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Abstract
The web and social media promised to fundamentally change the public
sphere by democratizing access to information and lowering barriers
for participation in public discourse. While some of these expectations
have been met, we have also seen the negative effects of the web and
social media, amplifying people’s tendency to self-sort and polarize, and
providing a platform for uncivil public discourse. In this thesis, we focus
on two phenomena, toxicity and polarization in political discourse online.

In the first part of this thesis, we study media outlets’ role in political
polarization online, mainly, how the language they use to promote their
content influences the political diversity of their audience. We track the
engagement with tweets posted by media outlets over three years (556k
tweets, 104M retweets) and model the relationship between the tweet text
and the political diversity of the audience. We build a tool that integrates
our model and helps journalists craft tweets engaging to a politically
diverse audience, guided by the model predictions. To test the real-world
impact of the tool, we partner with the PBS documentary series Frontline
and run a series of advertising experiments on Twitter. We find that in
five out of the seven experiments, the tweets selected by our model were
indeed engaging to a more politically diverse audience, illustrating the
effectiveness of our tool.

In the second part of this thesis, we study the relationship between the
structure and the toxicity in political conversations on Twitter. We collect
data on conversations prompted by tweets posted by news outlets and
politicians running in the 2018 US midterm elections (1.18M conversations,
58.5M tweets). To investigate the link between structure and toxicity, we
analyze the conversations at the individual, dyad, and group levels. We
also consider two prediction tasks: (i) whether the conversation as a
whole will become more or less toxic, and (ii) whether the next reply,
posted by a specific user, will be toxic. We demonstrate that the structural
characteristics of a conversation can be used to detect early signs of toxicity,
both at the individual and the group level.
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1 I N T R O D U C T I O N

In the imagination of many, the web and social media had the potential to

realize Habermas’s idealized vision of the public sphere, a place where

people come together to discuss the news of the day, form public opinion,

and hold the state accountable. Unlike English coffee houses, the web is

accessible from anywhere and to anyone, not just to the privileged few.

While the web and social media have made it easier to access information

and engage with one another, we have also started to see their negative

effects. Two phenomena, in particular, have attracted much attention,

especially in the wake of the 2016 presidential election in the US: political

polarization and antisocial behavior online.

Studies of political polarization have traditionally focused on policy

preferences. There is overwhelming evidence that political elites in the

US are getting more polarized over the last four decades [58, 65], but lack

of consensus on whether the general public is more ideologically polar-

ized [29, 42]. More recently, scholars have started studying polarization in

terms of affect—feeling positive sentiment for one’s own group and nega-

tive sentiment toward those identifying with opposing groups—instead of

ideology [45, 46]. While partisans over the last 30 years consistently give

enthusiastic ratings to their own party, both Democrats and Republicans

report that they like the members of the other party less and less [45].

Many attribute this increase in animosity, at least in part, to the web

and social media, blaming them for two drivers of polarization: (1) echo

chambers, making it easier for individuals to be exposed only to informa-

tion from like-minded individuals [89], and (2) filter bubbles, algorithmic

content curation based on users’ past behavior giving more visibility to
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24 introduction

content that confirms the users’ worldviews [75]. In this thesis, we focus

on one aspect of political polarization on social media: the role that news

outlets play in the process. In particular, we are interested in how the

language they use to promote their content affects the political diversity of

their audience. As more than two-thirds of Americans get at least some of

their news on social media [63], it is increasingly important to understand

how the outlets’ framing and presentation of the news on social media

influences who engages with them.

Antisocial behavior is another phenomenon that hinders the potential

of social media to support rich and vibrant public discourse. Antisocial be-

havior is an umbrella term that includes trolling, bullying, and harassment.

Surveys suggest that these behaviors are very prevalent: 66% of Americans

report that they have witnessed harassment online, and 41% say they have

personally experienced it [27]. These behaviors are often exacerbated by

the fact that people tend to be less inhibited in their online interactions [87].

Early studies argued that people engaging in antisocial behaviors online

have unique personality traits [12, 79] and motivations [4, 40, 84]. However,

more recent work shows that situational factors, such as the individual’s

mood or the surrounding context of a discussion, can trigger antisocial

behaviors [17]. This suggests that even ordinary people can exhibit these

behaviors under the right circumstances. In this thesis, we focus on toxicity

in political conversations, rude and disrespectful comments that may make

users leave the discussion. More specifically, we are interested in the social

conditions that are more likely to lead to toxic behaviors. We posit that

the social structure in which the conversation participants are embedded

affects their behavior. Toxicity can impede the healthy discussion that is at

the core of the democratic process, and understanding which factors lead

to toxic behaviors is essential.

Next, we describe our approach to studying polarization and toxicity in

political discourse online.
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language and political polarization

In the first part of this thesis, we study media outlets’ role in political

polarization online. In particular, how the language they use to promote

their content online influences the political diversity of their audience.

Beyond analyzing the relationship between language and audience diver-

sity, we partner with journalists from the documentary series Frontline

and apply our models to help them reach a more politically diverse audi-

ence on Twitter. Frontline is a world-renowned investigative journalism

program that produces in-depth documentaries on various domestic and

international issues. The series has been on the air since 1983 and has

won every major journalism and broadcasting award, including 93 Emmy

Awards and 24 Peabody Awards. As a PBS (Public Broadcasting Service)

documentary series, their goal is not just to maximize engagement with

their content, but also to reach as wide an audience as possible, across the

political spectrum.

To study the relationship between language and audience diversity, we

tracked all tweets posted by Frontline and five major news outlets that span

the full political spectrum (New York Times, CNN, Wall Street Journal,

Fox News, and Breitbart) over three years, collecting over 566K tweets and

104M retweets. To measure the political diversity of the audience of each

tweet, we consider the users who retweeted the tweet, and then calculate

their political alignments in terms of how often they share content from

left- and right-leaning websites.

We use this data to model the relationship between the tweet text and

the political diversity of the audience. Recent advances in deep learning

have revolutionized the field of natural language processing, obtaining

extraordinary results on a wide range of tasks, from question answer-

ing to general language understanding. We apply these state-of-the-art

techniques to train machine learning models that, given an input text,

accurately predict the expected audience diversity.
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We integrate the prediction models into a web application that allows

users to input tweet drafts and get instant predictions of the expected

audience diversity. The application’s goal is to supplement the journalists’

writing process by allowing them to iterate on the tweet text based on

the model predictions and help them craft tweets that are more likely

to reach a diverse audience. In addition to the model predictions, we

also highlight relevant words in the tweet drafts and surface semantically

similar historical tweets that were engaging to a diverse audience.

Finally, together with Frontline, we run a series of advertising experi-

ments on Twitter to test whether our models can be effectively used to

select tweets that are engaging to a more politically diverse audience. In

each experiment, we select a pair of tweets—one predicted to be engaging

to a politically diverse audience, and another predicted to be engaging to

a more homogeneous group of users—and measure the engagement of

left- and right-leaning users with each tweet.

the structure of toxic conversations

In the second part of this thesis, we investigate the relationship between

structure and toxicity of political conversations on Twitter. We were moti-

vated by the simple idea that communication is a social act and that the

relationships between conversation participants will influence their behav-

iors. The goal of this study is twofold: (i) to understand the relationship

between the conversational structure and toxicity after the conversation

has unfolded, and (ii) to evaluate the predictive value of the structural

view of the conversations in forecasting future toxicity as the conversations

unfold.

We tracked the conversations prompted by tweets posted by five major

news outlets (New York Times, CNN, Wall Street Journal, Fox News, and

Breitbart) over one year, and 1,430 politicians who ran for office in the 2018

US midterm elections over four months. We collected more than 1.18M
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conversations containing >58.5M tweets posted by >4.4M users. Using a

machine learning model, we annotated the conversation tweets as toxic or

non-toxic: we considered a tweet to be toxic if it is a rude, disrespectful, or

unreasonable comment that may make users leave a discussion.

To capture the social and conversational structure of the conversations,

we describe each conversation using three different representations: (i)

reply tree, which encodes the relationships between individual replies,

where two tweets are connected to each other if one was posted in reply

to the other, (ii) reply graph, which encodes the interactions between users,

where one user is connected to another if they replied to one of their

tweets, (iii) follow graph, which encodes the social relationships among

the users, where one user is connected to another if they follow them on

Twitter.

To study the relationship between the conversational structure and

toxicity after the conversation is over, we analyze the conversations at

three levels: individual, dyadic, and group level. At the individual level,

we analyze the users’ behavior across many conversations; at the dyad

level, we investigate how the probability of a toxic reply varies depending

on the relationship between the two conversation participants; and at

the group level, we study how the social and conversational structure

among the conversation participants influences the overall toxicity of the

conversation.

To test the utility of the structural representation of the conversations in

forecasting toxicity, we consider two prediction tasks. In the first task, we

aim to predict whether the conversation will become more or less toxic

than expected, given the initial stages of the conversation. In the second

task, we attempt to predict whether the next reply posted by a specific

user will be toxic, given the conversation so far and the user’s relationship

with the current conversation participants.

Through this study, we make both significant theoretical contributions,

advancing our understanding of the social factors that contribute to toxicity

online; and practical contributions, demonstrating that models based on
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the structural characteristics of a conversation can be used to detect early

signs of conversation derailment and, potentially, steer conversations in a

less toxic direction.

thesis outline

The remainder of this thesis is organized as follows:

chapter 2: We study the relationship between language and political

polarization.

chapter 3: We investigate the relationship between the structure and

toxicity in political conversations.

chapter 4: We examine how the two phenomena that are the main

subject of this thesis—polarization and toxicity—relate to each other.

chapter 5: In the final chapter, we summarize our contributions and

propose future directions for research.



2
L A N G U A G E A N D P O L I T I C A L

P O L A R I Z AT I O N

2.1 introduction

News outlets have the potential to bring people with different political

views together and either create a shared reality or reinforce the existing

political divides. With more than two-thirds of Americans using social

media as their primary news source, how news outlets present their news

online has an enormous impact on who engages with them. In this chapter,

we investigate the role that news outlets play in political polarization

online and, in particular, how the language they use to promote their

content online influences the political diversity of their audience.

We track the tweets posted by five news outlets over three years and

measure the political diversity of the users who engage with them. Based

on this data, we model the relationship between the tweet text and the

audiences’ political diversity. To test our models in the real world, we part-

ner with the documentary series Frontline. Like other programs, Frontline

uses social media to promote their films. However, as a PBS program, their

goal is not just to maximize engagement, but also to reach a politically

diverse audience. We build a web application that integrates our models

and allows Frontline’s journalists to craft more bridging tweets, guided by

the model predictions.

To test whether the model predictions can be effectively used to compose

more bridging tweets, we run a series of advertising experiments promot-

ing Frontline’s tweets. In each experiment, we select a pair of tweets—one

predicted to be more bridging, and another predicted to be less bridg-
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ing—and measure the engagement of left- and right-leaning users with

each tweet.

The rest of this chapter is organized as follows. In Section 2.2, we

review previous work relevant to the current study. We describe the

data collection process in Section 2.3 and evaluate the quality of our

estimates of the users’ political alignment in Section 2.4. We define the

prediction task and evaluate different models in Section 2.5, and describe

the web application that allows journalists to interact with the models in

Section 2.6. In Section 2.7, we explain the setup and discuss the results of

the advertising experiments we ran in partnership with Frontline. Finally,

we conclude and summarize our findings in Section 2.8.

2.2 related work

We start by reviewing papers that are most closely related to different

aspects of this part of the thesis, namely: (i) studies that examine the

relationship between language and virality, (ii) the differences in language

used by different groups when discussing the same topics/issues, (iii)

the challenges of running randomized experiments using advertising

campaigns.

predicting virality. The problem of predicting the political diversity

of the audience based on the language used in a post is most related to

past work on predicting the popularity/virality of a post. Since the early

days of social media, there have been many studies that aim at predicting

the popularity of a post before it is posted, using features related to the

post language, poster characteristics, and posting time [2, 38, 44, 48, 78].

As recent work [62] has highlighted, it is challenging to systematically

compare these studies since many differ in the experimental setup and

outcome measures. While most studies report that it is possible, at least to

some extent, to predict popularity a priori, recent evidence suggests that
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there is a limit to the prediction accuracy, even if infinite amounts of data

are available [62]. Here, we highlight several papers that have focused on

the content characteristics and have studied this question most rigorously.

Berger and Milkman [9] study how emotion in online content influences

virality. They collect 7,000 New York Times articles and compare the

emotions evoked by those that made it to the most-emailed list vs. those

that did not. They find that more positive and more negative content is

more viral than content that does not evoke any emotion and that positive

content is more viral than negative content. Their results hold even after

controlling for how prominently the article was displayed on the web

and printed version of the newspaper, when it was published, and who

it was written by. Looking at specific emotions, they find that virality

is driven by more than just valence: content that evokes high-arousal

emotions (awe, anger, anxiety) is more popular regardless of the valence.

