution assuming a linear cost model (�e total number of statements is a special

case of the linear cost model in which we assume the cost of each statement to be the same

constant).

2.4 Summary

Loop vectorization and SLP based vectorization are the twomain dominant forms of compiler

auto-vectorization schemes that exist in modern-day compilers. Optimization strategies

suggested for either technique are normally manually speci�ed and usually follow a greedy

or a heuristic-driven algorithm. We showed how such algorithms can lead to suboptimal

solutions in the context of SLP based vectorization in Section 2.3.1. In the rest of the thesis,

we propose novel methods to move towards more automated means of constructing compiler

optimization strategies and cost models, focusing on SLP based vectorization as an important

example transformation.

We �rst propose how to perform SLP vectorization with certain optimality guarantees

with a solver-aided solution (Chapter 3). Speci�cally, rather than using a manually speci�ed

optimization strategy, we use an integer linear programming solver to suggest a pairwise opti-

mal statement packing strategy and a dynamic programming algorithm to suggest an optimal

permutation selection strategy. We assume a linear cost model and all vector permutations

have the same cost.

Next, we show how to learn SLP vectorization (Chapter 4) from scratch using a data-

driven strategy. We model SLP vectorization as a sequential decision making process and

then learn to imitate the decisions taken by our ILP based solution. We show that the

learned strategy generalizes and surprisingly outperforms the ILP based oracle for certain

benchmarks. We �nd that this is mainly due to the inaccuracies of the simple linear cost

model.
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To alleviate this, we demonstrate how to build better non-linear cost models again using

learned techniques (Chapter 5) that can signi�cantly outperform even the non-linear analyti-

cal cost models that are used in practice. We used a supervised dataset and a properly cra�ed

deep neural network based model to train our data-driven cost model.

We believe that the automated, featureless, data-driven learned techniques introduced in

this thesis lay the foundation toward changing how compiler optimizationswill be constructed

in the future and we lay out a plausible pathway towards achieving this goal in Section 7.3.
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Chapter 3

goSLP: Solver-aided SLP Vectorization

We introduce goSLP, an SLP vectorizer that searches a large space of SLP vectorization

opportunities in each function, rather than relying on a speci�c algorithm or heuristic to

make its vectorization decisions. goSLP packs statements by solving an ILP problem encoding

the costs and bene�ts of all possible choices using an o�-the-shelf ILP solver.�is enables

goSLP to achieve a pairwise-optimal statement packing strategy assuming a linear cost model.

goSLP then assigns statements to vector lanes using dynamic programming to search the space

of assignments for the one implementable with the fewest vector permutation instructions.

goSLP focuses only on SLP vectorization, and any loop based vectorization strategies are

orthogonal to our techniques.

goSLP improves throughput on SPEC2017fp rate by 5.2% compared to LLVM’s SLP auto-

vectorizer (using o�cial SPEC reporting criteria for 24 copies). To put this in perspective,

Intel’s reported SPEC2006fp rate improved by about 20% from Ivy Bridge to Haswell and

by about 12% from Haswell to Broadwell 1. By this measure, goSLP’s improvements are

approximately 25 to 50 percent of a microarchitecture revision. A�er examining many loops

(Section 3.5.3), we �nd goSLP makes consistent improvements across many diverse loops.

Even though a one-to-one comparison cannot be done with Intel’s commercial compiler

ICC, due to di�erent scalar optimizations, pass orderings, and the inability to selectively turn

on the loop vectorizer and the SLP vectorizer in ICC, we analyze the vectorization impact
1Data from https://www.spec.org/cpu2006/results/rfp2006.html.�e Ivy Bridge, Haswell and

Broadwell processor models are Intel Xeon E5-2697 v2, Intel Xeon E5-2690 v3 and Intel Xeon E5-2687W v4
respectively.
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of each compiler in Section 3.5.5. We show that even when starting from the slower scalar

baseline of LLVM, goSLP almost doubles the number of benchmarks that run faster than

ICC vectorized code when compared to LLVM SLP. ICC vectorization holds an edge over

LLVM SLP in terms of the vectorization speedup compared to the scalar code each compiler

produces. However, we show that goSLP has a higher overall geometric mean vectorization

speedup over scalar code when compared to both ICC and LLVM SLP.�erefore, if goSLP is

implemented in ICC, we believe it will have a net positive impact on runtime performance.

�e rest of the chapter is organized as follows. In Section 3.1, we give a high-level overview

of the entire goSLP framework. Section 3.2 details the ILP formulation used for statement

packing and Section 3.3 details the dynamic programming formulation used for vector

permutation selection. We implement goSLP inside the LLVM compiler infrastructure (see

Section 3.4) and evaluate the e�cacy of goSLP against LLVM SLP in Section 3.5.

3.1 goSLP Overview

Preprocessing 
(loop unrolling,

LICM…)
Candidate 

pair collection

Update vector 
packs

ILP formulation 
and solving

Vector 
permutation 

selection
Vector code 
generation

Vector 
scheduling

Statement packing

goSLP

packs > 0 N

Y

Figure 3-1: goSLP vectorization framework

Figure 3-1 shows a high-level overview of the goSLP vectorization framework. Preprocess-

ing passes such as loop unrolling and loop invariant code motion are executed �rst to expose

more opportunities to exploit SLP. goSLP performs SLP vectorization following the three

stages mentioned in Section 2.2.2: statement packing, permutation selection and statement

scheduling.
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3.1.1 Statement Packing

goSLP performs statement packing two statements at a time (vectorization factor of 2). We

call this procedure pairwise statement packing. It �rst starts by �nding candidate pairs of

statements that can bemerged into vector packs. Next, it formulates an ILP problem encoding

the bene�ts of forming vector instructions for each such pair together with any associated

costs of vectorization (see Section 3.2).�e solution to this optimization problem is a set of

pairs that should be vectorized.�e goSLP framework performs statement packing iteratively

on the newly formed pairs to build vector packs of higher vector width, until the vector width

of registers in the machine is exhausted or until no more feasible vector packs can be formed.

By encoding the statement packing problem as an ILP problem, goSLP exploits the search

capabilities of modern ILP solvers to search the space of all pairwise packings in a reasonable

amount of time. goSLP keeps the ILP problem to a tractable size by encoding only local costs

and bene�ts, but the resulting solution yields a globally pairwise-optimal packing because

the solver considers all constraints simultaneously.

3.1.2 Permutation Selection

Once, the packs are formed, the vector permutation selection stage decides the optimal

permutation for the scalar statements within each vector pack. goSLP uses a dynamic pro-

gramming algorithm to decide upon the proper permutation.�e algorithm �rst performs a

forward and a backward traversal along data-dependency graphs of vector packs to deter-

mine the feasible set of permutations for statement ordering in each pack and then �nds

the best permutation among them that minimizes insertion of explicit vector permutation

instructions using dynamic programming (see Section 3.3). By design, our formulation only

searches the pro�table subspace of permutations, which is considerably smaller compared to

the total (n!)N possible combinations, exploiting the optimal substructure of the problem.
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3.1.3 Statement Scheduling

Finally, goSLP uses the vector scheduling algorithm from the existing LLVM compiler frame-

work [82] to schedule the ordered vector packs which are translated into executable vector

instructions at the compiler code generation back-end.

3.2 Statement Packing: ILP Formulation

goSLP encodes the statement packing problem as an optimization problem solved using

integer linear programming. At a high level, it encodes the bene�ts and costs of forming

all feasible vector packs and the objective of the optimization problem is to �nd a subset of

packs such that the total cost of vectorization is minimized. goSLP uses LLVM’s existing cost

model to query various types of costs discussed during this section (see also Section 3.4).

We use the code snippet in Figure 3-2 as a running example, and any numbered statements

referred to in this section refer to statements shown therein.

S1:  A1 = load(X)

S2:  A2 = load(X + N)

S3:  B1 = load(Y)

S4:  B2 = load(Y + 1)

S5:  C1 = A1 + B1
S6:  C2 = A2 + B2
S7:  C3 = A2 + B1 

S1 S2 S3 S4

S5 S6S7

Figure 3-2: Running example code snippet for statement packing (le�) and its dependency
graph (right); assume loads S3,S4 are contiguous whereas S1,S2 are not

3.2.1 Candidate Pair Collection

goSLP �rst �nds all feasible pairs of statements that can form vector packs according to the

constraints listed in Section 2.2.1, treating a whole function as a vectorization unit. For each

statement S in a function, goSLP collects the set of statements fS that can be paired with S
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to form vector packs. For example, for the code snippet shown in Figure 3-2, fS1 ∶ {}, fS2 ∶
{}, fS3 ∶ {S4}, fS4 ∶ {S3}, fS5 ∶ {S6, S7}, fS6 ∶ {S5, S7}, fS7 ∶ {S5, S6}

Since we consider whole functions as vectorization units, goSLP captures common subex-

pression usages among vector packs residing in di�erent basic blocks.�is allows goSLP to

avoid unpacking vector packs unnecessarily when all of their uses are vectorized but reside

in di�erent basic blocks. In contrast, if goSLP limited its vectorization unit to a single basic

block, all vector packs where the values are not dead at the end of a basic block would need

to be unpacked, since it does not know whether all of their uses are vectorized and would

thus require an additional live variable analysis.

Even though vectorized def-use chains can span across multiple basic blocks, note that

only statements within the same basic block can be considered for pairing.

3.2.2 ILP Formulation Overview

During ILP formulation, goSLP �rst creates decision variables for all pairwise packing op-

portunities found during candidate pair collection. Next, it encodes vector cost savings,

packing costs, unpacking costs, and scheduling constraints for each of these packs, using a

tractable, local encoding, that preserves global optimality for pairwise statement packing

during the actual ILP solving phase. Finally, to select the optimal subset of packs to be

formed from the set of packing opportunities, goSLP uses an ILP solver to minimize the sum

of all the aforementioned costs for the subset while respecting the scheduling constraints.

Section 3.2.8 shows goSLP’s complete ILP formulation and Sections 3.2.3 to 3.2.7 describe how

we encode each term within it. goSLP uses the ILP formulation iteratively to explore packing

opportunities at higher vector widths by treating already formed vector packs as individual

vectorized statements until all packing opportunities are exhausted or the maximum vector

width of the machine is reached.

3.2.3 Decision Variable Creation

�is stage takes as input the feasible set of statements fS found for each statement S and creates

boolean decision variables for each unique vector packing opportunity. Let D = {{Sp, Sq} ∶
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Sp ∈ fSq ∧ Sq ∈ fSp} be the set of all candidate vector packs. Note that we do not consider the
ordering within a pair where {Sp, Sq} and {Sq , Sp} are considered the same when forming D.

For the code snippet shown in Figure 3-2, D = {{S3, S4}, {S5, S6}, {S5, S7}, {S6, S7}}.

�en the set of decision variables are formed as V = {V{Sp ,Sq} ∶ {Sp, Sq} ∈ D}.�e output

of the ILP problem is whether each of these boolean variables is set or not, deciding on which

vector packs should be formed.

Also, at this stage goSLP populates two map structures. For each candidate vector pack

P ∈ D, it goes through operand pairs of its constituent statements in order, to check if they

are vectorizable. If any such operand pair O is ∈ D, it records P as a vectorizable use for the

vector pack O in a map structure (VecVecUses), which maps from a candidate vector pack

to the set of all vectorizable uses of that pack. If O ∉ D, the operand pair is not vectorizable

and must be packed if P is vectorized. goSLP keeps track of such non-vector pack uses in

another map structure (NonVecVecUses) that maps from a non-vector pack to the set of all

vectorizable uses of that pack.

�e VecVecUses and NonVecVecUses maps for the code listing in Figure 3-2 are as

follows:

VecVecUses = {{S3, S4}↦ {{S5, S6}, {S6, S7}}}

NonVecVecUses = {{S1, S2}↦ {{S5, S7}, {S5, S6}},

{S2, S2}↦ {{S6, S7}},

{S3, S3}↦ {{S5, S7}}}

3.2.4 Encoding Vector Cost Savings

Executing a single vector instruction is cheaper in general when compared to executing

its constituent scalar statements individually. Considering a vector pack P with statements

{S1, . . . , SN}, we de�ne the cost savings of vectorizing P as,

vec_savings(P) = vec_cost(P) −
N
∑
i=1

scalar_cost(Si)
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Note that vec_savings(.) is negative when the vector instruction is cheaper than the

total cost of the scalar instructions. Vector cost savings for all vector packs in D are encoded

as follows:

VS = ∑
P∈D

vec_savings(P) × VP

For example, cost savings for vector pack {S3, S4} is encoded as vec_savings({S3, S4})×
V{S3 ,S4}.

3.2.5 Encoding Packing Costs

Packing costs for vector packs are handled di�erently from non-vector packs.

Statement pairs that are already in D need to be explicitly packed using insertion instruc-

tions only if they are not vectorized and at least one of their vectorizable uses is vectorized.

If pack_cost(.) returns the packing cost for an individual pack (queried from LLVM),

goSLP encodes the packing cost of vector packs for the entire function as follows:

PCvec = ∑
P∈D

VP × ( ⋁
Q∈VecVecUses(P)

VQ) × pack_cost(P)

Note that we only need to pack once, and if there are multiple vector uses they can

reuse the same pack.�erefore, our formulation properly handles cases in which common

vector subexpressions are used across multiple basic blocks post-dominating their de�ni-

tions. For example, consider vector pack {S3, S4}, which has multiple potential vector uses,

where VecVecUses({S3, S4}) = {{S5, S6}, {S6, S7}}. goSLP encodes its vector packing cost

as V{S3 ,S4} × (V{S5 ,S6} ∨ V{S6 ,S7}) × pack_cost({S3, S4}).

If non-vectorizable pairs are used by vector packs that are vectorized, then we have to

add packing costs for those pairs.�is is in contrast to the former situation where we added

packing costs only if the vector pack itself was not vectorized; but in this case, by de�nition

non-vector packs are not vectorized. Let NV be the set of all potential non-vector packs that

may be used by potential vector packs.�en, packing costs for non-vector packs are encoded

as follows:
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PCnonvec = ∑
NP∈NV

( ⋁
Q∈NonVecVecUses(NP)

VQ) × pack_cost(NP)

Consider the vector packs {S5, S7} and {S5, S6}. �ey need S1 and S2 to be explicitly

packed into a vector even though the statements are not vectorizable. goSLP encodes their

packing cost as (V{S5 ,S7} ∨ V{S5 ,S6}) × pack_cost({S1, S2})

3.2.6 Encoding Unpacking Costs

Unpacking costs are relevant for vector packs with non-vectorizable uses. Statement Si of a

vector pack P = {Si , S j} need to be extracted if any of:

• Si has uses outside the function.

• Si has more uses than S j (then not all uses of Si can be vectorized).

• some of Si ’s vectorized uses cannot form mutually exclusive vector packs with uses of

S j.

Let unpack_cost(P,i) return the extraction cost of lane i from pack P. Since we do

not know which lane each statement is going to be in the vector pack, we make a conservative

guess of cost of extracting one lane as up = max(unpack_cost(P,0), unpack_cost(P,1)).

�e �rst two conditions for unpacking Si can be encoded trivially. To encode unpacking

cost for the third condition, goSLP �rst goes through the uses of Si . For each use of Si , goSLP

searches the uses in S j and collects the set of uses that can result in legitimate vector packs in

D. goSLP records this information in a map (VecUses) that maps from a use U of Si to the

set of potential vector packs U can form with uses of S j. For Si to be not extracted, all of its

uses should be vectorized. We can encode the unpacking cost for statement Si of pack P as

follows:

unpack(P, Si) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

up × VP if hasOutsideUses(Si)

up × VP else if #uses(Si) > #uses(S j)

up × VP × Val l else
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where the boolean variable Val l is de�ned as follows:

VU = ϕ
for U ∈ uses(Si) do
VU + = ⋁

Q∈VecUses(U)
VQ

Val l = (VU < #uses(Si))

Note that for a given use U , only one pack out of VecUses(U) may be vectorized.�is

constraint as well as other scheduling constraints that limit the search space of the ILP

problem are discussed in Section 3.2.7. Similar to Si , goSLP encodes unpacking cost for

S j as well. As an example, consider the vector pack P = {S3, S4}. Statement S3 is used

by statements S5 and S7, whereas Statement S4 is used by statement S6. Since #uses(S3) >
#uses(S4), unpack(P, S3) = up × VP. Unpacking for statement S4 falls under the third

condition, unpack(P, S4) = up × VP × (V{S5 ,S6} ∨ V{S6 ,S7} < 1).
�e �nal unpacking cost for the entire function is encoded as follows:

UC = ∑
P∈D
∑
S∈P

unpack(P, S)

3.2.7 Scheduling Constraints

As noted in Section 2.2.1, not all packs can coexist with each other.�ese rules are added as

constraints to the ILP problem.

Overlapping Packs A given statement can only be part of at most one vector pack.�is is

encoded as a set of constraints OC as follows:

OC = ϕ
for S ∈ F do ▷ Function F

packs = ϕ
for P ∈ D do

if S ∈ P then

packs + = VP

OC∪ = (packs <= 1)
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For example, we can only vectorize either pack {S5, S6} or {S5, S7} when we consider

statement S5.�erefore, goSLP inserts a scheduling constraint V{S5 ,S6} + V{S5 ,S7} <= 1 into the

set OC.

Circular Dependencies Two packs P1 and P2 cannot have circular dependencies. �ese

can be caused either through direct or through transitive dependencies following the def-

use chains of the function. goSLP constrains forming such con�icting packs by enforcing

VP1 + VP2 <= 1. Let the set of such constraints for the entire function be CC.

3.2.8 Complete ILP Formulation

A�er all costs, bene�ts, and constraints of performing statement packing on pairs of state-

ments are encoded in terms of boolean variables inV , goSLP formulates the �nal ILP problem

as follows:
min
V

VS + PCvec + PCnonvec +UC

subject to OC , CC

�e complete ILP formulation for the example code snippet in Figure 3-2 is shown in

Figure 3-3. Note that vec_savings(.), pack_cost(.), unpack_cost(.) and up are all

integer scalar values that should be queried from a suitable cost model. goSLP uses LLVM’s

cost model in its implementation.�e solution to this ILP problem is the set of vector packs

that should be vectorized.

3.2.9 Multiple Iterations

So far, we have formulated the ILP problem for pairs of statements, but it may be pro�table to

vectorize more so as to use the full data width of vector operations supported by the hardware.

To achieve this, we consider the newly formed vector packs resulting from the solution to the

ILP problem as individual vector statements and redo the ILP formulation on them. goSLP

does this iteratively until no new vectorization opportunities are available, either because

it exhausts the vector width supported by the processor, or the current packs cannot be

merged to form vector packs of higher width. Figure 3-4 pictorially shows how goSLP creates
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NV = {S1, S2}, {S3, S3}, {S2, S2}

CC = {}

D = {{S3, S4}, {S5, S6}, {S5, S7}, {S6, S7}}
Vector packs

Non-vector packs

ILP encoding

min
V

V S + PCvec + PCnonvec + UC

subject to OC, CC
ILP:

V = {V{S3,S4}, V{S5,S6}, V{S5,S7}, V{S6,S7}}

VS =vec savings({S3, S4}) ⇥ V{S3,S4}+

vec savings({S5, S6}) ⇥ V{S5,S6}+

vec savings({S5, S7}) ⇥ V{S5,S7}+

vec savings({S6, S7}) ⇥ V{S6,S7}

PCnonvec =(V{S5,S6} _ V{S5,S7}) ⇥ pack cost({S1, S2})+

V{S5,S7} ⇥ pack cost({S3, S3})+

V{S6,S7} ⇥ pack cost({S2, S2})

UC =up⇥ V{S3,S4} ⇥ (V{S5,S6} _ V{S6,S7} < 1)+

up⇥ V{S3,S4}

OC ={V{S5,S6} + V{S5,S7} <= 1, V{S5,S6} + V{S6,S7} <= 1,

V{S5,S7} + V{S6,S7} <= 1}

PCvec =V{S3,S4} ⇥ (V{S5,S6} _ V{S6,S7})⇥
pack cost({S3, S4})

Figure 3-3: Final ILP formulation for code snippet in Figure 3-2

vectors of higher vector width by pairwise merging vector packs of lower vector width at

each iteration. Concretely, it depicts how goSLP generates vector packs of 256-bit targeting

AVX2 x86 ISA from 32-bit integer scalar code.

Also, note that versions of pack_cost, unpack_cost and vec_savings that re�ect

costs of forming packs of higher width from smaller vector packs must be used. Explicit

packing of two vector packs together needs vector shu�e instructions, compared to using

vector insertion instructions when two scalar values are packed. For example if vector packs

Pi = {Si1, Si2} and Pj = {S j1, S j2} are packed together to form {Pi , Pj}, we need to use shu�e

instructions. Unpacking of a vector pack that is formed from two other vector packs may also

need shu�es, instead of individual lane extracting instructions. Also as an added complexity,
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Iteration 1

Iteration 2

Iteration 3

(4 x 64-bit)
32-bit32-bit

(2 x 128-bit)

(1 x 256-bit)

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit8 x 32-bit
scalar

Figure 3-4: Applying goSLP’s ILP formulation for multiple iterations. Iteration 1 forms four
64-bit wide vector packs. Iteration 2 merges them into two 128-bit wide vector packs and
�nally a single 256-bit wide pack is formed at iteration 3.

shu�e instruction costs vary based on the kind of shu�e one wants to perform. For example,

the cost of broadcasting a single vector across a vector of higher width is di�erent from the

cost of inserting a subvector into a vector of higher width. goSLP takes these di�erences into

account and uses the proper form of cost based on the type of the vector pack and the type of

the shu�e that needs to be performed, up to the support given by the compiler cost model

(goSLP uses LLVM’s cost model). goSLP also uses the target information given out by the

cost model to penalize excessive use of shu�e instructions in close proximity, to minimize

execution port contention for shu�es.

3.2.10 Discussion

Optimality By reducing the pairwise statement packing problem into an ILP problem,

goSLP optimally selects the most cost-e�ective pairs for vectorization.�is is fundamentally

di�erent from other techniques that employ local greedy heuristics to build up a particular

vectorization strategy without searching the available space. For any given set of statements,

goSLP can pack those statements pairwise optimally up to the accuracy of the static cost

model and program structure2. goSLP exhaustively considers all possible pairwise statement

packing opportunities when formulating the ILP problem.
2For example, goSLP does not perform loop transformations, but enabling transformations such as in [76]

could be used before goSLP.
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Dynamic information such as memory access patterns, latencies and branch information

can be used to improve the accuracy of the static costmodel used by goSLP and can potentially

lead to better packing decisions. However, incorporating runtime feedback is not considered

since we primarily built goSLP to be an ahead-of-time compiler optimization pass.

When using multiple iterations, goSLP is pairwise optimal within each iteration, but the

end resultmay be suboptimal because the problemdoes not have an optimal substructure.�e

main cause of suboptimality results from the inability to move constituent scalar statements

across already decided vector packs when forming packs of higher vector width. Another

possible cause of suboptimality occurs when shorter width vector packs are deemed to be

not pro�table compared to scalar code, whereas wider width vector packs that contain the

same constituent scalar statements are pro�table according to the cost model. In such cases,

goSLP does not form the shorter width vector packs, and as a result the pro�table wider

width vector packs are never considered as an option.

Tractability goSLP achieves pairwise optimal statement packing at each iteration. At

iteration i, if there are n vector packs of size 2i−1 (vector packs of size 0 are scalar statements),

then goSLP has to make O((n2)) = O(n2) packing decisions. Packing and unpacking costs for
each pack are encoded using constant space, as the costs are only a�ected by their operands

and their immediate users. Hence, our encoding of vector cost savings and packing and

unpacking costs is of the size of the total number of feasible vector packs at a given iteration,

which is of size O(n2) for pairwise packing. Since the number of iterations is independent

of the number of statements in a function, goSLP creates ILP problems of size O(n2) for
functions with n statements.

Even though, the ILP solving on the worst case can be exponential in terms of the

expression size, we found that the state-of-the-art ILP solvers are able to solve expressions

of this magnitude in a reasonable amount of time (see Section 3.5.4). Packing more than

two statements at a time, however, makes the problem intractable for current solvers, and

hence we fall back to iteratively using ILP formulations to discover packing opportunities

of higher widths as discussed in Section 3.2.9. Moreover, goSLP can be used to perform

targeted optimization of performance-critical functions if increase in compilation time is not
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acceptable for certain applications.

