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Abstract

In recent years, large graphs with billions of vertices and trillions of edges have
emerged in many domains, such as social network analytics, machine learning, physical
simulations, and biology. However, optimizing the performance of graph applications
is notoriously challenging due to irregular memory access patterns and load imbalance
across cores. We need new performance optimizations to improve hardware utilization
and require a programming system that allows domain experts to easily write high-
performance graph applications.

In this thesis, I will present our work on GraphIt, a new domain-specific language
that consistently achieves high performance across different algorithms, graphs, and
architectures, while offering an easy-to-use high-level programming model that supports
both unordered and ordered graph algorithms. GraphIt decouples algorithms from
performance optimizations (schedules) for graph applications to make it easy to
explore a large space of cache, non-uniform memory access, load balance, and data
layout optimizations. GraphIt achieves up to 4.8x speedup over state-of-the-art graph
frameworks on CPUs, while reducing the lines of code by up to one order of magnitude.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Recently, large graphs with billions of vertices and trillions of edges have emerged

in many domains, such as social network analytics, machine learning, and biology.

Extracting information from these graphs often involves running algorithms to identify

important vertices, finding connections between vertices, and detecting communities

of interest. Speeding up these algorithms leads to many significant impact on these

domains, such as enhancing the efficiency of data analytics applications and improving

the quality of web services [84, 87, 36, 35].

Modern hardware is designed for dense computations rather than sparse com-

putations, such as graph algorithms, which have very low computation density and

a large amount of irregular memory accesses and are often memory-bounded. The

programmers must perform heroic software transformations and optimizations to

achieve high performance for graph algorithms running on modern hardware. However,

the performance bottlenecks of graph algorithms depend not only on the algorithm

and the underlying hardware, but also on the size and structure of the graph [12]. As

a result, choosing the right software performance optimizations can have a substantial

effect on the performance of the graph algorithms. Programmers must experiment

with different combinations of a large set of techniques that make tradeoffs between

locality, work-efficiency, and parallelism, to develop the best implementation for a

specific algorithm and type of graph. Existing graph frameworks do not provide

the programmers with the flexibility to try out the different optimizations. These

17



Algorithm 1 PageRank
1 procedure PageRank(Graph 𝐺)
2 parallel for v : G.vertexArray do
3 for u : G.edgeArray[v] do
4 G.newRank[v] += G.rank[u] / G.degree[u]
5 end parallel for

frameworks are also difficult to use for domain experts with a limited background in

parallel computing to use.

This thesis focuses on GraphIt, a domain-specific language (DSL) that decouples

algorithm from performance optimizations for graph computations. GraphIt proposes

a unified scheduling space for graph computations, allowing programmers to easily

search through a large space of performance optimizations. With this novel approach,

GraphIt consistently achieves high performance across different algorithms, graphs,

and architectures. Moreover, GraphIt offers an easy-to-use high-level programming

model for programmers without significant parallel programming experience.

1.1 Motivating Example

We use PageRank [77] in Algorithm 1 as an example here to illustrate the performance

bottleneck of graph algorithms and the impact of different graphs and optimization

strategies. PageRank is an important graph algorithm that ranks the vertices based

on their importance in the topological structure. PageRank iteratively updates the

rank of each vertex based on the rank and degree of its neighbors. The performance

characteristics of PageRank can generalize to numerous graph applications. The

algorithm does very little computation per byte accessed, and a large fraction of their

memory requests (G.rank[u] and G.degree[u]) are irregular. Irregular accesses to a

working set that does not fit in the cache make the entire cache hardware subsystem

ineffective. Without effective use of the cache to mitigate the processor-DRAM gap,

CPUs are stalled on high-latency irregular accesses to DRAM. We find that many

graph algorithms spend 60%–80% of their cycles stalled on memory access. Figure 1-1

breaks down the ratio of cycles stalled on irregular memory accesses (blue) vs other

18



cycles (green) for different PageRank implementations. For social networks, such as

Twitter [55], the last level cache (LLC) miss rate of PageRank reaches 40%.

Different optimizations have a substantial influence on the performance of PageRank

by improving the efficiency of memory access. Figure 1-1 illustrates the performance

of PageRank with different software optimizations with cycles normalized to a parallel

pull-based PageRank implementation. The optimizations (described in details in

Chapter 3) significantly improve the locality of the graph traversals.

Figure 1-1: Cycles of PageRank with different software optimizations normalized over
by a baseline parallel push-based implementation. The portion of cycles highlighted
in blue is attributed to irregular memory accesses. The green portion represents all
other cycles.

Programmers must iterate over multiple implementations of the same algorithm

to identify the best combination of optimizations for a specific algorithm and input

data. Existing graph frameworks perform well for a subset of algorithms for spe-

cific types of input, but have suboptimal performances on algorithms with different

bottlenecks and graphs of assorted sizes and structures [12, 86]. This performance

inconsistency exists because each framework was designed to support only a limited

set of optimization techniques, and does not allow for easy exploration of the large

space of optimizations. It is infeasible to write hand-optimized implementations for

every combination of algorithm and input type. A compiler approach that generates

efficient implementations from high-level specifications is therefore a good fit. However,

existing graph DSLs [46, 57, 2] do not support the composition of optimizations or

19



expose comprehensive performance tuning capabilities for programmers.

Composing optimizations is quite challenging for graph processing frameworks

for a few reasons. The framework first has to map out a comprehensive space of

performance optimizations. Furthermore, the framework must develop an internal

representation of the optimizations that the compiler can analyze to ensure correctness

and perform code generation after multiple transformations. The framework also must

support global program transformations that change various parts of the program. All

the transformations and optimizations must not add extra runtime overhead. Finally,

the framework must not sacrifice its programmability in the process of achieving

high performance. As a result, existing frameworks have focused on a fixed set of

optimizations instead of searching through a large space of optimizations.

1.2 GraphIt

To tackle the challenges of writing high-performance graph applications, we introduce

GraphIt1 [116, 114], a new graph DSL that provides a new high-level programming

model and produces efficient implementations with performance that is competitive

with or faster than the state-of-the-art frameworks for a diverse set of algorithms

running on graphs with varied sizes and structures. GraphIt achieves good performance

by enabling programmers to easily find the best combination of optimizations for their

specific algorithm and input graph. Furthermore, GraphIt provides an easy-to-use

programming model for programmers.

GraphIt makes it possible to easily and productively explore the space of op-

timizations by separating algorithm specifications from the choice of performance

optimizations for graph applications. This design is inspired by previous work, such

as Halide [80] for image processing and CHILL [23] for loop transformations. GraphIt

is the first to map out the complex space of performance optimizations for graph

computations and proposes a new high-level algorithm specification that covers both

unordered and ordered graph algorithms.

1The GraphIt compiler is available under the MIT license at http://graphit-lang.org/
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Programmers specify an algorithm using an algorithm language based on high-level

operators on sets of vertices and edges, similar to Ligra [91]. The algorithm language

simplifies expressing algorithms and exposes opportunities for optimizations by sepa-

rating edge processing logic from edge traversal, edge filtering, vertex deduplication,

and synchronization logic. We also introduced data structures and operators, including

priority queue and priority update operators, to support ordered graph algorithms,

where vertices are processed by their priorities. The algorithm language also hides

the low-level implementation details, such as atomic synchronization, physical data

layout (e.g., the array of structs (AoS), the struct of arrays (SoA), or bitvectors), and

parallelization schemes.

Performance optimizations are specified using a separate scheduling language.

We formulate graph optimizations, including edge traversal direction, data layout,

parallelization, cache, non-uniform memory access (NUMA), bucket updates, and

kernel fusion optimizations, as tradeoffs between locality, parallelism, and work-

efficiency. The scheduling language enables programmers to easily search through the

complicated tradeoff space by composing a large set of edge traversal, vertex data

layout, active vertex process ordering, and program structure optimizations.

In addition to the algorithm and scheduling languages in the frontend of the

compiler, GraphIt also introduces novel scheduling representations for edge traversal,

vertex data layout, and program structure optimizations for the compiler’s midend

and backend. Inspired by the iteration space theory for dense loops [105, 76], we

introduce an abstract graph iteration space model to represent, compose, and ensure

the validity of edge traversal optimizations. We encode the graph iteration space in

the compiler’s intermediate representation of the compiler to guide program analyses

and code generation. We designed the graph iteration space to be a multidimensional

vector, similar to the iteration space vector for dense loops. We expand the vector

with tags to represent the performance optimizations for each level of traversal.

The separation of the algorithm and schedule enables GraphIt to search for high-

performance schedules automatically. The large scheduling space and long running

time of the applications make it costly to do an exhaustive search. We demonstrate that
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it is possible to discover high-performance schedules in much less time using autotuning.

Programmers familiar with graph optimizations can leverage their expertise to tune

performance using the scheduling language directly. GraphIt achieves up to 4.8x

speedup over state-of-the-art graph frameworks, while reducing the lines of code by

up to one order of magnitude.

1.3 Contributions

This thesis makes the following contributions:

∙ Performance Optimizations

– A systematic analysis and characterization of the fundamental tradeoffs between

locality, work-efficiency, and parallelism in graph optimizations (Chapter 3).

– Introduction of three novel performance optimizations, frequency-based cluster-

ing, compressed sparse row (CSR) segmenting, and bucket fusion (Chapter 3).

∙ Language Design and Implementation

– A high-level programmer-friendly algorithm language that separates edge pro-

cessing logic from edge traversal, synchronization, updated vertex tracking,

active vertex process ordering, and deduplication logic, covering both unordered

and ordered graph algorithms (Chapter 4).

– A new scheduling language that allows programmers to explore the tradeoff

space by composing edge traversal, vertex data layout, bucketing, and program

structure optimizations for both unordered and ordered graph algorithms

(Chapter 4).

– A novel scheduling representation, the graph iteration space model, that can

represent, combine and reason about the validity of various edge traversal

optimizations (Chapter 5).

– A compiler that leverages program analyses on the algorithm language and an

intermediate representation that encodes the graph iteration space to generate

efficient and valid implementations for different combinations of optimizations.
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(Chapter 5).

∙ A comprehensive evaluation of GraphIt that demonstrates that it is faster than

the next fastest state-of-the-art framework on 12 applications by up to 4.8×, while

reducing the lines of code by up to one order of magnitude. (Chapter 6).

1.4 Outline

Chapter 2 discusses the graph algorithms and hardware background used throughout

the thesis. Chapter 3 describes the performance optimizations and their tradeoffs.

Chapter 4 introduces the programming model of GraphIt. Chapter 5 presents the

design and implementation of the compiler. We evaluate the performance of GraphIt in

Chapter 6. We discuss the limitations and future directions for GraphIt in Chapter 7.

Finally, we survey the related work in Chapter 8 and conclude the work in Chapter 9.
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Chapter 2

Background

In this chapter, we introduce the graph algorithms and present two motivating graph

algorithms, PageRankDelta and Δ-stepping, which are used throughout the thesis.

We also analyze the hardware performance bottlenecks of graph computations.

2.1 Definitions and Preliminaries

Graph frameworks typically store graphs in the Compressed Sparse Row (CSR)

format. Assuming the graph has V vertices and E edges, CSR format would create

a vertex array, G.vertexArray or G.vertices, of of length 𝑂(𝑉 ) and an edge array,

G.edgeArray, of size 𝑂(𝐸). The vertex array stores the indices of the first neighbor of

each vertex in the Edge Array and use that to access the neighbor list of each vertex or

with the G.getOutNgh(v) API. Application specific data is stored as separate arrays.

We use the term frontier to describe the current set of active vertices.

2.1.1 Graph Algorithms Overview

In this thesis, we define a graph algorithm as an algorithm that takes a single graph

as input and performs some computations based on the input graph. This definition

is just used in the scope of this thesis. In this thesis, we classify graph algorithms

broadly into two main categories, unordered and ordered graph algorithms.
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Ordered algorithms process active vertices following a dynamic priority-based

ordering, potentially reducing redundant work. For example, single source shortest

paths (SSSP) with the delta stepping algorithm [70] uses the shortest distance to the

starting vertex as the priority for each vertex. Active vertices are processed in the

order of their priorities. Another example is the peeling-based 𝑘-core algorithm [64].

The computations on the vertices are ordered by the degree of each node. The degree

is updated dynamically as we remove the edges from the graph during the peeling

procedure.

By contrast, unordered algorithms process active vertices in an arbitrary order,

improving parallelism while potentially performing a significant amount of redundant

work. For example, active vertices in PageRank or label propagation can be processed

in any order in parallel. The processing order of the active vertices is not dictated by

any priority values.

Not all of the graph applications have both unordered and ordered versions. Most

of the graph applications have only an unordered algorithm. For example, PageRank

only has an unordered algorithm.

Figure 2-1: Speedup of ordered algorithms for single-source shortest path and 𝑘-core
over the corresponding unordered algorithms implemented in our framework on a
24-core machine.

Some important graph problems can be implemented using either ordered or

unordered parallel algorithms. Optimized ordered graph algorithms are up to two

orders of magnitude faster than the unordered versions [32, 44, 14, 45], as shown in

Figure 2-1. For example, computing SSSP on graphs with non-negative edge weights
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can be implemented using either the Bellman-Ford algorithm [15] (an unordered

algorithm) or the Δ-stepping algorithm [70] (an ordered algorithm).1 Bellman-Ford

updates the shortest path distances to all active vertices on every iteration. On the

other hand, Δ-stepping reduces the number of vertices that need to be processed every

iteration by updating the path distances to the vertices that are closer to the source

vertex first, before processing the vertices that are farther away.

2.1.2 Preliminaries for Ordered Graph Algorithms

We first define ordered graph processing, which is used throughout the thesis. Each

vertex has a priority 𝑝𝑣. Initially, the users can explicitly initialize the priorities

of vertices, with the default priority being a null value, ∅. These priorities change

dynamically throughout the execution. However, the priorities can only change

monotonically, that is they can only be increased, or only be decreased. We say that a

vertex is finalized if its priority can no longer be updated. The vertices are processed

and finalized based on the sorted priority ordering. By default, the ordered execution

will stop when all vertices with non-null priority values are finalized. Alternatively,

the user can define a customized stop condition, for example to halt once a certain

vertex has been finalized.

We define priority coarsening as an optimization to coarsen the priority value of

the vertex to 𝑝′𝑣 by dividing the original priority by a coarsening factor Δ such that

𝑝′𝑣 = ⌊𝑝𝑣/Δ⌋. The optimization is inspired by Δ-stepping for SSSP, and enables greater

parallelism at the cost of losing some algorithmic work-efficiency. Priority coarsening

is used in algorithms that tolerate some priority inversions, such as A* search, SSSP,

and point-to-point shortest path (PPSP), but not in 𝑘-core and SetCover, where the

priority order is required for correctness.

1In this thesis, we define Δ-stepping as an ordered algorithm, in contrast to previous work [44]
which defines Δ-stepping as an unordered algorithm.
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1 Rank = {0, . . . , 0} ◁ Length 𝑉 array
2 DeltaSum = {0.0, . . . , 0.0} ◁ Length 𝑉 array
3 Delta = {1/𝑉, . . . , 1/𝑉 } ◁ Length 𝑉 array
4 procedure PageRankDelta(Graph 𝐺, 𝛼, 𝜖)
5 Frontier = { 𝐺.vertices }
6 for round ∈ {1, . . . ,MaxIter} do
7 NextFrontier = {} ◁ Initialize the next frontiner
8 parallel for src : Frontier do
9 for dst : 𝐺.getOutNgh[src] do

10 AtomicAdd(DeltaSum[dst], Delta[src]/G.OutDegree[src])
11 end parallel for
12 parallel for v : 𝐺.vertices do
13 if round == 1 then
14 BaseScore = (1.0− 𝛼)/𝑉
15 Delta[v] = 𝛼 · (DeltaSum[v])+ BaseScore
16 Delta[v] −= 1/𝑉
17 else
18 Delta[v] = 𝛼 · (DeltaSum[v])
19 Rank[v] += Delta[v]
20 DeltaSum[v] = 0
21 if |Delta[v]|> 𝜖·Rank[v] then
22 NextFrontier.add(v)
23 end parallel for
24 Frontier = NextFrontier

Figure 2-2: PageRankDelta (SparsePush).
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2.2 Graph Algorithms

In this section, we describe two graph algorithms, PageRankDelta and Delta Stepping.

PageRankDelta is an unordered graph algorithm and Delta Stepping is an ordered

graph algorithm. The two algorithms are used throughout the thesis to demonstrate

the performance optimizations and compiler mechanisms.

2.2.1 PageRankDelta

PageRankDelta [91] is a variant of the standard PageRank algorithm [77] that computes

the importance of vertices in a graph. It is an unordered algorithm. It maintains an

array of ranks, and on each iteration, updates the ranks of all vertices based on the

ranks of their neighbors weighted by their neighbors’ out-degrees. PageRankDelta

speeds up the computation by updating only the ranks of vertices whose ranks have

changed significantly from the previous iteration.

The pseudocode for PageRankDelta is shown in Fig. 2-2, where 𝑉 is the number of

vertices in the graph, 0 ≤ 𝛼 ≤ 1 is the damping factor that determines how heavily to

weight the neighbors’ ranks during the update, and 𝜖 ≥ 0 is a constant that determines

whether a vertex’s rank has changed sufficiently. For simplicity, we update the ranks

of vertices for MaxIter number of iterations, although the code can easily be modified

to terminate based on a convergence criterion. The algorithm maintains the set of

vertices whose ranks (stored in the Rank array) have changed significantly from the

previous iteration in the variable Frontier (represented as a sparse array). We will

refer to this as the active set of vertices, or the frontier. Initially all vertices are

in the active set (Line 5). On each iteration, each vertex in the active set sends

its Delta (change in Rank value) from the previous iteration to its out-neighbors by

incrementing the DeltaSum values of its neighbors (Lines 8–10). Because vertices are

processed in parallel, the updates to DeltaSum must be atomic. Then in parallel, all

vertices compute their own Delta and Rank values based on their DeltaSum value

and 𝛼 (Lines 12–19). Delta is computed differently for the first iteration. If the Delta

of the vertex is larger than 𝜖 times its Rank, then the vertex is active for the next
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1 Dist = {∞, . . . ,∞} ◁ Length |𝑉 | array
2 procedure SSSP with Δ-stepping(Graph 𝐺, Δ, startV)
3 𝐵 = new LazyBucket(Dist, Δ, startV); ◁ Initialize a new lazy bucket
4 Dist[startV] = 0
5 while ¬empty 𝐵 do
6 ◁ Get the next bucket containing vertices of the smallest priority
7 minBucket = 𝐵.getMinBucket()
8 ◁ Create a new buffer to hold the updates to the buckets
9 buffer = new BucketUpdateBuffer();

10 ◁ Process each vertex in the current min bucket
11 parallel for src : minBucket do
12 for e : G.getOutEdge[src] do
13 ◁ Update the distances of the neighbors
14 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
15 ◁ Compute the priority of the dst vertex and append it to the buffer
16 buffer.syncAppend(e.dst, ⌊Dist[e.dst]/Δ⌋)
17 end parallel for
18 ◁ Reduce the bucket updates of the same vertex
19 buffer = buffer.reduceBucketUpdates();
20 ◁ Perform the final updates to the buckets based on the reduced updates
21 B.bulkUpdateBuckets(buffer);

Figure 2-3: Δ-stepping for single-source shortest paths (SSSP) with the lazy bucket
update approach.

iteration and is added to the next frontier (Lines 21–23).

2.2.2 Delta Stepping

Δ-stepping (shown in Figure 2-3) is an ordered algorithm that finds the shortest paths

distance from the source vertex to all other vertices. In particular, it maintains buckets

containing vertices at distances in [𝑖Δ, (𝑖+ 1)Δ) for integer values of 𝑖 starting at 0,

and processes all vertices in a smaller bucket until convergence before moving to the

next bucket. The algorithm finishes when the priorities of all vertices are finalized.

Δ-stepping reduces the number of vertices that need to be processed every iteration

by updating the path distances to the vertices that are closer to the source vertex

first, before processing the vertices farther away.

Bellman-Ford vs Δ-stepping. We show the unordered Bellman-Ford algorithm

for SSSP in Figure 2-4. In the Bellman-Ford algorithm, all of the active vertices

in the frontier are processed in parallel without a priority-based ordering as shown
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1 Dist = {∞, . . . ,∞} ◁ Length |𝑉 | array
2 procedure SSSP with the Bellman-Ford Algorithm(Graph 𝐺, Δ, startV)
3 Dist[startV] = 0
4 n = G.numVertices()
5 frontier = { startV }
6 rounds =0
7 while ¬empty Frontier do
8 nextFrontier = {}
9 ◁ Process vertices in the frontier in parallel

10 parallel for src : frontier do
11 for e : G.getOutEdge[src] do
12 if Dist[e.dst] > Dist[src] + e.weight then
13 ◁ Update the distance of the neighbor
14 Dist[e.dst] = Dist[src] + e.weight
15 nextFrontier.atomicAdd(e.dst)
16 end parallel for
17 rounds++
18 frontier = nextFrontier
19 ◁ Check if there is a cycle with negative edge weight
20 if rounds == n then
21 print "Negative Weight Cycle Found"
22 break

Figure 2-4: The Bellman-Ford algorithm for single-source shortest paths (SSSP).

in Figure 2-4 Line 10. The algorithm keeps track of vertices that are updated in

the current round (Figure 2-4 Line 15) and uses them in the next round (Figure 2-4

Line 18). The algorithm ends when the frontier becomes empty (Figure 2-4 Line 7).

We use Figure 2-5 to demonstrate the difference between the Bellman-Ford (un-

ordered algorithm) and the Δ-stepping (ordered algorithm) algorithms for SSSP.

Bellman-Ford updates the distance to vertex 𝐶 in round 1, and then immediately

propagates updates to vertices 𝐷, 𝐸, and 𝐹 in both rounds 2 and 3. However, these

updates (highlighted in red) constitute wasted work because the correct shortest

path distance for vertex 𝐶 is set through a three-hop path through vertices 𝐴 and

𝐵. Δ-stepping only propagate updates to vertices 𝐷, 𝐸, and 𝐹 after the distance to

vertex 𝐶 is finalized in round 3. The Δ-stepping algorithm sacrifices some parallelism,

but avoids redundant updates, leading to a significant speedup over the Bellman-Ford

algorithm on many graphs.
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Source vertex Vertex not updated 
this round

Vertex updated 
to final value 

Vertex updated to 
suboptimal value 
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(a) Bellman-Ford Algorithm for Single Source Shortest Path

(b) Delta-Stepping Algorithm for Single Source Shortest Path

Figure 2-5: SSSP implemented with Bellman-Ford and Δ-stepping (Δ = 30). The
distances are shown in the tables. Bellman-Ford needs 10 updates, whereas Δ-stepping
needs only seven updates.

2.3 Hardware Performance Bottleneck

We use PageRank listed in Algorithm 1 as a running example to illustrate the perfor-

mance bottlenecks and motivate our optimizations for graph processing. PageRank

iteratively updates the rank of each vertex based on the rank and degree of its neigh-

bors. The performance characteristics of PageRank can generalize to numerous graph

applications.

In the case of PageRank, vertex data is stored as arrays newRank, rank and degree

of length 𝑂(𝑉 ). The algorithm sequentially reads size 𝑂(𝐸) data. By going over every

vertex in order, the algorithm issues sequential read requests to G.edgeArray and

sequential writes requests to newRank. The algorithm randomly reads 𝑂(𝐸) times

from size 𝑂(𝑉 ) vertex data, including rank and degree. These read requests are

random because we cannot predict the values of u.

This pattern of sequentially accessed edge data and randomly accessed vertex data

is common in representative graph applications. For example, collaborative filtering
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Figure 2-6: Cycles Breakdown of running PageRank on the rmat27 graph. The cycles
in the blue part are attributed to the random memory accesses for neighbors’ ranks
and outDegree.

must randomly read each vertex’s latent factors, and Betweenness Centrality needs to

randomly access the active frontier and number of paths through each vertex.

Memory Access Stalls. Graph applications have poor cache hit rates and are

largely stalled on memory accesses because the working set of realistic graphs is much

larger than the last level cache (LLC) of current machines. For example, the Twitter

graph [55] has 41 million vertices and 1.5 billion edges. The rank and degree arrays,

which together form the working set that is randomly accessed, are 656 MB (assuming

64-bit doubles) and are many times larger than the 30 to 55 MB LLC of the current

CPUs. Even though a higher than expected hit rate exists due to the power-law degree

distribution and the community structures in the graph [12], we still find the LLC

miss rate for PageRank to be more than 45%. As a result of the high cache miss rates,

our performance profile demonstrates that the graph applications are spending 60%

to 80% of their cycles stalled on memory access, as depicted in Figure 2-6. Random

memory access becomes the major bottleneck because random access to DRAM is 6x

to 8x more expensive than random access to LLC or sequential accesses to DRAM.

Sequential access to DRAM effectively uses all memory bandwidth, and benefits from

hardware prefetchers to further reduce latency.

