A Constructivist Approach to Artificial
Intelligence Reexamined

by
Robert Matthew Ramstad
B.S. Massachusetts Institute of Technology (1991)

Submitted to the Dept. of Electrical Eng. and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Science - ARPHNEe
M
and R Tecsmot ATITUTE
Bachelor of Science 0CT 30 1992
UBRARIES

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1992
© Robert Matthew Ramstad, MCMXCII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Author...........cciimuiiiiiinsn. e ereaieeann Feeieeas et
Dept of Electncal Eng and Computer Science

~ July 8, 1992

Certified bycviiii i e e

Ronald L. Rlvest
Professor, Dept. of Electrical Eng. and Computer Science
Thesis Supervisor

Certified by
‘ Bruce A. Foster

Principal Software Engjneeg, Digjtal/Equipindnt Corporation

Thesis Supervisor

Acceptedby-
Campbell L. Searle

Chairman, Departmental Committee on Graduate Students

A Constructivist Approach to Artificial Intelligence
Reexamined
by
Robert Matthew Ramstad

Submitted to the Dept. of Electrical Eng. and Computer Science
on July 8, 1992, in partial fulfillment of the
requirements for the degrees of
Master of Science
and
Bachelor of Science

Abstract

“Made-Up Minds: A Constructivist Approach to Artificial Intelligence”, a Ph.D. the-
sis by Gary Drescher (MIT, Computer Science, September 1989) and a book published
by MIT Press (1991) describe a novel learning system which controls a simulated
robot and gathers information about causes and effects for various actions within the
microworld (a software simulated world) the robot inhabits. Beliefs about causality
in the microworld are constructed through a learning process which is driven by the
continuous updating of statistics. Each belief, or schema, held by the system has
an associated reliability factor, and the system is able to iteratively improve both
the reliability and scope of its knowledge base by revising and strengthening previ-
ously held beliefs on the basis of new statistically significant information. Schema
structures are easily understood by humans — at any point in time, the amount of
knowledge acquired by the system can. be determined by direct examination.

Unfortunately, Drescher’s system is computation— and hardware-intensive. This
work documents the reimplementation of this learning system from the ideas in the
thesis and book alone, using Common LISP and a general purpose UNIX hardware
platform to encourage further experimentation with these ideas. Execution of the
reimplementation code indicates that Drescher’s results are implementation indepen-
dent and directly attributable to the ideas in his published works. Results not dis-
cussed in Drescher’s works were also discovered.

Thesis Supervisor: Ronald L. Rivest
Title: Professor, Dept. of Electrical Eng. and Computer Science

Thesis Supervisor: Bruce A. Foster
Title: Principal Software Engineer, Digital Equipment Corporation

Acknowledgments

I'd like to acknowledge the help of my thesis supervisors, Professor Ronald Rivest,
MIT, and Bruce Foster, Digital Equipment Corporation, for their assistance, cooper-
ation and patience throughout all phases of this thesis. The assistance of the VAX
LISP group at Digital Equipment Corporation was invaluable in the early going,
particularly the help of Paul Anagnostopoulos (macros), Jeff Piazza (dark secrets of
LISP compilers), Walter van Roggen (code optimization) and Richard Wells (general
Common LISP). Professor Pattie Maes and the MIT Media Lab Music and Cognition
group have been a great bunch of people to work with over the last year. I'd like
to thank Kevin O’Toole, the VI-A program staff and Marilyn Pierce for assistance
throughout with various bits of thesis paperwork and administrative red tape. Robyn
Kozierok, MIT Media Lab and Al Lab, assisted me greatly with an unbiased and frank
opinion of a draft of this thesis. My fraternity, Beta Theta Pi, has been and continues
to be a very important influence on my life, and the brothers of the MIT chapter have
been instrumental in helping me keep things in focus over the years. Allison Nelson
helped me through some of the worst times when I had been working on the thesis for
a while and I was frustrated with the slow progress of the work. Last, but not least,
I’d like to thank my mom Sheryl and sister Kristina for all their support — “Why
don’t you just get a job, Bob?”. All of these people were instrumental in keeping me
sane on the long road to the completion of this work.

I would also like to thank my favorite musical artists: David Bowie, Yes, King
Crimson, The Who, Peter Murphy / Bauhaus, acoustic Neil Young, Talking Heads,
Shriekback and especially The Grateful Dead. Their work has enriched my life and
probably improved my code as well. (I usually listen to music when I program, it

seems to keep me better focused on the task at hand.)

Contents

1 Introduction 13
1.1 Motivationforwork, 15
L2 Sources. i i e e 16
1.3 Themicroworld 17
1.4 Theschemamechanism. 22

141 Schemas 23
1.4.2 Constructing new schemas via marginal attribution 24
1.4.3 Goal-directed actions 29
1.4.4 Syntheticitems 30
1.45 Control 31
1.4.6 Summary of schema mechanism 33
1.5 Performance 33

2 Implementation 35

2.1 Differences between this work and Drescher’s 35
2.1.1 Goal-directed actions 35
212 Value. 36
213 Control 37
2.1.4 Overriding conditions 48
2.1.5 Microworld o 38
2.1.6 Schemamechanism 39
2.1.7 Reconciling different sources 40
2.1.8 Piagetianinfluence, 40

22 Designdecisions 41

2.3 Description of reimplementationcode 42
23.1 Microworld 42
23.2 Schemamechanism 43

Results 59

31 Testruns 59
311 Output. 60
3.1.2 Analysisprogram 61

3.2 Drescher’s results and schema categories 61
3.2.1 Initialschemas 62
322 Graspingschemas. 62
3.2.3 Coarse visual field shifting schemas 62
3.2.4 Visual field shift limit schemas 64
3.2.5 Foveal region shift schemas. 64
3.2.6 Detail shift schemas 65
3.2.7 Visual network schemas 66
3.2.8 Hand movement network schemas 67
3.2.9 Negative consequence schemas 68
3.2.10 Hand tobody schemas 69
3.2.11 Seeing hand movements via coarse visual items 69
3.2.12 Seeing hand movements via detailed visual items 69
3.2.13 Further results of the CM2 implementation. 71