Flexibility goSLP explicitly limits architecture dependence to the cost model, with no

implicit assumptions about pro�tability, and as such it can accommodate di�erent cost

models to come up with di�erent vectorization strategies. �e user has the freedom to

optimize any aspect of the program, whether it is the number of static instructions during

compilation, the power consumption of the program, and instruction-speci�c static costs,

etc.�is makes goSLP more �exible and can leverage advances made in developing compiler

cost models to produce better code.

Extensibility goSLP can be extended to include hardware speci�c constraints to drive code

optimization for specialized hardware.�is includes modeling register pressure, execution

port contention, or other scheduling constraints. For example, register pressure can be

modeled by adding constraints to limit the number of live vector packs at each statement.

3.3 Permutation Selection: DP Formulation

�e vector permutation selection stage selects the most cost-e�ective ordering (permutation)

of scalar statements for each vector pack created during the statement packing stage. First,

it builds a dependency graph following the use-def chains of the vector packs. �en it

propagates feasible sets of permutations for each node in the graph by performing a forward

and a backward traversal, from which the best permutation is selected using a dynamic

programming algorithm.

3.3.1 Vectorization Graph Building

goSLP builds a dependency graph of all vectorized statements following the use-def informa-

tion of each vector pack. First, it goes through all vector packs formed during the statement

packing stage and checks for packs with no vectorized uses. �ey act as the root nodes of

the graph. Next, starting from the roots, it builds a dependency graph following the use-def

chains, which we term the vectorization graph. Note that if there are common vector subex-
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pression uses, the vectorization graph, in general, is a directed acyclic graph (DAG), and each

root can have its own unconnected DAG. Figure 3-5 shows vectorization graphs for three

di�erent code listings.�e root node of each vectorization graph is a vector pack of stores,

and each graph ends with vector packs of loads as their leaves.

3.3.2 Permutation Mask Propagation

Vector packs with memory operations have strict statement ordering (e.g., scalar loads in

a vector pack should be ordered such that they access contiguous memory). We term such

nodes with pre-determined statement ordering as constrained nodes. At this stage, the goal of

goSLP is to determine the minimum set of candidate statement orderings (permutations) it

should consider for each of the non-constrained free nodes, out of which it selects the best

that minimizes explicit insertion of vector permutation instructions in between vector packs.

To minimize the insertion of permutation instructions, a node’s permutation should

be shared with one of the permutations of its neighboring nodes. �is allows at least one

path of values to �ow along the graph unchanged. �erefore, it is su�cient to propagate

permutations for each free node by traversing the vectorization graph once in either direction,

constrained by the permutations of the constrained nodes. Permutations of the parents as

well as their children are propagated to each node in this way.

Forward traversal starts from the roots of the vectorization graph and propagates sets

of permutations towards the leaves. Child nodes with multiple parents union the set of all

permutation masks propagated from their parents to determine the �nal set of permutations.

�ese nodes occur when the same vector pack is used by more than one other vector pack.

Let P f
V be the �nal set of feasible permutation masks propagated to node V during forward

traversal. goSLP maintains separate sets of permutations in each direction for each node.

Backward traversal starts from the leaves of the vectorization graph and propagates the

set of feasible permutations to their parents. Parent nodes with multiple children union

all incoming sets from their children to determine the �nal set of feasible permutations.

Permutations are propagated until all nodes of the graph are reached. Let Pb
V be the �nal set

of feasible permutation masks propagated to node V during backward traversal.

Finally, for each node V , goSLP unions the permutation sets under both directions to

57



come up with the �nal set of candidate permutations FPV = P f
V ∪ Pb

V . We show an illustrative

example of this process in Section 3.3.4.

3.3.3 Dynamic Programming Formulation

We de�ne the cost of selecting a particular permutation PV for a node V given permutations

PS for each of its successor nodes S using the following recursive formulation.

cost(PV ,V) = ∑
S∈succ(V)

cost(PS , S) + perm_cost(PS , PV)

�e functions succ and pred return the set of successor and predecessor nodes for a

given node, respectively.

In essence, cost(PV ,V) records the cumulative cost of using a series of permutations

from the leaves of the graph until the current node V is reached when traversing the vector-

ization graph backward.�e objective is to �nd the set of permutations that minimize the

cost at the roots of the graph.

ComputeMinAndSelectBest routine (Algorithm 1) solves this recursive formulation

optimally using dynamic programming to come up with the best set of permutations for the

case when the vectorization graph is a tree. Lines 4–12 show how minimum permutation

costs are computed for each node. Starting from the leaves backward, it visits each node and

calculates the minimum cost of permutation for each of its candidate permutations (line 9)

by going through each of its successor nodes and �nding the permutation that results in the

lowest cost.�e function perm_cost(PV , PS) returns the cost of inserting vector permutation

instructions when PV ≠ PS . It also remembers which permutation of a node’s successors

resulted in the lowest cost in the structure arg (line 10).

Optimality of costs calculated by Algorithm 1 (lines 4–12) comes from the fact that the

problem has optimal substructure when the vectorization graph is a tree. We can establish

our optimality claim inductively as follows.�e base case constitutes of leaves and it is always

optimal not to change its statement ordering for all possible candidate permutations. Since

leaves by de�nition have no successors their costmin(., .) = 0 for all candidate permuta-

tion masks. For any other non-leaf node in the vectorization graph, we go through all of
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Algorithm 1Dynamic programming algorithm for vector pack permutation selection
1: procedure ComputeMinAndSelectBest
2: Inputs: graph G, candidate permutations FPV for each node V ∈ G
3: W= leaves(G)
4: while !W.empty() do
5: V =W.deque()
6: for PV ∈ FPV do
7: costmin(PV ,V) = 0
8: for S ∈ succ(V) do
9: costmin(PV ,V)+= min

PS∈FPS
costmin(PS , S)+perm_cost(PS , PV)

10: arg(PV ,V , S) = argmin
PS∈FPS

costmin(PS , S) + perm_cost(PS , PV)

11: W.enque(pred(V))
12: W = ϕ
13: for R ∈ roots(G) do
14: selected(R) = argmin

PR∈FPR
costmin(PR , R)

15: W.enque(succ(R))
16: while !W.empty() do
17: R =W.deque()
18: P = pred(R)
19: selected(R) = arg(selected(P), P, R)
20: W.enque(succ(R))

its successors (line 8) to �nd the least possible cost for each of its candidate permutation

masks. Since inductively its successors have the least possible costs recorded for each of their

candidate permutations, the costs recorded by the considered node are optimal for all of its

candidate permutations. Note that this optimal substructure does not hold in general when

the vectorization graph is not a tree, since a given node can havemultiple predecessors and the

optimal cost for each predecessor is in�uenced by the optimal costs of the current successor

node for all candidate permutations.�is may lead to situations where one predecessor may

�nd one candidate permutation mask of the successor node to be optimal, whereas the other

predecessor may �nd another candidate permutation mask to be optimal. However, only one

candidate permutation mask can be materialized for a given node.�erefore, costs computed

in such situations may not be optimal.

Lines 13–21 show how the �nal permutation masks are selected for all the nodes in the

graph. It starts from the roots and �nds the permutation that results in the lowest cost (lines 13–
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15) and then visits successor nodes recursively to �nd the best permutations using the stored

arg structure (lines 16–20).�e selected structure holds the �nal selected permutation for

each node.

However, for vectorization graphs that are not trees but DAGs, some nodes may not have

a unique predecessor, and hence we cannot query the arg structure to determine the selected

permutation uniquely (line 19). In this case, we create multi-nodes by coalescing groups

of nodes that have common successors, up to a certain node limit, to transform the DAG

into a tree with multi-nodes.�e candidate permutation set of a multi-node is the cartesian

product of the candidate permutation sets of its constituent nodes. If multiple multi-nodes

are created, this results in an exponential increase in the candidates the algorithm need to

consider, but in general the amount of candidate permutations per node is low, making the

problem tractable. In practice, we found we are able to optimally solve all problems for our

benchmark suite using a multi-node size limit of 5 nodes, each having a maximum of up to 4

permutation candidates.

3.3.4 Illustrative Example

Figure 3-5 shows a detailed example of how vector permutation selection stage computes

statement ordering for the vector packs extracted for code snippets in Figure 3-5(I)-(III).

Each code snippet performs a division on data loaded from array L and stores it back into

an array S but with di�erent operand orderings. Vector packs identi�ed by the statement

packing stage for each code snippet are identical. For brevity and clarity, vector packs of

vectorized values and operations are used in this example instead of statements that yield

those values and operations.�ey are the loads {L(︀1⌋︀, L(︀2⌋︀} and {L(︀3⌋︀, L(︀4⌋︀}, the vectorized
division operation, and the the store {S(︀0⌋︀, S(︀1⌋︀}.

�e permutation mask propagation phase is shown in Figure 3-5(A). Note that the per-

mutation masks shown in the diagram depict the permutation that should be applied to the

pack to achieve the operand ordering shown in the dependency graph. For example, to form

pack {L(︀2⌋︀, L(︀1⌋︀} in Figure 3-5(II)(A) in that order, we need to reverse the loaded values

{L(︀1⌋︀, L(︀2⌋︀} and hence it has a permutation mask of {1, 0}.�is phase updates the candidate

permutations for the only free node V3. Forward traversal starts from node V4, which has the
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S[0] = L[1] / L[3]
S[1] = L[2] / L[4]

S[0] = L[2] / L[3]
S[1] = L[1] / L[4]

S[0] = L[2] / L[4]
S[1] = L[1] / L[3]

S[0] S[1] 

L[1] L[2] L[3] L[4] 

/ P f
3 = {{0, 1}}, P b

3 = {{0, 1}}
<latexit sha1_base64="n0DC1Jl4jMjTK+/J9CwRozxYjV0=">AAACEnicbZDLSsNAFIYn9VbrLerSzWARFEpJVNCNUHTjsoK9QBPDZDpph04mYWYilJBncOOruHGhiFtX7nwbJ20WtvWHgZ/vnMOZ8/sxo1JZ1o9RWlpeWV0rr1c2Nre2d8zdvbaMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFNXu88EiFpxO/VOCZuiAacBhQjpZFnnjS9s4cAXkEndVKrZjuZk9VgDv1ZCD2zatWtieCisQtTBYWanvnt9COchIQrzJCUPduKlZsioShmJKs4iSQxwiM0ID1tOQqJdNPJSRk80qQPg0joxxWc0L8TKQqlHIe+7gyRGsr5Wg7/q/USFVy6KeVxogjH00VBwqCKYJ4P7FNBsGJjbRAWVP8V4iESCCudYkWHYM+fvGjap3Xbqtt359XGdRFHGRyAQ3AMbHABGuAWNEELYPAEXsAbeDeejVfjw/ictpaMYmYfzMj4+gVsqJrN</latexit><latexit sha1_base64="n0DC1Jl4jMjTK+/J9CwRozxYjV0=">AAACEnicbZDLSsNAFIYn9VbrLerSzWARFEpJVNCNUHTjsoK9QBPDZDpph04mYWYilJBncOOruHGhiFtX7nwbJ20WtvWHgZ/vnMOZ8/sxo1JZ1o9RWlpeWV0rr1c2Nre2d8zdvbaMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFNXu88EiFpxO/VOCZuiAacBhQjpZFnnjS9s4cAXkEndVKrZjuZk9VgDv1ZCD2zatWtieCisQtTBYWanvnt9COchIQrzJCUPduKlZsioShmJKs4iSQxwiM0ID1tOQqJdNPJSRk80qQPg0joxxWc0L8TKQqlHIe+7gyRGsr5Wg7/q/USFVy6KeVxogjH00VBwqCKYJ4P7FNBsGJjbRAWVP8V4iESCCudYkWHYM+fvGjap3Xbqtt359XGdRFHGRyAQ3AMbHABGuAWNEELYPAEXsAbeDeejVfjw/ictpaMYmYfzMj4+gVsqJrN</latexit><latexit sha1_base64="n0DC1Jl4jMjTK+/J9CwRozxYjV0=">AAACEnicbZDLSsNAFIYn9VbrLerSzWARFEpJVNCNUHTjsoK9QBPDZDpph04mYWYilJBncOOruHGhiFtX7nwbJ20WtvWHgZ/vnMOZ8/sxo1JZ1o9RWlpeWV0rr1c2Nre2d8zdvbaMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFNXu88EiFpxO/VOCZuiAacBhQjpZFnnjS9s4cAXkEndVKrZjuZk9VgDv1ZCD2zatWtieCisQtTBYWanvnt9COchIQrzJCUPduKlZsioShmJKs4iSQxwiM0ID1tOQqJdNPJSRk80qQPg0joxxWc0L8TKQqlHIe+7gyRGsr5Wg7/q/USFVy6KeVxogjH00VBwqCKYJ4P7FNBsGJjbRAWVP8V4iESCCudYkWHYM+fvGjap3Xbqtt359XGdRFHGRyAQ3AMbHABGuAWNEELYPAEXsAbeDeejVfjw/ictpaMYmYfzMj4+gVsqJrN</latexit><latexit sha1_base64="n0DC1Jl4jMjTK+/J9CwRozxYjV0=">AAACEnicbZDLSsNAFIYn9VbrLerSzWARFEpJVNCNUHTjsoK9QBPDZDpph04mYWYilJBncOOruHGhiFtX7nwbJ20WtvWHgZ/vnMOZ8/sxo1JZ1o9RWlpeWV0rr1c2Nre2d8zdvbaMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFNXu88EiFpxO/VOCZuiAacBhQjpZFnnjS9s4cAXkEndVKrZjuZk9VgDv1ZCD2zatWtieCisQtTBYWanvnt9COchIQrzJCUPduKlZsioShmJKs4iSQxwiM0ID1tOQqJdNPJSRk80qQPg0joxxWc0L8TKQqlHIe+7gyRGsr5Wg7/q/USFVy6KeVxogjH00VBwqCKYJ4P7FNBsGJjbRAWVP8V4iESCCudYkWHYM+fvGjap3Xbqtt359XGdRFHGRyAQ3AMbHABGuAWNEELYPAEXsAbeDeejVfjw/ictpaMYmYfzMj4+gVsqJrN</latexit>

FP3 = {{0, 1}}
<latexit sha1_base64="uxAEyae6Cm21CyhegElgmpVTtCw=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICVRQS9CURCPFewHNKFstpt26WYTdjdiCfkrXjwo4tU/4s1/47bNQVsfDDzem2FmXpBwprTjfFtLyyura+uljfLm1vbOrr1Xaak4lYQ2Scxj2QmwopwJ2tRMc9pJJMVRwGk7GN1M/PYjlYrF4kGPE+pHeCBYyAjWRurZldtG7wxdIS/zMufE9XIv79lVp+ZMgRaJW5AqFGj07C+vH5M0okITjpXquk6i/QxLzQinedlLFU0wGeEB7RoqcESVn01vz9GRUfoojKUpodFU/T2R4UipcRSYzgjroZr3JuJ/XjfV4aWfMZGkmgoyWxSmHOkYTYJAfSYp0XxsCCaSmVsRGWKJiTZxlU0I7vzLi6R1WnOdmnt/Xq1fF3GU4AAO4RhcuIA63EEDmkDgCZ7hFd6s3Hqx3q2PWeuSVczswx9Ynz+5u5Lx</latexit><latexit sha1_base64="uxAEyae6Cm21CyhegElgmpVTtCw=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICVRQS9CURCPFewHNKFstpt26WYTdjdiCfkrXjwo4tU/4s1/47bNQVsfDDzem2FmXpBwprTjfFtLyyura+uljfLm1vbOrr1Xaak4lYQ2Scxj2QmwopwJ2tRMc9pJJMVRwGk7GN1M/PYjlYrF4kGPE+pHeCBYyAjWRurZldtG7wxdIS/zMufE9XIv79lVp+ZMgRaJW5AqFGj07C+vH5M0okITjpXquk6i/QxLzQinedlLFU0wGeEB7RoqcESVn01vz9GRUfoojKUpodFU/T2R4UipcRSYzgjroZr3JuJ/XjfV4aWfMZGkmgoyWxSmHOkYTYJAfSYp0XxsCCaSmVsRGWKJiTZxlU0I7vzLi6R1WnOdmnt/Xq1fF3GU4AAO4RhcuIA63EEDmkDgCZ7hFd6s3Hqx3q2PWeuSVczswx9Ynz+5u5Lx</latexit><latexit sha1_base64="uxAEyae6Cm21CyhegElgmpVTtCw=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICVRQS9CURCPFewHNKFstpt26WYTdjdiCfkrXjwo4tU/4s1/47bNQVsfDDzem2FmXpBwprTjfFtLyyura+uljfLm1vbOrr1Xaak4lYQ2Scxj2QmwopwJ2tRMc9pJJMVRwGk7GN1M/PYjlYrF4kGPE+pHeCBYyAjWRurZldtG7wxdIS/zMufE9XIv79lVp+ZMgRaJW5AqFGj07C+vH5M0okITjpXquk6i/QxLzQinedlLFU0wGeEB7RoqcESVn01vz9GRUfoojKUpodFU/T2R4UipcRSYzgjroZr3JuJ/XjfV4aWfMZGkmgoyWxSmHOkYTYJAfSYp0XxsCCaSmVsRGWKJiTZxlU0I7vzLi6R1WnOdmnt/Xq1fF3GU4AAO4RhcuIA63EEDmkDgCZ7hFd6s3Hqx3q2PWeuSVczswx9Ynz+5u5Lx</latexit><latexit sha1_base64="uxAEyae6Cm21CyhegElgmpVTtCw=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICVRQS9CURCPFewHNKFstpt26WYTdjdiCfkrXjwo4tU/4s1/47bNQVsfDDzem2FmXpBwprTjfFtLyyura+uljfLm1vbOrr1Xaak4lYQ2Scxj2QmwopwJ2tRMc9pJJMVRwGk7GN1M/PYjlYrF4kGPE+pHeCBYyAjWRurZldtG7wxdIS/zMufE9XIv79lVp+ZMgRaJW5AqFGj07C+vH5M0okITjpXquk6i/QxLzQinedlLFU0wGeEB7RoqcESVn01vz9GRUfoojKUpodFU/T2R4UipcRSYzgjroZr3JuJ/XjfV4aWfMZGkmgoyWxSmHOkYTYJAfSYp0XxsCCaSmVsRGWKJiTZxlU0I7vzLi6R1WnOdmnt/Xq1fF3GU4AAO4RhcuIA63EEDmkDgCZ7hFd6s3Hqx3q2PWeuSVczswx9Ynz+5u5Lx</latexit>

FP4 = {{0, 1}}
<latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit>

S[0] S[1] 

L[2] L[1] L[3] L[4] 

/

FP4 = {{0, 1}}
<latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit>

S[0] S[1] 

L[2] L[1] L[4] L[3] 

/

FP4 = {{0, 1}}
<latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit><latexit sha1_base64="sfMmVAqU0F+nkWHWRYTuhLmWwiU=">AAAB+3icbVBNS8NAEJ34WetXrEcvi0XwICWRgl6EoiAeK9gPaELYbLft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvDDhTGnH+bZWVtfWNzZLW+Xtnd29ffug0lZxKgltkZjHshtiRTkTtKWZ5rSbSIqjkNNOOL6Z+p1HKhWLxYOeJNSP8FCwASNYGymwK7fNoI6ukJd5mXPmermXB3bVqTkzoGXiFqQKBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0L3upogkmYzykPUMFjqjys9ntOToxSh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxlU0I7uLLy6R9XnOdmntfrzauizhKcATHcAouXEAD7qAJLSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+7TZLy</latexit>

FP1 = {{1, 0}}
<latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit><latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit><latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit><latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit>

FP2 = {{0, 1}}
<latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit><latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit><latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit><latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit>

FP2 = {{0, 1}}
<latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit><latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit><latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit><latexit sha1_base64="GkUJucWQcOQV0AV4SYzaYuNRj0k=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM/vMcXM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4KZLw</latexit>

P f
3 = {{0, 1}}, P b

3 = {{0, 1}, {1, 0}}
<latexit sha1_base64="z38sjl7rlVLQhRmdjZkZfJsNV7I=">AAACG3icbZDLSsNAFIYn9VbrLerSzWARXISSVEE3QtGNywr2Ak0Mk+mkHTqZhJmJUELfw42v4saFIq4EF76NkzaL2npg4Of7z+HM+YOEUals+8corayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wegm9zuPREga83s1TogXoQGnIcVIaeSb9aZ/9hDCK+hmbmZbjjtxJxbMYTAPLTdzLDs3IfTNql2zpwWXhVOIKiiq6Ztfbj/GaUS4wgxJ2XPsRHkZEopiRiYVN5UkQXiEBqSnJUcRkV42vW0CTzTpwzAW+nEFp3R+IkORlOMo0J0RUkO56OXwP6+XqvDSyyhPUkU4ni0KUwZVDPOgYJ8KghUba4GwoPqvEA+RQFjpOCs6BGfx5GXRrtccu+bcnVcb10UcZXAEjsEpcMAFaIBb0AQtgMETeAFv4N14Nl6ND+Nz1loyiplD8KeM718PRJ2w</latexit><latexit sha1_base64="z38sjl7rlVLQhRmdjZkZfJsNV7I=">AAACG3icbZDLSsNAFIYn9VbrLerSzWARXISSVEE3QtGNywr2Ak0Mk+mkHTqZhJmJUELfw42v4saFIq4EF76NkzaL2npg4Of7z+HM+YOEUals+8corayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wegm9zuPREga83s1TogXoQGnIcVIaeSb9aZ/9hDCK+hmbmZbjjtxJxbMYTAPLTdzLDs3IfTNql2zpwWXhVOIKiiq6Ztfbj/GaUS4wgxJ2XPsRHkZEopiRiYVN5UkQXiEBqSnJUcRkV42vW0CTzTpwzAW+nEFp3R+IkORlOMo0J0RUkO56OXwP6+XqvDSyyhPUkU4ni0KUwZVDPOgYJ8KghUba4GwoPqvEA+RQFjpOCs6BGfx5GXRrtccu+bcnVcb10UcZXAEjsEpcMAFaIBb0AQtgMETeAFv4N14Nl6ND+Nz1loyiplD8KeM718PRJ2w</latexit><latexit sha1_base64="z38sjl7rlVLQhRmdjZkZfJsNV7I=">AAACG3icbZDLSsNAFIYn9VbrLerSzWARXISSVEE3QtGNywr2Ak0Mk+mkHTqZhJmJUELfw42v4saFIq4EF76NkzaL2npg4Of7z+HM+YOEUals+8corayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wegm9zuPREga83s1TogXoQGnIcVIaeSb9aZ/9hDCK+hmbmZbjjtxJxbMYTAPLTdzLDs3IfTNql2zpwWXhVOIKiiq6Ztfbj/GaUS4wgxJ2XPsRHkZEopiRiYVN5UkQXiEBqSnJUcRkV42vW0CTzTpwzAW+nEFp3R+IkORlOMo0J0RUkO56OXwP6+XqvDSyyhPUkU4ni0KUwZVDPOgYJ8KghUba4GwoPqvEA+RQFjpOCs6BGfx5GXRrtccu+bcnVcb10UcZXAEjsEpcMAFaIBb0AQtgMETeAFv4N14Nl6ND+Nz1loyiplD8KeM718PRJ2w</latexit><latexit sha1_base64="z38sjl7rlVLQhRmdjZkZfJsNV7I=">AAACG3icbZDLSsNAFIYn9VbrLerSzWARXISSVEE3QtGNywr2Ak0Mk+mkHTqZhJmJUELfw42v4saFIq4EF76NkzaL2npg4Of7z+HM+YOEUals+8corayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wegm9zuPREga83s1TogXoQGnIcVIaeSb9aZ/9hDCK+hmbmZbjjtxJxbMYTAPLTdzLDs3IfTNql2zpwWXhVOIKiiq6Ztfbj/GaUS4wgxJ2XPsRHkZEopiRiYVN5UkQXiEBqSnJUcRkV42vW0CTzTpwzAW+nEFp3R+IkORlOMo0J0RUkO56OXwP6+XqvDSyyhPUkU4ni0KUwZVDPOgYJ8KghUba4GwoPqvEA+RQFjpOCs6BGfx5GXRrtccu+bcnVcb10UcZXAEjsEpcMAFaIBb0AQtgMETeAFv4N14Nl6ND+Nz1loyiplD8KeM718PRJ2w</latexit>