To confirm that high-arousal content indeed causes virality, they run a

series of randomized lab experiments. They show subjects (a) high vs. low

amusement, (b) high vs. low anger, (c) high vs. low sadness version of

a story, and ask them how likely they are to share the story with others.

The results confirm their observational analysis: content that evoked high-

arousal (high amusement, high anger) is more likely to be shared, while

content that evoked more of a deactivating emotion (high sadness) is less

likely to be shared.

Reis et al. [26] provide some more evidence for the findings by Berger

and Milkman. They analyze 70k headlines produced by four global media

outlets and study how sentiment relates to popularity. They find that the

majority of the news, across the four outlets, have negative sentiment and

that the strength of the sentiment correlates with popularity—extremely

positive or extremely negative headlines attract more attention than more

neutral ones.

Tan et al. [90] study the effect of wording tweets on their virality, i.e., how

often they are retweeted. To control for author and topic effects, they collect

pairs of tweets posted by the same user and containing the same URL, but
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with different wording. They analyze the linguistic differences between

the successful (i.e., more retweeted) and unsuccessful tweets within each

pair and find that tweets that are retweeted more tend to be longer (where

length is a proxy for informativeness), use language similar to the user’s

previous tweets, conform to the poster’s followers’ expectations (measured

by the user’s and user’s followers’ language models) and read like news

headlines (using New York Times headlines as a reference). More retweeted

tweets also tend to be more general (use indefinite articles more often),

more readable, and contain more emotional (both positive and negative)

words (corroborating the findings in [9]). They also test how good human

raters are at predicting which of the two tweets is more retweeted and

find that they achieve an average accuracy of 61.3%, better than random

guessing, but far from perfect. Using a logistic regression model with

the custom linguistic features (most described above), they were able to

outperform the human raters, achieving 63% accuracy. Finally, combining

the custom features with the bag-of-words representation of the text

unigrams and bigrams, they were able to achieve even higher performance

of 66% accuracy.

Gligorić et al. [32] study how the brevity of a message affects its pop-

ularity. They take a sample of 60 long tweets (250 characters long) and

ask crowd workers to shorten them to 9 different lengths while preserving

the meaning of the original message. Then, they show another group of

crowd workers pairs of tweets, the original tweet and a shortened one,

and ask them which one they think will get more retweets. They find that

there are significant benefits of brevity: the concise versions of the tweets

were, on average, more successful than the original tweets and the optimal

reduction is between 10%-20%. Comparing the language of the original

tweets and the more concise versions, they find that verbs and negations

(part of speech that carries essential information) are disproportionally

more likely to be preserved. They also find that words that describe affect

are much more likely to be preserved and that the effect is much stronger

for negative (anger, sadness, anxiety) than positive emotions.
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subgroup receptivity. Demszky et al. [24] analyze the relationship

between language and political polarization in tweets related to 21 mass

shootings in the US. They study four aspects: topic choice, framing, affect,

and illocutionary force. They classify each user who tweeted about one of

these events as a Democrat or a Republican (based on whom they follow)

and study the difference in the language used by each group. They cluster

tweets by topic and find that the most polarizing topics, across events,

are related to the shooter’s identity & ideology (more discussed among

Republicans) and laws & policy (more discussed among Democrats). Look-

ing at the use of specific terms, they find a strong relationship between

polarization and the race of the shooter, e.g., the term “terrorist” is more

likely to be used by Democrats when the shooter is white and more used

by Republicans when the shooter is a person of color. Analyzing the affect

of the language, they find that positive sentiment, sadness, and trust are

more likely to be expressed by Democrats, while fear and disgust are more

likely to be expressed by Republicans. They also find that in the aftermath

of a tragic event, Democrats are much more likely to use phrases associated

with illocutionary force (should, must, have to, and need to), reflecting

on what should have happened or what should happen to prevent such

events.

Lakkaraju et al. [57] study how the interaction between the language

used to present the content and the target audience affects the popularity

of the content. They analyze photos posted multiple times on Reddit, on

different communities (subreddits), with different titles. This allows them

to disentangle the photo’s intrinsic quality from other factors, such as the

title and the community. They propose a predictive model of popularity

that has two components: (i) a community component capturing when

(time of day), how many times, and to which communities the photo

was previously submitted, and (ii) a language component that captures

the quality of the title. They find that the community model alone has

higher predictive power than the language model alone (R2 = 0.56 vs.

R2 = 0.14) and that combining the two leads to the best performance
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(R2 = 0.64). Looking at the language model, they find that popular titles

use language that is familiar to the community (relative to other posts

in the same subreddit) but is different from the titles accompanying the

photo in previous posts. They also find that nouns and adjectives impact

the success of a title more than verbs and adverbs.

ads as experiments. Eckles et al. [28] highlight the challenges of

running field experiments using social media advertising platforms. They

argue that using the standard features of an online advertising platform

to compare how different versions of an advertisement perform does not

create a randomized experiment. Their key argument is that users are

not randomly assigned to different versions of the advertisement. In fact,

advertising platforms optimize the campaign performance by showing ad-

vertisements to users who are more likely to fulfill the campaign objective

(e.g., clicks, app installs, etc.) and the groups that end up being exposed

to each version of the advertisement are not comparable. Moreover, users

may be shown both the treatment and control versions of an advertisement,

and users in one condition (campaign) may be shown the advertisement

more times than users in another condition. To illustrate their point, they

analyze the data from studies by Matz et al. [64], which uses Facebook ad-

vertisements to test the effectiveness of psychologically targeted messages.

Their analysis shows a severe imbalance of the user characteristics among

the users who were exposed to different advertisements, thus calling into

question the internal validity of the experiments.

An alternative to running experiments using an ad platform is running a

survey on a crowdsourcing platform and asking workers which messages

they are more likely to engage with or which messages they believe are

more likely to be retweeted (similar to [32]). Recent empirical evidence

suggests that self-reported willingness to share information indeed corre-

lates with actual sharing behavior on Twitter [69]. It is worth noting that

this kind of experiment is more likely to have lower external validity.
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2.3 data

2.3.1 Data Collection

To systematically study the relationship between language and audience

diversity, we collect a large number of tweets posted by news outlets and

data related to the users who engaged with those tweets. We use the

news outlets’ tweets to characterize the language and the user data to

characterize the audience and their political alignment in particular.

We tracked the tweets of five major news outlets and Frontline over the

course of three years and three months, from Jan 2017 to March 2020. We

selected the New York Times, CNN, Wall Street Journal, Fox News, and

Breitbart as they have large followings on Twitter, their tweets consistently

receive a lot of engagement, and together they cover the full political

spectrum [6, 13]. We collected all tweets posted by the outlets and all

of their retweets. We used the Twitter PowerTrack (also known as the

Firehose) to capture the data in real-time between May 2018 and March

2020, and we ran batch jobs using the Twitter Historical PowerTrack to

collect past tweets published between Jan 2017 and May 2018. Due to the

limit of the number of tweets that we could ingest per month, we were

unable to consider a larger set of outlets.

Figure 2.1 shows the daily volume of tweets per outlet over the data

collection period. In total, we collected 566k tweets and the corresponding

104M retweets. We note the drop in the volume of tweets posted by Fox

News after Nov 8, 2019, when they stopped tweeting in protest against

Twitter after a group of demonstrators posted the home address of Tucker

Carlson, one of the network’s show hosts. To avoid any bias due to data

censoring, we excluded from the analysis tweets posted over the last week

of the data collection period, but counted the new retweets of tweets

posted prior to that. Figure 2.2 shows the total number of tweets per

outlet.
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Figure 2.1: Daily volume of tweets posted by each account over the full data
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To characterize the users who engaged with each tweet, we compute

summary statistics of the political alignments of the users who retweeted

the tweet. To measure the political diversity of the audience, we compute

the entropy of the retweeters’ (discretized) political alignments, and to

measure the overall alignment of the audience, we compute the mean

of their (numerical) political alignments. We consider only retweets as

they are a clear sign of agreement and endorsement of the content. We

decided to exclude quote tweets, i.e., retweets with a commentary, which

can be used to express disagreement with the original tweet. To ensure

that we have a good estimate of the tweets’ audience characteristics, we

filter out tweets with less than three retweeters whose political alignment

we could estimate. Figure 2.3 shows the distribution of average alignment

and entropy per tweet for each outlet.
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Figure 2.3: Distribution of political alignment (A) and entropy (B) per tweet for
each account. The vertical dashed lines represent the average align-
ment/entropy per outlet. The tweet alignment scores are computed
as the average of the retweeters alignment scores, and the entropy is
computed on the distribution of left- vs. right-leaning retweeters. The
user alignments scores and classifications were estimated based on
the retweets’ media-sharing patterns.
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2.3.2 Measuring User Alignment

To measure the users’ political alignments, we analyze the links that

they share in their tweets and retweets. We build on previous work by

Bakshy et al. [5, 6] which demonstrates that left- and right-leaning users

share significantly different content. Based on their analysis—grounded

in self-reported political leaning of the users—they released the political

alignment of the 500 most shared domains with scores ranging from -1

(left-leaning) to +1 (right-leaning).

To assign a political alignment score to each user, we take the URLs

of the content that they tweeted, look up the political alignment of each

URL domain, and take the average. To obtain a binary classification for

each user, we threshold the average alignment score at zero, classifying

users with negative average alignment score as left-leaning and users with

positive average alignment scores as right-leaning.

To find tweets posted by the users, we use a 3-year snapshot of the

Twitter Decahose, which includes a 10% sample of all public tweets posted

between January 2017 and December 2019. We use the Decahose snapshot

instead of retrieving the user’s tweets through the Twitter REST API for

two reasons. First, the Rest API limits the number of user tweets we can

retrieve to the 3,200 most recent ones. This would prohibit us from getting

a longitudinal view of the users’ tweeting behavior, especially for active

users. A second more practical reason is that the REST API returns only

the shortened URLs of the links included in the users’ tweets, which we

would have to expand in order to match them with the domain alignments

by Bakshy et al. The Decahose, on the other hand, provides the expanded

URLs that we can readily use.

Beyond using the Decahose to calculate user alignment scores, we also

used it to expand the set of news outlets we consider in our analysis.

However, as we detail in Section 2.5.6, including this additional data did

not lead to more accurate models.
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2.4 political alignment score evaluation

Since we heavily rely on the estimated political alignment scores in rest

of the analysis, in this section, we evaluate the quality of the alignments

in three different ways: (i) we compare the breakdown of left- vs. right-

leaning users for each US state against the proportion of Republican votes

in 2016 and 2018 elections, (ii) we compare the alignments obtained using

the users’ media-sharing patterns against the estimates of another method

that relies on the users’ follow relationships, and (iii) we run a survey

on Amazon Mechanical Turk where we ask a group of left- and right-

leaning users whether they would share sample tweets, and compare their

responses against the estimated alignment scores of the Twitter users who

actually retweeted the sample tweets.

2.4.1 Comparison with the Share of Two-Party Vote per State

To validate our user ideology classifications, we compare the proportion of

users classified as right-leaning for each US state against the Republican

share of the two-party vote in the 2016 presidential and 2018 midterm

elections. We use the same methodology as several previous studies [7, 8,

24].

To infer the users’ states, we used the location field in their profile

information. Since the field allows any text input, we used a few simple

heuristics to extract the user’s state: (i) we check whether the location field

ends with a state abbreviation (e.g., “Cambridge, MA”), (ii) we search for a

full state name anywhere in the field, (iii) if we find matches in both cases,

rule i takes precedence, which avoids errors in cases such as: “Washington,

DC” and “Kansas City, MO”. We designed these rules to be high precision

and not necessarily high recall.

We used all users in the Decahose whose location we could infer and

for whom we had enough data to estimate their political alignment. This

sample consisted of 2.3M users. To calculate the proportions of Republican
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Figure 2.4: Comparison of the proportion of right-leaning users in our dataset
for each US state against the proportion of right-leaning votes in the
2016 presidential elections (A) and the 2018 midterm elections (B).
The lines are fitted using linear regression weighted by the number
of users per state (A: R2 = 0.81, B: R2 = 0.78).
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votes, we relied on the election results data curated by the MIT Elections

lab [22, 23]. In the case of the 2018 midterm elections, we consider only the

results of the elections for the House of Representatives, as only a third of

the Senate seats were on the ballot.