3.3 Results confirming Drescher’s work 71

3.4 Further results of the reimplementation 72
3.4.1 Shifting the gaze toseethebody 78
3.4.2 Using the body as a visual position reference 78
3.4.3 Hand network constraint schemas 79
3.4.4 Visual network constraint schemas 79
3.4.5 Coarse visual shift constraint schemas. 79

3.4.6 Detailed visual shift constraint schemas 80

3.4.7 Coarse to detailed visual shift constraint schemas 80

3.4.8 Detailed to coarse visual shift constraint schemas 80

3.4.9 Detailed to coarse visual shift schemas 80

3.4.10 Seeing objects in different visual regions 81

3.4.11 Hand to body constraint schemas 81

3.4.12 Hand movement against object 82

3.4.13 Backward hand movement against body 82

3.4.14 Hand movement from coarse visual to foveal region schemas . 82

3.4.15 Support data fromtestruns 83

4 Analysis, Discussion and Conclusions 89
4.1 Test run evidence confirms Drescher’sresults 89
4.2 Analysisofallresults, 9
4.3 Performance e e e et et e a e e 97
4.4 Futuredirections L 98

A Source code 101
A.l Microworld simulator 102
A.2 Schemamechanism,, 131
A.3 Support for fixnummath, .. 231
A.4 Support for float math T 233
Ab Result analysis 235

B Output 269
B.1 Partial output fromsamplerun 270
B.2 Sample output from analysis program 281
Bibliography 289

List of Figures

1-1
1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10

2-1

The hand can move within a 3x3 area in the area in front of the body.

The visual field is 5x5 and can assume nine different orientations, for
a total visual region of 7x7. Lo L.
Five foveal regions in the center of the visual field (front, back, right,
left and center) provide detailed visual information.
The two objects in the microworld circulate in a clockwise direction
among a series of four contiguous home positions.
A sample microworld situation. The hand and the left object are in
view, while the right object isout of view.
Abasicschema.
A bare schema for the graspaction.
The extended result of the bare schema /grasp/ detects that /grasp/hgr
should bespunoff.
The extended context of the schema /grasp/hgr discovers that tactl
improves its reliability and therefore tactl/grasp/hgr is spun off.

Two schemas which predict two items separately can not chain to a
schema which has both items in its context: a schema with a conjunc-

tiveresult isrequired. L. ..

The initial state of the microworld.

18

18

19

21

22

24

25

25

26

3-1

3-2

3-3
3-4

3-5

Shifting the gaze often causes an object which is within the visual field
to appear at a new coarse visiial item location. For example, the left
hand object in this figure is .noved from vf04 to vf1{ when the glance
isshifted totheleft.
The detailed visual appearance of an object often shifts from one foveal
region to another when a gaze action is taken. The hand in this figure
is shifted from the rear foveal region to the center foveal region when
the gaze is shifted to therear.
Shifting the hand results in the hand moving to a new position.

Shifting the hand when it is visible often causes a transition to a new
coarse visual item (and possibly to a new foveal region).
Through a large series of schemas, the reimplementation code learns
that there are three different objects which each can appear in specific

regions of the microworld.

10

List of Tables

1.1 The primitiveactions 19
1.2 The primitiveitems 20
1.3 Rules for determining synthetic item state. 32
2.1 Simple datatypes defined and used by the schema mechanism code. . 45
2.2 Rules for using counters to detect statistically relevant occurrences. . 48
2.3 Compound datatypes defined and used by the schema mechanism code. 49
2.4 Rules for extended context statistics. 51
2.5 Rules for extended result statistics. 53
2.6 Notes on some of the functions in schema.lisp 57
3.1 Further results of Drescher’s CM2 implementation, part one. 72
3.2 Further results of Drescher’s CM2 implementation, part two. 73
3.3 Statistics for Drescher’s clagsifications, test runs 1-7. 74
3.4 Statistics for Drescher’s classifications, test runs 8-14. 75
3.5 Statistics for Drescher’s classifications, test runs 15-20. 76
3.6 Statistic summary for Drescher’s classifications. 77
3.7 Statistics for new classifications, test runs 1-7. 84
3.8 Statistics for new classifications, test runs 8-14. 85
3.9 Statistics for new classifications, test runs 15-20. 86
3.10 Statistic summary for new classifications. 87

11

12

Chapter 1

Introduction

“Made-Up Minds: A Constructivist Approach to Artificial Intelligence”, a Ph.D. the-
sis by Gary Drescher (MIT, Computer Science, September 1989) [Dre89] and a book
published by MIT Press [Dre91], describe a learning system which gathers informa-
tion about causes and effects while controlling a simulated robot which exists within a
microworld (a software simulated world). The system he proposes, thz schema mech-
anism, is novel in a number of ways. It falls firmly in the category of systems which
learn from experience — it learns without any outside assistance. Claims have been
made that these systems are “crucial to achieve successful behavior in complex, dy-
namic, unpredictable environments” [Mae92, p. 5] and as such they are particularly
interesting systems to study. This system constructs beliefs about causality in the
microworld through a learning process which is driven by the continuous updating of
statistics. Each of these beliefs has an associated reliability factor, and the system
is able to iteratively improve both the reliability and scope of its knowledge base
by revising and streugthening previously held beliefs on the basis of new statistical-
ly significant information. The use of reliability factors and the iterative nature of
improvement in the knowledge base are different from the methods found in many
other learning systems, where the focus is usually on discovering facts about causality
which are 100% reliable by exhaustive analysis of all possibilities within the problem
domain itself. Also, the schema mechanism manipulates, stores and modifies schemas

which represent beliefs and are easily understood by humans without using math-

13

ematical analysis tools. While many connectionist systems also have the ability to
iteratively improve the reliability and scope of their knowledge bases, the derivation
of the rules represented by the final configuration of the system is difficult. On the
other hand, the final configuration of a schema mechanism run can be examined by
a person and the highly reliable schemas can be analyzed directly to determine the
amount of knowledge acquired by the system.