FP3 = {{0, 1}, {1, 0}}
<latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit><latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit><latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit><latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit>

FP1 = {{1, 0}}
<latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit><latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit><latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit><latexit sha1_base64="15f8sh7cqEsJAqSwWX5O29t9f8U=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBymJCHoRioJ4rGA/oAlhs922SzebsLsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz88KEM6Ud59sqrayurW+UNytb2zu7e/Z+ta3iVBLaIjGPZTfEinImaEszzWk3kRRHIaedcHwz9TuPVCoWiwc9Sagf4aFgA0awNlJgV2+bgYuukJd5mXvqeLmXB3bNqTszoGXiFqQGBZqB/eX1Y5JGVGjCsVI910m0n2GpGeE0r3ipogkmYzykPUMFjqjys9ntOTo2Sh8NYmlKaDRTf09kOFJqEoWmM8J6pBa9qfif10v14NLPmEhSTQWZLxqkHOkYTYNAfSYp0XxiCCaSmVsRGWGJiTZxVUwI7uLLy6R9Vnedunt/XmtcF3GU4RCO4ARcuIAG3EETWkDgCZ7hFd6s3Hqx3q2PeWvJKmYO4A+szx+2mZLv</latexit>

P f
3 = {{0, 1}}, P b

3 = {{1, 0}}
<latexit sha1_base64="v+TYTeuZARL18n3zIZS6PtEW3wc=">AAACEXicbZDLSgMxFIYzXmu9jbp0EyxCF6UkKuhGKLpxWcFeoDOWTJppQzMXkoxQhnkFN76KGxeKuHXnzrcx085CW38I/HznHE7O78WCK43Qt7W0vLK6tl7aKG9ube/s2nv7bRUlkrIWjUQkux5RTPCQtTTXgnVjyUjgCdbxxtd5vfPApOJReKcnMXMDMgy5zynRBvXtarN/eu/DS+ikTopq2MmcrAZz6BUQ11AO+3YF1dFUcNHgwlRAoWbf/nIGEU0CFmoqiFI9jGLtpkRqTgXLyk6iWEzomAxZz9iQBEy56fSiDB4bMoB+JM0LNZzS3xMpCZSaBJ7pDIgeqflaDv+r9RLtX7gpD+NEs5DOFvmJgDqCeTxwwCWjWkyMIVRy81dIR0QSqk2IZRMCnj950bRP6hjV8e1ZpXFVxFECh+AIVAEG56ABbkATtAAFj+AZvII368l6sd6tj1nrklXMHIA/sj5/AApxmqM=</latexit><latexit sha1_base64="v+TYTeuZARL18n3zIZS6PtEW3wc=">AAACEXicbZDLSgMxFIYzXmu9jbp0EyxCF6UkKuhGKLpxWcFeoDOWTJppQzMXkoxQhnkFN76KGxeKuHXnzrcx085CW38I/HznHE7O78WCK43Qt7W0vLK6tl7aKG9ube/s2nv7bRUlkrIWjUQkux5RTPCQtTTXgnVjyUjgCdbxxtd5vfPApOJReKcnMXMDMgy5zynRBvXtarN/eu/DS+ikTopq2MmcrAZz6BUQ11AO+3YF1dFUcNHgwlRAoWbf/nIGEU0CFmoqiFI9jGLtpkRqTgXLyk6iWEzomAxZz9iQBEy56fSiDB4bMoB+JM0LNZzS3xMpCZSaBJ7pDIgeqflaDv+r9RLtX7gpD+NEs5DOFvmJgDqCeTxwwCWjWkyMIVRy81dIR0QSqk2IZRMCnj950bRP6hjV8e1ZpXFVxFECh+AIVAEG56ABbkATtAAFj+AZvII368l6sd6tj1nrklXMHIA/sj5/AApxmqM=</latexit><latexit sha1_base64="v+TYTeuZARL18n3zIZS6PtEW3wc=">AAACEXicbZDLSgMxFIYzXmu9jbp0EyxCF6UkKuhGKLpxWcFeoDOWTJppQzMXkoxQhnkFN76KGxeKuHXnzrcx085CW38I/HznHE7O78WCK43Qt7W0vLK6tl7aKG9ube/s2nv7bRUlkrIWjUQkux5RTPCQtTTXgnVjyUjgCdbxxtd5vfPApOJReKcnMXMDMgy5zynRBvXtarN/eu/DS+ikTopq2MmcrAZz6BUQ11AO+3YF1dFUcNHgwlRAoWbf/nIGEU0CFmoqiFI9jGLtpkRqTgXLyk6iWEzomAxZz9iQBEy56fSiDB4bMoB+JM0LNZzS3xMpCZSaBJ7pDIgeqflaDv+r9RLtX7gpD+NEs5DOFvmJgDqCeTxwwCWjWkyMIVRy81dIR0QSqk2IZRMCnj950bRP6hjV8e1ZpXFVxFECh+AIVAEG56ABbkATtAAFj+AZvII368l6sd6tj1nrklXMHIA/sj5/AApxmqM=</latexit><latexit sha1_base64="v+TYTeuZARL18n3zIZS6PtEW3wc=">AAACEXicbZDLSgMxFIYzXmu9jbp0EyxCF6UkKuhGKLpxWcFeoDOWTJppQzMXkoxQhnkFN76KGxeKuHXnzrcx085CW38I/HznHE7O78WCK43Qt7W0vLK6tl7aKG9ube/s2nv7bRUlkrIWjUQkux5RTPCQtTTXgnVjyUjgCdbxxtd5vfPApOJReKcnMXMDMgy5zynRBvXtarN/eu/DS+ikTopq2MmcrAZz6BUQ11AO+3YF1dFUcNHgwlRAoWbf/nIGEU0CFmoqiFI9jGLtpkRqTgXLyk6iWEzomAxZz9iQBEy56fSiDB4bMoB+JM0LNZzS3xMpCZSaBJ7pDIgeqflaDv+r9RLtX7gpD+NEs5DOFvmJgDqCeTxwwCWjWkyMIVRy81dIR0QSqk2IZRMCnj950bRP6hjV8e1ZpXFVxFECh+AIVAEG56ABbkATtAAFj+AZvII368l6sd6tj1nrklXMHIA/sj5/AApxmqM=</latexit>

FP3 = {{0, 1}, {1, 0}}
<latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit><latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit><latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit><latexit sha1_base64="OGJgoV/NLn/o1PR7bTTVroB3k2k=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclJKooBuhKIjLCvYBnWHIpJk2NPMgyQhlmIUbf8WNC0Xc+hHu/BvTdhbaeuDC4Zx7ufcePxFcaYS+raXlldW19dJGeXNre2fX3ttvqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/up74nQcmFY+jez1OmBuSQcQDTok2kmdXbpreKbyETuZkqIadvOZkuIac3MmhZ1dRHU0BFwkuSBUUaHr2l9OPaRqySFNBlOphlGg3I1JzKlhedlLFEkJHZMB6hkYkZMrNpk/k8MgofRjE0lSk4VT9PZGRUKlx6JvOkOihmvcm4n9eL9XBhZvxKEk1i+hsUZAKqGM4SQT2uWRUi7EhhEpuboV0SCSh2uRWNiHg+ZcXSfukjlEd351VG1dFHCVQAYfgGGBwDhrgFjRBC1DwCJ7BK3iznqwX6936mLUuWcXMAfgD6/MHGqqV1A==</latexit>
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S[0] S[1] 
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/
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/
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V1 V2
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V1 V2

V3
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cost1= 0 cost2= 0

P(V3) P(V1) P(V2) cost3
{0,1} {0,1} {0,1} 0

P(V3) P(V1) P(V2) cost3
{0,1} {1,0} {0,1} 0 + 1 = 1

{1,0} {1,0} {0,1} 0 + 1 = 1

P(V3) P(V1) P(V2) cost3
{0,1} {1,0} {1,0} 0 + 2 = 2

{1,0} {1,0} {1,0} 0 + 0 = 0

cost1= 0 cost2= 0 cost1= 0 cost2= 0

P(V4) P(V3) cost4

{0,1}
1+ 0 = 1

{1,0} 1+ 1 = 2

P(V4) P(V3) cost4

{0,1}
{0,1} 2 + 0 = 2

0 + 1 = 1

P(V3) P(V1) P(V2) cost3
{0,1} {0,1} {0,1} 0

P(V3) P(V1) P(V2)

{0,1} {0,1} {0,1}

P(V4) P(V3) cost4
{0,1} 0{0,1} {0,1}
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/
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perm(1,0)

perm(1,0)

FP2 = {{1, 0}}
<latexit sha1_base64="dUE1Z+kz1J3Pj3XKVmzjtb31byY=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM+fMdnM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4K5Lw</latexit><latexit sha1_base64="dUE1Z+kz1J3Pj3XKVmzjtb31byY=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM+fMdnM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4K5Lw</latexit><latexit sha1_base64="dUE1Z+kz1J3Pj3XKVmzjtb31byY=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM+fMdnM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4K5Lw</latexit><latexit sha1_base64="dUE1Z+kz1J3Pj3XKVmzjtb31byY=">AAAB+3icbVBNS8NAEJ34WetXrUcvi0XwICUpgl6EoiAeK9gPaELYbDft0s0m7G7EEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29/cpBtaPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHwz9buPVCoWiwc9SagX4aFgISNYG8mvVG9bfgNdITdzM+fMdnM39ys1u27PgJaJU5AaFGj5lS93EJM0okITjpXqO3aivQxLzQinedlNFU0wGeMh7RsqcESVl81uz9GJUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xj/V4aWXMZGkmgoyXxSmHOkYTYNAAyYp0XxiCCaSmVsRGWGJiTZxlU0IzuLLy6TTqDt23bk/rzWvizhKcATHcAoOXEAT7qAFbSDwBM/wCm9Wbr1Y79bHvHXFKmYO4Q+szx+4K5Lw</latexit>

{1, 0}
<latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit><latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit><latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit><latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit>

{0, 1}
<latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit>
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<latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit>

{0, 1}
<latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit>

{0, 1}
<latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit>

{0, 1}
<latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit><latexit sha1_base64="JfCP5ydONHjnMOWIuujRi/DksWQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcvfD8ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5EI79</latexit>

(I) (II) (III)
Code listing

A : Permutation Mask Propagation

B : Computing minimum costs

C : Final Permutation Selection

{1, 0}
<latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit><latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit><latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit><latexit sha1_base64="Wzc7O4zhZBY9jU0T4vWB8NTlRnY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYD+gCWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05SHsR0qEQkGEUrdfzcu3D9ab9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo5sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv655b9x6uao3bIo4ynMApnIMH19CAe2hCCxiM4Rle4c1JnRfn3flYtJacYuYY/sD5/AF5Eo79</latexit>

FP1 = {{0, 1}}
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Figure 3-5: Vector permutation selection process for code listings (I)–(III). For brevity
and clarity, all dependency graphs presented from (A)–(C) have vector values and vector
operations as nodes (V1−V4) instead of statements that yield them. (A) shows the propagated
permutation masks for each node. Note that loads and stores are constrained nodes with
�xed statement orderings. For example, even though {L(︀2⌋︀, L(︀1⌋︀} is needed for computation
in (II) in that operand order, it can only be loaded as {L(︀1⌋︀, L(︀2⌋︀} yielding a permutation
mask of FP1 = {{1, 0}} as shown in the diagram. (B) shows how our dynamic programming
formulation is applied to �nd the optimal statement ordering of the vectorized division
(V3), which is the only free node. Assume that perm_cost(PS , PV) = 1 when PS ≠ PV .
Final statement orderings decided by our algorithm are shown in (C). Explicit permutation
instructions are emitted between nodes where needed.�e perm(1,0) instruction reverses
statement ordering of a given pack.
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same permutation mask for all code listings, hence only one permutation candidate is propa-

gated to node V3 during forward traversal (P f
3 = {{0, 1}}). Backward traversal starts from the

leaves of the graph (V1 and V2). Loaded values {L(︀1⌋︀, L(︀2⌋︀} and {L(︀3⌋︀, L(︀4⌋︀} have the proper
operand ordering for the computation in listing 3-5(I), whereas for listings 3-5(II),(III) some

loads are not in proper order, resulting in di�erent sets of candidate permutations (Pb
3 ). FP3

holds the �nal set of candidate permutations for node V3.

Figure 3-5(B) shows the �nal cost values for each candidate permutation mask for each

node a�er applying Algorithm 1. We assume that perm_cost(PS , PV) = 1 when PS ≠ PV and

0 otherwise.�e dynamic programming algorithm chooses the chain of permutations that

results in the minimum total cost at the root node (V4). Final permutation selections are

listed in Figure 3-5(C). We can perform the computation with the insertion of at most one

permutation instruction across all code listings. For listing (II), it is bene�cial to immediately

permute the loaded values {L(︀1⌋︀, L(︀2⌋︀} before computing the division, whereas for listing

(III), it is bene�cial to compute the division using the loaded values and permute the result

before it is stored back into memory. Neither ordering works in all cases, and the decision is

only arrived at a�er calculating the total cost at the root (V4).

3.4 Implementation

Development We implemented goSLP as a LLVM IR-level compiler pass in the LLVM

compiler infrastructure [82]. goSLP makes vectorization decisions for statement packing

and vector permutation selection then uses the existing vectorization routines in LLVM

to perform the actual LLVM IR-level transformations according to these decisions.�ese

vectorization routines are also used by the existing LLVM SLP auto-vectorizer to perform

the �nal transformations. We use LLVM trunk version (commit d5413e8a) for development

and Clang 6.0 (commit eea8887a) as the C/C++ frontend for compiling benchmarks.

We integrated the ILP solver in IBM ILOG CPLEX Optimization Studio 12.7.1 [64] to

LLVM to solve the statement packing ILP problem.�e solver handles large ILP problems in

a reasonable amount of time (Section 3.5.4).
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Cost Model goSLP is �exible and can accommodate any user de�ned cost model that

supports its query interface. For evaluation, we used LLVM’s TargetTransformationInfo

interface to query the costs of each statement; it returns platform dependent costs of actual

executable instructions for a given hardware architecture (e.g., x86 Haswell).�is is used to

retrieve values for vec_cost(.), scalar_cost(.), pack_cost(.), and unpack_cost(.)

specialized for each pack of statements when formulating the ILP problem for statement pack-

ing. During permutation selection, goSLPuses the same interface to �nd theperm_cost(.,.)

for two given permutation masks.

Also, note that goSLP makes the same assumption as LLVM SLP, i.e., that the cost of a list

of statements can be calculated by adding the costs of individual statements together. Both

goSLP and LLVM SLP compute the cost di�erence between the vector code and the scalar

code as their evaluation metric under this assumption.�erefore, any vectorization scheme

with a negative cost di�erence is bene�cial for vectorization, and the higher the magnitude

of this number, the higher the pro�tability of the vectorization scheme.

Further, we assume it is the responsibility of the costmodel to realistically capture platform

dependencies and nuances speci�c to a given hardware architecture. For example, the fact that

vectorizing fdiv instructions is more bene�cial compared to vectorizing fadd instructions

in x86 Haswell machines is captured by the cost model. Our ILP formulation and dynamic

programming algorithm can be used with any cost model that supports the same interface

for any hardware platform.

3.5 Evaluation

We evaluate the performance of vector code produced by goSLP with vector code generated

by LLVM’s existing SLP auto-vectorizer on SPEC and NAS benchmark suites. Section 3.5.1

describes the common experimental setup used for evaluation. Section 3.5.2 presents two

case studies on interesting vectorization strategies discovered by goSLP. Sections 3.5.3 and

3.5.4 present dynamic performance and compile time statistics of goSLP. Finally, Section 3.5.5

analyzes the vectorization impact of goSLP compared to Intel’s commercial compiler, ICC.
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3.5.1 Experimental Setup

We evaluated goSLP on seven benchmarks from the C translation of the NAS benchmark

suite [107], on all seven C/C++ �oating-point benchmarks from the SPEC2006 benchmark

suite [57], and on six C/C++ �oating point benchmarks from the SPEC2017 benchmark

suite [143]. We omit 526.blender_r of SPEC2017fp, since it failed to compile under the clang

version we used. We used LLVM’s implementation of the SLP auto-vectorization pass for

the main comparison. It does inter basic-block vectorization forming vector chains up to

a maximum depth following the bottom-up SLP algorithm [132]. Additionally, it handles

reductions and supports horizontal vector instructions that goSLP’s implementation does

not model currently.

All experiments were done on an Intel(R) Xeon(R) CPU E5-2680 v3 Haswell machine

that supports AVX2 vector instructions, running at 2.50GHz with 2 sockets, 12 physical cores

per each socket, 32 kB of L1 cache, 256 kB of L2 cache, and 30 MB of L3 cache.

3.5.2 Case Studies

We present two case studies from our benchmark suite, in which goSLP discovers a more

diverse set of vectorization strategies compared to LLVM SLP.

Namd

Figure 3-6(1)(a) shows a simpli�ed code snippet presented in C-like pseudocode extracted

from the calc_pair_energy_fullelect function from SPEC2006’s 444.namd benchmark.

Figures 3-6(1)(b) and 3-6(1)(c) show the LLVM SLP and goSLP vectorized versions, respec-

tively.

LLVM SLP and goSLP both vectorize {A, B}. LLVM SLP’s vectorization strategy reuses

this pack in creating values V1 and V4, but this requires explicit packing of {ai , bi} and

{a(︀1⌋︀, b(︀1⌋︀} as well as later unpacking of V1(line 4) and V4(line 11) to compute a1 and a4,

respectively. Computation of {a3, a2} is done in a vectorized fashion. In contrast, goSLP

keeps computation of a1 and a2 in scalar form, using unpacked values of A and B. Note that

we only need to unpack once, even though A and B are used in both a1 and a2. It vectorizes
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computation of {a4, a3}.

LLVM SLP’s greedy decision to reuse {A, B} costs it more packing and unpacking over-

head instructions. It requires two additional packing and two additional unpacking instruc-

tions to realize its vectorization strategy compared to goSLP.

BT

Figure 3-6(2)(a) shows a simpli�ed code snippet presented in C-like pseudocode extracted

from one of the inner loops in the BT benchmark’s lhsx function. goSLP �nds a vectorization

strategy shown in Figure 3-6(2)(b) that achieves a speedup of 3.72× for the loop when com-

pared to LLVM’s SLP auto-vectorizer. LLVM SLP is unable to �nd a pro�table vectorization

scheme for this code.

goSLP �nds vector packs as well as non-vector packs that are reused multiple times. For

example, vector pack V4 is used by values V7(line 7), V9(line 17), V10(line 18) and the store at

line 31. Non-vector pack V2 is used by V5(line 5), V9(line 17), V11(line 19) and the store at

line 31.

Further, goSLP gives priority to costly operations such as divisions when forming non-

vector packs, which can outweigh the costs of additional packing and follow-up unpacking

instructions. For example, doing the costly division in line 5 in vectorized form outweighs the

packing costs of V1 and V2 and unpacking cost of V5 for the Haswell architecture. Greedy

and �xed decisions taken by LLVM’s SLP algorithm prevents LLVM from considering this.

Note that most of the computations are done in vectorized form in Figure 3-6(2)(b)

and the results are extracted at the end with extracted values being reused multiple times

(e.g., both f[1][0] and f[4][0] use extracted values of V7 and V8).�is enables goSLP to

achieve higher throughput.

3.5.3 Dynamic Performance

We compare goSLP with LLVM SLP on end-to-end wall-clock runtimes, the composition of

dynamic instructions, and loop-level speedups of benchmarks.
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    A = sc * ij[1]
    B = sc * ij[2]

    a1 = A * ai - B * bi
    a2 = A * a[3] - B * b[3]
    a3 = A * a[2] - B * b[2]
    a4 = A * a[1] - B * b[1]

    {A,B}   = {sc,sc} * {ij[1],ij[2]} 
    
    V1      = {A,B} * {ai,bi}
    a1      = V1[0] - V1[1]
    
    V2      = {A,A} * {a[2],a[3]}
    V3      = {B,B} * {b[2],b[3]}
    {a3,a2} = V2 - V3
    
    V4      = {A,B} * {a[1],b[1]}
    a4      = V4[0] - V4[1]

    {A,B}   = {sc,sc} * {ij[1],ij[2]} 
    
    a1      = A * ai - B * bi
    a2      = A * a[3] - B * [3]

    V1      = {A,A} * {a[1],a[2]}
    V2      = {B,B} * {b[1],b[2]}
    {a4,a3} = V1 - V2
 

(1) 444.namd - calc_pair_energy_fullelect

    t1 = 1.0 / u[0]
    t2 = t1 * t1
    t3 = u[1] * u[1] + u[2] * u[2] + u[3] * u[3]
    t4 = u[1] * t1

    f[1][0] = c2 * 0.50 * t3 * t2
    f[1][1] = ( 2.0 - c2 ) * ( u[1] / u[0] )                                                                            
    f[1][2] = - c2 * ( u[2] * t1 )
    f[1][3] = - c2 * ( u[3] * t1 )

    f[2][0] = - ( u[1]*u[2] ) * t2
    f[2][1] = u[2] * t1
    f[2][2] = t4

    f[3][0] = - ( u[1]*u[3] ) * t2
    f[3][1] = u[3] * t1
    f[3][3] = t4
        
    f[4][0] =  c2 * t3 * t2 
    f[4][2] = - c2 * ( u[2]*u[1] )* t2
    f[4][3] = - c2 * ( u[3]*u[1] )* t2

    V1 = {1.0,u[1]}
    V2 = {u[0],u[0]}
    V3 = {c2,c2}
    V4 = {u[2],u[3]}
    V5 = V1/V2
    V6 = {V5[0],V5[0]}
    V7 = V4 * V4
    V8 = V6 * V6

    t2 = V8[0]
    t3 = u[1] * u[1]  + V7[0] + V7[1]

    f[1][0] =  c2 * 0.50 * t3  * t2
    f[1][1] = (2.0 - c2) * V5[1]
    {f[1][2],f[1][3]} = -V3 * (V4 * V6)

V9 = - ( V2 * V4 ) * V8
V10 = V4 * V6
V11 = V2 * V6
t4 = V11[0]

f[2][0] = V9[0]
f[2][1] = V10[0]
f[2][2] = t4

f[3][0] = V9[1]
f[3][1] = V10[1]
f[3][3] = t4

f[4][0] =  c2 * t3 * t2
{f[4][2],f[4][3]} = - V3 * ( V4*V2 ) * V8                                                            
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Figure 3-6: Vectorization examples from (1) 444.namd benchmark and (2) BT benchmark inC-
like pseudocode. (a) scalar code. (1)(b) and (1)(c) show LLVM vectorized version and goSLP
vectorized version for 444.namd, respectively. (2)(b) shows the goSLP vectorized version
for BT; vectorized code is shown in blue, non-vectorizable code that is packed into vectors
is shown in maroon and any unpackings of vectors are shown in dark green. Unpackings
are shown as indexing into the proper lane of the relevant vector value (e.g., V1[0] denotes
extracting the 0th lane from vector V1).

RuntimePerformance We ran a single copy of the benchmarks described in Section 3.5.1 to

measure goSLP’s impact on runtime performance. Figure 3-7 reports the end-to-end speedup

for each benchmark under goSLP when compared to LLVM’s SLP auto-vectorizing compiler.

All benchmarks were compiled with base commandline arguments clang/clang++ -O3
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-march=native enabling all other standard scalar and vector optimizations. We ran the

ref input for SPEC2006fp / SPEC2017fp C/C++ benchmarks taking the reported median

(standard reporting for SPEC) runtime across three runs. We use class A workloads for all

NAS benchmarks in our evaluation, taking the median of three runs to match that of SPEC’s

reporting. We programmed a 1-minute timeout to stop ILP solving and use the current

feasible solution in case the optimal solution is not found within this time. Section 3.5.4 gives

statistics about how many ILP problems were solved optimally.

goSLP achieves a geometric mean end-to-end speedup of 4.07% on NAS benchmarks,

7.58% on SPEC2017fp benchmarks and 2.42% on SPEC2006fp benchmarks. It achieves

individual benchmark speedups as much as 21.9% on BT, 15.6% on 539.lbm_r and 16.4% on

538.imagick_r. goSLP is 3% slower in FT because goSLP currently does not model reductions.