Figures 2.4 show the results. We observe a strong correlation between

the fraction of users classified as right-leaning in our dataset and both the

proportion of votes for Donald Trump in 2016 (R2 = 0.81 in a weighted

linear regression adjusting for the number of users per state, Figure 2.4A)

and the proportion of votes for Republican candidates for the House

of representatives in 2018 (R2 = 0.78 in a weighted linear regression,

Figure 2.4B). This analysis suggests that, despite the fact that the Twitter

users in our dataset are a highly self-selected sample of the population,

the distribution of right-leaning users in our dataset is very similar to that

of right-leaning voters across states.

2.4.2 Comparison with Network-Based User Alignments

Next, we compare the alignments we calculated based on the users’ sharing

patterns with other approaches of calculating political alignment.

Barberá et al. [8] propose a method for inferring the users’ alignment by

considering who they follow. Their key idea is that users are more likely

to follow accounts that align with their political views, and in particular,

to follow accounts that have an unambiguous ideological leaning such

as presidential candidates, legislators, and media outlets. Their method

works as follows: (a) they construct an adjacency matrix which indicates

whether a user i (rows) follows a political account j (columns), (b) they

apply Correspondence Analysis which uses SVD to factorize the matrix by

its most important dimensions, (c) they consider the first component to be

an estimate of the political alignment of the user, and (d) they standardize

the estimates to have a mean of zero and standard deviation of one to ease

interpretation. They demonstrate that since ideology is the most salient
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Figure 2.5: Comparison of the tweet alignment scores calculated based on the
users’ media-sharing patterns against those calculated based on their
follow relationships.

dimension discriminating among the political accounts in the columns,

the first component indeed aligns well with ideology.

We compare the tweet alignment scores calculated based on the users’

media-sharing patterns against those calculated based on their follow

relationships. The follow graph based alignments were computed based

on the state of the follow graph in July, 2018
1. We use only tweets posted by

the outlets for which we had enough information to compute both types of

alignments, i.e., tweets with at least three retweeters whose alignments we

could estimate. We find a very strong correlation between the alignments

computed using the two methods: Pearson r = 0.99 and Spearman

ρ = 0.80 (Figure 2.5).

While the alignment estimates are highly correlated, we observe that in

93% of the tweets, the alignments based on the media sharing patterns give

us more information to estimate the alignments of the tweets in our dataset.

1 We thank Pablo Barberá for kindly providing the user alignment scores to us.
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We find that we can infer the user alignments of more retweeters per tweet

and that we have enough information to compute the alignments of more

tweets (i.e., more tweets have at least three retweeters whose alignment we

could infer). This is perhaps because users who have retweeted one of the

outlets’ tweets are more likely to have also shared links to other outlets

that are in the list of domains we use to infer the alignments.

2.4.3 Mechanical Turk Survey

To further validate our tweet alignment scores, we run a Mechanical Turk

survey asking left- and right-leaning participants whether they would

consider sharing sample tweets and compare their responses against the

inferred alignment scores. We build on recent work which has shown that

self-reported willingness to share political news in online surveys con-

ducted on Mechanical Turk correlates with actual sharing on Twitter [69].

We sampled ten tweets for each outlet and Frontline, excluding Fox

News whose account was inactive at the time due to their boycott of

Twitter. To ensure that the tweets included in the survey were about topics

that were relevant at the time, we considered only tweets posted by the

outlets during the six weeks prior to the survey (i.e., February, 2020). To

make sure that the sample tweets capture the variation of tweet alignments,

we took a stratified sample for each outlet: we first computed the deciles

of the outlet’s tweet alignment distribution and then sampled one tweet

from each decile. We also ensured that the tweets are self-contained in that

they (i) do not require any additional context to understand, and (ii) do

not reveal the organization that posted them.

The survey included 25 questions. We first explained to the participants

that they will be shown a series of social media posts posted by major news

outlets and that they will be asked whether they will consider sharing

them. Then, we showed them one tweet at a time and asked them “Would

you consider sharing the following post on social media?” (Figure 2.6). We

worded the question in a similar way as Mosleh et al. [69]. We did not
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Figure 2.6: Sample question of the Mechanical Turk survey used to validate the
tweet alignment scores.

show the images or the headlines associated with the tweets. To avoid any

bias due to ordering effects, we randomized the order of the questions

and the order of the response buttons. We also included three attention

checks, randomly placed among the other questions, that simply asked

the participants to press the “yes” or “no” button.

To ensure high-quality responses, we invited only participants from the

US that have completed at least 100 tasks and have a high approval rate

(>98%). One of the main advantages of Mechanical Turk is that it allows

us to recruit participants that have self-identified as “Liberal” or “Conser-

vative”. We administered the survey such that, for each sample tweet, we

obtained 50 responses by “Liberal” and 50 responses by “Conservative”

participants. We compensated them 60 cents for completing the survey

or roughly 9$ per hour. Each participant could take the survey only once.

The protocol was approved by the MIT Institutional Review Board.

For each tweet, we compute the fraction of right-leaning survey partic-

ipants out of all survey participants who said that they would consider

sharing the tweet. We compare these values against the average political

alignment scores and the fraction of users classified as right-leaning that

actually retweeted the tweet. As we described above, we used the users’

media sharing patterns to infer their alignment and to classify them into

left- vs. right-leaning.
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Figure 2.7: Comparison of the fraction of right-leaning survey respondents who
said that they would consider sharing a sample tweet against the
average alignment of the users who actually retweet the tweet (A)
and the fraction of right-leaning users who retweeted the tweet (B).
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We find a positive correlation between the fraction of right-leaning

survey participants who said that they would share the tweets and the

average alignment of the retweets, ranging between r = 0.5 and r = 0.75

when we consider the tweets of each outlet individually, and r = 0.53

when we consider all tweets together (Figure 2.7A). We also find a positive

correlation between the survey responses and the fraction of retweeters

that were classified as right-leaning, ranging between r = 0.34 and r = 0.76

by outlet and r = 0.50 in overall (Figure 2.7).

In summary, we find a strong alignment between the tweet metrics based

on the retweeters’ inferred political leaning and the survey responses, de-

spite the fact that the survey respondents were shown only the tweet text.

2.5 predictive modeling

2.5.1 Measuring Audience Diversity

desiderata. Before we discuss the pros and cons of any specific

choices, it is worth outlining our goals and constraints in measuring

audience diversity. First, the main goal is to adopt a measure that will

allow us to quantify the extent to which both left- and right-leaning users

engaged with a tweet. Second, the measure needs to be intuitive and

easy to explain to non-experts, such as the journalists who will use the

predictive models to compose new tweets. Third, we need a measure that

we can use both in our predictive modeling and when running advertising

experiments that test whether choosing tweets with predictive models

actually leads to higher audience diversity.

class definitions. As we will discuss in more detail later, we are

much more constrained in what we can measure during the advertising

experiments. For instance, we can only specify which users the adver-

tisements could be shown to and measure the overall engagement of the



48 language and political polarization

group. Although we can have more granular measurements of the users’

alignments, we will not be able to know the identities of the individual

users who engaged with the content. This inherently constrains us to a def-

inition of audience diversity based on a categorical definition of the users’

alignment. As such, we can run separate advertising campaigns for each

category of users, measure their engagement, and calculate the diversity.

The most natural categorization of the users is to classify them as left-

and right-leaning. This classification also leads to an intuitive way of

measuring the diversity of a group of users: the group is most diverse if

there is an equal number of left- and right-leaning users and least diverse

if the group consists of only left- or only right-leaning users.

Alternatively, we can classify the users into more granular classes, e.g.,

far left, left, center, right, far right leaning. The benefit of this classification

is that although we still group users into discrete categories, we preserve

more information from the continuous alignment score2. However, such

classification complicates the definition and interpretation of a diversity

measure. First, it is unclear how to define diversity under this classification.

Should a group of only centrist users have the same diversity as a group

with an equal number of left- and right-leaning users? Should we weigh

the far-left and far-right leaning users more than the left- and right-leaning

users and by how much? Is a group of an equal number of far-left, left,

and centrist users more diverse than a group of an equal number of left,

centrist, and right-leaning users? Second, even if we answer these ques-

tions, explaining and interpreting such a definition will be much harder

and require explaining the subjective choices in defining the measure.

With these trade-offs in mind, we opt for the binary classification of the

users into left- and right-leaning categories.

diversity measure. Given the binary classification of the users to

left- and right-leaning, one way to measure the diversity of a group of

users is to define a discrete random variable X that takes two values, le f t

2 By the same token, this increases the measurement error: users are now even more likely
to be assigned to an incorrect class due to an error in our user alignment measurements.
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and right, with respective probabilities ple f t and pright, and compute its

entropy. The entropy is commonly used to measure diversity and is often

referred to as the Diversity Index or Shannon Index. It is defined as:

H(X) = −ple f t log2(ple f t)− pright log2(pright).

It is maximized when (H = 1) when ple f t = pright and minimized (H = 0)

when ple f t = 0 or pright = 0 (Figure 2.8a).

We also considered using cross-entropy and Kullback–Leibler diver-

gence. The benefit of these measures is that they would allow us to

account for the distribution of left- and right-leaning users per outlet. We

can define another random variable Y that captures the overall audience of

an outlet and takes two values, le f t and right, with respective probabilities

qle f t and qright. We can estimate qle f t and qright by calculating the number

of left- and right-leaning followers or the number of left- and right-leaning

retweeters across many tweets. The cross-entropy is defined as:

H(X, Y) = −qle f t log2(ple f t)− qright log2(pright),

and the KL divergence is defined as:

DKL(X||Y) = −qle f t log2

(
qle f t

ple f t

)
− qright log2

(
qright

pright

)
.

The entropy, cross-entropy, and the KL divergence are related to each other:

H(X, Y) = H(X) + DKL(X||Y).

As Figures 2.8b and 2.8c show, the cross-entropy and the KL divergence

measure how much the tweet distribution (p) departs from the outlet dis-

tribution (q). Their values increase when the tweet alignment distribution

(ple f t vs. pright) is both more and less evenly split than q (qle f t vs. qright)

and do not capture whether the tweet is more or less bridging than we

would expect given the outlet distribution. This makes them an unsuitable

choice for a diversity measure in this case.
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Figure 2.8: Entropy, cross-entropy, and KL divergence as a function of ple f t, i.e.,
the breakdown of left- vs. right-leaning retweeters. Note that pright =
1− ple f t. In the case of the cross-entropy and the KL divergence, q
(qle f t and qright) represents the overall audience distribution of the
outlet.
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estimation. To estimate ple f t and pright for each tweet, we use Max-

imum Likelihood Estimation with Laplace Smoothing [61], i.e., we add

a pseudocount of one to the number of observed retweets by left- and

right-leaning users:

ple f t =
nle f t + 1

nle f t + nright + 2
, pright =

nright + 1
nle f t + nright + 2

,

where nle f t and nright is the number of observed retweets by left- and

right-leaning users, respectively.

This estimation approach also has a Bayesian interpretation: it is equiva-

lent to using a Beta distribution—Beta(1,1), in particular—as the conjugate

prior for the parameters of a Binomial distribution [31]. The smoothing has

the most significant effect on the estimates of tweets with a small number

of retweets, and its effect diminishes as the number of observed retweets in-

creases. Note that we still consider only tweets with at least three retweets.

From a practical perspective, the smoothing allows us to distinguish be-

tween polarizing tweets with a few retweets (e.g., nle f t = 3, nright = 0) and

polarizing tweets which have a lot of retweets (e.g., nle f t = 100, nright = 0);

in the latter case, we have much more information that suggests that the

tweet is indeed very polarizing.

2.5.2 Defining the Prediction Target

Next, we investigate different ways of defining the target variable of

our prediction problem. We consider three possibilities: (i) regression

task where we predict the entropy of the retweeters’ political alignment

distribution, (ii) classification task where we predict whether the tweet’s

entropy is below or above the median entropy of all tweets in the dataset,

and (iii) classification task but we predict whether the tweet’s entropy is

below or above the median entropy of all tweets posted by the outlet.

The first approach is most intuitive; since our diversity measure is con-

tinuous, it is natural to think of the prediction problem as a regression. The
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benefit of the second approach is that by casting the problem to classifica-

tion, we train the model to distinguish between bridging and non-bridging

language, rather than to quantify exactly how bridging the content is,

which is a much harder learning problem. The classification setup is also

less sensitive to measurement error, i.e., the measurement error needs to

be large for a data point to be placed in the wrong class. Finally, the third

approach allows us to take into account the fact that different outlets have

different compositions of Twitter followers, which can affect the diversity

of the users who engage with their tweets. By defining the target with

respect to the outlet’s distribution of tweet audience diversity, we train

the models to predict whether the tweet will have a more or less diverse

audience than expected for the outlet.