Load Balance. Load balance is another major challenge for graph applications to
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reach scalable performance. The number of neighbors of each vertex has (degree

of each vertex) are often distributed in a power-law fashion for many graphs. A

small number of vertices are adjacent to a large number of edges. As a result, simple

approaches to statically partition the graph by vertex for parallelism often lead to

poor performance. However, partitioning by edges provides better parallelism but

potentially incurs a large synchronization overhead.

2.4 Chapter Summary

In this chapter, we first defined ordered and unordered graph algorithms and described

two algorithms, PageRankDelta and Delta Stepping in detail. We also analyzed the

performance bottlenecks of the graph algorithms, including memory access stalls

and load balance. We use PageRankDelta and Delta Stepping to illustrate the

various performance optimizations in Chapter 3, the programming model of GraphIt

in Chapter 4, and compiler designs in Chapter 5. Chapter 3 discusses how the

performance optimizations address the performance bottlenecks of graph algorithms.
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Chapter 3

Optimizations

Writing high-performance graph applications is challenging because no set of opti-

mizations is good for all applications as we indicated in Chapter 1. To attain high

performance, programmers must choose a combination of performance optimizations,

which makes tradeoffs between locality, work-efficiency, and parallelism, which is best

suited for their specific algorithm and graph. No single set of optimizations works well

across all the different algorithms and graphs. In this chapter, we first analyze the

existing optimizations to map out the tradeoff space between locality, work-efficiency,

and parallelism. We then introduce a few novel optimizations that further expand

the optimization space, including CSR Segmenting, frequency-based clustering, and

bucket fusion.

3.1 Performance Tradeoff Space

In this section, we first describe the tradeoff space for optimizing graph programs.

Although the effects of various optimizations are well-known to expert programmers,

we believe that we are the first to characterize the optimization tradeoff space for graph

optimizations. Our tradeoff space includes three properties of graph programs—locality,

work-efficiency, and parallelism.

Locality refers to the amount of spatial and temporal reuse in a program. For

example, increasing the amount of temporal reuse improves locality due to increasing
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the number of cache hits. In a NUMA system, locality also refers to the memory

location relative to the processor. Increasing the ratio of local memory accesses

to remote memory accesses improves locality. Other optimizations that place data

accessed together in the same cache line significantly improve spatial locality, such as

using an array of structures versus using a struct of arrays.

Work-efficiency is the inverse of the number of instructions, where each instruc-

tion is weighted according to the number of cycles that it takes to execute assuming a

cold cache. Reducing the number of instructions improves work-efficiency. We can

improve work-efficiency by reducing the runtime overhead or using a more efficient

algorithm. For example, some optimizations need to create auxiliary data structures,

such as bitvector and cache-blocked graphs, to improve locality. These data structures

require many extra instructions to build and access. Using these data structures

increases the amount of work and decreases the work-efficiency. In terms of algorith-

mic efficiency, ordered graph algorithms use fewer instructions than their unordered

counterparts by enforcing a priority-based ordering for active vertices.

Parallelism refers to the relative amount of work that can be executed indepen-

dently by different processing units, which is often affected by the load balance and

synchronization among processing units. Increasing parallelism improves performance

by taking advantage of more processing units, and helping to hide the latency of

DRAM requests. However, exploiting parallelism often causes extra work, such as

synchronization overhead and redundant computations. Additionally, using more

parallelism than what the hardware can support is also unproductive. As a result,

parallelism can sometimes hurt the performance of the program.

We use PageRankDelta and Δ-stepping (described in Chapter 2) as examples to

illustrate the effects of various optimizations on these three metrics. Each optimization

can affect multiple properties in the tradeoff space, either positively or negatively.

The complex tradeoff space motivates the design of GraphIt’s scheduling language

and compiler, which can be used to easily search for points in the tradeoff space that

achieve high performance.
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Table 3.1: Effect of optimizations on the different properties of the tradeoff space
relative to the baseline SparsePush. For each property, ↑ means positive impact on
performance, ↓ means negative impact on performance, ↕ means it could increase or
decrease depending on various factors (described in the text), and no entry means no
effect on performance.

Optimization Locality Work-efficiency Parallelism
DensePull ↕ ↕
DensePush ↕ ↑

DensePull-SparsePush ↕ ↕
DensePush-SparsePush ↕ ↑

edge-aware-vertex-parallel ↓ ↑
edge-parallel ↓ ↑

bitvector ↑ ↓
vertex data layout ↕ ↓
cache partitioning ↑ ↓

NUMA partitioning ↑ ↓ ↓
kernel fusion ↑ ↓

1 parallel for src : Frontier do
2 for dst : 𝐺.getOutNgh[src] do
3 AtomicAdd(DeltaSum[dst],Delta[src] / G.OutDegree[src])
4 end parallel for

Figure 3-1: SparsePush

3.2 Graph Traversal Optimizations

Traversing through all the edges or a subset of edges in a graph is a fundamental

operator in many graph algorithms. Many different strategies can optimize the

performance of graph traversals, such as tuning the direction of the traversal and

the degree of parallelization, and using different data layout strategies to represent

the vertex sets. In this section, we describe the tradeoffs of the graph traversal

optimizations listed in Table 3.1 with PageRankDelta (Table 8.1 describes which

optimizations are supported by which frameworks and DSLs). Table 3.1 contains the

effect of the optimizations relative to the baseline in Fig. 2-2, which we refer to as

SparsePush.
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1 parallel for dst : 𝐺.vertices do
2 for src : 𝐺.getInNgh[dst] do
3 if src ∈ Frontier then
4 DeltaSum[dst] += Delta[src] / G.OutDegree[src]
5 end parallel for

Figure 3-2: DensePull

1 parallel for src : 𝐺.vertices do
2 if src ∈ Frontier then
3 for dst : 𝐺.getOutNgh[src] do
4 AtomicAdd(DeltaSum[dst],Delta[src] / G.OutDegree[src])
5 end parallel for

Figure 3-3: DensePush

3.2.1 Direction Optimization and Frontier Data Structure

Figure 2-2 lines 8–10 of SparsePush shown in Figure 3-1 iterate over the outgoing

neighbors of each vertex, and update the DeltaSum value of the neighbor. DensePull

(Fig. 3-5) is a different traversal mode where each vertex iterates over its incoming

neighbors that are in the active set, and updates its own DeltaSum value. DensePull

increases parallelism relative to SparsePush because it loops over all vertices in the

graph. This increases work compared to SparsePush, which only loops over vertices in

the active set. The update to the DeltaSum array no longer requires atomics since

an entry will not be updated in parallel, and this reduces synchronization overhead.

Instead of performing random writes as in SparsePush, DensePull performs random

reads and mostly sequential writes, which are cheaper. For some algorithms (e.g.,

breadth-first search), the inner loop over the in-neighbors in DensePull can exit early

to reduce overall work. Therefore, the overall number of edges traversed could increase

or decrease. A detailed performance study of the two traversal methods is found

in [11] and [18]. We can further use bitvectors instead of boolean arrays to keep track

of vertices on the frontier for the DensePull direction. A dense frontier implemented

using a bitvector improves the spatial locality but requires extra work to compress

the boolean array.

DensePush (Fig. 3-3) loops through all vertices and checks whether each one is on
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1 if Frontier.size() < threshold then
2 perform SparsePush
3 else
4 perform DensePull

Figure 3-4: DensePull-SparsePush

1 if Frontier.size() < threshold then
2 perform SparsePush
3 else
4 perform DensePush

Figure 3-5: DensePush-SparsePush

the frontier instead of only looping over frontier vertices as in SparsePush. Although

iterating over all vertices reduces work-efficiency, this could be offset by not having to

maintain the frontier in a sparse format. Parallelism increases because there is more

parallel work when looping over all vertices.

Hybrid traversal modes, including DensePull-SparsePush(Figure 3-4) and DensePush-

SparsePush (Figure 3-5), use different directions (SparsePush, DensePull, and Dense-

Push) in different iterations based on the size of the active set to improve work-

efficiency [11, 91]. In PageRankDelta, the number of vertices in the frontier gradually

decreases as the ranks of vertices converge. In the early iterations, DensePull is

preferred due to lower synchronization overheads and avoidance of random writes.

As the frontier shrinks, SparsePush is preferred due to the fewer number of vertices

that need to be traversed. DensePull-SparsePush computes the sum of out-degrees of

the frontier vertices and uses DensePull if the sum is above some threshold and uses

SparsePush otherwise. However, computing the sum of out-degrees of the vertices in

the active set in every iteration incurs significant overhead if one direction is always

better than the other.

GraphIt is able to support all of these traversal directions, whereas the existing

frameworks only support a subset of them. GraphIt also supports both bitvectors

and boolean arrays for the frontier representation in dense traversals, as well as the

sparse array representation for sparse traversals. We show the performance of different

traversal directions in Section 6.2.4
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Algorithm 2 Preprocessing for CSR Segmenting
Input: Number of vertices per segment N, Graph G
for v : G.vertices do

for inEdge : G.inEdges(v) do
segmentID← inEdge.src / N
subgraphs[segmentID].addInEdge(v,inEdge.src)

for subgraph : subgraphs do
subgraph.sortByDestination()
subgraph.constructIdxMap()
subgraph.constructBlockIndices()
subgraph.constructIntermBuf()

3.2.2 Parallelization

For each traversal mode, there are different methods for parallelization. The par-

allelization shown in Fig. 3-1, 3-3 and 3-5 processes the vertices in parallel. The

vertex-parallel approach works well on algorithms and inputs where the workload of

each vertex is similar. However, if the degree distribution is skewed and the workload

of each vertex is proportional to the number of incident edges, this approach can

lead to significant load imbalance. For these workloads, an edge-aware vertex-parallel

scheme (edge-aware-vertex-parallel) can be more effective. This approach breaks up

the vertices into a number of vertex chunks, where each chunk has approximately the

same number of edges. However, this scheme reduces work-efficiency due to having to

compute the sum of degrees of vertices in each chunk. Finally, we can parallelize across

all edges, instead of just vertices, by parallelizing the inner loop of the edge-traversal

code computing DeltaSum in Fig. 3-1 and 3-5. This method (edge-parallel) improves

parallelism but reduces work-efficiency due to the overhead of work-stealing in the

inner loop and atomic updates needed for synchronization. For graphs with a regular

degree distribution, using static parallelism instead of work-stealing parallelism can

sometimes reduce runtime overhead and improve performance. GraphIt supports all

three modes of parallelism, whereas the existing frameworks only support one or two.
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Algorithm 3 Parallel Segment Processing
for subgraph : subgraphs do

parallel for v : subgraph.Vertices do
for inEdge: subgraph.inEdges(v) do

Process inEdge
end parallel for

3.2.3 Cache and NUMA Optimizations

CSR Segmenting [115] is a graph partitioning technique that keeps random accesses

within the last level cache (LLC) to improve locality. This optimization first partitions

the vertices into 𝑝 segments (𝑉0, 𝑉1, . . . , 𝑉𝑝−1), which correspond to the range of source

vertexsets in the pull mode or the destination vertexsets in the push mode for each

Segmented Subgraph (SSG). For the pull mode, incoming edges (𝑠𝑟𝑐, 𝑑𝑠𝑡) are assigned

to 𝑆𝑆𝐺𝑖 if 𝑠𝑟𝑐 ∈ 𝑉𝑖, and sorted by 𝑑𝑠𝑡. For the push mode, outgoing edges (𝑠𝑟𝑐, 𝑑𝑠𝑡)

are assigned to 𝑆𝑆𝐺𝑖 if 𝑑𝑠𝑡 ∈ 𝑉𝑖, and sorted by 𝑠𝑟𝑐. Each SSG is processed before

moving on to the next. 𝑉𝑖 controls the range of random memory accesses through

segmenting the original graph.

The preprocessing (partitioning) algorithm is presented in Algorithm 2. The

first step is to construct the subgraphs based on the segments. We first divide the

vertices into segments such that the data for each segment fits in the cache. For each

segment 𝑆, we construct a new subgraph consisting of edges whose sources are in

the segment. To do this, we compute the segmentID(subgraphID) of each inEdge by

dividing the sourceID of the inEdge by the number of vertices in each segment 𝑁 and

then add the edge to the subgraph. The edges in each subgraph are sorted by their

destinations (𝑠𝑜𝑟𝑡𝐵𝑦𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛). This step takes no time since the original graph in

CSR is already sorted by destination. Then, a CSR representation will be constructed

for each subgraph. The algorithm also creates an array, 𝑖𝑛𝑡𝑒𝑟𝑚𝐵𝑢𝑓 , to hold the

intermediate result for each destination vertex 𝑣. Additionally, we create an index

mapping, 𝑖𝑑𝑥𝑀𝑎𝑝, to map the local index of destination vertices in the subgraph to

their global index in the original graph. Finally, we create an index of blocks that

stores block starts and ends used in the cache-aware merge. This preprocessing phase
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can be done in parallel by building each subgraph separately from the original CSR.

After the preprocessing is done, the system processes each subgraph in turn as

shown in Algorithm 3. Within each subgraph, we parallelize the computation across

different vertices. If we fit 𝑉𝑖 into LLC, we can significantly reduce the number of

random DRAM accesses when processing each SSG. Cache partitioning improves

locality but sacrifices work-efficiency due to the vertex data replication from the graph

partitioning and merging partial results [115, 13, 75]. Fine-tuning the number of SSGs

can reduce this overhead. Most existing frameworks do not support cache partitioning.

Moreover, NUMA partitioning improves locality by minimizing the slow inter-

socket memory accesses [112, 94, 118]. This optimization partitions the graph into a

set of Segmented Subgraphs (SSGs) in the same way as cache partitioning in order to

limit the range of random memory access. While the cache partitioning optimization

processes one SSG at a time across all sockets, NUMA partitioning executes multiple

SSGs in parallel on different sockets. Each SSG and the threads responsible for

processing the subgraph are bound to the same NUMA socket. The intermediate

results collected on each socket are merged at the end of each iteration. As with cache

partitioning, NUMA partitioning improves locality but reduces work-efficiency due

to vertex data replication from graph partitioning and the additional merge phase.

Parallelism might also decrease in highly skewed graphs due to the workload imbalance

among SSGs [94]. For algorithms with performance bottlenecked on load imbalance

instead of inter-socket memory accesses, simply using an interleaved allocation across

sockets can result in better performance. GraphIt can do both cache and NUMA

optimizations hierarchically.

We study the results of these optimizations in Section 6.2.3 and Section 6.2.4. We

use the performance counters in the machines to demonstrate improved cache miss

rates and reduced inter-socket traffic.

3.2.4 Vertex Data Layout Optimizations

The layout of vertex data can significantly affect the locality of memory accesses.

Random accesses to the same index of two separate arrays (e.g., the Delta and
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OutDegree arrays in PageRankDelta) can be changed into a single random access to

an array of structs to improve spatial locality. However, grouping together fields that

are not always accessed together expands the working set and hurts the spatial locality

of the data structures. Vertex data layout optimizations reduce work-efficiency due to

the extra overhead for reorganizing the data. GraphIt supports data representations

of both arrays of structs (AoSs) and structs of arrays (SoAs). The users can use both

array of structs and structs of arrays for different data in the same program.

3.2.5 Program Structure Optimizations

When two graph kernels have the same traversal pattern (they process the same

vertices/edges on each iteration), we can fuse together the edge traversals and transform

their data structures into an array of structs. We refer to this optimization as kernel

fusion. This improves spatial locality by enabling the program to access the fields of

the two kernels together when traversing the edges. Additional work is incurred for

performing the AoS-SoA optimization, but this is usually small compared to the rest

of the algorithm. We demonstrate the effect of the program structure optimizations

in Section 6.2.5.

3.3 Frequency-Based Clustering

Frequency-Based Clustering [115] is an out-degree based graph reordering technique,

to further boost cache line utilization and keep frequently accessed vertices in fast

cache. Frequency-Based Clustering reorganizes the physical layout of the vertex data

structures to improve cache utilization. It reduces overall cycles stalled on memory by

serving more random requests in fast storage.

We make three key observations on graph access patterns to motivate frequency-

based clustering. First, each random read in graph applications often only uses a

small portion of the cache line. For PageRank, the size of the vertex data is 8 bytes

for a rank represented as a double, using only 1/8 of a common 64 byte cache line.

Because there is little spatial locality, the other elements in the cache line are often
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Algorithm 4 Frequency-based Clustering
1 Input: Number of vertices n, Number of edges m, Graph G stored in a CSR format

with a vertex array (G.vertexArray) and an edge array (G.edgeArray)
2 ◁ mapping from the new reordered vertexIDs to the old vertexIDs
3 vmap ← vector<int>(n)
4 ◁ mapping from the old vertexIDs to the new reordered vertexIDs
5 rmap ← vector<int>(n)
6 newVertexArray ← vector<int>(n)
7 newEdgeArray ← vector<int>(m)
8 for 𝑣 : 𝐺.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
9 vmap[v] ← v

10 ◁ Sort the vertices based on their degree if their degrees are higher than the threshold.
This maintains their original ordering if the degrees are lower than the threshold.

11 func 𝑐𝑜𝑚𝑝 = [](int a, int b) return G.degree[a]/threshold < G.degree[b]/threshold
12 stableSort(vMap.begin(), vMap.end(), comp)
13 for 𝑖 : 0, ..., 𝑁 do ◁ Set up the reverse mapping from the old vertexIDs to new reordered

vertexIDs
14 rmap[vmap[i]] ← i
15 𝑒𝑑𝑔𝑒𝐼𝑑𝑥← 0
16 for 𝑖 : 0, ..., 𝑁 do ◁ Create a new relabeled CSR
17 newVertexArray[i] ← edgeIdx
18 oldV ← vMap[i]
19 for 𝑗 : 0, ..., 𝐺.𝑑𝑒𝑔𝑟𝑒𝑒[𝑛𝑒𝑤𝑉 ] do
20 offset ← G.VertexArray[oldV]
21 newEdgeArray[𝑒𝑑𝑔𝑒𝐼𝑑𝑥++] ← rmap[G.edgeArray[offset+j]]

not used. This is true for many other graph applications, such as label propagation,

which reads an integer type vertex label. Second, certain vertices are much more likely

to be accessed than others in power law distributed graphs, where a small number of

vertices have a large number of edges attached to them [55]. Thus, a large percentage

of random read requests will concentrate on a small subset of vertices. These skewed

out-degree graphs include social networks, web graphs, and many networks in biology.

Because of the above observations, if we store the vertices in a random order, each

high out-degree vertex will likely be on a different cache line in the vertex data array

(e.g., rank in PageRank). The cache line will be “polluted” by the data from low

out-degree vertices when it is brought in. A third observation is that the original

ordering of vertices in real world graphs often exhibit some locality. Vertices that are

referenced together are sometimes placed close to each other due to the communities

existing in these graphs. For example, PageRank on the original ordering of vertices
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on Twitter graph [55] is 50% faster than a random ordering. Thus, it is also important

to utilize the original ordering for improved performance.

Design and Implementation: We designed frequency-based clustering to group

the vertices that are frequently referenced, while preserving the natural ordering in

the real-world graphs. We present frequency-based clustering in Algorithm 4. We use

out-degrees to select the frequently accessed vertices because many graph algorithms

use only pull-based implementations, or spend a significant portion of the execution

time in the pull phase. To preserve the original ordering in real world graphs, we

cluster together only vertices with out-degree above the average degree of nodes (this

threshold can be tuned). This thresholding allows us to maintain some of the locality

in the original ordering, yet still offering a clustering of high-out-degree vertices that

maximizes the effectiveness of L1, L2, and L3 caches.

We use a parallel stable sort based on the vertices’ out-degree/threshold to cluster

together frequently referenced vertices (Algorithm 4 Line 12). Next, we create a

mapping from the old vertex index to the newly sorted vertex index (Algorithm 4

Line 13) and use the mapping to update the vertex index in the G.edgeArray.

Load balance is critical to achieving high performance with frequency-based cluster-

ing. The thread responsible for the part of the vertex array containing high out-degree

vertices may perform much more work than other threads. We implemented a work-

estimating load balancing scheme that partitions the vertex array based on the number

of edges within each task, which reflects how many random reads it makes to the rank

array. The task then processes its range of vertices if the cost is sufficiently small, or

divides it into two sub-tasks otherwise.

Performance Impact We show the performance improvements of frequency-

based clustering in Table 3.2. The optimization is most effective on graphs with

random order (RMAT graphs) and are more effective on topology-driven algorithms,

such as PageRank. The performance of frequecy-based clustering is studied in greater

details in [115] and [10].
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Table 3.2: Speedups of Frequency-Based Clustering on BFS, PageRank, Betweenness
Centrality (BC). The experiments are run on a 2-socket, 24-core Intel Xeon E5-2695
v2 CPU. The system has 128 GB of DDR3 memory and 30 MB last level cache on
each socket.

BFS BaseLine (sec) Frequency-based Clustering (sec) Speedup
Live Journal 0.33 0.35 0.94
Twitter 3.18 3.16 1.01
RMAT25 1.42 1.18 1.20
RMAT27 7.02 4.82 1.46
PageRank BaseLin (sec) Frequency-based Clustering (sec) Speedup
Live Journal 0.02 0.02 1.0
Twitter 0.75 0.624 1.20
RMAT25 0.33 0.20 1.66
RMAT27 1.54 0.94 1.64
BC BaseLine (sec) Frequency-based Clustering (sec) Speedup
Live Journal 1.19 1.21 0.98
Twitter 17.5 16.90 1.04
RMAT25 11.1 8.02 1.38
RMAT27 42.8 25.4 1.69

3.4 Bucketing Optimizations

The priority-based extension to GraphIt uses a bucketing data structure [32, 14] to

maintain the execution ordering for the ordered graph algorithms. Each bucket stores

active vertices of the same priority, and the buckets are sorted in priority order. The

program processes one bucket at a time in priority order and dynamically moves active

vertices to new buckets when their priorities change. Updates to the bucket structure

can be implemented using either an eager bucket update [14] approach or a lazy bucket

update [32] approach.

With eager bucket updates, buckets are immediately updated when the priorities

of active vertices change. Lazy bucketing buffers the updates and later performs a

single bucket update per vertex.

Bucketing incurs high synchronization overheads, slowing down algorithms that

spend most of their time on bucket operations. We introduce a new performance

optimization, bucket fusion, which drastically reduces synchronization overheads for

eager bucket updates. In an ordered algorithm, a bucket can be processed in multiple

rounds under a bulk synchronous processing execution model. In every round, the

current bucket is emptied and vertices whose priorities are updated to the current
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1 Dist = {∞, . . . ,∞} ◁ Length |𝑉 | array
2 procedure SSSP with Δ-stepping(Graph 𝐺, Δ, startV)
3 𝐵 = new LazyBucket(Dist, Δ, startV);
4 Dist[startV] = 0
5 while ¬empty 𝐵 do
6 minBucket = 𝐵.getMinBucket()
7 buffer = new BucketUpdateBuffer();
8 ◁ Process vertices in the next smallest bucket in parallel
9 parallel for src : minBucket do

10 for e : G.getOutEdge[src] do
11 ◁ Relax the edge
12 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
13 ◁ Add the bucket update to the buffer
14 buffer.syncAppend(e.dst, ⌊Dist[e.dst]/Δ⌋)
15 buffer = buffer.reduceBucketUpdates();
16 ◁ Apply the reduced bucket updates
17 B.bulkUpdateBuckets(buffer);

Figure 3-6: Δ-stepping for single-source shortest paths (SSSP) with the lazy bucket
update approach.

bucket’s priority are added to the bucket. The algorithm moves on to the next bucket

when no more vertices are added to the current bucket. The key idea of bucket fusion

is to fuse consecutive rounds that process the same bucket. Using bucket fusion in

GraphIt results in 1.2×–3× speedup on road networks with large diameters compared

to the existing work.

We use Δ-stepping for single-source shortest paths (SSSP) as a running example

to illustrate the performance tradeoffs between two different bucket update strategies,

including the lazy and eager bucket update approaches, in Section 3.4.1 and Sec-

tion 3.4.2. We also introduce our new bucket fusion optimization that can significantly

improve the efficiency of the eager bucket approach on road networks in Section 3.4.3.

3.4.1 Lazy Bucket Update

We first consider using the lazy bucket update approach for the Δ-stepping algorithm,

with the pseudocode illustrated in Figure 3-6. The algorithm constructs a bucketing

data structure in Line 3, which groups the vertices into buckets according to their

priorities. It then repeatedly extracts the bucket with the minimum priority (Line 6),
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and finishes the computation once all of the buckets have been processed (Lines 5–17).

To process a bucket, the algorithm iterates over each vertex in the bucket, and updates

the priority of its outgoing neighbor destination vertices by updating the neighbor’s

distance (Line 12). With priority coarsening, the algorithm computes the new priority

by dividing the distance by the coarsening factor, Δ. The corresponding bucket update

(the vertex and its updated priority) is added to a buffer with a synchronized append

(Line 14). The syncAppend can be implemented using atomic operations, or with a

prefix sum to avoid atomics. The buffer is later reduced so that each vertex will only

has one final bucket update (Line 15). Finally, the buckets are updated in bulk with

bulkUpdateBuckets (Line 17).