While 2.42% on SPEC2006fp may not seem like a large number, compiler developers and

researchers have been optimizing for this benchmark for more than 10 years.

Next, we ran 24 copies of SPEC2017fp benchmarks to measure goSLP’s impact on

throughput. Table 3-8 shows end-to-end SPEC reported throughput values for each C/C++

SPEC2017fp benchmark under goSLP and LLVM’s SLP.We achieve a geometricmean increase

in throughput of 5.2%.
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Figure 3-7: Speedup of single copy runs of SPEC2006fp, SPEC2017fp and NAS benchmarks
under goSLP compared to LLVM SLP
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Benchmark goSLP LLVM SLP Speedup
508.namd_r 78.73 70.04 1.124 ×
510.parest_r 74.04 73.06 1.013 ×
511.povray_r 101.92 94.26 1.081 ×
519.lbm_r 25.79 25.82 0.998 ×
538.imagick_r 104.84 93.29 1.124 ×
544.nab_r 78.49 80.17 0.979 ×
Geomean 70.81 67.33 1.052 ×

Figure 3-8: SPEC2017fp reported throughput rates under goSLP and LLVM’s SLP for a run
with 24 copies

Vectorization Analysis We analyze the reasons for performance increases in benchmarks

achieving more than 5% end-to-end speedup. We developed and ran a Dynamorio based [23]

tool to get dynamic instruction counts of the top 15 most executed opcodes for these bench-

marks. Next, we clustered the results into three categories, namely vector operations (ALU

and memory accesses), packing/unpacking instructions and other scalar instructions and

normalized each bar to the total. Figure 3-9 reports the percentage of instructions executed

for each category for both LLVM SLP (le� bar) and goSLP (right bar). In all cases, binaries

execute more vector instructions under goSLP. A�er goSLP’s transformations, the LLVM

back-end generates vectorized code that uses SSE variants, AVX, and AVX2 instructions.

Packing/unpacking overhead is lower for 444.namd, BT, LU, 508.namd_r, and 538.imagick_r

benchmarks while packing/unpacking overhead for 453.povray, 511.povray_r, and 519.lbm_r

is higher. Packing/unpacking decisions are taken by the ILP solver based on how pro�table it

is to perform the operation that uses those packs in vector form. Further, goSLP achieves on

average a 4.79% reduction in dynamic instructions being executed compared to LLVM SLP.

Loop-level Analysis We evaluate how goSLP performs at the loop level for all benchmarks.

We use Intel VTune Performance Ampli�er’s [68] HPC characterization pass to get statistics

about loops for all benchmarks. Figure 3-10 shows a graph of percentage reduction in

runtimes over non-vectorized code for both goSLP and LLVM SLP for loops executed by

these benchmarks sorted according to LLVM SLP’s values. We discard loops with total

runtimes less than 0.1s to avoid noisy results, and the graph shows results for 122 total hot
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loops. While goSLP makes large improvements on some loops, most of goSLP’s advantage

comes from consistent improvements across many loops. �is displays the generality of

missed vectorization opportunities found by goSLP.�e performance mainly comes from

exploiting vector and non-vector pack reuses in inner loops and across basic blocks and

from vectorizing expensive operations even with packing/unpacking overhead when the

cumulative bene�t is higher.�ere are loops with slightly higher runtimes than LLVM SLP,

mainly due to imperfections of the static cost model we used.
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Figure 3-9: Breakdown of instructions (top 15 opcodes) executed for benchmarks with more
than 5% speedup. For each benchmark the le� stacked bar chart shows the percentage
breakdown for LLVM’s SLP and the right shows the percentage breakdown for goSLP

3.5.4 Compile Time Statistics

We report detailed compilation statistics for benchmarks that achieved speedups of more than

5% in Tables 3-11 and 3-12.�ese benchmarks exhibit the highest compilation overhead. At

worst our compilation process takes little more than 8minutes in total for a benchmark, which

is reasonable given that goSLP uncovers more pro�table SLP vectorization opportunities.

goSLP solved in total 18243 ILP problems, out of which 18222 (99.88%) problems were

solved optimally within the allotted max time limit of 1 minute. Only 22 problems were not

solved optimally, but the ILP solver was able to �nd a feasible solution. Table 3-11 shows the

largest ILP problem solved by each benchmark in terms of binary variables encoded. We
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Figure 3-10: Percentage reduction in runtime for hot loops (122) across all benchmarks under
LLVM SLP and goSLP compared to non-vectorized code

found that goSLP solves a large number of easy ILP problems and a few hard ILP problems that

dominate the total compilation time. In particular, BT and LU benchmarks solve problems

in the order of 500,000 binary variables and this is because the compiler inlines most of its

functions to form a single large function.

Even judging goSLP’s decisions by LLVM’s pro�tability metric, goSLP almost always �nds

a better solution and hence reports a lower static cost (Table 3-12) for vectorization.�is shows

LLVM usually misses the optimal solution under its own cost model. In BT, where LLVM’s

static cost is better, it is due to double-counting of packing costs by LLVM’s pro�tability

metric for non-vector packs that are reused multiple times. Under goSLP, BT reuses 10.03%

of the non-vector packs, whereas under LLVM’s SLP only 5.8% of the non-vector packs are

reused. Even though compiler cost models may not accurately predict the magnitude of

speedup at runtime, these values can be used to verify how successful we are at exploiting

vectorization opportunities as seen by the compiler at compile time.

3.5.5 Vectorization Impact

Figure 3-13 shows the absolute runtimes for scalar code produced by ICC and LLVM and

the absolute runtimes for vectorized code produced by ICC, LLVM SLP, and goSLP for each
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Benchmark ILP size ILP solutions Compile Time(s)
optimal feasible goSLP LLVM SLP

444.namd 61709 65 0 252.84 6.94
453.povray 207553 904 3 444.49 30.60
BT 412974 8 1 125.91 2.23
LU 539138 3 1 129.08 1.54
508.namd_r 174500 108 2 499.74 20.80
511.povray_r 207782 925 4 453.81 34.65
519.lbm_r 109971 13 0 65.44 0.34
538.imagick_r 318137 721 1 172.21 63.06

Figure 3-11: ILP formulation statistics and compilation times for benchmarks with more than
5% speedup

Benchmark LLVM static cost vector packs
goSLP LLVM SLP % decrease goSLP LLVM SLP

444.namd -5867 -4817 21.80% 7424 5794
453.povray -11963 -7360 62.54% 11369 6083
BT -3125 -3427 -8.81% 2664 1026
LU -2802 -2521 11.15% 2485 765
508.namd_r -12467 -8686 43.53% 15967 11529
511.povray_r -12028 -7385 62.87% 11462 6090
519.lbm_r -460 -192 139.58% 399 88
538.imagick_r -9126 -4599 98.43% 12228 3156

Figure 3-12: Static vectorization statistics for benchmarks with more than 5% speedup. Nega-
tive static costs indicate cost savings.

benchmark. We report the speedup LLVM SLP and goSLP have over scalar code produced by

LLVM in Figure 3-14. We also report the speedup ICC (Intel’s commercial compiler V17.0.2)

has over scalar code produced by ICC (with -no-vec �ag) in the same �gure. Note that

the vectorization performance comparison between LLVM and ICC is not a one-to-one

comparison, since the scalar codes produced by ICC and LLVM are di�erent due to di�erent

scalar optimizations and pass orderings used by the two compilers. �is is evident by the

di�erent scalar runtimes noticed in Figure 3-13 under ICC and LLVM. Nonetheless, this can

be an interesting comparison to see how di�erent compilers are bene�ting from vectorization.

Also note that ICC does not provide a way to selectively use either loop vectorization or SLP

vectorization.�erefore, the reported performance for vectorized code involves both loop
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and SLP auto-vectorization.
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Figure 3-13: Absolute runtimes of each benchmark under ICC without vectorization (ICC
Scalar), ICC with vectorization, LLVM without vectorization (LLVM scalar), LLVM SLP and
goSLP.

Inspecting the absolute runtimes in Figure 3-13 reveals that LLVM scalar code is better

than ICC scalar code in only 4 out of the 20 benchmarks (447.dealII, 450.soplex, 470.lbm,
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MG to expose more opportunities for SLP vectorization.
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and CG) considered. In summary, ICC produces scalar code which is 8.9% faster (geometric

mean across all benchmarks) than LLVM. LLVM’s existing SLP vectorizer produces faster

running code only for 5 benchmarks when compared with vectorized ICC code, mostly

retaining the edge it had from the scalarized version. However, with the introduction of

goSLP, even when starting from a slower scalar baseline of LLVM, we almost double the

number of benchmarks that run faster than ICC (9 out of 20) in terms of absolute runtimes

and bring the performance almost up to the same level in 2 more benchmarks. Notable

benchmarks include 508.namd_r, 538.imagick_r and BT where LLVM SLP lagged behind ICC

vectorized code by -3.58%, -12.88%, and -7.73% respectively, but under goSLP they outperform

ICC vectorized code by +7.03%, +2.99%, and +13.75%, respectively.�ese percentages were

calculated using ICC runtimes as the baseline. �is shows that if goSLP is implemented

inside ICC, it will have a net positive impact on ICC vectorization performance, with varying

levels of relative speedups. �e cases for the benchmarks 453.povray and 511.povray_r are

interesting, as vectorizing actually decreased performance under all compilers. In LLVM,

this is due to inaccuracies in the cost model used, which cannot statically predict the costs of

irregular memory accesses.

Analyzing further, it is evident from Figure 3-14 that goSLP has a higher geometric mean

impact on vectorization performance over scalar code compared to ICC’s vectorization

in SPEC2006fp, SPEC2017fp and NAS benchmarks (+7.59% compared to +3.31% overall

geometricmean impact). It ismore evident in SPEC2017fp. ICC’s loop vectorizer is better than

LLVM’s loop vectorizer and is able to vectorize more loops, especially in NAS benchmarks

as noticed from the vectorization reports. It is the main reason why ICC (+3.31% overall

geometric mean impact) has a higher geomean vectorization impact compared to LLVM SLP

(+2.86% overall geometric mean impact). However, goSLP better captures SLP vectorization

opportunities and hence surpasses ICC’s cumulative impact on vectorization. For the SP

and MG benchmarks, the loop unroller did not unroll certain loops in LLVM, thus were not

available to goSLP but were vectorized by ICC. Since the unroller is beyond the scope of this

paper, we manually added pragmas to unroll these loops in the results shown in Figure 3-14.

However, the speedups shown in Figure 3-7 and runtimes shown in Figure 3-13 are with

no manual intervention. Our contribution in this paper is on improving SLP vectorization
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which is orthogonal to loop vectorization and goSLP achieves higher overall impact. Further,

we expect this impact to grow with better loop unrolling support in LLVM.

3.6 Summary

Current SLP auto-vectorization techniques use greedy statement packing schemes with local

heuristics. In this chapter, we introduced goSLP, an SLP auto-vectorization framework that

optimally performs statement packing for pairs of statements by reducing it to a tractable ILP

problem that is solved within a reasonable amount of time. goSLP �nds better vectorization

strategies with more vector and non-vector pack reuses. We also introduce a dynamic

programming algorithm to optimally select statement orderings of each vector pack formed.

We show that goSLP achieves a geometric mean speedup of 7.58% on SPEC2017fp, 2.42%

on SPEC2006fp and 4.07% on NAS benchmarks compared to LLVM’s existing SLP auto-

vectorizer.

Room for Improvement According to our taxonomy of optimization decision making

components, goSLP uses a solver-aided optimization strategy with a linear cost model. It

achieves pairwise-optimal statement packing with the aid of an ILP solver.�e solution times

for the ILP based solution can be unpredictable. In Chapter 4, we show how you can learn

how to vectorize by imitating goSLP’s ILP based solution.

Further, linear cost models do not capture all the complexities of modern-day micro-

processors. Hence, the pairwise-optimal solution found by goSLP may not be optimal with

respect to a better and more realistic cost model. In Chapter 5, we describe the �rst steps to-

wards building a more accurate non-linear learned cost model using data-driven techniques.

�e learned vectorizer (see Chapter 4) can be extended to accept arbitrarily complex cost

models. Hence, it has the potential to �nd even better vectorization opportunities compared

to goSLP, with a more accurate learned cost model similar to the one presented in Chapter 5.
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Chapter 4

Vemal: Learned SLP Vectorization

We introduce Vemal, the �rst SLP vectorization scheme that is automatically learned from

data without the need for hand-coding an optimization strategy.�e learning-based frame-

work requires minimal human intervention and does not rely on manually cra�ed features,

making it easier both to develop and to maintain. Vemal shows the feasibility of completely

learning optimization strategies in compiler optimizations rather than relying on hand-cra�ed

heuristics or tuning of parameters in a manually speci�ed optimization algorithm.

We model Vemal’s optimization strategy using the automated approach proposed in

Section 1.4 and train it to imitate the vectorization decisions taken by the solver-aided solution

goSLP. Vemal’s optimization strategy is both extensible and �exible. It can be trained to imitate

any such oracle or in the context of reinforcement learning and provides a framework that

can learn di�erent vectorization schemes in future research.

More concretely, we formulate the optimization strategy of Vemal as a Markov decision

process (MDP) and collect traces using the DAgger algorithm [133] to see how the ILP solver

goes about solving the statement packing problem in goSLP. We use these trace aggregates as

supervision to train a gated graph neural network based [87, 6] policy that solves the MDP

formulation to arrive at an automatically learned statement packing strategy.

We show that the learned policy outperforms the well-tuned heuristics used in the LLVM

compiler [82] both in terms of static metrics and dynamic runtime performance, while

matching the performance of goSLP in 5 out of 7 programs in the NAS benchmark suite used

for testing. In summary, we show that it is possible to learn end-to-end compiler optimization
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policies that surpass the performance of hand-cra�ed compiler heuristics by imitating an

oracle solution.

�e rest of the chapter is organized as follows. In Section 4.1, we present the MDP

formulation of the statement packing problem of SLP vectorization and in Section 4.2, we

give a high-level overview of our proposed learned vectorization scheme, Vemal. Section 4.3

describes the neural network architecture of the learned policy. We train this policy using

the learning algorithm detailed in Section 4.4 using the programs from our dataset detailed

in Section 4.5. Section 4.6 shows the training and testing methodology we used to train and

test the e�cacy of Vemal. Finally, in Section 4.7, we evaluate Vemal under di�erent contexts

to measure the e�cacy of the learned policy on the programs in our test set.

4.1 MDP Formulation of Vectorization

goSLP solves the statement packing problem of SLP vectorization by packing two statements

at a time considering whole functions. We cast this pairwise statement packing problem as a

Markov decision process (MDP), that we solve by a neural-network based policy that learns

to imitate the ILP based solution of goSLP.

De�nition 4. Markov Decision Process is a decision procedure characterized by a 5-tuple

(ST ,A, ST0, T , R), where an agent interacts with an environment tomaximize the cumulative

reward given by the environment over time.

• ST , State space captures the set of possible states the environment can be at on a given

time step.

• A, Action space captures the set of actions available to the agent. More generally, A(︀st⌋︀
denotes the set of actions available to the agent in state st.

• ST0, Start state of the environment.

• T , Transition function captures the next state (sti+1) of the environment given that the

agent selects action a in state sti . T(sti , a) = sti+1
• R, Reward function captures perceived bene�t as a numerical value when the environ-

ment transitions to state st. R(st)
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In the context of compiler optimizations, the optimization strategy is the agent and the

environment is the computer system under which the �nal program is executed.�e reward

can be the inverse or negative of the runtime performance or energy consumption, etc.�e

objective of the agent (optimization strategy) is to minimize the runtime or energy consump-

tion of the environment (computer system). MDP formulation of compiler optimizations is

a concrete instantiation of the automated sequential decision making approach introduced

in Section 1.4.

4.1.1 MDP formulation of statement packing

We formulate the MDP for the pairwise statement packing problem by iteratively forming

one vector pack at a time following a particular statement traversal policy that assumes a

total ordering of statements for a given function.�e statement traversal policy determines

the order in which the statements are considered to make packing decisions. We consider

two possible statement traversal policies in our experiments.

• Bottom-Up Traversal.�e learned policy starts making packing decisions traversing

the function in reverse, starting from the �nal statement with valid statement packing

opportunities. At the end of each iteration i, we choose an earlier statement S i with

valid packing opportunities according to the total ordering of statements to consider

for packing next.

• Top-Down Traversal.�e learned policy starts making packing decisions traversing

the function downwards from the �rst statement with valid packing opportunities.

At the end of each iteration i, we choose a latter statement S i with valid packing

opportunities according to the total ordering of statements to consider for packing

next.

�e statement traversal policy selects a speci�c statement S i in each iteration to be consid-

ered for packing next.�e learned vectorization policy decides which valid packing candidate

statement S j that S i should be packed with.

Let us consider packing of a set of statements {S1, S2, ..., Sn , Sε} for a given function F, where
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Sε is a special arti�cial empty statement. Packing any statement Si(i ∈ {1, .., n}) with Sε is

valid (CI({Si , Sε})) and denotes that we decided not to vectorize Si . Sε can be reused as

many times as needed in as many packs and does not violate the non-overlapping constraint

between vector packs, since it denotes we decided not to vectorize the other statements in

those packs. With this setup, we de�ne the components of our MDP as follows:

State (STi), A state ST in our MDP is a tuple, ST = (S i , F , PB). Here, S i represents the

statement selected by the �xed traversal order for packing; PB = {P1 . . . Pk} represents a set
of already formed vector packs. S i = Sε denotes we have reached a terminal state.

Start State (ST1), ST1 = (S1, F , {}).�e current statement to consider for packing is S1 and

there are no vector packs formed yet. �e traversal policy decides S1. For example, if we

use bottom-up traversal, S1 would be the last instruction of the function with valid packing

opportunities. If there are no such statements then S1 = Sε.

Action (A), At a given state ST = (S i , F , PB), the set of legal 1 actions A(︀ST⌋︀ is given as

follows:

A(︀(S i , F , PB)⌋︀ = {S j such that Pi = {S i , S j}, CI(Pi), ∀Pj ∈ PB, CII(Pi , Pj)

and S i and S j belong to the same basic block}

If S i = Sε then A(︀ST⌋︀ = ϕ. Note that CI and CII are the predicates relating to the packing

constraints de�ned in Section 2.2.1.

Transition (T), At a given state (S i , F , PB) and for action S, the transition function T

simply adds the newly formed pack to PB: T(︀(S i , F , PB), S⌋︀ = (S i+1, F , PB ∪ {S i , S}). �e

traversal policy decides on S i+1. For example, if we use bottom-up traversal, S i+1 would be

the immediate predecessor instruction of S i with valid packing opportunities. If there are no

instructions with valid packing opportunities S i+1 = Sε.

1I.e., satis�es CI and CII
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Reward (R), We de�ne the reward function as follows:

R((S i , PB)) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

0 if S i ≠ Sε

F(PB) if S i = Sε

where F is the pro�tability metric and S i = Sε denotes that we have reached a terminal

state. F can be any pro�tability metric that rewards better statement packing decisions. For

example, it can be the negative of a cost model that correlates with the runtime of the code.

Also note that in the context of Vemal, we imitate the actions taken by the oracle goSLP, and

as such we do not use the reward in either training and inference.

4.1.2 Graph Formulation of the MDP State

We choose a graph-based representation of the state ST = (S i , F , PB), since it allows us to
easily encode the entity relationships between statements in function F such as dependencies

and packs formed that are important in deciding on the optimal action to be taken for the state.

We use this graph formulation to construct a gated graph neural network (GGNN) [87, 6]

based policy to make statement packing decisions for each state (Section 4.3). Our graph

formulation of the state is as follows:

Nodes. We consider �ve types of nodes to encode the graph features of a state Si :

• Statement Node: correspond to each statement with at least one valid packing oppor-

tunity or statements that are already packed.

• Pack Node: common node representing overhead vector packing statements.

• Unpack Node: common node representing overhead vector unpacking statements.

• ConstantNode: common node representing any constant value used by the statements.

• Focus Node: special node that is connected to the statement that is considered for

packing in this iteration (S i).

Edges. We consider four types of edges connecting the above nodes:
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• Dependency Edge: encodes if a statement must be executed a�er another one in

sequential order. Moreover, depending on the position of the arguments the statement

depends on, a di�erent dependency edge type is created for a maximal of 5, with further

additional arguments collapsed to the same dependency edge type 6. If a vector pack

is formed and it requires overhead packing instructions a suitable dependency edge

is added between the pack node and the two statement nodes that form the vector

pack. Similarly, if a vector pack needs to be used by a scalar a suitable dependency

edge is added between the relevant statement node and the unpack node. Also, if any

statement uses a constant a suitable dependency edge is added between the constant

node and the instruction node. Note that all dependency edges are directed.

• Possible Pack Edge: encodes whether two statements can be packed together.

• Packed Edge: encodes statements that are already packed together.

• Focus Edge: the focus edge connects the focus node to the statement node that is

considered for packing.�is marks the node that we are making decisions on.

We illustrate our graph formulation for the code snippet shown in Figure 4-1(a) assuming

a forward traversal policy. Figure 4-1(b) shows the initial state with a focus edge directed

at L(︀1⌋︀. Further, it shows edges for dependencies for each operand position, possible packs

({A1,A2}, {A2,A3}, {A1,A3} and {L(︀1⌋︀,L(︀2⌋︀}), as well as mandatory packing of non-adjacent

load L(︀4⌋︀, which is used by A3. Figure 4-1(c) shows the next state, assuming pack {L(︀1⌋︀,L(︀2⌋︀}
is formed. Notice the packed edge between L(︀1⌋︀ and L(︀2⌋︀ and the update of the focus edge to

A1, which is considered for packing next.

4.2 Vemal System Overview

Figure 4-2 shows the overall system overview of Vemal (performing inference) when it is

deployed inside a compiler. It �rst translates the input LLVM IR code with scalar statements

into the start state of Vemal’s MDP formulation. Next, it iteratively makes statement packing

decisions using the MDP formulation described in Section 4.1.1. During this process, Vemal

uses the graph formulation (see Section 4.1.2) to internally represent each state it encounters.

For each new state of the MDP, Vemal uses a learned agent (see Section 4.3) to select the
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  I1 : A1   = C1  / L[1]
  I2 : A2   = C2  / L[2]
  I3 : A3   = L[4] / L[2]

  

L[1] L[2] PC

A1 A2 A3F UP

L[1] L[2]C

A1 A2F

P

A3 UP

(a)

(b) (c)

Focus Edge Depedency Edge (position 1) Depedency Edge (position 2)
Pack Edge Possible Pack Edge

Figure 4-1: Graph formulation of MDP states for the code snippet shown in (a) under the
forward traversal policy. Nodes: C-Constant, F-Focus, P-Pack, UP-Unpack and all other
nodes are statement nodes. Edges: di�erent types are shown in the �gure. Edges with arrows
are directed. (a) shows the initial state and (b) shows the state a�er packing instruction nodes
{L(︀1⌋︀,L(︀2⌋︀}.

best action from the action space to transition to the next state. If the next state is a terminal

state (S i+1 = Sε), then Vemal passes the set of packing decisions (PB) to the transformation

machinery to generate vector code to re�ect its vectorization strategy. As in the case with

goSLP, Vemal iteratively applies this procedure (not shown in Figure 4-2) to �nd vectors of

higher width.

Vemal follows the approach suggested in Section 1.4 and learns the optimization strategy

using data rather than using a hard-coded optimization algorithm.

4.3 Neural Network Architecture

We use a variant of a gated graph neural network (GGNN) as Vemal’s policy network that

decides the action given a state of the program. GGNNs have shown promise in the �eld of

code modeling [6], being able to capture intricate graph structures present in code sequences.

Vemal’s GGNN based policy network encodes the graph representation of the MDP state

described in Section 4.1.2.
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Figure 4-2: Vemal system overview

4.3.1 Gated Graph Neural Network

A gated graph neural network is a graph-based neural network model that uses recurrent

units to update state vectors.�e following description closely follows the GGNN architecture

described in [87, 6].

Consider a graph 𝒢 = (𝒱 ,ℰ , X), where 𝒱 represents the set of nodes, X represents the set

of node features and ℰ = (ℰ1, ..., ℰk) represents a list of directed edge sets with k edge types.