The schema mechanism provides control to a software simulated robot with body
and hand which lives inside a microworld. Given a variety of possible actions and
a vector of sensor data, the schema mechanism both attempts to reach states of
high value (a quantitative measure of the desirability of a given state, based both
upon the state itself and the range of states easily reachable from that state) and
engages in behavior designed to improve its knowledge of the microworld. The schema
mechanism is able to engage in a form of planning by constructing and maintaining
schemas — structures which can be used to predict the result of taking a specified
action in the current situation. The collection of schemas and certain other specialized
structures comprises the knowledge the system has at each time step.

The results in the original thesis are startling. The original CM2 implementation
of the schema mechanism, with virtually no initial knowledge about the microworld,
manages to construct many reliable schemas. These rules include: how to grasp an
object, how to move the hand from one position to an adjacent one, how to move
the glance orientation from one position to an adjacent one, how to move an object
closer to the center of the visual field so as to see its details, and then, through the
construction of goal-directed actions, how to move the hand to any position, how to
move the glance orientation to any position, how to move any object so as to see
its details, and so on. In fact, the system appears to gain some idea of the concept
of objects (through the construction of synthztic items), as well as some intermodal
coordination (i.e. schemas which relate one sense to another, for example, schemas
which indicate that moving the hand results in seeing the hand at the new loca-
tion). The CM2 implementation was extremely successful in acquiring a large body

of knowledge about the microworld. It is also notable that the progression of learning

14

exhibited by the program closely matches the progression postulated by Piagetian

child development theory, where the concept of “schemata” was first analyzed.

1.1 Motivation for work

The CM2 implementation is relatively time-ineflicient, and is also computation and
hardware-intensive, utilizing over four thousand processors on a CM2 Connection
Machine. A better implementation, in addition to dealing with these problems, might
actually be able to learn more — the results of both [Dre91] and [Dre89) are clearly
constrained by available memory.

Another purpose served by a new implementation is that of verification of the
ideas in the original thesis. It is unclear if the results of the CM2 implementation
are solely due to the design as detailed in [Dre91], or perhaps partially due to
various specific unknown aspects of the implementation. In other words, the ideas in
[Dre91] and [Dre89] may not be sufficient to account for all of the results generated
by the implementation. Obviously, in any system of great complexity, seemingly
minor implementation decisions may have unforeseen effects on the execution of the
program. A new implementation can give concrete evidence that any system built as
specified in the original thesis is capable of achieving comparable results.

This thesis documents the reimplementation of this learning system from the ideas
in [Dre91] and [Dre89]. Where these two sources conflict, [Dre91] takes precedence.
Where the description of the schema mechanism was not sufficiently detailed, the

author of the original thesis was consulted. This document is organized as follows:

e Chapter 1: Motivation for work, overview of the schema mechanism.

e Chapter 2: Modifications and additions to the ideas in [Dre91] and [Dre89)

and documentation of the new implementation.

e Chapter 3: Results from multiple executions of the new implementation.

15

e Chapter 4: Further analysis of the results described in chapter 3, comparison
of the results found by each implementation. Suggestions for future experimen-

tation with the schema mechanism.

Perhaps the most important goal of this project, however, is to encourage other
researchers to experiment with the concepts embodied in the original thesis. To this
end, the new implementation is written in Common LISP and executes on a general-
purpose UNIX hardware platform and was designed with efficiency in mind. It is
hoped that making the system available to researchers in a form which can easily be
understood, executed and modified will assist the utilization of these ideas in future

research.

1.2 Sources

Gary Drescher has published many different works on the schema mechanism, notably
a recent book from MIT Press titled “Made-Up Minds” [Dre91] and his Ph.D. thesis
[Dre89]. Every attempt has been made to be consistent with [Dre91], as it is the most
recent major work. However, the reimplementation effort started before [Dre91] was
published, and therefore [Dre89] was also heavily used. Both sources are useful for
interpreting the other and therefore both are very valuable. Gary Drescher was also
gracious enough to answer many questions via private electronic mail and telephone,
which also assisted in constructing what hopefully is an accurate view of the schema
mechanism. [freely borrowed (and condensed) from each of these sources as necessary
while writing this overview — it is based primarily on the material in [Dre89] but
agrees with [Dre91] in all major respects. If a deeper explanation is desired, I
suggest reviewing the original sources, particularly [Dre91, section 1.1 (general),
section 6.1 (microworld) and chapters 3 and 4 (schema mechanism)] and [Dre89,
section 1.2 (general), section 3.1 (microworld) and section 3.2 (schema mechanism)).
The overview presented here definitely emphasizes those parts of Drescher’s schema,
mechanism which were implemented in detail, and glosses over parts of his system

which were not implemented. The following chapter contains a detailed discussion of

16

the differences between this account, the accounts in [Dre91] and [Dre89) and what

was actually implemented.

1.3 The microworld

The microworld is a separate system which is intended to be a primitive model of the
real world. The area of the microworld is modeled as a 2 dimensional 7x7 grid — all
vision is from a birds-eye viewpoint. Objects can be placed anywhere within the 7x7
area, but only one object can exist at any single coordinate position — objects are
uniform in size, and cannot rotate.

~ The microworld is inhabited by a simulated robot with body, single hand and
visual system which can perform actions in the microworld. The initially supplied
primitive actions allow shifting of the visual region, movement of the hand, and
grasping and ungrasping of objects. Each of these actions may or may not change
the state of the microworld — in particular, actions which would take the hand or
glance orientation beyond the allowable range have no effect. The hand can move
within a 3x3 area near the body (see figure 1-1). Similarly, there are nine glance
orientations which allow viewing of any particular 5x5 area within the 7x7 microworld
(see figure 1-2). The primitive actions are designed to correspond roughly with the
actions available to a stationary infant, and are further described in table 1.1 [Dre89,
adapted from table 3.1, p. 66].