Since the three approaches lead to different prediction tasks, we cannot

simply use the typical model evaluation metrics to compare the resulting

models. For instance, it is unclear how to compare the mean squared

error of the regression models against the classification accuracy of the

classification models. To resolve this issue, we consider how we will

eventually use the models to make decisions. Mainly, we are interested

in using the model to choose between a pair of tweets or rank a set of

candidate tweets by their expected audience diversity3. Intuitively, given

a pair of two random tweets, we would like the model to be accurate at

predicting which one of the two tweets will be more bridging. It turns

out that this is exactly what the Kendall’s τ rank correlation coefficient

measures [51, 52]. Given n paired observations (x1, y1), (x2, y2), . . . , (xn, yn)

the Kendall τ coefficient is defined as:

τ =
C− D√

(C + D + X0)(C + D + Y0)
,

where C is the number of concordant pairs (i.e., xi > yi ∧ xj > yj, or

xi < yi ∧ xj < yj), D is the number of discordant pairs (i.e., xi > yi ∧ xj < yj,

or xi < yi ∧ xj > yj), and X0 and Y0 are the number of pairs tied only

3 These two use-cases are very similar as any ranking problem can be solved by making
many pairwise choices.
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Table 2.1: Comparison between the three approaches of defining the prediction
target in terms of the agreement between the rankings based on the
model predictions and the ground-truth measured using Kendall’s
τ rank correlation coefficient. We measure the agreement of the pre-
dictions per outlet and overall, i.e., considering the predictions for all
outlets together.

(i)
Regression

(ii)
Classification

> global median?

(iii)
Classification

> outlet median?

Frontline 0.22 0.18 0.21

New York Times 0.22 0.20 0.24
CNN 0.29 0.28 0.30
Wall Street Journal 0.16 0.11 0.21
Fox News 0.45 0.31 0.46
Breitbart 0.07 0.06 0.10

Overall 0.48 0.44 0.22

on the X and Y variables, respectively. The coefficient ranges between +1

(perfect agreement) and −1 (perfect disagreement).

To compare the three approaches, we split the dataset into an 80%

training set and a 10% validation set using stratified random sampling,

preserving the distribution of the number of tweets per outlet. We use

the training set to fit three models, one for each approach, then we use

the fitted models to score the validation set, and finally, we compute

the ranking correlation between the model predictions and the observed

(i.e., ground-truth) audience diversity. We train BERT models [25] but

specify different loss functions and target variable definitions: we use

root mean squared error loss for the regression (approach (i)) and binary

cross-entropy loss for the classification tasks (approaches (ii) and (iii)). We

will provide more details about the model in the next section.

Table 2.1 shows the ranking correlation between the model predic-

tions and the ground-truth per outlet and overall (i.e., considering the

predictions for all outlets together). We find that the regression model (i)

performs best when we consider the data from all outlets together. Perhaps

not surprisingly, when we consider each outlet individually, the classifi-
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cation model with “above outlet median” as a target (iii) performs best

for all outlets, except for Frontline. For most outlets, the regression model

performs only slightly worse, and always better than the classification

model with “above global median” as a target (ii). Overall, the regression

model strikes a good balance between achieving good performance for all

outlets together and for each outlet individually. Moreover, it performs

best for Frontline, the account for which we will use to model to guide

our decisions in the advertising experiments.

Based on this analysis, in the rest of this chapter, we formulate the

prediction problem as a regression task.

2.5.3 Learning Methods

Now that we have decided how to measure audience diversity and formu-

late the prediction problem, we describe the different learning methods we

use for prediction. We consider a wide variety of models from simple linear

models on TF-IDF representations of the input text to the state-of-the-art

neural network approaches for natural language processing.

Before we apply the models, we preprocess the input text (i.e., the

outlets’ tweets) by converting them to lower-case, removing punctuation,

and replacing numbers with “#”. We also remove any URLs and Twitter

@mentions; however, we keep hashtags as they may carry important

semantic information.

tf-idf + linear models. We start with simple linear models. We

consider several ways of representing the text in vector space. (i) We

tokenize the (preprocessed) text and build a vocabulary of all uni-grams

or all uni-grams and bi-grams. (ii) We build a vocabulary of all character

n-grams of size three to five, either by including white-spaces or respecting

the token boundaries. (iii) We also test a more sophisticated tokenization

technique called SentencePiece [56], which breaks up tokens into sub-

token units, selected by analyzing the full corpus. By representing more
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complex tokens using simpler sub-tokens, this approach allows us to

handle any input, even tokens not seen in the training set, and to control

the vocabulary size. Regardless of how we build the vocabulary—uni-

grams/bi-grams, character n-grams, or sentence pieces—we always limit

the vocabulary size to 32,000.

Next, given the vocabulary, we encode the tweets using TF-IDF feature

representations. We also test whether standardizing the features helps. We

scale the features to unit variance but do not center them in order to avoid

breaking the sparsity structure of the data.

We test five model types: (i) Linear Regression, (ii) Ridge Regression,

(iii) Lasso, (iv) Elastic Net, (v) Support Vector Regression. For each model,

except Linear Regression, we tune the strength of the L1 / L2 regulariza-

tion parameter, λ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}, and when training

Elastic Nets we give equal weight to the L1 and the L2 regularization.

word embeddings. We also consider models based on pre-trained

word embeddings. We use the word2vec embeddings, trained on 6 billion

tokens of Google News articles using language modeling as a training

objective [67]. We chose word2vec instead of other pre-trained embeddings

(e.g., Glove [77] or FastText [11]) as they were trained on a very similar

domain.

To obtain tweet embeddings, we consider three different ways of aggre-

gating the word embeddings. (i) We compute the average embedding of

all the vectors associated with the words in the tweets. (ii) We use smooth

inverse frequency weighting, a theoretically motivated approach to aggre-

gating word embedding inspired by the traditional TF-IDF weighting [1].

It works by computing the average embeddings and then removing the

projections of the average embeddings on their first singular vector. It is

often considered as a “tough to beat” baseline for sentence representations.

(iii) We use a self-attention mechanism: we compute an average of the

word embeddings weighted by the words’ attention scores [60]. To learn

the attention scores, we use a two-layer neural network followed by a
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softmax: the network takes the individual word embeddings as inputs and

outputs a score for each embedding. The weights of the attention network

are free parameters that we learn as part of the training. Self-attention

has been successfully used in a variety of NLP tasks including reading

comprehension [15], textual entailment [74], and abstractive summariza-

tion [76].

After we aggregate the word embeddings, we feed the tweet represen-

tation into a series of fully-connected layers with ReLU activations [70],

followed by a prediction layer. We tune several aspects of the learning

procedure: whether we freeze or fine-tune the word2vec embeddings, the

size of the layers in the attention network (64, 128, 256), and the number

(0, 1, 2) and the size (128, 256, 512) of the fully-connected layers.

recurrent neural networks. Recurrent neural networks (RNNs)

are particularly suitable for natural language processing as they can be

used to encode sequences of arbitrary length and to capture dependencies

between the tokens in a sequence. They are designed to process sequences

one token at a time, taking into account the contextual information en-

coded in the preceding tokens. We consider two types of RNN architec-

tures: Long Short-Term Memory units (LSTMs) and Gated Recurrent Units

(GRUs). LSTMs [43] were designed to solve the problem of vanishing gra-

dients which made effectively training simple RNN architectures on longer

sequences practically impossible. GRUs [18] are a simplified version of

the LSTMs that is much less computationally expensive and still achieves

comparable performance [19]. In both cases, we train bi-directional RNNs

(i.e., we process the sequence left-to-right and right-to-left) and use the

pre-trained word2vec token embeddings as input.

RNNs output a representation/embedding of each token as they process

the sequence. We consider three ways of aggregating the embeddings to

obtain a tweet embedding. (i) We concatenate the last outputs of the

RNN in both directions, left-to-right and right-to-left. Since the RNNs

capture contextual information as they process each token, we expect
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the final outputs to capture longer dependencies. (ii) We compute the

mean embedding of the RNN outputs for each token. (iii) We use self-

attention [60] and compute the mean embeddings of the RNN outputs

weighted by the learned attention scores. Once we aggregate the token

embeddings, we feed the tweet embedding into a series of fully-connected

layers with ReLU activations [70].

We tune the network architecture by testing how the performance

changes as we vary the size (128, 256, 512) and the number of RNN

layers (1, 2, 3, 4), the pooling mechanism (last embedding, mean embed-

ding, attention with different parameters of the attention network) and

the number (0, 1, 2), size (128, 256, 512) and dropout rate (0.0, 0.3) of the

fully-connected layers.

bert. Bidirectional Encoder Representations from Transformers or

BERT [25] is a language representation model that processes tokens in

relation to all other tokens in the sentence, unlike RNN-based models that

process tokens in order, one token at a time. At its core, BERT consists

of a series of Transformer encoder layers [93] which consist of multiple

“heads”, fully-connected layers with self-attention. For every input token

in a sequence, each head computes key, value, and query vectors, which

are used to create a weighted representation. The outputs of all heads in

the same layer are combined and feed into a fully-connected layer [80].

The key advantages of Transformers are that they are better at modeling

long-range dependencies and that they can be trained in parallel, making

it feasible to train very large models with hundreds of millions of parame-

ters. BERT has been used to achieve state-of-the-art results in numerous

NLP benchmarks and has been integrated into Google Search, leading to

significant improvements in understanding and ranking search queries4.

To adopt BERT for our task we average the token embeddings of the

last Transformer layer and add a fully-connected layer with a dropout

of 0.1 and ReLU activations, followed by a prediction layer. We initialize

4 https://blog.google/products/search/search-language-understanding-bert/

https://blog.google/products/search/search-language-understanding-bert/
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the network with the pre-trained BERT model and fine-tune it using our

dataset.

2.5.4 Experimental Protocol

To train the models, we split the dataset into 80% training, 10% valida-

tion, and 10% test sets using stratified random sampling to preserve the

same distribution of tweets per outlet. Due to the long training times of

some models, we were unable to run cross-validation. To tune the model

architectures and hyper-parameters, we train the models on the training

set, evaluate the model variations of the validation set to choose the best

model, and measure its performance on the test set. Due to the large

number of hyper-parameter combinations and long training times, it was

too computationally expensive to perform a grid search. Instead, we first

optimized one parameter at a time to find the most promising values and

then tested the combinations of those values.

To train the neural models we evaluate the performance on the validation

set after every epoch and stop training and select the last best model if

the performance has not improved in the last 5 epochs for BERT and 10

epochs for all other models or if we have reached the maximum number

of epochs, 15 for BERT and 100 for all other models. We train the networks

using mini-batches of size 32 for BERT and size 64 for all other models. To

prevent the gradients from exploding, we clip them to a unit L2 norm after

every mini-batch [36]. We use the Adam optimizer [54] setting β1 = 0.9,

β2 = 0.999, and L2 weight decay of 0.01. We consider the following

learning rates for BERT, lr ∈ {2× 10−5, 3× 10−5, 4× 10−5, 5× 10−5} as

recommended in [25], and a larger set of values for all other models,

lr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. We use Mean Squared Error

as a loss function for all neural models. In addition to the Mean Squared

Error, we also report the Mean Absolute Error of the model predictions to

ease the interpretation of the results.
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2.5.5 Results

In Figure 2.9, we show the Mean Absolute Error (MAE) and the Mean

Squared Error (MSE) of the models on the test set using the hyper-

parameters that performed best on the validation set. To put the results

in perspective, we use two constant predictors as baselines: the mean and

the median of the tweets’ audience diversity in the training set. The mean

minimizes the MSE, and the median minimizes the MAE of the target

variable in the training set.

We find that all linear models trained on the TF-IDF representations of

the tweet text perform significantly better than the baselines. All models

have a similar performance with MAE ranging between 0.18 and 0.184.

We observe that tokenizing the text using SentencePiece tokenization and

including all uni-grams and bi-grams in the vocabulary leads to the best

performance for all linear models except for SVR, which works slightly

better with regular tokenization.

We find that the mean word embedding of the tweet tokens is not a

good predictor of the tweet audience diversity. In fact, the models based on

averaging the word2vec embeddings perform worse than the linear models

trained on TF-IDF representations. Moreover, using the smooth inverse

frequency weighting does not improve the performance. However, using

self-attention, i.e., learning different weights for each word embedding,

leads to significantly better results, improving over the linear models

trained on TF-IDF representations.

We observe that the Recurrent Neural Network models (RNNs) work

slightly better than the word2vec embeddings with self-attention. The

two variants, GRUs and LSTMs, achieve very similar results. Both models

perform best when aggregating the RNNs outputs using self-attention and

using only one RNNs layer instead of stacking multiple layers.