Each node v ∈ 𝒱 has a feature vector xv ∈ X attached to it.�is can be a high-dimensional

embedding or a concatenation of a set of hand-cra�ed features. In addition, each node v has

a hidden state vector hv attached to it that is initialized to xv .

During forward simulation of the neural network, each node passes a message to its

neighbors along the edges for each edge type. In general, k message types are passed to each

neighbor following each di�erent edge type.�is message vector is calculated as a function

of the hidden state vector of the node for each edge type ( mk
v = f k(hv) – message from

node v for edge type k ). We name these functions node-to-message functions, and these are

normally implemented as linear layers. Next, all incoming messages of all edge types are

aggregated from each neighboring node u to produce the �nal aggregated message m̂v =
g({mk

u ⋃︀ (u, v) ∈ ℰk}) for node v. Here, g is an aggregation or a reduction function and we

use element-wise summation in our implementation. Given the aggregated message and the
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hidden state vector for node v, GGNN updates the hidden state vector as h′v = GRU(m̂v , hv),
where GRU is a gated recurrent cell as proposed in [33]. Figure 4-3 summarizes the typical

computation for a single node in the GGNN during one message passing timestep.

Figure 4-3: In-node computation of a gated graph neural network (GGNN). Red, blue and
magenta correspond to di�erent edge types.

GGNN performs message passing for a �xed number of timesteps to arrive at the �nal

hidden state representations for all nodes.�e number of timesteps is empirically determined

and is closely correlated with the diameter of the graph, since it takes t message passing steps

to reach the end node of a t-node chain within the graph. Any number of timesteps less than

t does not fully convey the information from the start node to the end node of such a chain.

Also, note that in this basic recurrent graph neural network model, the node-to-message

functions and the recurrent unit parameters are shared for all timesteps.

Residual connections Since the basic GGNNmodel uses recurrent units, they also su�er

from memory loss when the number of message passing timesteps is large and when there

are large chains in the graph. To alleviate this problem, researchers normally use residual

connections from intermediate hidden states. More concretely, instead of calculating the

hidden state vector using the hidden state vector of the previous timestep, now the GGNN

uses the concatenation of hidden vectors from a chosen set of previous timesteps.

ht
v = GRU(m̂v , ht−1

v , CONCATr∈T(hr
v))

where T is a subset of {0, 1, ..., t − 2}
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Layered Architecture Another enhancement to the basic GGNNmodel comes from intro-

ducing di�erent layers for di�erent subsets of timesteps. Concretely, a layered architecture

uses a di�erent set of node-to-message functions and GRU units for di�erent contiguous

subsets of timesteps.

Layered Architecture with Residual Connections In this form, GGNN combines the

residual connections with a layered architecture. Hidden states from the �nal timestep of

each previous layer can be fed into the computation of the hidden states of the current layer.

Concretely, let us assume there are L layers and T = {t0, t1, ...tτ} timesteps. Assume layer l

has contiguous timesteps Tl = {t l0, t l1 , ...t lτ l}, where τl is the number of timesteps in layer l .

Note that ⋃l∈L Tl = T .�en, computation of a hidden state vector of timestep t li in layer l is

computed as,

ht li
v = GRU(m̂v , h

t li−1
v ,CONCATr∈Tτ(hr

v))

where Tτ is a subset of {t0τ0 , t1τ1 , ..., t l−1τ l−1}. Note that, in this architecture there are no residual

connections within timesteps of the current layer. All residual connections come from �nal

timesteps of previous layers.

4.3.2 End-to-end Neural Network Architecture Speci�cation

We used a layered GGNN architecture with residual connections as the policy network in

Vemal. More speci�cally, we used a GGNN with 4 layers and each layer has 3, 7, 5, and 2

timesteps respectively. Altogether, the GGNN architecture has 17 message passing timesteps

spread across 4 layers. Also, we added residual connections from the �nal timestep of all

previous layers when computing the hidden state of a given timestep in the current layer.�e

number of layers, timestep composition for each layer, and the composition of the residual

connections are all hyperparameters of the GGNN design.

We use a learned statement embedding as the initial feature vector (xv) for each node.

Each statement in our function (represented in LLVM IR) has an opcode and a number of

operands. We learn an embedding for each opcode type and use it as the feature vector for
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each node. Also, note that we specialize opcodes according to the types of the operands.

For example, an addition opcode for operands of length 32 bits (add32) is di�erent from an

addition opcode for operands of length 16 bits (add16). We also add a UNK opcode type and

an associated embedding to capture any new opcodes that may be introduced in the future.

Further, we initialize all hidden state vectors to null vectors of the same dimensions.

A�er the �nal timestep of the �nal layer of the GGNN is computed, we pass the hidden

states of neighbors connected through possible pack edges of the node selected for packing

through a multi-layer perceptron. Finally, we feed its output through a so�max layer to

produce action probabilities indicating how likely the selected node will be packed with its

neighbors.

4.4 Learning and Inference

Vemal uses both supervised pre-training and imitation learning using the DAgger algo-

rithm [133] to imitate the packing decisions made by the ILP solver.

4.4.1 Learning Stages

Algorithm 2 outlines the high-level learning process used to train the GGNN based policy

network in Vemal. It �rst bootstraps the learning process using supervised pre-training,

which is later re�ned using DAgger algorithm based imitation learning to make it more

robust. Figure 4-4 pictorially depicts this process.

Algorithm 2 Learning Algorithm for Vemal
1: procedure LearnVectorization
2: Inputs: Functions F, Traversal Policy TP
3: Inputs: BatchSize BS, NumBatches Nb, Optimizer opt, Optimizer parameters η, Func

Sample Size Fsize , NumEpochs Ep, Mixed agent decay factor β
4: Outputs: NN �nal weights w
5: w0 = InitWeights()
6: R = {}
7: R,w = SupervisedPreTraining(F , TP,w0, R, BS ,Nb , Opt, η)
8: w = ImitationLearningDagger(F , TP,w , R, BS , Ep, BS , Opt, η, Fsize , β)
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LLVM IR files
Training Set

Replay Buffer GGNN model
in main training loop

Pretrained GGNN
model

Supervised Pre-training

Imitation Learning
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algorithm

goSLP
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Replay Buffer

Figure 4-4: Vemal learning process. During supervised pre-training, Vemal collects state-
action pairs of optimal trajectories from goSLP to learn an initial GGNNbased policy network.
Next, during the imitation learning stage, Vemal uses the DAgger algorithm to iteratively
augment the replay bu�er with new state-action pairs that are used to re�ne the policy learned
by the GGNN.

Supervised Pre-training

Algorithm 3 outlines the supervised pre-training procedure we use for bootstrapping the

learning process of the GGNN based policy. Vemal �rst computes the optimal packing

decisions using the ILP solver (ILPSOLVE in line 6) for a given function in our training set.

�is returns a map P ∶ S → S that maps all the packing decisions for each statement. Next, it

steps through the MDP (lines 8–14) mapping all the packing decisions taken by the ILP solver

into the associated state-action pairs in the MDP for a given traversal policy (TP ∶ ST → S,

which returns the next statement with valid packing opportunities given a state of the MDP).

Here, the action is the selection of a statement for packing among all valid packing candidates
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and is represented as a 1-hot vector (line 11). Vemal adds the newly formulated state-action

pairs into the replay bu�er (line 12). It repeats this for all functions in our training set,

populating the replay bu�er with state-action pairs in the optimal trajectories.

Next, we use these state-action pairs to train the GGNN based policy network (lines

15-19). Vemal uses the graph formulation of the MDP state (Section 4.1.2) to form the GGNN

for each state and uses cross-entropy loss between the model’s suggested action and the

optimal action to ascertain the e�cacy of the learned policy. Next, it uses backpropagation to

compute the gradients, which are used to optimize the weights using a chosen optimizer. We

perform this supervised pre-training for a designated amount of batches.�e �nal output of

the pre-training stage is the populated replay bu�er, and the set of trained weights for the

parameters and embeddings of the GGNN based policy.

Algorithm 3 Supervised Pre-training for Vemal
1: procedure SupervisedPreTraining
2: Inputs: Functions F, Traversal Policy TP, NN initial weights w0, Replay Bu�er R
3: Inputs: BatchSize BS, NumBatches Nb, Optimizer opt, Optimizer parameters η
4: Outputs: NN �nal weights wNb , Replay Bu�er R (�lled)
5: for f ∈ F do
6: PD = ILPSOLVE( f )▷ formulate and solve goSLP problem; returns map PD ∶ S → S
7: s1 = TP(ε, f , {}), pb = {} ▷ pb holds vector packs formed
8: while s1 ≠ sε do
9: s2 = PD(︀s1⌋︀ ▷ look up the packing decisions
10: st = (s1, f , pb) ▷ new state
11: ac = ℐ(A(︀st⌋︀ == s2) ▷ optimal action as a 1-hot vector
12: R ∪ = (st, ac) ▷ Augment the replay bu�er with new state-action pair
13: pb ∪ = (s1, s2) ▷ Add the new statement packing to PB
14: s1 = TP(s1, f , pb) ▷ Next statement according to the traversal policy
15: for i = 0 to Nb − 1 do
16: ST ,AC = Sample(R, BS) ▷ sample a set of state-action pairs
17: L = CrossEntropyLoss(GGNN(wi , ST),AC)
18: ∂L

∂w i
= BackProp(L)

19: wi+1 = Opt(wi , η, ∂L
∂w i

) ▷ update weights
return R,wNb
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Imitation learning with DAgger

Algorithm 4 shows the imitation learning procedure we use to train Vemal. �e �rst part

of the procedure augments the replay bu�er with new state-action pairs according to the

DAgger algorithm for each epoch. Speci�cally, the DAgger algorithm augments the current

replay bu�er to include state-action pairs o� the optimal trajectory when the learned policy

is not perfect.�ese state-action pairs serve as new experiences to the learned policy which

can now use them to learn how to take remedial actions when it falls o� of the optimal

trajectory. Intuitively, the data augmentation process of the DAgger algorithm makes the

learned policy robust by building into it the experiences needed to correct course amidst

minor mistakes.�is is particularly important since we represent our learned policy using a

function approximator with no guarantees that it would suggest the optimal action for each

and every state it visits.

Vemal �rst obtains rollouts under a mixed policy for a randomly sampled batch of

functions (lines 10–18).�e mixed policy is made out of the learned GGNN policy (student)

and the oracle ILP-based vectorization policy (teacher). Initially the teacher is chosen at a

high probability and this probability is exponentially decayed by a factor β in each epoch.�is

makes sure that eventually the mixed agent will take decisions solely using the learned GGNN

policy. Next, for everyMDP state visited by the mixed policy, it encodes the packing decisions

already made into the ILP formulation and uses the ILP solver to provide optimal statement

packings for the remaining statements (ILPSOLVE_INC). Vemal uses this information to

�nd the optimal action for every state visited by the mixed policy (line 22). �e DAgger

algorithm augments the current dataset to include these state-action pairs (line 23).

During the next part of the imitation learning process (lines 26–30), we train on this

augmented dataset similarly to the supervised pre-training step. At each epoch, we continue

to augment the dataset using the aforementioned strategy and train on the entire augmented

dataset.�is allows the GGNN policy to learn how to rectify its policy in cases where it falls

out of the optimal trajectory, and as a result, it becomes more robust.
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Algorithm 4 Imitation Learning for Vemal
1: procedure ImitationLearningDagger
2: Inputs: Functions F, Traversal Policy TP, NN weights w0,0, Replay Bu�er R
3: Inputs: BatchSize BS, NumEpochs Ep, Optimizer Opt, Learning Rate η, Func Sample

Size Fsize , Mixed agent decay factor β.
4: Outputs: NN �nal weights wEp,0
5: for i = 0 to Ep − 1 do
6:
7: // Data augmentation with DAgger algorithm
8: Fsample = Sample(F, Fsize)
9: STNN = {} ▷ for recording all states visited by GGNN policy
10: for f ∈ Fsample do ▷ for each sampled function
11: s1 = TP(ε, f , {}), pb = {} ▷ pb holds vector packs formed
12: while s1 ≠ sε do
13: stNN = (s1, f , pb) ▷ new state
14: STNN ∪ = {stNN}
15: acNN =MixedAgent(wi ,0, stNN , β) ▷Mixed agent suggested action
16: s2 = GetStatement(A(︀stNN⌋︀, acNN) ▷ get statement corresponding to the 1-hot

vector
17: pb ∪ = (s1, s2) ▷ Add the new statement packing to pb
18: s1 = TP(s1, f , pb) ▷ Next statement according to the traversal policy
19: for stNN ∈ STNN do
20: stNN = (s1, f , pb)
21: s2 = ILPSOLVE_INC(stNN) ▷ solve the ILP problem in goSLP for the state stNN
22: ac = ℐ(A(︀stNN⌋︀ == s2)
23: R ∪ = (stNN , ac) ▷ Augment the bu�er with the new state and optimal action
24:
25: // Train on the augmented dataset
26: Nb = [︂ ⋃︀R⋃︀BS ⌉︂
27: for j = 0 to Nb − 1 do
28: ST ,AC = Sample(R, BS) ▷ sample a set of state-action pairs
29: L = CrossEntropyLoss(GGNN(wi , j, ST),AC)
30: ∂L

∂w i , j
= BackProp(L)

31: wi , j+1 = Opt(wi , j, η, ∂L
∂w i , j

) ▷ update weights

32: wi+1,0 = wi ,Nbreturn wEp,0

4.4.2 Function Partitioning

Graph neural networks su�er from over-smoothing and scaling problems, especially when

the graph’s diameter is large [160]. Real-world functions can be arbitrarily sized, in some
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cases reaching more than 190,000 statements in our dataset. To alleviate scaling problems in

our formulation, we partition functions based on their statement counts and learn vectoriza-

tion for each partition separately considering them as full functions using the formulation

mentioned in Section 4.1 and learning process mentioned in Section 4.4.1. Concretely, we

use Algorithm 2 with partitioned functions as input to train our GGNN based policy. Note

that we solve ILP problems considering each partition individually and use their solutions to

train our agent.

4.4.3 Hyperparameters

Vemal’s learning process uses a number of hyperparameters. We categorize them into two

main categories: hyperparameters related to the learning algorithm and those related to the

neural network design. We discuss the choice of values for all of these hyperparameters in

Section 4.6.1.

Hyperparameters related to the learning algorithm

• Batch Size (BS) – size of each batch we use to compute the gradient of the loss and to

update the weights of our model.

• Number of Batches (Nb) – the number of batches we sample for supervised pre-training.

• Optimizer (Opt) – the optimizer used to update the weights of the model. We consider

SGD and Adam as the two main optimizers.

• Optimizer Parameters (η) – these include learning rate, momentum, decay and any

other parameters supported by a given optimizer.

• Number of Epochs (Ep)

• Function Sample Size (Fsize) – the number of functions sampled at each epoch to

generate state-action pairs to augment the replay bu�er.

• Function Partition Size – the number of statements in a given function partition.

• Mixed agent decay factor (β) – the factor by which the probability of selecting the

teacher agent is reduced at the start of each epoch of imitation learning.
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Hyperparameters related to the neural network design

• Node feature embedding size (⋃︀xv ⋃︀)
• Node hidden state vector size (⋃︀hv ⋃︀)
• Number of layers in the GGNN and the number of timesteps in each layer

• Residual connectivity between layers

4.4.4 Inference

During inference, we obtain rollouts using the �nal GGNN policy for a given function. For

partitioned functions, we take separate rollouts using our learned agent for each partition and

�nally merge all the decisions to form the �nal vectorization scheme. Note that even though

the ILP based solution gives an optimal solution for each partitioned function in isolation,

the merged solutions may not be optimal.�e larger the partition size, the longer it takes for

inference (compile time), but the closer the merged ILP based packing decisions are to the

optimal decisions of goSLP.�erefore, there is a trade-o� between the quality of the solution

and the compilation time that is controllable by the function partition size hyperparameter.

4.5 Dataset

We use the same set of benchmark programs from goSLP to train and evaluate our imitation

learning approach. Our dataset is composed of all individual functions collected out of the

benchmark programs listed in Table 4.1.�e benchmark programs represent �oating-point

C/C++ programs from SPEC2006 [57], SPEC2017 [143] and NAS [107] benchmark suites.

Benchmark Suite Benchmark Programs
SPEC2006 433.milc, 444.namd, 447.dealII, 450.soplex, 453.povray, 470.lbm, 482.sphinx3
SPEC2017 508.namd_r, 510.parest_r, 511.povray_r, 519.lbm_r, 538.imagick_r, 544.nab_r
NAS BT, SP, LU, MG, FT, CG, EP

Table 4.1: Benchmark programs used for training and testing Vemal
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4.5.1 Collection

We �rst compiled each source �le to LLVM’s intermediate representation (IR) just before

LLVM’s existing SLP vectorizer runs. In this way, we obtain the same IR that would have been

seen by the vectorizer during an end-to-end compilation. Each source �le has a number of

functions, and goSLP builds ILP problems considering a single function as the vectorization

unit. Hence, we collected both the compiled LLVM IR (just before SLP vectorization) as well

as the corresponding pairwise packing opportunities for each function for all programs in

our benchmark suite.

4.5.2 Preparation

Using the methodology outlined in Section 4.5.1, we collected 35,635 functions in total.

However, only 3,981 (11.17%) functions are vectorized by goSLP. If we use all collected functions

during training, it induces a natural bias towards not vectorizing due to the imbalance in our

dataset, even for functions with abundant vectorizable opportunities.�e goal of our learned

agent is to mimic goSLP as closely as possible when there are vectorizable opportunities. In

cases where our learned agent suggests an unpro�table scheme, it can be eliminated by a cost

model similar to the current LLVM SLP vectorizer.

�is asymmetric learning objective and the imbalance in our collected functions mo-

tivated us to create the �nal dataset that is biased towards functions that are vectorized by

goSLP. We select all functions that are vectorized by goSLP as well as a random subset of

non-vectorized functions such that 80% (3,981) of our dataset has functions with pro�table

vectorization schemes and 20% (995) do not. Finally, we split the dataset into a training set

(80%) and a test set (20%) such that the proportionality of the vectorized and non-vectorized

functions remains the same for both. �ere are 3,169 and 812 vectorized functions in our

training and test respectively. Our training set does not include any functions from the

NAS benchmark suite that we use exclusively for evaluating the end-to-end runtimes of our

learned policy.

We evaluate two partitioning sizes, namely partitioning each function at 100 and 200

statement counts. For each such partition, we create a new function with only the statements
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from that partition and solve an ILP problem (goSLP’s formulation) to retrieve the set of

optimal actions for the partition. We report the �nal training and test set compositions for

each partitioning scheme in Table 4.2.

Scheme
Name

Partition
Size

Train set (partitioned functions) Test set (partitioned functions)

vectorized non-vectorized vectorized non-vectorized
p100 100 7,203 1,802 1,776 446
p200 200 5,378 1,346 1,357 341

Table 4.2: Partitioned dataset statistics for Vemal dataset

4.6 Training and Testing

We now explain how we train Vemal’s GGNN policy (Section 4.6.1) according to the learning

algorithmmentioned in Section 4.4.1 and howwe use it in testing (Section 4.6.2) to make �nal

vectorization decisions according to the inference methodology mentioned in Section 4.4.4.

4.6.1 Training Setup

We learn the GGNN policy using the training set for each partition size for both backward

and forward instruction traversal policies. Initially, there are 144,944 and 163,618 optimal

state-action pairs for partition sizes 100 and 200, respectively under the forward traversal

policy. Under backward traversal, the respective numbers are 144,026 and 163,448.

We pre-train each network using 3000 randomly sampled batches (Nb). At the beginning

of each epoch, we randomly sample 400 of the partitioned functions (Fsize) and augment

our dataset using rollouts obtained for those functions. We use a mixed student-teacher

policy similar to that used by the original DAgger algorithm [133] to take rollouts, with the

probability of choosing the teacher agent (ILP solver) exponentially decayed by β = 0.9 at

the beginning of each epoch.

Our GGNN architecture has 4 layers with each layer having {3,5,7,2} timesteps. Altogether,

our GGNN uses 17 message passing iterations. To compute the hidden states of each timestep

for a given layer, we use residual connections from the �nal timestep of all previous layers.
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We train the neural network using stochastic gradient descent, with a momentum of 0.9,

an initial learning rate of 0.002, and with an exponentially decaying learning rate schedule

(decay of 0.95). We randomly sample 50 state-action pairs (BS) for each batch and sample
replay bu�er
batch size number of batches for each epoch.

4.6.2 Testing Methodology

In order to evaluate whether our learned policy is better than LLVM’s SLP vectorization

algorithm, we use three di�erent metrics in our experiments:

• Average cost reduction across all vectorized functions in the test set compared to scalar

according to LLVM’s cost model.

• Geometric mean speedup across all vectorized functions in the test set compared to

scalar according to LLVM’s cost model.

• Geometric mean speedup of actual runtimes for the NAS benchmark suite over LLVM’s

SLP vectorization scheme.

For the �rst two metrics, we use values reported by LLVM’s cost model. For the �nal

metric, we use actual wall clock times. For each partition size and instruction traversal policy,

we evaluate each policy when it uses the action with the highest probability (argmax policy)

for each state as well as when it uses the best trace among n-rollouts (multi-rollout policy).

4.7 Experimental Results

We trained all four agents – partition sizes 100 and 200 and instruction traversal policies

forward and backward – for 40 epochs. We used LLVM SLP (clang-6.0), goSLP, and a random

packing agent as our baselines for comparison. A random packing agent is an agent that

chooses uniformly from alternative actions for a given MDP state.

4.7.1 Static Results

Table 4.3 shows the average cost reduction and geometric mean speedup for the functions in

the test set that are vectorized by goSLP (812) according to LLVM’s cost model. We included
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two additional comparison points, goSLP-p100 and goSLP-p200, which are policies that solve

multiple ILP problems for partitioned functions using goSLP’s formulation and merge the

decisions to perform �nal vectorization.

Vectorization
Policy

Traversal
Policy # of rollouts Average Cost Reduction

(LLVM cost model)
Geomean Speedup
(LLVM cost model)

goSLP 23.6182 1.1226
goSLP-p100 19.4815 1.1148
goSLP-p200 21.2857 1.1193
LLVM SLP 12.1872 1.0873
random forward 1.0320 1.0150
random backward 1.0567 1.0126
p100 forward 1 13.3633 1.0833
p100 forward 10 14.9421 1.1018
p100 backward 1 9.2180 1.0685
p100 backward 10 11.3227 1.0911
p200 forward 1 13.5259 1.0829
p200 forward 10 14.7340 1.1020
p200 backward 1 9.5801 1.0693
p200 backward 10 11.5631 1.0912

Table 4.3: Average cost reduction and geometric mean speedups for vectorized functions in
our test set based on LLVM’s cost model under di�erent vectorization policies. A random
packing agent is an agent that chooses uniformly from alternative actions for a given MDP
state.�e bolded values show the best performing learned policies in terms of average cost
reduction and geometric mean speedup according to the LLVM cost model.

We notice that the agents using forward traversal learn a better vectorization policy

than when using backward traversal. Also, all learned agents except agents using backward

traversal surpass LLVMSLP’s average cost reduction.�is fact ismagni�edwithmore rollouts,

showing the e�cacy of our learned policy compared to LLVM SLP’s greedy algorithm.�e

best performing agent (p100 with 10 rollouts) has an average cost reduction compared to a

scalar that is 22.6% higher than that of LLVM.�is is in spite of the fact that LLVM is not

restricted to pairwise packing at a time.

Also, notice that partitioned versions of goSLP achieve a lower average cost reduction

compared to “vanilla” goSLP. �is is because of the suboptimality introduced by solving

subproblems as opposed to solving statement packing for the entire function.�e maximum

average cost reductions of learned agents p100 and p200 are capped at those of goSLP-p100
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and goSLP-p200, respectively. We should therefore expect p200 to learn a better policy than

p100. However, the learned policies only have small overall average cost reduction di�erences.

�is is because the GGNN is not as good at approximating goSLP’s packing policy when it

comes to larger graphs.�is gives rise to another trade-o� space between the suboptimality

of the solution and the learnability of a packing strategy at various partition sizes.

