
Interactive Data Analytics Using GPUs
by

Anil Shanbhag
B.Tech., Indian Institute of Technology Bombay (2014)

S.M., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2020

Certified by. .
Samuel R. Madden

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Interactive Data Analytics Using GPUs

by

Anil Shanbhag

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Modern GPUs provide an order-of-magnitude greater memory bandwidth compared
to CPUs. In theory, this means data processing systems can process O(TB) of data
with sub 100ms latency, thereby enabling interactive query response times on ana-
lytical SQL queries. However, the massively parallel architecture of GPUs requires
rearchitecting in-memory data analytics systems in order to achieve optimal per-
formance. This thesis describes how we adapted and redesigned in-memory data
analytics systems to better exploit the GPU’s memory and execution model.

We present Crystal, a library of building blocks that can be used for writing high
performance SQL query implementations for GPU. We use Crystal to implement basic
SQL query operators and an analytical benchmark. We present theoretical models
based on memory bandwidth as the critical bottleneck for query performance and
show that implementations using Crystal are able to achieve these theoretical limits.
We also present a study of the fundamental performance characteristics of GPUs and
CPUs for database analytics. Our analysis shows that using modern GPUs vs CPUs
can lead to a runtime gain equal to 1.5× bandwidth ratio of GPU to CPU (25× in our
setup) and be 4× more cost effective than CPUs. Finally, we used Crystal’s design
principles to develop massively parallel variants of two classic sequential algorithms:
top-k and bit-packing based compression. Bitonic Top-K is a top-k algorithm based on
bitonic sort that is 4× faster than previous approaches. GPU-FOR is a compression
format that can be decompressed efficiently in parallel and can be used to fit more
data into the limited GPU memory.

In summary, this thesis makes the case for using GPUs as the primary execution
engine for interactive data analytics, and shows that implementations are efficient
and practical.

Thesis Supervisor: Samuel R. Madden
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First and foremost, I thank my advisor Sam Madden for his guidance and support

throughout my graduate studies. Sam always gave great insights and I have benefited

greatly from his breadth of experience and deep intellect. Sam has always been

supportive, given a great deal of freedom and I consider myself fortunate to have had

him as my advisor.

I am also thankful to the rest of my committee members. I thank Xiangyao Yu

for being a great collaborator and a good friend. Xiangyao offered unceasing help

throughout the projects we collaborated on. I would like to thank Tim Kraska for his

thought provoking discussions during the group meetings and additionally for serving

on my committee.

I want to give special thanks to my collaborators over the years. I want to thank

Alekh Jindal for being a hands-on mentor and guiding me through my first two years.

I loved working with Holger Pirk who got me interested in in-memory databases.

Holger’s innovative ideas and unique insights made working with him a great learn-

ing experience. I enjoyed collaborating with Nesime Tatbul. Nesime showed me a

different view of research from the industry side.

I owe gratitude to the amazing research group that I have been fortunate to be a

part of: Favyen, Kapil, Oscar, Yi, Matt, Siva, Becca, Anant, Leilani, Joana, Manasi,

Raul, Emanuel, Dong, Lei, Siva, and Wenbo. Together, we went through numerous

submissions, internal feedback on papers and talks, and many fun group outings.

Outside of work, I am blessed to have a fantastic set of friends. Special thanks to

Nishant, Anurag, and Tuhin who have shared this journey with me. I also want to

thank Srivatsa, Shelar, Prateesh, Shibani, Frisbee gang and Sangam group for making

the past few years enjoyable.

As I complete my Ph.D. journey, I cannot help but look back and thank people

who enabled me to get to MIT in the first place. I am grateful to Srikanth Kandula

who backed me when I was a research novice and inspired me to do a Ph.D. . I

also owe deep gratitude to S. Sudarshan who mentored my undergraduate thesis and

5

helped me write my first paper.

Finally, and more importantly, I can’t find words to describe my gratitude to my

family. My parents, Atmanand and Deepa, and my brother Anish for their constant

support and encouragement. I am also thankful to my girlfriend, Swetha Itchapurapu,

for her support and love during all my ups and downs. This thesis would not have

been possible without them.

6

Contents

1 Introduction 17

1.1 GPU Architecture and Challenges . 19

1.2 Thesis Contributions . 21

1.2.1 Tile-based Execution Model for Query Processssing

on GPUs . 21

1.2.2 Fundamental Performance Characteristics of GPUs and CPUs

for Database Analytics . 22

1.2.3 Novel Query Operators for GPUs 23

1.3 Thesis Outline . 26

2 Background 27

2.1 GPU Architecture . 27

2.2 Query Execution on GPU . 30

I Query Execution on GPU 32

3 GPU Query Execution 33

3.1 Introduction . 33

3.2 Background . 36

3.2.1 Query Execution on CPU . 36

3.3 Failure of the Coprocessor Model . 37

3.4 Tile-based Execution Model . 38

3.5 Crystal Library . 43

7

3.6 Operators on GPU vs CPU . 48

3.6.1 Project . 48

3.6.2 Select . 50

3.6.3 Hash Join . 52

3.6.4 Sort . 57

3.7 Workload Evaluation . 61

3.7.1 Workload . 62

3.7.2 Performance Comparison . 62

3.7.3 Case Study . 64

3.7.4 Cost Comparison . 69

3.8 Conclusion . 69

II Novel GPU Query Operators 71

4 Top-K 73

4.1 Introduction . 73

4.2 Background . 76

4.2.1 Sorting on the GPU . 76

4.2.2 K-Selection . 79

4.3 Algorithms . 79

4.3.1 Per-Thread Top-K . 80

4.3.2 Bitonic Top-K . 81

4.4 Optimization & Implementation . 86

4.4.1 Per-Thread Top-K . 86

4.4.2 Selection-based Top-K . 87

4.4.3 Optimizing Bitonic Top-K . 87

4.4.4 Database Integration . 97

4.5 Evaluation . 99

4.5.1 Setup . 99

4.5.2 Performance with Varying K 99

8

4.5.3 Dependence on Data Type . 100

4.5.4 Dependence on Data Distribution 102

4.5.5 Dependence on Data Size . 104

4.5.6 Key(s)+Value . 105

4.5.7 Comparison against CPU . 106

4.5.8 MapD Integration . 107

4.6 Cost Model . 109

4.6.1 Radix-based Top-K . 109

4.6.2 Bitonic Top-K . 110

4.7 Conclusion . 112

5 Data Compression 113

5.1 Introduction . 113

5.2 Background . 115

5.2.1 Compression Techniques . 116

5.2.2 Query Execution on GPUs . 118

5.3 Fast Bit Unpacking . 120

5.3.1 Data Format . 121

5.3.2 Implementation . 123

5.3.3 Discussion . 127

5.4 Fast Delta Decoding . 129

5.4.1 Data Format . 130

5.4.2 Implementation . 131

5.5 Database Integration . 133

5.6 Evaluation . 136

5.6.1 Setup . 138

5.6.2 Performance with Varying Bitwidths 138

5.6.3 Dependence on Data distributions 140

5.6.4 Performance on SSB . 142

5.6.5 GPU as a Coprocessor . 144

9

5.6.6 Discussion . 145

5.7 Conclusion . 145

6 Conclusion and Future Work 147

6.1 Multi-GPU Query Execution . 148

6.2 Heterogeneous Computing . 150

A Per-Thread Top-K Using Registers 153

10

List of Figures

1-1 Memory bandwidth growth on CPU and GPU over the past decade . 18

2-1 GPU Architecture overview . 28

2-2 GPU Memory Hierarchy . 29

3-1 Star Schema Benchmark Q1.1 . 37

3-2 Evaluation of the GPU coprocessor approach on the Star Schema

Benchmark . 37

3-3 Running selection on GPU . 41

3-4 Vector-based to Tile-based execution models. 41

3-5 Query Q0 Kernel running y > 5 with tile size 16 and thread block size 4 42

3-6 Implementing queries using Crystal 43

3-7 Query Q0 Kernel Implemented with Crystal 45

3-8 Q0 performance with varying tile sizes 47

3-9 GPU vs CPU performance on the project microbenchmark 50

3-10 Implementing selection scan . 51

3-11 GPU vs CPU performance on the select microbenchmark 52

3-12 GPU vs CPU performance on the join microbenchmark 56

3-13 GPU vs CPU performance on the sort microbenchmark 60

3-14 Implementing selection scan . 61

3-15 Star Schema Benchmark Queries . 63

3-16 Star Schema Benchmark Q1.1 Execution Plan 65

3-17 Star Schema Benchmark Q2.1 . 66

3-18 Star Schema Benchmark Q2.1 Execution Plan 66

11

4-1 The Duality of Top-K and Sorting . 74

4-2 Bitonic Sorting Network . 77

4-3 Top-K Merge . 83

4-4 Bitonic Top-K (K=4) . 85

4-5 Combining Multiple Steps . 90

4-6 Avoiding shared memory bank conflicts with padding 92

4-7 Bitonic Top-K performance varying the number of elements per thread 93

4-8 Comparison distance for local sort 𝑘 = 8, 𝑥 = 4 94

4-9 Shared memory bank conflicts when comparing elements 94

4-10 Time taken with different k (32-bit float values) 100

4-11 Time taken with different k (32-bit integer values) 101

4-12 Time taken with different k (64-bit double values) 102

4-13 Top-K performance across different distribution 103

4-14 Performance with varying data size 104

4-15 Performance with different number of keys 105

4-16 Comparing GPU Top-K against CPU Top-K 106

4-17 Using Top-K kernel in MapD . 107

4-18 Estimated vs actual runtimes for different K 111

5-1 Bit packing with vertical data layout 118

5-2 GPU-FOR Data Format . 122

5-3 Example encoding with GPU-FOR 122

5-4 Decompression performance with varying number of data blocks per

thread block (D) . 126

5-5 GPU-DFOR Data Format . 130

5-6 Illustration of Prefix Sum Algorithm 132

5-7 Query Q0 Kernel Implemented with Crystal 134

5-8 Performance of the different compression algorithms on uniform data

with varying bit widths . 139

5-9 Comparison of compression schemes on different data distributions . . 141

12

5-10 Compression waterfall for Star Schema Benchmark columns 143

5-11 Performance on Star Schema Benchmark queries with compressed

columns . 143

6-1 NVIDIA A100 with NVLink GPU-to-GPU connections 149

A-1 Different Per-Thread Top-K Approaches 154

13

14

List of Tables

3.1 List of block-wide functions in Crystal 44

3.2 Hardware Specifications . 63

3.3 Purchase and renting cost of CPU and GPU instance 69

15

16

Chapter 1

Introduction

Hardware trends have greatly influenced the development of data management sys-

tems. Historically, data was stored on (rotating) disks, and only small fractions would

be kept in main memory. The increase in DRAM capacities along with the increase

in the number of DIMM slots per machine has increased capacity and allowed sys-

tems to keep large fractions, and in some cases all of their data directly in RAM.

Main memory is more than an order of magnitude faster than disk and allows ran-

dom access. Thus, in comparison to disk-based systems, in-memory database systems

offer significant performance improvements. A number of in-memory data analytics

systems have been developed including Tableau Hyper [56], SAP HANA [29], and

MonetDB [22].

The shift to in-memory systems has shifted the performance bottleneck from disk

bandwidth to main memory bandwidth. Over the past decade, main memory band-

width growth has trailed CPU performance growth. While CPU performance has

grown at an average 60 percent per year, main memory bandwidth has grown at

just 7 percent per year. In order to get the next order of magnitude of performance

improvement and achieve interactive query performance, researchers have started

looking beyond multi-core CPUs to many-core accelerators such as GPUs and Intel

Xeon Phi.

Over the past decade, special-purpose graphics processing units have evolved into

general purpose computing devices, with the advent of general purpose parallel pro-

17

Figure 1-1: Memory bandwidth growth on CPU and GPU over the past decade

gramming models, such as CUDA and OpenCL. Because of GPUs’ high compute

power, they have seen significant adoption in deep learning and high performance

computing. However, GPUs also have significant potential to accelerate memory-

bound applications such as data analytics systems. Figure 1-1 shows the growth

of GPU memory bandwidth over the years in comparison to memory bandwidth on

CPU. GPUs can utilize High-Bandwidth Memory (HBM), a new class of RAM that

has significantly higher throughput compared to traditional DDR RAM used with

CPUs. A single modern GPU is capable of delivering up to 1.2 TBps of memory

bandwidth and 16 Tflops of compute compared to 128GBps of memory bandwidth

and < 1 Tflops on a single CPU.

The rise in memory bandwidth has been coupled with a rise in GPU memory

capacity. Over the past decade, GPU memory capacity has increased from 4GB to

40GB on the latest Nvidia A100 GPU. The current HBM roadmap is expected to

further double the capacity. The ability to equip a modern server with several GPUs

(up to 32), means that it’s possible to have hundreds of gigabytes of GPU memory

on a modern server. This is sufficient for many analytical tasks; for example, one

machine could host several weeks of a large online retailer’s (with say 100M sales per

18

day) sales data (with 100 bytes of data per sale) in GPU memory, the on-time flight

performance of all commercial airline flights in the last few decades, or several billion

tweets sent over the past few days. In-memory data analytics systems are typically

bound by DRAM memory bandwidth [56] and hence can benefit from higher memory

bandwidth of GPUs.

In this thesis, we focus on analytical query processing powered by GPUs. Sec-

tion 1.1 describes the GPU architecture and presents the challenges posed by the

massively parallel nature of GPUs for query processing. Section 1.2 presents the

problem context and contributions of this thesis. Section 1.3 describes the outline of

this thesis.

1.1 GPU Architecture and Challenges

When GPUs become popular in the 1990s, they were originally in the 1990s designed

to offload 2D and 3D graphics rendering from the main CPU processor. The limitation

of GPUs at the time was the limited programmability. The launch of the Nvidia

CUDA computing platform in 2007 allowed GPU programming in a C-like language.

The Fermi architecture, released in 2009, was seminal for General Purpose GPU

(GPGPU) computing. Fermi was the first complete GPU architecture satisfying the

requirements of demanding High-Performance Computing (HPC) applications. In

addition to improved performance, Fermi had a true cache hierarchy, error-correcting

code memory (ECC), and concurrent execution. Over the past decade, in addition

to increase in raw compute and memory bandwidth of GPGPUs, there has been

significant improvement in the compute capabilities of GPUs to make them useful

in a broad range of domains. GPUs now support synchronization via locks and

atomics, unified memory access to CPU memory, ability to do RDMA, etc. Despite

these improvements, the GPUs pose challenges to programmers trying to leverage

their high performance for query processing. Some key challenges in adapting query

processing to the GPU are:

Thread Divergence: GPUs implement a Single Instruction Multiple Threads (SIMT)

19

architecture. A group of 32 threads called a warp start executing at the same program

address but have their private register state and program counters so that each thread

is free to branch independently. However, when threads in the same warp follow a

different execution path, threads are serialized by the hardware. This phenomenon is

called thread divergence. While the branch followed by a subset of the threads in the

warp is executed, the remaining threads are idle, resulting in resource underutilization

and performance degradation.

Massive Parallelism and Limited Synchronization: GPUs achieve a very high degree

of parallelism by having many processing elements, each of which can have many

warps in flight at any point in time. When running at full capacity, there may be

163840 threads in flight on a V100 GPU. Only small groups of threads (called thread

blocks) can synchronize, there is no synchronization available across all threads.

Tiny Threads: GPU threads have significantly fewer resources per thread to store

intermediates. On the Nvidia V100, each GPU thread can only store roughly 24

4-byte entries in its local cache compared to 32KB L1 cache available per core on a

CPU.

Memory Access Pattern: GPUs have a different memory hierarchy compared to tradi-

tional CPUs. Global memory is the largest type of memory, but it has high latency:

400–600 cycles. It is important to organize memory accesses to global memory so

that threads access contiguous memory addresses. In that case, multiple memory ac-

cesses of the threads within a warp need be combined in few accesses from the global

memory. This memory access pattern is called memory coalescing, and it achieves

spatial data locality. Shared memory is programmable cache available per SM. To

maximize performance, shared memory is organized into 32 banks, so that all threads

in a warp can access different memory banks in parallel. However, if two threads in

a warp access different items in the same memory bank, a bank conflict occurs, and

accesses to this bank are serialized, potentially hurting performance.

To exploit the full performance of a GPU in database analytics workloads, we need

to rearchitect SQL query operators to be aware of and work around these challenges.

20

1.2 Thesis Contributions

This thesis addresses the question of how to run analytical queries efficiently on the

GPU. The following sections discuss our specific research contributions.

1.2.1 Tile-based Execution Model for Query Processssing

on GPUs

Compared to CPU threads, individual GPU threads have limited resources. We show

that treating GPU threads as independent execution units can lead to additional

materialization and bad performance. To address this issue, we propose a tile-based

execution model. Tile-based processing extends vector-based processing on the CPU

where each thread processes a vector at a time to the GPU. Threads on the GPU are

grouped into thread blocks. Threads within a thread block can communicate through

shared memory and can synchronize through barriers. Hence, even though a single

thread on the GPU has limited capacity, a single thread block can hold a significantly

larger group of elements collectively between them in shared memory. We call this

unit a Tile. In the Tile-based execution model, instead of viewing each thread as an

independent execution unit, we view a thread block as the basic execution unit with

each thread block processing a tile of entries at a time. One key advantage of this

approach is that after a tile is loaded into shared memory, subsequent passes over the

tile will be read directly from shared memory and not from global memory.

We show that queries can be broken into steps where each is a function that takes

as input a set of tiles, and outputs a set of tiles. We call these primitives block-wide

functions. A block-wide function is a device function1 that takes in a set of tiles as

input, performs a specific task, and outputs a set of tiles. Instead of reimplementing

these block-wide functions for each query, which would involve repetition of non-trivial

functions, we developed a library called Crystal.

Crystal is a library of templated CUDA device functions that implement the full

set of primitives necessary for executing typical analytic SQL SPJA analytical queries.
1Device functions are functions that can be called from kernels on the GPU

21

Crystal lets users write high performance kernel code. Block-wide functions in Crystal

make it easy to use non-trivial functions and reduce boilerplate code. The primitives

are composable and make it is fairly easy to implement query kernels of larger queries.

We use Crystal to implement the standard SQL query operators (select, project, join,

sort) and the Star-Schema Benchmark (SSB) on the GPU. We present cost models

for the operators and queries that assume memory bandwidth is saturated and show

that these query kernels do saturate memory bandwidth.

1.2.2 Fundamental Performance Characteristics of GPUs

and CPUs for Database Analytics

There is a lack of consensus on how much performance improvement can be obtained

from using GPUs for data processing. Past works have divergent views on gains that

can be achieved - ranging from 2× to 100×. Past work frequently compares against

inefficient baselines, e.g., MonetDB [83, 78, 46] which is known to be inefficient [56].

The empirical nature of past work makes it hard to generalize results across hardware

platforms.

To understand the true nature of performance gains on GPU vs CPU, we im-

plement fundamental SQL query operators like Select, Project, Join, and Sort and,

a popular analytics workload called the Star Schema Benchmark (SSB) using Crys-

tal and compare against efficient implementations of operators and of SSB on CPU.

Given that in-memory analytics is typically memory bandwidth bound, we use eval-

uate using these optimized implementations of query operators and full SQL queries

to show why performance gains of running on GPU vs CPU deviate from the memory

bandwidth ratio of GPU to CPU. We also develop theoretical models of the runtime

of these operators assuming memory bandwidth is saturated and show that imple-

mentations using Crystal are able to saturate memory bandwidth. We use models to

explain why the runtime ratio of operators and queries on GPU to CPU differs from

the memory bandwidth ratio.

For individual query operators, we observe that the performance gain is equal to or

22

less than the bandwidth ratio of the GPU to CPU. However, on full SQL queries the

performance gain is actually around twice the bandwidth ratio due to the inability

of the CPU to hide the memory latency associated with irregular memory access

patterns seen in multi-join queries. On a the experimental setup we used, running

queries on the GPU leads to 24x reduction in query runtime on the SSB workload

compared to running the queries on the CPU.

1.2.3 Novel Query Operators for GPUs

In the previous section, we described the Crystal framework and how it can be used

to implement the basic SQL query operators: Select, Project, Join and Sort. The

massively parallel nature of GPUs makes it non-trivial to implement certain SQL

operators. We present two novel query operators: a parallel top-k operator called

Bitonic Top-K and parallel decompression operators for two bit-packed storage for-

mats GPU-FOR and GPU-DFOR.

Top-K A common type of analytical SQL query involves running a top-𝑘, i.e.,

finding the highest (or lowest) 𝑘 of 𝑛 tuples given a ranking function. Examples

of top-k queries include asking for the most expensive products on an e-commerce

site, the best-rated restaurants in a review site, or the worst performing queries in a

query log. Top-k is a well studied problem in computer science in general and data

management in particular since top-k calculation (order-by/limit clauses) is supported

by virtually every data analytics system.

Top-K is a classic sequential problem that can be efficiently computed by main-

taining a priority-queue (a.k.a. max-heap) of size k and making a single pass over

the data with each entry inserted into this heap. The runtime of this approach is

on the order of 𝑛 log (𝑘). This algorithm can be parallelized across 𝑚 processors by

logically partitioning the data, having each processor compute a per-partition top-k

and computing the global top-k from the 𝑚 per-partition heaps. While this method

can be efficiently implemented on multi-core processors, it is not suited to the Single-

Instruction-Multiple-Threads execution model of massively parallel systems, because

23

the unpredictable execution flow leads to high branch divergence overhead. With the

recent interest in GPU-based query processing, there is an obvious need for a efficient,

massively parallel algorithm to solve the top-k problem.

One way to develop an intuition for the existence and even the characteristics of

a solution to this problem is to consider the duality of top-k and sorting algorithms.

When thinking about sorting in the context of massively parallel architectures, a pop-

ular algorithm is bitonic sort. Yet, there is no known corresponding top-k algorithm

to bitonic-sort. We can, however, hypothesize that, like bitonic sort, it is likely to be

based on bitonic merges and needs to incorporate a number of low-level optimizations

to make it compute- as well as bandwidth-efficient.

We systematically develop this intuition into a working algorithm by extensively

studying existing top-k solutions on GPUs and developing a novel solution targeted

towards massively parallel architectures. We found that it is in fact based on bitonic

merges and called it Bitonic Top-K. We investigate the characteristics of a number

of other potential top-k algorithms for GPUs, including sorting and heap-based algo-

rithms, as well as radix-based algorithms that use the high-order bits to find the top

items. In the end, we find that bitonic top-k is up to 4 times faster than other top-k

approaches and up to 15x faster than sorting for k up to 256.

Compression GPU-based databases aim to provide real-time analytics capabilities

by using GPUs to store a large fraction (or all) of the working set. A key constraint

in these systems is the GPU memory capacity. Currently, GPUs have at most 40 GB

of memory which is used both to cache the working set and as scratch memory for

query execution. GPU memory is 6× more expensive compared to CPU RAM and

going outside a single GPU’s memory incurs a penalty. Therefore, data compression

is critical. Currently, GPU-based systems use simple compression schemes like fixed-

width dictionary encoding and run-length encoding (RLE) similar to CPU-based in-

memory analytics systems, decompressing on-the-fly during query execution.

In this thesis, we introduce two new efficient compression schemes for GPUs:

GPU-FOR which does bit-packing in conjunction with Frame-Of-Reference (FOR)

24

and GPU-DFOR which uses delta encoding with bit-packing and FOR. Both these

schemes are designed to offer improved compression ratios while still being able to

decode them in parallel across thousands of threads at close to memory bandwidth

speeds. GPU-FOR partitions the data into blocks, in each block encoding integers

with the minimum bit size needed to represent a value in the block. It works well

with uniform data and can handle skew. GPU-DFOR first delta-encodes a block of

integers before using GPU-FOR. It is suited for sorted and semi-sorted columns.

Past works have looked at delta encoding, FOR, and variable length byte-aligned

packing (NSV). These works found that achieving the minimum space cost by using

a combination of compression schemes (e.g. delta+NSV) can degrade performance

as intensive decompression overburdens the GPU. Hence previous work deemed these

schemes GPU-unfriendly. The reason for bad performance was that these works

treated threads on the GPU as independent execution units and hence required mul-

tiple passes to decode the compressed data. For example: to use a column encoded

using delta encoded variable length byte-aligned packing in a query, these systems

would first run a prefix-sum primitive to unpack the variable-length byte-packed data

and write it to global memory, then do a second pass prefix-sum primitive to delta

decode the data, again writing to global memory, and finally run a query kernel that

reads from global memory the unpacked column. This approach has high overhead

as the intermediate data is read/written to global memory multiple times. In our

work, we treat thread blocks as the basic execution unit; each thread block collec-

tively decodes one block of encoded entries. By treating thread blocks as the basic

unit of execution, we are able to cache a block of data in on-chip caches and inline

the multiple steps involved in decoding into a single kernel, resulting in a single pass

over the data. We present a series of optimizations that enable us to decode at close

to memory bandwidth speed. The performance of our schemes simplifies the choice of

compression scheme to encode a column: simply choose the scheme with the smallest

storage footprint. It eliminates the need for sophisticated compression planners used

by past works to choose the right compression scheme.

To show that our compression schemes perform well and significantly reduce the

25

storage footprint of GPU-based systems, we present an integration of GPU-FOR

and GPU-DFOR into the Crystal framework. We encapsulate the decompression

into a device function that enables programmers to change a kernel operating on an

uncompressed array to a compressed column with a single line of code. In the end,

we find that our compression schemes can reduce the storage footprint by up to 10×

on certain data distributions; on the Star Schema Benchmark, the proposed scheme

achieves 50% reduction in storage compared to no compression and 37% compared

to existing GPU compression schemes with no impact on performance.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides relevant background

and related work. The thesis is divided into two parts.

Part I of the thesis focuses on efficient query execution on the GPU. We describe

the Tile-based execution model and present the Crystal library. We present efficient

implementations of SQL query operators and an analytical workload. We use theoret-

ical models to show these saturate bandwidth on the GPU and use them to compare

performance of a GPU-based vs CPU-based analytical database.

Part II presents two novel query operators. Chapter 4 presents a holistic compari-

son of different top-k algorithms for GPUs and presents the Bitonic Top-K algorithm.

Chapter 5 presents two bit-packing based compression schemes GPU-FOR and GPU-

DFOR that can be used to store data columns on the GPU and presents optimized

decompression routines for each.

In the end, we summarize the main conclusions of our research and outline future

directions for GPU-powered data analytics and database processing.

26

Chapter 2

Background

In this chapter, we present background and prior work related to this thesis. In

Section 2.1 we review the basics of the GPU architecture. Section 2.2 describes the

relevant aspects of past approaches to running database analytics workloads using

GPUs.

2.1 GPU Architecture

Figure 2-1 shows an abstraction of the GPU architecture and threading model. Our

research is done on NVIDIA GPUs so we use the NVIDIA CUDA terminology but

the abstractions of OpenCL APIs are similar so our techniques are applicable for both

types of GPU paradigms.

A GPU has multiple streaming multi-processors (SM). The SM is the GPU com-

ponent executing the GPU functions. GPUs implement a Single Instruction Multiple

Threads (SIMT) architecture. The unit of execution in SIMT is a group of threads

called a warp, which is typically 32 threads. On the Nvidia V100 GPU, there are 80

SMs, each capable of running 64 concurrent warps (2048 threads).

To run a function on the GPU, you start by writing a GPU function called a

kernel. The kernel is invoked across a large number of threads. These threads are

grouped into units called thread blocks where each thread block is of size 32-1024

threads.

27

barrier

Register File

Shared Memory

GPU Thread
GPU Thread Block
(32-1024 threads)

CUDA Kernel

warp 0 warp n

Warp Scheduler Warp Scheduler

Streaming Multiprocessor (SM)

L2 Cache

Global Memory

branch

end of
branch

Figure 2-1: GPU Architecture overview

Each thread block gets scheduled on a SM. Once scheduled, the thread block

is divided into warps with each warp executing independently. Threads in a warp

start executing the same program at the same program addresss but have their own

private register state and program counters so that each thread is free to branch

independently. However, when threads in the same warp follow different execution

paths, their execution is serialized by the hardware. This phenomenon is known as

thread divergence. While the branch followed by a subset of threads in the warp

are executed, the remaining threads are idle leading to performance degradation and

resource underutilization. Threads within a single thread block can synchronize using

barriers.

Many database operations executed on the GPU are performance bound by the

memory subsystem (either shared or global memory) [83]. In order to characterize

the performance of different algorithms on the GPU, it is thus critical to properly

understand its memory hierarchy. Figure 2-2 shows a simplified hierarchy of a modern

28

SM-1

Registers

L1 SMEM

SM-2

Registers

L1 SMEM

SM-N

Registers

L1 SMEM

L2	Cache

Global	Memory
Off chip
On chip

Figure 2-2: GPU Memory Hierarchy

GPU.

The lowest and largest memory in the hierarchy is the global memory. A modern

GPU can have global memory capacity of up to 40 GB with memory bandwidth of up

to 1500 GBps. Global memory has high latency: 400-600 cycles. The scope of global

memory is all GPU threads. The device groups global memory loads and stores from

threads in a single warp such that multiple loads/stores to the same cache line are

combined into a single request. Maximum bandwidth can be achieved when a warp’s

access to global memory results in neighboring locations being accessed.

Accesses to global memory from a SM are cached in the L2 cache (L2 cache is

shared across all SMs). The L2 cache on the V100 GPU, which is shared by all

processsing elements has 49,152 128-byte cache lines.

Each SM has a shared memory which is used as a parallel, software controlled

cache and its scope is a thread block. Shared memory serves as a scratchpad that

is controlled by the programmer. Shared memory capacity is limited, on the V100

GPU, it is 16KB or 48KB depending on the kernel configuration per SM. Hence,

at full occupancy with 64 concurrent warps executing, there is space for 24 4-byte

entries per thread in shared memory. To maximize performance, shared memory is

organized into 32 banks, so that all threads in a warp can access different memory

banks in parallel. However, if two threads in a warp access different items in the

same memory bank, a bank conflict occurs, and accesses to this bank are serialized,

29

potentially hurting performance. Shared memory has an order of magnitude higher

bandwidth than global memory but has much smaller capacity (a few MB vs. multiple

GB).

Each SM also has an L1 cache. Accesses to global memory can optionally also

in the L1 cache (L1 cache is local to each SM). On the V100 GPU, L1 cache size is

48KB or 16KB depending on the kernel configuration per SM.