Finally, we find that the fine-tuned BERT model performs best, signif-

icantly outperforming the RNN models. It achieves a MAE of 0.14 and

MSE of 0.036. We observed that the model performs well with different
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audience diversity given the tweet text.
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learning rates and different sizes of the final fully-connected layer that

we added to the network architecture. We use this model for all analyses

presented in the rest of this chapter.

2.5.6 BERT Model Variations

Next, we describe three variants of the BERT model that we experimented

with but, unfortunately, did not lead to significant improvements in per-

formance.

ple f t and pright as targets. Instead of using the audience diversity

(i.e., the entropy of the political leaning of the users who engage with

the tweet) as a target variable, we used the distribution of left- and right-

leaning users (i.e., ple f t and pright) as target variables. We used softmax to

transform the two model outputs to probabilities ( ˆple f t and ˆple f t) and the

KL-divergence as a loss function.

In the original formulation, due to the nature of the entropy function,

the model has no way of distinguishing whether the lack of diversity is

because the tweet is less interesting to left- or right-leaning users. Thus,

the intuition behind this formulation is that having ple f t and pright as

outputs will provide more specific supervision to the model and improve

its performance.

While we trained the model using ple f t and pright as outputs, we eval-

uated it by computing the entropy of ˆple f t and ˆple f t and measuring how

close it is to the observed entropy. This allowed us to compare the new

formulation with the original formulation. To our surprise, the model

performed slightly worse, achieving a MAE of 0.153 and MSE of 0.043.

pre-training with retweeters’ outlet-sharing distributions.
Next, we tried even a more extreme version of the formulation above.

Instead of using ple f t and pright, we used the mean distribution of outlets

that the users share as a target. For each user, we compute the distribution
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of how often they share each of the 500 outlets, which we used to compute

their alignment, resulting in a 500-dimensional vector per user. Then, we

take the outlet-sharing distributions of all the users who shared the tweet

and compute the mean vector for each tweet.

We train the model in two phases. In the first phase, we pre-train the

model using the users’ mean outlet-sharing distributions as a target. As

before, we use softmax in the last layer to obtain probabilities as outputs

and the KL-divergence as a loss function. In the second phase, we take the

pre-trained model, replace the last layer with a new fully-connected layer,

and fine-tune the model using the audience diversity as a target (single

output, with MSE as a loss function). The intuition was that pre-training

the model with more granular supervision will lead the model to more

promising regions of the model space. The performance of this model was

only slightly better, MAE: 0.137, MSE: 0.037.

expanding the training set. Lastly, we tried expanding the train-

ing set by including tweets from the 3-year snapshot of the Decahose

(Section 2.3.2). We included only tweets by the Twitter accounts of the

500 outlets we used to compute the user alignments. We added 2.4M new

tweets to the training set, increasing its size by more than six times. Note,

however, that since we have only 10% of the tweets’ retweets, we have

noisier estimates of the audience diversity of each tweet. Moreover, tweets

are more topically diverse than those in the original training set. To make a

fair comparison, we evaluated the model on the same train/validation/test

splits as the original model but added the new data to the training set.

It achieves a MAE of 0.16 and MSE of 0.044. One reason for the lower

performance might be a slight difference in the distribution of audience

diversity in the two datasets.

Since none of these variations led to significant improvements, we use

the original model in the rest of our analyses.
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2.6 web application

To make the models more easily accessible to Frontline’s journalists, we

build a web application that surfaces the model predictions. The goal of

the application is to allow the journalists to quickly iterate on tweet drafts

based on the model predictions and to help them select candidate tweets

from the film transcripts.

2.6.1 Main Interface

Figure 2.10 shows a screenshot of the main page of the application. The

users can enter draft tweets in the input box (Figure 2.10#1), press submit,

and get the model predictions in the results table. The input can consist

of multiple tweets, separated by a new line, and each tweet can consist of

multiple sentences that will be scored together.

The results table (Figure 2.10#2) shows the tweet text and the predicted

“bridginess” score, which is a user-friendly name for the audience diversity

measure using the entropy of the distribution of left- and right-leaning

users, as we detail in Section 2.5. The color of the table cells containing the

scores varies from light-green for non-bridging tweets to dark-green for

bridging tweets.

Based on feedback from the journalists, we also added tweet alignment

score predictions. The goal of these scores is to supplement the bridginess

scores. To make the alignment predictions, we trained a BERT model

equivalent to the one we used to make the bridginess predictions, but

instead of the entropy we used the retweeters’ average political alignment

as a target (we provide more details about the model in Section 2.5.3). To

include the alignment predictions in the results table, the user needs to

check the “Detailed Results” checkbox before submitting the text. Similar

to the bridginess scores, we vary the color of the table cells that contain

the alignment scores on a gradient from blue (if the score is negative, i.e.,
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Figure 2.10: News Bridge web application, a screenshot of the main interface.



2.6 web application 65

the tweet is predicted to be more engaging to left-leaning users) to red (if

the score is positive).

2.6.2 Explanations

After the initial deployment of the tool, the main feedback we received

was that while the scores are informative, it is often unclear why the

model made the predictions it did. To address this, we show two kinds

of explanations to supplement the predictions: (i) we highlight certain

words in the tweets and display relevant corpus statistics, and (ii) we show

historical tweets that are semantically similar to the input tweet and have

a high bridginess score.

word highlighting. We compute how often each word is retweeted

by left- and right-leaning users5. More specifically, we compute the prob-

ability p(word|le f t-leaning) (and p(word|right-leaning)) as the ratio be-

tween the number of times the word appears in retweets by left- (right-)

leaning users and the total number of words in all retweets by left- (right-)

leaning users. We highlight the words of the input text in blue or red

depending on whether they are more likely to be retweeted by left- or

right-leaning users, and we set the brightness of the color in propor-

tion to the ratio between the two quantities (p(word|le f t-leaning) and

p(word|right-leaning)). We also compute how often each word appears in

tweets posted by each of the five news outlets and Frontline. When the

user hovers over the word, a pop-up shows the different word statistics

(Figure 2.10#3).

Beyond highlighting the words based on simple word statistics, we also

considered two other, more sophisticated approaches. (i) A common way

of visualizing which words in the text were most important in the model

prediction is to use the self-attention weights. However, recent studies have

5 We consider only retweets of tweets in our dataset, i.e., posted by the five news outlets
and Frontline.
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shown that attention weights do not provide meaningful explanations for

the model predictions [47]. It is worth noting that this is still a topic of

active debate [94]. (ii) We also considered using Integrated Gradients [88], a

technique that aims to explain the relationship between a model prediction

and the input features. However, we found that it takes about 10 to 20

seconds to compute the integrated gradients on a single prediction of our

model. This is likely due to the fact that the BERT model has a very large

number of parameters. Since the goal of this tool is to allow journalists

to quickly iterate on the tweet text based on the model predictions, we

decided that increasing the latency of the predictions would significantly

degrade the user experience.

similar historical tweets. One of BERT’s main advantages is that

it models the relationships between all the words in the sentence together.

As a result, highlighting individual words is unlikely to fully explain its

predictions. Therefore, in addition to providing word statistics, we also

show similar historical tweets that were bridging. The goal is to show

the user sample tweets that look similar to the model but have a higher

bridginess score. To represent the tweets, we use the embeddings generated

in the last layer of the BERT model. We save the embeddings of all tweets

in the dataset and given the embedding of the input tweet, we find the

nearest neighbors in the embedding space. To index and search the tweet

embeddings efficiently, we use Faiss [49], a library for similarity search of

dense vectors developed by Facebook Research. When the user clicks one

of the rows in the results table, we show the ten most similar tweets to

the input tweet, including when they were posted, by which outlet, how

many retweets they received, and their bridginess score (Figure 2.10#4).
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2.6.3 Transcript Analysis

To streamline the selection of bridging tweets, we also analyze the tran-

scripts of the Frontline documentaries and show the results through an

interactive interface. The tweets posted by the Frontline’s Twitter account

often include quotes from the documentaries and our models can be used

to guide the selection of quotes or film segments that might be engaging

to a politically diverse audience.

To analyze each transcript, we parse the transcript segments and use

the BERT models to predict the expected bridginess and alignment of

each segment. To provide an overview of the predictions, we plot the

scores (bridginess/alignment) against the segment number (Figure 2.11#1).

To make it easier to identify relevant regions of the transcript, we apply

the Savitzky-Golay filter [81, 82] which smooths the curve by using local

least-squares polynomial approximation. The user can select the level of

smoothing (none, low, medium, or high smoothing), which corresponds to

a different size of the window used to fit the local polynomial approxima-

tion. Below the plot, we show a table of the analysis results (Figure 2.11#2)

that includes the segment number, the speaker (as specified in the tran-

script), the segment text, and the predicted bridginess and alignment.

The user can sort the table based on the predicted scores and search for

keywords in the text. Moreover, the plot at the top is interactive, and the

user can zoom and focus on specific regions of the transcript. The table

below automatically updates to show only the segments in the selected

region.

The application includes transcript analyses of 125 films, from most

recent ones to films going back to 2014. We received very positive feedback

from the journalists about this feature of the web app.
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Figure 2.11: News Bridge web application, a screenshot of the transcript analysis
interface.
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2.7 advertising experiments

Next, we test whether the predictive models we developed can be effec-

tively used to compose more bridging tweets. In partnership with Frontline,

we ran seven advertising experiments on Twitter between May and June

of 2020. In each experiment, we selected a pair of tweets—one that was

predicted to be more bridging (treatment) and one that was predicted

to be less bridging (control)—and measured the engagement of left- and

right-leaning users with each tweet. While the advertising experiments

presented in this section are not randomized experiments (as we discussed

in Section 2.2), they are the only way to run experiments on the platform

and to measure how thousands of Twitter users respond to the test tweets.

In the rest of this section, we explain how the experiments were set up

and discuss the results.

2.7.1 Campaign Setup

One of the challenges of measuring the audience diversity of the test

tweets is that the Twitter advertising platform only reports aggregate

metrics of engagement and does not report the engagement levels by

users with different political leanings. To address this issue, we run two

campaigns for each test tweet—one targeting only left-leaning users and

another targeting only right-leaning users—and measure the aggregate

engagement of each group. Thus, in each experiment, testing a pair of

tweets, we run four campaigns in total (Figure 2.12).

We ran all experiments for five days, Wednesday to Sunday, since Front-

line airs new documentaries on Tuesday evenings6. We used “awareness”

as a campaign objective, which unlike other advertising objectives, op-

timizes for reach and does not explicitly optimize for engagement. The

idea behind setting this objective was to minimize the interference of the

6 Except for one experiment, which we had to relaunch two days later after we discovered a
misspelling in one of the test tweets.
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Figure 2.12: Advertising experiments setup.

advertising engine as much as possible such that the test tweets are not

shown only to users who are likely to engage with them.

We set the budget for each campaign to $250 and capped the daily

budget to $50 to spread out the experiments7. To make sure that the

test tweets are shown to as many users as possible, we bid at $15/1000

impressions, significantly higher than the range recommended by the

advertising platform, $3.5 - $6 / 1000 impressions. Also, to ensure that

users in one group are not exposed to the advertisements more often, we

limit the number of impressions per user to one.

We used “promoted-only tweets” which are shown only to the users

selected to see the advertisements; they do not appear on the account

(@frontlinepbs) page, the followers’ timelines, or in the search results. This

allows us to make sure that users are not exposed to both the treatment

and control tweets. Promoted tweets are the same as organic tweets in

every aspect except that they have a “Promoted” label at the bottom of the

tweet.

To ensure that the test tweets are shown only to left-leaning or only to

right-leaning users, we used “tailored audiences”, i.e., we uploaded a list

of user ids that the tweets could be shown to. Next, we discuss how we

selected the audiences.

7 Since we used tailored audiences (i.e., uploaded a list of user ids), we never reached the
daily budget limit.
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2.7.2 Audience Selection

To select the users who will be exposed to the test tweets, we consider only

the followers of @frontlinepbs and the followers’ followers (i.e., two hops

away from the Frontline account8). Initially, we included only Frontline

followers, but to make sure that enough users are eventually exposed

to the tweets, we had to expand this set. Out of these users, we further

restrict to users whose political alignment we can estimate based on their

media-sharing patterns.

We randomly select 200k users for each experiment, 100k left- and 100k

right-leaning users, and, within each group, we randomly assigned half

of them to treatment and half of them to control (i.e., treatment-left: 50k,

control-left: 50k, treatment-right: 50k, control-right: 50k). We make sure

that by design, an equal proportion of @frontlinepbs followers vs. followers

of followers is assigned to each treatment arm.