The lazy bucket update approach can be very efficient when a vertex changes

buckets multiple times within a round. The lazy approach buffers the bucket updates,

and makes a single insertion to the final bucket. Furthermore, the lazy approach

can be combined with other optimizations such as the histogram-based reduction of

priority updates to further reduce runtime overheads. However, the lazy approach

adds additional runtime overhead from maintaining a buffer (Line 7), and performing

reductions on the buffer (Line 15) at the end of each round. These overheads can

incur a significant cost in cases where there are only a few updates per round (e.g., in

SSSP on large diameter road networks).

3.4.2 Eager Bucket Update

Another approach for implementing Δ-stepping is to use an eager bucket update

approach (shown in Figure 3-7) that directly updates the bucket of a vertex when its

priority changes. The algorithm is naturally implemented using thread-local buckets,

which are updated in parallel across different threads (Line 13). Each thread works on

a disjoint subset of vertices in the current bucket (Line 14). Using thread-local buckets

avoids atomic synchronization overheads on bucket updates (Lines 3 and 17–19). To

extract the next bucket, the algorithm first identifies the smallest priority across all

threads and then has each thread copy over its local bucket of that priority to a global

minBucket (Line 11). If a thread does not have a local bucket of the next smallest
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1 Dist = {∞, . . . ,∞} ◁ Length |𝑉 | array
2 procedure SSSP with Δ-stepping(Graph 𝐺, Δ, startV)
3 𝐵 = new ThreadLocalBuckets(Dist, Δ, startV);
4 ◁ Initialize the thread-local buckets for each thread
5 for threadID : threads do
6 𝐵.append(new LocalBucket());
7 Dist[startV] = 0
8 ◁ While there are still vertices left to be updated
9 while ¬empty 𝐵 do

10 ◁ Get a global frontier created from the buckets of the next smallest priority across
all threads

11 minBucket = 𝐵.getGlobalMinBucket()
12 ◁ Each thread processes a portion of the global frontier
13 parallel for threadID : threads do
14 for src : minBucket.getVertices(threadID) do
15 for e : G.getOutEdge[src] do
16 ◁ Relax the edge weights
17 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
18 ◁ Update the appropriate bucket
19 𝐵[threadID].updateBucket(e.dst, ⌊Dist[e.dst]/Δ⌋)

Figure 3-7: Δ-stepping for SSSP with the eager bucket update approach.

priority, then it will skips the copying process. Copying local buckets into a global

bucket helps redistribute the work among threads for better load balancing.

Compared to the lazy bucket update approach, the eager approach saves instruc-

tions and one global synchronization needed for reducing bucket updates in the buffer

(Figure 2-3, Line 19). However, it potentially needs to perform multiple bucket updates

per vertex in each round. We show detailed performance comparison of lazy and eager

approaches in Section 6.3.5.

3.4.3 Eager Bucket Fusion Optimization

In this section, we explain the motivation, design, and implementation of our new

bucket fusion optimization for eager bucketing. The bucket fusion optimization

can achieve more than 3× speed up for many ordered graph algorithms running on

graphs with large diameters, such as road networks. This optimization has since been

integrated into the popular GAP benchmark suite [14].

A major challenge in bucketing is that many buckets need to be processed, resulting
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1 Dist = {∞, . . . ,∞} ◁ Length |𝑉 | array
2 procedure SSSP with Δ-stepping(Graph 𝐺, Δ, startV)
3 𝐵 = new ThreadLocalBuckets(Dist, Δ, startV);
4 for threadID : threads do
5 𝐵.append(new LocalBucket());
6 Dist[startV] = 0
7 while ¬empty 𝐵 do
8 minBucket = 𝐵.getMinBucket()
9 parallel for threadID : threads do

10 for src : minBucket.getVertices(threadID) do
11 for e : G.getOutEdge[src] do
12 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
13 𝐵[threadID].updateBucket(e.dst, ⌊Dist[e.dst]/Δ⌋)
14 ◁ While there are still vertices of the current priority left to be processed in

the thread-local bucket
15 while 𝐵[threadID].currentLocalBucket() is not empty do
16 currentLocalBucket = 𝐵[threadID].currentLocalBucket()
17 ◁ Check if the local bucket’s size is smaller than the threshold
18 if currentLocalBucket.size() < threshold then
19 ◁ Process the local bucket immediately
20 for src : currentLocalBucket do
21 for e : G.getOutEdge[src] do
22 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
23 𝐵[threadID].updateBucket(e.dst, ⌊Dist[e.dst]/Δ⌋)
24 else break

Figure 3-8: Δ-stepping for single-source shortest paths with the eager bucket update
approach and the bucket fusion optimization.

in thousands or even tens of thousands of processing rounds. Because each round

requires at least one global synchronization, reducing the number of rounds while

maintaining priority ordering can significantly reduce synchronization overhead.

Often in practice, many consecutive rounds process a bucket of the same priority.

For example, in Δ-stepping, the priorities of vertices that are higher than the current

priority can be lowered by edge relaxations to the current priority in a single round.

Thus, the same priority bucket may be processed again in the next round. The process

repeats until no new vertices are added to the current bucket. This pattern is common

in ordered graph algorithms that use priority coarsening. We observe that rounds

processing the same bucket can be fused without violating priority ordering.

Based on this observation, we propose a novel bucket fusion optimization for the
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eager bucket update approach that allows a thread to execute the next round processing

the current bucket without synchronizing with other threads. We illustrate bucket

fusion using the Δ-stepping algorithm in Figure 3-8. The same optimization can be

applied in other applications, such as weighted breadth-first search (wBFS), A* search

and point-to-point shortest path. This algorithm extends the eager bucket update

algorithm (Figure 3-7) by adding a while loop inside each local thread (Figure 3-8,

Line 15). The while loop executes if the current local bucket is non-empty. If the

current local bucket’s size is below a certain threshold, the algorithm immediately

processes the current bucket without synchronizing with other threads (Figure 3-8,

Line 18). If the current local bucket is large, it will be copied over to the global bucket

and distributed across other threads. The threshold is important to avoid creating

straggler threads that process too many vertices, leading to load imbalance. The

bucket processing logic in the while loop (Figure 3-8, Lines 20–23) is the same as the

original processing logic (Figure 3-8, Lines 10–13). This optimization is hard to apply

for the lazy approach since a global synchronization is needed before bucket updates.

Bucket fusion is particularly useful for road networks where multiple rounds

frequently process the same bucket. For example, bucket fusion reduces the number

of rounds by more than 30× for SSSP on the RoadUSA graph, leading to more than

3× speedup by significantly reducing the amount of global synchronization (details in

Section 6.2).

3.5 Chapter Summary

In this chapter, we described various performance optimizations for graph traver-

sal and bucketing data structures. We analyzed the tradeoffs between the different

optimizations and provided some guidelines for selecting the optimizations depend-

ing on the performance bottlenecks of the graph algorithms. Chapter 4 describes

the interface for the programmer to combine the different optimizations using the

scheduling language. Chapter 5 provides more implementation details for the various

optimizations in the GraphIt compiler. Specifically, Section 5.1 formalizes the space
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of graph traversal optimizations Finally, Chapter 6 evaluates the performances of the

various optimizations.

52



Chapter 4

Language Design

The performance bottlenecks of graph algorithms are diverse and depend on the size

and structure of the input graph. No single set of performance optimizations performs

well across all graphs and algorithms. Therefore, to achieve high performance across

different graphs and graphs, GraphIt introduces a novel design that decouples algorithm

specification from optimizations for the graph algorithms. The design is inspired by

the Halide programming language [80]’s decoupled design for the image processing

domain. By separating the algorithm specifications from the optimizations, GraphIt is

the first graph processing framework that allows the programmers to easily navigate

the complex performance tradeoff space described in Chapter 3 for optimizations,

while providing an easy-to-use high-level programming model for the domain experts.

GraphIt provides an algorithm language and a separate scheduling language. The

algorithm language can express a variety of ordered and unordered graph algorithms,

while exposing opportunities for optimizations. The scheduling language allows the

user to try different combinations of optimizations. In this chapter, we describe the

design of the algorithm and scheduling language and use PageRankDelta (Figure 4-1)

and Δ-stepping(Figure 4-2) to showcase the language.
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1 element Vertex end
2 element Edge end
3 const edges : edgeset{Edge}(Vertex,Vertex) = load(argv[1]);
4 const vertices : vertexset{Vertex} = edges.getVertices();
5 const damp : double = 0.85;
6 const base_score : double = (1.0 - damp)/vertices.size();
7 const epsilon : double = 0.1;
8 const OutDegree : vector{Vertex}(int) = edges.getOutDegrees();
9 Rank : vector{Vertex}(double) = 0;

10 DeltaSum : vector{Vertex}(double) = 0.0;
11 Delta : vector{Vertex}(double) = 1.0/vertices.size();
12 func updateEdge(src : Vertex, dst : Vertex)
13 DeltaSum[dst] += Delta[src]/OutDegree[src];
14 end
15 func updateVertexFirstRound(v : Vertex) -> output : bool
16 Delta[v] = damp * (DeltaSum[v]) + base_score;
17 Rank[v] += Delta[v];
18 Delta[v] = Delta[v] - 1.0/vertices.size();
19 output = fabs(Delta[v] > epsilon*Rank[v]);
20 DeltaSum[v] = 0;
21 end
22 func updateVertex(v : Vertex) -> output : bool
23 Delta[v] = DeltaSum[v] * damp;
24 Rank[v] += Delta[v];
25 DeltaSum[v] = 0;
26 output = fabs(Delta[v]) > epsilon * Rank[v];
27 end
28 func main()
29 var V : int = vertices.size();
30 var Frontier : vertexset{Vertex} = new vertexset{Vertex}(V);
31 for i in 1:maxIters
32 #s1# edges.from(frontier).apply(updateEdge);
33 if i == 1
34 Frontier = vertices.filter(updateVertexFirstRound);
35 else
36 Frontier = vertices.filter(updateVertex);
37 end
38 end
39 end

Figure 4-1: GraphIt code for PageRankDelta.
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Table 4.1: Algorithm Language API.

Set Operators Return
Type

Description

size() int Returns the size of the set.
Vertexset operators
filter(func f) vertexset Filters out vertices where f(vertex) returns

true.
apply(func f) none Applies f(vertex) to every vertex.
Edgeset operators
from(vertexset vset) edgeset Filters out edges whose source vertex is in

the input vertexset.
to(vertexset vset) edgeset Filters out edges whose destination vertex is

in the input vertexset.
filter(func f) edgeset Filters out edges where f(edge) returns true.
srcFilter(func f) edgeset Filters out edges where f(source) returns

true.
dstFilter(func f) edgeset Filters out edges where f(destination) returns

true.
apply(func f) none Applies f(source, destination) to every edge.
applyModified(func f,
vector vec,
[bool
disable_deduplication])

vertexset Applies f(source, destination) to every edge.
Returns a vertexset that contains destination
vertices whose entry in the vector vec has
been modified in f. The programmer can op-
tionally disable deduplication within modified
vertices. Deduplication is enabled by default.

applyUpdatePriority(func f) none Applies f(src, dst) to every edge. The f func-
tion updates priorities of vertices.

Priority Queue Operators
new priority_queue(
bool coarsen_priority,
string priority_dir,
vector priority_vector,
[Vertex start_vertex])

priority_queue The constructor for the priority queue. It
specifies a) whether priority coarsening is al-
lowed or not, b) whether higher or lower pri-
ority is executed first, c) the vector that is
used to compute the priority values, and d)
an optional start vertex.

pq.dequeueReadySet() vertexset Returns a bucket with all the vertices that
are currently ready to be processed.

pq.finished() bool Checks if there is any bucket left to process.
pq.finishedVertex(Vertex v) bool Checks if a vertex’s priority is finalized (fin-

ished processing).
pq.getCurrentPriority() priority_type Returns the priority of the current bucket.
pq.updatePriorityMin(Vertex
v, ValT new_val)

void Decreases the value of the priority of the spec-
ified vertex v to the new_val.

pq.updatePriorityMax(Vertex
v, ValT new_val)

void Increases the value of the priority of the spec-
ified vertex v to the new_val.

pq.updatePrioritySum(Vertex
v, ValT sum_diff, ValType
min_threshold)

void Adds sum_diff to the priority of the Vertex
v. The user can specify an optional minimum
threshold so that the priority does not go
below the threshold.
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1 element Vertex end
2 element Edge end
3 const edges : edgeset{Edge}(Vertex,Vertex, int)=load(argv[1]);
4 const dist : vector{Vertex}(int) = INT_MAX;
5 const pq: priority_queue{Vertex}(int);
6

7 func updateEdge(src : Vertex, dst : Vertex, weight : int)
8 var new_dist : int = dist[src] + weight;
9 pq.updatePriorityMin(dst, dist[dst], new_dist);

10 end
11

12 func main()
13 var start_vertex : int = atoi(argv[2]);
14 dist[start_vertex] = 0;
15 pq = new priority_queue
16 {Vertex}(int)(true, "lower_first", dist, start_vertex);
17 while (pq.finished() == false)
18 var bucket : vertexset{Vertex} = pq.dequeueReadySet();
19 #s1# edges.from(bucket).applyUpdatePriority(updateEdge);
20 delete bucket;
21 end
22 end

Figure 4-2: GraphIt algorithm for Δ-stepping for SSSP.

4.1 Algorithm Language

GraphIt aims to capture the algorithm at a high-level with vertex, edge sets, priority

queues, and user-defined functions (UDFs). The high-level algorithm specification

also enables opportunities for optimizations such as direction optimization, eager

bucket update, eager update with bucket fusion, lazy bucket update, and other

optimizations. The operators in GraphIt hide low-level implementation details such

as atomic synchronization, deduplication, bucket updates, and priority coarsening for

both ordered and unordered graph algorithms We designed the GraphIt language as

a standalone language instead of an embedded domain-specific language (embedded

DSL) because many optimizations require global transformations across multiple data

structures and functions. Using a stand-alone language also allows GraphIt to provide

simpler syntax involving many different components, such as UDFs and loops. The

set-based design in the algorithm language is inspired by the Simit programming

language [53] for simulations and the Ligra graph processing framework [91].
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4.1.1 Data Model

GraphIt’s data model consists of elements, vertexsets and edgesets, and vertex and

edge data. These abstract data types and structures help GraphIt achieve physical

independence, enabling the compiler to switch between different low-level implemen-

tations. The high-level data model also allows GraphIt to avoid analyzing complex

general-purpose data structures with pointers.

We illustrate GraphIt’s data model with the PageRankDelta example in Figure 4-1.

The programmer first defines vertex and edge element types (Vertex and Edge on

Lines 1–2 of Figure 4-1). GraphIt supports multiple types of user-defined vertices

and edges, which is important for algorithms that work on multiple graphs. After

defining element types, the programmer can construct vertexsets and edgesets. Lines 3–

4 of Figure 4-1 present the definitions of an edgeset, edges, and vertexset, vertices.

Each element of the edgeset is of Edge type (specified between “{ }”), and the source

and destination of the edge is of Vertex type (specified between “( )”). The edgeset

declaration supports edges with different types of source and destination vertices (e.g.,

in a bipartite graph). vertices uses the getVertices method on the edgeset to obtain

the union of the source and destination vertices of the edges. Data for vertices and

edges are defined as vectors associated with an element type denoted using the { }

syntax (Lines 8–11).

4.1.2 Language Constructs and Operators

The language constructs of GraphIt aim to represent the algorithm at a high level,

allowing opportunities for edge traversal and vertex data layout optimizations. At the

same time, we want to free the programmer from specifying low-level implementation

details, such as synchronization, priority-queue implementation, and deduplication

logic. To achieve these goals, the algorithm language (presented in Table 4.1) sep-

arates the edge processing logic from other components, such as the edge traversal,

priority-based ordering, edge filtering (from, to, srcFilter, and dstFilter), atomic

synchronization, and modified vertex deduplication and tracking logic (apply and
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applyModified). Each component can be scheduled with optimizations separately.

The compiler has the freedom to fuse together the different components or keep them

separated depending on the performance optimizations specified by the user.

In the GraphIt code for PageRankDelta (Figure 4-1), the from operator (Line 32)

ensures that only edges whose source vertex is in the frontier are traversed, and

the apply operator uses the updateEdge function on the selected edges to compute

DeltaSum, corresponding to Lines 8–10 of Algorithm 2-2. This separation enables the

compiler to generate complex code for different traversal modes and parallelization

optimizations, while inserting appropriate data access and synchronization instructions

for the updateEdge function. #s1# is a label used in the scheduling language (explained

in Section 4.2). Lines 34 and 36 of Figure 4-1 compute the updated Delta and Rank

values by applying updateVertexFirstRound and updateVertex functions on every

vertex. Vertices with Delta greater than epsilon of their Rank are returned as the next

frontier, corresponding to Lines 12–23 of Algorithm 2-2. As shown in Table 4.1, GraphIt

provides various operators on vertexsets and edgesets to express graph algorithms with

different traversal and update logic. The applyModified operator tracks which vertices

have been updated during the edge traversal and outputs a vertexset containing just

those vertices. By default, applyModified ensures that each vertex is added only once

to the output vertexset. However, the programmer can optionally disable deduplication

for algorithms that are guaranteed to insert each vertex only once (e.g., BFS) for

better performance.

We demonstrate how GraphIt simplifies the expression of the algorithm by showing

Ligra’s implementation of the edge update function in Figure 4-3 (note that the 16

lines of Ligra code shown correspond to only three lines in GraphIt’s implementation in

Fig. 4-1). Ligra requires the programmer to specify edge processing (Lines 8–9, 12–14),

edge filtering (Line 16), deduplication and modification tracking (Lines 10 and 15),

and synchronization logic (Lines 12–14). GraphIt only requires the programmer to

specify the edge processing logic in this case.

GraphIt also supports traditional control flow constructs such as for, while, and

if for expressing fixed iteration loops, loops until convergence, and conditional control
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1 template <class vertex>
2 struct PR_F {
3 vertex* V;
4 double* Delta, *nghSum;
5 PR_F(vertex* _V, double* _Delta, double* _nghSum) :
6 V(_V), Delta(_Delta), nghSum(_nghSum) {}
7 inline bool update(uintE s, uintE d){
8 double oldVal = nghSum[d];
9 nghSum[d] += Delta[s]/V[s].getOutDegree();

10 return oldVal == 0;}
11 inline bool updateAtomic (uintE s, uintE d) {
12 volatile double oldV, newV;
13 do { oldV = nghSum[d]; newV = oldV + Delta[s]/V[s].getOutDegree();
14 } while(!CAS(&nghSum[d],oldV,newV));
15 return oldV == 0.0;}
16 inline bool cond (uintE d) { return cond_true(d); }};

Figure 4-3: Ligra’s PageRankDelta edge update function, corresponding to Lines 12–14
of Figure 4-1 in GraphIt’s PageRankDelta example.

flow. After setting up a new vertexset called Frontier, Line 31 in Figure 4-1 uses a for

loop to iterate the maxIters times. An alternative implementation could use a while

loop that iterates until the ranks of all vertices stabilize.

We use Δ-stepping in Figure 4-2 to demonstrate the priority-based operators. The

algorithm specification first sets up the edgeset data structures (Lines 1–3), and sets

the distances to all the vertices in dist to INT_MAX to represent ∞ (Line 4). It

declares the global priority queue, pq, on Line 5. This priority queue can be referenced

in user-defined functions and the main function. The user then defines a function,

updateEdge, that processes each edge (Lines 7–10). In updateEdge, the user computes

a new distance value, and then updates the priority of the destination vertex using the

updatePriorityMin operator defined in Table 4.1. In other algorithms, such as 𝑘-core,

the user can use updatePrioritySum when the priority is decremented or incremented

by a given value. The updatePrioritySum can detect if the change to the priority is

a constant, and use this fact to perform more optimizations. The priority update

operators, updatePriorityMin and updatePrioritySum, hide bucket update operations,

allowing the compiler to generate different code for lazy and eager bucket update

strategies.

In the main function, programmers use the constructor of the priority queue

(Figure 4-2 Lines 15–16) to specify algorithmic information, such as the priority or-

dering, support for priority coarsening, and the direction in which priorities change
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(documented in Table 4.1). The abstract priority queue hides low-level bucket imple-

mentation details and provides a mapping between vertex data and their priorities.

The user specifies a priority_vector that stores the vertex data values used for com-

puting priorities. In SSSP, we use the dist vector and the coarsening parameter (Δ

specified using the scheduling language) to perform priority coarsening. The while

loop (Figure 4-2 Line 17) processes vertices from a bucket until all buckets are fin-

ished processing. In each iteration of the while loop, a new bucket is extracted with

dequeueReadySet (Figure 4-2 Line 18). The edgeset operator on Line 19 uses the from

operator to keep only the edges that come out of the vertices in the bucket. Then it

uses applyUpdatePriority to apply the updateEdge function to outgoing edges of the

bucket. Label (#s1#) is later used by the scheduling language to configure optimization

strategies.

4.1.3 Guide for Writing an Algorithm Specification

In this section, we provide a short guide for writing algorithm specifications in

GraphIt in addition to the PageRankDelta and Delta Stepping examples described

in this chapter. The first step is to define the data structures used in the algorithm.

Specifically, the vertex and edge set types should be declared early in the program.

The programmer also needs to define the data associated with each vertex using the

vectors, such as the rank and the outdegree in the PageRankDelta example.

The next step is to write the graph processing logic. It is important to frame the

graph processing steps as operations on the vertex and edge sets. It is easy to utilize

GraphIt’s vertex and edge set filtering and processing operators. To use the vertex

and edge set processing operators in GraphIt, the programmer must also define a

series of UDFs that can be passed as arguments.

The UDFs specify the logic to process or filter a single edge or a single vertex.

Within a UDF, the user can only access vertices that are passed in as function

arguments or global variables. The UDFs used for filtering must return a boolean

variable. The UDFs used for processing a vertex or edge with the apply operator do

not need to return anything.
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Finally, the output can be stored in vectors or with just a scalar value. We also

provide support for Python Bindings that can convert between python and GraphIt

data structures. The user can also use the generated C++ program directly as external

functions in C++.

4.2 Scheduling Language

After specifying the algorithm using the language described in Section 4.1, program-

mers can explore different combinations of optimizations using GraphIt’s scheduling

language. We designed the scheduling language to be flexible enough to represent the

various optimizations outlined in Chapter 3. Additionally, the scheduling language

has to be modular so that different optimizations can be combined together to form

new optimizations. In this section, we describe the design of the scheduling language

functions and demonstrate how they work with PageRankDelta.

We use labels (#label#) in algorithm specifications to identify the statements on

which optimizations apply. Programmers can assign a label on the left side of a

statement and later reference it in the scheduling language. Figure 4-4 shows a simple

schedule for the PageRankDelta implementation in Figure 4-1. The programmer

adds label s1 to the edgeset operation statement. After the schedule keyword, the

programmer can make a series of calls to scheduling functions.

Compared to Halide’s scheduling language, which can only schedule functions,

GraphIt’s scheduling language is more flexible and can configure optimizations for

individual operators within functions, loops, and even data structures. This allows

GraphIt to incorporate more program transformations at a finer level and include

physical data layout optimizations.

We designed GraphIt’s scheduling language functions (shown in Table 4.2) to

allow programmers to compose the edge traversal direction, frontier data struc-

ture, parallelization, cache, NUMA, vertex data layout, and program structure

optimizations discussed in Chapter 3. The configApplyDirection function allows

programmers to configure directions used for traversal. The programmer can use
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30 ...
31 for i in 1:maxIters
32 #s1# edges.from(frontier).apply(updateEdge);

...
38 end

...
41 schedule:
42 program->configApplyDirection("s1", "DensePull-SparsePush");

Figure 4-4: Scheduling PageRankDelta.

Table 4.2: GraphIt scheduling language functions. The default option for an operator
is shown in bold. Optional arguments are shown in [ ]. If the optional direction
argument is not specified, the configuration is applied to all relevant directions. We
use a default grain size of 256 for parallelization.