Finally, registers are the fastest layer of the memory hierarchy. Registers are

privately owned by each thread and store values that are immediately used by each

thread. On the V100 GPU, the register file size is 64k 32-bit registers per SM. If

a thread block needs more registers than available, register values spill over to local

memory. Despite its name, local memory only means it is only accessible by the

thread – it is stored off the SM in slow global memory.

2.2 Query Execution on GPU

With the slowing of Moore’s Law, CPU performance has stagnated. In recent years,

researchers have started exploring heterogeneous computing to overcome the scaling

problems of CPUs and to continue to deliver interactive performance for database

applications. In such a hybrid CPU-GPU system, the two processors are connected

via PCIe. The PCIe bandwidth of a modern machine is up to 16 GBps, which is much

lower than the memory bandwidth of either CPU or GPU. Therefore, data transfer

between CPU and GPU is a serious performance bottleneck.

Past work in the database community has focused on using the GPU as a coproces-

sor, which we call the coprocessor model. In this model, data primarily resides in the

CPU’s main memory. For query execution, data is shipped from the CPU to the GPU

over PCIe, so that (some) query processing can happen on the GPU. Results are then

shipped back to the CPU. Researchers have worked on optimizing various database op-

erations under the co-processor model: selection [73], join [37, 38, 43, 72, 66, 71, 82],

and sort [33, 75]. Several full-fledged GPU-as-coprocessor database query engines

have been proposed in recent years. Ocelot [39] provides a hybrid analytical engine

30

as an extension to MonetDB. YDB [83] is a GPU-based data warehousing engine.

Both systems used an operator-at-a-time model, where an operator library contain-

ing GPU kernel implementations of common database operators such as scans and

joins is invoked on batches of tuples, running each operator to completion before

moving on to the next operator. To ensure kernel execution efficiency, tuples are

pushed from one operator to another in batches which lets the system hide some

of the CPU-GPU data transfer latency. In operator-at-a-time model, each operator

needs to write out its output to global memory. As a result, query intermediates end

up being written to and read from global memory multiple times which is inefficient.

Kernel fusion [81] attempted to hide inefficiency associated with running multiple

kernels for each query like in the operator-at-a-time model. Kernel fusion fused oper-

ator kernels with producer-consumer dependency when possible to eliminate redun-

dant data movement. As kernel fusion is applied as a post-processing step, it will miss

opportunities where kernel configurations are incompatible. HippogriffDB [46] used

GPUs for large scale data warehousing where data resides on SSDs. HippogriffDB

claims to achieve 100× speedup over MonetDB when the ratio of memory bandwidth

of GPU to CPU is roughly 5×. More recently, HorseQC [31] proposes pipelined data

transfer between CPU and GPU to improve query runtime. A contribution of this

thesis is showing that the coprocessor model is slower than running the query effi-

ciently directly on the CPU. To the extent past works showed gains, it is because of

comparison against inefficient baselines.

Commercial systems like Omnisci [9], Kinetica [6], and BlazingDB [4] aim to

provide real-time analytical capabilities by using GPUs to store large parts (or all)

of the working set. The setting used in this thesis is similar to ones used by these

systems. Although these systems use a design similar to what we advocate, some have

claimed 1000× performance improvement by using GPUs [1] but have not published

rigorous benchmarks against state-of-the art CPU or GPU databases, which is a

contribution of this thesis.

31

Part I

Query Execution on GPU

32

Chapter 3

GPU Query Execution

3.1 Introduction

In-memory analytics is typically memory bandwidth bound. The improved memory

bandwidth of GPUs has led some researchers to use GPUs as coprocessors for analytic

query processing [83, 78, 46, 31]. However, previous work leaves several unanswered

questions:

∙ GPU-based database systems have reported a wide range of performance im-

provement compared to CPU-based database systems, ranging from 2× to 100×.

There is a lack of consensus on how much performance improvement can be ob-

tained from using GPUs. Past work frequently compares against inefficient

baselines, e.g., MonetDB [83, 78, 46] which is known to be inefficient [56]. The

empirical nature of past work makes it hard to generalize results across hardware

platforms.

∙ Past work generally views GPUs strictly as an coprocessor. Every query ends

up shipping data from CPU to GPU over PCIe. Data transfer over PCIe is

an order of magnitude slower than GPU memory bandwidth, and typically less

than the CPU memory bandwidth. As a result, the PCIe transfer time becomes

the bottleneck and limits gains. To the extent that past work shows performance

improvements using GPUs as an coprocessor, much of those gains may be due

33

to evaluation against inefficient baselines.

∙ There has been significant improvement in GPU hardware in recent years. Most

recent work on GPU-based database [31] evaluates on GPUs which have mem-

ory capacity and bandwidth of 4 GB and 150 GBps respectively, while latest

generation of GPUs have 8× higher capacity and bandwidth. These gains sig-

nificantly improve the attractiveness of GPUs for query processing.

In this chapter, we set out to understand the true nature of performance difference

between CPUs and GPUs, by performing rigorous model-based and performance-

based analysis of database analytics workloads after applying optimizations for both

CPUs and GPUs. To ensure that our implementations are state-of-the-art, we use

theoretical minimums derived assuming memory bandwidth is saturated as a baseline,

and show that our implementations can typically saturate the memory bus, or when

they cannot, describe in detail why they fall short. Hence, although we offer some

insights into the best implementations of different operators on CPUs and GPUs,

the primary contribution of this chapter is to serve as a guide to implementors as

to what sorts of performance differences one should expect to observe in database

implementations on modern versions of these different architectures.

Past work has used GPUs mainly as coprocessors. By comparing an efficient CPU

implementation of a query processor versus an implementation that uses the GPU as

a coprocessor, we show that GPU-as-coprocessor offers little to no gain over a pure

CPU implementation, performing worse than the CPU version for some queries. We

argue that the right setting is having the working set stored directly on GPU(s).

We developed models and implementations of basic operators: Select, Project,

and Join on both CPU and GPU to understand when the ratio of operator runtime

on CPUs to runtime on GPUs deviates from the ratio of memory bandwidth of GPU

to memory bandwidth of CPU. In the process, we noticed that the large degree of

parallelism of GPUs leads to additional materialization. We propose a novel execution

model for query processing on GPUs called the Tile-based execution model. Instead of

looking at GPU threads in isolation, we treat a block of threads (“thread block”) as

34

a single execution unit, with each thread block processing a tile of items. The benefit

of this tile-based execution model is that thread blocks can now cache tiles in shared

memory and collectively process them. This helps avoid additional materialization.

This model can be expressed using a set of primitives where each primitive is a

function which takes as input of set of tiles and outputs a set of tiles. We call these

primitives block-wide functions. We present Crystal, a library of block-wide functions

that can be used to implement the common SQL operators as well as full SQL queries.

Furthermore, we use Crystal to implement the query operators on the GPU and

compare their performance against equivalent state-of-the-art implementations on

the CPU. We use Crystal to implement the Star-Schema Benchmark (SSB) [57]

on the GPU and compare it’s performance against our own CPU implementation, a

state-of-the-art CPU-based OLAP DBMS and a state-of-the-art GPU-based OLAP

DBMS. In both cases, we develop models assuming memory bandwidth is saturated

and reason about the performance based on it.

In summary, we make the following contributions:

∙ We show that previous designs which use the GPU as a coprocessor show no per-

formance gain when compared against a state-of-the-art CPU baseline. Instead,

using modern GPU’s increased memory capacity to store working set directly on

the GPU is a better design.

∙ We present Crystal, a library of data processing primitives that can be composed

together to generate efficient query code that can full advantage of GPU resources.

∙ We present efficient implementations of individual operators for both GPU and

CPU. For each operator, we provide cost models that can accurately predict their

performance.

∙ We describe our implementation of SSB and evaluate both GPU and CPU im-

plementations of it. We present cost models that can accurately predict query

runtimes on the GPU and discuss why such models fall short on the CPU.

35

3.2 Background

In Chapter 2, we reviewed the basics of the GPU architecture and described past

approaches to running database analytics workloads on the GPU. In this section, we

describe relevant aspects of past approaches to running database analytics workloads

on the CPU.

3.2.1 Query Execution on CPU

Database operators have been extensively optimized for modern processors. For joins,

researchers have proposed using cache-conscious partitioning to improve hash join

performance [50, 19, 17, 16]. Schuh et al. summarized the approaches [69]. For

sort, Satish et al. [68] and Wassenberg et al. [79] introduced buffered partitioning for

radix sort. Polychroniou et al. [62] presented faster variants of radix sort that use

SIMD instructions. Sompolski et al. [74] showed that combination of vectorization

and compilation can improve performance of project, selection, and hash join oper-

ators. Polychroniou et al. [61] presented efficient vectorized designs for selections,

hash tables, and partitioning using SIMD gathers and scatters. Prashanth et al. [52]

extended the idea to generate machine code for full queries with SIMD operators. We

use ideas from these works, mainly the works of Polychroniou et al. [62, 61] for our

CPU implementations.

C-Store [77] and MonetDB [22] were among the first column-oriented engines,

which formed the basis for analytical query processing. MonetDB X100 [21] intro-

duced the idea of vectorized execution that was cache aware and reduced memory

traffic. Hyper [56] introduced the push-based iteration and compiling queries into

machine code using LLVM. Hyper was significantly faster than MonetDB and brought

query performance close to that of handwritten C code. We compare the performance

of our CPU query implementations against MonetDB [22] and Hyper [56].

36

SELECT SUM(lo_extendedprice * lo_discount) AS revenue
FROM lineorder
WHERE lo_quantity < 25
AND lo_orderdate >= 19930101 AND lo_orderdate <= 19940101
AND lo_discount >= 1 AND lo_discount <= 3;

Figure 3-1: Star Schema Benchmark Q1.1

q1.
1

q1.
2

q1.
3

q2.
1

q2.
2

q2.
3

q3.
1

q3.
2

q3.
3

q3.
4

q4.
1

q4.
2

q4.
3

m
ea

n

Queries

0

100

200

300

400

T
im

e
(i

n
m

s)

MonetDB

GPU Coprocessor

Hyper

Figure 3-2: Evaluation of the GPU coprocessor approach on the Star Schema Bench-
mark

3.3 Failure of the Coprocessor Model

While past work has claimed speedups from using GPUs in the coprocessor model,

there is no consensus among past work about the performance improvement obtained

from using GPUs, with reported improvements varying from 2× to 100×.

Consider Q1.1 from the Star Schema Benchmark (SSB) shown in Figure 3-1. For

simplicity, assume all column entries are 4-byte integers and 𝐿 is the number of entries

in lineorder. An efficient implementation on a CPU will be able to generate the

result using a single pass over the 4 data columns. The optimal CPU runtime (𝑅𝐶) is

upper bounded by 16𝐿/𝐵𝑐 where 𝐵𝑐 is the CPU memory bandwidth. This is an upper

bound because, if the predicates are selective, then we may be able to skip entire cache

37

lines while accessing the lo_extendedprice column. In the coprocessor model, we

have to ship 4 columns of data to GPU. Thus, the query runtime on the GPU (𝑅𝐺)

is lower bounded by 16𝐿/𝐵𝑝 where 𝐵𝑝 is the PCIe bandwidth. The bound is hit if we

are able to perfectly overlap the data transfer and query execution on GPU. However,

since 𝐵𝑐 > 𝐵𝑝 in modern CPU-GPU setups, 𝑅𝐶 < 𝑅𝐺, i.e., running the query on

CPU yields a lower runtime than the running query with a GPU coprocessor.

To show this empirically, we ran the entire SSB with scale factor 20 on an in-

stance where CPU memory bandwidth is 54 GBps, GPU memory bandwidth is 880

GBps, and PCIe bandwidth is 12.8 GBps. The full workload details can be found in

Section 3.7.1 and the full system details can be found in Table 2. We compare the

performance of the GPU Coprocessor with two OLAP DBMSs: MonetDB and Hyper.

Past work on using GPUs as a coprocessor mostly compared their performance against

MonetDB [83, 78, 46] which is known to be inefficient [56]. Figure 3-2 shows the re-

sults. On an average, GPU Coprocessor performs 1.5× faster than MonetDB but it

is 1.4× slower than Hyper. For all queries, the query runtime in GPU coprocessor

is bound by the PCIe transfer time. We conclude the reason past work was able to

show performance improvement with a GPU coprocessor is because their optimized

implementations were compared against inefficient baselines (e.g., MonetDB) on the

CPU.

With the significant increase in GPU memory capacity, a natural question is how

much faster a system that treats the GPU as the primary execution engine, rather

than as an accelerator, can be. We describe our architecture for such a system in the

next section.

3.4 Tile-based Execution Model

While a modern CPU can have dozens of cores, a modern GPU like Nvidia V100 can

have 5000 cores. The vast increase in parallelism introduces some unique challenges

for data processing. To illustrate this, consider running the following simple selection

query as a micro-benchmark on both a CPU and a GPU:

38

Q0: SELECT y FROM R WHERE y > v;

On the CPU, the query can be efficiently executed as follows. The data is par-

titioned equally among the cores. The goal is to write the results in parallel into a

contiguous output array. The system maintains a global atomic counter that acts as

a cursor that tells each thread where to write the next result. Each core processes

its partition by iterating over the entries in the partition one vector of entries at

a time, where a vector is about 1000 entries (small enough to fit in the L1 cache).

Each core makes a first pass over the first vector of entries to count the number of

entries that match the predicate 𝑑. The thread increments the global counter by 𝑑

to allocate output space for the matching records, and then does a second pass over

the vector to copy the matched entries into the output array in the allocated range

of the output. Since the second pass reads data from L1 cache, the read is essentially

free. The global atomic counter is a potential point of contention. However, note

that each thread updates the counter once for every 1000+ entries and there are only

around 32 threads running in parallel at any point. The counter ends up not being

the bottleneck and the total runtime is approximately 𝐷
𝐵𝐶

+ 𝐷𝜎
𝐵𝐶

where 𝐷 is the size

of the column, and 𝐵𝐶 is the memory bandwidth on the CPU.

We could run the same plan on the GPU, partitioning the data up among the

thousands of threads. However, GPU threads have significantly fewer resources per

thread. On the Nvidia V100, each GPU thread can only store roughly 24 4-byte

entries in shared memory at full occupancy, with 5000 threads running in parallel.

Here, the global atomic counter ends up becoming the bottleneck as all the threads

will attempt to increment the counter to find the offset into the output array. To

work around this, existing GPU-based database systems would execute this query in

3 steps as shown in Figure 3-3(a). The first kernel 𝐾1 would be launched across a large

number of threads. In it, each thread would read in column entries in a strided fashion

(interleaved by thread number) and evaluate the predicate to count the number of

entries matched. After processing all elements, the total number of entries matched

per thread would be recorded in an array count, where count[t] is number of entries

matched by thread t. The second kernel 𝐾2 would use the count array to compute

39

the prefix sum of the count and store this in another array pf. Recall that for an

array 𝐴 of 𝑘 elements, the prefix sum 𝑝𝐴 is a 𝑘 element array where 𝑝𝐴[𝑗] = ∑︀𝑗−1
𝑖=0 𝐴𝑗.

Thus, the 𝑖𝑡ℎ entry in pf indicates the offset at which the 𝑖th thread should write

its matched results to in the output array o. Databases used an optimized routine

from a CUDA library like Thrust [11] to run it efficiently in parallel. The third kernel

𝐾3 would then read in the input column again; here the 𝑖𝑡ℎ thread again scans the

𝑖𝑡ℎ stride of the input, using pf[𝑖] to determine where to write the satisfying records.

Each thread also maintains a local counter 𝑐𝑖, initially set to 0. Specifically for each

satisfying entry, thread 𝑖 writes it to pf[𝑖] + 𝑐𝑖 and then increments 𝑐𝑖. In the end,

o[pf[t]] ... o[pf[t+1] - 1] will contain the matched entries of thread t.

The above approach shifts the task of finding offsets into the output array to an

optimized prefix sum kernel whose runtime is a function of 𝑇 (where 𝑇 is the number

of threads (𝑇 << 𝑛)), instead of finding it inline using atomic updates to a counter.

As a result, the approach ends up being significantly faster than the naive translation

of the CPU approach to the GPU. However, there are a number of issues with this

approach. First, it reads the input column from global memory twice, compared

to doing it just once with the CPU approach. It also reads/writes to intermediate

structures count and pf. Finally, each thread writes to a different location in the

output array resulting in random writes. To address these issues, we introduce the

Tile-based execution model.

Tile-based processing extends the vector-based processing on CPU where each

thread processes a vector at a time to the GPU. Figure 3-4 illustrates the model.

Threads on the GPU are grouped into thread blocks. Threads within a thread block

can communicate through shared memory and can synchronize through barriers.

Hence, even though a single thread on the GPU at full occupancy can hold only

up to 24 integers in shared memory, a single thread block can hold a significantly

larger group of elements collectively between them in shared memory. We call this

unit a Tile. In the Tile-based execution model, instead of viewing each thread as an

independent execution unit, we view a thread block as the basic execution unit with

each thread block processing a tile of entries at a time. One key advantage of this

40

Load tile of items

Generate Bitmap

Compute Block-wide
Prefix Sum

Atomic update
global counter

Block-wide shuffle

Coalesced Write

Read entries

Evaluate predicate
and count matched

Prefix sum over count

Write out matched entries
at appropriate offset

Write count

Read entries, prefix sum

(a) Current (b) With Tile-based processing

Kernel

K1

K2

K3

K1

Figure 3-3: Running selection on GPU

thread

Vector (~1000 elems)

threadblock

Tile
(~ 1000 elems)

(a) On CPU (b) On GPU
number of threads

elems
per

thread

Figure 3-4: Vector-based to Tile-based execution models.

approach is that after a tile is loaded into shared memory, subsequent passes over the

tile will be read directly from shared memory and not from global memory, avoiding

the second pass through global memory described in the implementation above.

Figure 3-3(b) shows how selection is implemented using the tile-based model. The

entire query is implemented as a single kernel instead of three. Figure 3-5 shows a

sample execution with a tile of size 16 and a thread block of 4 threads for the predicate

𝑦 > 5. Note that this is just for illustration, as most modern GPUs would use a

41

3 1 12 8 6 9 15 10 1 4 7 2 11 5 16 13

2 1 4 3

Generate bitmap

0 2 3 7 11

6 11 9 12 15 7 16 8 10 13

Compute histogram

Generate prefix sum

0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1

Load tile

Gen shuffled tile

global counter

Input column

Result Array

global memory shared memory X accesses by thread 0

Figure 3-5: Query Q0 Kernel running y > 5 with tile size 16 and thread block size 4

thread block size that is a multiple of 32 (the warp size) and the number of elements

loaded would be 4–16 times the size of the thread block. We start by initializing the

global counter to 0. The kernel loads a tile of items from global memory into the

shared memory. The threads then apply the predicate on all the items in parallel

to generate a bitmap. For example, thread 0 evaluates the predicate for elements

0,4,8,12 (shown in red). Each thread then counts the number of entries matched per

thread to generate a histogram. The thread block co-operatively computes the prefix

sum over the histogram to find the offset each thread writes to in shared memory.

In the example, threads 0,1,2,3 match 2,1,4,3 entries respectively. The prefix sum

entries 0,2,3,7 tell us thread 0 should write its matched entries to output at index

0, thread 1 should write starting at index 2, etc. We increment a global counter

atomically by total number of matched entires to find the offset at which the thread

block should write in the output array. The shuffle step uses the bitmap and the

prefix sum to create a contiguous array of matched entries in shared memory. The

final write step copies the contiguous entries from shared memory to global memory

at the right offset.

By treating the thread block as an execution unit, we reduce the number atomic

updates of the global counter by a factor of size of tile 𝑇 . The kernel also makes

a single pass over the input column with the Gen Shuffled Tile ensuring that the

final write to the output array is coalesced, solving both problems associated with

42

BlockLoad y

BlockPred y > v

BlockScan

Atomic update
global counter

BlockShuffle

BlockStore

(a) SELECT y FROM R WHERE y > v

K1
BlockLoadSel y

AndPred y > v

BlockScan
Atomic update
global counter

BlockShuffle

BlockStore

K1BlockLoad x

BlockPred x > w

Block-wide function

(b) SELECT y FROM R WHERE x > w AND y > v

Figure 3-6: Implementing queries using Crystal

approach used in previous GPU databases.

The general concept of the tile-based executing model i.e., dividing data into

tiles and mapping threadblocks to tiles has been used in other domains like image

processing [40] and high performance computing [11]. However, to the best of our

knowledge this is the first work that uses it for database operations. In the next

section, we present Crystal, a library of data processing primitives that can be

composed together to implement SQL queries on the GPU.

3.5 Crystal Library

The kernel structure in Figure 3-5 contains a series of steps where each is a function

that takes as input a set of tiles, and outputs a set of tiles. We call these primitives

block-wide functions. A block-wide function is a device function1 that takes in a

set of tiles as input, performs a specific task, and outputs a set of tiles. Instead

1Device functions are functions that can be called from kernels on the GPU

43

Primitive Description
BlockLoad Copies a tile of items from global memory to shared memory. Uses vector

instructions to load full tiles.
BlockLoadSel Selectively load a tile of items from global memory to shared memory based on

a bitmap.
BlockStore Copies a tile of items in shared memory to device memory.
BlockPred Applies a predicate to a tile of items and stores the result in a bitmap array.
BlockScan Co-operatively computes prefix sum across the block. Also returns sum of all

entries.
BlockShuffle Uses the thread offsets along with a bitmap to locally rearrange a tile to create

a contiguous array of matched entries.
BlockLookup Returns matching entries from a hash table for a tile of keys.
BlockAggregate Uses hierarchical reduction to compute local aggregate for a tile of items.

Table 3.1: List of block-wide functions in Crystal

of reimplementing these block-wide functions for each query, which would involve

repetition of non-trivial functions, we developed a library called Crystal.

Crystal2 is a library of templated CUDA device functions that implement the full

set of primitives necessary for executing typical analytic SQL SPJA analytical queries.

Figure 3-6(a) shows an sketch of the simple selection query implemented using block-

wide functions. Figure 5-7 shows the query kernel of the same query implemented

with Crystal. We use this example to illustrate the key features of Crystal. The

input tile is loaded from the global memory into the thread block using BlockLoad.

BlockLoad internally uses vector instructions when loading a full tile and for the tail

of the input array that may not form a perfect tile, it is loaded in a striped fashion

element-at-a-time. BlockPred applies the predicate to generate the bitmap. A key

optimization that we do in Crystal is instead of storing the tile in shared memory,

in cases where the array indices are statically known before hand, we choose to use

registers to store the values. In this case, items (which contains entries loaded from

the column) and bitmap are stored in registers. Hence, in addition to 24 4-byte values

that a thread can store in shared memory, this technique allows us to use roughly

equal amount of registers available to store data items. Next we use BlockScan to

compute the prefix sum. BlockScan internally implements a hierarchical block-wide

parallel prefix-sum approach [36]. This involves threads accessing bitmap entries of

2The source code of the Crystal library is available at
https://github.com/anilshanbhag/crystal

44

https://github.com/anilshanbhag/crystal

1 // Implements SELECT y FROM R WHERE y > v

2 // NT => NUM_THREADS

3 // IPT => ITEMS_PER_THREAD

4 template<int NT, int IPT>

5 __global__ void Q(int* y, int* out, int v, int* counter) {

6 int tile_size = get_tile_size();

7 int offset = get_tile_offset();

8 __shared__ struct buffer {

9 int col[NT * IPT];

10 int out[NT * IPT];

11 };

12 int items[IPT];

13 int bitmap[IPT];

14 int indices[IPT];

15

16 BlockLoadInt<NT, IPT>(col+offset,items,buffer.col,tile_size);

17 BlockPredIntGT<NT, IPT>(items,buffer.col,cutoff,bitmap);

18 BlockScan<NT, IPT>(bitmap,indices,buffer.col,

19 num_selections,tile_size);

20

21 if(threadIdx.x == 0)

22 o_off = atomic_update(counter,num_selections);

23

24 BlockShuffleInt<NT, IPT>(items,indices,buffer.out);

25 BlockStoreInt<NT, IPT>(buffer.out,out + o_off,num_selections);

26 }

Figure 3-7: Query Q0 Kernel Implemented with Crystal

other threads — for this we load bitmap into shared memory, reusing buffer.col

shared memory buffer used for loading the input column. Shared memory is order of

magnitude faster than global memory, hence loads and stores to shared memory in

this case do not impact performance. After atomic update to find offset in output

array, BlockShuffle is used to reorder the array and finally we use BlockStore to

write to output array. The code skips some minor details like when the atomic update

happens, since it is executed on thread 0, the global offset needs to be communicated

back to other threads through shared memory.

In addition to allowing users to write high performance kernel code that as we

show later can saturate memory bandwidth, there are two usability advantages of

using Crystal:

45

∙ Modularity: Block-wide functions in Crystal make it easy to use non-trivial

functions and reduce boilerplate code. For example, BlockScan, BlockLoad,

BlockAggregate each encapsulate 10’s to 100’s of lines of code. For the selec-

tion query example, Crystal reduces lines of code from more than 300 to less than

30.

∙ Extensibility: Block-wide functions makes it is fairly easy to implement query

kernels of larger queries. Figure 3-6(b) shows the implementation of a selection

query with two predicates. Ordinary CUDA code can be used along with Crystal

functions.

Crystal supports loading partial tiles like in Figure 3-6(b). If a selection or join

filters entries, we use BlockLoadSel to load items that matched the previous selections

based on a bitmap. In this case, the thread block internally allocate space for the

entire tile, however, only matched entries are loaded from global memory. Table 3.1

briefly describes the block-wide functions currently implemented in the library.

To evaluate Crystal, we look at two microbenchmarks:

1) We evaluate the selection query 𝑄0 with size of input array as 229 and selectivity

is 0.5. We vary the tile sizes. We vary the thread block sizes from 32 to 1024 in

multiples of 2. We have three choices for the number of items per thread: 1,2,4.

Figure 3-8 shows the results. As we increase the thread block size, the number of

global atomic updates done reduces and hence the runtime improves until the thread

block size approaches 512 after which it deteriorates. Each streaming multiprocessor

on the GPU holds maximum of 2048 threads, hence, having large thread blocks

reduces number of independent thread blocks. This affects utilization particularly

when thread blocks are using synchronization heavily. Having 4 items per thread

allows to effectively load the entire block using vector instructions. With 2 items

per thread, there is reduced benefit for vectorization as half the threads are empty.

With 1 item per thread there is no benefit. The best performance is seen with thread

block size of 128/256 and items per thread equal to 4. In these cases, as we show

later in Section 3.6.2, we saturate memory bandwidth and hence achieve optimal

46

32 64 128 256 512 1024

Thread Blocksize

2

4

6

8

10

12

14

T
im

e
T

ak
en

(i
n

m
s)

Items Per Thread

1 2 4

Figure 3-8: Q0 performance with varying tile sizes

performance.

2) We evaluated the selection query 𝑄0 using two approaches: independent threads

approach (Figure 3-3(a)) and using Crystal (Figure 3-3(b)). The number of entries

in the input array is 229 and selectivity is 0.5. The runtime with the independent

threads approach is 19ms compared to just 2.1ms when using Crystal. Almost all of

the performance improvement is from avoiding atomic contention and being able to

reorder matched entries to write in a coalesced manner.

Across all of the workloads we evaluated, we found that using thread block size

128 with items per thread equal to 4 is indeed the best performing tile configuration.

In the rest of the chapter, we use this configuration for all implementations. All the

implementations in this chapter were implemented by hand in CUDA C++ using

Crystal. Since Crystal’s block-wide functions are standard device functions, they

can also called directly from LLVM IR.

In the next section, we show how to use these block-wide functions to build efficient

operators on a GPU and compare their performance to equivalent CPU implementa-

tions.

47

3.6 Operators on GPU vs CPU

In order to understand the true nature of performance difference of queries on GPU

vs. CPU, it is important to understand the performance difference of individual query

operators. In this section, we compare the performance of basic operators: project,

select, hash join, and sorting/partitioning on GPU and CPU with the goal of un-

derstanding how the ratio of runtime on GPU to runtime on CPU compares to the

bandwidth ratio of the two devices. We use block-wide functions from Crystal to

implement the operators on GPU and use equivalent state-of-the-art implementations

on CPU. We also present a model for each of the operators assuming the operator sat-

urates memory bandwidth and show that in most cases the operators indeed achieve

these limits. We use the model to explain the performance difference between CPU

and GPU. For the micro-benchmarks, we use a machine where GPU memory band-

width is 880GBps and CPU memory bandwidth is 54GBps, resulting in a bandwidth

ratio of 16.2 (see Section 3.7 for system details). In all cases, we assume that the data

is already in the respective device’s memory.

3.6.1 Project

We consider two forms of projection queries: one that computes a linear combination

of columns (Q1) and one involving user defined function (Q2) as shown below:

Q1: SELECT a𝑥1 + b𝑥2 FROM R;

Q2: SELECT 𝜎(a𝑥1 + b𝑥2) FROM R;

where 𝑥1 and 𝑥2 are 4-byte floating point values. The number of entries in the input

array is 229. 𝜎 is the sigmoid function (i.e., 𝜎(𝑥) = 1
1+𝑒−𝑥) which can represent the

output of a logistic regression model. Note that 𝑄1 consists of basic arithmetic and

will certainly be bandwidth bound. 𝑄2 is representative of the most complicated

projection we will likely see in any SQL query.

On the CPU side, we implement two variants: CPU and CPU-Opt. CPU uses a

multi-threaded projection where each thread works on a partition of the input data.

CPU-Opt extends CPU with two extra optimizations: (1) non-temporal writes and (2)

48

SIMD instructions. Non-temporal writes are write instructions that bypass higher

cache levels and write out an entire cache line to main memory without first loading

it to caches. SIMD instructions can further improve performance. With a single

AVX2 instruction, for example, a modern x86 system can add, subtract, multiply, or

divide a group of 8 4-byte floating point numbers, thereby improving the computation

power and memory bandwidth utilization.

On the GPU side, we implement a single kernel that does two BlockLoad’s to load

the tiles of the respective columns, computes the projection and does a BlockStore

to store it in the result array.