Once we make the assignments, we perform a number of balance checks

to ensure that there are no systematic differences between users in different

groups. We test for balance between three pairs of groups: (i) left-leaning

users in treatment vs. control, (ii) right-leaning users in treatment vs. con-

trol, (ii) all users in treatment vs. all users in control. We consider the

following user characteristics: number of posts, likes, followers, friends,

tenure on Twitter, and the numerical estimate of their political alignment9.

We run two types of covariate balance analysis. (i) We regress the user

characteristics on the treatment assignment using logistic regression and

ensure that none of the coefficients are statistically significant. (ii) We use a

permutation test, i.e., we compare the log-likelihood of the logistic model

regressing the user characteristics on the treatment assignment with its

empirical distribution under random reassignments of treatment that fol-

8 Due to the limits of the Twitter API, we did not include the followers of @frontlinepbs
followers with more than 5,000 followers. They constituted only 3.85% of all @frontlinepbs
followers.

9 We logged the number of posts, likes, friends, and followers, since their distributions were
highly skewed.
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low the same randomization scheme. To obtain the empirical distribution,

we measure the log-likelihood of 10k reassignments10.

Once we have selected the audiences, we upload them to the Twitter

advertising platform. While we upload a list of 50k user ids, only 15k-18k

(i.e., 32%-37%) of them can be targeted. According to the documentation,

inactive users are excluded from the tailored audience, but it is unclear

what criteria are used to determine whether a user is active. Furthermore,

when we use the tailored audiences to run a campaign, only 8.5k-9k (i.e.,

17%-18%) of the users are shown the test tweets. There might be several

factors that lead to this: (i) the users may simply be less active and have

not logged on Twitter when we ran the campaign, (ii) the users might

be very desirable and many other campaigns may have bid for them, (iii)

Twitter’s algorithm has predicted that they are less likely to engage with

the tweet and has given less priority to our campaign. There could be

other factors we are not aware of. Since we have no control over who will

be exposed to the test tweets, this is where our experiments depart from

A/B tests.

We note that left-leaning users are both more likely to be part of the

tailored audience and more likely to be shown the test tweets. Among

other reasons, this might be because they are more active or because the

advertising engine predicts that they have a higher affinity to engage with

Frontline content. While there are differences between the left- and right-

leaning subgroups, we observe that when we consider the treatment and

the control groups as a whole (i.e., combining the left- and right-leaning

users of each group) both the size of the audience and the number of

impressions are very similar.

2.7.3 Content Selection

All test tweets were composed by the journalists at Frontline. We were

not involved in the selection process and only provided guidance on how

10 We followed the procedure outline here: [59].
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Table 2.2: Tweets used in the advertising experiments. Two tweets per experiment:
Treatment (T) and Control (C) tweet.

# Tweet text

1 / T What does the response to COVID-19 look like in Washington DC,
versus in Washington State — where the first U.S. case was confirmed?

1 / C

As the coronavirus outbreak continues to spread, FRONTLINE traces
the different responses by the federal govt. in DC and the govt. in
Washington State, where the first known US case of the virus was
identified in January.

2 / T
Plastic has wide-ranging applications, from packaging to clothing
to home furnishings. But when we’re done with it, how much can
actually be recycled? Journalist Laura Sullivan investigates.

2 / C
It’s estimated that no more than 10% of plastic has ever been recycled.
FRONTLINE and NPR investigate why — and examine how plastic
companies continue to promote recycling as environmentally friendly.

3 / T
Get a rare and intimate window into health workers’ battles against
the coronavirus, from inside a hard-hit hospital in Italy in “Inside
Italy’s COVID War.”

3 / C

“I know my colleagues, they’re struggling... They’re like walking
ghosts, because they don’t want to have to make the decision whether
to intubate someone or not.” Go inside a hospital in Italy at the height
of the coronavirus crisis.

4 / T
Doctor Francesca Mangiatordi works inside an Italian hospital hard
hit by the coronavirus. Her son says, she’s “like Captain America.”
Follow her story in “Inside Italy’s COVID War.”

4 / C

“There’s a fear of becoming infected and in turn infecting the ones
who are closest to me.” - Dr. Francesca Mangiatordi, who works in
a hospital in a region that’s at the epicenter of Italy’s coronavirus
outbreak.

5 / T FRONTLINE PBS goes inside the U.S. response to the coronavirus in
our documentary “Coronavirus Pandemic”

5 / C
“I’ve covered science stories for nearly 30 years, but this felt more like
science fiction.” Veteran science reporter Miles O’Brien goes inside
how the coronavirus outbreak unfolded in the United States.

6 / T
“Once you start connecting the dots, you see that Amazon is building
all of the invisible infrastructure for our futures,” says quantitative
futurist and author Amy Webb.

6 / C Jeff Bezos is the richest person on the planet. “Amazon Empire” ex-
plores his rise — and the rise of Amazon.

7 / T How is artificial intelligence disrupting life as know it — for good and
for ill? FRONTLINE PBS investigates in “In the Age of AI.”

7 / C China has set its sights on leading the world in artificial intelligence
by 2030. Here’s a look at the promise and perils of AI.
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to use our tools. The tweets posted by Frontline go through the same

editorial scrutiny as other content published by Frontline and need to be

approved before publication. None of the tweets used in the experiments

were previously published, i.e., posted on Twitter.

All test tweets included a link to the relevant documentary and a promo-

tional image. To avoid confounding effects, we used the same promotional

image in both the treatment and control tweets. The timing of the ex-

periments was also determined by Frontline’s schedule. Since we ran

the experiments in the midst of the coronavirus pandemic, four out of

the seven experiments include tweets about documentaries related to the

pandemic. We list all test tweets, without the promotional images, in

Table 2.2.

2.7.4 Results

We measure the diversity of the audience engagement of the treatment and

control tweets using the definition explained in Section 2.5.1. We focus on

overall engagement and do not analyze the number of likes and retweets

individually since there are too few such interactions to make meaningful

comparisons. Figure 2.13 shows the results.

We find that in five out of the seven experiments, the treatment tweets

achieved higher audience diversity than the control tweets, matching our

model’s predictions. The average difference in audience diversity between

the treatment and control tweets is 0.005. The difference is not statistically

significant (p = 0.28), which is not surprising given the small sample size

(n = 7).

We observe that across the seven experiments, both the treatment and

the control tweets have a high audience diversity, i.e., entropy values

close to one (Figure 2.13A). This is partly due to the shape of the entropy

function: around 0.5, small changes in the balance between left- and right-

leaning users (ple f t and pright) lead to even smaller increases in entropy.

In mathematical terms, the slope of the first derivative of the entropy
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Figure 2.13: Comparison between the audience diversity of the treatment and
control tweets in the advertising experiments.
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Figure 2.14: Comparison between the difference in engagement and audience
diversity of the treatment and control tweets in the advertising
experiments.

around 0.5 is much smaller than at the extremes (0 or 1). For instance, if

the breakdown of engagement with the control tweet is ple f t = 0.45 and

pright = 0.55 (entropy = 0.9927) and the treatment tweet achieves perfect

balance in audience engagement, i.e., ple f t = 0.5, pright = 0, 5 (entropy=1),

then that would be an increase in entropy of only 0.007.

We also analyze the trade-off between engagement and audience diver-

sity. While we have too small a sample size to make definitive conclusions,

we find a positive correlation (Pearson ρ = 0.79, p = 0.034) between the

difference in audience diversity and the difference in engagement between

the treatment and control tweets (Figure 2.14). However, we note that while

in five out of seven experiments, the treatment tweets achieved higher

audience diversity, in only two out of seven experiments, they achieved

higher engagement.
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2.7.5 Limitations

While we are optimistic about the results of the advertising experiments,

we would like to point out some of their limitations. The main caveat of

our experiments is that the users who were exposed to the test tweets were

not randomly selected.

We used different features of Twitter’s advertising platform so that

our experiments are as close as possible to randomized experiments: (i)

we used tailored-audiences and promoted-only tweets to make sure that

users are not exposed to both the treatment and control tweets; (ii) we

limited the number of exposures per user to one to ensure that users in

one group are not exposed to the test tweets more often; (iii) we placed

high bids to increase our chances reaching as many users from our tailored

audiences as possible. However, with the features currently available on

the Twitter advertising platform, we were unable to remove the influence of

the advertising engine, which optimizes the overall value of the platform.

More specifically, due to algorithmic predictions or market forces, the

advertising engine may show the test tweets to users who are more likely

to engage with them, instead of a random subset of users. Thus, we cannot

eliminate the possibility that the higher audience diversity of the treatment

tweets is not due to differences in the tweet content, but due to differences

in the delivery of the advertisements.

Rerunning the experiments using randomized assignment administered

by the advertising engine—when such a feature is available on Twitter—is

our key priority for future work.

2.8 conclusion

In this chapter, we studied the relationship between the language used in

tweets posted by news outlets and the political diversity of the users who

engaged with them. We collected 566k tweets by five news outlets and
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Frontline over more than three years. To measure each tweet’s audience

diversity, we compared the breakdown of left- vs. right-leaning users

who shared the tweet. Using this data, we trained models that, given the

tweet text, predict the audience diversity. We considered various ways of

defining the prediction task and evaluated different prediction models.

We then integrated the best model into a web application, which allowed

Frontline journalists to craft more bridging tweets, guided by the model’s

predictions. Finally, in partnership with Frontline, we ran seven advertising

experiments to test whether the model predictions can be effectively used

to compose more bridging tweets. We found that in five out of the seven

experiments, the tweets selected by our model were indeed engaging to

a more politically diverse audience. While we are optimistic about the

results of the experiments, we caution that the advertising experiments are

not A/B tests and that we cannot rule out the possibility that the results

are influenced by Twitter’s advertising engine.
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T H E S T R U C T U R E O F TO X I C

C O N V E R S AT I O N S

3.1 introduction

With millions of people taking to social media to participate in public

discussions, platforms like Twitter, Facebook, and Reddit have become the

virtual public squares. They allow users to share their views and prompt

conversations about issues that they care about. In the case of Twitter, a

user can post a tweet and any user who sees the tweet can reply, thereby

bringing the content into their own network of followers, sharing their

point of view and reactions to the original tweet, and broadening the

conversation. This chain reaction of replies propagates in complex ways

through the Twitter network and can lead to conversational exchanges

between people who may be tightly connected to one another online and

in the real world, or equally to people who have never met and have little

to no connection on Twitter. This potential for large-scale conversations

across diverse sets of people holds promise for supporting a rich and

vibrant public discourse, but also permits degradation of civility between

people. A 2017 study by Pew Research study finds that 41% of Americans

have been personally subjected to harassment online, and an even larger

share (66%) has witnessed these behaviors directed at others [27].

In this chapter, we investigate the relationship between toxicity and the

conversational structure on Twitter. We focus on political conversations

prompted by tweets that are posted by or mention five major news outlets

(CNN, New York Times, Wall Street Journal, Fox News, and Breitbart) and

1,430 candidates running for office in the 2018 midterm elections in the

79
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US. We collect a comprehensive sample of 1.18M conversations containing

>58.5M tweets posted by >4.4M users.

We represent the structure of the conversation in three different ways:

(i) using the reply tree (Figure 3.1b) which encodes the relationships

between posts, where two posts are connected if one is a reply to the other;

(ii) the reply graph (Figure 3.1c), a directed graph which captures the

conversational interactions between users, where two users are connected

if one replied to the other; and (iii) the follow graph (Figure 3.1d), which

captures the social connections among the conversation participants, where

one user is connected to another if they follow them.

The goal of this study is twofold: (a) to understand the relationship

between the conversational structure and toxicity after the conversation

has unfolded, and (b) to test the value of the structural view of the

conversations in forecasting future toxicity, as the conversation unfolds. A

greater understanding of the relationship between structure and toxicity

of conversations can guide changes to the platform design to improve

the health of the conversations, and the predictions of future toxicity can

be used to moderate conversations automatically and prevent further

toxicity. To study the link between structure and toxicity, we analyze the

conversations at three levels: individual, dyad, and group level. To measure

the predictive power of the structural characteristics of the conversations,

we consider two prediction tasks. In the first task, we predict whether the

conversation will become more or less toxic, based on the initial stages of

the conversation. In the second task, we aim to predict whether the next

reply posted by a specific user will be toxic, given the conversation so far

and the user’s relationship with the current conversation participants.