Apply Scheduling Functions Descriptions
program->configApplyDirection(label,
config);

Config options: SparsePush, Dense-
Push, DensePull, DensePull-SparsePush,
DensePush-SparsePush

program->configApplyParallelization
(label, config, [grainSize],
[direction]);

Config options: serial, dynamic-vertex-
parallel, static-vertex-parallel, edge-aware-
dynamic-vertex-parallel, edge-parallel

program->configApplyDenseVertexSet
(label, config, [vertexset],
[direction])

Vertexset options: both, src-vertexset, dst-
vertexset
Config Options: bool-array, bitvector

program->configApplyNumSSG(label,
config,
numSegments, [direction]);

Config options: fixed-vertex-count or edge-
aware-vertex-count

program->configApplyNUMA(label,
config,
[direction]);

Config options: serial, static-parallel,
dynamic-parallel

program->fuseFields({vect1, vect2,
...})

Fuses multiple arrays into a single array of
structs.

program->fuseForLoop(label1, la
bel2,
fused_label)

Fuses together multiple loops.

program->fuseApplyFunctions(label1,
label2,
fused_func)

Fuses together two edgeset apply operators.
The fused apply operator replaces the first
operator.

program->configApplyPriorityUpdate
(label,config);

Config options: eager_with_fusion, ea-
ger_no_fusion, lazy_constant_sum, and
lazy.

program->
configApplyPriorityUpdateDelta
(label,config);

Configures the Δ parameter for coarsening the
priority range.

program->configBucketFusionThreshold
(label, config);

Configures the threshold for the bucket fusion
optimization.

program->configNumBuckets
(label,config);

Configures the number of buckets that are ma-
terialized for the lazy bucket update approach.

the configDenseVertexSet function to switch between bitvector and boolean array

for source and destination vertexsets. The configApplyNumSSG function configures
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the number of segmented subgraphs and how the subgraphs are partitioned (fixed-

vertex-count and edge-aware-vertex-count). Setting the right number of segments

and partitioning configuration allows random accesses to be restricted to a NUMA

node or last level cache with balanced load as described in Chapter 3. Moreover,

configApplyNUMA configures the SSGs to be executed in parallel with static or dynamic

NUMA node assignment (static-parallel and dynamic-parallel), ensuring the random

memory accesses are restricted to the local NUMA node, while maintaining good

parallel scalability. Finally, vertex data vectors can be fused together into an array of

structs with fuseFields.

To combine different optimizations, the programmer first chooses a direction for

traversal. Then the programmer can use the other scheduling functions to pick

one option for the parallelization, graph partitioning, NUMA, and dense vertexset

optimizations for the current direction. The programmer can configure each direction

separately using the optional direction argument for hybrid directions (DensePush-

SparsePush or DensePull-SparsePush). If no direction argument is specified, then the

configuration applies to both directions.

4.2.1 Scheduling PageRankDelta

Figure 4-5 illustrates different schedules for PageRankDelta. Figure 4-5(a) starts with

the pseudocode generated from the default schedule that performs a serial SparsePush

traversal. Figure 4-5(b) adds a hybrid traversal code that first computes the sum of

out-degrees and uses it to determine whether to perform a DensePull or a SparsePush

traversal. This allows the implementation to pick the traversal mode that minimizes

the number of edges that need to be traversed, improving work-efficiency. Figure 4-

5(c) adds dynamic-vertex-parallelism to both directions in the generated code by

parallelizing the loops and inserting synchronization codes for SparsePush. Figure 4-

5(d) adds the vertex data layout and bitvector optimizations. Fusing together the

vectors Delta and OutDegree with the fuseFields function improves spatial locality of

memory accesses since the two vectors are always accessed together. This optimization

changes the declaration and access points for the arrays. Finally, for the DensePull
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

double * Delta = new double[num_verts];
int * OutDegree = new int[num_verts];
…
out_degree_sum = sumDegree(from_vertexset)
if (out_degree_sum > threshold) {
  Bool * bool_map = from_vertexset->bool_map
  parallel_for( NodeID d : G.vertices) {
    for( NodeID s : G.getInNgh(d) ){
       if ( bool_map[s] ) { 
         DeltaSum[d] += ( Delta[s]  
                              / OutDegree[s] );
       } } } } else {
  NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;
  parallel_for (NodeID s : dense_vertex_set) {
    for(NodeID d : G.getOutNgh(s)){
      fetch_and_add( &DeltaSum[d], 
                           ( Delta[s] / OutDegree[s] ));  
   } } }  

double * Delta = new double[num_verts];
int * OutDegree = new int[num_verts];
…
out_degree_sum = sumDegree(from_vertexset)
if (out_degree_sum > threshold) {
  Bool * bool_map = from_vertexset->bool_map
  for( NodeID d : G.vertices) {
    for( NodeID s : G.getInNgh(d) ){
       if ( bool_map[s] ) { 
         DeltaSum[d] += ( Delta[s] / OutDegree[s] );
       } } } } else {
  NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;
  for (NodeID s : dense_vertex_set) {
    for(NodeID d : G.getOutNgh(s)){
      DeltaSum[d] = ( Delta[s]/OutDegree[s] ));} } }

double * Delta = new double[num_verts];
int * OutDegree = new int[num_verts];
…
long m = from_vertexset->size();
NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;
for (NodeID s : dense_vertex_set) {
  for(NodeID d : G.getOutNgh(s)){
    DeltaSum[d] = ( Delta[s] / OutDegree[s] )); } } }  

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) Generated Code with Default Configuration

(b) Generated Code with Direction Configuration
program->configApplyDirection(“s1“, DensePull-SparsePush”);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

(c) Generated Code with Parallelization Configuration
program
->configApplyDirection(“s1“,  DensePull-SparsePush”)
->configApplyParallel(“s1”, “dynamic-vertex-parallel”);

(d) Generated Code with Data Layout Configuration
program->fuseVectors({“Delta”, “OutDegree”})
->configApplyDirection(“s1“, DensePull-SparsePush”)
->configApplyParallel(“s1”, “dynamic-vertex-parallel”)
->configApplyDenseVertexSet(“s1”, “src-vertexset”, 
                                              “bitvector”, “DensePull”);

typedef struct fused_struct { 
  float Delta; 
  int OutDegree;
} fused_struct;
fused_struct *  fused_struct_array 
                         = new fused_struct[num_verts];
…
out_degree_sum = sumDegree(from_vertexset)
if (out_degree_sum > threshold) {
  Bool * bool_map = from_vertexset->bool_map
  Bitmap bitmap = convertBitMap(bool_map);
  parallel_for( NodeID d : G.vertices) {
    for( NodeID s : G.getInNgh(d) ){
       if ( bitmap.get_bit(s) ) { 
         DeltaSum[d] += ( fused_struct[s].Delta  
                              / fused_struct[s].OutDegree );
       } } } } else {
  NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;  
  parallel_for (NodeID s : dense_vertex_set) {
    for(NodeID d : G.getOutNgh(s)){
      fetch_and_add( &DeltaSum[d], 
                     ( fused_struct_array[s].Delta  
                   / fused_struct_array[s].OutDegree ));
  } } }  

Figure 4-5: Each subfigure shows pseudocode generated from applying the schedule
in the caption to the GraphIt PageRankDelta code with labels from Figure 4-1 and
Figure 4-4. The options in the caption highlighted in blue are newly added scheduling
commands relative to the previous subfigure and the code highlighted in purple is
pseudocode updated due to the new schedules.

direction, the source vertexset specified in from can be dynamically compressed into a

bitvector to reduce the working set size, further improving spatial locality.

4.2.2 Scheduling Program Structure Optimizations

To support program structure optimizations, we introduce scoped labels, which

allow labels to function even after complex program transformations, and scheduling

functions for fusing together loops and edgeset apply operators. Figure 4-6 shows two

iterative edgeset apply operators (Lines 2 and 5) that can be fused together into a

single iterative edgeset apply operator. GraphIt first performs loop fusion, creating

a new loop (l3), and destroying the two old loops (l1 and l2). Now, it would be

difficult if we wanted to schedule the first edgeset apply operator in the l3 loop as

the original loops l1 and l2 have been removed from the program. Since both edgeset

apply operators have s1 as their labels, it is difficult to identify them individually. To

address this, we introduce scoping to the labels. The two apply operators will obtain

the labels l1:s1 and l2:s1, respectively.
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1 #l1# for i in 1:10
2 #s1# edges.apply(func1);
3 end
4 #l2# for i in 1:10
5 #s1# edges.apply(func2);
6 end
7 schedule:
8 program->fuseForLoop("l1", "l2", "l3")
9 ->fuseApplyFunctions("l3:l1:s1", "l3:l2:s1", "fusedFunc")

10 ->configApplyDirection("l3:l1:s1", "DensePull");

Figure 4-6: GraphIt loop and function fusion

We also need a name node, which enforces a named scope for the label. Loops

l1 and l2 are replaced with the name nodes with labels l1 and l2, respectively. The

resulting pseudocode is displayed in Figure 4-7. This enables the user to reference

the first edgeset apply as l3:l1:s1 and the second edgeset apply as l3:l2:s1. After the

loops are fused together, we can use fuseApplyFunctions to create a new edgeset apply

to replace the l3:l1:s1 statement, which can be further configured (Figure 4-8). The

new edgeset apply function, fusedFunc, concatenates the statements in the original

functions, func1 and func2. In Section 6.2, we demonstrate that the fusion of multiple

iterative kernels with similar traversal patterns (eigenvector centrality and PageRank),

and the vertex data vectors they access boosts the performance of the application by

up to 60% as shown in Section 6.2.5.
1 #l3# for i in 1:10
2 #l1# namenode
3 #s1# edges.apply(func1);
4 end
5 #l2# namenode
6 #s1# edges.apply(func2);
7 end
8 end

Figure 4-7: Pseudocode after loop fusion
1 #l3# for i in 1:10
2 #l1# namenode
3 #s1# edges.apply(fused_func);
4 end
5 end

Figure 4-8: Pseudocode after function fusion

4.2.3 Scheduling Δ-stepping

The scheduling language allows users to specify different optimization strategies for

the ordered graph algorithms as well. We extend the scheduling language of GraphIt
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17 ...
18 while (pq.finished() == false)
19 var bucket : vertexsubset = pq.dequeueReadySet();
20 #s1# edges.from(bucket).applyUpdatePriority(updateEdge);
21 delete bucket;
22 end

...
25 schedule:
26 program->configApplyPriorityUpdate("s1", "lazy")
27 ->configApplyPriorityUpdateDelta("s1", "4")
28 ->configApplyDirection("s1", "SparsePush")
29 ->configApplyParallelization("s1","dynamic-vertex-parallel");

Figure 4-9: GraphIt scheduling specification for Δ-stepping.

with new optimizations, such as the eager and lazy bucket update strategies, and

eager bucket fusion optimizations. Users can also tune other parameters, such as the

coarsening factor for priority coarsening. The scheduling API extensions are listed in

Table 4.2.

Figure 4-9 illustrates a set of schedules for Δ-stepping. GraphIt uses labels

(#label#) to identify the algorithm language statements for which the scheduling

language commands are applied. The programmer adds the label s1 to the edge-

set applyUpdatePriority statement. After the schedule keyword, the programmer

calls the scheduling functions. The configApplyPriorityUpdate function allows the

programmer to use the lazy bucket update optimization. The programmer can use

the original GraphIt scheduling language to configure the direction of edge traversal

(configApplyDirection) and the load balance strategies (configApplyParallelization).

Direction optimizations can be combined with lazy priority update schedules. Another

API, configApplyUpdateDelta, is used to set the delta for priority coarsening.

Users can change the schedules to generate code with different combinations of

optimizations as illustrated in Figure 4-10. Figure 4-10(a) presents the code generated

by combining the lazy bucket update strategy and other edge traversal optimizations

from the GraphIt scheduling language. The scheduling function configApplyDirection

configures the data layout of the frontier and direction of the edge traversal (SparsePush

indicates the sparse frontier and push direction). Figure 4-10(b) displays the code

generated when we combine a different traversal direction (DensePull) with the lazy

bucketing strategy. Figure 4-10(c) reveals the code generated with the eager bucket

update strategy. Code generation is explained in Section 5.2.
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int * dist = new int[num_verts];
EagerPriorityQueue* pq;
int delta = 4;
WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function
…
dist[start_vertex] = 0;
frontier[0] = start_vertex;
pq = new EagerPriorityQueue(true, “lower”, dist, delta);
uint* frontier =  new uint[G.num_edges()];
#pragma omp parallel
{   vector<vector<uint> > local_bins(0);
    while (pq.finished()) {
      #pragma omp for nowait schedule(dynamic, 64)
      for (size_t i = 0; i < frontier.size(); i++) { 
        uint s = frontier[i];
        for (WNode d : G.getOutNgh(s)) {
          int new_dist = dist[s] + d.weight; 
          bool changed = atomicWriteMin(&dist[d.v],new_dist);
          if (changed == false) {break;}}
          if (changed) {
            size_t dest_bin = new_dist/delta; 
            if (dest_bin >= local_bins.size()) {
              local_bins.resize(dest_bin+1);}
            local_bins[dest_bin].push_back(d.v);
          }}}// end of for frontier for loop 
    … //omitted:find next bucket
   #pragma omp barrier
    … //omitted:copy local buckets to global bucket
   #pragma omp barrier } // end of parallel region
ŏ

int * dist = new int[num_verts];
LazyPriorityQueue* pq;
int delta = 4;
WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function 
…
dist[start_vertex] = 0;
pq = new LazyPriorityQueue(true, “lower”, dist, delta); 
while (pq.finished()){
  VertexSubset *  frontier = getNextBucket(pq);
  uint* outEdges = setupOutputBuffer(g, frontier);
  uint* offsets = setupOutputBufferOffsets(g, frontier);
  parallel_for (uint s : frontier.vert_array) {
    int j = 0;
    uint offset = offsets[i];
    for(WNode d : G.getOutNgh(s)){
      bool tracking_var = false;
      int new_dist = dist[s.v] + d.weight;
      tracking_var = atomicWriteMin(&dist[d.v], new_dist);
      If (tracking_var && CAS(dedup_flags[d.v],0,1)){
         outEdges[offset + j] = d.v;
      } else { outEdges[offset + j] = UINT_MAX; }
      j++;
   }}
   VertexSubset* nextFrontier = setupFrontier(outEdges);
   updateBuckets(nextFrontier, pq, delta);
   …
}
ŏ
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int * dist = new int[num_verts];
LazyPriorityQueue* pq;
int delta = 4;
WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function 
…
dist[start_vertex] = 0;
pq = new LazyPriorityQueue(true, “lower”, dist, delta); 
while (pq.finished()){
  VertexSubset *  frontier = getNextBucket(pq);
   bool * next = newA(bool, g.num_nodes());
  parallel_for (uint i = 0; i < numNodes; i++) next[i] = 0;
  parallel_for (uint d=0; d < numNodes; d++) {
    for(WNode s : G.getInNgh(d)){
      if (frontier->bool_map_[s.v] ) {
        bool tracking_var = false;
        int new_dist = dist[s.v] + s.weight;
        If (new_dist < dist[d]){ 
          dist[d] = new_dist; 
          tracking_var = true;}
        if ( tracking_var ) {next[d] = 1;}
  }}}                                                             
  VertexSubset* nextFrontier = setupFrontier(next);
  updateBuckets(nextFrontier, pq, delta);
  …
}
ŏ
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(a) Lazy Bucket Update with Parallel SparsePush Traversal
program->configApplyPriorityUpdate(“s1”, “lazy”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, SparsePush”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

(b) Lazy Bucket Update with Parallel DensePull Traversal
program->configApplyPriorityUpdate(“s1”, “lazy”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, DensePull”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

(c) Eager Bucket Update with Parallel SparsePush Traversal
program->configApplyPriorityUpdate(“s1”, “eager”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, SparsePush”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

Figure 4-10: Simplified generated C++ code for Δ-stepping for single-source shortest
paths (SSSP) with different schedules. Changes in the schedules for (b) and (c)
compared to (a) are highlighted in blue. Changes in the generated code are highlighted
with a purple background. The parallel_for is translated to cilk_for or #pragma
omp parallel for. Struct WNode has two fields, v and weight, where v stores the vertex
ID and weight stores the edge weight.

4.2.4 Guide for Manually Tuning the Schedules

While the user can use the autotuner in GraphIt to determine the best schedules, we

still provide some general guidelines for manually selecting a set of schedules. The full

set of schedules we used for different applications is listed in Figure 6.3.

The first step is to select a direction from SparsePush, DensePush, DensePull,

SparsePush-DensePull with configApplyDirection. In general, the direction is often

decided by the size of the frontiers. For large social networks that generate frontiers

with varying sizes, SparsePush-DensePull is usually a good choice. When the frontier

size is fixed for the algorithm, it is often the best strategy to pick just one direction.

For PageRank, DensePull is always the best direction because the frontiers always

contain all of the vertices. For road networks, SparsePush often is the best direction

because the frontiers are usually quite small.

The next step is to select a parallelization strategy with configApplyParallelization.

Usually, the dynamic-vertex-parallel option is the best. For road networks, it is
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sometimes better to switch to the static-vertex-parallel option. Edge-aware-dynamic-

vertex-parallel is only better for PageRank and Collaborative Filtering in some cases,

where the frontiers are large and there are high degrees of parallelism.

The user must select a layout for the dense vertex set. This can be done with

the configApplyDenseVertexset API. If a DensePull direction is used, then you can

potentially use the bitvector option for the vertexset when the graph has a large

number of vertices (currently only working for the pull direction).

If a DensePull direction is used, then one can use configNumSSG (currently only

working for the pull direction) to partition the graph for cache efficiency. This is

mostly useful for applications that spend considerable time processing all the edges

(PageRank, PageRankDelta, and Collaborative Filtering) on large social networks.

This optimization is usually bad for applications that only touch a subset of vertices

(BFS, SSSP, and betweenness centrality). Calculations for the number of segments is

based on the LLC size.

The user can also use fuseFields to fuse fields that are accessed together into an

array of structures to reduce the number of random accesses. This schedule is only

needed for PageRankDelta so far.

For ordered graph algorithms, such as Δ-stepping, it is important to determine

whether to use an eager or lazy bucket update strategy. If there are a large number of

redundant bucket updates in each round, such as 𝑘-core, then the lazy update strategy

is a good option. In contrast, if only a few redundant updates are needed per round,

then the eager update strategy is more efficient. Most of the ordered graph algorithms

can benefit from the eager bucket fusion optimization introduced in Section 5.2.6.

However, it is the most effective on the road networks, where the synchronization

overhead is high.

Overall, the tuning of the schedules should be a dynamic and iterative process.

Many optimization ideas that are expected to work might not actually generate high

performance implementatioins. It is important for the programmers to quickly measure

the performance and make hypotheses to guide the next steps. This process should

be repeated until a high-performance schedule is found.
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4.3 Chapter Summary

In this chapter, we described the design of the algorithm and the scheduling language of

GraphIt. The decoupling allows the programmer to navigate a complex tradeoff space

for performance optimizations, while providing a user-friendly programming model.

We demonstrated how GraphIt can be used to implement and optimize PageRankDelta

(an unordered graph algorithm) and Δ-stepping (an ordered graph algorithm). In

Chapter 5, we describe the implementation of the GraphIt compiler to demonstrate

how the compiler generates high-performance implementations based on the algorithm

and scheduling specifications.
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Chapter 5

Compiler Design and Implementation

Unlike many graph processing libraries, programs in GraphIt are analyzed, optimized,

and code generated using a full compiler stack. In this chapter, we focus on the schedul-

ing representation, program analyses and transformations, code generation algorithms,

and optimized runtime libraries that GraphIt leverages to produce high-performance

C++ code based on the high-level algorithm and optimization specifications described

in Chapter 3. GraphIt uses the novel graph iteration space to represent the various

graph traversal optimizations specified with the scheduling language, such as the

traversal direction and parallelization optimizations. The compiler uses the program

analyses and transformations to ensure the correctness and efficiency of the generated

programs. The code generation algorithm generates high-performance C++ programs

with optimized edge traversals and UDFs based on the scheduling representations.

Finally, the runtime libraries provide a series of optimized low-level routines, such as

prefix sum and the buckets for maintaining the priority-based ordering, which can be

used by the generated program.

5.1 Scheduling Representation

The schedules for an optimized PageRankDelta implementation become even more

complex than those shown in Figure 4-5(d) as we further combine NUMA and cache

optimizations. It is challenging to reason regarding the validity of all the possible
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<    SSG_ID,    BSG_ID,    OuterIter_Vert,   InnerIter_Vert  > 

Parallelization Tag (PR-Tag)

Serial (SR) Parallel

Static Parallel (SP) Work-Stealing Parallel (WSP)

Filtering Tag (FT-Tag)

Sparse
Array (SA)

Dense 
Bool 

Array (BA)

Dense 
Bitvector (BV)

Partitioning tag (PT-Tag)

Fixed Vertex 
Count (FVC)

Edge-Aware Vertex 
Count (EVC)

Edge Traversal Optimizations Vertex Data Layout 
Optimizations (vector tags)

Array of
Structs 
(AoS)

Struct of 
Arrays 
(SoA)

GraphIt Scheduling Representation

( Graph Iteration Space + Tags )

Direction Tag (DR-Tag)

src dst

Program Structure 
Optimizations (scoped labels)

Figure 5-1: GraphIt’s scheduling representation for edge traversal, vertex data layout,
and program structure optimizations. The tags of the graph iteration space represent
the direction and performance optimization choices for each vertex data vector and
each dimension of the graph iteration space.

combinations of optimizations and to generate code for them. GraphIt relies on

multiple scheduling representations, specifically the graph iteration space, the vertex

data vector tags, and the scoped labels, to model combinations of edge traversal,

vertex data layout, and program structure optimizations. Figure 5-1 presents the full

space of optimizations.

5.1.1 Graph Iteration Space

Motivation. The graph iteration space is an abstract model for edge traversals that

represents the edge traversal optimizations specified by the scheduling commands in

Table 4.2. The model simplifies the design of the compiler by representing different

combinations of optimizations as multi-dimensional vectors. This representation

enables the compiler to easily combine different optimizations, reason about validity

through dependence analysis, and generate nested loop traversal code. The graph

iteration space also defines the space of edge traversal optimizations supported by

GraphIt, revealing new combinations of optimizations that have not been explored in

prior work.

The concept of graph iteration space is inspired by the traditional iteration spaces

in dense nested loops [105, 76]. The dense iteration space represents a nested loop

as a multi-dimensional vector, where each dimension represents one level of the loop.

Graph Iteration Space extends the dense iteration space concept to the sparse nested
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Figure 5-2: Representing an edge traversal as nested loops and corresponding graph
iteration spaces. Subfigure (c) illustrates the four dimensions for the graph iteration
space, assuming using pull direction and the fixed vertex count partitioning strategy
for both segmented subgraph (SSG) and blocked subgraphh (BSG) dimensions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

src_set = filtered 𝑠𝑟𝑐 vertexset of F, dst_set = filtered
𝑑𝑠𝑡 vertexset of F
𝑂 ∈ src_set ∧ 𝐼 ∈ dst_set or 𝑂 ∈ dst_set ∧ 𝐼 ∈ src_set
ssg_set = subgraphs created by segmenting the graph
based on InnerIter

⟨ 𝑆 [tags], 𝐵 [tags], 𝑂 [tags], 𝐼 [tags] ⟩ bsg_set = subgraphs created by blocking the graph based
on OuterIter
𝑆 (Segmented Subgraph ID) ∈ ssg_set
𝐵 (Blocked Subgraph ID) ∈ bsg_set
⟨ 𝑂, 𝐼 ⟩ ∈ edges within the subgraph (𝐵 or 𝑆)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 5-3: Definition of the graph iteration space with four dimensions. 𝑆, 𝐵, 𝑂,
and 𝐼 are abbreviations for segmented subgraph (SSG), blocked subgraph (BSG),
OuterIter, and InnerIter.

loops for edge traversals.

Definition. We assume that we have an operation that traverses the edges and applies

an UDF, F, on an edgeset Edges as shown in Figure 5-2(a). A graph iteration space

defines the set of directed edges on which F is applied and the strategy of traversing

the edges. First, we represent the graph as an adjacency matrix, where a column

in a row has a value of one if the column represents a neighbor of the current row

(the top part of Figure 5-2(b)). With this representation, we can traverse through all

edges using dense two-level nested for loops that iterate through every row and every

column. The traversal can be viewed as a traditional 2-D iteration space. Unlike the

dense iteration space, the edge traversal only happens when an edge exists from the
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source to the destination. Thus, we can eliminate unnecessary traversals and make the

loops sparse by iterating only through columns with nonzero values in each row (the

blue part in Figure 5-2(b)). We define the row iterator variable as OuterIter, and the

column iterator variable as InnerIter. The green part of Figure 5-2(b) indicates that

a 2-D graph iteration space vector is used to represent this two-level nested traversal.

The two-level nested for loops can be further blocked and segmented into up to four

dimensions, as illustrated in Figure 5-2(c). The dimensions of the graph iteration

space encode the nesting level of the edge traversal, and the tags for each dimension

specify the strategy used to iterate through that dimension. We provide more details

of the graph iteration space below.

Graph Iteration Space Dimensions. The graph iteration space in GraphIt uses

four dimensions, defined in Figure 5-3 and illustrated in Figure 5-2. The dimensions

are ⟨ SSG, BSG, OuterIter, InnerIter ⟩ and are abbreviated as ⟨ 𝑆, 𝐵, 𝑂, 𝐼 ⟩. Unused

dimensions are marked with ⊥.

OuterIter (𝑂) and InnerIter (𝐼) in Figure 5-3 are the vertex IDs of an edge

(Figure 5-2(b)). The ranges of 𝑂 and 𝐼 dimensions depend on the direction. For the

push direction, 𝑂 is in the filtered source vertexset (src_set) and 𝐼 is in the filtered

destination vertexset (dst_set). For the pull direction, 𝑂 is in the dst_set and 𝐼

is in the src_set. The OuterIter dimension sequentially accesses vertices, while the

InnerIter dimension has a random access pattern for both the push and pull directions

becuse the neighbor vertex IDs are not sequential. The edge (𝑂, 𝐼) is in the edgeset of

the subgraph identified by BSG and SSG.