Model: Assuming the queries can saturate the memory bandwidth, the expected

runtime of Q1 and Q2 is

runtime = 2× 4×𝑁

𝐵𝑟

+ 4×𝑁

𝐵𝑤

where 𝑁 is the number of entries in the input array and 𝐵𝑟 and 𝐵𝑤 are the read

and write memory bandwidth, respectively. The first term of the formula models the

runtime for loading columns 𝑥1 and 𝑥2, each containing 4-byte floating point numbers.

The second term models the runtime for writing the result column back to memory,

which also contains 4-byte floating point numbers. Note that this formula works for

both CPU and GPU, by plugging in the corresponding memory bandwidth numbers.

Performance Evaluation: Figure 3-9 shows the runtime of queries Q1 and Q2 on

both CPU and GPU (shown as bars) as well as the predicted runtime based on the

model (shown as dashed lines). The performance of Q1 on both CPU and GPU is

memory-bandwidth bound. CPU-Opt performs better than CPU due to the increased

memory bandwidth efficiency. GPU performs substantially better than both CPU

implementations due to its much higher memory bandwidth. The ratio of runtime

of CPU-Opt to GPU is 16.56 which is close to the bandwidth ratio of 16.2. The minor

difference is because read bandwidth is slightly lower than write bandwidth on the

CPU and the workload has a read:write ratio of 2:1.

A simple multi-threaded implementation of Q2 (i.e., CPU) does not saturate mem-

49

Q1 Q2
0

50

100

150

200

250

300
T

im
e

T
ak

en
(i

n
m

s)

90.5

282.4

64.0 69.6

3.9 3.9

CPU Model

GPU Model

CPU

CPU-Opt

GPU

Figure 3-9: GPU vs CPU performance on the project microbenchmark

ory bandwidth and is compute bound. After using the SIMD instructions (i.e,

CPU-Opt), performance improves significantly and the system is close to memory

bandwidth bound. The ratio of runtime of CPU-Opt to GPU for Q2 is 17.95. This

shows that even for fairly complex projections, good implementations on modern

CPUs are able to saturate memory bandwidth. GPUs do significantly better than

CPUs due to their high memory bandwidth, with the performance gain equal to the

bandwidth ratio.

3.6.2 Select

We now turn our attention to evaluating selections, also called selection scans. Se-

lection scans have re-emerged for main-memory query execution and are replacing

tradition unclustered indexes in modern OLAP DBMS [63]. We use the following

micro-benchmark to evaluate selections:

Q3: SELECT y FROM R WHERE y < v;

where 𝑦 and 𝑣 are both 4-byte floating point values. The size of input array is 229.

We vary the selectivity of the predicate from 0 to 1 in steps of 0.1.

To evaluate the above query on a multi-core CPU, we use the CPU implemen-

50

for each y in R:
if y > v:

output[i++] = v

(a) With branching

for each y in R:
output[i] = y
i += (y > v)

(b) With predication

Figure 3-10: Implementing selection scan

tation described earlier in Section 3.4. We evaluate three variants. The “naive”

branching implementation (CPU If) implements the selection using an if-statement,

as shown in Figure 3-14(a). The main problem with the branching implementation

is the penalty for branch mispredictions. If the selectivity of the condition is neither

too high nor too low, the CPU branch predictor is unable to predict the branch out-

come. This leads to pipeline stalls that hinder performance. Previous work has shown

that the branch misprediction penalty can be avoided by using branch-free predica-

tion technique [64]. Figure 3-14(b) illustrates the predication approach. Predication

transforms the branch (control dependency) into a data dependency. CPU Pred im-

plements selection scan with predication. More recently, vectorized selection scans

have been shown to improve on CPU Pred by using selective stores to buffer entries

that satisfy selection predicates and writing out entries using streaming stores [61].

CPU SIMDPred implements this approach.

On the GPU, the query is implemented as a single kernel as described in Section 3.4

and as shown in Figure 3-3(b). We implement two variants: GPU If implements the

selection using an if-statement and GPU Pred implements it using predication.

Model: The entire input array is read and only the matched entries are written to

the output array. Assuming the implementations can write out the matched entries

efficiently and saturate memory bandwidth, the expected runtime is:

runtime = 4×𝑁

𝐵𝑟

+ 4× 𝜎 ×𝑁

𝐵𝑤

where 𝑁 is the number of entries in the input array, 𝐵𝑟 and 𝐵𝑤 are the read and

write bandwidth of the respective device, and 𝜎 is the predicate selectivity.

Performance Evaluation: Figure 3-11 shows the runtime of the three algorithms

51

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity

0

20

40

60

80

100

120
T

im
e

T
ak

en
(i

n
m

s)
CPU If

CPU Pred

CPU SIMDPred

CPU Model

GPU If

GPU Pred

GPU Model

Figure 3-11: GPU vs CPU performance on the select microbenchmark

on CPU, two algorithms on GPU, and the performance models. CPU Pred does better

than CPU If at all selectivities except 0 (at 0, CPU If does no writes). Across the

range, CPU SIMDPred does better than the two scalar implementations. On GPU,

there is no performance difference between GPU Pred and GPU If — A single branch

misprediction does not impact performance on the GPU. Both CPU SIMDPred and GPU

If/Pred closely track their respective theoretical models which assume saturation of

memory bandwidth. The average runtime ratio of CPU-to-GPU is 15.8 which is close

to the bandwidth ratio 16.2. This shows that with efficient implementations, CPU

implementations saturate memory bandwidth for selections and the gain of GPU over

CPU is equal to the bandwidth ratio.

3.6.3 Hash Join

Hash join is the most popular algorithm used for executing joins in a database. Hash

joins have been extensively studied in the database literature, with many different

hash join algorithms proposed for both CPUs and GPUs [17, 19, 44, 16, 24, 37]. The

most commonly used hash join algorithm is the no partitioning join, which uses a

52

non-partitioned global hash table. The algorithm consists of two phases: in the build

phase, the tuples in one relation (typically the smaller relation) are used to populate

the hash table in parallel; in the probe phase, the tuples in the other relation are used

to probe the hash table for matches in parallel. For our microbenchmark, we focus

on the following join query:

Q4: SELECT SUM(A.v + B.v) AS checksum

FROM A,B WHERE A.k = B.k

where each table A and B consists of two 4-byte integer columns 𝑘, 𝑣. The two tables

are joined on key 𝑘. We keep the size of the probe table fixed at 256 million tuples,

totaling 2 GB of raw data. We use a hash table with 50% fill rate. We vary the size of

the build table such that it produces a hash table of the desired size in the experiment.

We vary the size of the hash table from 8KB to 1GB. The microbenchmark is the

same as what past works use [19, 17, 16, 69].

In this section, we mainly focus on the probe phase which forms the majority of

the total runtime. We discuss briefly the difference in execution with respect to build

time at the end of the section. There are many hash table variants, in this section we

focus on linear probing due to its simplicity and regular memory access pattern; our

conclusions, however, should apply equally well to other probing approaches. Linear

probing is an open addressing scheme that, to either insert an entry or terminate the

search, traverses the table linearly until an empty bucket is found. The hash table is

simply an array of slots with each slot containing a key and a payload but no pointers.

On the CPU side, we implemented three variants of linear probing. (1) CPU

Scalar implements a scalar tuple-at-a-time join. The probing table is partitioned

equally among the threads. Each thread iterates over its entries and for each entry

probes the hash table to find a matching entry. On finding a match, it adds 𝐴.𝑣 +𝐵.𝑣

to its local sum. At the end, we add the local sum to the global sum using atomic

instructions. (2) CPU SIMD implements vertical vectorized probing in a hash table [61].

The key idea in vertical vectorization is to process a different key per SIMD lane

and use gathers to access the hash table. Assuming 𝑊 vector lanes, we process 𝑊

53

different input keys on each loop iteration. In every round, for the set of keys that

have found their matches, we calculate their sum, add it to a local sum, and reload

those SIMD lanes with new keys. (3) Finally, CPU Prefetch adds group prefetching

to CPU Scalar [24]. For each loop iteration, software prefetching instructions are

inserted to load the hash table entry that will be accessed a certain number of loop

iterations ahead. The goal is to better hide memory latency at the cost of increased

number of instructions.

On the GPU side, we implemented the join as follows. We load in a tile of keys

and payloads from the probe side using BlockLoad; the threads iterate over each tile

independently to find matching entries from the hash table. Each thread maintains a

local sum of entries processed. After processing all entries in a tile, we use BlockAgg

to aggregate the local sums within a thread block into a single value and increment

a global sum with it.

Model: The probe phase involves making random accesses to the hash table to

find the matching tuple from the build side. Every random access to memory ends

up reading an entire cache line. However, if the size of hash table is small enough

such that it can be cached, then random accesses no longer hit main memory and

performance improves significantly. We model the runtime as follows:

1) If the hash table size is smaller than the size of the 𝐾𝑡ℎ level cache, we expect the

runtime to be:

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥(4× 2× |𝑃 |
𝐵𝑟

, (1− 𝜋𝐾−1)(
|𝑃 | × 𝐶

𝐵𝐾

))

where |𝑃 | is the cardinality of the probe table, 𝐵𝑟 is the read bandwidth from device

memory, 𝐶 is the cache line size accessed on probe, 𝐵𝐾 is the bandwidth of level 𝐾

cache in which hash table fits and 𝜋𝐾−1 is the probability of an access hitting a 𝐾−1

level cache. The first term is the time taken to scan the probe table from device

memory. The second term is the time for probing the hash table. Note that each

probe accesses an entire cache line. If the size of level 𝐾 cache is 𝑆𝐾 and size of the

54

hash table is H, we define cache hit ratio 𝜋𝐾 = 𝑚𝑖𝑛(𝑆𝐾/𝐻, 1). The total runtime will

be bounded by either the device memory bandwidth or the cache bandwidth. Hence,

the runtime is the maximum of the two terms.

2) If the hash table size is larger than the size of the last level cache, we expect the

runtime to be:

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 4× 2× |𝑃 |
𝐵𝑟

+ (1− 𝜋)(|𝑃 | × 𝐶

𝐵𝑟

)

where 𝜋 is the probability that the accessed cache line is the last level cache.

Performance Evaluation: Figure 3-12 shows the performance evaluation of differ-

ent implementations of Join. Both CPU and GPU variants exhibit step increase in

runtime when the hash table size exceeds the cache size of a particular level. On the

CPU, the step increases happen when the hash table size exceeds 256KB (L2 cache

size) and 20MB (L3 cache size). On the GPU, the step increase happens when the

hash table size exceeds 6MB (L2 cache size).

We see that CPU SIMD performs worse than CPU Scalar, even when the hash table

is cache-resident. CPU-SIMD uses AVX2 instructions with 256-bit registers which

represent 8 lanes of 32-bit integers. With 8 lanes, we process 8 keys at a time.

However, a single SIMD gather used to fetch matching entries from the hash table

can only fetch 4 entries at a time (as each hash table lookup returns an 8 byte slot.

i.e., 4-byte key and 4-byte value, with 4 lookups filling the entire register). As a result,

for each set of 8 keys, we do 2 SIMD gathers and then de-interleave the columns into

to 8 keys and 8 values. This added overhead of extra instructions does not exist in

the scalar version. CPU SIMD is also brittle and not easy to extend to cases where

hash table slot size is larger than 8 bytes. Note that past work has evaluated vertical

vectorization with key-only build relations which do not exhibit this issue [61, 52].

Comparing CPU Prefetch to CPU Scalar shows that there is limited improvement

from prefetching when data size is larger than the L3 cache size. When the hash

table fits in cache, prefetching degrades the performs due to added overhead of the

55

8KB 32KB 128KB 512KB 2MB 8MB 32MB 128MB 512MB

Hash Table Size

0

100

200

300

400

500
T

im
e

T
ak

en
(i

n
m

s)
CPU SIMD

CPU Prefetch

CPU Scalar

CPU Model

GPU

GPU Model

Figure 3-12: GPU vs CPU performance on the join microbenchmark

prefetching instructions.

Due the step change nature of the performance curves, the ratio of the runtimes

varies based on hash table size. When the hash table size is between 32KB and

128KB, the hash table fits in L2 on both CPU and GPU. In this segment, we observe

that the runtime is bound by DRAM memory bandwidth on CPU and L2 cache

bandwidth on the GPU. The average gains are roughly 5.5× which is in line with the

model. When the hash table size is between 1MB and 4MB, the hash table fits in

the L2 on the GPU and in the L3 cache on the CPU. The ratio of runtimes in this

segment is 14.5× which is the ratio of L2 cache bandwidth on GPU to the L3 cache

bandwidth on the CPU. Finally when the hash table size is larger than 128MB, the

hash table does not fit in cache on either GPU or CPU. The granularity of reads from

global memory is 128B on GPU while on CPU it is 64B. Hence, random accesses into

the hash table read twice the data on GPU compared to CPU. Given the bandwidth

ratio is 16.2x, we would expect it as roughly 8.1x, however it is 10.5x due to memory

stalls. The fact that actual CPU results are slower than CPU Model is because the

56

model assumes maximum main memory bandwidth, which is not achievable as the

hash table causes random memory access patterns.

Discussion: The runtime of the build phase in the microbenchmark shows a linear

increase with size of the build relation. The build phase runtimes are less affected by

caches as writes to hash table end up going to memory.

In this section, we modeled and evaluated the no partitioning join. Another variant

of hash join is the partitioned hash join. Partitioned hash joins use a partitioning

routine like radix partitioning to partition the input relations into cache-sized chunks

and in the second step run the join on the corresponding partitions. Efficient radix-

based hash join algorithms (radix join) have been proposed for CPUs [17, 19, 16, 24]

and for the GPUs [66, 71]. Radix join requires the entire input to be available before

the join starts and as a result intermediate join results cannot be pipelined. Hence,

while radix join is faster for a single join, radix joins are not used for queries with

multiple joins. While we do not explicitly model/evaluate radix joins, in the next

section we discuss the radix partitioning routine that is the key component of such

joins. That discussion shows that a careful radix partition implementation on both

GPU and CPU are memory bandwidth bound, and hence the performance difference

is roughly equal to the bandwidth ratio.

3.6.4 Sort

In this section, we evaluate the performance of sorting 32-bit key and 32-bit value

arrays based on the key. According to literature, the fastest sort algorithm for this

workload is the radix sort algorithm. We start by describing the Least-Significant-Bit

(LSB) radix sort on the CPU [62] and on the GPU [53]. LSB radix sort is the fastest

for the workload on the CPU. We describe why the LSB radix sort does poorly in

comparison on the GPU and why an alternate version called Most-Significant-Bit

(MSB) radix sort does better on the GPU [75]. We present a model for the runtime

of the radix sort algorithm and then analyze the performance characteristics of radix

partitioning on CPU vs GPU. Our implementations are primarily based on previous

work but this is first time that these algorithm are compared to each other.

57

The LSB radix sort internally comprises a sequence of radix partition passes.

Given an array 𝐴, radix 𝑟, and start bit 𝑎, a radix partition pass partitions the

elements of the input array 𝐴 into a contiguous array of 2𝑟 output partitions based

on value of r-bits 𝑒[𝑎 : 𝑎 + 𝑟) (i.e., radix) of the key 𝑒. Both on the CPU and GPU,

radix partitioning involves two phases. In the first phase (histogram phase), each

thread (CPU) / thread block (GPU) computes a histogram over its entries to find

the number of entries in each partition of the 2𝑟 partitions. In the second phase

(data shuffling phase), each thread (CPU) / thread block (GPU) maintains an array

of pointers initialized by the prefix sum over the histogram and writes entries to the

right partition based on these offsets. The entire sorting algorithm contains multiple

radix partition passes, with each pass looking at a disjoint sets of bits of the key

𝑒 starting from the lowest bits 𝑒[0 : 𝑟) to highest bits 𝑒[𝑘 − 𝑟 : 𝑘) (where 𝑘 is the

bit-length of the key).

On the CPU, we use the implementation of Polychroniou et al. [62]. In the his-

togram phase, each thread makes one pass over its partition, for each entry calculating

its radix value and incrementing the count in the histogram (stored in the L1 cache).

For the shuffle phase, we first compute a prefix sum over the histograms of all the

threads (a 2D array of dimension 2𝑟 × 𝑡 where t is the number of threads) to find

the partition offsets for each of the threads. Next, each thread makes a pass over

its partition using gathers and scatters to increment the counts in its offset array

and writing to right offsets in output array. The implementation makes a number of

optimizations to achieve good performance. Interested reader can refer to [62] for

more details.

On the GPU, we implemented LSB radix sort based on the work of Merrill et

al. [53]. In the histogram phase, each thread block loads a tile, computes a histogram

that counts the number of entries in each partition, and writes it out to global memory.

Prefix sum is used to find the partition offsets for each thread block in the output

array. Next, in the shuffling phase each thread block reads in its offset array. The

radix partitioning pass described above need to do stable partitioning i.e., ensures

that for two entries with the same radix, the one occurring earlier in the input array

58

also occurs earlier in the output array. Now on the GPU, in order to ensure stable

partitioning for LSB radix sort we need to internally generate an offsets array for

each thread from the the thread block offset array. For an r-bit radix partitioning, we

need 2𝑟 size histogram per thread. A number of optimizations have been proposed to

store the histogram efficiently in registers, details of which are described in [53]. Due

to restriction on number of registers available per thread, stable radix partitioning

pass can only process 7-bits at a time.

Recently, Stehle et al. [75] presented an MSB radix sorting algorithm for the GPU.

The MSB radix sort does not require stable partitioning. As a result, in the shuffle

phase, we can just maintain a single offset array of size 2𝑟 for the entire thread block.

This allows MSB radix sort to process up to 8-bits at a time. Hence, the MSB radix

sort to sort array of 32-bit keys with 4 passes each processing 8-bits at a time. On

the other hand, LSB radix sort can processes only 7-bits at a time, and hence needs

5 radix partitioning passes processing 6,6,6,7,7 bits each.

Model: In the histogram phase, we read in the key column and write out a tiny

histogram. The expected runtime is:

runtimehistogram = 4×𝑅

𝐵𝑟

where 𝑅 is the size of the input array and 𝐵𝑟 is the read bandwidth. In the shuffle

phase, we read both the key and payload column and at the end write out the radix

partitioned key and payload columns. If the step is memory bandwidth bound, the

runtime is expected to be:

runtimeshuffle = 2× 4×𝑅

𝐵𝑟

+ 2× 4×𝑅

𝐵𝑤

where 𝐵𝑤 is the write bandwidth.

Performance Evaluation: We evaluate the performance of histogram and shuffle

phase of the three variants: CPU Stable (stable partitioning on CPU), GPU Stable

59

3 4 5 6 7 8 9 10 11
radix r (Log # of partitions)

0

10

20

Ti
m

e
Ta

ke
n

(in
 m

s)

CPU Stable
CPU Model

GPU Stable
GPU Unstable

GPU Model

(a) Radix histogram on CPU and GPU

3 4 5 6 7 8 9 10 11
radix r (Log # of partitions)

0

50

100

150

Ti
m

e
Ta

ke
n

(in
 m

s)

(b) Radix shuffling on CPU and GPU

Figure 3-13: GPU vs CPU performance on the sort microbenchmark

(stable partitioning on GPU), and GPU Unstable (unstable partitioning on GPU).

We set the size of the input arrays at 256 million entries and vary the number of

radix bits we partition on. Figure 3-13a shows the results for the histogram phase.

Note that in the histogram phase there is no difference between GPU Stable and GPU

Unstable. The histogram pass is memory bandwidth bound on both the CPU and

GPU. Figure 3-13b shows the results for the shuffle phase. GPU Stable is able to

partition up to 7-bits at a time whereas GPU Unstable is able to partition 8-bits at a

time. CPU Stable is able to partition up to 8-bits a time while remaining bandwidth

bound. Beyond 8-bits, the size of the partition buffers needed exceeds the size of L1

cache and the performance starts to deteriorate.

Now that we have the radix partitioning passes, we look at the sort runtime. On

the CPU, we use stable partitioning to implement LSB radix sort. It ends up running

4 radix partitioning passes each looking at 8-bits at time. On the GPU, MSB radix

60

for each y in R:
if y > v:

output[i++] = v

(a) With branching

for each y in R:
output[i] = y
i += (y > v)

(b) With predication

Figure 3-14: Implementing selection scan

sort also sorts the data with 4 passes each processing 8-bits at a time. The time taken

to sort 228 entries is 464𝑚𝑠 on the CPU and 27.08𝑚𝑠 on the GPU. The runtime gain

is 17.13× which is close to the bandwidth ratio of 16.2×.

3.7 Workload Evaluation

Now that we have a good understanding of how individual operators behave on both

CPU and GPU, we will evaluate the performance of a workload of full SQL queries

on both hardware platforms. We first describe the query workload we use in our

evaluation. We then present a high-level comparison of the performance of queries

running on GPU implemented with the tile-based execution model versus our own

equivalent implementation of the queries on the CPU. We also report the performance

of Hyper [56] on CPU and Omnisci [9] on the GPU which are both state-of-the-art

implementations. As a case study, we provide a detailed performance breakdown of

two of the queries to explain the performance gains. Finally, we present a dollar-cost

comparison of running queries on CPU and GPU.

We use two platforms for our evaluation. For experiments run on the CPU, we

use a machine with a single socket Skylake-class Intel i7-6900 CPU with 8 cores that

supports AVX2 256-bit SIMD instructions. For experiments run on the GPU, we

use an instance which contains an Nvidia V100 GPU. We measured the bidirectional

PCIe transfer bandwidth to be 12.8GBps. More details of the two instances are

shown in Table 2. Each system is running on Ubuntu 16.04 and the GPU instance

has CUDA 10.0. In our evaluation, we ensure that data is already loaded into the

respective device’s memory before experiments start. We run each experiment 3 times

and report the average measured execution time.

61

3.7.1 Workload

For the full query evaluation, we use the Star Schema Benchmark (SSB) [57] which

has been widely used in various data analytics research studies [46, 83, 78, 31]. SSB

is a simplified version of the more popular TPC-H benchmark. It has one fact table

lineorder and four dimension tables date, supplier, customer, part which are organized

in a star schema fashion. There are a total of 13 queries in the benchmark, divided

into 4 query flights. In our experiments we run the benchmark with a scale factor of

20 which will generate the fact table with 120 million tuples. The total dataset size

is around 13GB.

3.7.2 Performance Comparison

In this section, we compare the query runtimes of benchmark queries implemented

using block-wide functions on the GPU (Standalone GPU) to an equivalent efficient

implementation of the query on the CPU (Standalone CPU). We also compare against

Hyper (Hyper), a state-of-the-art OLAP DBMS and Omnisci (Omnisci), a commercial

GPU-based OLAP DBMS.

In order to ensure a fair comparison across systems, we dictionary encode the

string columns into integers prior to data loading and manually rewrite the queries

to directly reference the dictionary-encoded value. For example, a query with pred-

icate s_region = ‘ASIA’ is rewritten with predicate s_region = 2 where 2 is the

dictionary-encoded value of ‘ASIA’. Some columns have a small number of distinct

values and can be represented/encoded with 1-2 byte values. However, in our bench-

mark we make sure all column entries are 4-byte values to ensure ease of comparison

with other systems and avoid implementation artifacts. Our goal is to understand the

nature of the performance gains of equivalent implementations on GPU and CPU,

and not to achieve best storage layout. We store the data in columnar format with

each column represented as an array of 4-byte values. On the GPU, we use a thread

block size of 256 with tile size of 1024 (= 4×256) resulting in 4 entries per thread per

tile.

62

Platform CPU GPU
Model Intel i7-6900 Nvidia V100
Cores 8 (16 with SMT) 5000
Memory Capacity 64 GB 32 GB
L1 Size 32KB/Core 16KB/SM
L2 Size 256KB/Core 6MB (Total)
L3 Size 20MB (Total) -
Read Bandwidth 53GBps 880GBps
Write Bandwidth 55GBps 880GBps
L1 Bandwidth - 10.7TBps
L2 Bandwidth - 2.2TBps
L3 Bandwidth 157GBps -

Table 3.2: Hardware Specifications

q1.1 q1.2 q1.3 q2.1 q2.2 q2.3 q3.1 q3.2 q3.3 q3.4 q4.1 q4.2 q4.3 mean
Queries

100

101

102

103

T
im

e
T

ak
en

(i
n

m
s)

Hyper (CPU) Standalone (CPU) Omnisci (GPU) Standalone (GPU)

Figure 3-15: Star Schema Benchmark Queries

Figure 5-11 shows the results. Comparing Standalone CPU to Hyper shows that

the former does on an average 1.17x better than the latter. We believe Hyper is

missing vectorization opportunities and using a different implementation of hash ta-

bles. The comparison shows that our implementation is a fair comparison and it is

quite competitive compared to a state-of-the-art OLAP DBMS. We also compared

against MonetDB [22], a popular baseline for many of the past works on GPU-based

databases. We found that the Standalone CPU is on an average 2.5× faster than

MonetDB. We did not include it in the figure as it made the graph hard to read. We

also tried to compare against Pelaton with relaxed-operator fusion [52]. We found

that the system could not load the scale factor 20 dataset. Scaling down to scale

factor 10, its queries were significantly slower (>5×) than Hyper or our approach.

Comparing Standalone GPU to Omnisci, we see that our GPU implementation

does significantly better than Omnisci with an average improvement of around 16×.

Both methods run with the entire working set stored on the GPU. Omnisci treats

63

each GPU thread as an independent unit. As a result, it does not realize benefits of

blocked loading and better GPU utilization got from using the tile-based model. The

comparison of Standalone GPU against Omnisci and Standalone CPU to Hyper serve

as a sanity check and show that our query implementations are quite competitive.

Comparing Standalone GPU to Standalone CPU, we see that the Standalone

GPU is on average 25× faster than the CPU implementation. This is higher than

the bandwidth ratio of 16.2. This is surprising given that in Section 3.6 we saw

that individual query operators had a performance gain equal to or lower than the

bandwidth ratio. The key reason for the performance gain being higher than the

bandwidth ratio is the better latency hiding capability of GPUs. To get a better

sense for the runtime difference, in the next subsection we discuss models for the full

SQL queries and dive into why architecture differences leads to significant difference

in performance gain from the bandwidth ratio.

3.7.3 Case Study

The queries in the Star Schema Benchmark can be broken into two sets: 1) the query

flight 𝑞1.𝑥 consists of queries with selections directly on the fact table with no joins

and 2) the query flights 𝑞2.𝑥, 𝑞3.𝑥, 𝑞4.𝑥 consist of queries with no selections on fact

table and multiple joins — some of which are selective. In this section, we analyze the

behavior q2.1 in detail as a case study. Due to space constraints, we do not model all

queries, instead we focus two queries q1.1 and q2.1 (one from each bucket). For each

query, we build a model assuming the query is memory-bandwidth bound, derive the

expected runtime based on the model, compare them against the observed runtime,

and explain the differences observed.

Q1.1: Figure 3-1 shows the query. The query filters the lineorder tables based

on 3 columns. The selectivity of predicates on lo_orderdate, lo_discount, and

lo_quantity are 1/5, 3/11, and 1/2 respectively. Figure 3-16a shows the query plan

on the CPU and Figure 3-16b shows the implementation on GPU using block-wide

64

𝜎lo_discount

𝜎lo_quantity

𝜎lo_orderdate

𝛤

Lineorder

(a) CPU Query Plan

BlockLoad lo_orderdate

BlockPred

BlockLoad lo_discount

AndPred

BlockLoad lo_quantity AndPred

BlockLoad lo_extendedprice

Compute	Aggregate	 Func

BlockAggregate

Atomic	Update
Global	Sum

(b) GPU Implementation

Figure 3-16: Star Schema Benchmark Q1.1 Execution Plan

functions. The total number of cache lines accessed is approximately:

𝑛 = 4|𝐿|
𝐶

+ 𝑚𝑖𝑛(4|𝐿|
𝐶

, |𝐿|𝜎1) + 𝑚𝑖𝑛(4|𝐿|
𝐶

, |𝐿|𝜎1𝜎2)

+ 𝑚𝑖𝑛(4|𝐿|
𝐶

, |𝐿|𝜎1𝜎2𝜎3)

|𝐿| is the cardinality of the lineorder table, 𝐶 is the cache line size and 𝜎1, 𝜎2, 𝜎3

are selectivity of the 3 predicates. The four terms represent the number of cache

lines accessed from the four columns: lo_orderdate, lo_discount, lo_quantity

and lo_extendedprice respectively. For each column except the first, the number

of cache lines accessed is the minimum of: 1) accessing all cache lines of the column

(4|𝐿|
𝐶

) and 2) accessing a cache line per entry read (|𝐿|𝜎). Given 𝑛, the query runtime

is 𝑛*𝐶/𝐵𝑟 where 𝐵𝑟 is the memory read bandwidth of the respective device. Plugging

in the values we get the expected runtime on CPU and GPU as 26.7 ms and 1.98 ms

compared to the actual runtime of 40.2 ms and 2 ms. The GPU runtime observed

is close to the runtime expected based on the model. There is significant difference

between the observed and expected runtimes on the CPU. The key reason for it is that

the 2nd and 3rd selection result in more irregular memory accesses with prefetchers

65

SELECT SUM(lo_revenue) AS revenue, d_year, p_brand
FROM lineorder, date, part, supplier
WHERE lo_orderdate = d_datekey
AND lo_partkey = p_partkey AND lo_suppkey = s_suppkey
AND p_category = ’MFGR#12’ AND s_region = ’AMERICA’
GROUP BY d_year, p_brand

Figure 3-17: Star Schema Benchmark Q2.1

⨝

𝜎s_regionLineorder

Supplier

𝜎p_category

Part

𝜎d_date

Date

⨝

⨝(Group)

Figure 3-18: Star Schema Benchmark Q2.1 Execution Plan

are less able to effectively predict and hence result in pipeline stalls. The performance

gain observed is 20×, only slightly higher than that bandwidth ratio of GPU over

CPU.

Q2.1: Figure 3-17 shows the query: it joins the fact table lineorder with 3 dimension

tables: supplier, part, and date. The selectivity of predicates on p_category and

s_region are 1/25 and 1/5 respectively. The subsequent join of part and supplier

have the same selectivity. We choose a query plan where lineorder first joins

supplier, then part, and finally date, this plan delivers the highest performance

among the several promising plans that we have evaluated. Figure 3-18 shows the

query plan.

The cardinalities of the tables lineorder, supplier, part, and date are 120𝑀 ,

40𝑘, 1𝑀 , and 2.5𝑘 respectively. The query runs build phase for each of the 3 joins to

build their respective hash tables. Then a final probe phase runs the joins pipelined.