4.7.2 Runtime Results

We evaluated Vemal for both partition sizes 100 and 200 to perform end-to-end vectorization

for the NAS benchmark suite. We use the agents learned under forward traversal and use

both the argmax as well as the multi-rollout policy to evaluate the e�cacy of the learned agent

on end-to-end runtimes. All benchmark programs are run on a Haswell Intel(R) Xeon(R)

CPU E5-2680 v3 machine running at 2.50GHz with 32kB L1 and 256kB L2 cache sizes. We

use Class-A workloads in our evaluation.

We run each benchmark program three times and report the median as is the common

reporting method for compiler benchmarks. Figure 4-5 shows the runtime speedups for each

program under goSLP and our learned policies compared to LLVM SLP.�e table in the

�gure shows the �nal geometric mean speedup for all policies compared to LLVM SLP.

�e best performing learned agent achieves 1.015× geometric mean speedup over all

NAS benchmarks. In fact, both p100 and p200 learned agents were able to beat LLVM

SLP’s performance with only 10 rollouts. �is shows the e�cacy of our learned agents on

end-to-end runtime performance.

More notably, all agents except p100 with 1 rollout beat or replicate the substantial runtime

speedup of goSLP on the BT benchmark over LLVM SLP.�is signi�es that the agents have

learned a non-trivial vectorization policy not covered by LLVM SLP. Also, note that for

SP and MG benchmarks all agents consistently beat goSLP in terms of performance. Even

though goSLP performs pairwise optimal statement packing according to LLVM’s cost model,

there exist other vectorization strategies (as uncovered by our learned agents) that are better

in terms of runtimes.�is shows the inaccuracies of the linear cost model used by LLVM

when modeling runtimes of complex microprocessors. Further, this provides evidence for

our hypothesis that in the future a reinforcement learning based policy with a better cost
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Policy Rollouts Speedup over
LLVM SLP

goSLP 1.041
p100 1 0.979
p100 10 1.015
p200 1 0.987
p200 10 1.003

Figure 4-5: Speedup of goSLP, p100 with 1 and 10 rollouts, and p200 with 1 and 10 rollouts
compared to LLVM SLP for individual benchmarks in the NAS benchmark suite.�e table
shows the geometric mean speedups for the entire benchmark suite

model has the potential to learn an even better end-to-end vectorization policy than goSLP.

4.8 Summary

Vemal shows the feasibility of learning an end-to-end vectorization policy by imitating the

optimal solution given out by goSLP, and we show that it outperforms well-tuned compiler

heuristics used in the LLVM compiler. Vemal has the added advantage of having predictable

runtimes compared to the solver-aided goSLP solution.

�eMDP formulation of statement packing has the potential to accept arbitrarily complex

cost models as part of its reward function. Vemal already �nds vectorization opportunities

that are better than goSLP in terms of actual runtimes, even when it is trained using goSLP

as the oracle. Hence, with a su�ciently more accurate cost model and with a reinforcement

learning approach to solve the MDP, we can expect to arrive at these better vectorization
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schemes more reliably and systematically. In Chapter 5, we show the �rst attempt at building

a more accurate cost model using data-driven techniques that can signi�cantly outperform

its manually speci�ed counterparts.
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Chapter 5

Ithemal: Learned Compiler Cost Model

In a counter-intuitive result, the learned vectorizer Vemal �nds better vectorization oppor-

tunities for certain benchmarks in terms of wall-clock runtime performance compared to

optimal goSLP, even when it is trained using goSLP’s statement packing decisions. For in-

stance, consider the runtime performance of benchmarks BT and MG in Figure 4-5. All

learned agents except p100 with argmax policy under BT outperform goSLP.�e main reason

for this observation is that the optimality of goSLP’s packing decisions are based on the

linear cost model that LLVM uses. However, modern-day microprocessors and computing

environments are highly complex and cannot be realistically modeled using a linear cost

model. Further, this gives evidence that there exist better vectorization schemes that remain

uncovered by linear cost models, which motivates us to build more complex and accurate

cost models to systemically �nd such opportunities.

Building complex non-linear models manually is a cumbersome and error-prone task. In

this work, we take the �rst step towards building compiler cost models that can be end-to-end

learned using data with the use of a properly cra�ed neural network architecture. We require

no featurization from the cost model developer, minimizing the associated development

burden. Concretely, we develop Ithemal, a tool that learns how to predict the throughput of a

basic block from scratch with the aid of a supervised dataset.

�e rest of the chapter is organized as follows. In Section 5.1, we specify the problem

of basic block throughput prediction and introduce Ithemal as an alternative data-driven

strategy to existing analytical cost models such as llvm-mca [42] and IACA [67]. We show
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where existing analytical models fail to faithfully model underlying hardware compared to

Ithemal which intrinsically learns how to predict basic block throughput using data. We

describe Ithemal’s neural network architecture in Section 5.2 and present the basic block

composition of our dataset used to train Ithemal in Section 5.3. In Section 5.4, we introduce

a new tool for basic block throughput measurement that can execute arbitrary memory-

accessing basic blocks out of their program context. We use this tool to collect ground-truth

throughput measurements for the basic blocks in our dataset. We present evaluation results

for Ithemal in Section 5.5 for three dimensions: accuracy, portability and speed of prediction.

Finally, in Section 5.6, we comprehensively evaluate a few alternative neural network designs

that we explored before arriving at Ithemal’s �nal neural network architecture.

5.1 Basic Block�roughput Prediction

�e throughput of a sequence of instructions—the number processor clock cycles taken to

execute the sequence when looped in steady state—determines how fast those instructions

can process data. Accurately predicting the throughput of a basic block is an essential

requirement in many systems, to be able to predict and optimize runtime performance.

For instance, constraint–based register allocation and instruction scheduling [93] relies on

accurate throughput estimations, as do learning–based techniques like genetic algorithm

based register allocation [145] and reinforcement learning based instruction scheduling [97].

�e alternative – measuring throughput on demand by executing the basic block – is too

expensive for most compilers and learning–based solutions. In practice, most systems employ

analytical models to predict throughput. For instance, the LLVM compiler team [82] recently

merged 1 a command-line tool, llvm-mca [42], that exposes a machine model for throughput

estimation. Intel has also released a closed-source machine code analyzer, IACA [67] that

relies on internal knowledge of Intel’s processor design.�ese models are typically an order

of magnitude faster than measuring a basic block’s throughput. However, manually writing

an accurate and complete model is tedious, error-prone, and exceedingly di�cult without

knowledge of the exact mechanisms of the processor. In Section 5.1.2, we present few moti-

1 lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
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vating examples to show how these analytical models fail even for predicting throughput of

relatively simple code sequences.

In the hunt for accuracy, developers build complicated models which must make signi�-

cant trade-o�s with the model’s portability and speed.

Accuracy. Modern x86-64 Complex Instruction Set Computer (CISC) processors con-

tain many hardware optimizations that signi�cantly complicate building accurate analytical

models. In order to implement an instruction set architecture (ISA) like x86-64, processors

actually implement an underlyingmicroarchitecture, a physical implementation of the ISA

speci�cation. Processors translate instructions from the ISA to instructions in the latent

microarchitectural language (termed micro-ops), then execute those micro-ops.�e micro-

ops may undergo optimizations such as micro-op fusion, in which micro-ops of di�erent

instructions may be combined together; out-of-order execution, in which instructions can be

executed in any semantics-preserving order; register renaming, where false dependencies can

be broken to enable more parallel execution; and many more vendor-speci�c optimizations.

�is makes the prediction problem highly complex and non-linear.

Portability. While ISAs like x86-64 stay relatively stable, processor vendors release updated

processor implementations with di�erent microarchitectures every few years. For example,

Intel released the Haswell and Skylake microarchitectures in 2013 and 2015, respectively,

for the x86-64 instruction set. Each microarchitecture of a processor family has its own

quirks and intricacies. Manually writing a throughput estimator to support di�erent microar-

chitectures requires rewriting instruction tables, resource utilization charts, and modeling

microarchitectural optimizations, all of which are tedious and error prone.�is is compli-

cated by the vast, incomplete, and incorrect documentation for many processors, where

understanding of these behaviors has to be obtained by reverse-engineering the processor.

Ideally, the throughput estimator should be able to automatically capture such intricacies

with minimal human intervention.

Speed. A throughput estimator also needs to be fast. Compilers need to search through

many code blocks before emitting the fastest version of a given instruction sequence. Running
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the basic blocks to get ground-truth throughput requires sandboxing and many iterations of

execution to arrive at a consistent steady-state throughput estimate, which is impractical for

real-time systems.

5.1.1 Ithemal: A Data Driven Approach

We introduce Ithemal (Instruction THroughput Estimator using MAchine Learning), which

takes a novel data-driven approach to predicting throughput for a block of instructions, in-

spired by recent advances in Deep Neural Networks (DNNs). Ithemal models the throughput

estimation problem as a regression task and leverages a DNN to learn to predict throughput by

using a large corpus of labeled data, mapping assembly sequences to real-valued throughputs.

More concretely, Ithemal uses a a hierarchical multiscale RNN [45, 34, 16], which generates

an independent embedding for each instruction, then sequentially combines the instruction

embeddings to predict throughput.

In Section 5.5, we show that Ithemal’s learned model is signi�cantly more accurate than

analytical models, dropping the mean absolute percent error by more than 50% across all

benchmarks, while still delivering fast estimation speeds.

To generate high-quality predictions, Ithemal needs only training data and a speci�cation

of the ISA, including the speci�cation of instructions and their explicit and implicit operands

(for instance, the instruction push rax in x86-64 pushes the register rax on to the stack and

also implicitlymodi�es the stack pointer register, rsp). Unlike analytical models, Ithemal

learns any salient microarchitectural details that contribute to throughput on its own, without

any explicit speci�cation or modeling.

5.1.2 Motivating Examples

Analytical modeling is di�cult for many code sequences; consider examples (a)-(c), their

actual throughput2, and their associated throughput predictions in Table 5.1 3.�ese �awed

predictions occur in spite of many hours spent engineering detailed models of underlying
2Note that – following convention – we de�ne throughput to be the number of clock cycles taken to execute

a basic block; this is actually the reciprocal of the standard de�nition of throughput. We also report throughput
for 100 iterations of a given basic block.

3Some of the examples in the original Ithemal paper [103] had errors in the actual reported measurements.
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microarchitectural details. In contrast, Ithemal’s data driven approach intrinsically learns

accurate predictions from the ground-truth data.

(a) (b) (c)

vxorps xmm0, xmm0, xmm0
mov [rbp+0x70], rax
mov rax, 0x01

shl rbx,0x02
mov rdi,rbx

Actual 25 100 100
llvm-mca 100 100 50
IACA 24 84 96
Ithemal 26 99 99

Table 5.1: Example x86-64 assembly code sequences (Intel syntax) and associated throughput
predictions, in clock cycles

Implementation Errors: Intel provides extensive documentation of its microarchitectural

implementation, which enables developers to build performance models for assembly code.

However, the sheer volume of implementation details makes it challenging to deliver a

complete model.

Sequence (a) shows a single instruction sequence that zeros out the vector register xmm0.

Zeroing out registers is so common that Intel processors execute these instructions using a

faster, optimized data path – separate from the normal instruction execution path. IACA

closely predicts the measured value but llvm-mca’s predictions are much farther o� because

it does not model this optimization4.

Sequence (b) shows a pair of mov instructions with a measured throughput of 100. IACA

and LLVM both �nd an execution schedule that would predict a throughput of 100 cycles;

however, IACA also identi�es a micro-op fusion opportunity, and therefore predicts 84 cycles.

�is optimization opportunity does not manifest in the observed timing numbers.

Ithemal, which is driven by actual performance data, learns to closely predict both of

these values without any explicit error-prone encoding of Intel’s optimizations.

Vendor Documentation Errors: �e sheer volume of implementation details also means

that Intel’s documentation can be incorrect. Tools that faithfully adhere to the documentation
4As of commit 44048 and e6d7d llvm-mca has started supporting some zeroing idioms found in Intel

processors.�ese commits were in�uenced by our work on Ithemal.
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can therefore still be incorrect. Sequence (c) is a short sequence with a data dependency

that is bypassed within the processor pipeline: the mov instruction does not consume many

additional clock cycles over that of shl. �e throughput of this basic block is therefore

dominated by the throughput of shl. However, the throughput value that Intel provides

in its documentation (50 cycles) assumes that there are no dependencies.�erefore, while

IACA – Intel’s own tool – closely predicts the value, llvm-mca is incorrect because it uses

the dependency-free throughput value. In comparison, Ithemal closely predicts the actual

throughput because it works with actual performance data.

5.2 Model Architecture

Figure 5-1 presents the high-level design of Ithemal’s approach. We model the problem of

throughput estimation as a regression problem: given the assembly input, Ithemal predicts

the throughput of the instruction sequence as a real-valued number. At the core of Ithemal

is a hierarchical multiscale RNN [34, 45] that sequentially processes all instructions in the

basic block and outputs an embedding, which Ithemal then uses to directly estimate the

throughput. Altogether, we decompose the end-to-end model into the following stages:

canonicalization, embedding and estimation.

5.2.1 Canonicalization

�e canonicalization stage converts the assembly input into a more structured form, dic-

tated by the syntax of the assembly instructions. Ithemal takes a compiled assembly block,

disassembles it, and maps it to a list of instructions. Each instruction consists of a list of

tokens representing its operation code (opcode, e.g., add), source operands, and destination

operands, separated by distinguished delimiter tokens.

For example, consider the instruction mul ecx, that multiplies the value in register ecx

with eax, and places the result into registers edx and eax. Note that the source operand eax

and both of the destination operands eax and edx are implicit in the Intel syntax mul ecx.
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�e �nal canonicalized set of tokens for the instruction is:

(mul, <S>, eax, ecx, <D>, edx, eax, <E>)

where the bracketed tokens are the delimiters representing the break between the opcode,

source, and destination operands.

Assembly code permits more than just register operands, such as constants and memory

operands. We map all constants (e.g., integer constants, memory addresses, etc.) to a single

CONST token. We demarcate memory operands (consisting of a base address, and an optional

o�set and displacement) by surrounding them with <M> and </M> delimiter tokens. We

present the full canonicalization scheme in Appendix A.1.

5.2.2 Embedding

Ithemal’s embedding stage takes a canonicalized token stream of instructions, and for each

instruction produces an embedding: a representation of an instruction as a real-valued vector

in a high-dimensional space.�e �rst step is the token layer, which maps a given token to

an embedding. We implement the token layer by mapping each token in the sequence to an

n-dimensional vector by learning a linear transformation of the one-hot token vectors (this

is equivalent to learning a lookup table).

Ithemal then maps the sequence of token embeddings to an embedding for each instruc-

tion in the basic block. We call this the instruction layer. Because each instruction can have a

variable number of tokens depending on its number of source and destination operands, the

size of the input to the embedding stage is variable. We therefore implement the instruction

layer with a sequential Recurrent Neural Network (RNN) architecture with Long Short Term

Memory (LSTM) [60] cells.

Figure 5-1 presents the operation of our RNN-based instruction embedding approach on

a small example.�e bottommost row shows the original assembly input.�e second row

shows the sequence of tokens for each instruction. �e third row (the token layer) shows

the sequence of token embeddings, e.g. vmov, which are mapped directly from each syntactic

token.�e fourth row (the instruction layer) shows the application of an LSTM to reduce
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the token embedding sequence into the �nal instruction embedding, hmov.

5.2.3 Prediction

�e �nal prediction comes from the prediction layer, which maps a basic block (a sequence of

instruction embeddings) to a throughput value.�is is again implemented with an RNNwith

LSTM cells, which has entirely disjoint weights from the LSTM in the instruction layer.�is

corresponds to the topmost layer in Figure 5-1. Using the �nal output from the instruction

LSTM (hblock), Ithemal predicts the basic block’s throughput with a linear layer. Speci�cally,

Ithemal computes w ⋅ hblock + b, where w is a learned weight vector and b is a bias. �is

produces a �nal real-valued number that represents the network’s throughput prediction.

�e hierarchical combination of the RNN in the instruction layer and the RNN in the

prediction layer has several bene�ts over a non-hierarchical model:

• Memory and backpropagation paths are signi�cantly shorter than a model using a

non-hierarchical (i.e., single) RNN.�e average length of a block in our dataset is 6.04

instructions, and the average length of an instruction is 7.97 tokens.�e average length

of a token-level RNN across the entire basic block would instead be about 48 RNN cell

applications, more than three times as long as a path through the hierarchical RNN.

• Instructions are embedded atomically: the prediction layer is only able to generate

throughput estimates at speci�c points in the overall token stream, i.e. a�er complete

instructions.�is means that the network does not have an obligation to produce states

that correspond to predictions at points in between instructions.

We compare this hierarchical architecture against other architecture choices in Section 5.6,

showing the e�cacy of Ithemal’s hierarchical architecture.

5.3 Dataset

We collected a dataset of basic blocks from well-known programs and benchmark suites and

timed them with a procedure that matches the assumptions of the baseline analytical models.
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5.3.1 Dataset Composition

Table 5.2 summarizes the set of applications in our dataset. We designed the dataset to

include a diverse set of applications with di�erent performance characteristics while covering

a wide range of x86-64 instructions. It consists of performance-critical applications used for

benchmarking compiler optimizations as well as end-user applications used in day-to-day

computing.

To extract each application’s basic blocks, we �rst compile each application using GCC

4.9.4 with the -O3 optimization level targeting an Intel Haswell processor. Next, we use

Dynamorio [23], a dynamic binary instrumentation tool, to dump the encoded bytes of the

executed x86-64 basic blocks. We execute the benchmarks using the standard inputs provided

by the benchmark suites. Next, we de-duplicate the dataset by removing basic blocks with the

same encoded byte patterns.�is step is important to eliminate repeated occurrences of basic

blocks created by code shared through common header �les and by common compilation

patterns.

5.4 �roughput Pro�ling

IACA and llvm-mca predict the steady-state throughput of a basic block, under the assump-

tions that all memory accesses result in L1 cache hits and the execution environment is

non-preemptive. We developed a machine code pro�ler that adheres to these assumptions to

collect the number of cycles it takes to execute each basic block in Table 5.2.

5.4.1 Existing Tools and Limitations

Several existing tools enable users to perform low-level microbenchmarking and to validate

performance models by hand. Agner Fog’s script [1] pro�les small code snippets.�e script

reports the number of cycles taken to execute the code, as well as performance statistics such

as the number of cache misses. nanoBench [3] is a pro�ler similar to Agner Fog’s [1], with two

notable improvements. It allows the user to specify which processor-speci�c performance

counters tomeasure, in addition to the cycle counter. It also supports pro�ling in kernel-mode,
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removing potential noise due to context-switches and interrupts.

Unrolling �e basic strategy these tools take to measure basic block throughput is to unroll

a basic block multiple times and divide the latency of the unrolled basic block by the unroll

factor 5. Measuring the execution ofmultiple iterations serves two purposes: 1. a large iteration

count marginalizes the latency of the �rst few iterations, when the processor is still warming

up to its steady-state behavior and 2. it diminishes the overhead of collecting performance

counters.�e formula for estimating throughput using this approach is shown in Equation 5.1,

where n is the unroll factor and cycles(b, n) is the number of cycles taken to execute basic

block b unrolled n times:

throughput(b) ≈ cycles(b, n)
n

(5.1)

Compared to running the basic block inside a loop, unrolling has an advantage in that

the measurements are not tainted by the control overhead incurred by looping. However,

if the unroll factor is too large, then the execution may encounter a signi�cant number of

L1-instruction cache misses that then taint the measured latency.

Abel and Reineke [2] suggest an alternative approach to address these issues. Equation 5.2

shows the formula they use to derive basic block throughput:

throughput(b) ≈ cycles(b, n) − cycles(b, n′)
n − n′

(5.2)

Essentially, instead of using a single large unroll factor, they measure basic blocks with two

unroll factors, n and n′. �ey then measure the latency of the two unrolled basic blocks,

calculate the di�erence in the measurements, and divide it by the di�erence of the unroll

factors.�e resulting number is the throughput of the basic block.

Limitations Although it is possible to calculate throughput for individual basic blocks,

these pro�lers are in general unsuitable for automatically pro�ling a large set of arbitrary

basic blocks for systematic validation. �ey require user intervention to pro�le arbitrary

5We use IACA’s de�nition of throughput: the average number of cycles required to execute a basic block at a
steady state. Note that this de�nition is the reciprocal of the textbook de�nition of throughput.

112



1 add $1, %rdi
2 mov %edx, %eax
3 shr $8, %rdx
4 xor -1(%rdi), %al
5 movzx %al, %eax
6 xor 0x4110a(, %rax, 8), %rdx
7 cmp %rcx, %rdi

Figure 5-2:�e inner loop of updcrc from Gzip.�is basic block cannot be directly executed
because of its memory accesses.

basic blocks. Speci�cally, users must provide code to allocate memory and initialize memory-

addressing registers to prevent crashing from invalid accesses.

5.4.2 Pro�ling Arbitrary Basic Blocks

Our goal is to pro�le arbitrary basic blocks—without requiring manual intervention—such

that the measured throughput corresponds to the de�nitions and invariants commonly

assumed by performance models.�e key challenge is enabling these basic blocks to access

arbitrary memory addresses without crashing.

Handling Arbitrary Memory Accesses

Most basic blocks access memory. Directly applying existing tools to pro�le these basic blocks

out of their original program context is likely to result in crashes.

Consider the basic block in Figure 5-2, which Gzip uses to compute a CRC code. Instruc-

tions in lines 2,4 and 6 show the �ow of pointer values: essentially, bits of %rdx are used to

index into a lookup table, the content of which is then used in the next iteration to update

%rdx.�is basic block can only execute successfully in an execution context that allocates

memory at 0x4110a. Furthermore, since the index (%rax) of the table at 0x4110a is also

XOR’d every iteration with the contents of a second array addressed by %rdi, one would also

need to coordinate the initialization of the second array with the one at 0x4110a, so that the

pointer always points to a valid memory address.

Our technique works by mapping all virtual memory pages accessed by a basic block to a

single physical page so that all data reside in the L1 cache.�e basic block can then execute

without crashing since all of the memory accesses are valid virtual addresses.�is allows us
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Algorithm 5 Pseudocode of the pro�ling routines.
1: function monitor
2: numFaul ts ← 0
3: mappedPages ← ∅
4: while numFaul ts < maxNumFaul ts do
5: pid ← launch(measure(mappedPages))
6: if exitSuccess(pid) then
7: break
8: memAddr ← interceptSegFault(pid)
9: if isMappableAddr(memAddr) then
10: mappedPages.add(getPageAddr(memAddr))
11: numFaul ts ← numFaul ts + 1
12: function measure(pagesToMap)
13: mmapToPhysPage(pagesToMap, ...)
14: initialize ▷Wait for preceding instructions to �nish
15: serialize
16: begin ← readPerformanceCounters
17: initialize
18: executeUnrolledBasicBlock ▷Wait for the basic block to �nish
19: serialize
20: end ← readPerformanceCounters
21: analyzeAndReportCounters(begin, end)

to execute 97% of basic blocks.

Remapping Virtual Pages Algorithm 5 shows the algorithm we use to remap virtual pages.

We �rst unmap all virtual pages—this forces all subsequent memory accesses to trigger a

segfault—except the pages containing the basic block’s instructions. We then execute an

unrolled basic block in a forked process monitored by a parent process using ptrace. Each

access of an unmapped virtual page triggers a segmentation fault, which is intercepted by the

monitoring process.�e monitoring process then instructs the executing process to create

the appropriate mapping and to restart execution.

Memory Initialization We initialize the single physical page—which is shared by all active

virtual pages—to be �lled with a moderately sized constant (we used 0x12345600 in our

experiments) to accommodate indirect memory accesses. To see why this is necessary,

consider a basic block that �rst loads a pointer p from memory and then de-references p. If
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the value of p is too low (e.g., 0) or too high (i.e., bigger than the highest address that a user

space program is allowed to address), we cannot map the virtual page addressed by p. All

general-purpose registers are initialized similarly.