The simulated robot receives feedback on the current state of the microworld
through roughly one hundred and forty primitive items — items which can be on or
off (binary) and are directly related to conditions in the microworld. These primitive
items include indications of hand position, indications of glance orientation, coarse
visual information (an object is present within the visual region of the robot), detailed
visual information (when an object is near the center of the visual region, see figure 1-
3), tactile indications of the presence of an object (when an object is adjacent to the
hand or body), detailed tactile information (when an object is to the left of the hand),

detailed taste information (when an object is in front of the body), and indications as

17

hand confined
to this region (3x3)

Figure 1-1i: The hand can move within a 3x3 area in the area in front of the body.

visual field center confined
to this region (3x3)

potentially visible I
region (7x7)

\ /

\ /

Figure 1-2: The visual field is 5x5 and can assume nine different orientations, for a
total visual region of 7x7.

18

¢ handf, handb, handr, handl: These actions move the hand incrementally
forward, backward, right or left.

o eyef, eyeb, eyer, eyel: These actions shift the glance orientation incrementally
forward, backward, right or left.

o grasp: This action closes the hand, grasping any movable object which is im-
mediately to the left of the hand (near its “fingers”) unless the hand was already
closed. Once closed or grasping an object, the hand remains in that state for
three time units, unless explicitly opened in the interim. Moving the hand
moves any grasped object.

e ungrasp: This action opens the hand, releasing any object that had been
grasped.

Table 1.1: The primitive actions

| |

Figure 1-3: Five foveal regions in the center of the visual field (front, back, right, left
and center) provide detailed visual information.

to whether or not the hand is closed and (possibly) grasping an object. The primitive
items are further explained in table 1.2 [Dre89, adapted from table 3.2, p. 67].
There are two objects in the world, each of which occasionally (at an average of
every 200 time units) moves between a series of four contiguous home positions in
a clockwise direction — see figure 1-4. The right object is out of the range of the
hand and therefore cannot be grasped. The left object can, of course, be grasped
and moved about. Both objects are often seen by the simulated robot due to their

proximity to the body.

19

e hp00,...,hp22: Haptic-proprioceptive (hand position) items, one for each pos-
sible hand position, the hand is confined to a 3x3 area (see figure 1-1). Position
(0,0) is in the lower left corner of the range; in figure 1-5, the hand appears at
position (2,1) which corresponds to item hp21. In figure 1-1 the hand appears
at hpl0.

® vp00,...,vp22: Visual-proprioceptive (visual position) items, one for each pos-
sible glance orientation. Coordinate designates the position of the center of the
5x5 visual field, using same conventions as for hand position; in both figure 1-5
and figure 1-2, the glance is oriented at vp9l.

o v{00,...,vf44: Coarse visual-field items, one for each of 25 glance-relative co-
ordinate positions. Position (0,0) is in the lower left corner of the current visual
field; in figure 1-5, the body appears at vf30 while the hand appears at vi42,

e fovf00,...,fovf33; fovb00-33; fovl00-33; fovr00-33; fovx00-33: Visual
details corresponding to each of five foveal regions: front, back, left, right and
center. See figure 1-3. Each has sixteen arbitrary details. In figure 1-5 the left
object is in the front foveal region.

e tactf, tactb, tactr, tactl: Coarse tactile items, one for each side of the hand:
front, back, right, left.

¢ bodyf, bodyb, bodyr, bodyl: Coarse tactile items, one for each side of the
body: front, back, right, left.

o text0,...,text3: Detailed tactile items, denoting arbitrary textural details of
an object touching the left edge (i.e. “fingers”) of the hand.

e taste0,... taste3: Detailed taste items, designating arbitrary surface details
of an object touching the front edge (i.e. “mouth”) of the body/head.

e hcl: Hand closed.

¢ hgr: Hand closed and grasping something.

Table 1.2: The primitive items

20

range of home positions

fm——————————

Figure 1-4: The two objects in the microworld circulate in a clockwise direction among
a series of four contiguous home positions.

The microworld uses three different coordinate systems, microspace, body and
glance relative. In each case, the X axis (first position in the coordinate pair) runs
left to right while the Y axis (second position) runs bottom to top. This is traditional
first quadrant Cartesian coordinate notation [SESA86, p. 92]. Microspace relative
coordinates reference the 7x7 world directly where the lower left hand corner is posi-
tion (0,0) and the lower right hand corner is position (6,0). Body relative coordinates
are often used when referring to the center 3x3 area in the microworld. The lower
left corner of this area is microspace coordinate (2,2) which is defined as body rela-
tive coordinate (0,0). (Translation from microworld to body relative coordinates is
accomplished by subtracting 2 from each microworld coordinate; similarly, body rel-
ative to microworld coordinate translation is accomplished by adding 2 to each body
relative coordinate.) Glance relative coordinates are used when referring to the 5x5
area centered around the current glance orientation. The center of the 5x5 glance
relative area is defined as glance relative coordinate (2,2) with the lower left corner

of this area defined as glance relative coordinate (0,0).

21

S |

Figure 1-5: A sample microworld situation. The hand and the left object are in view,
while the right object is out of view.

In figure 1-5 the glance is oriented at body relative visual position (0,1) and the
hand is at body relative hand position (2,1). The body is visible via the coarse visual
field items at glance relative position (3,0), the hand at (4,2), and the left object at
(2,3). The right object is not visible. The detailed visual information for the left
object is present in the front foveal items. If the hand were in body relative hand
position (1,2) adjacent to the left object, it could grasp it. The right hand object is
currently out of reach. See table 1.2 for more examples using the various coordinate
systems.

It is important to note that the names given to each primitive action and item are
for purposes of human readability only. The microworld system provides a series of ten
functions corresponding to the ten primitive actions and a series of functions which
return the status of each of the primitive items. The schema mechanism begins with

absolutely no knowledge about which actions and items are related to one another.

1.4 The schema mechanism

The schema mechanism, by utilizing the simulated robot in the microworld, attempts

to acquire knowledge about its domain through analysis of its experiences. In the

22

appropriate situations, the system can create three different types of structures to

embody acquired knowledge: schemas, synthetic items and goal-directed actions.