Given the small size of the dimension tables, the build time is much smaller than the

66

probe time, hence we focus on modeling the probe time. On the GPU, each thread

block processes a partition of the fact table, doing each of the 3 joins sequentially and

updating a global hash table at the end that maintains the aggregate. Past work [51]

has shown that L2 cache on the GPU is an LRU set associative cache. Since hash

tables associated with the supplier and date table are small, we can assume that

they remain in the L2 cache. The size of the part hash table is larger than L2 cache.

We model the runtime as consisting of 3 components:

1) The time taken to access the columns of the fact table:

𝑟1 = (4|𝐿|
𝐶

+ 𝑚𝑖𝑛(4|𝐿|
𝐶

, |𝐿|𝜎1) + 𝑚𝑖𝑛(4|𝐿|
𝐶

, |𝐿|𝜎1𝜎2)

+ 𝑚𝑖𝑛(4|𝐿|
𝐶

, |𝐿|𝜎1𝜎2))×
𝐶

𝐵𝑟

where 𝜎1 and 𝜎2 are join selectivities associated with join with supplier and part

tables respectively, |𝐿| is the cardinality of the lineorder table, 𝐶 is size of cache

line, and 𝐵𝑟 is the global memory read bandwidth. For each column except the first,

the number of cache lines accessed is the minimum of: 1) accessing all cache lines of

the column (4|𝐿|
𝐶

) and 2) accessing a cache line per entry read (|𝐿|𝜎).

2) Time taken to probe the join hash tables:

𝑟2 = (2× |𝑆|+ 2× |𝐷|+ (1− 𝜋)(|𝐿|𝜎1))×
𝐶

𝐵𝑟

where |𝑆| and |𝐷| are cardinalities of the supplier and date table, (|𝐿|𝜎1) represents

the number of lookups into the parthash table and 𝜋 is the probability of finding the

part hash table lookup in the L2 cache.

3) Time taken to read and write to the result table:

𝑟3 = |𝐿|𝜎1𝜎2 ×
𝐶

𝐵𝑟

+ |𝐿|𝜎1𝜎2 ×
𝐶

𝐵𝑤

The total runtime on GPU is 𝑟1 + 𝑟2 + 𝑟3. The key difference with respect to

CPU is that on the CPU, all three hash tables fit in the L3 cache. Hence for CPU,

we would have 𝑟2 = (2 × |𝑆| + 2 × |𝐷| + 2 × |𝑃 |). To calculate 𝜋, we observe that

67

the size of the part hash table (with perfect hashing) is 2× 4× 1𝑀 = 8𝑀𝐵. With

the supplier and date table in cache, the available cache space is 5.7MB. Hence

the probability of part lookup in L2 cache is 𝜋 = 5.7/8. Plugging in the values we

get the expected runtimes on the CPU and GPU as 47 ms and 3.7 ms respectively

compared to actual runtime of 125 ms and 3.86 ms.

We see that the model predicted runtime on the GPU is close to the actual runtime

whereas on the CPU, the actual runtime is higher than the modeled runtime. This

is in large part because of the ability of GPUs to hide memory latency even with

irregular accesses. SIMT GPUs run scalar code, but they “tie” all the threads in a

warp to execute the same instruction in a cycle. For instance, gathers and scatter

are written as scalar loads and stores to non-contiguous locations. In a way, CPU

threads are similar to GPU warps and GPU threads are similar to SIMD lanes. A key

difference between SIMT model on GPU vs SIMD model on CPU is what happens on

memory access. On the CPU, if a thread makes a memory access, the thread waits

for the memory fetch to return. If the cache line being fetched is not in cache, it leads

to a memory stall. CPU have prefetchers to remedy this, but prefetchers do not work

well with irregular access patterns like join probes. On the GPU, a single streaming

multiprocessor (SM) usually has 64 cores that can execute 2 warps (64 threads) at

any point. However, the SM can keep > 2 warps active at a time. On Nvidia V100,

each SM can hold 64 warps in total with 2 executing at any point in time. Any time

a warp makes a memory request, the warp is swapped out from execution into the

active pool and another warp that is ready to execute ends up executing. Once the

memory fetch returns, the earlier warp can resume executing at the next available

executor cores. This is similar to swapping of threads on disk access on CPU. This

key feature allows GPUs to avoid the memory stalls associated with irregular accesses

as long as enough other threads are ready to execute. Modeling query performance of

multi-join queries on CPUs is an interesting open problem which we plan to address

as future work.

68

Purchase Cost Renting Cost
CPU $2-5K $0.504 per hour
GPU $CPU + 8.5K $3.06 per hour

Table 3.3: Purchase and renting cost of CPU and GPU instance

3.7.4 Cost Comparison

The chapter has so far demonstrated that GPUs can have superior performance than

CPUs for data analytics. However, GPUs are known to be more expensive than CPUs

in terms of cost. Table 3.3 shows both the purchase and renting cost of CPU and

GPU that match the hardware used in this chapter (i.e., Table 3.2). For renting

costs, we use the cost of EC2 instances provided by Amazon Web Services (AWS).

For CPU, we choose the instance type r5.2xlarge which contains a modern Skylake

CPU with 8 cores, with a cost of $0.504 per hour. For GPU, we choose the instance

type p3.2xlarge whose specs are similar to r5.2xlarge plus it has an Nvidia V100

GPU, with a cost of $3.06 per hour. The cost ratio of the two systems is about 6×.

For purchase costs, we compare the estimate of a single socket server blade to the

same server blade with one Nvidia V100 GPU. The cost ratio of the two systems

at the high end is less than 6×. The average performance gap, however, is about

25× according to our evaluation (cf. Section 3.7.2), which leads to a factor of 4

improvement in cost effectiveness of GPU over CPU. Although the performance and

cost will vary a lot across different CPU and GPU technologies, the ratio between the

two will not change as much. Therefore, we believe the analysis above should largely

apply to other hardware selection.

3.8 Conclusion

This chapter compared CPUs and GPUs on database analytics workloads. We demon-

strated that running an entire SQL query on a GPU delivers better performance than

using the GPU as an accelerator. To ease implementation of high-performance SQL

queries on GPUs, we developed Crystal, a library supporting a tile-based execution

model. Our analysis on SSB, a popular analytics benchmark, shows that modern

69

GPUs are 25× faster and 4× more cost effective than CPUs.

70

Part II

Novel GPU Query Operators

71

72

Chapter 4

Top-K

4.1 Introduction

A common type of analytical SQL query involves running a top-𝑘, i.e., finding the

highest (or lowest) 𝑘 of 𝑛 tuples given a ranking function. Examples of top-k queries

include asking for the most expensive products on an e-commerce site, the best-rated

restaurants in a review site, or the worst performing queries in a query log. Top-k

is a well studied problem in computer science in general and data management in

particular since top-k calculation (order-by/limit clauses) is supported by virtually

every data analytics system. There are many instances of the problem and a diversity

of efficient solutions (see [42] for a survey).

A naïve method for finding the top-k elements is to sort them and return the

first 𝑘. However, sorting does more work than necessary, as there is no need to sort

the elements beyond the top-k. A better approach is to maintain a priority-queue

(a.k.a. max-heap) of size k and inserting greater elements while removing lesser

ones. The runtime of this approach is in the order of 𝑛 log (𝑘). This algorithm can

be parallelized across 𝑚 processors by logically partitioning the data, having each

processor compute a per-partition top-k and computing the global top-k from the

𝑚 per-partition heaps. While this method can be efficiently implemented on multi-

core processors (see Section 4.5.7), it is not suited to the Single-Instruction-Multiple-

73

Heapsort Bitonic
Sort

Priority
Queues ???

ParallelSequential

Sort
Top-K

Figure 4-1: The Duality of Top-K and Sorting

Threads execution model of massively parallel systems1. With the recent interest in

GPU-based query processing [55, 83, 39, 60, 13, 49], there is an obvious need for a

efficient, massively parallel algorithm to solve the top-k problem. In fact, we found

that two of the most mainstream GPU programming frameworks (Tensorflow and

Arrayfire) [5, 3] have open feature requests to add a top-k operator.

One way to develop an intuition for the existence and even the characteristics of

a solution to this problem is to consider the duality of top-k and sorting algorithms.

We illustrate this duality in Figure 4-1: the corresponding sort algorithm to priority

queues is heapsort. In fact, one may view heapsort as the construction of a priority

queue with 𝑘 = 𝑛 and the subsequent extraction of the elements in sorted order. This,

of course, hides many implementations details but helps to form an intuition. When

thinking about sorting and top-k in the context of massively parallel architectures, one

finds that the textbook massively parallel sorting algorithm is bitonic sorting. Yet,

there is no known corresponding top-k algorithm to bitonic-sort. We can, however,

hypothesize that, like bitonic sort, it is likely to be based on bitonic merges and needs

to incorporate a number of low-level optimizations to make it compute- as well as

bandwidth-efficient.

In this work, we systematically develop this intuition into a working algorithm by

extensively studying existing top-k solutions on GPUs and developing a novel solution

1the unpredictable execution flow leads to high branch divergence overhead

74

targeted towards massively parallel architectures. We found that it is in fact based

on bitonic merges and called it bitonic top-k. We investigate the characteristics of

a number of other potential top-k algorithms for GPUs, including sorting and heap-

based algorithms, as well as radix-based algorithms that use the high-order bits to

find the top items. In the end, we find that bitonic top-k is up to 4 times faster than

other top-k approaches and upto 15x faster than sorting for k up to 256.

These new algorithms have the potential to directly impact the performance of

modern GPU-based database systems: all of the systems we are aware of (PG Strom,

Ocelot, and MapD) currently use sort or transfer the entire dataset to the CPU for

top-k calculation. They could, thus, directly obtain the benefits of our approach

by integrating our algorithm. While we do not explicitly study means of mitigat-

ing the PCI-E bottleneck, having an efficient GPU-based top-k operator will allow

these system to transfer less data through the PCI-E bus and, thus, achieve higher

performance.

In summary, we make the following contributions:

∙ We study the performance characteristics of a variety of different top-k algo-

rithms on a variety benchmarks, varying the data-set size, the value of 𝑘, the

type of data (ints vs floats), and the initial distribution of data.

∙ We develop a novel, massively parallel, algorithm for the efficient evaluation of

top-k queries.

∙ We devise a number of optimizations (in part based on known techniques, in

part entirely novel) and show that our new bitonic top-k algorithm generally

outperforms all other algorithms, often by a factor of 4𝑥 or more, for values of

𝑘 up to 256. Furthermore, we demonstrate its robustness against skewed input

data distributions.

∙ We demonstrate that the algorithm is able to be integrated into existing systems

(specifically, MapD.)

∙ Finally, we develop detailed cost models for our bitonic top-k as well as other

75

algorithms, and show that these cost models can accurately predict runtimes,

which is valuable when a query planner needs to choose a top-k implementation.

Before describing the details of our algorithms, optimizations, and experiments,

we begin with a discussion of existing sorting and top-k algorithms for GPUs.

4.2 Background

4.2.1 Sorting on the GPU

Many sorting algorithms have been proposed over the years. The early implementa-

tions were often based on bitonic sort [18, 58, 34]. Later, radix-based sort algorithms

were proposed which perform better than bitonic sort [67, 54, 76].

Bitonic Sort Bitonic sort is based on bitonic sequences, i.e. concatenations of two

subsequences sorted in opposite directions. Given a bitonic sequence 𝑆 with length 𝑙

= 2𝑟, 𝑆 can be sorted ascending (or descending) in r steps. In the first step the pairs

of elements (𝑆[0], 𝑆[𝑙/2]), (𝑆[1], 𝑆[𝑙/2 + 1]), ..., (𝑆[𝑙/2− 1], 𝑆[𝑙− 1]) are compared and

exchanged if the second element is smaller than the first element. This results in two

bitonic sequences, (𝑆[0], ..𝑆[𝑙/2 − 1]) and (𝑆[𝑙/2], ...𝑆[𝑙 − 1]) where all the elements

in the first subsequence are smaller than any element in the second subsequence. In

the second step, the same procedure is applied to both the subsequences, resulting

in four bitonic sequences. All elements in the first subsequence are smaller than any

element in the second, all elements in the second subsequence are smaller than any

element in the third and all elements in the third subsequence are smaller than any

element in the fourth subsequence. The third, fourth, ..., r-th step follow similarly.

Processing the r-th step results in 2𝑟 subsequences of length 1, thus the sequence 𝑆

is sorted.

Let 𝐴 be the input array to sort and let 𝑛 = 2𝑘 be the length of A. The pro-

cess of sorting A consists of k phases. The subsequences of length 2 (𝐴[0], 𝐴[1]),

(𝐴[2], 𝐴[3]), ..., (𝐴[𝑛 − 2], 𝐴[𝑛 − 1]) are bitonic sequences by definition. In the first

phase these subsequences are sorted (as described above) alternating ascending and

76

Phase
Step

1
1 2 1

2 3
4 2 1

0
1
2
3
4
5
6
7

(a) Algorithm.

Unsorted Input After Phase 1 After Phase 2 After Phase 3

(b) Example Data (red bars sorted increasing, blue decreasing)

Figure 4-2: Bitonic Sorting Network

descending. This creates bitonic subsequences of length 4, (𝐴[0], 𝐴[1], 𝐴[2], 𝐴[3]), ...,

(𝐴[𝑛 − 4], 𝐴[𝑛 − 3], 𝐴[𝑛 − 2], 𝐴[𝑛 − 1]). In the second phase these subsequences of

length 4 are sorted alternating ascending and descending, resulting in subsequences

of length 8 being bitonic sequences. In the i-th phase of bitonic sort the total number

of subsequences being sorted is 2𝑘−𝑖 and the length of each of these subsequences is

2𝑖, thus the i-th phase consists of i steps. After the (k-1)-th phase the array A is a

bitonic sequence. A is sorted in the last phase k.

In every step 𝑛/2 compare/exchange operations are processed. There are 𝑙𝑜𝑔𝑛

phases, with the 𝑖-th phase having 𝑖 steps. Thus, the number of comparisons is

𝑂(𝑛𝑙𝑜𝑔2𝑛). Hence, bitonic sort is slower than other 𝑂(𝑛𝑙𝑜𝑔𝑛) sort algorithms on a

serial CPU. The advantage of bitonic sort is that it can be easily parallelized on SIMT

and SIMD architectures and requires less inter-process communication. Figure 4-2a

shows the bitonic sorting network for an arbitrary sequence of size 8. There 𝑙𝑜𝑔28 = 3

phases, where phase 𝑖 has 𝑖 steps. Every step consists of 8/2 = 4 comparisons.

77

Sorting in Figure 4-2a(a) follows the process described above: in phase 1, elements

0 and 1 are compared and sorted in asscending order; elements 2 and 3 are sorted

descending; elements 4 and 5 ascending, and so on. Each of these comparisons can be

done in parallel on separate threads. At the end phase 1, there are 4 sorted sequences

of length 2. In phase 2, with step size 2, first elements 0 and 2 and 1 and 3 are

compared and sorted descending, while 4 and 6 and 5 and 7 are sorted ascending.

These comparisons can also be done in parallel. Then, phase 2 with step size 1 is

executed, such that elements 0 and 1 and 2 and 3 are sorted descending, and 4 and 5

and 6 and 7 are sorted ascending. Again these comparisons are parallelized. At the

end of phase 2, we are left with two length 4 sorted lists. Finally, phase 3 merges

these two lists using decreasing step sizes from 3 to 1.

The fastest implementation of bitonic sort is the one proposed by Peters et al.[58].

The bitonic top-k algorithm discussed later re-uses some of the ideas from their paper.

Radix Sort Radix sorting is based on the reinterpretation of a k-bit key as a

sequence of d-bit digits, which are considered one a time. The basic idea is, that

splitting the k-bit digits into smaller d-bit digits results in a small enough radix r

= 2𝑑, such that keys can be partitioned into r distinct buckets. As sorting of each

digit can be done with an effort that is linear in the number of keys n, the whole

sorting process has a time complexity of 𝑂(⌈𝑘/𝑑⌉𝑛). Iterating over the keys’ digits

can be performed from the most-significant to the least significant digit (MSD radix

sort [76]) or vice versa (LSD radix sort [67, 54]).

In either case, the first step is to compute a histogram of the input values in a

sequential scan. As the histogram reflects the number of keys that shall be put into

each of the r buckets, computing the exclusive prefix-sum over these counts yields the

memory offsets for each of the buckets. Finally, the keys are scattered into the buckets

according to their digit value. Recursively repeating these steps on subsequent digits

for the resulting buckets ultimately yields the sorted sequence. The best performing

sort algorithm today is based on MSD radix sort [76].

78

4.2.2 K-Selection

The k-selection problem asks one to find the 𝑘-th largest value in a list of 𝑛 elements.

Having a solution to the k-selection problem, one can easily find the top-k elements

by possibly making one additional pass over the data. Alabi et.al [15] studied this

problem extensively. Apart from the sort and choose the 𝑘-th element, they studied

two other algorithms: Radix Select and Bucket Select.

Radix Select: Radix select follows from the MSD radix sort algorithm. Like the

MSD radix sort, it operates as a sequence of steps, each of which processes a d-bit

digit. It performs the same histogram and prefix sum steps. However, instead of

writing out all the entries partitioned into buckets, radix select uses the histogram

to find the bucket 𝐵 containing the 𝑘𝑡ℎ-largest entry. It then writes out only the

entries of 𝐵 and continues to examine the next d-bit digit of the elements in only the

matched bucket.

Bucket Select: Instead of creating the buckets based on radix bits, bucket select

tries to be more robust by computing the buckets based on the min-max values. The

algorithm makes an explicit first pass over the dataset to calculate the min and max

values. Subsequently we execute a series of passes. Each pass is three step: create

multiple buckets equally spaced out between min and max and, compute the number

of entries in each bucket per thread. Second, do a prefix sum and find the bucket

with the 𝑘𝑡ℎ largest element. Finally, read the input and write out elements of the

matched bucket. We run the next pass on the entries of the matched bucket.

4.3 Algorithms

Based on the discussion so far, we have 3 algorithms to find top-k:

∙ Sort and Choose: Use radix sort to sort the entire vector and select the top-k

elements from it.

∙ Using Radix Select: We can use the radix-based selection algorithm to get the

𝑘𝑡ℎ largest element and use that to find the top-k by making one additional pass

79

Algorithm 1: Per-Thread Top-K
Input : List 𝐿 of length 𝑛; const int 𝑘
Output: List 𝑂 of the top-k elements per thread

1 int t ← getGlobalThreadId();
2 int nt ← numThreads();
3 MinHeap heap;
4 for i ← t; i < n; i += nt do
5 T xi = L[i]; // T is the key type
6 if xi > heap.min() then
7 heap.pop(); heap.push(xi);

8 for j ← 0; j < k; j++ do
9 O[t + j*nt] = heap.pop();

over the input array.

∙ Using Bucket Select: We can do the same as above, this time using Bucket

Select instead of Radix Select.

In this section, we describe two new algorithms for finding the top-k elements. In

the first algorithm, each thread independently maintains the top-k elements it has

seen so-far and finds the global top-k amongst the local (per thread) top-ks. Second,

we present the bitonic top-k algorithm which is based on bitonic sorting. For ease of

presentation, our description assumes tuples consisting only of a key. Of course, real

applications may need to perform top-k on other settings, including (key,value) pairs,

multiple keys, and different data types and distributions; our evaluation shows that

our algorithms cover all of these cases (Section 4.5).

4.3.1 Per-Thread Top-K

A single-threaded version of top-k would maintain the top-k elements in a min-heap

and update it for every new element seen. The natural way to parallelize is to partition

the input, calculate the top-k per partition and calculate the global top-k from those

as a final reduction step. Algorithm 1 shows the pseudocode that would run in

parallel in each thread (nt threads are run in parallel). We use a min-heap per

thread to maintain the top-k elements seen by that thread so far. After initializing

80

the heap, we iterate over the elements starting from 𝑡 in steps of number of threads.

This (coalesced) memory access pattern has been shown to benefit memory access on

the GPUs [35]. We check if the current element is larger than the minimum value

among the top-k seen. If so, we pop the minimum and add the current element.

Finally, we write out the top-k values to 𝑂 in a coalesced manner. This approach

is efficient in terms of memory usage. It makes one full read pass over the global

memory and writes significantly less data. However, it suffers from thread divergence

and occupancy issues, discussed in greater detail in Section 4.4.1.

4.3.2 Bitonic Top-K

While a full bitonic sort is a solution to the top-k problem, it performs a significant

amount of unnecessary work in sorting the entire input, just as heap sort is much less

efficient than using a priority queue to select the top-k.

In bitonic sort, we start from an unsorted array which is equivalent to sorted

sequences of length 1 and construct longer sorted sequences of length 2,4, ... up to n,

at which point the entire list is sorted. Our basic approach is to develop an algorithm

that performs as little unnecessary work as possible but maintains the massively

parallel nature as bitonic sort. To achieve this, we decompose the complex bitonic

sort operation into a series of parallel steps with different comparison distances. We

carefully reassemble the steps into three operators that, in combination, allow the

efficient fully parallel calculation of the top-k elements of a vector. These operators

are local (bitonic) sort, merge and rebuild.

In local sort, we generate sorted sequences of size 𝑘 using (partial) bitonic sort.

In the merge, we bitonically merge two sorted sequences of size 𝑘, thus creating two

bitonic sequences, where the first sequence contains the 𝑘 greatest (w.l.o.g) and the

second sequence contains the 𝑘 least elements. In rebuild we sort the sequence con-

taining the greatest (w.l.o.g.) elements; the second sequence containing the smaller k

elements is discarded. While sorting, we exploit the fact that the output of the sec-

ond operator already satisfies the bitonic property. At this point, we have effectively

halved the problem size. We recursively apply the merge and rebuild operators to the

81

Algorithm 2: Bitonic Top-K Local Sort
Input : List 𝐿 of length 𝑛
Output: 𝐿 with sorted sequences of length 𝑘

1 int t = getGlobalThreadId();
2 for len ← 1; len < k; len ← len ≪ 1 do
3 dir ← len ≪ 1;
4 for inc ← len; inc > 0; inc ← inc ≫ 1 do
5 int low ← t & (inc − 1);
6 int i ← (t ≪ 1) − low;
7 bool reverse ← ((dir & i) == 0);
8 x0, x1 ← L[i], L[i + inc];
9 bool swap ← reverse ⊕ (x0 < x1) ;

10 if swap: x0, x1 ← x1, x0;
11 L[i], L[i + inc] ← x0, x1;

(halved) sequence until we are left with only 𝑘 elements which form the top-k. The

resulting algorithm performs no unnecessary work and has the massive parallelism of

bitonic sort. In the rest of this section, we describe the individual operators in more

detail.

(1) Local Sort The goal of this operator is to generate sorted runs of length 𝑘

alternating between ascending and descending, starting from an unsorted array. Al-

gorithm 2 shows the pseudocode. The unsorted sequence is equivalent to sorted

sequence of length 𝑙𝑒𝑛 = 1. Starting from 𝑙𝑒𝑛 = 1, we generate sorted sequences

of length 𝑙𝑒𝑛 = 2, 4 ... 𝑘. When 𝑙𝑒𝑛 = 𝑘, we are done. This is the outer loop on

line 3. When 𝑙𝑒𝑛 = 𝑥, two neighboring sorted sequences of length 𝑥 form a bitonic

sequence of length 2𝑥 and can be sorted in 𝑙𝑜𝑔(𝑥) + 1 steps. This is handled by the

inner loop on line 4. In the first step, when 𝑖𝑛𝑐 = 𝑙𝑒𝑛, we compare pairs of elements

(𝐿[0], 𝐿[𝑙𝑒𝑛]), (𝐿[1], 𝐿[1 + 𝑙𝑒𝑛]), ... (𝐿[𝑙𝑒𝑛− 1], 𝐿[2𝑙𝑒𝑛− 1]). This is done in parallel,

and each thread compares one pair of elements. In general, thread 𝑡 compares element

𝐿[𝑖] to 𝐿[𝑖 + 𝑙𝑒𝑛] where the index 𝑖 is calculated as a function of 𝑡 and 𝑖𝑛𝑐 as shown

in lines 5 − 6. The elements are compared and exchanged (12-13) (if needed) and

written back to the original array (14-15). The direction of exchange is determined

by 𝑙𝑒𝑛. When 𝑙𝑒𝑛 = 𝑥, we want to generate alternating ascending descending sorted

82

(a) Before Top-K Merge (b) After Top-K Merge

Figure 4-3: Top-K Merge

Algorithm 3: Bitonic Top-K Merge
Input : List 𝐿 with sorted sequences of length 𝑘
Output: List 𝐿2 of size |𝐿|/2 with bitonic sequences of length 𝑘

1 int t ← getGlobalThreadId();
2 int low ← t & (k-1);
3 int i ← (t ≪ 1) - low;
4 𝐿2[t] ← max(L[i], L[i+k]);

sequences of length 2𝑥, i.e.: the direction changes every 𝑑𝑖𝑟 = 2 * 𝑙𝑒𝑛 elements (Line

3). The actual direction of comparison is determined by whether (𝑖/𝑑𝑖𝑟) is odd or

even (Line 7). Phase 1 in Figure 4-4 illustrates the accesses of Local Sort operator

to generate find the top-4 of 16 elements.

(2) Merge At the end of the local sort, we have alternating ascending descending

sorted (i.e., bitonic) sequences of length 𝑘. We compare neighboring sequences pair-

wise and select the larger element in each pair. While we do not know how many

elements of each of the sequences are selected, we know that the top-k elements were

selected and that they form a bitonic sequence. This is the key insight of our work.

To illustrate it, consider Figure 4-3 which illustrates the calculation of a top-8: in

Figure 4-3b (after the merge step), all elements on the left are amongst the top-8

because they are greater than their comparison partner which implies that they are

greater than all elements to the left (or right, respectively) of their comparison partner

(due to the bitonic property). This step halves the top-k candidate set. Algorithm 3

shows the pseudocode.

83

Algorithm 4: Bitonic Top-K Rebuild
Input : List 𝐿 with bitonic sequences of length 𝑘
Output: 𝐿 with sorted sequences of length 𝑘

1 int t = getGlobalThreadId();
2 int len ← k ≫ 1;
3 int dir ← len ≪ 1;
4 for inc ← len; inc > 0; inc ← inc ≫ 1 do
5 int low ← t & (inc − 1);
6 int i ← (t ≪ 1) − low;
7 bool reverse ← ((dir & i) == 0);
8 x0, x1 ← L[i], L[i + inc];
9 bool swap ← reverse ⊕ (x0 < x1) ;

10 if swap: x0, x1 ← x1, x0;
11 L[i], L[i + inc] ← x0, x1;

(3) Rebuild The input to rebuild is a list 𝐿 with bitonic sequences of length 𝑘

instead of an unsorted sequence in the local sort operator. As a result, we can generate

sorted sequences of length 𝑘 in 𝑙𝑜𝑔(𝑘) steps by applying the inner loop of the local

sort starting with 𝑙𝑒𝑛 = 𝑘/2. For completeness, Algorithm 4 shows the pseudocode.

The flow is the same as in local sort. A combination of merge and rebuild reduces a

list of length 𝑛 with sorted sequences of length 𝑘 to a list of length 𝑛/2 with sorted

sequences of length 𝑘. Merge and rebuild are repeated till we have a list of length 𝑘.

Analysis In local sort, every step does 𝑛/2 comparisons. There are 𝑙𝑜𝑔𝑘 outer loop

iterations, with the 𝑖-th one having 𝑖 steps. In merge, we do 𝑛/2 comparisons. In

rebuild, we have 𝑙𝑜𝑔𝑘 steps of 𝑛/2 comparisons. Each time merge runs, the list size

halves. Merge and rebuild run multiple times till we get a list of size k. The total

number of comparisons are 𝑂(𝑛𝑙𝑜𝑔2𝑘). The runtime of bitonic top-k, like that of the

bitonic sorting network is independent of the data distribution and depends only on

|𝐿| and 𝑘.

84

Len
Inc

1
1 2 1

2

2 1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

v

2 1

Phase 2 Phase 3

v

Phase 1 Phase 3

v

Phase 2
2 2

(a) Algorithm

Unsorted Input After Phase 1 After Phase 2

After Phase 3 After Phase 2 (2) After Phase 3 (2)

(b) Visualisation (gray: inactive, orange: candidates)

Figure 4-4: Bitonic Top-K (K=4)

85

4.4 Optimization & Implementation

In this section, we describe a number of optimizations – at both logical and imple-

mentation levels – that we applied to the different methods to optimize performance.

All the performance numbers in this section are from running algorithms on a dataset

of 229 floating point values generated from a uniform distribution 𝑈(0, 1) on a Nvidia

Titan X Maxwell GPU (see Section 4.5.1 for details about the hardware setup). Num-

bers on more diverse data are given in Section 4.5.

4.4.1 Per-Thread Top-K

To implement the per-thread top-k algorithm (Algorithm 1) efficiently, we use shared

memory to store the heap. Each thread block allocates an array of size 𝑘 * 𝑤𝑔 in

shared memory where 𝑤𝑔 is size of the thread block. Each thread maintains its own

heap in shared memory using an array of size 𝑘. In order to avoid bank conflicts, we

store the array striped, where thread t uses entries sdata[t + wg*i] where 𝑠𝑑𝑎𝑡𝑎 is

the shared memory array used by the thread block, and, 𝑖 varies from 0...𝑘. Since 𝑤𝑔

is always a multiple of 32, each thread’s array maps to one shared memory bank and

multiple threads in a warp updating their respective arrays does not cause shared

memory bank conflicts.

The implementations suffer from two problems:

Thread Divergence: Heap updates are data dependent. On the GPU, a warp (32

threads) runs in a SIMT model. As a result, even if one thread wants to update its

entries, all the other threads in the warp have to follow the same instruction path,

leading to slowdown.

Occupancy: The shared memory used per thread increases with k. As the shared

memory used by a block increases, the number of concurrent warps that can be run

(occupancy) reduces. Beyond a point, the occupancy reduction leads to the GPU not

having enough active warps to saturate the global memory bandwidth. For 𝑘 ≥ 512,

even using the minimum thread block size of 32, we would need 64𝐾𝐵 of shared

memory, which is greater than 48𝐾𝐵 available per thread block on our GPU.