The rest of this chapter is organized as follows. In Section 3.2, we review

previous work. In Section 3.3, we describe the data collection and in

Section 3.4, we evaluate the tweet toxicity annotations. In Section 3.5, we

analyze the structure of toxic conversations at the individual, dyad, and

group level. We consider the task of predicting future toxicity in Section 3.6

and the task of predicting the toxicity of the next reply in Section 3.7.
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(a) Twitter User Interface (b) Reply Tree

(c) Reply Graph (d) Follow Graph

Figure 3.1: Four views of a Twitter conversation started by a @foxnews tweet.
(a) A sketch of the conversation as experienced by the conversation
participants through the Twitter UI. (b) Reply tree, the root node is
the tweet that prompted the conversation and the remaining nodes
are replies. The red nodes represent tweets classified as toxic. (c)
Reply graph, a user-centric view of the reply tree in which two users
are connected if one replied to the other, and (d) the graph of the
follow relationships between the conversation participants. The size
of the nodes in the c and d is proportional to their PageRank.
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3.2 related work

We start by reviewing previous studies that have analyzed the structural

and linguistic aspects of online conversations. Some analyze the general

characteristics of the conversations while others focus on studying the

characteristics that are most related to specific conversation outcomes,

such as conversation growth or derailment.

structural analysis. The initial work on online discussions focused

on discussion forums where users can comment on a post by adding a

reply at the end of the discussion thread, or replying to one of the existing

replies, creating a nested structure that can be represented as a tree.

Gomez et al. [34] study Slashdot, a technology news forum, and report the

distribution of different conversation tree characteristics, including number

of posts/posters, width, and depth. Interestingly, they find that most

conversations start with a wide first layer of comments, followed by an even

wider second layer, and then exponentially smaller layers. Gonzalez-Bailon

et al. [35] also studied Slashdot but focused on political discussions. They

find that, compared to other discussion categories, political conversations

tend to engage a larger number of participants and tend to have wider (i.e.,

have a large number of comments at any depth of the tree) and deeper

(i.e., have more nested comments) conversation trees.

Backstrom et al. [3] develop models for algorithmic curation of online

discussions on Facebook and Wikipedia. They focus on two prediction

problems: (i) length prediction, i.e., predicting the total number of com-

ments a discussion will reach, and (ii) re-entry prediction, i.e., predicting

whether a user who already participated in the discussion will contribute

again. Note that at the time of the study, Facebook comments had a linear

structure, i.e., users could not start subthreads. The experiments were

set up such that all prediction features are derived from a prefix of the

conversation (e.g., the first five comments) and are used to predict how

the conversation will unfold (e.g., whether it will grow larger than the
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median conversation size). They find that temporal features (e.g., the time

it took for the first five comments to arrive) and arrival pattern features

(e.g., the number of unique users with the first five comments) are most

predictive of whether the conversation will grow significantly. They also

find that discussions tend to be longer and that the users are more likely to

return to the discussion if the first few users participating in the discussion

are connected to each other in the social graph; however, they report that

social features are high precision, but low recall.

In a more recent study, Zhang et al. [98] analyze online discussions on

public Facebook pages. At the time of this study, Facebook had switched to

a user interface that allows one-level threading, i.e., comments and replies

(threads). They focus on predicting antisocial behaviors, in particular,

whether the initiator of a conversation thread will be blocked or will block

another conversation participant (i.e., prevent any further interactions

with them) later in the thread, given the first ten replies in the thread. For

each conversation thread, they create a graph where the nodes are users

and the edges encode either reply or reaction (e.g., like) interactions and

compute statistics of the degree, edge type, and subgraph distributions,

which they use as input features in a predictive model. They find that

the proportion of participants that post a reply, as opposed to a reaction,

is positively correlated with blocking. In contrast, a higher propensity to

react is negatively correlated with blocking.

Coletto et al. [21] build models that distinguish between controversial

and non-controversial Twitter conversations, after the conversations have

unfolded. They collect data on conversations started by the posts of 18

highly popular Twitter accounts and consider all conversations prompted

by political/news accounts as controversial and sports/entertainment

accounts as non-controversial. Using news vs. entertainment as a proxy for

controversial and non-controversial is perhaps the main limitation of the

study. To represent each conversation, they consider both the reply and

the social graph among the conversation participants and compute the

frequency of dyadic and triadic subgraphs, as well as temporal features.
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They find that the temporal features (e.g., the average time between replies)

and the frequency of dyadic subgraphs are most predictive and observe

that the frequency of triadic subgraphs only marginally improves the

predictive accuracy.

linguistic analysis. Zhang et al. [99] analyze Wikipedia’s talk page

discussion looking for linguistic cues that are predictive of whether a

conversation will derail. Given the first non-toxic exchange (comment and a

reply), they aim to predict whether the rest of the conversation will become

toxic. (It is worth noting that the average length of the conversations in their

dataset is 4.6 comments, thus one exchange, i.e., two comments on average

constitute a large portion of a conversation.) To represent the first exchange,

they use hand-crafted features that capture markers of politeness (e.g.,

positive: saying thanks, or negative: asking direct questions or starting

a sentence with you/your/yours) and conversation prompt types (e.g.,

coordination, moderation, opinion) inferred by clustering conversations.

They find that conversations in which the first comment poses a direct

question or starts with a second person pronoun are more likely to derail.

In contrast, conversations in which the initial exchange contains greetings

or gratitude are less likely to become toxic. They build a model that,

given a pair of first exchanges, predicts which conversation will derail.

Using the politeness and prompt type features, they achieve an accuracy

of 61.6%; while better than a bag-of-words baseline (56.7%), the relatively

low performance demonstrates the difficulty of the task.

Chang and Danescu-Niculescu-Mizil [50] consider the same task of

forecasting conversation derailment. They analyze two datasets: an ex-

tended version of Wikipedia’s talk pages dataset [99] and conversations

from the subreddit ChangeMyView using the moderators’ interventions as

indicators of conversation derailment. They draw on ideas from neural net-

work approaches for training conversational agents [83, 85]. They model

conversations using a hierarchical neural network model that first uses

a Recurrent Neural Network (RNN) to embed each comment, modeling
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the sequence of comment tokens, and then models the context between

individual comments with a second RNN that takes as input the sequence

of comment embeddings. Since these approaches require a lot of training

data, they first train the model on an unsupervised dialog generation task

and then fine-tune the model on the supervised task, i.e., predicting con-

versation derailment. Unlike previous work, they do not use a fixed prefix

(e.g., the first exchange) but make a prediction after every comment. They

consider a prediction correct only when the model predicts a derailment

before it happens. Their experimental results show that the neural network

approach achieves an accuracy of 66.5% on Wikipedia and 63.4% on Reddit,

significantly better than random guessing (50%). They also outperform the

model based on hand-crafted linguistic features (Wikipedia: 58.9%, Reddit:

54.4% accuracy) described above [99]. Interestingly, they report that in 50%

of the cases where the model made the correct prediction, it would have

made the right call at least three hours before the conversation derailed,

suggesting that this might give moderators enough time to intervene.

Hessel and Lee [41] build models that predict whether a Reddit post is

controversial using data from 6 subreddits. Their approach combines both

the linguistic and structural properties of the discussions. They consider a

post as controversial if it receives both many upvotes and many downvotes.

First, they evaluate the predictive power of using information available

at the time of posting (post text, time, author) and find that combining

time-related features and encoding the post text using a pre-trained neural

language model (BERT [25], followed by mean-pooling and PCA) leads to

accuracy between 65.3% and 69.3% across the 6 subreddits (random guess

would lead to 50% accuracy). Next, they test how the text, rate, and tree

structure of the comments posted in the early stage of the conversations

(first 15 to 180 minutes) affect the predictive performance. They find that

in 5 out of 6 subreddits, the performance significantly increases in less

than three hours of observation. The improvement gains come primarily

from the comments’ text features, followed by the tree structure and the

commenting rate features. Finally, they analyze how the models trained
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on one subreddit perform on another. They find that text features are most

predictive in-domain but do not generalize well, while the structural and

rate features have lower predictive power in-domain but transfer better

across subreddits.

the present work. In this work, we focus on studying how the

structure of a conversation is related to toxic behavior, as opposed to

predicting whether a conversation is controversial [21, 41] or whether the

conversation initiator will block or will be blocked by another user [98].

In contrast to previous work, we analyze and model toxic behavior both

at the individual and at the group (i.e., conversation) level. Moreover,

unlike studies of discussion forums such as Slashdot [34, 35] or Reddit [41,

50], studying conversations on Twitter allows us to observe and analyze

the social relationships among the conversation participants, in addition

to the conversational structure (i.e., the reply tree). Finally, while we do

not propose new methods for modeling the linguistic characteristics of

the conversation to predict toxicity, we compare the predictive power of

the structural features with features related to the content of the tweets,

extracted using existing models.
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3.3 data

account selection. To capture a wide variety of political conversa-

tions, we collected conversations prompted by major news outlets and

candidates who ran for office during the 2018 midterm elections in the US.

We selected five news outlets that span the full political spectrum—New

York Times and CNN on the left, Wall Street Journal in the middle, and

Fox and Breitbart on the right [6, 13]—and have Twitter accounts with

a large number of followers. We collected both the conversations started

by tweets posted by these accounts and by tweets posted by others that

@mention these accounts.

We tracked the news accounts for one year, from May 2018 to May 2019,

capturing 510k conversations (32.6M tweets, 2.4M users), and the accounts

of the midterm candidates for five months, one month leading up to the

election and four months after, capturing 676.8k conversations (25.8M

tweets, 2M users). Figure 3.2 shows the daily volume of conversations and

Table 3.1 shows the summary statistics of the two datasets.

We followed both the personal accounts that the candidates used during

their campaigns and their official accounts created after their inaugura-

tion1. We obtained the personal Twitter accounts of the candidates from

Ballotpedia2, and the official accounts from the congress-legislators3

Github repository maintained by journalists from GovTrack, ProPublica,

MapLight, FiveThirtyEight, and others. 1,430 of 3,339 candidates had a

Twitter account.

Taken together, the two datasets include a large number of conversations

over a long period of time. Moreover, the collected conversations vary in

several important ways. They capture discussions prompted by a politi-

cally diverse set of accounts, including both left- and right-leaning news

outlets and midterm candidates. Some conversations are started by highly

influential accounts such as the news outlets and the candidates with a

1 This explains the larger volume of conversations after January, 2019.
2 https://ballotpedia.org/
3 https://github.com/unitedstates/congress-legislators

https://ballotpedia.org/
https://github.com/unitedstates/congress-legislators
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Figure 3.2: Number of conversations per day in the news and the midterms
dataset.

large number of followers, others by ordinary users who @mentioned the

news outlets or the candidates in their tweets. The data also reflects conver-

sations on issues relevant at the local level through the candidates running

for a seat in the House, at the regional level through the candidates for a

seat in the Senate, and at the national level through the news outlets.

data collection pipeline. The key technical challenge in collecting

tweets related to the same conversation is that the Twitter APIs only

provide a link from the reply to the original tweet, but not vice versa. Thus,

given a root tweet, one cannot simply query for all subsequent replies. To

overcome this issue, we rely on the fact that every time a user replies to a

tweet, they implicitly at-mention all users that posted or were mentioned

earlier in the reply chain. (These mentions are considered a tweet prefix,



3.3 data 89

Table 3.1: Summary statistics of the news and the midterms dataset.

Dataset |Conversations| |Users| |Tweets| % Toxic Tweets

News 510,001 2,394,190 32,600,609 21.09%
Midterms 676,839 2,013,918 25,874,622 20.22%

Total 1,186,840 4,408,108 58,475,231 20.70%

they are not part of the tweet body and do not count towards the character

limit.)

To string together the reply and build the complete reply trees (Fig-

ure 3.1b), we scan the full dataset and use the reply-to field to recursively

link posts to replies. We retain only reply trees rooted in tweets that are

either posted by or @mention the selected accounts. As we are interested

in studying conversations, we exclude tweets with no replies and strings

of replies by only one user.

To collect the social graphs of the users who participated in these

conversations, we set up a daily job that scans all tweets collected in the

last 24 hours, compiles a list of all users that posted at least one tweet,

and using the Twitter REST API downloads each user’s list of friends and

followers4. We do not collect data on accounts that are protected. Note that

if the same user participates in multiple conversations over multiple days,

we will have multiple snapshots of their friends and followers. This allows

us to have an accurate and comprehensive view of the social connections at

the time the users participated in the conversations. It is worth noting that

limits on social graph endpoints of the Twitter API are the main reason

that we limited the number of tweets/conversations we collected per day.