Virtual page aliasing Under our page mapping scheme, two virtual addresses di�ering

by a multiple of the page size get mapped to the same physical address. Such aliasing can

introduce extra memory dependencies and cause slowdown. Consider the following code

snippet: *p = x; y = *(p + page_size). Whereas in a standard execution context the

load can be executed independently from the �rst store, in this context the load can only be

issued a�er the store �nishes, due to page aliasing introduced by our pro�ler. We remove basic

blocks whose execution that could be a�ected by page aliasing out of our analysis. Because

there is no hardware counter that tracks accesses serialized due to page aliasing, we trace all

addresses accessed during pro�ling and mark a basic block if, within a conservative window,

there are any loads following an aliased store. We note that we can reduce the occurrence of

page aliasing by mapping the set of virtual pages to a larger range of physical memory (e.g.,

two pages instead of one).

5.4.3 Overall Pro�lingWork�ow

Our pro�ler computes the throughput of a basic block by repeatedly measuring the block,

�ltering measurements that violate modeling invariants, then calculating throughput using

the �ltered measurements.

RawMeasurement �e pro�ler �rst creates an execution context so the basic block executes

without crashing, using the page mapping algorithm in Algorithm 5. �e pro�ler then

measures the unrolled latency using the unrolling heuristics described in Section 5.4.1. It

uses 100 and 200 as the unroll factors for basic blocks smaller than 100 bytes; 50 and 100 for

basic blocks between 100 bytes and 200 bytes; and �nally 16 and 32 for basic blocks larger

than 200 bytes. We pro�le each unrolled basic block 16 times and collect cycle counts along

with other performance counters such as L1 cache read and write misses.
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Filtering Performance models typically model an idealized execution of the code in which

all data reside in the L1 cache, and rare performance-degrading events do not occur. We have

designed our measurement tool to deliver measurements that are consistent with such an

idealized execution.

• L1 Cache Misses. Our measurement tool monitors instruction cache and data cache

misses with hardware counters and rejects any measurements with a cache miss.

• Unaligned Loads. Unalignedmemory accesses can be slower than aligned accesses. In

particular, accesses straddling a cache line boundary can cause an order of magnitude

slowdown. Our measurement tool detects (using a hardware counter) unaligned loads

and rejects any measurements with a non-zero number of such loads.

• Subnormal Floating Point. Floating-point computations on subnormal numbers can

be up to 20x slower than for normal numbers. We con�gured the MXCSR register to

disable gradual under�ow.

• Context Switches. We pro�le all basic blocks with hyper-threading disabled and

monitor context switches during execution using a system-call provided by Linux. We

reject all measurements with a detected context switch.

If the pro�ler rejects more than six of the measurement attempts due to violations of its

idealized execution model, then it fully rejects the basic block. In addition, if the coe�cient

of variation—i.e., standard deviation divided by mean—of the measurements is more than

10%, then it also rejects the block because there is residual measurement variance that the

measurement methodology is unable to eliminate.

�roughputCalculation If the block survives �ltering, then the pro�ler uses theminimum

latency of the recorded measurements to calculate throughput according to Equation 5.2. For

training our DNN based model, we consider the number of cycles it takes to execute 100

iterations of a given basic block, which is calculated by multiplying the calculated throughput

by 100.
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Environment Variance It is possible for the pro�ler to encounter random but consistent

noise that pollutes our latency measurements. E.g., a basic block (say unrolled 100 times)

with a latency of 500 cycles would yield a measured latency of around 700 cycles consistently

for 16 consecutive runs. Such noise occurs about 6% of the time. To overcome this, we pro�le

the throughput of a basic block at least �ve times (i.e., each basic block is measured at least

5 × 16 times), and the minimum of the �ve is the throughput we report.

Dataset Statistics

Using this timing methodology, we collected valid throughput values for the Intel Ivy Bridge

(Intel(R) Xeon(R) CPU E5-2695 v2), Haswell (Intel(R) Xeon(R) CPU E5-2680 v3) and Skylake

(Intel(R) Xeon(R) W-2123 CPU) microarchitectures. Data collection takes approximately 3-4

hours for each microarchitecture. Table 5.2 shows the breakdown of basic block counts with

successful throughput pro�les for each benchmark for Haswell microarchitecture in total as

well as a�er de-duplicating repeated basic blocks on a per benchmark basis.�e �nal Haswell

dataset, which is de-duplicated across benchmarks, constitutes 1,416,473 unique basic blocks

with valid throughput values.

5.5 Evaluation

We trained Ithemal using standard supervised learning techniques. Next, we evaluate Ithemal

against two state-of-the-art, hand-written analytical models: IACA [67] (v3.0-28-g1ba2cbb)

and llvm-mca [42] (LLVM8.0.0). Both of thesemodels are designed tomodel the complexities

of modern processors (including pipelining, superscalar, and out-of-order units). We show

that our data-driven model beats the accuracy of these sophisticated handwritten models

(Section 5.5.2) while maintaining just as fast prediction speeds (Section 5.5.3). Further, we

show that our approach is portable across di�erent microarchitectures in Section 5.5.4 by

showing that Ithemal learns a model that outperforms IACA and llvm-mca without any

neural network architecture or hyperparameter modi�cations.
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5.5.1 Training Methodology

We implemented our neural network model in PyTorch (0.4.0a0+59bda9a).�e learnable

parameters in Ithemal include the token embeddings, the token LSTM and instruction LSTM

parameters, and the a�ne coe�cients in the �nal linear layer. For our loss function we use a

normalized error metric, based on the L1 norm:

ℒ(pred, actual) = ⋃︀pred − actual⋃︀
actual

We randomly assign 80% of the collected blocks to the train set and 20% to the test set. We use

Asynchronous Stochastic Gradient Descent [130, 108] to train the model. Our full training

regime is detailed in Appendix A.2.

5.5.2 Accuracy

We evaluate the accuracy of each model against the actual throughput values for Intel’s

Haswell, Ivy Bridge, and Skylake microarchitectures.�e version of IACA we use does not

support throughput estimation for Ivy Bridge; we therefore evaluate accuracy only for Ithemal

and llvm-mca for Ivy Bridge. We prepared datasets for each microarchitecture according to

the methodology described in Section 5.5.1.

Table 5.3 presents the results of our accuracy comparison. We report the average error

with respect to the ground truth of each tool for each microarchitecture. We also report both

the Spearman and Pearson correlation of each tool’s predictions with ground-truth.

Ithemal is more accurate in its throughput predictions for basic blocks across all three

microarchitectures. Our model’s predictions are closer to ground-truth than both IACA and

LLVM in 74% of the blocks in the Haswell test set. Ithemal’s predictions also have a higher

correlation with ground-truth values for both the Spearman (rank correlation) and Pearson

(linear correlation) metrics. �e higher Spearman correlation is especially useful because

it directly corresponds to a higher utility for use within an optimizing compiler (such as

an instruction scheduling pass). Traditional compiler optimizations typically only need to

determine which of several con�gurations of a basic block is the fastest and do not calculate
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each block’s absolute performance.

Figure 5-3 presents three heatmaps relating actual and predicted values for basic blocks

with throughputs less than 1000 cycles for each prediction method (representing 95% of

our dataset). To generate each heatmap, we binned the actual and predicted data into axis-

aligned bins of width and height 20 cycles. �e color in each bin represents the count of

blocks in that bin. A perfect estimator would have all points along the line y = x (shown as

a faint grey, dashed line on the heatmaps), since the predicted throughputs would always

match the measured throughputs. We see a higher density near the identity line for Ithemal,

compared to both llvm-mca and IACA. Both llvm-mca and IACA also have more horizontal

banding, representing more predictions of the same throughput value for di�erent blocks

that do actually have di�erent behaviors. Figure 5-4 shows the average error of each system

across a range of throughputs. It also shows the basic block density for each throughput level.

Compared to llvm-mca and IACA, Ithemal is better for blocks of almost all sizes.

Micro-
architecture

Method Error Spearman Correlation Pearson Correlation

Ivy Bridge llvm-mca 0.181 0.902 0.777
Ithemal 0.089 0.955 0.913

Haswell llvm-mca 0.200 0.890 0.790
IACA 0.209 0.917 0.833
Ithemal 0.089 0.960 0.918

Skylake llvm-mca 0.239 0.852 0.729
IACA 0.167 0.926 0.835
Ithemal 0.079 0.960 0.895

Table 5.3: Average error in basic block throughput estimation for di�erent models and
microarchitectures. Lowest error rates and highest correlations for each micro-architecture
are bolded.

5.5.3 Speed

Table 5.4 presents the results of our evaluation of estimator throughput: the number of

instructions able to be timed per second for each estimator. We calculate this by measuring

the number of basic blocks each tool can time per second and multiplying that by the average

number of instructions per basic block. In the last row, we also show the corresponding
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(a) Ithemal (b) llvm-mca

(c) IACA

Figure 5-3: Heatmaps for measured and predicted throughput values under di�erent models
for basic blocks with measured throughput values less than 1000 cycles (Haswell)

estimator throughput if we instead measure the ground-truth throughput for a given block.

We measured these estimator throughputs on the Haswell test set on a machine with an Intel

Xeon E5-2680 CPU.

Ithemal is as fast as llvm-mca and IACA in our measurements, and is signi�cantly faster

than empirical evaluation of basic blocks. It is worth noting that llvm-mca and IACA can both

also output diagnostic information about basic blocks, and also that empirical evaluation of

ground-truth data could be sped up by running fewer repeated measurements (it may be

possible that as few as two or three measurements would su�ce in some contexts). However,

even with these quali�cations, we show that Ithemal functions as an equivalently performant

and more accurate drop-in replacement for llvm-mca and IACA in systems that only need
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Figure 5-4: Average error across throughputs for di�erent estimation methods for basic
blocks with throughput values less than 1000 cycles (Haswell)

throughput estimations, while still performing signi�cantly faster than empirical evaluation.

Method �roughput (Instructions / second)
llvm-mca 492
IACA 541
Ithemal 560
Empirical execution 13

Table 5.4: Estimation throughputs for di�erent basic block throughput estimators measured
in instructions per second
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Figure 5-5:�e DAG-RNN architecture

5.5.4 Portability

We designed and trained Ithemal on Haswell and validated our architecture and hyperpa-

rameters by re-training on Skylake. Without any changes to its structure or training regime,

we then trained and evaluated Ithemal on the Ivy Bridge dataset. Table 5.3 summarizes the

average errors for each microarchitecture. Ithemal learns to estimate throughput values

for each microarchitecture with a maximum average error of 0.089 across all datasets.�e

hand-written models exhibit a minimum average error of 0.167.

In sum, Ithemal provides state-of-the-art prediction performance; its results beat the

baselines across the board. Moreover, Ithemal does so without requiring a user to provide

information about the processor’s underlying microarchitecture, whereas these analytical

models require signi�cant re-engineering for each microarchitecture of interest.

5.6 Neural Network Architecture Exploration

We evaluated a number of neural network architectures with varying levels of structure and

complexity before arriving at Ithemal’s network architecture (Section 5.2).

Figure 5-5 shows a DAG-RNN [142, 161]. Instructions are embedded identically as in

Ithemal (i.e., the token layer and instruction layer remain the same). However, rather than

running an RNN sequentially over the instructions in the prediction layer, the DAG-RNN
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constructs a dependence graph of the instructions in the basic block, with a directed edge

between a pair of instructions if the second instruction depends on an output of the �rst

instruction. Because an instruction can depend on multiple previous instructions, we apply

an element-wise max to reduce the states feeding in to a given instruction.�en, the DAG-

RNN applies an LSTM cell, using the generated instruction embedding as the input and the

result of the element-wise max as the input state. To generate the �nal prediction, we take

an element-wise max of the output states of all leaf instructions (all instructions with no

dependents) and pass the result through a linear layer.

�e DAG-RNN is inspired by the theoretical behavior of a perfect out-of-order processor:

the throughput of a basic block running on a perfect out-of-order processor is equivalent to

the throughput of the longest path that must be serially executed in that basic block. Using a

DAG-RNN implicitly encodes this prior by only allowing information to propagate through

the paths that must be serially executed in the block.

We also tested a simple token-level RNN with LSTM cells, which has a similar base archi-

tecture as Ithemal but without the topmost prediction layer. Instead, this model sequentially

consumes all tokens in a basic block making no explicit distinction between instructions,

giving a baseline measure for the e�cacy of Ithemal’s hierarchical model.�e full architecture

diagram for the token-level RNN is shown in Appendix A.5.

Results. Figure 5-6 shows the training and validation loss for each model across the �rst

�ve epochs. It is clear that the hierarchical LSTM is the best model among these three.�e

sequential LSTM performs the worst by far, motivating the need to process individual to-

kens and instructions at multiple scales.�e fact that the DAG-RNN performs worse than

the hierarchical LSTM implies that the exact ordering of instructions in a basic block does

matter, not just the dependency chains.�is aligns with the fact that instruction scheduling

optimizations in compilers do result in changed performance, despite the underlying depen-

dency graph being the same. While the perfect out-of-order execution model is a reasonable

approximation, modern processors do in fact have some serial behavior, which a sequential

model is able to capture.
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Figure 5-6: Learning curves for di�erent neural network models

5.7 Summary

We present Ithemal, a data–driven system for basic block throughput estimation. Ithemal’s

accuracy surpasses that of state-of-the-art, hand-written analytical models; it achieves its

accuracy by leveraging a deep neural network designed to capture the behavior of modern

processors. Ithemal demonstrates that future compilation and performance engineering tools

can be augmented with data-driven approaches to improve their performance and portability,

while minimizing developer e�ort.

�e learned vectorizer Vemal can be augmented with a cost model similar to Ithemal to

systematically reach better vectorization strategies than its oracle, goSLP using reinforcement

learning. We highlight the challenges in building a fully learned system in our discussion of

future work (see Section 7.3).
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Chapter 6

RelatedWork

We �rst discuss existing loop and SLP vectorization techniques suggested in the literature in

detail (see Section 6.1), when viewed under the taxonomy of optimization decision making

components introduced in Section 1.3. Next, we discuss designs of cost models suggested in

the literature (see Section 6.2) and end with a high-level overview of how machine learning

has been applied currently in the context of compilers and in automatic program optimization

(see Section 6.3).

6.1 Compiler Optimization Categorization

We introduced a taxonomy for categorizing the decision making components of a typical

compiler optimization pass in Section 1.2. A number of di�erent optimization algorithms are

suggested in the literature for each individual compiler optimization. We categorize a subset

of these algorithms according to our taxonomy, giving priority to compiler auto-vectorization.

6.1.1 Compiler Auto-vectorization

We consider both loop and SLP based vectorization techniques suggested in the literature.

�ese techniques can di�er in terms of the transformation spaces considered, the optimization

strategies used, or in the costmodels used to ascertain pro�tability. Further, theymay perform

vectorization at the source-code level for di�erent programming languages or at a speci�c
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compiler intermediate representation. We state these di�erences explicitly when we discuss

the transformation space explored by each technique. Also, we separately discuss other

preprocessing transformations proposed in the literature that enlarge the transformation

space considered for loop or SLP based vectorization (e.g., vectorization-aware loop unrolling

[131]).

Loop Vectorization

Loop vectorization has been implemented in compilers since the era of vector machines [7]

and subsequently many vectorization schemes have been proposed in the literature. Table 6.1

highlights the main di�erences of these techniques relating to the transformation spaces and

optimization strategies considered by each. Wemention costmodel details only for techniques

that introduce their custom cost models and we mention them under the technique column.

Technique Transformation Space Optimization Strategy

Eichenberger et al. [44] extends to handle loops with

misaligned memory accesses

for architectures with alignment

constraints

manually speci�ed, greedy algo-

rithm with di�erent policies for

data reorganization

Nuzman and Zaks [109] extends to handle outer loops manually speci�ed, greedy algo-

rithm that vectorizes outer loops

when the inner loops are of a par-

ticular structure.

Nuzman et al. [110] extends to handle non-

contiguous memory accesses

manually speci�ed, greedy algo-

rithm that can handle data inter-

leavings of powers-of-two using

vector shu�e instructions

Baghsorkhi et al. [13] loops with irregular data ac-

cesses

greedy algorithm that partial

vectorizes irregular loops using

new vector instruction exten-

sions
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Technique Transformation Space Optimization Strategy

Linchuan et al. [90] loops with irregular data ac-

cesses

proposes a greedy algorithm

that divides irregular data ac-

cesses into hierarchical tiles that

are later processed using vector

gathers and scatters

Nuzman et al. [111] vectorizing for indirect vector

register architectures

algorithm for vectorizing code

targeting iVMX with indirect

vector register architectures

with large register �les

Pohl et al. [117] control �ow vectorization for

NEON

greedy algorithm which emits

conditioned vector loads based

on legality of access (NEON

does not have masked loads /

stores compared to AVX2)

Table 6.1: Loop vectorization techniques

Another class of algorithms performs preprocessing transformations that increase the

legal and pro�table transformation space seen by a loop vectorizer. Table 6.2 lists such

transformations, which mainly focus on rearranging loops and data layouts.

Technique Transformation Space Enlargement

Kong et al. [76] and Tri-

funovic et al. [149]

perform polyhedral model based loop transformations that expose

more legal and pro�table vectorization opportunities

Henretty et al. [59] loop transformations (nested and hybrid split-tiling) exposes more

opportunities for vectorization

Henretty et al. [58] data layout transformation to expose more opportunities for vector-

ization using dependence analysis

Stock et al. [146] use the learned cost model to �nd the best loop permutation, loop

to be vectorized etc. mainly for tensor contractions. (cost model:

learned pro�tability metric using hand-cra�ed features.)

Table 6.2: Preprocessing transformations that enable loop vectorization
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SLP Vectorization

Larsen and Amarasinghe [80] introduced superword level parallelism, which can capture

vectorization opportunities that exist beyond loops at a much �ner granularity.�e original

algorithm [80] proposes a greedy statement packing and a scheduling scheme that bundles

isomorphic and independent statements starting from loads and stores (see Section 2.3.1).

Subsequently, many techniques were proposed with better optimization strategies or ex-

panded the transformation space to include richer SLP vectorization opportunities. Table 6.3

lists some of the SLP vectorization schemes and improvements suggested in the literature.

We mention cost model details only for techniques that introduce custom cost models, which

we mention under the technique column.

Technique Transformation Space Optimization Strategy

Holistic SLP [92] all pairwise statement packing op-

portunities and iteratively applies

its algorithm to capture opportuni-

ties of higher width. It additionally

introduces data layout transforma-

tions that exposes more vectoriza-

tion opportunities.

manually speci�ed, greedy algo-

rithm for making packing deci-

sions; greedily selects the state-

ments with highest reuse.

TSLP [119] explores multiple possible sub-

graphs of vectorization chains in

a bottom up vectorization tree.

manually speci�ed solution with

local search. TSLP employs the

bottom-up SLP algorithm, but

search throughmultiple vector sub-

graphs to choose the best.

Shin et al. [141] extends to handle control �ow manually speci�ed, greedy algo-

rithm

PSLP [120] extends to include vectorizing cer-

tain non-isomorphic chains

introduces redundant instructions

to make isomorphic groups out of

non-isomorphic chains
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Technique Transformation Space Optimization Strategy

Look-ahead

SLP [122]

includes commutative operations

that can be reordered

greedy algorithm that createsmulti-

nodes with commutative operators

that are reordered to expose more

vectorization opportunities to the

bottom-up SLP algorithm

Variable-width

SLP [121]

vectorization with variable width

with dependency graphs

manually speci�ed algorithm that

uses vector permutation instruc-

tions to place the values in correct

order to allow the bottom up SLP

algorithm to build a deeper vector-

ization graph

Shin et al. [140]

and Shin et al. [139]

superword reuses in loops manually speci�ed algorithm that

optimizes the code by �nding su-

perword reuses in loops a�er per-

forming the loop unroll-and-jam

transformation.�ey use a search-

based optimization strategy to de-

termine the unroll factor.

Leupers [84] vector instruction selection solver-aided ILP based solution to

select the best vector instructions

given a statement packing strategy.

See Section 6.1.2 for a compari-

son with our ILP based vectorizer,

goSLP.

Larsen [79] all statement packing and permu-

tation selection opportunities

solver-aided intractable ILP based

solution that considers all state-

ment packing and permutation se-

lection options. He formulates the

problem for entire paths.
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Technique Transformation Space Optimization Strategy

Barik et al. [18] vector instruction selection for ar-

bitrary vectorization factors

dynamic programming solution

Kudriavtsev and

Kogge [77]

vector permutation selection solver-aided ILP solution

Ren et al. [128] vector permutation selection for

vectorized code

manually speci�ed greedy algo-

rithm for minimizing vector per-

mutation instructions for already

vectorized code with permutation

instructions.

Karrenberg and

Hack [72]

vectorization for whole functions predicated execution based greedy

algorithm to merge multiple basic

blocks in a function that can then

be vectorized as a single basic block

Franchetti and

Püschel [50] (cost

model: manually

speci�ed mostly

linear model)

manually speci�ed rewrite rules for

vector permutations and composi-

tions

dynamic programming algorithm

to �nd the least-cost set of permu-

tations

SN-SLP [123] reorderings of commutative and as-

sociative operations for vectoriza-

tion

a greedy algorithm that creates su-

per nodes of computation snippets

with commutative and associative

arithmetic operations that are re-

ordered to expose more SLP vec-

torization opportunities
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Technique Transformation Space Optimization Strategy

Hierarchical

SLP [62]

basic isomorphic and independent

statements (original SLP transfor-

mation space)

enumeratively forms smaller lo-

cal chains of vectorized statements

starting from an exhaustive list of

seed vector packs. Finally, these lo-

cal chains are merged into global

chains using a heuristic-driven al-

gorithm

SIMD defrag-

menter [115]

data-parallel subgraphs; local re-

gions with SLP

introduces greedy techniques to

identify data-parallel subgraphs

amidst a global computation with

dependencies

Table 6.3: SLP vectorization techniques

Similar to preprocessing techniques that expose more loop vectorization techniques,

preprocessing techniques exist that expose more SLP vectorization opportunities. Some of

these techniques are listed in Table 6.4.

Technique Transformation Space Enlargement

Rocha et al. [131] �nds the loop unroll factor considering that SLP vectorization will

be run subsequently.�is exposes more opportunities for the SLP

vectorizer to emit more vector code by exploiting the newly exposed

data-level parallelism. �ey create a mock bottom-up SLP graph

that simulates the functionality of the SLP vectorizer to ascertain

the unroll factor that would be pro�table.

Sui et al. [147] introduces an inter-procedural �eld-sensitive pointer analysis (loop-

oriented pointer analysis) for C programs.�is exposes more oppor-

tunities for statement packing in the SLP vectorizer as well as helps

reduce the number of static checks needed in the loop vectorizer.

Table 6.4: Preprocessing transformations that enable SLP vectorization
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Hybrid vectorization

Loop vectorization and SLP vectorization appear as two di�erent transformation passes

in modern-day compilers. Loop vectorizers are good at identifying massive amounts of

parallelism available inside loops, whereas SLP vectorizers are good at identifying �ne-

grained parallelism in basic blocks.�ere are vectorization techniques that try to make use of

both schemes in a single transformation pass to achieve superior vectorization performance

negating some drawbacks of applying them in isolation. We call these vectorization schemes

as hybrid vectorization policies.

Loop aware SLP in GCC [132] introduces an SLP vectorizer that makes decisions with

knowledge about the loop vectorizer. It creates a bottom-up SLP vectorization graph and

decide to vectorize only if it is pro�table compared to loop vectorization.�ey do not perform

partial vectorization of the SLP vectorization graph.�is technique harnesses both inter- and

intra-iteration parallelism available in loops.

Zhou and Xue [159] introduce a cost model that is aware of the loop vectorizer used in

the compiler. Aided by this cost model they use a heuristic -driven algorithm to �nd the best

scheme to extract intra-iteration parallelism using a technique similar to SLP vectorization.

Compared to [132], they make �ne-grained SLP vectorization decisions and can perform

loop-aware partial vectorization, achieving superior vectorization performance.

Also note that traditional SLP vectorizers can exploit the same vectorization opportunities

as the aforementioned hybrid techniques with the aid of an intelligent loop unroller.

Application speci�c vectorization algorithms

�e SPIRAL project [125] aims to optimize digital signal processing (DSP) algorithms both

manually and automatically using compilation techniques.�ey propose a number of auto-

vectorization schemes speci�c to DSP algorithms.

�ey propose a target-independent search-based vectorizing compiler targeting DSP

algorithms in [48] and show how to generate vector code for FFTs with non-power-two

widths in [49]. McFarlin et al. [96] show how to use target aware vector permutations for

AVX and Larrabee ISAs targeting matrix transpositions found in FFTs using a search-based
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binary matrix factorization algorithm.�ey use an additive cost model with per-instruction

costs.