86

We also implemented the per-thread top-k algorithm using registers and found

its performance to be inferior. Appendix A contains a more detailed discussion and

performance comparison of the register-based version.

4.4.2 Selection-based Top-K

The radix select and bucket select implementations used come from the GGKS pack-

age [14]. We revised the implementation of radix select to use 8-bit digits (based on

MSD radix sort [76]) instead of 4-bit digits in the original code. This results in 4

passes for 32 bit (int and float) keys. Each pass can reduce the data size. However, if

after the prefix sum we see no data reduction, the clustering step is skipped and we

simply re-use the input in the next pass. Bucket select also divides the data into 16

buckets at a time and selects one bucket containing the k-th element. The interested

reader can refer to [15] for more implementation details. The radix select implemen-

tation would write out the entire input array after each pass and then update the

array pointer to point to the bucket containing 𝑘𝑡ℎ element. We fixed this inefficiency

to only write out the right bucket.

Given the 𝑘𝑡ℎ highest element 𝑋, we can make an additional pass over the data

to find the top-k elements. However this is not necessary. Once we select the bucket

containing 𝑋, when scanning the array the second time to write out the tuples that

fall into the bucket, we can also write out the elements in the higher buckets to a

separate result array. In the last pass, we copy over all the elements in the identified

bucket with value less than 𝑋 to 𝑟𝑒𝑠𝑢𝑙𝑡 and pad 𝑟𝑒𝑠𝑢𝑙𝑡 with 𝑋 to make it of size 𝑘.

This eliminates the last pass we previously had to find the top-k elements given 𝑋.

4.4.3 Optimizing Bitonic Top-K

In this section we discuss a number of optimizations we devised to achieve close-to-

optimal performance with our new bitonic top-k algorithm. While some of these are

inspired by similar optimizations for other algorithms, to the best of our knowledge,

none of them are applied in the context of top-k calculation. However, since our

87

optimizations may be applicable to other problems, we include a paragraph on novelty

and applicability in the description of each optimization. To give an impression of

the importance of each optimization, we end every section with a graph indicating

the the effect of optimization on the runtime for the case of finding top-32 elements

in the dataset described at the start of this section.

Operating in Shared Memory The first optimization can be applied to each of

the three operators individually: instead of reading/writing data after each massively

parallel step to global memory, we do it once per operation. The data required

is loaded into shared memory at the beginning of the operation. All the operation’s

intermediate steps happen in shared memory. At the end, the result is written back to

global memory. For example, the local sort operation in Figure 4-4a has 3 intermediate

steps. With this optimization, each threadblock would read the required data to

shared memory, run the 3 steps within shared memory and then write back results at

the end. Recall that the shared memory is an order of magnitude faster than global

memory. This optimization shifts global memory reads/writes to shared memory

reads/writes, thereby improving performance.

��� ��

��� ��

�� �� ��� ��� ���

�����

������

���� �� ��

This results in a significant performance improvement from 521ms to 122ms. The

local sort operator becomes shared memory bound while the merge and rebuild are

still global memory bound.

Note that this optimization is contingent on 𝑘 being less than or equal to 2*max

thread block size (= 2048 on modern GPUs). It also cannot be applied to all steps

of a general bitonic sort algorithm with steps with 𝑖𝑛𝑐 up to 𝑛/2, because this would

require loading the entire array into shared memory, but this is not a limitation in

our bitonic top-k alogorithm as long as k is small enough. This optimization has been

applied to bitonic sort to minimize accesses to the global memory [58].

88

���� ��

��� ��

�� �� ��� ��� ���

�����

������

���� �� ��

Merging Operators As discussed in Section 4.3.2, our bitonic top-k algorithm can

be broken into three operations: (1) local sort to create sorted sequences of length

𝑘, (2) merge two sorted sequences of length 𝑘 to create a bitonic sequence of length

𝑘 and (3) rebuild a bitonic sequence of length 𝑘 after a merge. While the local sort

operation is only executed once in the beginning, the merge and rebuild phase are

alternated until the result is found.

The naive implementation would run a kernel per operator. However, there are

no cross thread block dependencies across each of the kernels. This leads to a signifi-

cant optimization potential: multiple operators can be fused into a single kernel and

shared memory can be used to communicate results between operators. In addition

to reducing kernel invocation overhead, this optimization eliminates global memory

traffic due to intermediate results.

Each merge halves the number of elements. In order to ensure that each thread

in the last operation in the fused kernel has work to do, we need to ensure that

number of data items per thread is atleast 2𝑥 where 𝑥 is the number of merge phases

in the fused kernel. We found the optimal number of processed of data items per

thread to be 8. Beyond that, doubling the number of elements per thread doubles

the number of shared memory bank conflicts and yields no performance improvement.

Since each merge halves the number of elements per thread, processing 8 elements

per thread allows us to have three (i.e., 𝑙𝑑(8)) merge phases per kernel. This leads

to two separate kernels: the first performing local sort followed by two merge-rebuild

operators and a single merge (SortReducer). The second kernel performs three

rebuild-merge operator sequences (BitonicReducer). To the best of our knowledge,

this is a novel optimization.

This optimization reduces the runtime of top-32 from 122ms to 48.15ms. Both

kernels (and as a result the entire application) are now shared memory bandwidth

89

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4

(a) Single step

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4 2

(b) Combining 2 Steps

4 2 1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(c) Combining 3 Steps

Figure 4-5: Combining Multiple Steps

bound. The SortReducer kernel and BitonicReducer kernel achieve shared memory

bandwidth of 2.75TBps and 2.7TBps respectively. This is greater than 90% utiliza-

tion of the 2.9TBps peak bandwidth of shared memory observed on repeated read

workload. We, therefore, shift our attention towards optimizing shared memory ac-

cesses.

Combining/Sequentializing Multiple Steps For the next optimization, we re-

arrange the assignment of data items to threads to reduce the amount of memory

traffic. Figure 4-5a shows the default assignment (threads are color-coded), each

thread reads two values from shared memory, compares them and writes them back

to shared memory. As each thread is responsible for 8 elements, it does the same for

3 other pairs. If, however, we process more than two values per thread per round,

the read and write operations can be shared. In Figure 4-5b, e.g., the orange thread

reads the values at positions 0, 2, 4 and 6 and performs two comparisons on each.

90

This halves the shared memory traffic and can be generalized to more elements (see

Figure 4-5c). While this (partially) serializes the processing (from three fully parallel

steps with four operations each to 12 sequential operations) it does not increase the

overall number of comparisons. This optimization is similar to optimization 1 which

combines multiple steps that read and write to global memory to read and write

to shared memory. Instead here, we combine multiple steps that read and write to

shared memory to work in registers. This reduces the runtime to 33.7ms.

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

Do work before writing Conventional wisdom is to copy a chunk of data from

global to shared memory in a coalesced manner and processing data only in shared

memory. However, by rejecting this common wisdom, we can reduce shared memory

accesses. Each thread loads 8 consecutive elements from global memory into registers,

perform all intermediate steps required to create local sorted sequence of length 8

without hitting shared memory and then write to shared memory. Note that as a

result of this optimization, accesses to global memory are no longer coalesced because

threads access data elements at a stride of 8. However, this does not lead to any

noticeable performance difference on modern GPUs due to their data caches. This

optimization is likely to be widely applicable. In our experiments, it yields an effective

reduction of the runtime to 27.1ms.

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

Breaking Conflicts with Padding In this and the following section, we introduce

three optimizations that help avoiding memory bank conflicts. While most current

91

0 1

2 3

4 5

6 7

Memory Bank
1 82 3 4 5 6 7

…

Thread
access

Ad
dr

es
s

Unused
Cell

Figure 4-6: Avoiding shared memory bank conflicts with padding

GPUs have 32 shared memory banks and warps of 32 threads, illustrating the effects

of our optimizations on 32 memory banks would unnecessarily inflate the size of our

figures. For that reason, we assume 8 memory banks (and warps of size 8) for the

illustrations (note that the experiments are conducted on a real GPU with 32 memory

banks).

The first optimization is an instance of a widely known technique: padding arrays

to avoid memory conflicts. A shared memory array of size 𝑛 can be viewed as a 2D

array of dimensions [𝑛
8 , 8] (where 8 is the number of banks). The key idea is to allocate

slightly more memory to create a larger array of dimensions [𝑛
8 , 9]. The extra column

added does not store any elements, however, it helps break shared memory conflicts.

Figure 4-6 shows the accesses performed by a combined step combining 𝑖𝑛𝑐 = 2, 1

at time step 0 after padding. The grayed out cells do not hold any values and are

simply space overhead. Each thread wants to read 4 contiguous elements. Thread 0

wants to read entries 0-3, thread 2 wants to read 8-12. Without padding these two

threads would conflict (0 and 8 are in the same bank). The figure illustrates how the

padding prevents the conflicts (thread 0 and 2, access different memory banks after

padding). This decreases the runtime of top-32 to 22.3ms. Note that padding does

not help bitonic sorting due to its global memory bandwidth boundness. In contrast,

the bitonic top-k is shared memory bandwidth bound.

Padding also has a second benefit: it allows us to merge more operators into a

kernel. Recall that processing more than 8 elements caused conflicts (discussed with

92

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

operator merging earlier in this section) and that this effect limited us to merge only

three operators.

With padding, this is no longer true which allows us to merge four or even more

steps (processing 16 or more elements per thread). However, beyond 16, the number

of allocated registers forces the compiler to reduce occupancy leading to a performance

penalty: Figure 4-7 shows the performance when varying the number of processed

elements (B). There is virtually no benefit when increasing B from 16 to 32 and a

detriment when increasing B to 64. We, thus, fixed B to 16.

1 2 4 8 16 32 64 128 256

K

8

16

32

64

T
im

e
 T

a
ke

n
 (

in
 m

s)

B=8

B=16

B=32

B=64

Figure 4-7: Bitonic Top-K performance varying the number of elements per thread

Chunk Permutation Figure 4-8 illustrates the shared memory access pattern of

the local sort operation after applying the optimizations discussed so far. Here, each

outlined shape represents an operation with no accesses to shared memory (shared

memory access is performed at the edges of each shape), the axes represent iterations

of sequential loops within the kernel, and the numbers the distance in the input

array of the compared elements. While most of the kernels are bank-conflict-free,

we observe that, when the comparison distance is four, the memory accesses cause

bank conflicts. To illustrate this, consider Figure 4-9a: it illustrates the comparisons

93

1 2 4

1 2

1

No Conflict
2-way Conflict

Outer Loop Iteration

In
ne

r L
oo

p
Ite

ra
tio

n
Figure 4-8: Comparison distance for local sort 𝑘 = 8, 𝑥 = 4

Memory Bank
1 82 3 4 5 6 7

(a) W/o Chunk Permutation

Legend

Memory Bank
1 82 3 4 5 6 7

Accessed at Clock 0 Accessed at Clock 1

(b) W/ Chunk Permutation

Figure 4-9: Shared memory bank conflicts when comparing elements

that are performed in the red box in Figure 4-8 (a pair-wise comparison of elements

with a distance of four). The figure indicates the memory accesses of the threads

in a warp: each arrow represents the comparison performed in one thread with the

colors indicating the time (and thus the order) of the accesses. We observe that,

despite padding, the memory accesses at clock time 0 overlap with respect to their

memory bank. We can avoid this by changing the memory locations each thread reads

from (and writes to). We call this optimization Chunk Permutation and illustrate it

in Figure 4-9b: instead of reading from conflicting banks at clock 0, each thread

accesses a different memory bank. One may notice that there is still overlap between

the accessed values. However, these accesses are performed at different times. As is

obvious the figure, there are no conflicts by observing that there are no two identically

colored boxes in a column.

While we illustrated the chunk permutation optimization using the example of the

94

last step in the local sort, the problem occurs whenever the comparison distance of a

combined step is greater than 1. This makes it widely applicable for our case and even

more broadly (e.g., for bitonic sort). For our application it removes all the remaining

memory bank conflicts in the local sort operator for all 𝑘 ≤ 256 and improves the

performance of top-32 from 17.8ms to 16ms. The effect is more pronounced at higher

𝑘, e.g., improving top-128 performance by roughly 20 percent. This optimization

is novel. The broader idea of re-arranging chunks to avoid bank conflicts could be

applied to other algorithms that suffer from shared memory bank conflicts.

Reassigning Partitions The last optimization we developed is targets the assign-

ment of data items to threads after the first reduction: since the reduction halves

the number of elements but the number of threads remains the same, there is less

work per thread. This leads to fewer steps being merged because the number of steps

that can be merged is the logarithm of the number of input data items per thread.

To maintain the same number of input data items per thread after the reduction,

we have half the threads perform all the work. While this leaves half of the threads

without work, the reduction in shared memory traffic due to larger combined steps

outweighs that cost. This optimization further improves the performance to 15.4ms.

This optimization is novel and maybe applicable to kernels that reduce input data in

phases.

Discussion:

Memory Usage. Memory usage is of critical importance for GPU-based data man-

agement systems. For a dataset of size 𝑛, out-of-place bitonic top-k uses one additional

buffer of size 𝑛/8. This is significantly less than sort and selection-based methods

which require an additional buffer of size 𝑛.

Data larger than GPU memory. When data is larger than can fit in GPU memory,

data needs to moved to the GPU via the PCI bus. There is a significant amount of

research on reducing pressure on that bottleneck using asynchronous transfers [76, 34],

approximation [59], compression [65, 28] and cost-aware device selection [23]. While

we do not explicitly address the PCI-bottleneck in this chapter, the reductive nature

95

of top-k queries makes it trivial to process the data in memory-size chunks and overlap

computation with transfer (similar what is done for sorting [76]).

Bitonic Top-K on CPU. The bitonic top-k algorithm presented in the chapter can

be adapted to run on the CPU as well. The bitonic top-k algorithm is reductive, it

reduces an array of size n to an array of size k containing the top-k elements. To make

use of all the cores available, we partition the input array into equal sized partitions

and let each core independently process the partition to emit the top-k. The top-k

elements emitted by the individual core are combined in a final global step to find

the global top-k.

On each core, we further break down the input partition into vectors of fixed size

(in the implementation we use 2048 elements as the vector size). We process the input

partition in phases. The first phase does the function of the SortReducer. It reads in

the unsorted input paritition, one vector at a time and outputs (1/16)𝑡ℎ of the input

containing bitonic sequences of length k. The subsequent phases do the function of

BitonicReducer. They read in the input containing bitonic sequences of length k, one

vector at a time, and outputs (1/16)𝑡ℎ of the input containing bitonic sequences of

length k. Algorithm 5 shows the pseudocode.

On the GPU, each vector is processed in parallel by a thread block. Each thread

of the thread block reads in 16 elements from shared memory and runs a combined

step and outputs it back to shared memory. However, on the CPU, on each core, we

process the vector in a single threaded fashion. The thread reads in 16 elements at

a time from main memory and runs a combined step and outputs it back to shared

memory. The reason we process small sized vectors (here of size 2048) is so that the

data is cached in L1 cache. This allows random accesses in the vector to not incur

latency of main memory read.

Modern CPUs also have support for Single Input Multiple Data(SIMD) instruc-

tions. The bitonic sorting network used to process a combined step can be imple-

mented using SIMD instructions for improved performance. In the implementation

we use 128-bit SSE-based implementation of [25]. Also, some of the optimzations

details in Section 4.4.3 are not needed on the CPU. In particular, padding and chunk

96

Algorithm 5: CPU Bitonic Top-K Thread
Input : Input Parititon S of length 𝑛; int 𝑘
Output: List 𝑂 of the top-k elements per thread

1 int numElements ← n;
2 int numVectors ← numElements / vectorSize;
3 int temp[2][n/16];
4 int current ← 0;
5 for i ← 0; i < numVectors; i += 1 do
6 SortReducer(S, temp[current], i, k)
7 numElements ← numElements / 16;
8 while numElements >= vectorSize do
9 for i ← 0; i < numVectors; i += 1 do

10 BitonicReducer(temp[current], temp[1-current], i, k);
11 numElements ← numElements / 16;
12 numVectors ← numElements / vectorSize;
13 current ← 1 - current;
14 O ← sort(temp[current], numElements);

permutation are not useful on the CPU as there is no notion of bank conflict.

The bitonic top-k algorithm is not work-efficient. It does 𝑂(𝑛(𝑙𝑜𝑔𝑘)2) number

of comparisons as shown in Section 4.3.2. This is strictly worse than heap-based

methods which do 𝑂(𝑛𝑙𝑜𝑔𝑘) number of comparisons. However, bitonic top-k can

leverage SIMD instructions to improve performance. Overall, in the case when lots

of heap insertions occur (e.g.: when the input data is sorted) , the performance of

bitonic top-k is close to that of heap-based methods despite the larger number of

comparisons. Further, bitonic top-k could be better on platforms with wider vector

instruction support like AVX-512 in Intel Knights Landing processors. We plan to

explore this in the future.

4.4.4 Database Integration

Having developed a highly optimized massively parallel top-k implementation, we

were naturally interested in its usability in a full system. As a proof of concept, we

integrated the bitonic top-k kernel into MapD, an open source GPU database [55].

In this section, we discuss two optimization opportunities that can we used in the

97

context of database analytics to improve performance.

Fusing with filter A common query template is to find the top-k items in a subset

of the data satisfying a selection predicate. The easy way to execute this is to have a

seperate kernel execute the filter and have the subsequent top-k kernel use the output

to find the top-k items. GPU-based databases end up doing this currently as they

treat the top-k kernel(done using sort) as a blackbox. We can optimize this by fusing

the select into the bitonic top-k routine.

Each thread block running the SortReducer kernel reads in 16𝑛𝑡 elements and

writes out 𝑛𝑡 elements where 𝑛𝑡 is the number of threads in the thread block. One

way to fuse the kernels is to read in 16𝑛𝑡 elements, apply the filter predicate and

run the SortReducer on the matched elements. However, the SortReducer kernel is

then effectively running on 𝑠 * 16𝑛𝑡 where 𝑠 is the selectivity. As shown in previous

section, having 16 elements per thread is crucial to the performance of SortReducer as

it enables it to run combined steps. The FusedSortReducer instead uses the selection

step as a buffer filler. It reads in 𝑛𝑡 elements at a time into shared memory, applies

the filter predicate to find the number of matches elements, computes a prefix sum

and then writes it out into a shared memory buffer of size 16𝑛𝑡. It then reads in the

next batch of 𝑛𝑡 elements till we have more than 15𝑛𝑡 elements matched. The rest of

the entries are padded with min/max value so that they never show up in the top-k

results. The SortReducer then works on the buffer of 16𝑛𝑡 elements and writes out

𝑛𝑡 elements contain the top-k.

Custom Ranking Function A custom ranking function is an order by clause of

the form 𝑓(𝐴1, 𝐴2, 𝐴3..) where 𝑓 is any function and 𝐴1, 𝐴2, .. are columns of 𝐴.

The ranking function can be evaluated at the start of SortReducer kernel instead of

running it as a separate project step which outputs the value of the function.

98

4.5 Evaluation

In this section, we compare the performance of the five different algorithms we pre-

sented in Section 4.3:

1. Sort: Sorting to find top-k

2. PerThread TopK: Using a heap per thread to find top-k

3. Radix Select: Adapting radix select to find top-k

4. Bucket Select: Adapting bucket select to find top-k

5. Bitonic TopK: Using the bitonic top-k algorithm

after applying the optimizations in Section 4.4 varying the following parameters:

1. the value of 𝐾 2. the key data type 3. the data distribution 4. the data size 5. the

number of key and value columns and finally 6. the device (CPU vs. GPU). After

that, we show the performance achieved by integrating BitonicTopK in the MapD

database by evaluating top-k queries on a twitter dataset.

4.5.1 Setup

All the results are averages of 3 runs on a single socket Intel i7-6900 @ 3.20GHz

(Skylake with 8 Cores, 16 hardware threads) with Nvidia GTX Titan X Maxwell

GPU running on Ubuntu 15.10 (Kernel 4.2.0-30) and CUDA 8.0.

4.5.2 Performance with Varying K

We generate 229 random uniformly distributed (𝑈(0, 1)) floats and observe the per-

formance of the different algorithms with K varying from 1 to 1024 in powers of 2.

Figure 4-10 shows the results.

Memory Bandwidth shows the time taken to read the entire data from global mem-

ory. Since all of the data needs to be read at-least once, this constitutes a lower bound

on the runtime of any algorithm. In reality, most algorithms would write/read inter-

mediate data and have other overheads. We observe that the runtime of the Sort

method is virtually constant across 𝑘 since it has to sort the entire input irrespective

of K.

99

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256
T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

Figure 4-10: Time taken with different k (32-bit float values)

Radix Select and Bucket Select take almost the same time across K as ex-

pected. The latter does worse than the former due to the use of more expensive

atomic operations. When 𝑘 = 1, Bucket Select is fast as it terminates after finding

the min-max of the array and directly returns it as the result.

PerThread TopK line has steep slope rising from 𝑘 = 32, this is due to reduced

occupancy and thread divergence as explained earlier in Section 4.4.1. The approach

fails for 𝐾 > 256 due to the required amount of shared memory. For 𝐾 = 512, even

with the minimum thread block size 32, we need 512 * 32 * 4 = 64𝐾𝐵 (each key is 4

bytes) which exceeds the available 48𝐾𝐵 per thread block.

Finally, Bitonic does better than all the other algorithms for 𝐾 ≤ 256. For

𝐾 > 256, the Radix Select method does better.

4.5.3 Dependence on Data Type

Next, we run the algorithms on a dataset with 229 unsigned integers drawn from

𝑈(0, 231− 1) (see Figure 4-11). The time taken by all methods except Radix Select

is virtualy identical to that observed with 𝑓𝑙𝑜𝑎𝑡 data type. Radix Select does better

100

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256
T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

Figure 4-11: Time taken with different k (32-bit integer values)

because with uniformly distributed data, the number of eliminated tuples per scan is

maximal (a reduction of 256× assuming 8-bit radices).

Second, we run the algorithms on 228 doubles drawn from 𝑈(0, 1). The size of

the data is the same, however the word size of each key has increased. Figure 4-12

shows the results. The Sort-based approach has to perform twice as many scans

(since the number of digits has doubled) but scan fewer values. However, processing

64-bit values is significantly more expensive than 32-bit values on most GPUs which

explains the cost increase. Radix Select has the same issue, however, this effect

is less pronounced as the algorithm operates on a smaller number of elements in

subsequent passes. Bucket Select ends up being slightly faster than with floats as

the number of keys has reduced resulting in smaller number of atomic operations.

The PerThread TopK line is similar to line seen with 𝑓𝑙𝑜𝑎𝑡 shifted to the left and

slightly lower: this is natural since there less processing needs to be performed for

every read byte. For each 𝐾, the method uses twice as much shared memory when

processing doubles compared to processing floats. Thus, the approach fails earlier

(for 𝐾 > 128). Finally, Bitonic TopK remains largely unchanged as the data size is

the same and the cost are dominated by the memory bandwidth.

101

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256
T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

Figure 4-12: Time taken with different k (64-bit double values)

4.5.4 Dependence on Data Distribution

Keeping the data size fixed at 229, we examine the performance of algorithms with

varying 𝑘 on 2 distributions:

∙ Huge Floats: Floating point numbers from 𝑈(0, 106)

∙ Increasing: Sorted floating point numbers from 𝑈(0, 1)

∙ Bucket Killer : Contains all 1s(floats) except 4 numbers, each of which differ

from 1.0 in one 8-bit digit. This minimizes the reduction achieved in a single

radix-scan.

Figure 4-13 shows the results. The only algorithms that do not change based on

the distribution of elements are Sort and Bitonic TopK. Both perform precisely the

same operations.

With huge floats (figure 4-13a), the performance of all the methods except Radix

Select is the same as in Figure 4-10. Radix Select does worse than in the 𝑈(0, 1)

case as the first pass yields very little reduction. Where in the 𝑈(0, 1) case, we could

(after calculating the histogram) determine all values have the same radix and elide

the clustering pass, no such optimization is possible in this case. The clustering pass,

102

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Radix Select

Bucket Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

(a) Huge Floats

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Radix Select

Bucket Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

(b) Increasing

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Radix Select

Bucket Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

(c) Bucket Killers

Figure 4-13: Top-K performance across different distribution

103

221 222 223 224 225 226 227 228 229

Data Size

0.2
0.5

1
2
4
8

16
32
64

128
256
512

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Figure 4-14: Performance with varying data size

thus, induces costs but creates very little benefit.

The increasing (figure 4-13b) distribution leads to PerThread TopK performing

up to 3𝑥 worse while the other algorithms see no change. This is because PerThread

TopK’s performance is dependent on number of heap inserts. With increasing dis-

tribution, each element causes a heap insert making it a near worst case for the

algorithm.

For most selection algorithms, it is relatively easy to identify distributions which

will cause worst case behaviour for the algorithms. Bucket killer is the adversarial

distribution for Radix Select. With bucket killer (figure 4-13c), Radix Select ends

up taking the same time as Sort because each radix pass leads to only one number

being removed from consideration (the one which differs from 1 at that 8-bit digit).

Each pass ends up reading and writing the entire dataset like in Sort. Bucket Select

also experiences a 2𝑥 slowdown due to less data reduction in the intermediate steps.

Note that, due to the predictable pattern of the bitonic merges, there is no adversarial

input distribution for the Bitonic TopK approach making it a very robust option.

4.5.5 Dependence on Data Size

To show the performance of the algorithms across different data sizes, we run them

with a fixed 𝑘 = 64 and choose a data set of random floats drawn from 𝑈(0, 1) with

varying data sizes ranging from 221 to 229. Figure 4-14 shows the results. Bitonic

104

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Radix KKKV

Radix KKV

Radix KV

Bitonic KKKV

Bitonic KKV

Bitonic KV

Figure 4-15: Performance with different number of keys

TopK and Sort grow linearly with input size. PerThread TopK maintains top-k per

thread and runs a fixed number of threads to keep all the GPU cores busy. With

larger data sizes, the number of elements processed by each thread increases. Also,

for uniform distribution the probability of a heap insert decreases as more and more

data is seen. This results in the initial outward bulge. Radix Select and Bucket

Select grow linearly for larger data sizes. At data sizes below 224, the time taken

by prefix sum (which is a constant across data sizes) becomes significant leading to

flattening of the lines.

4.5.6 Key(s)+Value

So far, we used tuples with just a key. However, many applications would require

key+value or multiple keys+value. In this section, we show the performance of Radix

Select and Bitonic TopK with key + value (KV), two keys + value (KKV) and,

three keys + value (KKKV). Each key is a float drawn from 𝑈(0, 1) and value is a 4

byte integer. Size of the elements in the dataset is 228. Figure 4-15 shows the results.

Both the methods show a linear increase in the runtime due to increased data sizes

as we go from KV to KKKV. The cut-off point remains the same across the different

key counts. We do not show the results for the other methods for readability.

We do not show experiments with larger value payloads as it is always better to

pass around the tuple id and construct the full tuple at the end of top-k. For example,

consider a dataset with 10 million tuples of 4 byte key, 12 byte payload. Running top-

105

k on (key,id) instead of (key,payload) halves the data size moving around. Assembling

the result at the end takes virtually no time.

4.5.7 Comparison against CPU

In this section, we compare the performance of CPU-based top-k to the GPU-based

top-k. For CPU-based top-k, we have two heap-based methods: one using C++ STL

priority queue as a min-heap (STL PQ) and, second a hand-optimized min-heap (Hand

PQ). For each element, we check it against the heap minimum by comparing with the

root of the heap. If its greater, we pop the root (the minimum) and insert the new

element. We also show the CPU version of bitonic top-k. For GPU-based top-k, we

show Bitonic TopK and Radix Select.

1 2 4 8 16 32 64 128 256 512 1024

K

(a) Uniform

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

1 2 4 8 16 32 64 128 256 512 1024

K

(b) Increasing

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Radix Select Bitonic TopK Hand PQ STL PQ Bitonic TopK CPU

Figure 4-16: Comparing GPU Top-K against CPU Top-K

First, we compare them on a dataset of 229 floats drawn from uniform distribution

𝑈(0, 1). Figure 4-16(a) shows the results. As the data is uniformly distributed, most

of the elements get discarded when checked against the heap minimum and very few

trigger a heap insertion. To illustrate this note that, for this dataset, with 𝑘 = 32, each

core looks at 671𝑘 elements and ends up doing about 500 insertions (including the first

32 elements that always get inserted). The performance is, thus, likely to be memory

bound. Bitonic TopK does 3𝑥 better than Hand PQ when 𝑘 = 32. Bitonic top-k

on the CPU does signficantly worse than heap-based methods as it does significantly

106

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity of time range

0

50

100

150

200

250

T
im

e
 T

a
ke

n
 (

in
 m

s)

Filter+Sort

Filter+Bitonic TopK

Combined Bitonic TopK

(a) Get top-k most retweeted tweets in a time
range

16 32 64 128 256

K

0

50

100

150

200

250

T
im

e
 T

a
ke

n
 (

in
 m

s)

Project+Sort

Project+Bitonic TopK

Combined Bitonic TopK

(b) Find top-k most popular tweets

Figure 4-17: Using Top-K kernel in MapD

more computation than heap-based methods which do just 500 insertions.

Next, we consider the same dataset but sorted in increasing order. Figure 4-16(b)

shows the results. Since the data is sorted, each element causes a heap pop/insert.

This is close to the worst case. Bitonic TopK and Radix Select take the same time

while the CPU algorithms do significantly worse. Bitonic TopK does 60𝑥 better

than Hand PQ and 120𝑥 better than STL PQ when 𝑘 = 32. Time taken by bitonic

top-k on the CPU is close to that of Hand PQ despite doing more comparisons. This

is due to the use of SIMD instructions.

As empirically demonstrated in this section, Bitonic TopK is the best performing

approach for smaller K (𝐾 ≤ 256) and Radix Select for larger K. To provide an

analytical argument in support of these findings and to predict the performance on

different hardware, we develop a hardware-conscious cost model in Section 4.6.