The BSG (Blocked Subgraph ID) dimension identifies a Blocked Subgraph (BSG)

in the Blocked Subgraphs Set (bsg_set). The bsg_set is created by partitioning the

graph by the OuterIter dimension as illustrated in the top part of Figure 5-2(c). This

partitioning transforms the loops that traverse the edges without changing the graph

data structure. The graph can be partitioned with a grain size on the number of

OuterIter vertices or on the total number of edges per BSG, depending on the schedule.

This dimension controls the different strategies for parallelization optimizations.

The SSG (Segmented Subgraph ID) identifies a Segmented Subgraph (SSG) in the
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< S [PR-tag, (PT-Tag, count)],  B [PR-tag, (PT-Tag, count)],  O [DR-Tag, PR-Tag, FT-Tag],  I [DR-Tag, PR-Tag, FT-Tag] > 

Figure 5-4: Graph Iteration Space Tags: Direction Tags (DR-Tag), Partitioning Tags
(PT-Tag), Parallelization Tags (PR-Tag), and Filtering Tags (FT-Tag) (explained in
Figure 5-1) specify direction and optimization strategy for each dimension, and are
shown in square brackets next to each dimension.

Table 5.1: Mapping between GraphIt’s scheduling language functions to the relevant
dimensions and tags (highlighted in bold) of the graph iteration space.

Apply Scheduling Functions Graph Iteration Space Dimensions and
Tags Configured

program->configApplyDirection
(label, config);

⟨ 𝑆 [tags], 𝐵 [tags], 𝑂 [direction tag, filter-
ing tag], 𝐼 [direction tag, filtering tag] ⟩.
Note, for hybrid directions (e.g. DensePull-
SparsePush), two graph iteration space vectors
are created, one for each direction.

program->configApplyParallelization
(label, config, [grainSize],
[direction]);

⟨ 𝑆 [tags], 𝐵 [partitioning tag, paralleliza-
tion tag], 𝑂 [tags], 𝐼 [tags] ⟩

program->configApplyDenseVertexSet
(label,
config, [vertexset], [direction])

⟨ 𝑆 [tags], 𝐵 [tags], 𝑂 [filtering tag], 𝐼
[filtering tag] ⟩

program->configApplyNumSSG(label,
config,
numSegments, [direction]);

⟨ 𝑆 [partitioning tag], 𝐵 [tags], 𝑂 [tags], 𝐼
[tags] ⟩

program->configApplyNUMA(label,
config,
[direction]);

⟨ 𝑆 [parallelization tag], 𝐵 [tags], 𝑂 [tags],
𝐼 [tags] ⟩

Segmented Subgraphs Set (ssg_set). The ssg_set is created by partitioning the graph

by the InnerIter dimension as demonstrated in the top part of Figure 5-2(c). The

partitioning transforms both the graph data structure and the loops that traverse the

edges. Details of the partitioning scheme are described in Section 3.2.3. This dimension

controls the range of random accesses, enabling cache and NUMA optimizations. The

ordering of the dimensions ensures that the graph is segmented into SSGs before each

SSG is blocked into BSGs.

Graph Iteration Space Tags. Each dimension is annotated with tags to specify

the direction and optimization strategies (Figure 5-1 illustrates the tags in GraphIt).

There are four types of tags: Direction Tags (DR-Tag), Partitioning Tags (PT-Tag),

Parallelization Tags (PR-Tag), and Filtering Tags (FT-Tag). We show tags for each

dimension within square brackets in Figure 5-4. Table 5.1 shows the mapping between
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Table 5.2: The schedules applied for PageRankDelta and the generated graph iteration
space vectors with tags, following the examples in Figure 4-5. Additional scheduling
commands are added from row to row and the affected dimensions and tags in the
graph iteration space are highlighted in bold. ⊥ is an unused dimension. Note that
configApplyNumSSG uses an integer parameter (𝑋) which is dependent on the data
and hardware system.

PageRankDelta Schedules and the corresponding Graph Iteration Space

program->configApplyDirection("s1", "SparsePush");

⟨ ⊥, ⊥, 𝑂 [𝑠𝑟𝑐, Serial, SparseArray], 𝐼 [𝑑𝑠𝑡, Serial] ⟩

program->configApplyDirection("s1","DensePull-SparsePush");

runtime decision between two graph iteration space vectors
⟨ ⊥, ⊥, 𝑂 [𝑑𝑠𝑡, Serial], 𝐼 [𝑠𝑟𝑐, Serial, Dense Bool Array] ⟩ and
⟨ ⊥, ⊥, 𝑂 [𝑠𝑟𝑐, Serial, SparseArray], 𝐼 [𝑑𝑠𝑡, Serial] ⟩

program->configApplyDirection("s1","DensePull-SparsePush");
program->configApplyParallel("s1","dynamic-vertex-parallel");

runtime decision between two graph iteration space vectors
⟨ ⊥, 𝐵 [Work-Stealing Parallel, (Fixed Vertex Count, 1024)], 𝑂 [𝑑𝑠𝑡, Serial], 𝐼 [𝑠𝑟𝑐, Serial,
BA] ⟩ and ⟨ ⊥, 𝐵 [Work-Stealing Parallel, (Fixed Vertex Count, 1024)], 𝑂 [𝑠𝑟𝑐, Serial,
SparseArray], 𝐼 [𝑑𝑠𝑡, Serial] ⟩

program->configApplyDirection("s1","DensePull-SparsePush");
program->configApplyParallel("s1","dynamic-vertex-parallel");
program->configApplyDenseVertexSet("s1","src-vertexset", bitvector","DensePull");

runtime decision between two graph iteration space vectors
⟨ ⊥, 𝐵 [Work-Stealing Parallel, (Fixed Vertex Count, 1024)], 𝑂 [𝑑𝑠𝑡, Serial], 𝐼 [𝑠𝑟𝑐, Serial, BitVec-
tor] ⟩ and
⟨ ⊥, 𝐵 [Work-Stealing Parallel, (Fixed Vertex Count, 1024)], 𝑂 [𝑠𝑟𝑐, Serial, SparseArray], 𝐼 [𝑑𝑠𝑡,
Serial] ⟩

program->configApplyDirection("s1","DensePull-SparsePush");
program->configApplyParallel("s1","dynamic-vertex-parallel");
program->configApplyDenseVertexSet("s1","src-vertexset", "bitvector","DensePull");
program->configApplyNumSSG("s1","fixed-vertex-count",X, "DensePull");

runtime decision between two graph iteration space vectors
⟨ 𝑆 [Serial, (Fixed Vertex Count, num_vert / X)], 𝐵 [Work-Stealing Parallel, (Fixed Vertex
Count, 1024)], 𝑂 [𝑑𝑠𝑡, Serial], 𝐼 [𝑠𝑟𝑐, Serial, BitVector] ⟩ and
⟨ ⊥, 𝐵 [Work-Stealing Parallel, (Fixed Vertex Count, 1024)], 𝑂 [𝑠𝑟𝑐, Serial, SparseArray], 𝐼 [𝑑𝑠𝑡,
Serial] ⟩
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scheduling language commands from Section 4.2 and the corresponding graph iteration

space vector and tags.

Direction Tags specify whether the traversal is in push or pull direction. In the

push direction, the OuterIter is tagged as 𝑠𝑟𝑐 and InnerIter tagged as 𝑑𝑠𝑡; in the

pull direction, the tags are reversed. Partitioning Tags specify the strategy used

for partitioning the SSG or BSG dimensions. For example, the default fixed vertex

count (FVC) partitioning strategy will partition the graph based on a fixed number

of InnerIter or OuterIter vertices as shown in Figure 5-2(c). Depending on the

input, this scheme may lead to an unbalanced number of edges in each SSG or BSG.

Alternatively, the edge-aware vertex count (EVC) scheme partitions each subgraph

with a different number of InnerIter or OuterIter vertices to ensure each subgraph

has a similar number of edges. The EVC tag is used when the users specify the

edge-aware-dynamic-vertex-parallel option with configApplyParalllelization or the

edge-aware-vertex-count option with configApplyNumSSG.

Parallelization Tags control whether to iterate through the dimension using serial

(SR), static-partitioned parallel (SP), or dynamic work-stealing parallel (WSP) ex-

ecution strategies. The PR-Tag for the BSG dimension controls the parallelization

strategy across different BSGs within a SSG. Tagging the SSG dimension as parallel

enables NUMA optimizations by executing multiple SSGs in different sockets in par-

allel. If work-stealing is enabled, threads on one socket can steal unprocessed SSGs

from another socket to improve load balance.

Filtering Tags on the OuterIter and InnerIter dimensions control the underlying

data structure. Filtering is implemented with sparse arrays (SA), dense boolean arrays

(BA), or dense bitvectors (BV). The sparse arrays contain all of the vertices that pass

the filtering, while the dense boolean arrays or the bitvectors set the value to true or

the bit to one for each vertex that passes the filtering.

Graph Iteration Spaces for PageRankDelta. Table 5.2 continues to use PageR-

ankDelta as an example to illustrate how scheduling language commands generate

graph iteration space vectors and tags. The first row shows that the SparsePush sched-

ule maps to a graph iteration space vector with only two dimensions used (⊥ means the
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dimension is unused). The direction tags for the OuterIter and InnerIter dimensions,

𝑠𝑟𝑐 and 𝑑𝑠𝑡, indicate that this graph iteration space is for the push direction. Going

from SparsePush to DensePull-SparsePush creates a new graph iteration space vector

for the pull direction. A runtime threshold on the size of the source vertexset is used

to determine which vector is executed. The configApplyParallelization function

configures the BSG dimension with work-stealing parallelism (WSP) and uses the

default 1024 grainsize. The fourth row demonstrates that configDenseVertexSet sets

the filtering tag for the innerIter dimension to bitvector (BV) in the graph iteration

space vector for the pull direction. Finally, configNumSSG sets up the SSG dimension to

partition the graph for cache locality. In the fixed-vertex-count configuration (FVC),

the InnerIter range for each SSG is computed by dividing the total number of vertices

by the number of SSGs specified with 𝑋.

Generalizing Graph Iteration Spaces. The graph iteration space concept can be

generalized to expand the space of supported optimizations. In GraphIt, we restrict

the graph iteration space to four dimensions with fixed partitioning schemes. Adding

more dimensions and/or removing constraints on how the dimensions are partitioned

can potentially represent additional optimizations. For example, distributed graph

computing can potentially be expressed as another dimension in graph partitioning.

5.1.2 Vertex Data Layout and Program Structure Optimiza-

tions Representation

Since the vertex data are stored as abstract vectors, they can be implemented as an

array of structs or struct of arrays. We use vector tags to tag each vertex data vector

as Array of Structs (AoS) or a separate array in the implicit global struct (SoA). These

tags can be configured with the fuseFields scheduling function. Program structure

optimizations update the structure of the loops and edgeset apply operators. We use

the scoped labels (described in Section 4.2.2), which are specified in the scheduling

language with fuseForLoop and fuseApplyFunctions, to represent the optimizations.

These scheduling representations are used by the compiler to generate appropriate data
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Figure 5-5: Organization of the compiler passes in GraphIt

structure declarations, initializations, and access methods as described in Section 5.2.2.

5.2 Compiler Implementation

Once the scheduling representations, such as the graph iteration space, are constructed,

the compiler must apply program analyses, transformations, and code generation

algorithms to finally produce high-performance implementations. This section describes

the different passes of the GraphIt compiler and the autotuner , which is built on top

of the compiler to automatically discover high-performance schedules.

We first present the high-level overview of the passes in Figure 5-5. The FrontEnd

IR Manipulation pass enables the program structure optimizations (Section 5.2.3). The

Priority Features Lowering pass, along with our optimized runtime library, perform

the optimizations for the ordered graph algorithms, including bucketing (Section 5.2.4

and Section 5.2.5). The Apply Operator Lowering, the Vector Property Analysis,the

Synchronization Lowering, and the Modification Tracking passes set up the code

generation for the graph iteration space (Section 5.2.1). The Physical Data Layout

Lowering pass applies the vertex data layout optimizations (Section 5.2.2). Finally

the compiler generates optimized C++ programs for the operators specified in the

algorithm, such as parallel edge traversal and processing. We also built an optimized

C++ runtime library for low-level operations, such as loading graphs and switching

between different vertexset data layouts.
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# generate edgeset traversal code based on 
# apply_expr: algorithmic operators. such as apply, from, to, src_filter, and dst_filter
# gis_vec_list: graph iteration space vectors generated with the scheduling language
gen-edgeset-apply (List<GraphIterSpaceVector> gis_vec_list, EdgesetApplyExpr apply_expr){
    # two graph iteration space vectors might be supplied
    # one of the two graph iteration space vectors will be selected at runtime
    if (gis_vec_list contains two graph iteration space vectors) {
       # generate a condition to select one of the two graph iteration space vectors
        print “if”; emit-gis-vector-select-condition (gis_vec_list, apply_expr); print “{“;
        gen-SSG (gis_vec_list[0], apply_expr);
        print “ } else { ”;
        gen-SSG (gis_vec_list[1], apply_expr);
        print “}”;
    } else { gen-SSG (gis_vec_list[0], apply_expr); }
}
# generate traversal code for the SSG dimension
gen-SSG (GraphIterSpaceVector gis_vec, EdgesetApplyExpr apply_expr) {
    emit-SSG-traversal-loop (gis_vec, apply_expr); # see subsection SSG Code Generation
    gen-BSG (gis_vec, apply_expr);
    emit-SSG-post-traversal-code (gis_vec, apply_expr);
}
# generate traversal code for the BSG dimension
gen-BSG (GraphIterSpaceVector gis_vec, EdgesetApplyExpr apply_expr) {
    emit-BSG-traversal-loop (gis_vec, apply_expr); # see subsection BSG Code Generation
    gen-OuterIter-InnterIter (gis_vec, apply_expr);
    emit-BSG-post-traversal-code (gis_vec, apply_expr);
}
# generate traversal code for the outerIter and innerIter
gen-OuterIter-InnterIter (GraphIterSpaceVector gis_vec, EdgesetApplyExpr apply_expr) {
    # see subsection OuterIter and InnerIter Code Generation 
    emit-OuterIter-InnerIter-Nested-loops (gis_vec, apply_expr);
}

Figure 5-6: Code generation algorithm for the graph iteration space.

5.2.1 Code Generation for Graph Iteration Space

We first show the high-level code generation algorithm for the graph iteration space

in Figure 5-6. To deal with hybrid traversal modes that have two graph itera-

tion space vectors, such as DensePull-SparsePush, gen-edgeset-apply generates two

implementations of edge traversal logic with additional logic to choose an implemen-

tation based on the sum of the out-degrees of active vertices (the "if", "else", and

emit-gis-vector-select-condition shown in Figure 5-6) as described in Section 3.1.

The functions gen-SSG, gen-BSG, and gen-OuterIter-InnerIter generate nested traver-

sal loops for the different graph iteration space dimensions. Below, we provide more

details on the code generation functions and the mechanisms to ensure the validity of
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1 #s1# edges.from(Frontier).dstFilter(dstFunc).apply(applyFunc)
2 schedule:
3 program->configApplyDirection("s1","SparsePush");

Figure 5-7: SparsePush configuration.

1 for (int i = 0; i < Frontier.size(); i++){
2 NodeID src = Frontier.vert_array[i];
3 for (NodeID dst : G.getOutNghs(src)){
4 if (dstFunc(dst)){
5 applyFunc(src, dst); }}}

Figure 5-8: Generated SparsePush code.

the optimizations.

OuterIter and InnerIter Code Generation. We demonstrate how to generate

traversal code for the OuterIter and InnerIter dimensions using a simple example with

the SparsePush configuration shown in Fig. 5-7 (graph iteration space and tags: ⟨ ⊥,

⊥, 𝑂 [𝑠𝑟𝑐, SR, SA], 𝐼 [𝑑𝑠𝑡, SR, BA] ⟩; abbreviations and sets are defined in Fig. 5-3

and Fig. 5-1).

For the push direction, OuterIter is 𝑠𝑟𝑐 and InnerIter is 𝑑𝑠𝑡. Since the source

(OuterIter) filtering is tagged as Sparse Array (SA), the outer loop iterates over the

source vertexset (Frontier). The dst (InnerIter) filtering uses the user-defined boolean

function dstFunc. The generated code is displayed in Fig. 5-8.

We show code generated for a DensePull traversal mode (⟨ ⊥, ⊥, 𝑂 [𝑑𝑠𝑡, SR, BA],

𝐼 [src, SR, BA] ⟩ ) in Fig. 5-9. The OuterIter is now 𝑑𝑠𝑡 and the InnerIter is 𝑠𝑟𝑐. The

user-defined function applyFunc is applied to every edge as before. The vertexsets are

automatically converted from the sparse array of vertices (vert_array shown in the

SparsePush example above) to a boolean map (bool_map in the DensePull example).

Filtering on destination vertices (dstFilter) is attached as an if statement next to

the 𝑑𝑠𝑡 iterator (OuterIter).

Blocked Subgraph (BSG) Code Generation. The BSG dimension in the graph

1 for (NodeID dst = 0; dst < num_verts; dst++){
2 if (dstFunc){
3 for (NodeID src : G.getInNghs(dst)){
4 if (Frontier.bool_map(src)){
5 applyFunc(src, dst); }}}}

Figure 5-9: Generated DensePull code.
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1 parallel_for (int BSG_ID = 0; BSG_ID < g.num_chunks; BSG_ID++){
2 for (NodeID src = g.chunk_start[BSG_ID]; src < g.chunk_end[BSG_ID]; src++)
3 for (NodeID dst : G.getOutNghs(src))
4 applyFunc(src,dst);}

Figure 5-10: Generated blocked subgraph (BSG) code.

1 for (int SSG_ID = 0; SSG_ID < num_SSG; SSG_ID++){
2 sg = g.SSG_list[SSG_ID];
3 for (int BSG_ID = 0; BSG_ID < sg.num_chunks; BSG_ID++){
4 for (NodeID dst = sg.chunk_start[BSG_ID]; dst < sg.chunk_end[BSG_ID]; dst++)
5 for (NodeID src : G.getInNghs(dst))
6 applyFunc(src,dst);}}

Figure 5-11: Generated segmented subgraph (SSG) and blocked subgraph (BSG) code.

iteration space is created by partitioning the OuterIter dimension. GraphIt uses the

partitioning tag for this dimension to control the granularity and blocking strategy

for load balancing, and the parallelization tag to control the mode of parallelization.

Figure 5-10 shows an example of the generated code, assuming OuterIter represents

𝑠𝑟𝑐.

If the edge-aware vertex count (EVC) partitioning tag is used, the compiler

generates chunks with approximately the number of edges specified by the schedule. For

the fixed vertex count (FVC) partitioning tag, the compiler uses the built-in grain size

in OpenMP. For parallelization tags static parallelism (SP) and dynamic work-stealing

parallelism (WSP), we simply use the OpenMP pragmas to implement parallel_for

(pragma omp for parallel schedule (static) and schedule (dynamic)).

Segmented Subgraph (SSG) Code Generation. Using the SSG dimension

requires adding a loop outside of the existing traversals and changing the data layout

of the graph. GraphIt generates code in the main function to create the SSGs by

partitioning the graph by InnerIter. This partitioning can use a fixed range of vertices

(FVC) in the InnerIter or a flexible range of vertices that takes into account the number

of edges in each SSG (EVC) with an edge grain size. The random memory access

range in each SSG is restricted to improve locality. Fig. 5-11 shows edge traversal

code that uses both SSG and BSG dimensions (⟨ 𝑆 [SR], 𝐵 [SR], 𝑂 [𝑑𝑠𝑡, SR], 𝐼 [𝑠𝑟𝑐,

SR] ⟩). The segmented subgraphs are stored in g.SSG_list.

The cache optimization processes one SSG at a time (SR), but processes the BSGs
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within the SSG in parallel. The programmer can enable NUMA optimizations by

specifying the parallelization tag for SSG as static parallel (SP); the compiler then

assigns different SSGs to be executed on different sockets. GraphIt implements this

assignment using numa_alloc in the main function to first allocate SSGs on different

sockets, and then uses the proc_bind API in OpenMP to assign threads to process

each socket-local subgraph. If work-stealing parallelism (WSP) is enabled for SSGs,

then a socket can steal an SSG allocated on another socket if no work remains on the

current socket.

To apply NUMA optimizations, we use NUMA-local (socket-local) buffers to store

the intermediate results from each SSG. The compiler generates code for allocating

NUMA-local buffers and changes the data references from updating global vertex data

vectors to the NUMA-local buffers. The compiler also generates code for a merge

phase that merges NUMA-local buffers to update the global data vectors.

Validity of Optimizations. GraphIt ensures the validity of single edge traversal

optimizations by imposing a set of restrictions on the GraphIt language and using

dependence analysis to insert appropriate atomic synchronization instructions.

We enforce some restrictions on read-write accesses and reduction operators for

vertex data vectors across UDFs used in srcFilter, dstFilter, and edgeset apply

functions for a given edgeset traversal operation. Each vertex data vector must have

only one of the following properties: read-only, write-only, or reduction. Additionally,

reductions are commutative and associative. With these two restrictions, transfor-

mations do not need to preserve read-after-write dependences, and transformations

remain valid independent of edge traversal order. Therefore, a transformed program

is valid as long as each filtered edge is processed exactly once.

To ensure that each filtered edge is processed exactly once, we insert synchronization

code to vertex data vector updates by leveraging dependence analysis theory from dense

loop iteration spaces [65, 60]. Dependence analysis is well-suited for GraphIt because

the language prevents aliasing and each vertex data vector represents a separate data

structure. Additionally, the goal of the analysis is not to automatically parallelize the

loop with a correctness guarantee, but the much easier task of determining whether
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1 for (int i = 0; i < Frontier.size(); i++){
2 NodeID src = Frontier.vert_array[i];
3 for (NodeID dst : G.getOutNghs(src)){
4 DeltaSum[dst] += Delta[src]/OutDegree[src];
5 }}}

Figure 5-12: PageRankDelta edge traversal code with SparsePush

Table 5.3: Dependence vectors for PageRankDelta edge traversal code with SparsePush

Vector Dependence Distance Vector Read-Write
DeltaSum ⟨*, 0⟩ reduction
Delta ⟨0, 0⟩ read-only
OutDegree ⟨0, 0⟩ read-only

synchronization code is necessary for a given parallelization scheme. Accomplishing

this task does not require a precise distance vector.

Figure 5-12 shows a code snippet of PageRankDelta with the SparsePush configu-

ration ( ⟨ ⊥, ⊥, 𝑂 [𝑠𝑟𝑐, SR, SA], 𝐼 [𝑑𝑠𝑡, SR] ⟩), the distance vector, and read-write

properties of the vectors. The compiler builds a dependence vector for the OuterIter

and InnerIter dimensions based as listed in Table 5.3 for the push direction. We

observe that DeltaSum has a dependence with the reduction operator (it is both

read from and written to). Different source nodes can update the same 𝑑𝑠𝑡, and so

we assign * to the first element of the distance vector to denote that a dependence

exists on an unknown iteration of 𝑠𝑟𝑐, which maps to OuterIter based on the direction

tags. Given a 𝑠𝑟𝑐, we know that the 𝑑𝑠𝑡’s are all different, and thus, there is no data

dependence on the second iterator and we assign the second value of the distance

vector as 0. Since Delta and OutDegree are both read-only, they have the distance

vector ⟨0, 0⟩ with no dependence across different iterations. Given that DeltaSum’s

distance vector’s first element is *, the compiler knows that synchronization must be

provided when parallelizing the OuterIter (outer loop). If only the InnerIter (inner

loop) is parallelized, then no synchronization is needed.

A similar analysis works on a DensePull (⟨ ⊥, ⊥, 𝑂 [𝑑𝑠𝑡, SR, BA], 𝐼 [𝑠𝑟𝑐, SR]

⟩) PageRankDelta. The code snippet and distance vectors are shown in Figure 5-13

and Table 5.4. The first element in the distance vector for DeltaSum is 0 because

there is no dependence between different destination vertices and OuterIter represents

𝑑𝑠𝑡. However, the value is * on the second element because different sources will
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1 for (NodeID dst = 0; dst < num_verts; dst++) {
2 for (NodeID src : G.getInNghs(dst)){
3 if (Frontier.bool_map(src))
4 DeltaSum[dst] += Delta[src]/OutDegree[src];
5 }}}

Figure 5-13: PageRankDelta edge traversal code with DensePull

Table 5.4: Dependence vectors for PageRankDelta edge traversal code with DensePull

Vector Dependence Distance Vector Read-Write
DeltaSum ⟨0, *⟩ reduction
Delta ⟨0, 0⟩ read-only
OutDegree ⟨0, 0⟩ read-only

update the same destination. Parallelizing OuterIter in this case does not require any

synchronization in this case.