1.4.1 Schemas

Each schema expresses a specific belief about causality in the microworld and is
defined by a context, action and result. The context defines the microworld pre-
conditions under which the schema can be activated. If a schema is activated, its
corresponding microworld action is executed. The result indicates those elements
of the microworld state which should change when the schema is activated (context
satisfied and action executed) — in some sense, indicating what the effects of the
action are when performed in the given context. Essentially, each schema expresses
the context-dependent results of a given action.

The context and result can be single items or conjunctions of items, or be empty.
For each included item, the context and result indicate if it is positively or negatively
included. A context is considered satisfied if each included item matches the current
state of the microworld — if an item is positively included, it must be on in the
current microworld state, and similarly for negative inclusion and off. A schema
is considered applicable if its context is satisfied and no overriding conditions exist.
(Overriding conditions are detected by a schema’s extended contezt, see section 2.1.4
for more details.) If a schema is applicable and its action is taken, the schema has
been activated. The result obtains if each item included in the result matches the
state of the microworld after taking the action — if a schema is activated and its
result obtains, the schema is said to succeed. Note that both primitive and synthetic
items (discussed later) can be included in a context or result — however, synthetic
items can also be in an unknown state, which for purposes of satisfying a context or
achieving a result does not match positively or negatively included items.

A schema is notated in the form context/action/result, where negated items are
indicated by a — and conjunctions of items are constructed by placing & signs between
the items (by convention, the & can be omitted in the case of items with single letter

names). For example, the schema in figure 1-6 is p-qr/a/zy.

23

context action result

Figure 1-6: A basic schema.

A schema is not a rule which indicates that the action should be performed when
the context is satisfied; the schema just indicates what would happen if the action
was performed. Note also that the results indicated by a schema are by no means
guaranteed — a reliability measure, which indicates how often the result obtains when
the schema is activated, is kept by each schema. Schemas may exist with arbitrarily
low reliability — as a particular result does not necessarily follow with regularity,
schemas cannot be thought of as rules. The notion of a rule also usually includes the
notion that a given action should not be performed unless the preconditions are met.
In this learning system, each action can be performed at any time — each schema
merely asserts what happens when the action is performed when all context conditions
are satisfied. The context therefore should not be considered a prerequisite for the
performance of the action. It is also possible that items not included in the result
will change state — the result is not necessarily exhaustive. Finally, a particular
schema says absolutely nothing about what might happen if its action is taken when

its context is not satisfied.

1.4.2 Constructing new schemas via marginal attribution

The system begins with a set of ten bare schemas, one for each primitive action. A
bare schema has an empty context (one with no items), and therefore can be activated
at any time. A bare schema also has an empty result, and therefore does not make
any prediction whatsoever as to changes in the microworld state due to taking the
indicated action (see figure 1-7).

As the system executes, a technique known as marginal attribution is used to dis-

cover statistically important context and result information. This information is then

24

grasp

context action result

Figure 1-7: A bare schema for the grasp action.

éa.léteB
hcl “
grasp hgr ‘ grasp °

Figure 1-8: The extended result of the bare schema /grasp/ detects that /grasp/hgr
should be spun off.

used to fine-tune existing schemas by creating modified versions of them. Marginal
attribution succeeds in greatly reducing the combinatorial problem of discovering re-
liable schemas from an extremely large search space without prior knowledge of the

problem domain.

Result spinoffs

Many different results may occur from the execution of a given action. For every bare
schema, this facility tries to find result transitions which occur more often with a
particular action than without it. For example, my hand ends up closed and grasping
an object much more often when the grasp action is taken than with any other action.
Results discovered in this fashion are eligible to be included in a result spinoff — a
new schema identical to its parent, but with the relevant result item included (see
figure 1-8). The marginal attribution process can only create result spinoffs from bare
schemas.

Specifically, each bare schema has an ertended result — a structure for holding
result correlation information. The extended result for each schema keeps correlation
information for each item (primitive or synthetic). The positive-transition correlation
is the ratio of the number of occurrences of the item turning on when the schema’s

action has been taken to the number of occurrences of the item turning on when the

25

tacti

tactr >
tactl >
grasp bodyf grasp

Figure 1-9: The extended context of the schema /grasp/hgr discovers that tact! im-
proves its reliability and therefore tactl/grasp/hgr is spun off.

schema’s action has not been taken. Similarly, the negative-transition correlation is
the ratio of the number of occurrences of the item turning off when the schema’s
action has been taken to the number of occurrences of the item turning off when the
schema’s action has not been taken. Note that an item is considered to have turned
on precisely when the item was off prior to the action and on after the action was
performed and similarly for turning off. The correlation statistics are continuously
updated by the schema mechanism and weighted towards more recent data. When one
of these schemas has a sufficiently high correlation with a particular item, the schema
mechanism creates an appropriate result spinoff — a schema with the item positively
included in the result if the positive-transition correlation is high, or a schema with
the item negatively included in the result if the negative-transition correlation is
high. These simple statistics are very good at discovering arbitrarily rare results of
actions, especially when the statistics of the non-activated schemas are only updated
for unezplained transitions. A transition is considered explained if the item in question
was included in the result of an activated schema with high reliability (above an

arbitrary threshold) and it did, in fact, end up in the predicted state.

Context spinoffs

For schemas which have non-negligible results, the marginal attribution attempts to
discover conditions under which the schema obtains its result more reliably. To extend
the example, my hand ends up closed and grasping something much more often if I
can feel an object touching the left edge of my hand before I close my hand with the
grasp action. This information is used to create contezt spinoffs — duplicates of the

parent schema, but with a new item added to its context (see figure 1-9).