4.5.8 MapD Integration

To evaluate the performance improvement got from Bitonic TopK in a real world

setting, we evaluate the system on a twitter dataset consisting of 250 million tweets

from May 2017. We evaluate four queries:

1) SELECT id FROM tweets WHERE tweet_time < X

ORDER BY retweet_count DESC LIMIT 50

The query finds the top 50 most retweeted tweets in a specified time range. We vary

the time range to have selectivity from 0 to 1 in steps of 0.1. MapD by default runs

107

the filter on the time range followed by sort on the GPU. It then copies the top-k

tweet ids and assembles the tweet (Filter+Sort). We evaluate two alternatives: 1)

replace the sort by bitonic top-k (Filter+Bitonic TopK), 2) combined kernel that

runs filter and bitonic top-k together (Combined Bitonic TopK). Figure 4-17a shows

the results. Bitonic top-k based methods out-perform the existing methods. The filter

fusion optimization saves the time to write out to and read in from global memory

of the filtered id,retweet count entries. At selectivity 1, the filter fusion optimization

reduces the total kernel runtime (time spent on GPU) by 30% and the end-to-end

runtime by 23%.

2) SELECT id FROM tweets

ORDER BY retweet_count + 0.5 * likes_count DESC LIMIT K

The query finds the most popular tweets based on a complex ranking function. MapD

by default runs a projection step that computes the value of the ranking function

followed by a sort step (Project+Sort). We evaluate two alternatives: 1) replace

sort with bitonic top-k (Project+Bitonic TopK), 2) a combined kernel that computes

the value of the ranking function inside the SortReducer (Combined Bitonic TopK).

Figure 4-17b shows the results. The combined kernel saves on having to having to

write out and read in the projected rank value. This reduces the runtime of the

combined method by 10ms compared to Project+Bitonic TopK.

3) SELECT id FROM tweets WHERE lang=’en’ OR lang=’es’

ORDER BY retweet_count DESC LIMIT K

The query finds the top K tweets by retweet count in english or spanish language.

We evaluate the same 3 methods used in query (1). The filter has a set selectivity

of around 80%. We see the same trend as in the previous query. The combined

kernel saves on having to read/write filtered id,retweet count entries. This reduces

the runtime by 16ms compared to Filter+Bitonic TopK across all K.

4) SELECT uid, COUNT() AS num_tweets FROM tweets

GROUP BY uid ORDER BY num_tweets DESC LIMIT 50

The query finds the top 50 users by tweet count. There are about 57 million unique

users in the dataset. By default in MapD, the query execution takes 97ms of which

108

the sort step takes 44ms. Using bitonic top-k reduces the runtime by 39% as it reduces

the time taken by the sort step by 38ms. A query which finds say the 50 most popular

hash tags would not benefit as much from bitonic top-k as the most of the time is

spent in the group by step.

4.6 Cost Model

Due to space constraints, we limit our modeling efforts to the two best-performing

algorithms (see last section): Radix Select and Bitonic TopK. We model them

using hardware parameters we determined empirically using benchmarks provided by

Nvidia. The parameters are 1. the global memory bandwidth (𝐵𝐺), 2. the shared

memory bandwidth (𝐵𝑆), 3. the key size in bytes (𝑤), 4. the the input data size in

bytes (𝐷) and 5. the total number of threads (𝑛𝑡).

4.6.1 Radix-based Top-K

Radix-based top-k (Radix Select) operates as a series of passes, each pass looking

at one digit of 8 bits. Each pass reduces the data size and the total number of passes

is at most 𝑤/8. Pass 𝑖 involves:

∙ Read the input for the pass from global memory to write out the number of

entries per digit value per thread (total: 16 integers per thread). 𝐷𝑖𝐼 is the

input size for the pass in bytes. 𝐷𝑖𝐼 = 𝐷 for the first pass.

𝑇𝑖1 = 𝐷𝑖𝐼

𝐵𝐺

+ 16 * 4 * 𝑛𝑡

𝐵𝐺

∙ Calculate the prefix sum to find the digit value 𝑑 containing the k-th value.

𝑇𝑖2 = 2 * 16 * 4 * 𝑛𝑡

𝐵𝐺

∙ Scan the input and write out entries with digit value 𝑑 to another array in global

memory. Let 𝜂𝑖 be the fraction of entries with digit value 𝑑. Note that this step

109

is skipped if 𝜂𝑖 = 1.

𝑇𝑖3 = 𝐷𝑖𝐼

𝐵𝐺

+ 𝜂𝑖
𝐷𝑖𝐼

𝐵𝐺

The total time of pass 𝑖 is 𝑇𝑖 = 𝑇𝑖1 + 𝑇𝑖2 + 𝑇𝑖3. The total cost is the sum of the time

taken by the individual passes.

4.6.2 Bitonic Top-K

Bitonic top-k runs a sequence of kernels: first the SortReducer kernel, followed by

a series of BitonicReducer kernels. Let 𝑥 be the number of elements per thread.

Each kernel reduces the problem size by a factor of 𝑥. For every kernel, there are

two components that can dominate performance depending on 𝐾: global memory

access or shared memory access. Due to the high parallelism and the low overhead of

context switches, the GPU will effectively hide the cost of the less expensive of these

two behind the more expensive. The cost is, thus, the maximum of the two.

We start with the global memory access cost of the SortReducer kernel. The

kernel makes one scan of the input from global memory and writes out 1/𝑥 of the

input back (to global memory). The global memory data access time thus straight

forward to model:

𝑇𝑔 = 𝐷

𝐵𝐺

+ 1
𝑥

𝐷

𝐵𝐺

The shared memory data access time is harder to estimate: in addition to the

number of accesses, we need to take the number of shared memory bank conflicts

into account. Since bank conflicts occur whenever two values on the same bank are

accessed, we need to take the specific addresses of memory accesses into account.

The time taken if the kernel is bound by shared memory bandwidth is the sum of

the time taken by each combined step:

𝑇𝑠 = Σ𝑖𝛿𝑖
𝐷𝐼𝑖 + 𝐷𝑂𝑖

𝐵𝑠

where 𝛿𝑖 is the number of shared memory bank conflicts for one warp and, 𝐷𝐼𝑖 and

110

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Radix Real

Radix Predicted

Bitonic Real

Bitonic Predicted

Figure 4-18: Estimated vs actual runtimes for different K

𝐷𝑂𝑖 are size of data read and written by the phase respectively. Applying this to find

𝑇𝑠 for SortReducer finding the top-32, we get 𝑇𝑠 = 17.5𝐷/𝐵𝑠.

The estimated time taken by the 𝑆𝑜𝑟𝑡𝑅𝑒𝑑𝑢𝑐𝑒𝑟 kernel is 𝑚𝑎𝑥(𝑇𝑔, 𝑇𝑠). For the

Titan X Maxwell, 𝐵𝑆 = 2.9𝑇𝐵𝑝𝑠 and 𝐵𝐺 = 251𝐺𝐵𝑝𝑠. The estimated total time

is 𝑚𝑎𝑥(8.96𝑚𝑠, 12.1𝑚𝑠) = 12.1𝑚𝑠 which is close to the actual runtime of 14.2𝑚𝑠.

The cost for BitonicReducer can be estimated in a very similar way except that it

directly starts with 𝑙𝑒𝑛 = 𝑘/2.

Figure 4-18 compares the actual time of the methods versus the predicted time

based on the models for finding top-k on a dataset with 229 floating point numbers

drawn from 𝑈(0, 1) with varying K. The predicted times show the same trends as the

observed times and the cutoff point remains the same. Both the models underestimate

the time taken. This is because a kernel bound by global or shared memory may not

achieve the maximum possible bandwidth. For example, the first kernel of radix-

based top-k should take 8.6𝑚𝑠 based on model while in reality it takes 9.8𝑚𝑠 and,

the effective shared memory bandwidth used by the 𝑆𝑜𝑟𝑡𝑅𝑒𝑑𝑢𝑐𝑒𝑟 kernel for 𝑘 = 32

is around 2.5𝑇𝐵𝑝𝑠 versus the maximum 2.9𝑇𝐵𝑝𝑠.

As demonstrated in this section, bitonic top-k is not only experimentally faster

but also theoretically more efficient than the best alternative we evaluated.

111

4.7 Conclusion

Data analytics on GPUs is increasingly common, and a frequently analytics task is

to rank a set of data items according to some attribute and extract the top-k values.

In this chapter, we presented many algorithms to efficiently compute top-k on GPUs,

including a new algorithm based on bitonic sort. Through an extensive performance

evaluation of a number of different algorithms, we showed that our bitonic-top-k

algorithm is an order of magnitude faster than the fastest algorithms based on fully

sorting a list of elements, and, depending on the value of k, several times faster than

several other algorithms for efficiently computing top-k. We also presented a cost

model that accurately predicts the performance of several algorithms with respect to

k, allowing a query optimizer to choose the best top-k implementation for a particular

query.

112

Chapter 5

Data Compression

5.1 Introduction

Several commercial systems, including Omnisci [9], Kinetica [6], and BlazingDB [4],

aim to provide real-time analytics capabilities by using GPUs to store a large fraction

(or all) of the working set. A key constraint in these systems is the GPU memory

capacity. Currently, GPUs have at most 40 GB of memory which is used both to

cache the working set and as scratch memory for query execution. GPU memory is

6× more expensive compared to CPU RAM [70] and going outside a single GPU’s

memory incurs a penalty. Therefore, data compression is critical. Currently, GPU-

based systems use simple compression schemes like fixed-width dictionary encoding

and run-length encoding (RLE) [9, 83] similar to CPU-based in-memory analytics

systems, and decompressing on-the-fly during query execution. To the best of our

knowledge, no GPU database today uses bit-packed schemes which have been shown

to achieve the best compression ratios [27] on the CPU but are non-trivial to decode

in parallel across thousands of threads.

In this chapter, we introduce two new efficient compression schemes for GPUs:

GPU-FOR which does bit-packing in conjunction with Frame-Of-Reference (FOR) and

GPU-DFOR which uses delta encoding with bit-packing and FOR. Both these schemes

are designed to offer improved compression ratios while still being able to decode them

in parallel across thousands of threads at close to memory bandwidth speeds. GPU-FOR

113

partitions the data into blocks, in each block encoding integers with the minimum

bit size needed to represent a value in the block. It works well with uniform data

and can handle skew. GPU-DFOR first delta-encodes a block of integers before using

GPU-FOR. It is suited for sorted and semi-sorted columns.

Past works [28, 46] have looked at delta encoding, FOR, and variable length

byte-aligned packing (NSV). These works found that achieving the minimum space

cost by using a combination of compression schemes (e.g. delta+NSV) can degrade

performance as intensive decompression overburdens the GPU. Hence previous work

deemed these schemes GPU-unfriendly. The reason for bad performance was that

these works treated threads on the GPU as independent execution units and hence

required multiple passes to decode the compressed data. For example: to use a

column encoded using delta encoded variable length byte-aligned packing in a query,

these systems would first run a prefix-sum primitive to unpack the variable-length

byte-packed data and write it to global memory, then do a second pass prefix-sum

primitive to delta decode the data which is written to global memory, and finally the

query kernel would read from global memory the unpacked column — the intermediate

data is read/written to global memory multiple times. In our work, we treat a thread

block as the basic execution unit and each thread block collectively decodes one block

of encoded entries. By treating the thread block as the basic unit, we are able to cache

a block of data in on-chip caches and inline the multiple steps involved in decoding

into a single kernel, resulting in a single pass over the data. We present a series of

optimizations that enable us to decode at close to memory bandwidth speed. The

performance of our schemes simplifies the choice of a compression scheme to encode

a column — we choose the scheme with the smallest storage footprint. It eliminates

the need for sophisticated compression planners used by past works to choose the

right compression scheme.

To show that our compression schemes perform well and and significantly reduce

the storage footprint of GPU-based systems, we present an integration of GPU-FOR

and GPU-DFOR into the Crystal framework [70]. We encapsulate the decompression

into a device function that enables programmers to change a kernel operating on an

114

uncompressed array to a compressed column with a single line of code. In the end,

we find that our compression schemes can reduce the storage footprint by up to 10×

on certain data distributions; on the Star Schema Benchmark, the proposed scheme

achieves 50% reduction in storage compared to no compression and 37% compared

to existing GPU compression schemes with almost no impact on performance.

In summary we make the following contributions:

∙ We present two bit-packing based compression schemes GPU-FOR and GPU-DFOR

that can be used to store data compactly on the GPU.

∙ We develop a series of optimizations that allow us to decode the encoded data

on-the-fly at close to memory bandwidth speed.

∙ We present an integration of GPU-FOR and GPU-DFOR into the Crystal framework

and demonstrate ease of use.

∙ We present an evaluation on multiple synthetic benchmarks and on the Star Schema

Benchmark (SSB). On SSB our schemes can achieve significant (37% on SSB) space

savings and just 4% loss in performance compared to existing methods.

The rest of the chapter is organized as follows: related work and background

are discussed in Section 5.2. We present the data format and the unpacking imple-

mentation on the GPU for GPU-FOR and GPU-DFOR in Section 5.3 and Section 5.4,

respectively. In Section 5.5, we discuss the database integration. In Section 5.6,

we evaluate the performance and compression ratio of binary packing against other

schemes on the GPU. Finally, we conclude in Section 5.7.

5.2 Background

In this section, describe relevant aspects of past approaches to data compression on

both GPUs and CPUs.

115

5.2.1 Compression Techniques

Compression techniques are heavily exploited in modern column-store databases for

efficient query processing. These databases store relational data in a decomposition

storage model (DSM) [26] where a n-attribute relation is replaced by n arrays, one

for each attribute. Since each attribute is stored separately as a sequence of values,

we can use lossless compression techniques to store them compactly. Based on the

compute intensity of decompression, lossless compression techniques are categorized

into two buckets: lightweight and heavyweight. Lightweight algorithms are mainly

used in in-memory column stores while heavyweight algorithms like Huffman [41]

and Lempel Ziv [84] (together with lightweight techniques) are used in disk-based

column stores. In this chapter we focus on lightweight techniques. We show later

in Section 5.6 that most of the compression gains are achieved with just lightweight

techniques for our workload.

There are five basic lightweight techniques to compress a sequence of values:

frame-of-reference (FOR) [32, 85], delta coding (DELTA) [45], dictionary compres-

sion (DICT) [12, 85], run-length encoding (RLE) [12], and null suppression (NS)

[12].

FOR represents each value in a sequence as a difference to a given reference value.

FOR is applied to a block of integers and the reference value chosen is usually the

minimum value to make all values positive. FOR is good when the block of integers

have similar values.

DELTA represents each value as a difference to its predecessor value. DELTA is

good when the array is sorted or semi-sorted.

DICT replaces each value by its unique key in the dictionary. DICT is used for

columns with low cardinality.

RLE replaces uninterrupted sequences of occurrences of the same values (called runs)

by the value and length of the sequence. Hence a sequence of values is replaced by a

sequence of pairs (value, length).

NS removes leading zeros from an integer’s bit representation. NS is useful when a

116

column contains many small integers.

FOR, DELTA, DICT, and RLE work at the logical level where a sequence of

values is compressed into another sequence. NS addresses the physical level of bits

with the basic idea of removing leading zeros in the bit representation of small integers.

There are many different NS techniques proposed which can broadly be categorized

as (i) bit-aligned, (ii) byte-aligned, and (iii) word-aligned. Bit-aligned NS algorithms

compress an integer to a minimal number of bits, byte-aligned NS compress an integer

with a minimal number of bytes, and word-aligned NS encode as many integers as

possible into 32/64-bit words. The NS algorithms also differ in their data layout. We

distinguish between horizontal layout and vertical layout. In the horizontal layout,

the compressed representation of subsequent values is situated in subsequent memory

locations. In the vertical layout, each subsequent value is stored in a separate memory

word in a striping fashion.

Researchers have proposed a number of NS algorithms for compressing columns

in main memory database management systems (DBMS) on CPUs. SIMD-Scan [80]

stores column values in a tightly bit-packed horizontal layout, ignoring any byte

boundaries and uses SIMD instructions to scan a column of entries. For example,

to store a column of 11 bits in memory, the first value is put in the 1st to 11th

bits whereas the second value is put in the 12th to 22nd bits and so on. Such a

bit-packed layout incurs overhead to unpack the data before processing and does not

saturate memory bandwidth. In the example above, several SIMD instructions have

to be spent to align eight 11-bit values with the eight 32-bit banks of a register. Li

and Patel [47] proposed the Horizontal Bit-Parallel (HBP) and Vertical Bit-Parallel

(VBP) storage layouts. HBP is a word-aligned layout that packs as many entries as

possible into the same word. In the example, 5 11-bit entries would be packed in

64-bit word and the remaining 9 bits wasted. Due to padding, HBP does not achieve

compact storage. In VBP, if a processor uses S-bit words, it groups S entries of k

bits each into k processor words such that the ith processor word contains the ith bit

of each entry. Reconstructing/looking-up a value under the VBP layout is expensive

though. That is because the bits of a value are spread across k words. ByteSlice [30]

117

Int1Int5

Int13

01428

01024

Int2Int6

Int14

01428

01024

Int3Int7

Int15

01428

01024

Int4Int8

Int16

01428

01024

Int12 Int11 Int10 Int9

Figure 5-1: Bit packing with vertical data layout

improves on VBP. It groups S/8 entries to: (1) an S-bit memory word contains bytes

from S/8 different values; (2) bytes of a k-bit entry are spread across ⌊𝑘/8⌋ words.

ByteSlice stripes by byte, hence while scan is faster than VBP, the storage footprint

is also larger than VBP.

The best performing NS scheme that also achieves good compression ratios is

SIMD-BP128 [45] (and its variants). SIMD-BP128 processes data in blocks of 128

integers at a time and stores these integers in a vertical layout using the number of

bits required for the largest of them. Figure 5-1 illustrates the vertical layout where

the first four integers Int1, Int2, Int3, Int4 start out in four different 32-bit words.

Int5 is immediately adjacent to Int1, Int6 is adjacent to Int2, etc. Each lane has 32

integers. The used bit width is stored in a single byte, whereby 16 of these bit widths

are followed by 16 compressed blocks. SIMD-BP128 achieves better compression than

Li and Patel [47] and ByteSlice, and can be decoded at memory bandwidth speed.

In Section 5.3.3, we discuss why directly translating SIMD-BP128 to the GPU

leads to bad performance. GPU-FOR uses a horizontal layout similar to SIMD-Scan,

however the decoding algorithm is novel and contains optimizations tailored to the

GPU architecture. GPU-FOR achieves a better compression ratio than HBP as it

does not use padding. We think VBP is not well suited for the GPU architecture as

it is not easily vectorizable. In our evaluation, we compare against byte-aligned null

suppression which achieves the same compression as ByteSlice.

5.2.2 Query Execution on GPUs

With the slowing of Moore’s Law, CPU performance has stagnated. In recent years,

researchers have begun to explore heterogeneous computing as a way to overcome

118

the scaling problems of CPUs and to continue to deliver interactive performance for

database applications. Ocelot [39] provides a hybrid analytical engine as an extension

to MonetDB. YDB [83] is a GPU-based data warehousing engine. HippogriffDB [46]

used GPUs for large scale data warehousing where data resides on SSDs. More re-

cently, HorseQC [31] proposes pipelined data transfer between CPU and GPU to

improve query runtime. All these works have focused on using GPU as a coprocessor,

where data is stored primarily on the CPU side and moved to the GPU at query

execution time. Recent work [70] has shown that GPU as a coprocessor is slower

than just running queries on the CPU, instead a better model is to store the work-

ing set directly on the GPU memory. The memory capacity of GPUs has increased

significantly over the years, today a GPU can have up to 40GB of High Bandwidth

Memory (HBM), which is likely to further increase as HBM technology improves. It

is possible to attach up to 20 GPUs to a single socket CPU allowing the user to aggre-

gate enough memory to store large datasets. Commercial systems like Omnisci [9],

Kinetica [6], and BlazingDB [4] use this philosophy and aim to provide real-time

analytical capabilities by using GPUs to store large parts of the working set. This

chapter focuses on implementing compression schemes efficiently on the GPU so that

more data can be cached on the GPU with minimal performance degradation. The

compression schemes are beneficial to systems that use GPU as a coprocessor as well

as they help reduce the data transfer time between CPU and GPU (see Section 5.6.5).

Researchers have looked at data compression for GPUs in the past. Yuan et

al. [83] studied effect of RLE and DICT compression on query execution. Fang et

al. [28] extended the work and studied a larger set of compression schemes like DICT,

FOR, RLE, Null Suppression with Fixed Length (NSF), and NS with Variable Length

(NSV). In NSF, all values are encoded with the number of bits being multiple of 8

to ensure output values are byte-aligned. As GPU is byte-addressable, they claimed

that this achieves good decompression performance. NSV uses a variable number of

bytes per entry. For each value, it stores the number of bytes used to store value (1,

2, 3, or 4) followed by bytes of the output value. Jing et al. [46] also studied compres-

sion, however they reused the implementation of Fang et al.. A key issue with past

119

work is that they treated a cascade of compression schemes as independent layers.

For example, data compressed with DELTA + FOR + NSF would run the DELTA

decoding kernel, followed by FOR kernel and NSF kernel, finally using the uncom-

pressed column in the actual query execution. Each kernel would read and write the

entire column to global memory. As a result, cascades of compression schemes would

achieve lower performance while likely having better compression ratios introducing a

cost-benefit problem. Hence, both works proposed compression planners that based

on a cost-model decided which cascades to use to minimize space cost while also

ensuring query performance is not impacted significantly.

Compared to past work, this chapter focuses on building efficient decompression

routines that can decode (variable length) bit-aligned null suppression schemes. Past

works have looked only at byte-aligned schemes (NSF/NSV) and didn’t evaluate

bit-aligned schemes that we describe in this chapter which we show achieve better

compression ratios. We also show our compression schemes (which are a cascade

of basic compression schemes) can be decoded in a single pass over the data and

inline during query execution at close to memory bandwidth speed. This eliminates

the need for complicated compression planners. Commercial systems currently only

implement fixed length dictionary encoding and would also benefit from our work.

5.3 Fast Bit Unpacking

In this section, we describe the GPU-FOR compression format, which uses bit-packing

in conjunction with Frame-of-Reference (FOR) to store data compactly on the GPU

and the fast bit unpacking routine used to decompress it efficiently on the GPU.

GPU-FOR can be used to efficiently compress attributes of type integer, decimal, or

dictionary-encoded string (i.e. sequence of integers) in a column store. At query

time, the query executor will need to decompress data and run the query on the

decompressed data. Hence, optimizing the performance of decompression is critical

for analytic workloads. In contrast, data is only compressed once as it is loaded into

the GPU, so optimizing the performance of compression is not as important. In the

120

rest of the section, we first describe the bit-packed representation we use and then

describe the kernel implementation on the GPU. We present a series of optimizations

which allow us to decode bit-packed data while saturating memory bandwidth.

5.3.1 Data Format

Bit packing is a process of encoding small integers in [0, 2𝑏) using 𝑏 bits; 𝑏 can be

arbitrary and not just 8, 16, 32, or 64. Each number is written using a string of

length 𝑏. Bit strings of fixed size 𝑏 are concatenated together into a single bit string,

which can span several 32-bit words. If some integer is too small to use 𝑏 bits, it is

padded with zeros. Compressing 32-bit integers to 𝑏 bits achieves a compression ratio

of 32/𝑏, which can be significant.

In bit-packing, a sequence of values is encoded with fixed bit size 𝑏. Choosing

a common bit size 𝑏 for an entire array would mean that the occurrence of a single

large value would increase the number of bits needed to encode the values. Hence, bit-

packing is generally used in conjunction with FOR encoding. In GPU-FOR, the array of

values is partitioned into blocks. We use blocks of 128 integers. The range of values in

the block is first found and then all the values are written in reference to the minimum

value: for example, if the values in a block are integers in the range [100,130], then

using a reference of 100, we can store them using 5 bits (𝑙𝑜𝑔2(130 + 1− 100)). Each

block is further divided into sequences of 32 integers called miniblocks. For each

miniblock, we choose a bit-width based on the maximum number of bits needed

to encode the largest value. Each bitwidth can be stored in 1 byte. We store the

bitwidths of 4 miniblocks at the start of the block using a single integer. The choice of

the size of the miniblock and the reason for storing bitwidths together is to ensure they

align on 32-bit boundaries. This allows us to use 32-bit arithmetic while decoding

and makes shared memory accesses (which are aligned to 32-bit boundaries) efficient.

The bit-packed array needs to be decoded in parallel across a large number of

threads. For this, we store the start index of the blocks in a separate array called

block starts. Finally we store the metadata associated with the encoding: block size

(i.e., the number of integers within each block), miniblock count (i.e., number of

121

Block1 Block2

Header (total count/block size) blocks

B1 B2 B3 B4
Refer
-ence Miniblock1 Miniblock2 Miniblock3 Miniblock4

Bitwidth Word

Data :

Block Starts:

Total
count

Miniblock
Count

Block
Size

Figure 5-2: GPU-FOR Data Format

100 101 101 102 101 101 102 101 99 100 105 107 114 112 110 105

1 2 2 3 2 2 3 2 0 1 6 8 15 13 11 6

Values:

99
reference miniblock1 miniblock2

01 10 10 11 10 10 11 01 0000 0001 0110 1000 1111 1101 1011 0110

- reference

packing

maxbits = 2 maxbits = 4

Encoded Block: 99 2 4 0110101110101101 00000001011010001111110110110110

Figure 5-3: Example encoding with GPU-FOR

miniblocks per block), and the total count (i.e., total number of integers in the data

array) in the header. Figure 5-2 shows a schematic of the format we use to store data.

Figure 5-3 shows an example of encoding 16 integers into a block with 2 miniblocks.

The minimum value in the block (i.e., 99) is used as the reference. We calculate the

difference of the block values from the reference. Each miniblock contains 8 integers.

We see that the first miniblock needs 2-bits per block while the second miniblock

needs 4-bits per block. We encode each miniblock with their respective bitsizes and

store the reference and bitwidths at the start of the block.

The key difference between GPU-FOR and state-of-the-art bit-packing algorithms

for CPUs like SIMD-BP128 is that GPU-FOR uses horizontal data layout to store the en-

tries while SIMD-BP128 uses vertical data layout. We will discuss later in Section 5.3.3

the reason for this choice.

122

Algorithm 6: Fast Bit Unpacking on GPU — The following code runs
on each of the 128 threads within a threadblock in parallel.

Input : int[] 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡𝑠; int[] 𝑑𝑎𝑡𝑎; int block_id;
int thread_id

Output: int item
1 int block_start = block_starts[block_id];
2 uint * data_block = &data[block_start];
3 int reference = data_block[0];
4 uint miniblock_id = thread_id/32;
5 uint index_into_miniblock = thread_id & (32 - 1);
6 uint bitwidth_word = data_block[1];
7 uint miniblock_offset = 0;
8 for j = 0; j < miniblock_id; j++ do
9 miniblock_offset += (bitwidth_word & 255);

10 bitwidth_word ≫= 8;
11 uint bitwidth = bitwidth_word & 255;
12 uint start_bitindex = (bitwidth * index_into_miniblock);
13 uint header_offset = 2;
14 uint start_intindex = header_offset + miniblock_offset + start_bitindex/32;
15 uint64 element_block = data_block[start_intindex] |

(((uint64)data_block[start_intindex + 1]) ≪ 32);
16 start_bitindex = start_bitindex & (32-1);
17 uint element = (element_block & (((1≪bitwidth) - 1) ≪ start_bitindex)) ≫

start_bitindex;
18 item = reference + element;

5.3.2 Implementation

In this section, we describe a number of optimizations at the implementation level

that we applied to achieve decompression at close to GPU memory bandwidth speed.

These optimizations are inspired by similar optimizations for other algorithms. How-

ever, to the best of our knowledge, none have been applied in the context of parallel

decompression of bit-packed data. To give an impression of the importance of each

optimization, we end every subsection with the time taken to decode a compressed

dataset of 500 million integer values drawn from a uniform distribution 𝑈(0, 216). The

details of the experimental setup can be found in Section 5.6.1.

Base Algorithm: Algorithm 6 shows the pseudocode that would run in parallel on

each thread (𝑛 threads are allocated for 𝑛-element dataset). Each threadblock (of size

128 threads) is assigned to decode a block (of 128 elements) with each thread decoding

123

one element in the block based on its index. Each thread starts by reading the block

start pointer of the block to find where in the data array the block starts (line 1–

2). Each thread then reads in the bitwidth_word, uses it to compute the offset of

its miniblock in the data array (miniblock_offset) (lines 7–10). In computing the

miniblock offset, we use the fact that if entries in a miniblock are encoded with 𝑏 bits,

then the miniblock occupies 𝑏 bytes (since there are 32 entries per miniblock). Next,

we compute the offset in bits within the miniblock (line 12). Since the entries are bit-

packed, they are not byte-aligned and can span byte boundaries. Using starting bit

index, we calculate the starting integer index (start_intindex) of the entry (lines

13-14). We then load an 8-byte block starting at start_intindex (element_block)

(line 15). This block contains the entire element, we use bitshift arithmetic to extract

the entry (lines 16–17). Finally, we add reference and return the result. The result

resides in a register and is used subsequently during query execution. In Section 5.5,

we describe in greater detail how the algorithm is used during query execution.

This algorithm takes 18 ms to decompress the dataset described at the start of the

section. Reading an uncompressed dataset of 500 million 4-byte integers takes 2.4 ms.

This means decompressing the dataset is 7.5× slower than reading the uncompressed

data. We use a number of optimizations detailed below to bridge the gap:

Optimization 1: Operating in Shared Memory

Each thread makes multiple requests to the data array which sits in global memory.

Since, all the requests made by all threads within a threadblock touch one data block,

in this optimization, we load the entire block into shared memory once at the start

of the operation. Each threadblock starts by reading block_start[BlockId] and

block_start[BlockId+1] to determine the boundaries of the data block to be pro-

cessed and then loads it into its shared memory in a coalesced manner. All subsequent

requests are made to the data block in shared memory.

Recall that the shared memory is an order of magnitude faster than global mem-

ory. This optimization shifts global memory reads to shared memory reads, thereby

improving performance. This optimization results in runtime reduction from 18ms to

7ms on the sample dataset.

124

Optimization 2: Processing Multiple Blocks

The granularity of reads from global memory is 128 bytes [70]. Maximum bandwidth

is achieved when warps’ (groups of 32 threads) accesses to global memory result in

neighboring locations being accessed. The best case scenario is when 32 threads access

a 4-byte integer array of size 32, resulting in a perfect 128 byte access. In the sample

dataset, if all integers end up being encoded with 16 bits, the block size is 258 bytes

(2 bytes for block header + 256 bytes for miniblocks). When a threadblock of size

128 reads in the data block from global memory, some warp accesses do not result

in an aligned full segment being read from global memory. The same issue occurs

when we access the block_start array, we are reading in only two values from global

memory, again leading to loss of efficiency.