Reiche et al. [127] proposes a source-to-source compiler for vectorizing image processing

programs. �ey use the whole function vectorization approach suggested in [72] to con-

vert control-�ow to data-�ow with predication. �ey �nd better performance for certain

benchmarks compared to auto-vectorization schemes found in general-purpose compilers.

Wang et al. [152] devise a method to vectorize apply functions used in the R language.

Loop vectorization is done in the context of a dynamic language at runtime reducing R’s inter-

pretation overhead.�ey use data object transformation (a kind of a data layout optimization)

to expose vectorizable components of functions called by apply’s invocation.

Lin et al. [89] use vectorization to speedup legacy applications in the context of dynamic

binary translation.�ey leverage the existence of complex and wider vector instructions in

newer ISAs when translating legacy binaries to achieve runtime speedup.

6.1.2 Comparison with our work

Here we compare the vectorization techniques proposed in this thesis (ILP solver-aided

goSLP and end-to-end learned Vemal) with other techniques suggested in the literature.

Comparison with goSLP

Liu et al. [92] enumerate all feasible statement packs and then iteratively select the best

groups to be vectorized using a greedy heuristic. We showed in Section 2.3.1 that this can

yield suboptimal vectorization decisions. Porpodas and Jones [119] notice the need to search

among subgraphs of vectorization chains to �nd the most pro�table cut of the graph, yet it

selects roots of these chains greedily from all vectorizable store instructions. Other techniques

have been proposed that improve certain aspects of SLP such as �nding opportunities in

the presence of control �ow [141], exploiting locality [140, 139], handling non-isomorphic

chains by inserting redundant instructions [120].

Compared to these end-to-end SLP auto-vectorization techniques that employ either

greedy decisions, heuristics, or local searches, goSLP, powered by the ILP solver’s search
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capabilities, performs amore complete and holistic search of statement packing opportunities

for whole functions and �nds the optimal statement ordering in a pack using its dynamic

programming formulation.

ILP has been used for vectorization in [84], but a�er statement packing decisions have

been made, to select the best set of actual vector instructions used in code generation, and

therefore it can be used as a subsequent pass a�er goSLP. Larsen [79] in his thesis proposes a

complete ILP solution and concludes that it is not tractable. In contrast to his formulation,

goSLP uses a local encoding and does pairwise packing which allows us to form a tractable

solution. Barik et al. [18] propose an algorithm for vector instruction selection using dynamic

programming that can result in suboptimal selections when data dependency graphs are

not trees. Further, their encoding adds duplicate packing and unpacking costs even when

instructions are reused, which our ILP formulation captures. Duplication not only increases

the problem size, but also leads to suboptimal statement packing decisions. �is limits

the tractability of their analysis to basic blocks and hence may not fully leverage vector

subexpression usages that exist across basic blocks.

Liu et al. [92] propose a greedy strategy to �nd statement ordering in packs which can

result in suboptimal orderings, whereas [77] proposes an ILP formulation to solve the vector

permutation selection problem that is more expensive than our dynamic programming

approach, but preserves optimality. [128] minimizes the number of vector permutations

needed in vectorized code that already explicitly have permutation instructions.

Karrenberg and Hack [72] transform whole functions to a single basic block using predi-

cated execution.�en, they apply basic-block level techniques. goSLP natively operates on

whole functions, even functions containing control �ow.

Comparison with Vemal

Machine learning is used to identify better heuristics or programorders for vectorization [146].

Neuro-vectorizer [52] uses reinforcement learning to tune the vectorization factor and inter-

leaving factor in the stock loop vectorizer.

However, none of these techniques learn an end-to-end vectorization policy compared to

Vemal and they either perform parameter tuning of an existing vectorization algorithm or
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reordering statements to expose more parallelism. In Section 6.3, we present a more in-depth

analysis of machine learning techniques used in compilers and show how Vemal �ts into the

landscape of research done in this area.

6.2 Cost Models and Hardware Architectural Models

Compiler designers and hardware architects use cost models and hardware architectural

models to ascertain the pro�tability of a proposed architecture design or make optimization

decisions inside a compiler.

6.2.1 Cost Models

Analytical Models for�roughput and Runtime Estimation

Instruction level models Abel and Reineke [2] propose a technique to ascertain the port

mappings of instructions given hardware performance counter information. Additionally,

they measure the throughput of instructions assuming no dependencies between adjacent

executions.�ey also pose computing throughput as an optimization problem that can be

solved using linear programming to arrive at an analytical throughput estimate for a given

instruction. Other analytical models for throughput estimation of instructions include [148].

Basic block level models llvm-mca [42] and IACA [67] are state-of-the-art production

quality so�ware modules used for basic block throughput estimation. OSACA [83] is an

open-source analytical model similar to llvm-mca and IACA that automates some of the

collection of the tabular data which is plugged into the model. PMEvo [129] provides a linear

programming formulation to predict basic block throughput given the port mappings for

each instruction.�eir analytical model can only calculate throughput for dependency-free

basic blocks.

Sequential programs Coarse-grained analytical models exist for predicting program run-

times [114]. Work on predicting worst case execution times include [47, 86].
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Parallel programs Work on predicting parallel program runtimes include [31, 134, 5, 54,

20, 46]. All of these models require detailed processor modeling and considerable human

development e�ort.

Learned Models for�roughput and Runtime Estimation

Basic block level models Pohl et al. [118] propose a learned cost model for predicting

runtime speedup of a basic block a�er compiler auto-vectorization and show that it has a

higher correlation with the actual runtime speedups compared to analytical models used in

LLVM and GCC. PMEvo [129] proposes a genetic programming based formulation to learn

the port mappings of instructions given just the timing measurements for a given hardware

architecture.�ese port mappings are used in an analytical formulation to compute basic

block throughputs. However, their technique is limited to dependency-free basic blocks.

Whole program models �ere has been work on developing machine learning–based

models for absolute and relative runtime estimation of whole programs or kernels. [61] in-

troduces sparse polynomial regression to predict the execution time of programs by using a

set of hand-cra�ed features of high-level programs. Dubach et al. [43] uses neural networks

with hand-cra�ed features to estimate the speedup between two code sequences. Game-

Time [137, 138] uses SMT solvers to generate inputs and game theoretic approaches to predict

the distribution of runtimes of a given program for di�erent inputs. Halide’s latest auto-

tuner [4] uses a learned cost model that predicts the throughput of a fully speci�ed Halide

program.�eir cost model uses heavy feature engineering and does not seem to generalize

to arbitrary non-Halide programs.

Other relativemeasures TVM [29] uses a ranking objective to learn how to rank programs

based on their absolute runtimes. It does not directly learn how to predict absolute runtimes

or speedup.
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6.2.2 Hardware Architectural Models

CPU simulators Cycle-accurate simulators such as ZSim [135] and Marss [116] have a high

start-up cost and are more suited for coarse-grained simulations.

Microarchitectural Predictions Similar to basic block throughput estimation, various

microarchitectural prediction tasks have been explored with machine learning. For example,

RNNmodels can be used for predicting memory access [55], and perceptron models are used

for branch prediction [69]

6.2.3 Comparison to our work

Ithemal learns to predict the throughput of a basic block using a deep neural network archi-

tecture. We require no featurization in our design minimizing the development burden.

In contrast, analytical models are manually speci�ed and require considerable human

insight and development e�ort to construct. Also, most analytical models may not be trans-

ferable across di�erent hardware platforms without signi�cant re-engineering or manual

e�ort. Ithemal, on the other hand can be retrained with a dataset of timing values from

another hardware architecture with minimal human intervention.

Also, most learned models discussed in Section 6.2.1 for predicting runtime of basic

blocks as well as of whole programs require extensive manual feature engineering. �is

may limit their transferability across di�erent workloads and hardware architectures. In

contrast, Ithemal automatically learns how to predict throughput of basic blocks withminimal

architectural knowledge embedded into the model.

PMEvo [129] can only predict basic block throughput of dependency-free basic blocks.

Most basic blocks in real-world applications have data dependencies that limits its applicability.

Ithemal can be retrained for the program distribution under consideration to suit user needs,

including a distribution that only includes dependency-free basic blocks.
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6.3 Machine Learning in Compilers

�ere is a rich history of literature on using machine learning based techniques to automate

optimization decision making in compilers and in automatic program optimization systems.

In this section, we will point out the key related works that are relevant to the work presented

in this thesis. We refer readers to [12] for a more comprehensive survey of machine learning

techniques used in the context of automatic program optimization.

Genetic algorithm based search Evolutionary algorithms or genetic algorithms have long

been the choice among compiler researchers to automatically �nd better optimization oppor-

tunities. Stephenson et al. [145] use genetic algorithm based search to �nd better heuristics for

register allocation. Cavazos and O’Boyle [26] propose a better heuristic for compiler inlining

found using genetic algorithms. Cooper et al. [38] uses genetic algorithms to reduce the

code size of the compiled binaries. GEVO [91] uses genetic algorithms to optimize GPU code

generation. Further, genetic algorithm based search is used in program auto-tuners such as

OpenTuner [9].

Search with learned components Halide’s latest auto-tuner [4] uses beam search with the

help of a learned cost model to arrive at better-performing Halide schedules. Protuner [53]

uses monte carlo tree search (MCTS) to �nd better Halide schedules using the same learned

cost model.

Reinforcement Learning Reinforcement Learning has been used to perform compiler

instruction scheduling [98] prior to the era of deep neural networks and requires manual fea-

ture engineering. Neuro-vectorizer [52] uses reinforcement learning to tune two parameters

of an existing loop vectorizer, namely the vectorization factor and interleaving factor. It does

not learn the optimization strategy, but tunes parameters of an existing algorithm.
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6.3.1 Comparison with our work

Compared to genetic algorithm based and other search techniques, our learned vectorizer,

Vemal learns a generalizable optimization policy that can be applied to unseen programs from

the same program distribution. Vemal learns the entire optimization strategy from scratch

compared to Neuro-vectorizer [52], which learns to tune two parameters of an existing

vectorization algorithm. Vemal also harnesses the representation power of deep neural

networks and require no featurization compared to other compiler optimization strategies

suggested in the literature that use sequential decision making [98].

Vemal was initially inspired by previous work that uses reinforcement learning to solve

hard combinatorial optimization problems [40, 19, 88]. In line with these works, Vemal’s

MDP formulation can be reused to train even better optimization policies with reinforcement

learning to achieve more superior vectorization performance in the future.
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Chapter 7

Conclusion and Future Work

Learned program optimizations is still a nascent �eld andwe believe it should be the dominant

method of constructing compiler optimizations in the future leading to a new compiler design,

compiler 2.0. We conclude this thesis by presenting the key ideas we introduced towards

building learned compiler optimizations in Section 7.1 and the concrete evidence we built

to demonstrate these ideas in Section 7.2. Finally, we describe a set of future directions in

Section 7.3 to make compiler 2.0 a reality.

7.1 A New Paradigm for Building Compiler Optimizations

In this thesis, we �rst presented a new way to view the decision making components of

traditional compiler optimizations. We introduced the notion of viewing the optimization

decision making process as an interplay between three di�erent parts: a transformation space,

an optimization strategy, and a cost model.�is paradigm allows the compiler designer to

separately de�ne each part and design compiler optimizations in a more modular way.

Next, we showed how to model the optimization strategy of a typical compiler optimiza-

tion pass as a sequential decision making process.�is provides a powerful paradigm, where

the compiler designer can now learn the entire optimization strategy from scratch and it

goes beyond the traditional parameter tuning usecase of machine learning used in compilers.

Even though we are using machine learning in an intrusive manner, a key advantage of this

approach is that it is correct by construction. At each stage, the optimization strategy only
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selects from a set of valid transformations and hence does not involve expensive veri�cation

steps that are required by optimizers that try out non-semantic-preserving transformations.

We believe modeling optimization strategies as sequential decision making processes is a key

enabler for building learned compiler optimizations.

Finally, we demonstrated how to leverage the advances in deep neural networks in

compiler optimizations by automatically learning optimization policies under the sequential

decision making setting and by building accurate cost models. We show how the power of

deep neural networks allows the compiler designers to build optimization strategies and cost

models without labor-intensive manual feature engineering.

We believe the decomposition of optimization decision making components, modeling of

optimization strategies as sequential decision making processes, and the use of deep neural

networks to learn optimization policies and costmodels under the sequential decisionmaking

setting are key enablers of building state-of-the-art learned optimizations. In Section 7.2, we

summarize how we move towards this paradigm to build novel, state-of-the-art compiler

auto-vectorizers.

7.2 Demonstration in Compiler Auto-Vectorization

We �rst presented goSLP, a solver-aided SLP vectorizer that performs statement packing

with the aid of an ILP solver assuming a linear cost model. goSLP achieves pairwise optimal

statement packing with respect to the cost model used. Next, we showed how to learn SLP

vectorization from scratch by modeling it as a Markov decision process that was solved

using imitation learning in Vemal. We used goSLP’s statement packing decisions as the

oracle when training Vemal. In spite of this, Vemal consistently outperformed goSLP in

certain benchmarks, providing evidence that there exist better vectorization opportunities

not uncovered by pairwise optimal packing in goSLP. �e main reason for this counter-

intuitive result is that goSLP’s optimality claims rely on the accuracy of the linear cost model

it uses. However, linear cost models can go only so far toward modeling all the intricacies in

modern-day microarchitectures.

�is motivated us to build Ithemal, the �rst end-to-end learned compiler cost model for
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predicting basic block throughput, as a �rst step towards building more accurate, non-linear,

learned cost models that can be used in optimization decision making. Ithemal signi�cantly

outperforms sophisticated analytical cost models used in practice, while requiring signi�-

cantly less e�ort to develop and to maintain. Ithemal can be retrained to learn how to predict

throughput targeting any program distribution the user or the compiler developer wants

without any change in the neural network architecture.

Both Vemal and Ithemal holds out the promise that machine learning based, featureless,

data-driven techniques can be used to augment or replace current compiler optimization

designs to achieve state-of-the-art performance with minimal human burden.

7.3 Compiler 2.0: Towards Fully Automated Compiler Con-

struction

With evidence from Vemal and Ithemal, we believe learned compiler optimizations have

the potential to supersede traditional means of constructing compiler optimization decision

making components. We suggest a complete compiler redesign – compiler 2.0 – that would

enable compiler engineers to develop and maintain state-of-the-art compiler optimizations

with minimal human burden according to the methodology suggested in Section 1.4.�is

will enable compiler developers to build compiler optimizations catered to di�erent hardware

architectures automatically and will help them keep up with the new hardware platforms that

are emerging regularly.

We believe compiler 2.0 redesign should be done methodically and suggest the following

high-level tasks.�is is not a complete list of tasks, and the boundaries between tasks can

overlap.

• Automating construction of compiler back-ends

• Building cost models for compiler intermediate representations

• Automating construction of loop optimizations

• Providing adversarial data generators to make learned components robust
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7.3.1 Automating construction of compiler back-ends

We envision a future where compiler back-ends will be automatically generated, given the

formal semantics of the compiler intermediate representation (IR) and the target hardware

instruction set architecture (ISA). At a minimum, the learned compiler back-end should

provide three transformations: instruction selection, register allocation, and instruction

scheduling.

Instruction Selection We propose to use program synthesis based techniques to automati-

cally come up with program lowering rules between the compiler IR and the target ISA.�ese

lowering rules may be m ∶ n where m IR instructions may be translated into n ISA instruc-

tions and should be sound (equivalence checked). Once, the lowering rules are synthesized,

the rule application procedure can be learned. We plan to use the sequential decision making

formulation of a typical Type II compiler optimization pass (similar to Vemal) to model the

application of these selection rules.�en, we can learn a sequential decision making based

policy using reinforcement learning with the help of an accurate cost model.�is cost model

should be speci�c to the hardware architecture and can be learned similarly to Ithemal.

Our formulation is di�erent from a traditional peephole optimizer that assumes all peep-

hole rules are pro�table.�ere are previous e�orts on automatically synthesizing peephole

rules [15, 41], but they also still assume that the generated rules should always be pro�table.

Buchwald et al. [24] use program synthesis to generate 32-bit instruction selection rules.

In contrast, we want to explore techniques to generate instruction selection rules for 64-bit

variants with vector extensions.�eir methodology guarantees completeness for the subset

of instructions they consider; however, we do not envision achieving completeness for an

ISA like x86. Moreover, they do not provide a mechanism to apply these rules and rely on

existing compiler infrastructure. We plan on providing a learned rule application algorithm

based on sequential decision making.

Existing work on super-optimization seems to be similar to our approach, but there are a

few fundamental di�erences. First, super-optimizers like STOKE [136] perform a search to

�nd a better performing code sequence from scratch for each code block they encounter. Our
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formulation, on the other hand, applies already synthesized rules using a learned policy and

does not require extensive and expensive searching. Second, most super-optimizers work on

the same input and output language, whereas our instruction selector performs a lowering

from IR to ISA instructions.

Register Allocation and Instruction Scheduling Lozano et al. [94] show that performing

register allocation and instruction scheduling together provides more performant code in

their Unison framework. �ey use constraint programming and a linear cost model to

model register allocation and instruction scheduling. Both register allocation and instruction

scheduling can be modeled as sequential decision making processes. Instruction scheduling

has already been modeled as an SDP in isolation [98]. We plan on formulating a joint

optimization decision procedure inspired by Unison [94] but instead use sequential decision

making with a learned non-linear cost model similar to Ithemal.

7.3.2 Building Cost Models for Intermediate Representations

We show how to learn a portable and accurate cost model using data-driven techniques

in Ithemal (Chapter 5). Ithemal predicts the throughput of basic blocks represented in

a hardware ISA. To make high-level compiler decisions, we need a cost model that can

accurately predict the cost of a high-level transformation usually by predicting the runtime

of a program represented in some compiler IR.

Building cost models for compiler IR has the following additional challenges.

• Semantic gap between constructs in IR and hardware ISA

• Depends on the subsequent compiler optimizations that are applied to the IR

• Depends on the IR to hardware ISA instruction lowering process

To bemore accurate, the compiler developer needs to use a compiler optimization-speci�c

IR cost model or, in other words, each compiler optimization will have its own IR cost model

for each hardware target. In practice however, modern-day production compilers use one

cost model for a given compiler IR for all optimization passes.

We suggest learning cost models for compiler IR similar to Ithemal. Since learning-based

techniques can repetitively be retrained, this would allow the compiler developer to now tune
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the learned cost model to a given compiler optimization with minimal manual e�ort.

7.3.3 Automating construction of Loop Transformations

Frameworks like unimodular framework and polyhedral framework have been suggested

in the literature to analyze access patterns or iteration spaces of regular a�ne loops.�ese

frameworks are capable of performing loop transformations such as loop interchange, loop

�ssion, loop fusion, loop tiling, and loop skewing, etc. PLUTO [22] gives a heuristic guided

ILP solution to �nd a better performing schedule of loops under the polyhedral model that

minimizes data dependence distance between variables. None of these loop transformation

frameworks consider runtime or a predicted runtime as a cost metric.

�e latest Halide autotuner [4] uses a tree search procedure to �nd the best schedule of

loops. Similarly, OpenTuner [9] can be used to tune the loop ordering using an evolution

algorithm based search. However, these search-based techniques do not generalize to unseen

loops and need to be run from scratch to arrive at a performant loop schedule.

We suggest learning how to schedule loops bymodeling it as a sequential decisionmaking

process. Concretely, we want to schedule loops one at a time, possibly increasing the loop

count (when tiling), until there are no more loops to be scheduled. A reinforcement learning

based solution driven by a learned cost model can be used to learn how to schedule at each

stage.�e main challenges include coming up with a cost model that can evaluate a partially

speci�ed loop nest, modeling memory e�ects and ensuring generalizability of the learned

optimization strategy.

7.3.4 Generative Models for Programs

All machine learning models su�er accuracy losses when predicting output for out-of-

distribution inputs, and this is also true for learned compiler components. In order to make

learned compiler cost models and learned compiler optimization strategies more robust, we

propose a continuous learning approach.

We propose building generative models of programs that can act as a continuous stream

of data to improve the robustness and generalizability of the learned models. We aim to
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take inspiration from the work done in the adversarial machine learning community. Con-

cretely, we aim to focus on how to adapt generative adversarial networks [51] and variational

autoencoders [74] in the context of programs.

Another key use of program generative models is in areas where there is a scarcity of

programs. For instance, consider building an agent that learns to optimize programs written

in domain speci�c languages like Halide. Compared to millions of programs written in

general purpose languages like C++, only a handful of real-world programs exist for Halide.

In such a case, it is important to devise a mechanism to augment the dataset of Halide

programs in a realistic manner.

Halide’s latest autotuner [4] uses a hand-cra�ed program generator that produces pro-

grams that look like image processing stencils and neural network computations. However,

this generator is hardcoded and cannot be extended to other forms of computation without

signi�cant changes to its generation algorithm. In contrast, we propose to build generative

models that can adapt to the program distribution in the training set. However, a major

challenge in this case is to build a generative model that can be trained with a relatively small

corpus with as little inductive bias built into it as possible.
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Appendix A

Ithemal Appendices

A.1 Canonicalization Scheme

We demarcate memory operands (consisting of a base address, and an optional o�set and

displacement) by surrounding them with <M> and </M> delimiter tokens.

�e following is the full grammar for the token strings, as described in Section 5.2.1.

<block> ∶∶= <instr>+

<instr> ∶∶= opcode <S> <opnd>∗ <D> <opnd>∗ <E>

<opnd> ∶∶= register ⋃︀ <M> register+ </M> ⋃︀ CONST

A.2 Training Hyperparameters

Here we present the hyperparameters for the model as described in Section 5.2. All vectors,

including the embedding width, hidden, and output states have width 256. We train our

models using asynchronous SGD, with a batch size of 4, and 6 parallel trainers.�e initial

learning rate is 0.1, and a�er the �rst 2 epochs, it decreases by a geometric factor of 1.2

every epoch. We use the default PyTorch formulation for momentum (i.e. not Nesterov

momentum) with β = 0.9. Each parallel trainer samples without replacement from the

dataset until all training data are exhausted. If a trainer hits a NaN gradient, that trainer is

halted for the remainder of the epoch, and the elements in that trainer’s batch are dropped
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for the epoch. At the beginning of the next epoch, all trainers are restarted. Training halts

once all trainers are halted and an epoch cannot be completed.

A.3 Heatmaps of Di�erent Prediction Methods

Figure A-1 shows all prediction heatmaps for Ithemal, llvm-mca and IACA under the Intel

Ivy Bridge, Haswell, and Skylake microarchitectures. Note that the latest IACA version does

not support Ivy Bridge and hence its prediction heatmap is not available.

A.4 Prediction Errors for�roughput Ranges

Figure A-2 shows how the average error changes between various throughput ranges for

each prediction method under di�erent microarchitectures for basic blocks with throughput

values under 1000 cycles.�roughput values are broken up in to bins of length and width 20

cycles on each axis. It also shows the throughput distribution of the basic blocks, and the

average error across di�erent measured throughput ranges. Ithemal consistently predicts

throughput values with lower average errors compared to llvm-mca and IACA. Overall,

Ithemal is more robust in its prediction across all throughput ranges compared to llvm-mca

and IACA which show higher �uctuations.

A.5 Token RNN Architecture

�e full architecture for the Token RNN as presented in Section 5.6 is shown in Figure A-3.
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(a) Ithemal (b) llvm-mca

(c) Ithemal (d) llvm-mca (e) IACA

(f) Ithemal (g) llvm-mca (h) IACA

Figure A-1: Heatmaps for measured and predicted throughput values under di�erent models
for basic blocks with measured throughput values less than 1000 cycles for the Intel Ivy
Bridge, Haswell and Skylake microarchitectures
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(a) Ivy Bridge - error curve (b) Ivy Bridge - throughput distribu-
tion

(c) Ivy Bridge - best predictor percent-
age

(d) Haswell - error curve (e) Haswell - throughput distribution(f) Haswell - best predictor percentage

(g) Skylake - error curve (h) Skylake - throughput distribution(i) Skylake - best predictor percentage

Figure A-2: Average error curves for di�erent estimation methods and throughput distribu-
tions for basic blocks with measured throughput values less than 1000 cycles under di�erent
microarchitectures for the test set
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