Because BSG is partitioned by OuterIter, parallelizing the BSG dimension would

have the same effect as parallelizing OuterIter. Similarly, parallelizing SSG has the

same effect as parallelizing InnerIter given that SSG is partitioned by InnerIter.

When applying NUMA optimizations to the second code snippet with the DensePull

direction (parallelizing both the SSG and BSG dimensions), we have a dependence

vector of ⟨*, *⟩ for DeltaSum. In this case, GraphIt writes the updates to DeltaSum[𝑑𝑠𝑡]

to a socket-local buffer first and later merges buffers from all sockets to provide

synchronization.

For the hybrid traversal configurations, GraphIt generates two versions of the

user-defined apply function because the synchronization requirements for the push and

pull directions are different. Each version will be used in the corresponding traversal

mode.

1 func vertexset_apply_f(v:Vertex)
2 parent[v] = -1;
3 end
4 func main()
5 vertices.apply(vertexset_apply_f);
6 end

Figure 5-14: Vertexset apply code.
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1 for (NodeID v = 0; v < num_verts; v++) {
2 fused_struct[v].parent = -1;
3 }

Figure 5-15: Generated parent initialization code with array of structs

5.2.2 Code Generation for Vertex Data Layout Optimizations

To generate code with different physical data layouts for the vertex data (array of structs

or struct of arrays), GraphIt generates declaration and initialization code in the main

function and updates references to vertex data in the other functions. The compiler

first transforms assignments on vertex data vectors into vertexset apply operations that

set the values of the data vectors. If the programmer specifies the fuseField command,

GraphIt generates a new struct type, an array of structs declaration, and changes the

references to the vertex data vectors in the functions to access fields of the struct instead

of separate arrays. For example, the assignment statement for the parent vector parent

: vector {Vertex}(int) = -1; is implemented by first declaring an apply function

vertexset_apply_f and another vertices.apply statement in the main function that

uses vertexset_apply_f as shown in Fig. 5-14. The vector access expression in the

apply function will then be lowered from parent[v] to fused_struct[v].parent, as

indicated in Figure 5-15. The correctness of the program is not affected by the vertex

data layout optimization because it does not affect the execution ordering of the

program.

5.2.3 Code Generation for Program Structure Optimizations

Traditional compilers with a fixed number and order of optimization passes are

ill-suited for program structure optimizations, such as kernel fusion. The GraphIt

compiler introduces a new schedule-driven optimization pass orchestration design

that allows users to add more optimization passes and dictate the order of the added

optimizations with the label-based scheduling language described in Section 4.2. Users

can perform fine-grained loop fusion, loop splitting, and fusion of apply functions on

loops and functions specified with statement labels and scheduling commands. These

optimizations are implemented as passes that manipulate the frontend intermediate
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representation, shown as the FrontEnd IR Manipulation pass in Figure 5-5. GraphIt

implements these program structure transformation schedules by adding new opti-

mization passes, which transform the intermediate representation. These extra passes

are added dynamically with the scheduling commands specified by the user.

5.2.4 Lazy Bucket Update Optimization

Next, we demonstrate how the compiler generates code for different bucketing op-

timizations, including lazy and eager bucket update strategies. As discussed in

Section 3.4, the lazy approach buffers and reduces bucket updates to the same vertex

at each round before making the one final actual bucket update, whereas the eager

approach immediately updates the bucket every time. The key challenges are in

how to insert low-level synchronization and deduplication instructions, and how to

combine bucket optimizations with direction optimization and other optimizations in

the original GraphIt scheduling language. Furthermore, the compiler has to perform

global program transformations and code generation to switch between lazy and eager

approaches.

To support the lazy bucket update approach, the compiler applies program analyses

and transformations on the user-defined functions (UDFs). The compiler uses depen-

dence analysis on updatePriorityMin and updatePrioritySum to determine whether

write-write conflicts exist and insert atomics instructions as necessary (Figure 4-10(a)

Line 20). Additionally, the compiler must insert variables to track whether a vertex’s

priority has been updated or not (tracking_var in Figure 4-10(a), Line 18). This

variable is used in the generated code to determine which vertices should be added

to the buffer outEdges (Figure 4-10(a), Line 21). Deduplication is enabled with a

compare-and-swap (CAS) on deduplication flags (Figure 4-10(a), Line 21) to ensure

that each vertex is inserted into the outEdges only once. Deduplication is required

for correctness for applications such as 𝑘-core. In this case, the user specifies that

deduplication is required in the algorithm specification for 𝑘-core to ensure no schedule

generates incorrect code. Changing the schedules with different traversal directions

or frontier layouts affects the code generation for edge traversal and UDFs (Figure 4-
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1 func apply_f(src: Vertex, dst: Vertex)
2 var k: int = pq.get_current_priority();
3 pq.updatePrioritySum(dst, -1, k);
4 end

1 apply_f_transformed = [&] (uint vertex, uint count) {
2 int k = pq->get_current_priority();
3 int priority = pq->priority_vector[vertex];
4 if (priority > k) {
5 uint __new_pri = std::max(priority + (-1) * count, k);
6 pq->priority_vector[vertex] = __new_pri;
7 return wrap(vertex, pq->get_bucket(__new_pri));}}

Figure 5-16: The original (top) and transformed (bottom) user-defined function for
𝑘-core using lazy bucket with constant sum reduction.

10(b)). In the DensePull traversal direction, no atomics are needed for the destination

nodes.

We built runtime libraries to manage the buffer and update buckets. The com-

piler generates appropriate calls to the library (getNextBucket, setupFrontier, and

updateBuckets). The setupFrontier API (Figure 4-10(a), Line 24) performs a prefix

sum on the outEdges buffer to compute the next frontier. We use a lazy priority queue

(declared in Figure 4-10(a), Line 2) for storing active vertices based on their priorities.

The lazy bucketing is based on Julienne’s bucket data structures that only materialize

a few buckets, and keep vertices outside of the current range in an overflow bucket [32].

We improve its performance by redesigning the lazy priority queue interface. Julienne’s

original interface invokes a lambda function call to compute the priority. The new

priority-based extension computes the priorities using a priority vector and Δ value

for priority coarsening, eliminating extra function calls for computing the coarsened

priorities.

Lazy bucket with constant sum reduction. We also incorporated a specialized

histogram-based reduction optimization (first proposed in Julienne [32]) to reduce

priority updates with a constant value each time. This optimization can be combined

with the lazy bucket update strategy to improve performance. For 𝑘-core, because

the priorities for each vertex always reduce by one at each update, we can optimize it

further by keeping track of only the number of updates with a histogram. This way,

we avoid contention on vertices that have a large number of neighbors on the frontier.

To generate code for the histogram optimization, the compiler first analyzes the
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UDF to determine whether the change to the priority of the vertex is a fixed value and

if it is a sum reduction (Figure 5-16 (top), Line 3). The compiler ensures that there is

only one priority update operator in the UDF. It then extracts the fixed value (-1),

the minimum priority (k), and vertex identifier (dst). In the transformed function

(Figure 5-16 (bottom)), an if statement and max operator are generated to check and

maintain the priority of the vertex. The applyUpdatePriority operator obtains the

counts of updates to each vertex using a histogram approach and supplies the vertex

and count as arguments to the transformed function (Figure 5-16 (bottom), Line 1).

The compiler copies all of the expressions used in the priority update operator and

the expressions that they depend on in the transformed function.

5.2.5 Eager Bucket Update Optimization

The eager bucket update approach immediately applies every update to the bucket

when the priorities of the vertices are changed. The compiler uses program analysis to

determine feasibility of the transformation, transforms UDFs and edge traversal code,

and uses optimized runtime libraries to generate efficient code for the eager bucket

update approach.

The compiler analyzes the while loop (Figure 4-2, Lines 17–21) to look for the

pattern of an iterative priority update with a termination criterion. The analysis

checks that there is no other use of the generated vertexset (bucket) except for the

applyUpdatePriority operator, ensuring correctness.

Once the analysis identifies the while loop and edge traversal operator, the compiler

replaces the while loop with an ordered processing operator. The ordered processing

operator uses an OpenMP parallel region (Figure 4-10(c), Lines 12–32) to set up

thread-local data structures, such as local_bins. We built an optimized runtime

library for the ordered processing operator based on the Δ-stepping implementation

in GAPBS [14]. A global vertex frontier (Figure 4-10(c), Line 11) keeps track of

vertices of the next priority (the next bucket). In each iteration of the while loop, the

#pragma omp for (Figure 4-10(c), Lines 15–16) distributes work among the threads.

After priorities and buckets are updated, each local thread proposes its next bucket

89



priority, and the smallest priority across threads will be selected (omitted code on

Figure 4-10(c), Line 28). Once the next bucket priority is determined, each thread

copies vertices in its next local bucket to the global frontier (Figure 4-10(c), Line 30)

Finally, the compiler transforms the UDFs by appending the local buckets to the

argument list and inserting synchronization instructions. These transformations allow

priority update operators to directly update thread-local buckets (Figure 4-10(c),

Lines 23–26).

5.2.6 Eager Bucket Fusion Optimization

In this section, we describe the design and implementation of the new bucket fusion

optimization for the eager bucket update approach first introduced in Section 3.4.3

and shown in Algorithm 3-8. The optimization is very effective (achieving more than

three times speedup over state-of-the-art implementations) on the road networks for

ordered graph algorithms, such as Single Source Shortest Paths (SSSP) with delta

stepping as shown in Section 6.3.5. This optimization has since been integrated into

the popular GAP benchmark suite [14].

The bucket fusion optimization adds another while loop after the end of the for-loop

on Line 27 of Figure 4-10(c), and before finding the next bucket across threads on

Line 28. This inner while loop processes the current bucket in the local priority queue

(local_bins) if it is not empty and its size is less than a threshold. In the inner while

loop, vertices are processed using the same transformed UDFs as before to process

the local bucket. This simple optimization can significantly reduce the number of

rounds, thus reducing barrier synchronizations at the end of each round. Another

benefit of this approach is also that the local buckets likely to be in the cache and the

same NUMA node. Thus, this optimization improves the load balance and locality by

enforcing that the threads to process the thread-local bucket of the next priority first

when it is available.

The optimization can potentially result in significant load imbalance issues if the

thread-local bucket of the next priority is too large, creating stragglers. To address this

issue, we introduced a threshold on the size of the thread-local bucket to be processed
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as shown in Algorithm 3-8 Line 18. The size threshold improves load balancing, as

only small local buckets are processed by the current thread. Large buckets are still

distributed across different threads to reduce the load on the current thread. We

found the threshold of 1000 to be fairly robust, and it can be used for all kinds of

different algorithms, graphs, and multi-core CPUs.

5.2.7 Autotuning GraphIt Schedules

Finding the right set of schedules can be challenging for non-experts. GraphIt can

have up to 105 valid schedules with each run taking more than 30 seconds for our

set of applications and input graphs. Exhaustive searches would require weeks of

time. As a result, we use OpenTuner [8] to build an autotuner on top of GraphIt that

leverages stochastic search techniques (e.g., AUC bandit, greedy mutation, differential

mutation, and hill climbing).

Search space. We limit the tuning to a single edgeset apply operation identified

by the user. The user does not need to supply any template for the schedules. The

autotuner will try different configurations, such as the direction of the traversal

(configApplyDirection), the parallelization scheme (configApplyParallelization),

the data layout for the dense vertexset (configApplyDenseVertexSet), the parti-

tioning strategy of the graph (configApplyNumSSG), the NUMA execution policy

(configApplyNUMA), and the priority update strategies(configApplyPriorityUpdate).

Not all generated schedules are valid because schedules have dependencies among

them. For example, configApplyNumSSG, which takes a direction parameter, is only

valid if the direction specified is also set by configApplyDirection. Instead of reporting

an invalid schedule as error, GraphIt’s autotuner ignores invalid schedules to smooth

the search space. For example, the configApplyNumSSG configuration is ignored if the

specified direction is invalid.
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5.3 Chapter Summary

In this chapter, we first described the graph iteration space scheduling representation

used by the compiler. We then demonstrated how GraphIt leverages various program

analyses, transformations, and code generation algorithms to generate efficient code.

Finally, we provided more details on the implementation of the optimized bucketing

data structures and the autotuner built on top of GraphIt. In Chapter 6 we will

evaluate the performance of the generated implementations and demonstrate that

the generated code can match or exceed the performance of state-of-the-art graph

processing frameworks on CPUs across different algorithms and graphs.
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Chapter 6

Evaluation

In this chapter, we demonstrate the performance of GraphIt on both unordered and

ordered graph algorithms. We compare the performance of GraphIt with state-of-the-

art graph processing frameworks and analyze the tradeoff of various optimizations

(schedules). We demonstrate the performance effects of the novel optimizations intro-

duced in this thesis, including the program structure optimization, cache optimization,

and bucket fusion optimization.

6.1 Experimental Setup

We use a dual socket system with Intel Xeon E5-2695 v3 CPUs with 12 cores each

for a total of 24 cores and 48 hyper-threads. The system has 128GB of DDR3-1600

memory and 30 MB last level cache on each socket, and runs with Transparent Huge

Pages (THP) enabled.

Datasets. Table 6.1 lists our input datasets and their sizes. LiveJournal, Twitter, and

Friendster are three social network graphs. Friendster is special because its number

of edges does not fit into a 32-bit signed integer. We use WebGraph from the 2012

common crawl. The Netflix rating dataset and its synthesized expansion (Netflix2x)

are used to evaluate Collaborative Filtering. For 𝑘-core and SetCover, we symmetrize

the input graphs. For Δ-stepping based SSSP, wBFS, PPSP using Δ-stepping, and A*

search, we use the original directed versions of the graphs with integer edge weights.
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Table 6.1: Graphs used for experiments. The number of edges are directed edges.
Graphs are symmetrized for 𝑘-core and SetCover.

Type Dataset Num. Verts Num. Edges Symmetric Num.Edges
Social Orkut (OK) [109] 3 M 234 M 234 M
Graphs LiveJournal (LJ) [29] 5 M 69 M 85 M

Twitter (TW) [55] 41 M 1469 M 2405 M
Friendster (FT) [109] 125 M 3612 M 3612 M

Web Graph WebGraph (WB) [69] 101 M 2043 M 3880 M
Road Massachusetts (MA) [1] 0.45 M 1.2 M 1.2 M
Graphs Germany (GE) [1] 12 M 32 M 32 M

RoadUSA (RD) [30] 24 M 58 M 58 M
User-Item Bipartite Graph Netflix (NX) [17] 0.5 M 198 M

Netflix2x (NX2) [58] 1 M 792 M

The RoadUSA (RD), Germany(GE) and Massachusetts (MA) road graphs are used

for the A* search algorithm, as they have the longitude and latitude data for each

vertex. GE and MA are constructed from data downloaded from OpenStreetMap [1].

We used different weights for the same graphs in different parts of the evaluation.

The specific weight distributions used for experiments are described in the caption of

Table 6.2 for the unordered graph algorithms and in Table 6.6 for the ordered graph

algorithms.

6.2 Unordered Graph Algorithms

In this section, we compare GraphIt’s performance to state-of-the-art frameworks and

DSLs on graphs of various sizes and structures. We also analyze performance tradeoffs

among different GraphIt schedules.

6.2.1 Algorithms

We try to use the same algorithms across different frameworks to study the impact

of performance optimizations. Our evaluation is performend on the seven algorithms

listed below. All the GraphIt implementations are available in the repository.1

PageRank (PR). We use an iterative sparse matrix dense vector (SpMV) multipli-

cations algorithm with synchronous updates and double buffering. For this section,

1The GraphIt compiler is available under the MIT license at http://graphit-lang.org/
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we have each framework execute 20 iterations and record the average execution time

for each round.

Breadth-First Search (BFS). We use a direction optimized algorithm that com-

putes the parent of each node. The direction optimization can be configured through

the scheduling language.

Connected Components (CC). We use a synchronous label propagation based im-

plementation. This implementation is less efficient than the sampling-based afforested

algorithms [96] proposed recently.

Single Source Shortest Paths (SSSP). We use a frontier-based Bellman-Ford

algorithm that relies on label propagation. In Section 6.3, we use a more efficient

delta-stepping based implementation.

Collaborative Filtering (CF). We use a gradient-descent based implementation

that minimizes the errors across all the nodes similar to GraphMat’s implementa-

tion [95].

Betweenness Centrality (BC). We use a direction-optimized Brandes algorithm [22]

similar to Ligra’s implementation [91]. The algorithm computes the betweenness cen-

trality values of each node from a single starting point.

PageRankDelta (PRDelta). We use a direction-optimized algorithm that only

propagates changes in the rank values at each round, similar to Ligra’s implementa-

tion [91]. The algorithm iterates until the changes in the rank values are lower than

the specified threshold.

6.2.2 Existing Frameworks

We compare GraphIt’s performance to six state-of-the-art in-memory graph processing

systems: Ligra [91], GraphMat [95], Green-Marl [46], Galois [74], Gemini [118], and

Grazelle [39]. Ligra has fast implementations of BFS and SSSP [91]. Among prior

work, GraphMat has the fastest shared-memory implementation of collaborative

filtering [95]. Green-Marl is one of the fastest DSLs for the algorithms we evaluate [46].

Galois (v2.2.1) has an efficient asynchronous engine that works well on road graphs
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[74]. Gemini is a distributed graph processing system with notable shared-machine

performance [118]. Compared to existing frameworks, Grazelle has the fastest PR and

CC using edge list vectorization, inner loop parallelism, and NUMA optimizations [39].

We tried to use the same algorithms across the different graph processing frame-

works. For Galois, we used the asynchronous algorithm for BFS and the label

propagation algorithm for SSSP. Ligra and Grazelle use the same level-synchronous

algorithms as GraphIt. Only Ligra implements PRDelta, Ligra and GraphMat imple-

ment CF, and Grazelle does not implement SSSP. Green-Marl and GraphMat crashed

when we attempt to process the Friendster graph.

6.2.3 Comparisons with State-of-the-Art Frameworks

Our experiments reveal that GraphIt outperforms the next fastest of the shared-

memory frameworks on 24 out of 32 experiments by up to 4.8×, and is never more

than 43% slower than the fastest framework on the other experiments. For each

framework and DSL, we present a heat map of slowdowns compared to the fastest

of all seven frameworks and DSLs in Figure 6-1. GraphIt introduces the new cache

segmenting optimization described in Section 3.2.3. The DSL achieves competitive

or better performance compared to other frameworks also by generating efficient

implementations of known combinations of optimizations, and finding previously

unexplored combinations by searching through a much larger space of optimizations.

GraphIt also reduces the lines of code compared to the next fastest framework by up

to one order of magnitude.

Table 6.2 shows the execution time of GraphIt and other systems. The best

performing schedules for GraphIt are shown in Table 6.3. Table 6.4 shows the line

counts of four graph algorithms for each framework. GraphIt often uses significantly

fewer lines of code compared to the other frameworks. Unlike GraphIt, other frame-

works with direction optimizations require programmers to provide many low-level

implementation details as discussed in Section 4.1.

GraphIt outperforms the next fastest of the six state-of-the-art shared-memory

frameworks on 24 out of 32 experiments by up to 4.8×, and is never more than 43%
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PR BFS CC SSSP
Ligra

LJ
TW

W
B

R
D

FT

3.48 1 1 1
5.63 1.13 3.12 1.14
4.15 1.42 2.96 1.13
2.69 4.81 2.16 4.57
6.17 1.38 4.94 2.77

PR BFS CC SSSP
GraphMat

LJ
TW

W
B

R
D

FT

1.64 3.7 5.98 1.86
2.34 9.4 11 1.62
2.14 7.44 9.13 2.98
1.61 9.06 7.04 151

PR BFS CC SSSP
GreenMarl

LJ
TW

W
B

R
D

FT

1.51 1.83 3.06 1.82
2.42 6.03 5.78 1.41
2.59 2.84 5.96 2.54
1.26 2.45 8.99 328

PR BFS CC SSSP
Galois

LJ
TW

W
B

R
D

FT

8.15 1.41 2.05 1.78
3.53 4.49 5.68 1.43
2.82 1.83 8.07 1.36
13 1.02 1.05 3.25
3.61 7.02 7.05 1.08

PR BFS CC SSSP
Gemini

LJ
TW

W
B

R
D

FT

1.26 2.22 2.46 1.57
1.26 1.64 4.33 1
1 1.52 4.93 1.67

1.49 48.8 7.08 26.1
1.37 1.49 5.24 1.43

PR BFS CC SSSP
Grazelle

LJ
TW

W
B

R
D

FT

1.08 1.93 1.38
1.8 1.17 1.94
1.26 1.28 1.64
1 8.26 1

1.67 1.04 2.24

PR BFS CC SSSP
GraphIt

LJ
TW

W
B

R
D

FT

1 1.3 1.11 1.07
1 1 1 1
1 1 1 1

1.23 1 1.43 1
1 1 1 1

Figure 6-1: A heat map of slowdowns of various frameworks compared to the fastest
of all frameworks for PageRank (PR), Breadth-First Search (BFS), Connected Com-
ponents (CC) using label propagation, and Single Source Shortest Paths (SSSP) using
Bellman-Ford, on five graphs with varying sizes and structures (LiveJournal (LJ),
Twitter (TW), WebGraph (WB), USAroad (RD), and Friendster (FT)). Lower num-
bers (green) are better, with one being the fastest for the specific algorithm running on
the specific graph. Gray indicates that either an algorithm or a graph is not supported
by the framework. We try to use the same algorithms across different frameworks.
For Galois, we used the asynchronous algorithm for BFS, and the Ligra algorithm for
SSSP.

slower than the fastest framework on the other experiments.

PageRank (PR). GraphIt has the fastest PR on 4 out of the 5 graphs and is

up to 54% faster than the next fastest framework because it enables both cache

and NUMA optimizations when necessary as described in Section 3.2.3. Table 6.5

shows that on the Twitter graph, GraphIt has the lowest LLC misses, QPI traffic,

and cycles stalled compared to Gemini and Grazelle, which are the second and

third fastest. GraphIt also reduces the line count by up to an order of magnitude

compared to Grazelle and Gemini as shown in Table 6.4. Grazelle uses the Vector-

Sparse edge list to improve vectorization, which works well on graphs with low-degree

vertices [39], outperforming GraphIt by 23% on USAroad. GraphIt does not yet have

this optimization. Frameworks other than Gemini and Grazelle do not optimize for

cache or NUMA, resulting in much worse running times.

Breadth-First Search (BFS). GraphIt has the fastest BFS on 4 out of the 5 graphs
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Table 6.2: Running time (seconds) of GraphIt and state-of-the-art frameworks. The
fastest results are bolded. The missing numbers correspond to a framework not
supporting an algorithm and/or not successfully running on an input graph. Galois’
Betweenness Centrality (BC) uses an asynchronous algorithm, while other frameworks
use a synchronous one. We ran PageRank (PR) for 20 iterations, PageRankDelta
(PRDelta) for 10 iterations, and Collaborative Filtering (CF) for 10 iterations. Breadth-
First Search (BFS), Single Source Shortest Paths (SSSP), and Betweenness Centrality
(BC) times are averaged over 10 starting points. The weights are all set to 1 for this
table.

Algorithm PR BFS CC CF
Graph LJ TW WB RD FT LJ TW WB RD FT LJ TW WB RD FT NX NX2
GraphIt 0.34 8.7116.34 0.91 32.58 0.040.300.645 0.22 0.49 0.070.891.960 17.10 2.631.29 4.59
Ligra 1.1949.00 68.10 1.99201.000.027 0.34 0.92 1.04 0.680.06 2.78 5.81 25.9013.00 5.3525.50
GraphMat 0.5620.40 35.00 1.19 0.10 2.80 4.80 1.96 0.37 9.80 17.90 84.50 5.0121.60
Green-Marl 0.5221.04 42.48 0.93 0.05 1.80 1.83 0.53 0.19 5.14 11.68107.93
Galois 2.7930.75 46.27 9.61117.47 0.04 1.34 1.18 0.22 3.44 0.13 5.06 15.82 12.6618.54
Gemini 0.4310.98 16.44 1.10 44.60 0.06 0.49 0.9810.55 0.73 0.15 3.85 9.66 85.0013.77
Grazelle 0.3715.70 20.650.740 54.36 0.05 0.35 0.83 1.79 0.51 0.08 1.73 3.21 12.20 5.88

Algorithm SSSP PRDelta BC
Graph LJ TW WB RD FT LJ TW WB RD FT LJ TW WB RD FT
GraphIt 0.06 1.35 1.680.290 4.30 0.184.72 7.14 0.5012.58 0.10 1.55 2.50 0.650 3.75
Ligra 0.05 1.55 1.90 1.30 11.93 0.24 9.19 19.30 0.69 40.80 0.09 1.93 3.62 2.53 6.16
GraphMat 0.10 2.20 5.00 43.00
Green-Marl 0.09 1.92 4.27 93.50 0.08 3.60 6.40 29.05
Galois 0.09 1.94 2.29 0.93 4.64 0.24 3.40 4.29 0.81 9.90
Gemini 0.08 1.36 2.80 7.42 6.15 0.151.36 2.30 31.06 3.85

(up to 28% faster than the next fastest) because of its ability to generate code with

different direction and bitvector optimizations. On LiveJournal, Twitter, WebGraph,

and Friendster, GraphIt adopts Ligra’s direction optimization. On USAroad, GraphIt

always uses SparsePush and omits the check for when to switch traversal direction,

reducing runtime overhead. In the pull direction traversals, GraphIt uses bitvectors to

represent the frontiers when boolean array representations do not fit in the last level

cache, whereas Ligra always uses boolean arrays and Grazelle always uses bitvectors.