In this optimization, we attempt to reduce the impact of these irregular accesses to

global memory by processing multiple data blocks per threadblock. Each threadblock

is assigned 𝐷(= 2/4/8/16/32) data blocks to process. At the start, each threadblock

reads in 𝐷 + 1 block_start entries from global memory. Next they read in the data

blocks block_start[D×BlockId] and block_start[D×BlockId + D] from global

memory into shared memory. As a result, we have reduced the number of irregular

accesses to both the block_start and the data array.

Figure 5-4 shows the runtime for decompression of the sample dataset with varying

𝐷. As we can see from the figure, the largest reduction comes from going from 𝐷 = 1

to 𝐷 = 4. Going from 𝐷 = 4 to 𝐷 = 16 improves the performance, however

the improvement is marginal. Finally, when we go to 𝐷 = 32 the performance

deteriorates significantly. This is because the result of the decompression is stored in

registers. While increasing 𝐷 reduces the number of irregular accesses, the number

of registers required and the shared memory requirement increases proportional to

𝐷. Each thread on the GPU has limited amount of registers and shared memory

available. On an Nvidia V100 GPU, each thread can use 65 registers and 48 bytes of

shared memory per thread at full occupancy. As a result, when we go to 𝐷 = 16, each

thread requires 64 bytes of shared memory which reduces occupancy slightly. When

we go to 𝐷 = 32, each thread requires 128 bytes of shared memory which results in

125

1 2 4 8 16 32

D

0

1

2

3

4

5

6

7

ti
m

e
in

m
s

GPU-FOR None

Figure 5-4: Decompression performance with varying number of data blocks per
thread block (D)

significant reduction in occupancy and register spilling — hence the slowdown.

When we run full SQL queries, we have to store 𝐷 values per output column

in registers until the end of the query. We noticed in our evaluation on the Star

Schema Benchmark (discussed later in Section 5.6.4) that there is little difference in

performance with 𝐷 = 4/8 and choosing 𝐷 > 8 leads to deterioration in performance.

This is because each query has 3-4 output columns and choosing higher values of 𝐷

leads to register spilling and reduced occupancy. Hence, we choose to simply use

𝐷 = 4 in the rest of the chapter. Note that 𝐷 is a parameter and users can choose

higher value of 𝐷 in case they are just decoding a single column.

Optimization 3: Precomputing Miniblock Offsets

Computing the miniblock_offset involves a for loop (lines 8–11 in Algorithm 6).

We can make two observations: (1) miniblock offsets are a exclusive prefix sum over

the bitwidths array (for example, if the bitwidths used by 4 miniblocks within a block

are 7, 8, 9, and 10, the miniblock offsets are thus 0, 7, 15, and 24); (2) with 𝐷 = 4,

there are only 𝐷 * 4 = 16 unique miniblocks offsets to compute, while Algorithm 6

performs this computation on all 128 threads redundantly. In this optimization,

we reduce the compute load of the algorithm by precomputing the 𝐷 * 4 miniblock

126

Algorithm 7: Precomputing Miniblock Offset — The following code
runs on each of the first 4 × D threads within a threadblock.

Input : int[] 𝑠_𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡𝑠; int[] 𝑠_𝑑𝑎𝑡𝑎;
int thread_id

Output: int[] s_offsets; int[] 𝑠_𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ𝑠;
1 int block_index = thread_id / 4;
2 int miniblock_index = thread_id
3 uint bitwidth_word = s_data[s_block_starts[block_index] - s_block_starts[0] + 1];
4 uint miniblock_offsets = (bitwidth_word ≪ 8) + (bitwidth_words ≪ 16) +

(bitwidth_word ≪ 24);
5 uint miniblock_offset = (miniblock_offsets ≫ (miniblock_index ≪ 3)) & 255;
6 uint bitwidth = (bitwidth_word ≫ (miniblock_index ≪ 3)) & 255;
7 s_offsets[thread_id] = miniblock_offset;
8 s_bitwidths[thread_id] = bitwidth;

offsets once at the start and storing them in shared memory. Algorithm 7 shows

the pseudocode for the optimization. It runs on the first 𝐷 * 4 = 16 threads (i.e.

thread_id ∈ [0, 16)). All the array prefixed by s_ are in shared memory. We start

by assigning each thread one miniblock offset/bitwidth pair to compute (lines 1-2).

Each such thread loads the corresponding bitwidth word (line 3) and computes a

prefix sum over it using bitshift arithmetic (line 4). Finally we extract the relevant

offset and bitwidth for the miniblock and store it in shared memory (lines 5-8). These

values are read by each thread when they need it. The optimization eliminates the

for loop in lines 8–11 in Algorithm 6 and reduces the runtime from 2.39ms to 2.1ms,

which is lower than the time taken to read the uncompressed data.

5.3.3 Discussion

GPU-FOR vs SIMD-BP128 : As described earlier in Section 5.2.1, there are two

variants of bit-packing based on the data layout: horizontal and vertical. On the CPU,

the fastest bit-packing/unpacking routine is SIMD-BP128 [45]. SIMD-BP128 stores

integers in a vertical layout. It uses SSE instructions with each SSE register holding

4 32-bit integers. The data is encoded with 4 lanes each with 32 integers allowing

the data to be decoded efficiently by mapping each lane to a different vector lane

of the SSE register. Each block encodes 128 integers. To ensure 16-byte alignment,

127

SIMD-BP128 groups 16 blocks together, storing the bitwidths used in each block at

the start. This is similar to GPU-FOR format with each block having 16 miniblocks,

with each miniblock having 128 integers and encoded with a vertical layout.

On the GPU, if we consider a SIMD lanes as equivalent to a GPU threads in a

warp, we can directly translate the SIMD-BP128 style vertical storage layout to the

GPU. Let’s call this GPU-SIMDBP128. We go from having 4 lanes on the CPU to 32

lanes on the GPU (warp size is 32 threads). As a result, on a typical thread block size

of 128, with each thread having 32 integers to ensure their lane terminates in 32-bit

boundaries, we would need a block size of 4096 vs 128 on the CPU. We implemented

GPU-SIMDBP128 and compared the performance of GPU-FOR vs GPU-SIMDBP128

on the same microbenchmark. GPU-FOR (with 𝐷 = 16) takes 1.55ms compared to

GPU-SIMDBP128 which takes 4.3ms. Hence GPU-SIMDBP128 is 2.7x slower than

GPU-FOR.

On the GPU, vertical packing like in SIMD-BP128 is slower because the number

of registers available per thread is limited. Decoding the vertical layout would require

space for 32 4-byte entries and 32 registers to store output. Similar to the case when

𝐷 = 32, this leads to reduced occupancy. Furthermore, if we have a query with only

3 columns needed for result computation, we would need more than 2× the registers

available per thread resulting in significant register spilling. To get a sense for the

performance impact, we evaluated the Star Schema Benchmark q1.1 (described later

in Section 5.6.4) with columns encoded using GPU-FOR vs with columns encoded

using GPU-SIMDBP128. The query uses 4 columns. The performance with GPU-

SIMDBP128 was 14x slower than with GPU-FOR. Another downside of using GPU-

SIMDBP128 is the large block size (4096 vs 128). Large block sizes mean that one

skewed value could lead to large bitwidth for the entire block, reducing compression

gains.

A CPU has low compute to bandwidth ratio and each CPU core has a large

L1 cache. This leads to bitpacking schemes with vertical layout like SIMD-BP128

(which has lower compute intensity but higher storage requirement) perform better

than schemes with a horizontal layout like SIMD-Scan [80]. On the GPU, the compute

128

to bandwidth ratio is higher and each GPU thread has limited resources. This results

in bitpacking with horizontal layout like GPU-FOR performing better than using

vertical layout on the GPU.

Bit Packing without Miniblocks: Instead of having 4 miniblocks, one could instead

just have one miniblock encoded with a single bitwidth. There is no difference in

terms of memory space overhead as both schemes store a bitwidth(s) as a single 4-

byte integer. However, there is reduced computation as we don’t have to calculate

the miniblock offsets. We implemented this scheme and found the performance to

be marginally better. The performance on the sample dataset improves from 2.1ms

to 2ms. When we experimented further to see if it is possible to reduce runtime by

reducing compute load by having a single bitwidth across blocks or using zero as

reference, we could not achieve any further improvement. This leads us to believe

that the performance is close to saturating bandwidth given our global memory access

pattern.

5.4 Fast Delta Decoding

Delta encoding (also called differential encoding) is a common approach used (typ-

ically in conjunction with other techniques) to compress sorted or partially-sorted

integer/decimal arrays. Instead of storing the original array of integers (𝑥1, 𝑥2, 𝑥3...),

delta encoding keeps only the difference between successive integers together with

the initial integer (𝑥1, 𝛿2 = 𝑥1 − 𝑥1, 𝛿3 = 𝑥3 − 𝑥2, ..). Since the differences are typi-

cally much smaller than the original integers, delta encoding allows for more efficient

compression. In this section, we describe GPU-DFOR coding scheme that uses delta

encoding in conjunction with bit-packing and frame of reference to achieve good

compression ratios and can be decoded efficiently.

The sequential form of delta encoding requires just one subtraction per value

(𝛿𝑖 = 𝑥𝑖− 𝑥𝑖−1). During decoding, we require one addition per value (𝑥𝑖 = 𝛿𝑖 + 𝑥𝑖−1).

For an array 𝐴 of 𝑘 elements, the prefix sum 𝑝𝐴 is a 𝑘-element array where 𝑝𝐴[𝑗] =∑︀𝑗−1
𝑖=0 𝐴𝑗 = 𝑝𝐴[𝑗 − 1] + 𝐴𝑗. Hence, the process of decoding delta encoded data is

129

Block1
Total
count

Miniblock
Count

Block
Size

Header

B1 B2 B3 B4
Refer
-ence Miniblock1 Miniblock2 Miniblock3 Miniblock4

Bitwidth Word

Data :

Block Starts:

Block2 Block3 Block4
First
Value

Tile 1

Figure 5-5: GPU-DFOR Data Format

equivalent to computing the prefix sum. Efficient parallel prefix sum routines have

been proposed [36] that could be used to decode delta encoded data on the GPU.

A simple approach to delta encode + bit-pack the data would be to do it as two

separate steps: first compute the deltas for the entire array and then bit-pack the

deltas. The decoding would then be a two-step process: the first pass would use the

bit unpacking routine described in Section 5.3.2 to decode the deltas and write it

to global memory; the second pass would use the prefix sum routine to decode the

data. This is the approach used by past work [28, 46] and is inefficient as it requires

multiple passes over the data. Later in this section we describe how we can combine

the delta decoding step and the bit unpacking step into a single pass.

Note that delta encoding is used only for sorted or partially-sorted data e.g.: to

encode the primary key and secondary keys in databases, to encode posting lists

in search workloads. Using it for unsorted data could lead to worse compression

ratios compared to simply bit-packing the data. To illustrate this, consider a block

of integers drawn uniform randomly from [0, 32). The integers can be bitpacked with

5 bits. However the deltas will be in the domain [−31, 31] and would require 6 bits

per integer.

5.4.1 Data Format

Delta encoding the entire array as 𝑥0, 𝛿1, 𝛿2... makes it hard to decode in parallel as

decoding the 𝑛𝑡ℎ block requires the (𝑛− 1)𝑡ℎ block to have been decoded already. To

130

enable parallel decoding, we build on GPU-FOR encoding scheme (Section 5.3.1) by

partitioning the array into sets of 𝐷 blocks where each block contains 128 integers

and delta encoding each set of 𝐷 blocks independently (where 𝐷 is the number of

blocks processed per threadblock). Figure 5-5 shows the data format. Encoding 𝑥

integers generates 𝑥− 1 deltas. Hence during encoding, we pad the deltas with 0 to

ensure every block has 128 entries. We store the first value separately before every

𝐷𝑡ℎ block, with start pointers still pointing to the start of each block.

5.4.2 Implementation

With the data format described above, each tile of 𝐷 blocks can be decoded indepen-

dently. During decoding, we first start by loading the 𝐷 block segments into shared

memory and use the fast bit unpacking routine (described in Section 5.3.2) to decode

the deltas.

After bit unpacking the deltas, we have 𝐷 deltas per thread. The output data

entries can be calculated using prefix sum over the deltas of all threads within the

threadblock. We can use block-wide prefix sum to compute the prefix sum over the

deltas based on the work-efficient prefix sum algorithm proposed by Blelloch et al. [20].

For an array of 𝑛 integers, the algorithm is able to compute the prefix sum of the

array in parallel using Θ(log 𝑛) steps. We start with loading the computed deltas into

shared memory to create a contiguous array of deltas for all 𝐷 blocks. All operations

in the algorithm are done in place on the array in shared memory. The algorithm

consists of two phases: the up-sweep phase and the down-sweep phase. Each phase

consists of a series of steps where each step is a set of additions in parallel across

threads. The additions when visualised form a tree pattern as shown in Figure 5-6.

In the up-sweep phase, we traverse the tree from leaves to root computing partial

sums at the internal nodes of the tree. Figure 5-6a illustrates the up-sweep phase on

an array with 8 elements. There are 3 steps. In each step, we do a set of additions

in parallel across threads and synchronize the threads after each step. In the down-

sweep phase, starting with the result of the up-sweep phase, we traverse back down

the tree from the root, using the partial sums from the reduce phase to build the

131

x0 Σ(x0..x1) x2 Σ(x0..x3) x4 Σ(x4..x5) x6 Σ(x0..x7)

x0 Σ(x0..x1) x2 Σ(x0..x3) x4 Σ(x4..x5) x6 Σ(x4..x7)

x0 Σ(x0..x1) x2 Σ(x2..x3) x4 Σ(x4..x5) x6 Σ(x6..x7)

x0 x1 x2 x3 x4 x5 x6 x7

(a) Up-Sweep Phase

x0 Σ(x0..x1) x2 Σ(x0..x3) x4 Σ(x4..x5) x6 0

x0 Σ(x0..x1) x2 0 x4 Σ(x4..x5) x6 Σ(x0..x3)

x0 0 x2 Σ(x0..x1) x4 Σ(x0..x3) x6 Σ(x0..x5)

0 x0 Σ(x0..x1) Σ(x0..x2) Σ(x0..x3) Σ(x0..x4) Σ(x0..x5) Σ(x0..x6)

x0 Σ(x0..x1) x2 Σ(x0..x3) x4 Σ(x4..x5) x6 Σ(x0..x7)

(b) Down-Sweep phase

Figure 5-6: Illustration of Prefix Sum Algorithm

prefix sum result in place on the array. Figure 5-6b shows the down-sweep phase for

the example. We start by inserting a zero at the last entry (root of the tree). On

each step, each node at the current level passes its own value to its left child, and the

sum of its value and the former value of its left child to its right child. In the end,

each thread reads 𝐷 entries back into registers and returns it as a result which will

be used in the rest of the query. There are a number of optimizations done to achieve

good performance (e.g., using a technique called padding to break shared memory

bank conflicts) that we do not touch upon. Interested reader can refer to [36] for

more details.

Although prefix-sum has been used widely in libraries like Thrust [11], a key ob-

132

servation we make is that it is sufficient to do delta coding in each set of 𝐷 blocks

separately. This allows us to get away with doing prefix sum entirely within a thread-

block in shared memory. Doing prefix sum over an entire array is much more expensive

and involves multiple passes over data. It also allows us to fuse bit unpacking and

delta decoding steps into a single kernel which allows our implementation to perform

decompression in a single pass over the data blocks in global memory compared to

multiple passes required by previous works [28, 46]. The bit unpacking and delta

decoding share the same shared memory buffer. The total resource requirement of

the kernel is 𝐷 4-byte entries in shared memory and 𝐷 registers to store the output

per thread.

Compared to decoding GPU-FOR, decoding GPU-DFOR involves significantly more

operations in shared memory. When used to decompress the example dataset de-

scribed earlier in Section 5.3, the above algorithm takes 4.45ms. This is approximately

2× slower than decompression of the dataset encoded with GPU-FOR while the com-

pressed dataset size is only 6% larger. This is because the decompression of GPU-DFOR

is bound by the shared memory bandwidth. GPU-DFOR does better than GPU-FOR on

sorted and semi-sorted datasets. Consider a dataset of 𝑛 = 500 million integers with

entries from 1 to 𝑛 sorted. This dataset when compressed using GPU-DFOR uses 1.8

bits per integer vs 7.8 bits per integer used by GPU-FOR. The runtime of GPU-DFOR is

still 2× slower than GPU-FOR as it still does the same number of operations in shared

memory. However, when used in a larger kernel, GPU-DFOR is faster than GPU-FOR as

shared memory will likely not be the bottleneck in the larger kernel. We will discuss

the performance characteristics in greater detail in Section 5.6.3.

5.5 Database Integration

Given the efficient massively parallel bit-unpacking implementations described in the

previous sections, we were naturally interested in its usability in a full system. As a

proof of concept, we implemented the decompression routines as CUDA device func-

133

1 // Implements SELECT y FROM R WHERE y > v

2 // NT => NUM_THREADS

3 // IPT => ITEMS_PER_THREAD

4 template<int NT, int IPT>

5 __global__ void Q(int* y, int* out, int v, int* counter) {

6 int tile_size = get_tile_size();

7 int offset = get_tile_offset();

8 __shared__ struct buffer {

9 int col[NT * IPT];

10 int out[NT * IPT];

11 };

12 int items[IPT];

13 int bitmap[IPT];

14 int indices[IPT];

15

16 BlockLoadInt<NT, IPT>(col+offset,items,buffer.col,tile_size);

17 BlockPredIntGT<NT, IPT>(items,buffer.col,cutoff,bitmap);

18 BlockScan<NT, IPT>(bitmap,indices,buffer.col,

19 num_selections,tile_size);

20

21 if(threadIdx.x == 0)

22 o_off = atomic_update(counter,num_selections);

23

24 BlockShuffleInt<NT, IPT>(items,indices,buffer.out);

25 BlockStoreInt<NT, IPT>(buffer.out,out + o_off,num_selections);

26 }

Figure 5-7: Query Q0 Kernel Implemented with Crystal

tions1 and show how they can be used with an existing GPU analytical engine. In

particular, we chose Crystal [70], an open-source GPU analytics framework devel-

oped recently.

Crystal is a library of templated CUDA device functions that implement the

full set of primitives necessary for executing typical select-project-join-aggregation

(SPJA) analytical queries. Crystal is based on the idea of a tile-based execution model.

In such a model, instead of viewing each thread as an independent execution unit, a

thread block is viewed as the basic execution unit with each thread block processing

a tile of entries at a time. A tile is simply a collection of 𝑁𝑇 × 𝐼𝑃𝑇 elements where

𝑁𝑇 is the number of threads in a threadblock and 𝐼𝑃𝑇 is the number of items per
1Device functions are functions that can be called from kernels on the GPU

134

thread. Previous work [70] has shown that SQL query operators and SPJA queries

implemented with Crystal can saturate memory bandwidth and thereby deliver an-

order-of-magnitude speedup compared to CPU-based implementations.

The pseudo code in Figure 5-7 shows how the following example selection query

is implemented in Crystal.

Q0: SELECT x FROM R WHERE y > v;

The pseudo code uses the following block functions: BlockLoad loads a tile of data

from global memory into the thread block (line 16). BlockPred applies the predicate

to the tile and generates a bitmap (line 17). BlockBitmapLoad selects data from the

tile using the bitmap (line 18). BlockScan implements hierarchical parallel prefix-

sum within the tile (line 19). The atomic update in line 23 determines the offset to

which to write the matched results in the output array. BlockShuffle reorders the

selected items into a contiguous array (line 25). Finally, BlockStore stores data into

the output array (line 26). The modular nature of Crystal allows users to write

high performance kernel code easily, reduces boilerplate code and makes it easy to

use non-trivial functions.

We have implemented the decompression routines for GPU-FOR and GPU-DFOR as

CUDA device functions LoadBitPack and LoadDBitPack respectively. These func-

tions can be used in queries implemented in Crystal easily and can be used more

broadly in any CUDA kernel as well. To integrate them into Crystal, the only re-

quired changes are to replace the load routines in Figure 5-7 with LoadBitPack.

Below are the changes involved to make the kernel operate on bit-packed data:

1 ...

2 LoadBitPack<NT, IPT>(y.col, y.block_start,items,buffer.col,tile_size);

3 ...

4 LoadBitPack<NT, IPT>(y.col, y.block_start,items,buffer.col,tile_size);

5 ...

In this case IPT is the same as 𝐷, the number of blocks processed per threadblock. As

can be seen from the example, the LoadBitPack device function encapsulates all the

135

complexity and hides it from the end user. The user can run the query on compressed

data by just changing a single line of code.

One key drawback of bit-packed data is that it lacks random access. Accessing any

element requires loading the entire data block. As a result, when selections or joins

filter data entries, we still have to read the entire column. As we show in the next

section, this does not lead to material impact on performance because: 1) granularity

of access from global memory is 128B, as a result random accesses are less beneficial

in the first place and 2) analytics queries are mostly scan oriented, hence reduction

in data size reduces the total data read which often compensates for loss of efficiency

in case of a selective filter. Note that this would not work well for OLTP workloads

which are characterized by point accesses. GPUs’ are in general not suited and not

used for OLTP workloads.

Since the routines LoadBitPack and LoadDBitPack are ordinary device functions,

they can be used directly in user’s CUDA code in conjunction with other GPU frame-

works like Thrust [11] and they can also be called directly from NVVM (a compiler

internal representation based on LLVM IR designed to represent GPU compute ker-

nels) [8].

5.6 Evaluation

In this section, we compare the performance of the 4 main compression schemes used

to store columns on the GPU:

∙ None: Data is stored as 4-byte integers.

∙ NSF: Null suppression with fixed length encoding. The entire array is encoded as

1, 2 or 4 byte entries depending on the maximum number of bits needed for any

integer in the column.

∙ GPU-FOR: Using bit-packing to compress the data following the algorithm discussed

in Section 5.3.

136

∙ GPU-DFOR: Using delta encoding and bit-packing to compress the data following the

algorithm discussed in Section 5.4.

In addition, on two microbenchmarks we also compare the performance of two

more compression schemes:

∙ RLE: Represents runs of the same value as a pair: (value, run-length). Values and

run lengths are stored in two separate columns.

∙ NSV: Represents each value with a variable number of bytes (1,2,3 or 4). In a

separate array it maintains the number of bytes used using 2 bits per value. This

scheme is used to handle skew.

GPU-FOR and GPU-DFOR are novel to this work and we use the decompression

routines discussed previously to decode them. The rest of the compression schemes

are from past works [28, 46, 9] and we use improved versions of decompression routines

proposed by them. For each compression scheme, we report three different metrics:

Compression Rate: The average number of bits required for each integer after

compression is applied (bits/int).

Aggregation Time: The time to load the compressed data from global memory,

apply the decompression, sum the values, and store the total as 8-byte entry in global

memory. We measure the raw throughput of the decompression algorithm in isolation.

Decompression Time: The time required to load the compressed data from global

memory, apply the decompression algorithm, and store the uncompressed data to

global memory. This runtime is more reflective of the performance of the decompres-

sion algorithm when it is part of a larger kernel.

The rest of the section is organized as follows: we discuss the setup in Section 5.6.1.

In Section 5.6.2 we evaluate the performance of the algorithms on synthetic dataset

with varying bitwidths. In Section 5.6.3, we evaluate the impact of different data

distributions. In Section 5.6.4, we evaluate the impact on performance on the Star

Schema Benchmark. In Section 5.6.5, we discuss the case when GPU is used as a

coprocessor. Finally, in Section 5.6.6, we discuss miscellaneous topics.

137

5.6.1 Setup

For the experiments, we use a virtual machine instance that has an Nvidia V100 GPU

which is connected to the CPU via PCIe3. The Nvidia V100 GPU has 32 GB of HBM2

memory. The global memory read/write bandwidth is 880 GBps. The bidirectional

PCIe transfer bandwidth is 12.8 GBps. The system is running on Ubuntu 16.04 and

the GPU instance uses CUDA 10.0. In our evaluation, we ensure that data is already

loaded into the GPU memory before experiments start. We run each experiment 3

times and report the average measured execution time.

5.6.2 Performance with Varying Bitwidths

We generate 15 unsorted datasets each with 250 million entries, such that all data

elements in the 𝑖-th dataset have exactly 𝑖 effective bits, i.e., the value range is

[2𝑖−1, 2𝑖) for 𝑖 = 2,4,..,30. Within these ranges, the values are uniformly distributed.

Figure 5-8 (a-c) shows the results for the four compression algorithms. The bit-

packing schemes achieve the finest possible granularity and thus can perfectly adapt

to any bit width. Consequently, the compression rate is a linear function of the bit-

width. The overhead for GPU-FOR is 0.75 bit per int (1 block start word + 1 reference

word + 1 bitwidth word per block of 128 integer entries). The overhead for GPU-DFOR

is 0.81 bit per int (0.75 + 1 first value word per 𝐷 = 4 blocks). As the data is

not sorted, the deltas vary in the range [−2𝑖, 2𝑖) and require one additional bit; our

experiments below show the benefit of GPU-DFOR on sorted data.

Figure 5-8b shows the aggregation time for the different schemes. The perfor-

mance of NSF is a staircase pattern where the runtime is based on whether the entry

size is 1, 2, or 4 byte. None and NSF saturate memory bandwidth. The performance

of GPU-FOR is close to that of operating on uncompressed data. GPU-FOR does a sig-

nificant amount of computation per entry which is roughly constant across varying

bitwidths, compared to NSF which does a single copy followed by aggregation. Hence,

in isolation GPU-FOR’s performance does not vary much across bitwidths. GPU-FOR

achieves bandwidth of 700 GBps which is close to the max memory bandwidth of

138

0 5 10 15 20 25 30

bit width

5

10

15

20

25

30

bi
ts

p
er

in
t

None

NSF

GPU-FOR

GPU-DFOR

(a) Compression Rate

0 5 10 15 20 25 30

bit width

0.5

1.0

1.5

2.0

ti
m

e
ta

ke
n

(i
n

m
s)

(b) Aggregation Time

0 5 10 15 20 25 30

bit width

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ti
m

e
ta

ke
n

(i
n

m
s)

(c) Decompression Time

Figure 5-8: Performance of the different compression algorithms on uniform data with
varying bit widths

139

880 GBps. The performance of GPU-DFOR is bound by shared memory bandwidth.

Hence, in isolation, GPU-DFOR performs worse than the other schemes for this exper-

iment.

In Figure 5-8c, we can see that the decompression performance of the bit-packed

schemes looks better as the compute load remains the same while we do one additional

global memory operation (store) per integer. The performance of NSF is again a

staircase pattern. GPU-FOR does slightly worse than NSF, however the worst case

gap is 15% achieved at bitwidth 7. The gap is due to slightly larger data size and

irregular access pattern associated with accessing the block_starts array used to

find the block offsets in the data array. The performance of GPU-DFOR is comparable

to GPU-FOR in this case. In general, when GPU-DFOR is used as part of a larger kernel,

shared memory may not be a bottleneck. Hence the additional shared memory passes

done in GPU-DFOR to decode the deltas may not impact the actual performance of the

kernel.

5.6.3 Dependence on Data distributions

To test the robustness of the compression schemes, we test their performance using

three distributions. For each distribution, we maintain the array size 𝑛 fixed at 250

million entries. The distributions are as follows:

∙ D1: a sorted array where we vary the number of unique values from 4 to 228.

Typically a table is sorted based on one column, which D1 is designed to resemble.

For this distribution, we also compare against RLE.

∙ D2: a normal distribution with a standard deviation of 20 and mean varying from

64 to 230.

∙ D3: a Zipfian distribution with the exponent alpha characterizing the distribution

varying from 1 to 5 (1 is least skewed, 5 is most skewed). D3 resembles dictionary

encodings of tweets or text corpora where distribution of words follows Zipf’s law.

For this distribution, we also compare against NSV.

140

24 28 212 216 220 224 228

unique count

0

10

20

30
b

it
s

p
er

in
t

D
is

tr
ib

ut
io

n
D

1
(a) compression rate

24 28 212 216 220 224 228

unique count

0

1

2

3

4

5

ti
m

e
ta

ke
n

(i
n

m
s)

(b) aggregation time

24 28 212 216 220 224 228

unique count

0

2

4

6

ti
m

e
ta

ke
n

(i
n

m
s)

(c) decompression time

28 212 216 220 224 228

mean

0

10

20

30

b
it

s
p

er
in

t

D
is

tr
ib

ut
io

n
D

2

(d) compression rate

28 212 216 220 224 228

mean

0.0

0.5

1.0

1.5

2.0

2.5

ti
m

e
ta

ke
n

(i
n

m
s)

(e) aggregation time

28 212 216 220 224 228

mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ti
m

e
ta

ke
n

(i
n

m
s)

(f) decompression time

1 2 3 4 5

alpha

0

10

20

30

b
it

s
p

er
in

t

D
is

tr
ib

ut
io

n
D

3

(g) compression rate

1 2 3 4 5

alpha

0

1

2

3

ti
m

e
ta

ke
n

(i
n

m
s)

(h) aggregation time

1 2 3 4 5

alpha

0

1

2

3

4

5

ti
m

e
ta

ke
n

(i
n

m
s)

(i) decompression time

None NSF NSV GPU-FOR GPU-DFOR RLE

Figure 5-9: Comparison of compression schemes on different data distributions

The results for D1 can be found in Fig. 5-9 (a-c). The bit-aligned algorithms

GPU-FOR and GPU-DFOR achieve better compression ratios compared to None and NSF

due to use of FOR. As the number of unique values increases beyond 222, the block

of 128 integers is likely to have different values. As the dataset is sorted, GPU-DFOR

can encode such cases with fewer bits compared to GPU-FOR. In the extreme case,

when number of unique values equals 228 i.e., each value is unique and the array is

sorted, GPU-DFOR encodes the data with just 1.8 bits per int vs 7.8 bits per int used

by GPU-FOR. The performance of GPU-FOR and GPU-DFOR (Fig. 5-9 (b-c)) is bound by

shared memory bandwidth which results in a gap in performance being smaller than

the gap in compression rate in comparison to the other two schemes. RLE achieves

better compression rates compared to the bit-aligned algorithms when the number

of distinct values is less than 222, beyond that GPU-DFOR does better. The key issue

with RLE is that it is 3× slower to decompress compared to the bit-aligned schemes

(Fig. 5-9(c)). Decompressing RLE is a 4-step process, which even after optimizations

is similar to GPU-FOR making 4 passes over an array of size 𝑛. RLE decoding cannot be

inlined with query execution and requires an additional memory buffer array of size 𝑛

141

for storing intermediates. Interested readers can refer to [28] for the decompression

algorithm. GPU-DFOR achieves better performance across the entire range compared

to RLE and is competitive in terms of compression rate — hence it is a better choice.