26

Schemas with non-empty results have an eztended contezt. For each item, this
structure keeps a ratio of the number of occurrences of the schema succeeding (i.e.
its result obtaining) when activated with the item on to the number of occurrences of
the schema succeeding when activated with the item off. If the state of a particular
item before activation of a given schema does not affect its probability of success, this
ratio will stay close to one. However, if having the item on increases the probability
of success, the ratio will increase over time. Similarly, if having the item off increases
the probability of success, the ratio will decrease. If one of these schemas has a
significantly high or low ratio for a particular item, the schema mechanism creates
the appropriate context spinoff — a schema with the item positively included in the
context if the ratio is high, one with the item negatively included if the ratio is low.

There is an embellishment to the process of identifying context spinoffs. When a
context spinoff occurs, the parent scheina resets all correlation data in its extended
context, and keeps an indication of which item (positively or negatively included)
was added to its spinoff child. In the future, when updating the extended context
data for the parent schema, if that item is on (if positively included in the spinof()
or off (if negatively included in the spinoff) the trial is ignored and the extended
context data is not modified. This embellishment means that the parent schema has
correlation data only for those trials where there is no more specific child schema, and
it encourages the development of spinoff schemas from more specific schemas rather
than general schemas.

Redundancy is also reduced by a further embellishment. If at a particular moment
in time, a schema has multiple candidates for a context spinoff, the item which is on
least frequently is the one chosen for & context spinoff. The system keeps a generality
statistic for each item which is merely its rate of being on rather than off — it is
this statistic which is used when deciding between multiple spinoff possibilities. This
embellishment discourages the development of unnecessary conjunctions when a single

specific item suffices [Dre89, p. 104].

27

Figure 1-10: Two schemas which predict two items separately can not chain to a
schema which has both items in its context: a schema with a conjunctive result is
required.

Conjunctive contexts and results

The context can be iteratively modified through a series of context spinoffs to include
more and more conjuncts in the context. For a variety of reasons, but primarily to
avoid combinatorial explosion, a similar process for result conjunctions is undesirable
[Dreg9, pp. 105-6]. The marginal attribution process therefore requires that result
spinoffs occur only from bare schemas, and only one relevant detail can be detected
and used as the result for the spinoff schema. However, conjunctive results are nec-
essary if schemas should be able to chain to a schema with a conjunctive context.
(The goal-directed action facility in particular depends greatly on the detection of
chains of reliable schemas where each schema has a result which satisfies the context
of the next schema in the chain. See figure 1-10.) This problem is solved by adding a
slot to the extended result of each bare schema for each of the conjunctions of items
which appear as the context of a highly reliable schema. Statistics are kept for these
in the same fashion as those kept for single items, and if one of these conjunctions is
often turned on as the result of taking a giver action, a result spinoff occurs which
includes the entire conjunction in the result. Effectively, this process is able to pro-
duce schemas with conjunctive results precisely when such schemas are necessary for

chaining.

28

Summary of marginal attribution

Schemas created by the marginal attribution process are designed to either encapsu-
late some newly discovered piece of knowledge about causality in the microworld
(result spinoff) or to improve upon the reliability of a previous schema (context
spinoff). By continuously creating new versions of previous schemas, the system
iteratively improves both the reliability and the scope of its knowledge base. It is
interesting to note that once created, a schema is never removed from the system.
Rather, it may be supplanted by one or more spinoff schemas which are more useful

due to higher reliability and greater specifity.

1.4.3 Goal-directed actions

Schemas of arbitrarily high reliability can be thought of as rules in that if the context
is satisfied, taking the indicated action reliably produces the given result. Therefore,
once a number of reliable schemas have been produced, it becomes fairly simple to
reach a given goal through planning. Over time, the system becomes able to chain
various schemas together to produce a variety of desired results. For any desired
result, the mechanism can create a goal-directed action, an action which is designed
to produce the given result. These new abstract actions give the mechanism an ability
to bring about a desired result through a number of intermediate actions, and to treat
this process as if it were a single discrete action.

In [Dre89], a goal-directed action is created whenever a particular item or con-
junction is highly accessible — when, at each clock tick, there is usually some chain
of reliable schemas which starts with an activatible schema and ends in a schema
with the item or conjunction positively included in the result. [Dre91] creates a goal-
directed action whenever a result spinoff has a unique result. The reimplementation
uses the method from [Dre89] as it reduces the proliferation of many actions early
on, but the method in [Dre91] is simpler, less compute-intensive and seems more

cognitively realistic.

29

When a goal-directed action is created, a bare schema is constructed which has the
new goal-directed action and an empty context and result. The marginal attribution
algorithm will then attempt to build reliable schemas which utilize the goal-directed
action and encapsulate knowledge about the goal-directed action. (For more details
about goal-directed actions see [Dre89, section 3.4.2).)

[Dredl] and [Dre89] use composite action where I have chosen to use the term
goal-directed action. An informal discussion group concluded that compostte is a word
overloaded with meaning — in particular, it suggests the treatment of a specific series
of actions as a single action as in the mathematical operation of composition where
one constructs a new function by defining it as the result of the sequential use of
two separate named functions [SESA86, p. 134]). It was therefore proposed to use the
term goal-directed action instead, which is more precise in meaning, as a goal-directed
action will activate whichever series of schemas will most likely achieve the desired

goal state — it does not activate the same series of schemas each time it is executed.

1.4.4 Synthetic items

There are certain concepts that the primitive items are unable to express, for example,
that a particular object is present at a particular location while the glan_e orientation
is such that the object is out of view. The schema mechanism contains a facility for
building synthetic items — items which, when on, indicate that a particular unreliable
schema, if activated, would succeed. Suppose a schema /move glance orientation to
vp01/fovf02 is very reliable if the left hand object in the microworld is in the correct
position (see figure 1-5, if the glance orientation is at vp0! and the left hand object
is in the indicated position, it is in the forward foveal region, and could turn fouf02
on). However, this object spontaneously moves between four different positions and
80, on average, is only in the correct position about one-fourth of the time. Notably,
this schema, if activated and successful, will continue to be very reliable for some
period of time (equal to the duration that the object remains in that position), even
though on average it is normally not very reliable. To discover such situations, the

schema mechanism keeps a local consistency statistic which indicates how often the

30

schema succeeds when its last activation was successful. If a schema is unreliable
but highly locally consistent, the mechanism constructs a synthetic item — an item
which, when on, indicates that the schema (its host schema), if activated, would
succeed. Effectively, such an item, when on, predicts what the result of activating the
host schema would be. For a variety of reasons (see [Dre91, section 4.2.3)), synthetic
items are fundamentally very different from primitive items and express concepts
which are inexpressible through any conventional combination of primitive items.
Primitive items get their state directly from the microworld. On the other hand,
the schema mechanism itself must maintain and update the state of all synthetic
items. The rules the mechanism uses to determine the state of a given synthetic item
are summarized in table 1.3. The use of synthetic items effectively allows the schema
mechanism to invent new concepts — concepts which are not expressed well by the

microworld or cannot be expressed by conjunctions of boolean values at all.