GraphIt outperforms Galois’ BFS, even though Galois is highly-optimized for road

graphs. GraphMat and Green-Marl do not have the direction optimization so it is

much slower. Ligra is slightly faster than GraphIt on the smaller LiveJournal graph

due to better memory utilization, but is slower on larger graphs.

Connected Components with Label Propagation (CC). GraphIt has the fastest

CC on Twitter, WebGraph, and Friendster because of the direction, bitvector, and

cache optimizations. Table 6.5 shows GraphIt’s reduced LLC miss rate and cycles
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Table 6.3: Schedules that GraphIt uses for all applications on different graphs. The
schedules assume that the edgeset apply operator is labeled with s1. The keyword
’Program’ and the continuation symbol ’->’ are omitted. ’ca’ is the abbreviation for
’configApply’. Note that configApplyNumSSG uses an integer parameter (𝑋) which
is dependent on the graph size and the cache size of a system. BC has two edgeset
apply operators, denoted with s1 and s2.

Apps USAroad LiveJournal Twitter WebGraph Friendster
PR caDirection(“s1”, ”DensePull")  

caParallelization(“s1”, ”dynamic-vertex-parallel”)
caDirection(“s1”, ”DensePull")  
caParallelization(“s1”, “dynamic-vertex-parallel”)

caDirection(“s1”, "DensePull") 
caParallelization(“s1”, “edge-aware-dynamic-vertex-parallel”) 
caNumSSG(“s1”, "fixed-vertex-count", X) 
caNUMA(”s1”, ”dynamic-static-parallel”)

BFS caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “static-vertex-parallel”) 

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel") 

caDirection(“s1”, ”DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s1”, "dynamic-vertex-parallel") 

CC caDirection(“s1”, "DensePush-SparsePush") 
caParallelization(“s1”, “static-vertex-parallel”)

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel")

caDirection(“s1”, "DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s1”, "dynamic-vertex-parallel") 
caNumSSG(“s1”, “fixed-vertex-count", X, “DensePull”)

SSSP caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel")

caDirection(“s1”, "DensePush-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel")

caDirection(“s1”, "DensePush-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel")

PRDelta caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel”) 
fuseFields("OutDegree", "Delta")

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel") 
fuseFields("OutDegree", "Delta")

caDirection(“s1”, "DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull") 
caParallelization(“s1”, "dynamic-vertex-parallel") 
caNumSSG(“s1”, "fixed-vertex-count", X, “DensePull”) 
caNUMA(“s1”, “static-parallel”, “DensePull") 
fuseFields("OutDegree", "Delta")

BC caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “static-vertex-parallel”) 
caDirection(“s2”, "SparsePush") 
caParallelization(“s2”, “static-vertex-parallel”)

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel”) 
caDirection(“s2”, "DensePull-SparsePush") 
caParallelization(“s2”, “dynamic-vertex-parallel")

caDirection(“s1”, ”DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s1”, “dynamic-vertex-parallel") 
caDirection(“s2”, ”DensePull-SparsePush") 
caDenseVertexSet(“s2”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s2”, "dynamic-vertex-parallel")

CF For Netflix and Netflix2x graphs 
caDirection(“s1”, "DensePull") 
caParallelization(“s1”, “edge-aware-dynamic-vertex-parallel") 
caNumSSG(“s1”, fixed-vertex-count, X)

stalled. Interestingly, Gemini has the lowest QPI traffic, but is much slower than

GraphIt. With NUMA optimizations, vertices in one socket fail to see the newly prop-

agated labels from vertices in another socket, resulting in slower convergence. Unlike

other NUMA-aware graph processing frameworks, GraphIt can easily enable or disable

NUMA optimizations depending on the algorithm. We choose the label propagation

algorithm option on Galois and use the FRONTIERS_WITHOUT_ASYNC option

on Grazelle in order to compare the same algorithm across frameworks. Galois’ CC is

Table 6.4: Line counts of PR, BFS, CC, and SSSP for GraphIt, Ligra, GraphMat,
Green-Marl, Galois, Gemini, and Grazelle. Only Green-Marl has fewer lines of code
than GraphIt. GraphIt has an order of magnitude fewer lines of code than Grazelle
(the second fastest framework on the majority of the algorithms we measured). For
Galois, we only included the code for the specific algorithm that we used. Green-Marl
has a built-in BFS.

GraphIt Ligra GraphMat Green-Marl Galois Gemini Grazelle
PR 34 74 140 20 114 127 388
BFS 22 30 137 1 58 110 471
CC 22 44 90 25 94 109 659
SSSP 25 60 124 30 88 104
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Table 6.5: Last-level cache (LLC) miss rate, QPI traffic, cycles with pending memory
loads and cache misses, and parallel running time (seconds) of PR, CC, and PRDelta
running on Twitter, and CF running on Netflix on the various frameworks, including
GraphIt(GT), Ligra(LG), Gemini (GE), Grazelle(Gr)

Algorithm PR CC PRDelta CF
Metrics GT LG GE GR GT LG GE GR GT LG GT LG
LLC miss
rate (%)

24.59 60.97 45.09 56.68 10.27 48.92 43.46 56.24 32.96 71.16 2.82 37.86

QPI traffic
(GB/s)

7.26 34.83 8.00 20.50 19.81 27.63 6.20 18.96 8.50 33.46 5.68 19.64

Cycle stalls
(trillions)

2.40 17.00 3.50 4.70 0.20 0.96 1.20 0.30 1.25 5.00 0.09 0.22

Runtime (s) 8.71 49.00 10.98 15.70 0.89 2.78 3.85 1.73 4.72 9.19 1.29 5.35

35% faster than GraphIt on USAroad because it uses a special asynchronous engine

instead of a frontier-based model. We also ran Galois’s union-find CC implementation

but found it to be slower than GraphIt on all graphs except USAroad. Grazelle’s

CC using the Vector-Sparse format, implemented with hundreds of lines of assembly

code as shown in Table 6.4, is 43% faster than GraphIt on USAroad. The best

performing schedule that we found on USAroad without any asynchronous mechanism

is DensePush-SparsePush.

Collaborative Filtering (CF). For CF, GraphIt is faster than Ligra and GraphMat

(by 4–4.8×) because the edge-aware-dynamic-vertex-parallel schedule achieves good

load balance on Netflix. Cache optimization further improves GraphIt’s performance

and is especially beneficial on Netflix2x.

Single-Source Shortest Paths with Bellman-Ford (SSSP). GraphIt has the

fastest SSSP on 4 out of the 5 graphs because of its ability to enable or disable the

direction optimization and the bitvector representation of the frontier. We run Galois

with the Bellman-Ford algorithm so that the algorithms are the same across systems.

We also tried Galois’s asynchronous SSSP but found it to be faster than GraphIt only

on WebGraph. Green-Marl’s SSSP on USAroad is 328 times slower than GraphIt

because it uses the DensePush configuration. On every round, it must iterate through

all vertices to check if they are active. This is expensive on USAroad because for over

6000 rounds, the active vertices count is less than 0.4% of all the vertices.

PageRank Delta (PRDelta). GraphIt outperforms Ligra on all graphs by 2–4×

due to better locality from using bitvectors as frontiers, fusing the Delta and OutDegree
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arrays as shown in Figure 4-1, and applying both the cache and NUMA optimizations

in the pull direction. Table 6.5 shows GraphIt’s reduced LLC miss rate, QPI traffic,

and cycles stalled.

Betweenness Centrality (BC). GraphIt achieves the fastest BC performance on

the USAroad and Friendster graphs and has comparable performance on the other

graphs. GraphIt is a bit slower than Gemini on Twitter and WebGraph because it

does not support bitvector as a layout option for vertex data vectors layouts. We plan

to add this in the future.

6.2.4 Performance of Different Schedules

Figure 6-2 demonstrates the impact of traversal direction, data structures used for

keeping track of active vertices, and cache optimizations. For a given algorithm,

no single schedule works well on all input graphs. For BFS, DensePullSparsePush

with cache optimizations reduces the number of memory accesses on LiveJournal,

Twitter, WebGraph, and Friendster, achieving up to 30× speedup. However, using only

SparsePush can reduce the runtime overhead on USAroad as described in Section 6.2.3.

For CC, the bitvector and cache optimizations improve locality of memory accesses

for Twitter, WebGraph, and Friendster, but hurt the performance of LiveJournal

and USAroad due to lower work-efficiency. For PRDelta, SparsePush sometimes

outperforms DensePullSparsePush, but when the cache optimization is applied to the

pull direction, hybrid traversal is preferred.

Figure 6-3 reveals that the parallelization scheme can have a major effect on

scalability, and again there is no single scheme that works the best for all algorithms

and inputs. For CF, the amount of work per vertex is proportional to the number of

edges incident to that vertex. Consequently, the edge-aware-dynamic-vertex-parallel

scheme is 2.4× faster than the dynamic-vertex-parallel approach because of better

load balance. For PRDelta, the number of active vertices quickly decreases, and many

of the edges do not need to be traversed. As a result, the edge-aware-dynamic-vertex-

parallel scheme has a smaller impact on performance. The dynamic-vertex-parallel
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Figure 6-2: Performance of different schedules for BFS, CC, and PRDelta. SparsePush
and DensePullSparsePush refer to the traversal directions. BitVec refers to the dense
frontier data structure. Cache refers to the cache optimization. The descriptions of
these schedules can be found in Section 3.2. The full scheduling commands are shown
in Table 6.3.

approach is a good candidate for BFS because not all edges incident to a vertex

are traversed. Using the edge-aware-dynamic-vertex-parallel scheme for BFS results

in damaging the overall load balance. We omit the edge-parallel approach because

it is consistently worse than edge-aware-dynamic-vertex-parallel due to the extra

synchronization overhead.
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Figure 6-3: Scalability of CF, PRDelta, and BFS with different schedules. Hyper-
threading is disabled.

6.2.5 Fusion of Multiple Graph Kernels

Figure 6-4 demonstrates the performance improvement of novel kernel fusion opti-

mization (first introduced in Section 3.2.5) with PageRank and Eigenvector Centrality.

They have similar memory access patterns. GraphIt significantly improves the spatial

locality of the memory accesses by fusing together the two kernels and the vectors

they access (vertex data layout optimization). Figure 6-4 shows significant reduction

in cycles stalled on L1 data cache and L2 cache misses, leading to the speedups.
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Figure 6-4: Normalized Execution Time, and L1 and L2 Cache Stall Cycles with
Fusion of PageRank and Eigenvector Centrality

6.3 Ordered Graph Algorithms

We compare the performance of the new priority-based extension in GraphIt to state-

of-the-art frameworks and analyze performance tradeoffs among different GraphIt

schedules.

6.3.1 Applications

We evaluate the extension to GraphIt on SSSP with Δ-stepping, weighted breadth-first

search (wBFS), point-to-point shortest path (PPSP), A* search, 𝑘-core decomposition
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(𝑘-core), and approximate set cover (SetCover).

SSSP and Weighted Breadth-First Search (wBFS). SSSP with Δ-stepping

solves the single-source shortest path problem as shown in Figure 2-3. In Δ-stepping,

vertices are partitioned into buckets with interval Δ according to their current shortest

distance. In each iteration, the smallest non-empty bucket 𝑖 which contains all vertices

with distance in [𝑖Δ, (𝑖+ 1)Δ) is processed. wBFS is a special case of Δ-stepping for

graphs with positive integer edge weights, with delta fixed to 1 [32]. We benchmarked

wBFS on only the social networks and web graphs with weights in the range [1, log 𝑛),

following the convention in previous work [32].

Point-to-point Shortest Path (PPSP). Point-to-point shortest path (PPSP) takes

a graph 𝐺(𝑉,𝐸,𝑤(𝐸)), a source vertex 𝑠 ∈ 𝑉 , and a destination vertex 𝑑 ∈ 𝑉 as

inputs and computes the shortest path between 𝑠 and 𝑑. In our PPSP application, we

used the Δ-stepping algorithm with priority coarsening. It terminates the program

early when it enters iteration 𝑖 where 𝑖Δ is greater than or equal to the shortest

distance between 𝑠 and 𝑑 it has already found.

A* Search. The A* search algorithm finds the shortest path between two points.

The difference between A* search and Δ-stepping is that, instead of using the current

shortest distance to a vertex as priority, A* search uses the estimated distance of the

shortest path that goes from the source to the target vertex that passes through the

current vertex as the priority. Our A* search implementation is based on a related

work [3] and requires the longitude and latitude of the vertices.

𝑘-core. The 𝑘-core of an undirected graph 𝐺(𝑉,𝐸) refers to a maximal connected

sub-graph of G where all vertices in the sub-graph have induced-degree at least 𝑘.

The 𝑘-core problem takes an undirected graph 𝐺(𝑉,𝐸) as input and for each 𝑢 ∈ 𝑉

computes the maximum 𝑘-core that 𝑢 is contained in (this value is referred to as the

coreness of the vertex) using a peeling procedure [64].

Approximate Set Cover. The Set Cover problem takes as input a universe 𝒰

containing a set of ground elements, a collection of sets ℱ s.t. ∪𝑓∈ℱ𝑓 = 𝒰 . The

problem is to find the cheapest collection of sets 𝒜 ⊆ ℱ that covers 𝒰 , i.e. ∪𝑎∈𝒜𝑎 = 𝒰 .

In this thesis, we implement the unweighted version of the problem, where 𝑐 : ℱ → 1,

105



but the algorithm used easily generalizes to the weighted case [32]. The algorithm

at a high-level works by bucketing the sets based on their cost per element, i.e., the

ratio of the number of uncovered elements they cover to their cost. At each step, a

nearly-independent subset of sets from the highest bucket (sets with the best cost per

element) are chosen, removed, and the remaining sets are reinserted into a bucket

corresponding to their new cost per element. We refer to the following papers by

Blelloch et al. [19, 20] for algorithmic details and a survey of related work.

6.3.2 Existing Frameworks

Galois v4 [74] uses approximate priority ordering with an ordered list abstraction for

SSSP. We implemented PPSP and A* search using the ordered list. To the best of our

knowledge and from communications with the developers, strict priority-based ordering

is not currently supported for Galois. Galois does not provide implementations of wBFS,

𝑘-core and SetCover, which require strict priority ordering. In addition, GAPBS [14]

is a suite of C++ implementations of graph algorithms and uses eager bucket update

for SSSP, but does not provide implementations of 𝑘-core and SetCover. We used

Julienne [32] from early 2019. The developers of Julienne have since incorporated the

optimized bucketing interface proposed in this thesis in the latest version. GraphIt [116]

and Ligra [91] are two of the fastest unordered graph frameworks. We used the best

configurations (e.g., priority coarsening factor Δ and the number of cores) for the

comparison frameworks. Schedules and parameters used are in the artifact.

6.3.3 Comparisons with Other Frameworks

Table 6.6 shows the execution times of GraphIt with the new priority-based extension

and other frameworks. GraphIt outperforms the next fastest of Julienne, Galois,

GAPBS, GraphIt, and Ligra by up to 3× and is no more than 6% slower than

the fastest. GraphIt is up to 16.8× faster than Julienne, 7.8× faster than Galois,

and 3.5× faster than hand-optimized GAPBS. Compared to unordered frameworks,

GraphIt without the priority-based extension (unordered) and Ligra, GraphIt with
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Table 6.6: Running time (seconds) of GraphIt with the priority-based extension and
state-of-the-art frameworks. GraphIt, GAPBS, Galois, and Julienne use ordered
algorithms. GraphIt with no extension (unordered) and Ligra use unordered Bellman-
Ford for SSSP, PPSP, wBFS, and A* search, and unordered 𝑘-core. The fastest
results are in bold. Graphs marked with † have weight distribution of [1, log 𝑛). Road
networks come with original weights. Other graphs have weight distribution between
[1, 1000). – represents an algorithm not implemented in a framework and x represents
a run that did not finish due to timeout or out-of-memory error. ORD is for the
ordered extension in GraphIt. UORD is used for the unordered algorithms for SSSP,
PPSP, 𝑘-core, wBFS, and A* search in GraphIt and Ligra

Algorithm SSSP PPSP
Graph LJ OK TW FT WB GE RD LJ OK TW FT WB GE RD
GraphIt
(ORD)

0.093 0.106 3.09 5.637 2.902 0.207 0.224 0.04 0.06 2.60 4.06 2.47 0.05 0.04

GAPBS 0.10 0.11 3.55 6.09 3.30 0.59 0.77 0.04 0.06 2.71 4.31 2.63 0.12 0.11
Galois 0.12 0.23 2.93 8.00 3.01 0.24 0.28 0.08 0.17 2.63 7.09 2.61 0.06 0.05
Julienne 0.17 0.33 4.52 x 4.11 3.10 3.69 0.10 0.16 4.90 x 4.11 1.84 0.69
GraphIt
(UORD)

0.22 0.48 6.38 38.46 8.52 90.52 122.37 0.22 0.48 6.38 38.46 8.52 90.52 122.37

Ligra
(UORD)

0.301 0.60 7.78 x x 94.16 129.20 0.301 0.60 7.78 x x 94.16 129.20

Algorithm 𝑘-core Approximate Set Cover
Graph LJ OK TW FT WB GE RD LJ OK TW FT WB GE RD
GraphIt
(ORD)

0.745 1.634 10.294 14.423 12.876 0.173 0.305 0.494 0.56 5.30 11.50 7.57 0.55 0.86

GAPBS
Galois
Julienne 0.75 1.62 10.50 14.60 13.10 0.18 0.33 0.70 0.87 6.89 13.20 10.70 0.66 1.03
GraphIt
(UORD)

6.13 8.15 228.11 325.29 x 0.42 1.76

Ligra
(UORD)

5.99 8.09 225.10 324.00 x 0.71 1.76

Algorithm wBFS A* search
Graph LJ† OK† TW† FT† WB† MA GE RD
GraphIt
(ORD)

0.07 0.10 1.82 7.56 2.13 0.01 0.06 0.075

GAPBS 0.07 0.11 1.90 7.88 2.23 0.03 0.14 0.22
Galois 0.13 0.25 2.76 5.75 2.67 0.08 0.07 0.08
Julienne 0.15 0.15 2.32 x 2.81 0.18 1.55 4.88
GraphIt
(UORD)

0.12 0.20 2.52 21.77 3.66 0.46 90.52 122.37

Ligra
(UORD)

0.16 0.26 3.05 x x 0.83 94.16 129.20

the extension achieves speedups between 1.67× to more than 600× due to improved

algorithm efficiency. The times for SSSP and wBFS are averaged over 10 starting

vertices. The times for PPSP and A* search are averaged over 10 source-destination

pairs. We chose the start and end points to have a balanced selection of different

distances. We also show a heatmap of performance comparisons among the ordered

extension of GraphIt, Julienne, and Galois in Figure 6-5.
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Figure 6-5: A heatmap for the performances of ordered extension of GraphIt, Julienne,
and Galois. We benchmarked with SSSP (delta stepping), PPSP (delta stepping),
𝑘-core, and Approximate SetCover. The faster numbers are in green and the numbers
are slowdowns compared to the fastest of the three frameworks.

GraphIt with the priority extension has the fastest SSSP performance on six out

of the seven input graphs. Julienne uses significantly more instructions than GraphIt

(up to 16.4× more instructions than GraphIt). On every iteration, Julienne computes

an out-degree sum for the vertices on the frontier to use the direction optimization,

which adds significant runtime overhead. GraphIt avoids this overhead by disabling

the direction optimization with the scheduling language. Julienne also uses the lazy

bucket update that generates extra instructions to buffer the bucket updates whereas

GraphIt reduces instructions by using the eager bucket update. GraphIt is faster than

GAPBS because of the bucket fusion optimization that allows GraphIt to process

more vertices in each round and use fewer rounds (details are shown in Table 6.8).

The optimization is especially effective for road networks, where the synchronization

overhead is a significant performance bottleneck. Galois achieves good performances

on SSSP because it does not have as much overhead from global synchronization

needed to enforce strict priority. However, it is slower than GraphIt on most graphs

because approximate priority ordering sacrifices some work-efficiency.

GraphIt with the priority extension is the fastest on most of the graphs for PPSP,

wBFS, and A* search, which use a variant of the Δ-stepping algorithm with priority

coarsening. Both GraphIt and GAPBS use eager bucket update for these algorithms.

GraphIt outperforms GAPBS because of bucket fusion. Galois is often slower than

GraphIt due to lower work-efficiency with the approximate priority ordering. Julienne
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Table 6.7: Line counts of single-source shortest paths with Δ-stepping (SSSP), point-
to-point shortest path with Δ-stepping (PPSP), A* search, 𝑘-core, and SetCover
for GraphIt, GAPBS, Galois, and Julienne. The missing numbers correspond to a
framework not providing an algorithm.

GraphIt
with
extension

GAPBS Galois Julienne

SSSP 28 77 90 65
PPSP 24 80 99 103
A* 74 105 139 84
KCore 24 – – 35
SetCover 70 – – 72

uses the lazy bucket update and is slower than GraphIt due to the runtime overheads

of the lazy approach.

PPSP and A* search are faster than SSSP because they only run until the distance

to the destination vertex is finalized. A* search is sometimes slower than PPSP

because of additional random memory accesses and computation needed to estimate

distances to the destination.

For 𝑘-core and SetCover, the extended GraphIt runs faster than Julienne because

the optimized lazy bucketing interface uses the priority vector to compute the priorities

of each vertex. Julienne uses a UDF to compute the priority every time, resulting in

function call overheads and redundant computations. Galois does not provide ordered

algorithms for 𝑘-core and SetCover, which require strict priority and synchronizations

after processing each priority.

Delta Selection for Priority Coarsening. The best Δ value for each algorithm

depends on the size and the structure of the graph. The best Δ values for social

networks (ranging from 1 to 100) are much smaller than deltas for road networks with

large diameters (ranging from 213 to 217). Social networks need only a small Δ value

because they have ample parallelism with large frontiers and work-efficiency is more

important. Road networks need larger Δ values for more parallelism. We also tuned

the Δ values for the comparison frameworks to provide the best performance.

Line Count Comparisons. Table 6.7 shows the line counts of the five graph algo-

rithms implemented in four frameworks. GAPBS, Galois, and Julienne all require the
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Table 6.8: Running times and number of rounds reductions with the bucket fusion
optimization on single-source shortest paths (SSSP) using Δ-stepping.

Datasets with Fusion without Fusion
TW 3.09s [1025 rounds] 3.55s [1489 rounds]
FT 5.64s [5604 rounds] 6.09s [7281 rounds]
WB 2.90s [772 rounds] 3.30s [2248 rounds]
RD 0.22s [1069 rounds] 0.77s [48407 rounds]

Table 6.9: Performance Impact of Eager and Lazy Bucket Updates. Lazy update for
𝑘-core uses constant sum reduction optimization.

𝑘-core SSSP with Δ-stepping
Datasets Eager Update Lazy Update Eager Update Lazy Update
LJ 0.84 0.75 0.093 0.24
TW 44.43 10.29 3.09 6.66
FT 46.59 14.42 5.64 10.34
WB 35.58 12.88 2.90 7.82
RD 0.55 0.31 0.22 9.48

programmer to take care of implementation details such as atomic synchronization

and deduplication. GraphIt uses the compiler to automatically generate these instruc-

tions. For A* search and SetCover, GraphIt needs to use long extern functions that

significantly increases the line counts.

6.3.4 Scalability Analysis

We analyze the scalability of different frameworks in Figure 6-6 for SSSP on social and

road networks. The social networks (TW and FT) have very small diameters and large

numbers of vertices. As a result, they have a lot of parallelism in each bucket, and all

three frameworks scale reasonably well (Figure 6-6(a) and (b)). Compared to GAPBS,

GraphIt uses bucket fusion to significantly reduce synchronization overheads and

improves parallelism on the RoadUSA network (Figure 6-6(c)). GAPBS suffers from

NUMA accesses when going beyond a single socket (12 cores). Julienne’s overheads

from lazy bucket updates makes it hard to scale on the RoadUSA graph.
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Figure 6-6: Scalability of different frameworks on single-source shortest paths with
Δ-stepping (SSSP).
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Figure 6-7: Time to find high-performance schedules with autotuninng and exhaustive
search for large social networks.

6.3.5 Performance of Different Schedules

Table 6.8 shows that SSSP with the novel bucket fusion optimization (first introduced

in Section 3.4.3) achieves up to 3.4× speedup over the version without bucket fusion

on road networks, where there are a large number of rounds processing each bucket.

Table 6.8 shows that the optimization improves running time by significantly reducing

the number of rounds needed to complete the algorithm.