For D2 (Fig. 5-9 (d-f)), we can make the same general observations. When using

GPU-FOR/GPU-DFOR, each block’s entries generally lies within 3 standard deviations of

the mean and occasional occurrence of a value outside this range does not move the

compression rate significantly. For mean greater than 216, the bit-aligned schemes

achieve 3× reduction in storage footprint compared to the other schemes and show-

cases the use of FOR.

For D3 (Fig. 5-9 (g-i)), we see that the bit-aligned schemes can adapt to change in

skew and achieve both better compression rate and lower runtime compared to NSF

and NSV. NSV is better at adapting to skew compared to NSF, however its performance

is significantly worse compared to all the other schemes. Decoding NSF suffers from the

same issues that affect RLE, it requires multiple steps that lead to multiple reads and

writes, the decoding can’t be inline with query execution and it requires buffer space

for intermediates. The bit-aligned schemes are superior to NSV across all metrics.

5.6.4 Performance on SSB

For the full query evaluation, we use the Star Schema Benchmark (SSB) [57] which

has been widely used in various data analytics research studies [31, 46, 78, 83]. SSB

is a simplified version of the more popular TPC-H benchmark. It has one fact table

lineorder and four dimension tables date, supplier, customer, part which are organized

as a star schema. There are a total of 13 queries in the benchmark, divided into 4

query flights. In our experiments we run the benchmark with a scale factor of 20

which will generate the fact table with 120 million tuples. The total dataset size is

around 13GB.

Figure 5-10 shows the column sizes after compression using the different encodings.

Between GPU-FOR, GPU-DFOR, and NSF, GPU-FOR achieves the lowest storage footprint

for all columns except lo_orderkey on which GPU-DFOR does better. As discussed

before, GPU-DFOR does better on sorted columns. In total, using GPU-FOR achieves a

142

or
der

ke
y

lin
en

um
ber

cu
st

ke
y

par
tk

ey

su
ppke

y

or
der

dat
e

ex
te

nded
pr

ice

quan
tit

y

or
dto

ta
lpr

ice

disc
ount

re
ve

nue

su
pplyc

ost ta
x

co
m

m
itd

at
e

Column

0

100

200

300

400

500
D

at
a

S
iz

e
(i

n
M

B
)

None NSF GPU-FOR GPU-DFOR GPU-FOR+GZ

Figure 5-10: Compression waterfall for Star Schema Benchmark columns

q1.1 q1.2 q1.3 q2.1 q2.2 q2.3 q3.1 q3.2 q3.3 q3.4 q4.1 q4.2 q4.3 geomean
Queries

100

101

102

T
im

e
T

ak
en

(i
n

m
s)

Omnisci None+Crystal NSF+Crystal GPU-FOR+Crystal

Figure 5-11: Performance on Star Schema Benchmark queries with compressed
columns

37% reduction in data size compared to NSF and 52% reduction compared to None.

In additional to the schemes above, we also added in GPU-FOR+GZ, which represents

using GPU-FOR (or GPU-DFOR whichever is smaller) followed by gzip. A similar scheme

(bit-packing + FOR + gzip) is used by default to encode all integer columns in

Apache Parquet [2, 10], a common columnar storage format used in disk-based column

stores. We can see from the figure that GPU-FOR achieves most of the compression

gains achievable with GPU-FOR+GZ leading to only an additional 14% reduction in

storage space compared to GPU-FOR. Gzip works well when there are repetitions in

the data. Hence, columns like orderkey benefit from gzip as after applying the frame

of reference operation of GPU-FOR; there are repeated strings in the binary data that

can be efficiently compressed by gzip.

For the runtime comparison, we compare the performance of Crystal with None

and NSF encoding against Crystal with the decompression routines for GPU-FOR. We

also compare against OmniSci, a commercial GPU-based OLAP DBMS. Figure 5-11

143

shows the runtime comparison of different compression schemes. OmniSci does the

worst as it does not use the tile-based execution model and instead operates each

thread independently. Crystal-based schemes perform significantly better. Previous

work [70] has shown that queries implemented with Crystal achieve a theoretical

lower bound for query runtime derived from the fact that memory bandwidth is

saturated. Among all the data encoding schemes, NSF achieves the best performance.

However, the gap between NSF and GPU-FOR is < 10% for queries q2.1 .. q4.3. This

is because these queries have multiple joins and the runtime is dominated by random

accesses into hash tables.

Queries q1.1, q1.2, q1.3 are selection queries and have no joins. These queries

follow the same template with q1.3 more selective than q1.2 which is more selective

than q1.1. The runtime of GPU-FOR is a constant across queries as it does not support

random accesses of entries. Both NSF and None are able to skip cache lines when the

query is very selective. For these queries, NSF does best. However, the gap between

the NSF and GPU-FOR on an absolute scale is less than 1 ms. Comparing the geometric

means of runtime across the entire workload, GPU-FOR is 4% slower than NSF while

having 37% smaller storage footprint.

5.6.5 GPU as a Coprocessor

Many systems use the GPU strictly as a coprocessor [31, 83, 39]. These systems

move data from CPU to GPU across an interconnect like PCIe when processing every

query. In this setting, the compression schemes discussed in this chapter are equally

beneficial as the runtime is bound the time taken to ship data over the interconnect

(transfer time). GPU-FOR/GPU-DFOR achieve the best compression rate across a variety

of data distributions and using them would reduce the amount of data moving across

the slow PCIe bus thereby reducing transfer time. To evaluate this, we ran the

SSB q1.1 with data stored on the CPU and the columns encoded using GPU-FOR

and compared against using NSF and None. The query runtime with None, NSF, and

GPU-FOR are 154ms, 96ms, and 63ms respectively. The query runtime is bounded by

the time taken for data transfer over PCIe. Query runtime with GPU-FOR is 34% lower

144

than with NSF.

5.6.6 Discussion

In this section, we discuss certain key aspects that we haven’t covered with respect

to usage and choice of compression method.

Choice of Compression Scheme: As shown in the SSB benchmark and in the

microbenchmarks, the performance of GPU-FOR and GPU-DFOR is competitive with

NSF when used as part of a larger kernel. As a result, the rule of thumb is to simply

use the compression scheme that has the lowest storage footprint for each column

independently. This means using GPU-FOR on all columns except sorted / semi-sorted

columns like the primary and secondary sort keys for which GPU-DFOR would generate

a more compact representation.

Hyperparameter Tuning: The number of blocks processed per threadblock 𝐷 is

the only hyperparameter in the schemes we propose. We have conservatively choosen

𝐷 = 4 in our evaluation. As GPUs improve, it is likely they will have more shared

memory and registers per thread, thereby allowing us to use higher values of 𝐷 during

query processing.

Compression Speed: Data compression is a one-time activity that happens on

the CPU side. GPU-FOR and GPU-DFOR compression can be done efficiently on the

CPU. On a machine where maximum memory bandwidth achievable on a single core

is 25GBps, GPU-FOR and GPU-DFOR compression algorithms achieve bandwidth of

16GBps and 14GBps respectively.

5.7 Conclusion

GPU-based analytical systems have demonstrated significant speedups over main

memory databases. The key constraint in these systems is the limited GPU memory

capacity. This chapter presents two efficient massively parallel implementations of bit

unpacking routines: GPU-FOR and GPU-DFOR. Together these schemes achieve a

37% reduction in storage footprint on SSB compared to existing schemes with almost

145

no impact on performance. These results show that our algorithms make it practical

to use bit-packing for compression on GPU for the first time.

146

Chapter 6

Conclusion and Future Work

In this thesis, we proposed the tile-based execution model for efficiently executing

queries on the GPU. We presented Crystal, a library of block-wide functions that can

be used to implement a wide variety of SQL queries on GPU. The crystal library is

modular, extensive and highly optimized for the massively parallel SIMT architecture

of GPUs.

We presented theoretical models for query performance on GPUs and CPUs as-

suming memory bandwidth is saturated. We showed that query implementations

using Crystal achieve the theoretical minimum runtime predicted by the models and

hence are optimal. We use the models to explain the performance difference between

query execution on a GPU vs on a CPU. Our analysis on a popular analytics bench-

mark shows that using modern GPU vs a CPU can lead to a runtime gain equal to

1.5× the bandwidth ratio of GPU to CPU (25× in our setup) and be 4× more

cost effective than CPUs. This makes a strong case for using GPUs as the primary

execution engine when the working set fits into GPU memory.

Finally, we used the idea of tile-based execution to develop massively parallel vari-

ants of two classic sequential algorithms: top-k and bit-packing based compression.

We presented a new algorithm based on bitonic sort for finding top-k entries called

Bitonic Top-K. The bitonic top-k algorithm is up to a factor of 15× faster than sort

and 4× faster than a variety of other possible implementations for small k values. For

compression, we presented the GPU-FOR and the GPU-DFOR lossless compressed

147

storage formats for storing data columns on the GPU, and decompression routines to

decompress them on-the-fly during query execution. Together these schemes achieve

a 37% reduction in storage footprint on a standard analytics workload compared to

existing schemes with almost no impact on performance.

The next sections suggest interesting directions for future work on GPU data

analytics.

6.1 Multi-GPU Query Execution

Our work focused on optimizing query execution on GPUs. Today it is possible to

attach multiple GPUs (upto 32) onto a single host machine. This allows the system

to use the several hundreds of gigabytes of HBM available to cache large parts of the

working set directly on the GPU. Partitionable workloads, like those executed on a

star schema, can be adapted to run on a multi-GPU setup by partitioning the fact

table across the multiple GPUs and maintaining a copy of the dimensions tables on

each GPU. Once the data is partitioned, we can adapt existing query implementation

with Crystal to run on the multi-GPU setup by invoking one kernel per partition in

parallel from the CPU. In the end, the aggregate results (which are usually small)

can be merged on the CPU. As the invocations happen in parallel, performance scales

linearly with the number of GPUs.

There are two issues with this approach: 1) we have to maintain a copy of the all

dimension tables on each GPU, which can be wasteful and 2) workloads aren’t always

perfectly partitionable and may require data shuffling to compute the query result.

The conventional way of transferring data across GPUs involves moving data through

the host CPU. To move data from GPU1 to GPU2, we would first do a GPU1 device to

host CPU transfer (D-to-H) and then a host CPU to GPU2 device transfer (H-to-D).

We end up with two transfers over the PCIe bus which is quite slow. More recently,

NVLink [7] and NVSwitch [7] interconnects enable fast GPU-to-GPU communication

(D-to-D).

The Nvidia NVLink is a GPU-to-GPU interconnect that is signficantly faster

148

Figure 6-1: NVIDIA A100 with NVLink GPU-to-GPU connections

and more energy-efficient than PCIe. Latest generation NVLink achieves 600GBps

of bandwidth spread across 12 links. Figure 6-1 shows a configuration of 4 Nvidia

A100 connected using NVLink. In the above configuration, each GPU pair has bi-

directional bandwidth of 200GBps which is an order of magnitude more than PCIe

bus bandwidth of 13GBps. Note that while NVLink is fast, the NVLink interconnect

bandwidth is lower than the GPU memory bandwidth on A100 GPU of 1500 GBps.

The Nvidia NVSwitch is an alternative interconnect available on the high-end DGX

systems that enables all-to-all GPU communication between a group of 16 GPUs at

600GBps bandwidth.

The high interconnect bandwidth can be used to address both of the issues de-

scribed earlier. The dimensions tables do not have stored on each GPU. CUDA sup-

ports direct memory accesses to memory on another GPU, hence the data columns

can be accessed on demand. The high bandwidth reduces the overhead of doing

shuffles for joins and sorts across multiple GPUs.

The multi-GPU architecture leads to interesting challenges around orchestrating

query execution across GPUs, multi-tenancy and data placement which could make

for interesting future work.

149

6.2 Heterogeneous Computing

This thesis shows that query execution on GPUs leads to significant speed-up vs using

CPUs. However, when the data is large and used less frequently, CPUs are still a

viable alternative because of their better Performance/$ ratio.

When evaluating queries with multiple joins, each join (when using hash join)

involves probing a hash table (built on entries from the dimension table) based on

entries from the fact able. This step is referred to as the probe step and is usually

the bottleneck in analytical workloads like the TPC-H, TPC-DS or Star Schema

Benchmark. The probes are expensive as each probe into the hash table is in essence

a random accesses that ends up fetching an entire cache line from memory.

In recent years, there has been an effort by hardware manufacturers to increase

the CPU-GPU interconnect speed. Today, IBM POWER9 CPU supports NVLink

interconnect to Nvidia GPUs. This interconnect has bandwidth of 75GBps, signif-

icantly higher than PCIe bandwidth. NVLink also gives the GPU direct access to

pageable CPU memory. GPU load, store, and atomic operations are translated into

CPU interconnect commands by the NVLink Processing Unit (NPU).

The fast interconnect coupled with increasing memory capacity of GPUs could be

used to accelerate query performance vs a CPU-only DBMS even on workloads whose

working set is larger than GPU memory. Recent work by Lutz et al. [48] showed 4×

join performance speed-up using the hybrid system with NVLink interconnect and

data stored on the CPU vs optimized CPU-only implementations. The work uses the

GPU to execute a hash join. The GPU first loads the build table via the interconnect

and builds the hash table in GPU memory. Then the fact table is loaded via the

interconnect and we probe the hash table previously built. In this implementation,

all the random access associated with the hash join happen in the fast GPU memory

instead of CPU memory, thereby resulting in significant speedup.

In the coming years we expect database systems to be designed for heterogeneous

processing on hybrid systems. Designing heterogeneous systems that utilize efficiently

all available resourcess on CPU and GPU presents numerous challenges including cost

150

modelling, query scheduling, data placement, etc which could make for interesting

future work.

151

152

Appendix A

Per-Thread Top-K Using Registers

Registers are the fastest layer of the memory hierarchy. However, as noted in Sec-

tion 2.1, current generation GPUs do not have thread-local memory. A thread-local

array can be made to use registers only if all its accesses are statically known. Without

it, the compiler is forced to allocate the array in local memory which is off-chip and

has a severe negative impact on performance. This prevents us from implementing a

heap using registers as array accesses made during heap updates cannot be statically

determined. We found that we can still maintain top-k per thread in registers by

maintaining a list of top-k seen so far as a list and, keeping the index and value of

the minimum value.

T buf[k];

T minValue; int minIndex;

If the element seen is greater than minValue, we update minIndex and find the

new minIndex, minValue as follows:

minValue = xi

for j in range(0,k):

if j == minIndex: buf[j] = xi

if buf[j] < minValue:

minIndex, minValue = j, buf[j]

153

1 2 4 8 16 32 64 128 256 512

K

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Registers+List

Shared Memory+Heap

Memory Band. Limit

(a) Uniform

1 2 4 8 16 32 64 128 256 512

K

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Registers+List

Shared Memory+Heap

Memory Band. Limit

(b) Increasing

1 2 4 8 16 32 64 128 256 512

K

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Registers+List

Shared Memory+Heap

Memory Band. Limit

(c) Decreasing

Figure A-1: Different Per-Thread Top-K Approaches

154

While iterating over the elements of the buffer array creates overhead in the order

of k, it allows the compiler to place the elements of buf in registers. The faster data

accesses counteract the overhead for low values of k. For high values of k, the limited

number of available registers forces the compiler to allocate some of the entries of buf

in local memory even if the access is implemented in the manner described.

Figure A-1 compares the time taken by the register-based version to the shared

memory-based version to find the top-k from 229 floating point numbers with varying

k. We vary the distribution: (a) Uniform: numbers drawn from a uniform distribution

𝑈(0, 1), (b) Increasing: numbers from 𝑈(0, 1) sorted increasing and, (c) Decreasing:

numbers from 𝑈(0, 1) sorted decreasing.

The register-based top-k is slower than the equivalent shared-memory based top-

k method for larger 𝑘 because the register-based method starts spilling registers to

local memory, which leads to significant slowdown. This is evident in the sharp slope

going from 𝑘 = 32 to 𝑘 = 64 in the graph. Comparing the increasing and decreasing

distribution, we see that the gap between the methods widens. This is because

increasing has every number updating the top-k. Updates are more expensive in the

list compared to the heap. In decreasing, there are no heap updates after inserting

the first 𝑘 elements.

155

156

Bibliography

[1] 1000X faster data exploration with GPUs. https://www.omnisci.com/blog/
mapd.

[2] Apache Parquet. https://parquet.apache.org/.

[3] Arrayfire discussion on top-k. http://bit.ly/2lLuFS1.

[4] BlazingDB. https://blazingdb.com.

[5] Issue to add gpu verion of top-k to tensorflow. https://github.com/
tensorflow/tensorflow/issues/5719.

[6] Kinetica. https://kinetica.com/.

[7] NVLink and NVSwitch - Advanced Multi-GPU Systems. https://www.nvidia.
com/en-us/data-center/nvlink/.

[8] NVVM IR. https://docs.nvidia.com/cuda/nvvm-ir-spec/.

[9] OmniSci. https://omnisci.com.

[10] Parquet Encoding Format. https://github.com/apache/parquet-format/
blob/master/Encodings.md.

[11] Thrust. https://thrust.github.io/.

[12] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression
and execution in column-oriented database systems. In Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pages 671–682.
ACM, 2006.

[13] Martín Abadi et al. Tensorflow: A system for large-scale machine learning. In
OSDI, 2016.

[14] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. GGKS:
Grinnell GPU k-selection. http://code.google.com/p/ggks/, 2010.

[15] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. Fast
k-selection algorithms for graphics processing units. Journal of Experimental
Algorithmics (JEA), 2012.

157

https://www.omnisci.com/blog/mapd
https://www.omnisci.com/blog/mapd
https://parquet.apache.org/
http://bit.ly/2lLuFS1
https://blazingdb.com
https://github.com/tensorflow/tensorflow/issues/5719
https://github.com/tensorflow/tensorflow/issues/5719
https://kinetica.com/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.nvidia.com/cuda/nvvm-ir-spec/
https://omnisci.com
https://github.com/apache/parquet-format/blob/master/Encodings.md
https://github.com/apache/parquet-format/blob/master/Encodings.md
https://thrust.github.io/
http://code.google.com/p/ggks/

[16] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu. Multi-
core, main-memory joins: Sort vs. hash revisited. Proceedings of the VLDB
Endowment, 7(1):85–96, 2013.

[17] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu. Main-
memory hash joins on multi-core cpus: Tuning to the underlying hardware. In
Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages
362–373. IEEE, 2013.

[18] Kenneth E Batcher. Sorting networks and their applications. In Proceedings of
the spring joint computer conference, 1968.

[19] Spyros Blanas, Yinan Li, and Jignesh M Patel. Design and evaluation of main
memory hash join algorithms for multi-core cpus. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data, pages 37–48.
ACM, 2011.

[20] Guy E Blelloch. Scans as primitive parallel operations. IEEE Transactions on
computers, 38(11):1526–1538, 1989.

[21] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-
pipelining query execution. In Cidr, volume 5, pages 225–237, 2005.

[22] Peter Alexander Boncz et al. Monet: A next-generation DBMS kernel for query-
intensive applications. Universiteit van Amsterdam [Host], 2002.

[23] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query processing in
co-processor-accelerated databases. In SIGMOD. ACM, 2016.

[24] Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C Mowry.
Improving hash join performance through prefetching. ACM Transactions on
Database Systems (TODS), 32(3):17, 2007.

[25] Jatin Chhugani, Anthony D Nguyen, Victor W Lee, William Macy, Mostafa
Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.
Efficient implementation of sorting on multi-core simd cpu architecture. PVLDB,
2008.

[26] George P Copeland and Setrag N Khoshafian. A decomposition storage model.
In Acm Sigmod Record, volume 14, pages 268–279. ACM, 1985.

[27] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
Lightweight data compression algorithms: An experimental survey (experiments
and analyses). In EDBT, pages 72–83, 2017.

[28] Wenbin Fang, Bingsheng He, and Qiong Luo. Database compression on graphics
processors. PVLDB, 3(1-2):670–680, 2010.

158

[29] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. Sap hana database: data management for modern business
applications. ACM Sigmod Record, 40(4):45–51, 2012.

[30] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. Byteslice: Pushing the envelop
of main memory data processing with a new storage layout. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages
31–46, 2015.

[31] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
Pipelined query processing in coprocessor environments. In Proceedings of the
2018 International Conference on Management of Data, pages 1603–1618. ACM,
2018.

[32] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing relations
and indexes. In Proceedings 14th International Conference on Data Engineering,
pages 370–379. IEEE, 1998.

[33] Naga Govindaraju et al. Gputerasort: high performance graphics co-processor
sorting for large database management. In SIGMOD, 2006.

[34] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort:
high performance graphics co-processor sorting for large database management.
In SIGMOD, 2006.

[35] Mark Harris. Optimizing cuda. SC07: High Performance Computing With
CUDA, 2007.

[36] Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix sum
(scan) with cuda. GPU gems, 3(39):851–876, 2007.

[37] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational joins on graphics processors. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages
511–524, 2008.

[38] Jiong He, Mian Lu, and Bingsheng He. Revisiting co-processing for hash joins
on the coupled cpu-gpu architecture. PVLDB, 2013.

[39] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
Hardware-oblivious parallelism for in-memory column-stores. PVLDB, 2013.

[40] Justin Holewinski, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. High-
performance code generation for stencil computations on gpu architectures. In
Proceedings of the 26th ACM international conference on Supercomputing, pages
311–320. ACM, 2012.

[41] David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

159

[42] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey of top-k
query processing techniques in relational database systems. CSUR, 2008.

[43] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. Gpu join processing
revisited. In DaMoN, 2012.

[44] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Al-
fons Kemper. Massively parallel numa-aware hash joins. In In Memory Data
Management and Analysis, pages 3–14. Springer, 2015.

[45] Daniel Lemire and Leonid Boytsov. Decoding billions of integers per second
through vectorization. Software: Practice and Experience, 45(1):1–29, 2015.

[46] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. Hippogriffdb: Balancing i/o and gpu bandwidth in big data analytics.
Proceedings of the VLDB Endowment, 9(14):1647–1658, 2016.

[47] Yinan Li and Jignesh M Patel. Bitweaving: fast scans for main memory data
processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 289–300, 2013.

[48] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
Pump up the volume: Processing large data on gpus with fast interconnects. In
Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, pages 1633–1649, 2020.

[49] James Malcolm et al. Arrayfire: a gpu acceleration platform. In SPIE, 2012.

[50] Stefan Manegold, Peter A Boncz, and Martin L Kersten. Optimizing database
architecture for the new bottleneck: memory access. Proceedings of the VLDB
Endowment, 9(3):231–246, 2000.

[51] Xinxin Mei and Xiaowen Chu. Dissecting gpu memory hierarchy through mi-
crobenchmarking. IEEE Transactions on Parallel and Distributed Systems, 2016.

[52] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. Relaxed operator fusion
for in-memory databases: Making compilation, vectorization, and prefetching
work together at last. Proceedings of the VLDB Endowment, 11(1):1–13, 2017.

[53] Duane Merrill and Andrew Grimshaw. High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for gpu computing.
Parallel Processing Letters, 21(02):245–272, 2011.

[54] Duane Merrill and Andrew Grimshaw. High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for gpu computing.
Parallel Processing Letters, 2011.

[55] Todd Mostak. An overview of mapd (massively parallel database). White paper,
Massachusetts Institute of Technology, 2013.

160

[56] Thomas Neumann. Efficiently compiling efficient query plans for modern hard-
ware. Proceedings of the VLDB Endowment, 4(9):539–550, 2011.

[57] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The star
schema benchmark and augmented fact table indexing. In Technology Conference
on Performance Evaluation and Benchmarking, pages 237–252. Springer, 2009.

[58] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. Fast in-place
sorting with cuda based on bitonic sort. Parallel Processing and Applied Math-
ematics, pages 403–410, 2010.

[59] Holger Pirk, Stefan Manegold, and Martin Kersten. Waste not. . . efficient co-
processing of relational data. In ICDE. IEEE, 2014.

[60] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. Voodoo-a vector
algebra for portable database performance on modern hardware. PVLDB, 2016.

[61] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. Rethinking simd
vectorization for in-memory databases. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, pages 1493–1508. ACM,
2015.

[62] Orestis Polychroniou and Kenneth A Ross. A comprehensive study of main-
memory partitioning and its application to large-scale comparison-and radix-
sort. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014.

[63] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. Db2 with blu acceleration: So much more than just a
column store. Proceedings of the VLDB Endowment, 6(11):1080–1091, 2013.

[64] Kenneth A Ross. Selection conditions in main memory. ACM Transactions on
Database Systems (TODS), 29(1):132–161, 2004.

[65] Eyal Rozenberg and Peter Boncz. Faster across the pcie bus: a gpu library for
lightweight decompression: including support for patched compression schemes.
In DaMoN. ACM, 2017.

[66] Ran Rui and Yi-Cheng Tu. Fast equi-join algorithms on gpus: Design and
implementation. In Proceedings of the 29th International Conference on Scientific
and Statistical Database Management, page 17. ACM, 2017.

[67] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting
algorithms for manycore gpus. In Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1–10. IEEE, 2009.

161

[68] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D Nguyen, Victor W
Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on cpus and gpus: a case
for bandwidth oblivious simd sort. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 351–362. ACM, 2010.

[69] Stefan Schuh, Xiao Chen, and Jens Dittrich. An experimental comparison of
thirteen relational equi-joins in main memory. In Proceedings of the 2016 Inter-
national Conference on Management of Data, pages 1961–1976. ACM, 2016.

[70] Anil Shanbhag, Xiangyao Yu, and Samuel Madden. A study of the fundamental
performance charecteristics of gpus and cpus for database analytics. In Pro-
ceedings of the 2020 International Conference on Management of Data. ACM,
2020.

[71] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Ap-
puswamy, and Anastasia Ailamaki. Hardware-conscious hash-joins on gpus.
Technical report, 2019.

[72] Evangelia A Sitaridi and Kenneth A Ross. Ameliorating memory contention
of olap operators on gpu processors. In Proceedings of the Eighth International
Workshop on Data Management on New Hardware, pages 39–47. ACM, 2012.

[73] Evangelia A Sitaridi and Kenneth A Ross. Optimizing select conditions on gpus.
In Proceedings of the Ninth International Workshop on Data Management on
New Hardware, page 4. ACM, 2013.

[74] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. Vectorization vs. compi-
lation in query execution. In Proceedings of the Seventh International Workshop
on Data Management on New Hardware. ACM, 2011.

[75] Elias Stehle and Hans-Arno Jacobsen. A memory bandwidth-efficient hybrid
radix sort on gpus. In SIGMOD. ACM, 2017.

[76] Elias Stehle and Hans-Arno Jacobsen. A memory bandwidth-efficient hybrid
radix sort on gpus. In SIGMOD. ACM, 2017.

[77] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, et al. C-store: a column-oriented dbms. In Proceedings of the 31st inter-
national conference on Very large data bases, pages 553–564. VLDB Endowment,
2005.

[78] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding, and
Xiaodong Zhang. Concurrent analytical query processing with gpus. Proceedings
of the VLDB Endowment, 7(11):1011–1022, 2014.

[79] Jan Wassenberg and Peter Sanders. Engineering a multi-core radix sort. In
European Conference on Parallel Processing, pages 160–169. Springer, 2011.

162

[80] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. Simd-scan: ultra fast in-memory table scan using on-
chip vector processing units. Proceedings of the VLDB Endowment, 2(1):385–394,
2009.

[81] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
Kernel weaver: Automatically fusing database primitives for efficient gpu com-
putation. In 2012 45th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. IEEE, 2012.

[82] Makoto Yabuta, Anh Nguyen, Shinpei Kato, Masato Edahiro, and Hideyuki
Kawashima. Relational joins on gpus: A closer look. IEEE Transactions on
Parallel and Distributed Systems, 28(9):2663–2673, 2017.

[83] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The yin and yang of processing
data warehousing queries on gpu devices. Proceedings of the VLDB Endowment,
2013.

[84] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on information theory, 23(3):337–343, 1977.

[85] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-
cpu cache compression. In 22nd International Conference on Data Engineering
(ICDE’06), pages 59–59. IEEE, 2006.

163

	Introduction
	GPU Architecture and Challenges
	Thesis Contributions
	Tile-based Execution Model for Query Processssing on GPUs
	Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics
	Novel Query Operators for GPUs

	Thesis Outline

	Background
	GPU Architecture
	Query Execution on GPU

	I Query Execution on GPU
	GPU Query Execution
	Introduction
	Background
	Query Execution on CPU

	Failure of the Coprocessor Model
	Tile-based Execution Model
	Crystal Library
	Operators on GPU vs CPU
	Project
	Select
	Hash Join
	Sort

	Workload Evaluation
	Workload
	Performance Comparison
	Case Study
	Cost Comparison

	Conclusion

	II Novel GPU Query Operators
	Top-K
	Introduction
	Background
	Sorting on the GPU
	K-Selection

	Algorithms
	Per-Thread Top-K
	Bitonic Top-K

	Optimization & Implementation
	Per-Thread Top-K
	Selection-based Top-K
	Optimizing Bitonic Top-K
	Database Integration

	Evaluation
	Setup
	Performance with Varying K
	Dependence on Data Type
	Dependence on Data Distribution
	Dependence on Data Size
	Key(s)+Value
	Comparison against CPU
	MapD Integration

	Cost Model
	Radix-based Top-K
	Bitonic Top-K

	Conclusion

	Data Compression
	Introduction
	Background
	Compression Techniques
	Query Execution on GPUs

	Fast Bit Unpacking
	Data Format
	Implementation
	Discussion

	Fast Delta Decoding
	Data Format
	Implementation

	Database Integration
	Evaluation
	Setup
	Performance with Varying Bitwidths
	Dependence on Data distributions
	Performance on SSB
	GPU as a Coprocessor
	Discussion

	Conclusion

	Conclusion and Future Work
	Multi-GPU Query Execution
	Heterogeneous Computing

	Per-Thread Top-K Using Registers