1.4.5 Control

The CM2 implementation cycles between periods where schemas are chosen for ac-
tivation on the basis of their value, and periods where the system is emphasizing
experimentation with recently created schemas [Dre89, section 3.2.2]. The primary
goal of the reimplementation of the schema mechanism is to validate the results found
in [Dre9l] and [Dre89]. There is no analysis of the ability of the CM2 implementation
to find and obtain states of high value in either source, rather, the results present-
ed are the structures (schemas, goal-directed actions and synthetic items) which the
system built in a reference run. As goal-seeking behavior is not documented in the
results of either source, and this reimplementation is an attempt to verify the results,
the reimplernentation detailed in this thesis does not need to cycle between periods of
goal-seeking and experimentation, and therefore doesn’t. The reimplementation also
does not make use of any notion of value (see [Dre89, pp. 78-83] for a discussion
of value). Rather, the reimplementation merely selects one of the currently defined
actions at random at each time step. As there are bare schemas for each action, and

bare schemas are always activatible, each action is always selectable, and so picking

31

¢ Host schema activated: If the host schema for a synthetic item is activated,
the item is turned on if the schema succeeded. If the schema failed, the item is
turned off.

e Host schema overridden: If the host schema is context overridden, the syn-
thetic item is turned off. For purposes of updating the synthetic item state, a
schema is considered overridden if an item is correlated by its extended con-
text at least 75% in the direction opposite the current state of the item. See
section 2.1.4 for more details.

e Context spinoff: Context spinoff schemas may be created from the host sche-
ma in an attempt to improve the reliability of the host schema. Thesc spinoff
schemas have the same action and result as the host schema. Whenever a re-
liable schema is apf .cable, its parent schema is checked to see if it is a host
schema. The fact that a reliable schema with the same action and result is
applicable implies that the host schema would succeed if activated, and there-
fore the synthetic item is turned on. If a reliable schema is applicable, but
overridden, its parent schema is not checked.

® Result predictions: If a reliable schema which contains a synthetic item in
its result is activated, the mechanism assumes that the schema succeeded, and
turns the item on (if positively included) or off (if negatively included).

e Local consistency: When the mechanism turns a synthetic item on or off
for any of the reasons listed here, the item stays in that state for the length
of the expected duration for that transition. (The schema mechanism keeps
two statistics for each synthetic item: average duration the item stays on once
turned on, and a similar statistic for off.) If that period of time ends without
the item being turned on or off by the mechanism, the item is placed in the
unknown state.

Host schema evidence has the highest priority when determining the state of a syn-
thetic item, as a synthetic item is defined in terms of success or failure of its host
schema. Context and result evidence have the next highest priority — if they dis-
agree, the synthetic item is placed in the unknown state. Local consistency evidence
has the lowest priority.

Table 1.3: Rules for determining synthetic item state.

32

from all actions randomly is perfectly acceptable. This also has the nice side effect

of ensuring that all actions are exercised roughly equally.

1.4.6 Summary of schema mechanism

Each of these facilities has an important role. While the marginal attribution tech-
nique is a powerful and central part of the system, it can only perform induction from
what is already known. Goal-directed actions give the system the ability to abstract
the details away from a process which is designed to bring about a desired result,
while synthetic items allow the system to invent useful and arbitrarily complex con-
cepts. Together, these two abilities enable the system to discover and define concepts
and procedures of its own — contributions to the knowledge base which could not be

made by marginal attribution.

1.5 Performance

While the marginal attribution algorithm is fairly compute intensive, especially as
the number of schemas increases, it is not intractably inefficient. See [Dre89, sec-
tion 3.3] for a discussion of the architecture of the CM2 implementation (a parallel
machine). This implementation completed its reference run in roughly one dAy of
real time. The reimplementation, somewhat simplified but running on a DECSta-
tion 5000/120 with 16 megabytes of memory and using Lucid LISP 4.0, completes a
reference run in slightly more than two days of real time. The schema mechanism
and microworld, while complicated, are not so compute intensive as to make them

cognitively implausible.

33

34

Chapter 2

Implementation

2.1 Differences between this work and Drescher’s

2.1.1 Goal-directed actions

(Note: the term goal-directed action is used in this work wherever Drescher’s works
would use the term “composite action”. See section 1.4.3.)

While Drescher’s work discusses goal-directed actions at some length, they do
not seem to be vital for accounting for many of the results he found. In particular,
his work does not include statistics for how the system behaves or performs when
engaging in goal seeking behavior.

The reimplementation is focused on evaluating the accuracy of the results present-
ed in [Dre91] and [Dre89]. This primary goal, combined with a desire to finish this
work in a timely fashion and some technical problems surrounding storage of goal-
directed action controller data in reasonable amounts of memory, led to a decision to
leave most of the goal-directed action ideas unimplemented.

In particular, ¢he reimplementation uses the method in [Dre89] for determining if
a goal-directed action should be created. When a new goal-directed action should be
cre ', the reimplementation merely displays a message to this effect. The reimple-
mentation does not create bare schemas for the new goal-directed action, and there-

fore none of the schemas created by the reimplementation pertain to goal-directed

35

actions. The reimplementation does not create goal-directed action structures, does
not update them, and cannot activate them.