Table 6.9 shows the performance impact of eager versus lazy bucket updates on

𝑘-core and SSSP. 𝑘-core does a large number of redundant updates on the priority

of each vertex. The priority of each vertex is updated the same number of times as

its out-degree. In this case, using the lazy bucket approach drastically reduces the

number of bucket insertions. Additionally, with a lazy bucket approach, we can also

buffer the priority updates and later reduce them with a histogram approach (lazy

with constant sum reduction optimization). This histogram-based reduction avoids

overhead from atomic operations. For SSSP there are few redundant updates and the

lazy bucket approach introduces significant runtime overhead over the eager bucket

approach.
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Table 6.10: Autotuned Performances for PageRank (PR), Breadth-First Search(BFS),
Connected Components with Label Propagation (CC), SSSP (Bellman-Ford), PageR-
ankDelta (PRDelta), and Collaborative Filtering (CF), compared with Handtuned
Performances on the 24-core CPUs. The algorithms are autotuned for a maximum
of 5000 seconds. Less than one means that the autotuned version is faster than the
handtuned version.

PR
Graph LJ TW WB RD FT

GraphIt (handtuned) 0.34s 8.71s 16.39s 0.91s 32.57s
GraphIt (autotuned) 0.34s 8.5s 15.97s 0.82s 29.19s

autotuned / handtuned 1.0 0.98 0.97 0.9 0.9
BFS

Graph LJ TW WB RD FT
GraphIt (handtuned) 0.03s 0.28s 0.65s 0.22s 0.49s
GraphIt (autotuned) 0.03s 0.31s 0.63s 0.22s 0.51s

autotuned / handtuned 1.0 1.10 0.98 1.0 1.04
CC

Graph LJ TW WB RD FT
GraphIt (handtuned) 0.07s 0.89s 1.96s 17.10s 2.63s
GraphIt (autotuned) 0.06s 0.91s 1.99s 17.10s 2.57s

autotuned / handtuned 0.85 1.02 1.02 1.0 0.98
SSSP

Graph LJ TW WB RD FT
GraphIt (handtuned) 0.06s 1.35s 1.68s 0.29s 4.30s
GraphIt (autotuned) 0.06s 1.32s 1.61s 0.29s 4.08s

autotuned / handtuned 1.0 0.98 0.96 1.0 0.95
PRDelta

Graph LJ TW WB RD FT
GraphIt (handtuned) 0.17s 4.72s 7.14s 0.46s 10.15s
GraphIt (autotuned) 0.17s 4.90s 7.70s 0.40s 11.20s

autotuned / handtuned 1.0 1.04 1.08 0.87 1.10
CF

Graph NX NX2
GraphIt (handtuned) 1.26s 4.58s
GraphIt (autotuned) 1.29s 4.61s

autotuned / handtuned 1.02 1.01

6.4 Autotuning

The autotuner finds high-performance schedules much faster than an exhaustive

search baseline as shown in Figure 6-7. The autotuner is able to determine a high-

performance configuration usually within 10 - 15 trails. The time used to tune the

integer parameters is also included. We are able to speedup the process by setting

appropriate time limits for each run and by using binary-serialized graph formats that

are much smaller than text-based formats to reduce the graph loading time.
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Table 6.10 shows performance of autotuned implementations versus handtuned

implementations for various algorithms running on both social and road networks. The

autotuner for GraphIt is able to automatically find schedules that performed within

10% of the handtuned schedules used for Table 6.2 and Table 6.6. The autotuned

schedules are sometimes slower because the autotuner did not find the optimal integer

parameter for segmentation. The autotuned versions are faster in some cases by

discovering better schedules, such as a better direction than the one we selected by

hand.

Details of the search space are described in Section 5.2.7. For most graphs, the

autotuner can find a high-performance schedule within 300s after trying 30-40 schedules

(including tuning integer parameters) in a large space of about 106 schedules. The

autotuning process finished within 5000 seconds for the largest graphs. Users can

specify a time limit to reduce autotuning time.

6.5 Chapter Summary

In this chapter, we demonstrated that GraphIt achieves high performance across

different types of graphs and algorithms on modern multi-core CPUs, whereas existing

graph processing frameworks achieve good performance only on a subset of graphs

and algorithms. This is because GraphIt supports a much larger space of performance

optimizations with a new compiler approach. Furthermore, GraphIt also improves the

performance of graph algorithms over state-of-the-art frameworks by up to 4.8× by

discovering previously unexplored combinations of optimizations and utilizing newly

proposed novel cache and bucket fusion optimizations. In Chapter 8, we provide a more

comprehensive review of the related optimizations supported by different frameworks.
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Chapter 7

Limitations and Future Work

In this chapter, we discuss the limitations of the current GraphIt DSL and compiler

and propose a few future research directions. We focus on the algorithms that are

currently not supported in GraphIt due to a lack of relevant programming operators

in Section 7.1. We outline a few optimizations that can potentially be integrated into

GraphIt in Section 7.2. In Section 7.3, we describe potential approaches to support

more hardware platforms, such as GPUs. Section 7.4 maps out ways that can further

improve the extensibility of the compiler.

7.1 Support for More Algorithms

In this section, we outline a few categories of graph algorithms that GraphIt can be

extended to support, including algorithms that modify the graph, sampling-based

algorithms, hypergraph algorithms, and graph neural networks (GNNs).

Algorithms that Modify the Graph. There are many algorithms that require

modifications to the graph, such as Kruskal’s algorithm [54] for finding the minimum-

spanning-tree and streaming graph algorithms [33, 34]. Currently GraphIt does

not have operators that make it easy to implement graph-modification algorithms.

Potential operators include removing and adding edges and vertices in the graph.

Sampling-based Algorithms. Sampling-based algorithms have been shown to per-

form well on certain applications, such as connected components [96] and approximate
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triangle counting [89]. Currently, GraphIt does not support sampling-based algorithms.

It is possible to implement operators that generate sampled subsets of edge and vertex

sets.

Hypergraph Algorithms. Hypergraphs are made up of hyperedges, which can

contain multiple vertices. Hypergraphs can better represent some networked data

because they preserve some additional information in the original data [90]. It is

interesting to explore how to design hyperedge processing algorithmic operators in

GraphIt and their corresponding scheduling APIs.

Graph Neural Networks. Graph Neural Networks (GNNs) [106] are particularly

useful in a number of graph-based applications. GraphIt currently does not have an

easy way to support these applications. To support GNNs, we must add operators to

support sampling edges adjacent to each vertex. Additionally, we will also need to add

support for matrix operations that are sometimes required to process the aggregated

input. This requires GraphIt to efficiently support a linear algebra library within the

DSL. Otherwise, GraphIt needs to support efficient data transfer between the DSL

and other external linear algebra packages such as NumPy.

Other Algorithms. It is also interesting to explore how to support other algorithms,

such as community detection, solvers, Delaunay Triangulation [21], and support for

sparse and dense linear algebra.

7.2 Support for More Optimizations

In this section, we describe a few promising directions to further expand the space of

optimizations (schedules) for GraphIt, including vectorization and new graph formats.

Vectorization. Vectorization can significantly improve the performance of certain

graph applications, such as PageRank running on the road networks [39]. To support

the vectorization optimization, the compiler needs to transform both the UDFs and

the underlying graph to a more vectorization-friendly format.

Graph Formats. Different graph formats can potentially improve the performance

of certain applications. We support the cache-optimized segmented CSR format
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described in Sectioin 3.2.3. However, more sparse matrix formats [25] exist that can

be used to express the adjacency matrix of the graph, which can potentially improve

the performance of certain graph applications.

7.3 Support for More Hardware Platforms

No single hardware platform performs best for all graph applications. Some applications

perform better on CPUs and others perform better on GPUs or domain-specific

accelerators (DSAs). Shared-memory CPUs have out-of-order execution, which helps

hide the long latency of irregular memory accesses that miss in the last-level cache.

CPUs also have larger memories than GPUs and other accelerators, which enables

processing of larger graphs. By contrast, GPUs have up to an order of magnitude

more compute power and memory bandwidth than CPUs and can better exploit the

data parallelism of some graph programs when the graph fits in the GPU memory.

Many DSAs for sparse computations have emerged recently [41, 49, 59, 26, 72, 4,

110, 5]. They provide hardware features such as efficient speculative execution that can

drastically improve graph performance. However, the program must be transformed

specifically for each DSA to take advantage of the new hardware features. Yet, it is

infeasible to build a new compiler for each DSA. Thus, building a portable compiler

infrastructure is crucial to exploiting the diverse hardware of different DSAs.

Distributed backends, such as distributed CPUs and GPUs, are also important

potential extensions for GraphIt. We can leverage distributed systems to process large

graphs that do not fit in the memory of a single CPU or GPU.

It is important to redesign the compiler to make it easy to support a new hardware

backend. We are investigating new designs for the scheduling language and internal

intermediate representations.
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7.4 Flexible and Extensible Compiler Infrastructure

In this section, we identify a few directions that the compiler infrastructure can be

further improved, such as extending the algorithm and scheduling language with more

operators and optimizations.

Support for New Optimizations (Schedules). It is useful to figure out how to

add a new optimization or schedule into the compiler without having to rewrite a

significant portion of the compiler. Currently, developers can extend the scheduling

space by plugging in their optimized runtime libraries with minimum modifications to

the compiler. However, this approach only works for optimizations that do not require

additional transformations on the program.

Support for New Algorithm Operators. Currently, we have designed the DSL

to enable easy integration of additional algorithmic operators through the runtime

libraries. However, the scheduling language cannot tune these operators easily because

their implementations rely on the fixed runtime libraries. In the future, it will be

interesting to figure out a modularized approach to add a new algorithmic operator

and the corresponding schedules that can tune the new operator.

Embedding the DSL in Python or C++. Many graph applications are only a

part of a larger data analytics and machine learning pipeline. Thus, GraphIt programs

must interact with existing libraries and other parts of the pipeline. Currently, GraphIt

is a standalone programming language that generates functions that can be used from

Python or C++. Embedding GraphIt directly in Python or C++ is likely to provide

better integration with the existing programs, libraries, and other parts of the data

analytics pipeline.

Automatic Schedule Generation beyond Autotuning. The current autotuner

in GraphIt is still relatively slow and requires the input data. A more advanced

autotuner should be able to sample the input graph, encode the program, and use

machine learning techniques to quickly recommend a set of schedules statically without

running many different configurations with the input.
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Chapter 8

Related Work

Graph processing is a well-studied field. In this chapter, we give a detailed overview

of related work in the space. We first discuss the differences between GraphIt and

existing graph processing frameworks and DSLs in Section 8.1. In Section 8.2, we

highlight some performance optimizations that are closely related to the ones we

proposed in Chapter 3. Finally, we list some DSLs in other domains that inspired our

work on GraphIt in Section 8.3.

8.1 Graph Processing Frameworks and DSLs

A large body of related work exists in graph processing. In this section, we describe

the relationships between GraphIt and the previous work. We discuss shared-memory,

out-of-core, and distributed graph processing frameworks. We also survey new graph

frameworks that support ordered graph algorithms.

8.1.1 Shared-Memory Unordered Graph Processing Frameworks

Many high-performance graph frameworks and DSLs, including GraphIt, optimize

their performance for shared-memory systems. Many of these frameworks support

only a limited set of combinations of optimization techniques as shown in Table 8.1

(these optimizations are described in Chapter 3). GraphIt significantly expands the
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Table 8.1: Optimizations adopted by various frameworks (explained in Section 3.1):
WSVP (work-stealing vertex-parallel), WSEVP (work-stealing edge-aware vertex-
parallel), SPVP (static-partitioned vertex-parallel with no work-stealing), EP (edge-
parallel), BA (dense boolean array), BV (dense bitvector), AoS (Array of Structs),
SoA (Struct of Arrays), SPS (SparsePush), DPS (DensePush), SP (SparsePull), DP
(DensePull), SPS-DP (hybrid direction with SPS and DP depending on frontier size),
DPS-SPS (hybrid with DPS and SPS), DPS-DP (hybrid with DPS and DP).

Frameworks Traversal
Directions

Dense
Frontier
Data
Layout

Parallel
Opt.

Vertex
Data
Layout

Cache
Opt.

NUMA
Opt.

Opt.
Combi-
nations
Count

Integer
Params
Count

GraphIt SPS,
DPS,
SP, DP,
SPS-DP,
DPS-SPS

BA, BV WSVP,
WSEVP,
SPVP, EP

AoS,
SoA

Partitioned,
No Parti-
tion

Partitioned,
Inter-
leaved

100+ 3

Ligra SPS-DP,
DPS-SPS

BA WSVP,
EP

SoA None Interleaved 4 1

Green-
Marl

DPS, DP BA WSVP SoA None Interleaved 2 0

GraphMat DPS, DP BV WSVP AoS None Interleaved 2 0
Galois SPS, DP,

SPS-DP
BA WSVP AoS None Interleaved 3 1

Polymer SPS-DP,
DPS-SPS

BA WSVP SoA None Partitioned 2 0

Gemini SPS, DP,
SPS-DP

BA,BV WSVP SoA None Partitioned 6 1

GraphGrind SPS-DP,
DPS-SPS

BA WSVP SoA None Partitioned,
Inter-
leaved

4 1

Grazelle DPS, DP,
DPS-DP

BV EP SoA None Partitioned 3 1

space of optimizations by composing numerous effective optimizations, supporting

two orders of magnitude more optimization combinations than existing frameworks.

GraphIt achieves high performance by enabling programmers to easily find the best

combination of optimizations for their specific algorithm and input graph. GraphIt also

finds previously unexplored combinations of optimizations to significantly outperform

the state-of-the-art frameworks on many algorithms.

Many shared-memory graph systems, such as Ligra [91], Gunrock [103], Graph-

Grind [94], Polymer [112], Gemini [118] and Grazelle [39], adopt the frontier-based

model. Galois [74] also has an implementation of the model and a scheduler that

makes it particularly efficient for road graphs. The frontier-based model [91] operates

efficiently on subsets of vertices (frontiers) and their outgoing edges using the direction

optimization [11]. Flat data-parallel operators are used to apply functions to the

frontier vertices and their neighbors with parallel direction optimizations. Existing
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frameworks only support up to three of the many possible directions, with little support

for different parallelization schemes and frontier and vertex data layout optimizations.

GraphIt significantly expands the space of optimizations by enabling combinations

of data layout optimization, different direction choices, and various parallelization

schemes (Table 8.1). GraphIt also makes programming easier by freeing the program-

mer from specifying low-level implementation details, such as updated vertex tracking

and atomic synchronizations.

Many frameworks and techniques have been introduced to improve locality with

NUMA and cache optimizations. GraphGrind, Grazelle, Gemini and Polymer all

support NUMA optimizations. CSR Segmenting [115] and cache blocking [75, 13]

have been introduced to improve the cache performance of graph applications through

graph partitioning. However, both techniques have not been integrated into a general

programming model or combined with direction optimizations. GraphIt supports

NUMA optimizations and integrates a simplified variant of CSR segmenting to compose

cache optimizations with other optimizations.

Other shared-memory systems [95, 108] adopt the vertex-centric model to exploit

data parallelism across vertices. Programmers specify the logic that each (active)

vertex executes iteratively. Frameworks [52, 62] use sparse matrix-vector multiplication

with semirings to express graph algorithms. However, both programming models

cannot easily integrate direction optimization, which requires different synchronization

strategies for each vertex in the push and pull directions.

Green-Marl [46], Socialite [57], Abelian [37], and EmptyHeaded [2] are DSLs

for shared-memory graph processing. Green-Marl provides a BFS primitive; thus,

programs that can be expressed with BFS invocations are relatively concise. However,

for other graph programs, the programmer must write the loops over vertices and

edges explicitly, making it hard to integrate direction optimization due to the lower

level nature of the language. Socialite and EmptyHeaded provide relational query

languages to express graph algorithms. The underlying data representation is in the

form of tables, and due to extensive research in join optimizations, these systems

perform especially well for graph algorithms that can be expressed efficiently using
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joins (e.g., subgraph finding). However, because these languages do not allow for

explicit representation of active vertex sets, their performance on graph traversal

algorithms is worse than the frontier-based frameworks [86, 2]. These DSLs also do

not support the composition of optimizations or enable extensive performance tuning

capabilities.

A number of graph processing frameworks have been developed for GPUs (see [88]

for a survey). We did not focus on GPUs in this paper as the current GPU memory

capacities do not allow us to process very large graphs in-memory.

8.1.2 Out-of-Core Graph Processing Frameworks

A significant amount of work has dealt with graphs that cannot fit in memory

(e.g., [56, 117, 83, 119, 63, 51, 99, 101, 100, 108]), whereas GraphIt focuses on in-

memory graph processing. Some of the optimizations in out-of-core systems also focus

on improving locality of accesses, parallelism, and work-efficiency, but the tradeoff

space for these techniques is very different when optimizing for the disk/DRAM

boundary, instead of the DRAM/cache boundary. The higher disk access latency,

lower memory bandwidth, and larger granularity of access lead to vastly different

techniques [51]. When the graphs do fit in memory, out-of-core systems, such as

X-Stream [83], are much slower than shared-memory frameworks [115, 39].

8.1.3 Distributed Graph Processing Frameworks

Graph analytics has also been studied extensively in distributed memory systems (e.g.,

[61, 38, 79, 82, 24, 85, 118, 66, 108, 27]). The tradeoff space is also different for dis-

tributed graph processing systems due to the larger network communication overhead

and greater need for load balance. Techniques used by GraphIt, such as direction

optimization and locality enhancing graph partitioning can also be applied in the

distributed domain [118]. These systems, when ran on a single machine, cannot

generally outperform shared-memory frameworks [86].
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8.1.4 Ordered Graph Frameworks

A significant amount of work has been conducted on unordered graph processing

frameworks (e.g., [91, 27, 118, 39, 115, 56, 42, 79, 85, 102, 38, 95, 104, 68, 107, 97,

78, 116, 92, 71, 73, 33], among many others). These frameworks do not have data

structures and operators to support efficient implementations of ordered algorithms,

and cannot support a wide selection of ordered graph algorithms. A few unordered

frameworks [104, 68, 95] have the users define functions that filter out vertices to

support Δ-stepping for SSSP. This approach is inefficient and does not generalize to

other ordered algorithms. Wonderland [113] uses abstraction-guided priority-based

scheduling to reduce the total number of iterations for some graph algorithms. However,

it requires preprocessing and does not implement a strict ordering of the ordered

graph algorithms. PnP [107] proposes direction-based optimizations for point-to-point

queries, which is orthogonal to the optimizations in this paper, and can be combined

together to potentially achieve even better performance. GraphIt [116] decouples the

algorithm from optimizations for unordered graph algorithms. This thesis introduces

new priority-based operators to the algorithm language, proposes new optimizations

for the ordered algorithms in the scheduling language, and extends the compiler to

generate efficient code.

8.2 Other Performance Optimizations

We have described a number of performance optimizations in Chapter 3. Here we list

a few related performance optimizations.

Frequency-based Clustering. Graph reordering has become an important class

of performance optimizations for graph applications. Recent work [10] proposed a

new reordering technique, hub clustering, which has lower overhead than frequency-

based clustering while maintaining similar performance improvements. The same

work also performed a comprehensive study on various graph reordering techniques.

Frequency-based clustering is also similar to the Hilbert curve orderings for graph

and sparse matrix data [111, 40, 67], which sort the edges to achieve locality in both
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the source and destination vertices of nearby edges. While our technique can only

guarantee locality in one of these (either sources or destinations), we found that it

performs slightly better than Hilbert curve order on a single thread and is easier to

scale to a multicore (the Hilbert ordering may require multiple threads to update the

same vertex, which needs atomic writes or private vectors, whereas our method allows

purely “pull-based” updates where only one thread is writing to each output vector

location). Threads in a Hilbert order also compete for the shared LLC to fit each

thread’s private working sets, unlike our method in which all threads read from the

LLC shared data.

Bucketing. Bucketing is a common way to exploit parallelism and maintain ordering

in ordered graph algorithms. It is expressive enough to implement many parallel

ordered graph algorithms [32, 14]. Existing frameworks support either the lazy

bucket update or the eager bucket update approach. GAPBS [14] is a suite of hand-

optimized C++ programs that includes SSSP using the eager bucket update approach.

Julienne [32] is a high-level programming framework that uses the lazy bucket update

approach, which is efficient for applications that have a lot of redundant updates,

such as 𝑘-Core and SetCover. However, it is not as efficient for applications that

have fewer redundant updates and less work per bucket, such as SSSP and A* search.

GraphIt with the priority-based extension unifies both the eager and lazy bucket

update approaches with a new programming model and compiler extensions to achieve

consistent high performance.

Speculative Execution. Speculative execution can also exploit parallelism in ordered

graph algorithms [44, 45]. This approach can potentially generate more parallelism as

vertices with different priorities are executed in parallel as long as the dependencies

are preserved. This is particularly important for many discrete simulation applications

that lack parallelism. However, speculative execution in software incurs significant

performance overheads as a commit queue has to be maintained, conflicts need to be

detected, and values are buffered for potential rollback on conflicts. Hardware solutions

have been proposed to reduce the overheads of speculative execution [49, 93, 48, 50, 3],

but it is costly to build customized hardware. Furthermore, some ordered graph
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algorithms, such as approximate set cover and 𝑘-core, cannot be easily expressed with

speculative execution.

Approximate Priority Ordering. Some work has disregarded a strict priority

ordering and use an approximate priority ordering [74, 27, 7, 6]. This approach

uses several “relaxed" priority queues in parallel to maintain local priority ordering.

However, it does not synchronize globally among the different priority queues. To the

best of our knowledge and from communications with the developers, Galois [74, 27]

does not currently support strict priority ordering and only supports an approximate

ordering. Galois [74] provides an ordered list abstraction, which does not explicitly

synchronize after each priority. Therefore, it is difficult to implement algorithms that

require explicit synchronization, such as 𝑘-core. Galois also require users to handle

atomic synchronizations for correctness. This approach cannot implement certain

ordered algorithms that require strict priority ordering, such as work-efficient 𝑘-core

decomposition and SetCover. Moreover, D-galois [28] implements 𝑘-core for only a

specific 𝑘, whereas GraphIt’s 𝑘-core finds all cores.

Synchronization Relaxation. Several frameworks relax synchronizations in graph

algorithms for better performance while preserving correctness [43, 98, 16]. Compared

to existing synchronization relaxation work, bucket fusion in our new priority-based

extension is more restricted regarding synchronization relaxation. The synchronization

between rounds can be removed only when the vertices processed in the next round

have the same priority as vertices processed in the current round. This way, we ensure

no priority inversion happens.

8.3 DSLs in other domains

The design to separate the algorithm specification from the performance optimizations

in GraphIt is largely inspired by Halide. The main difference is that GraphIt is

focused on the sparse graph computations, whereas Halide is primarily designed for

the dense image processing computations. Many DSLs incorporated a scheduling

language, such as Halide [80], CHILL [23], Tiramisu [9], Taichi [47], and HMPP [81].
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These languages, with the exception of Taichi, mainly focus on loop nest optimization

in applications that manipulate dense arrays. Unlike these scheduling languages,

the GraphIt scheduling language is designed for sparse graph applications. It is the

first scheduling language designed to address the challenges of graph applications,

graph data structures, and graph optimizations. It allows the programmer to perform

data layout transformations and allows full separation between the algorithm and

the schedule, which is not possible in HMPP. Full separation is an important feature

that results in higher portability across different hardware architectures as shown

in [80]. Unlike CHiLL, which was primarily designed for the application of affine

transformations on loop nests, the GraphIt scheduling language supports a large set

of non-affine transformations, which are the main type of optimizations in the context

of graph applications.

Physical Simulation DSLs. GraphIt is heavily influenced by DSLs for physical

simulations, including Simit [53] and Liszt [31]. The data model of GraphIt is inspired

by the data model in Simit. The dependence analysis in GraphIt is similar to the

one employed in Liszt. However, Simit and Liszt do not support efficient filtering on

vertices and edges and do not have a scheduling language.
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Chapter 9

Conclusion

We have described GraphIt, a novel DSL for graph processing that generates fast

implementations for algorithms with different performance characteristics running on

graphs with varying sizes and structures. GraphIt separates algorithm specifications

from performance optimizations. The algorithm language simplifies expressing both

ordered and unordered graph algorithms. We formulate graph optimizations as

tradeoffs among locality, parallelism, and work-efficiency. The scheduling language

enables programmers to easily search through the complicated tradeoff space. We also

expanded the optimization space with several new performance optimizations, including

frequency-based clustering, CSR segmenting, and bucket fusion. We introduce the

graph iteration space to model, compose, and ensure the validity of the edge traversal

optimizations. The separation of algorithm and schedule, and the correctness guarantee

of edge traversal optimizations enabled us to build an autotuner on top of GraphIt.

Our experiments demonstrate that GraphIt is up to 4.8× faster than state-of-the-art

graph frameworks while reducing the lines of code by up to one order of magnitude.

GraphIt is available as an open-source project.1

1The GraphIt compiler is available under the MIT license at http://graphit-lang.org/ and
https://github.com/GraphIt-DSL/graphit
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