In the reimplementation, only positive items or conjunctions (with items which are
positively or negatively included) are eligible to be the goal of a goal-directed action.
Having a negated conjunction as a goal would be fairly useless, as it is equivalent to
a disjunction of negated items, which is something the system doesn’t work with or
understand. A goal which is the negation of a single primitive item may be useful in
some rare cases, but generally, goal-directed actions which turn a given item on are
more useful. The reimplementation currently supports only positive single items, but
could very ea.s;ily be modified to support goal-directed actions which have negated
items as the goal. In fact, some support for this is already in place, but it seemed
fairly unimportant to finish given that the goal-directed action execution code is
incomplete.

With the limited implementation of goal-directed actions, some other statistics
and structures are no longer necessary. In particular, duration and correlation statis-
tics for schemas are no longer kept — each primitive action has a duration equal to
one clock tick and schemas are never activated for their result due to a simplified
control mechanism (see section 2.1.3), so neither statistic is needed.

However, many of the structures and code required for finishing the implementa-
tion of goal-directed actions are in place in the code, and with an inspired solution

to the memory problem noted above, the code could be finished fairly easily.

2.1.2 Value

Drescher’s work describes a system whereby various items are given delegated and
instrumental value, and the schema mechanism, when engaging in goal seeking be-
havior, tries to reach states which have high value. As there is no analysis of the
ability of the CM2 implementation to find and obtain states of high value in either
source and no goal seeking behavior in the reimplementation, the notion of value is

not necessary for the reimplementation and therefore omitted. With no notion of

36

value, there can be no notion of the cost of a schema, and therefore this statistic is

not maintained either. (See [Dre89, pp. 78-83).)

2.1.3 Control

Drescher’s work indicates that the schema mechanism should cycle between periods
of goal seeking behavior and periods of behavior designed to generate more knowl-
edge about the world [Dre89, section 3.2.2]. Goal seeking behavior is brought about
primarily through the activation of schemas which have goal-directed actions and
therefore encourage the bringing about of a desired result through the explicit acti-
vation of a series of schemas. The schema mechanism selects a schema for explicit
activation when it is applicable and contains a number of desired results.

As mentioned above, however, the reimplementation does not support the creation
or execution of goal-directed actions. Therefore, at each time step, the reimplemen-
tation must only choose between the ten primitive actions which are provided by
the microworld. In addition, the reimplementation never needs to activate a specific
schema for its result, due to the lack of goal-seeking behavior and no notion of value,
the system can activate any applicable schema at each time step. Therefore, the
reimplementation does not select a particular schema for explicit activation. Rather,
at each time step, one of the ten primitive actions is selected and executed. As there
are bare schemas for each action, and bare schemas are always eligible for activation,
each action is always selectable, and so picking from all actions randomly is perfectly
acceptable. This also has the nice side effect of ensuring that all actions are exercised
roughly equally. All schemas which share the selected action and have a satisfied
context are considered activated. Drescher’s distinction between explicit and implicit
activation is unnecessary, as there is no process of selecting a particular schema for

explicit activation in this implementation.

37

2.1.4 Overriding conditions

[Dre89, p. 106] specifies that a schema which is applicable can not be explicitly acti-
vated if an overriding context condition occurs. Due to the simplified control system of
the reimplementation, this distinction is unnecessary. The control system implement-
ed does not select a schema. for explicit activation and therefore the reimplementation
does not look for overriding conditions when picking an action to execute.

(Note for future implementors: in a private electronic mail message, Gary Drescher
indicated that the CM2 implementation was designed to override a schema when an
item is correlated by its extended context at least 50% in the direction opposite the
current state of the item. Example: if the extended context of /a/z indicates that
the counter for item p is at least halfway to the value which would force creation
of a context spinoff with p positively included, and p is negative at the start of this
cycle, then /a/z is suppressed — but it is still considered applicable and if action
a is taken by another schema, it will be considered implicitly activated for purposes
of updating its statistics. On the other hand /a/z cannot be selected for explicit

activation, because of the overriding condition.)

2.1.5 Microworld

There are some minor differences in the microworld from that described in [Dre91,
section 6.1]. In particular, the two objects are not in precisely the same position, and
an arbitrary decision was made to have both objects rotate clockwise among their
home positions (this wasn’t specified in the original sources).

Hand motions require that the destination square for the hand is empty — if
the hand is currently grasping an object, the destination square for the object must
 :mpty also. Note, however, that when the hand moves left, the hand ends up
occupying the former position of the grasped object, and vice versa for movements to
the right. Again, this was not specified in the original sources.

[Dre91, table 6.2] labels the haptic and visual proprioceptive items as having their

origin at position (1,1) while the other items using a 2D representation (such as the

38

visual field items) have their origin at (0,0). This is confusing, and in fact [Dre89]
uses a (0,0) origin for all 2D items. The microworld items are precisely as described
in [Dre91, table 6.2] except that all (1,1) based 2D items have been translated to (0,0)
based systems, for example, hp and vp items now range from (0,9) to (2,2) instead of
from (1,1) to (3,3).

In the reimplementation, if the hand is closed, it is automatically opened after
three time units pass. This is different than either [Dre91] or [Dre89], and was changed

to show that the precise value of the duration is not important.

2.1.6 Schema mechanism

Gary Drescher answered many questions via private electronic mail and phone conver-
sations. Most of the answers served to illuminate material which was already present
in his work — these answers were used in writing the explanations of the microworld
and schema mechanism in chapter 1.

One detail which was not adequately explained in either [Dre91] or [Dre89] was
precisely when, in the order of events, the system is supposed to randomly move
objects and open the hand if it’s been closed for more than a given clock tick duration.
Gary Drescher explained that part of the job of the mechanism is to differentiate
between transitions which are caused by the execution of an action and those which
are completely external. Therefore, on each cycle, the system selects an action to
perform, executes the action, calls the clock-tick function (which randomly moves
the objects and opens the hand if necessary, as well as incrementing the clock) and
then takes the statistics needed by the sch<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>