4 The user’s friends are outgoing edges, and the user’s followers are incoming edges in the
Twitter follow graph.
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3.4 toxicity annotations

perspective api. To label tweets for toxicity, we used Google’s Per-

spective API. We chose this API because its models are trained on Wiki-

pedia comments, which like tweets, are short and informal. The initial

Perspective API model was trained on 100K comments each annotated 10

times and was reported to be as accurate as the aggregate performance

of three annotators [97]. Since then, the model has been retrained5 on a

larger dataset and modified to address some of its weaknesses reported

by other researchers (e.g., [37]).

evaluating the toxicity predictions. Since the rest of our anal-

ysis relies on the Perspective API’s toxicity annotations, we thoroughly

assess their quality. To do so, we deployed an Amazon Mechanical Turk

annotation task to obtain human toxicity labels on randomly selected

tweets. Beyond assessing the quality of the annotations, we also relied on

the human annotations to tune the Perspective API score threshold that

we used for classifying a tweet as toxic or nontoxic. (The API returns a

toxicity score, rather than a binary toxicity label.)

The Mechanical Turk annotation task consisted of five randomly selected

tweets. We showed an input label next to each tweet for the annotators to

select between “toxic” and “nontoxic.” To avoid any annotation bias due

to ordering effects, we randomized the order of the labels between tasks

(i.e., batches of five tweets), but kept the order consistent within a task. To

help clarify what constituted a toxic tweet, we provided the annotators

with simple instructions. We used the same definition of toxicity as the

Perspective API: “a rude, disrespectful, or unreasonable comment that

may make you leave a discussio” [97]. To ensure the quality of the labels,

we recruited only annotators from the US with high performance on

previous Mechanical Turk tasks. We compensated them 20 cents per task

(i.e., labeling five tweets). Before the annotators started the task, we warned

5 We use the most recent version of the Toxicity model (TOXICITY@6), released in Sep, 2018.
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Figure 3.3: Precision-recall and ROC curves of Perspective API tweet toxicity
classifier with respect to the Mechanical Turk tweet toxicity labeling
obtained by a majority vote, for the development set (top) and test
set (bottom). The vertical dashed line represents the chosen threshold,
T = 0.531.

them that they might see offensive content. The protocol was approved by

the MIT Institutional Review Board.

We randomly sampled 3,000 tweets for annotation from the first five

months of the news dataset. We ensured that the sample is representative

of the overall distribution of toxicity scores, as predicted by the Perspective

API (K-S test, D = 0.01, p = 0.89). Each tweet was independently labeled

by three different workers so that we can measure the inter-annotator

agreement and use a voting scheme to obtain a single “ground-truth”

label. To assess the inter-annotator agreement, we used Krippendorff’s

α [55] and found a fair agreement between the annotations, α = 0.32. To

obtain a single label for each tweet, we used a majority vote.
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Table 3.2: Performance of the Perspective API toxicity classifier evaluated against
the majority vote of three human labels.

Development Test Test (consensus)

Accuracy 0.835 0.819 0.914

AUC 0.860 0.861 0.947

Precision 0.652 0.605 0.646

Recall 0.648 0.661 0.840

F1 0.650 0.632 0.730

N 600 2,400 1,435 (59.8%)

Next, we tuned the Perspective API toxicity score threshold above which

we consider a tweet to be toxic, and measured the quality of the predictions.

We used a random sample of 600 annotated tweets (20%) as a development

set on which we chose the threshold, and the remaining tweets as a test set.

We picked a threshold (T = 0.531) that strikes a balance between precision

and recall on the development set. Figure 3.3 shows the Precision-Recall

and ROC curves for both the development and the test set. On the test

set, this threshold yields a classification accuracy of 0.82, AUC of 0.86,

and an F1 score of 0.63. When we consider only the subset of the test set

in which annotators reached a consensus, all measures of the prediction

performance increase significantly, accuracy: 0.91, AUC: 0.95 , F1: 0.73.

Table 3.2 summarizes all performance metrics.
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Figure 3.4: Distribution of the number of tweets and the number of toxic tweets
per user.

3.5 analyses

Next, we investigate conversations at multiple scales. First, we explore

user characteristics and their propensity for toxic behavior. Second, we

investigate the dyadic relationship between users by considering a tweet

and the reply. Finally, we look at the overall conversational structure,

including the tree of replies, the network of user replies, and their follow

relationships.

3.5.1 Individual Level

We start by analyzing the distribution of tweets and toxic tweets per user

in the two datasets. There are 32.6M tweets by 2.4M users in the news and

25.9M tweets by 2M users in the midterms dataset.

In Figure 3.4, we bucket users in logarithmically-sized buckets by the

number of tweets and toxic tweets they posted (x axis) and show the

number of users that fall into each bucket (y axis). As one may expect, we

find that both distributions are long-tailed, i.e., there are many users who

posted a few tweets and a few users who posted many tweets. Out of all
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Figure 3.5: Fraction of toxic tweets contributed by the users in each toxicity
bucket.

users, 44.71% in the news and 38.85% in the midterms dataset posted only

one tweet. Most users—59.26% in the news and 56.15% in the midterms

dataset—did not post any toxic tweets.

distribution of toxicity. Next, we look at how the overall toxicity

is spread across the users that posted at least one toxic tweet. In particular,

we are interested in whether the toxicity is concentrated among a small

number of users or dispersed across the population. This has important

implications on how the platform might approach reducing toxic behavior.

For instance, if only a small fraction of users are toxic, one may hope

that changing their behavior or altogether removing them from the plat-

form may disproportionately reduce the overall toxicity and significantly

improve the experience for the rest of the users on the platform.

In Figure 3.5, we bucket users in logarithmically-sized buckets by the

number of toxic tweets they posted (same as in Figure 3.4) and compute

what fraction of toxic tweets (out of all toxic tweets in the dataset) was

posted by users in each bucket. We scale the size of each point by the

number of users that fall within each bucket to provide a visual reminder

that the buckets contain a different number of users.
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Figure 3.6: Average number of tweets (toxic and nontoxic) posted by users in
each toxicity bucket.

We find a very similar pattern in the two datasets: buckets containing

moderately toxic users account for the largest fraction of toxic tweets,

ranging from 15% to 18% per bucket. While there are more users in the

lower toxicity buckets, the higher number of toxic tweets per user in the

medium toxicity buckets leads to a larger number of toxic tweets. This

suggests that the toxicity is not concentrated among a few highly-toxic

users, but it is rather dispersed across many low to moderately toxic users.

activity levels of toxic users. We analyze how often users in

each of the toxicity buckets participate in the conversations by posting

reply tweets. Figure 3.6 shows the average number of tweets (toxic +

nontoxic) posted by users in each toxicity bucket. In both the news and

the midterms datasets, we find that users who post more toxic tweets also

tend to post more tweets in general.

rate of toxicity. There are two main ways that the toxicity of a user

can be characterized: (i) by looking at the absolute number of toxic tweets

posted by the user, or (ii) by the fraction of toxic out of all tweets posted by

the user. Each approach captures a different aspect of the user’s behavior.
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Figure 3.7: Average fraction of toxic tweets out of all tweets posted by users in
each activity bucket.

So far, we have taken the first approach, bucketing users by how many

toxic tweets they posted.

Here, we explore the second approach. In Figure 3.7, we bucket users

in logarithmically-sized buckets by the number of tweets they posted and

analyze how often their tweets were toxic. We find a similar pattern in

both datasets, where moderately active users have a higher fraction of

toxic tweets than both low- and high-activity users. We also find that

highly active users have, on average, a smaller fraction of toxic tweets than

lowly active users. Although, it is worth noting that the estimates for the

buckets of highly active users have wider confidence intervals as fewer

users belong to these buckets.

Similar to the analysis in Figure 3.5, where we computed contribution

to the overall toxicity by users from different toxicity buckets, in Figure 3.8

we compute the contribution to the overall toxicity by users with different

levels of activity, i.e., different number of tweets. In both datasets, we find

that the toxic tweets posted by moderately active users account for the

largest fraction of overall toxicity.

homophily. We test whether there is homophily [66] among users

within the Twitter follow graph, i.e., whether toxic users are more likely
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Figure 3.8: Fraction of toxic tweets contributed by the users in each activity
bucket.

to follow other toxic users and whether nontoxic users are more likely to

follow other nontoxic users.

To construct the complete follow graph among the users, we use the

earliest snapshot of the user’s friends (i.e., the Twitter users the user

follows) captured right after they participated in a conversation for the

first time. By doing so, we ensure that all of the users’ follow connections

were established before the users exhibited any toxic behavior captured in

our dataset.

To measure the levels of homophily, we use the assortativity coefficient

defined in [71] which quantifies whether nodes with the same attributes

connect more or less often than we would expect by chance, i.e., in a

random network. One attractive property of this coefficient is that it

is defined both for categorical and numerical node characteristics. The

assortativity coefficient can take values between -1: perfect disassortativity

(i.e., users only connect with others that have a different characteristic

from them) and 1: perfect assortativity (i.e., users connect only with others

that have the same characteristics as they do).

We start by assigning users to two categories: (i) users that did not post

any toxic tweets and (ii) users that posted at least one toxic tweet, and
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Table 3.3: Measure of homophily (assortativity) among the users within the
follow graph.

Assortativity Coefficient Type News Midterms

Categorical: Users with 0 v.s. 1+ toxic tweets 0.1496 0.1250

Categorical: Users with 0 v.s. 4+ toxic tweets 0.2280 0.1999

Numeric: Num. of toxic tweets
(All Users)

0.0060 0.0336

Numeric: Num. of toxic tweets
(Users with 1+ toxic tweets)

0.0047 0.0145

compute the corresponding assortativity coefficient (Table 3.3). We find

that there is a low level of homophily among the users in the two datasets,

0.1496 in the news and 0.1250 in the midterms dataset. If we consider only

users that did not post any toxic tweets and users that posted at least four

toxic tweets, such that we exclude cases where users may be in the toxic

category because a few of their tweets were misclassified, the assortativity

coefficient increases slightly, but it still remains low, i.e., 0.2280 in the news

and 0.1999 in the midterms dataset.

We also compute the assortativity coefficient among the users using

the number of toxic tweets as an attribute (Table 3.3). This allows us to

test whether users with many toxic tweets tend to follow other users with

many toxic tweets. The resulting assortativity coefficients are very close to

zero, 0.0060 in the news and 0.0336 in the midterms dataset. If we restrict

the analysis only to users with at least one toxic tweet, the assortativity

coefficients are even closer to zero. These results suggest that there is

neither a positive nor negative affinity for highly toxic users to connect to

other highly toxic users.

In summary, we find a low level of homophily among users with no

toxic tweets and users with at least one toxic tweet. However, we find no

evidence that highly toxic users (with many toxic tweets) are more likely

to connect to other highly toxic users.
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3.5.2 Dyads

Next, we focus on the relationship between toxicity and the characteristics

of the reply dyads. A reply dyad (i, j) consists of two conversation partici-

pants, user i and user j, where user j replied to user i’s tweet. We call user

i a parent (or a poster) and user j a child (or replier), since i’s tweet is a

parent of j’s tweet in the reply tree. Note that user i might be a child in

another dyad, e.g., (x, i), or user j might be a parent in a dyad (j, y) (e.g.,

if a reply tree has a branch (x, i, j, y)).

We exclude reply dyads that are direct replies to the root tweet (i.e., have

the news outlet as the parent user) since we are interested in understanding

the relationship between the conversation participants rather than the

relationship between the participants and the host news outlet. We also

exclude self-replies, i.e., a chain of tweets posted by the same user, since

the same user is both a dyad parent and the dyad child. This results in a

total of 9.2M dyads in the news and 8M dyads in the midterms dataset.

dyad characteristics. We define four dyad characteristics: (i) toxic-

ity type, (ii) edge type, (iii) influence gap, and (iv) embeddedness. Each

dyad can be characterized by whether the parent’s post is toxic and

whether the child’s reply is toxic, leading to four possible dyad toxicity

types. The dyad can also have one of four edge types depending on the

relationship between the dyad users in the follow graph: (i) they may

mutually follow each other (O=O), (ii) the child (replier) may follow the

parent but not vice versa (O←O), (ii) the parent may follow the child

(O→O), and (iv) they may not be connected at all (O O). (Note that, in our

notation, the parent user is always on the left.) The dyad’s influence gap is

the ratio between the parent’s and the child’s number of followers. Finally,

the dyad embeddedness measures the extent to which the social contexts of

the dyad users overlap. We define it as the number of common friends

between the dyad users, i.e., the number of users they both follow.
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Figure 3.9: Frequency of edge types. Most replies occur between users who do
not follow each other (O O).
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Figure 3.10: Complementary cumulative distribution of the number of common
friends for each edge type. The y axis shows the fraction of dyads
that have more than x common friends.

Figure 3.9 shows the frequency of dyadic interactions for each edge

type. In both datasets, most dyadic interactions occur between strangers,

i.e., users who do not have any follow relationship (O O, news: 90.8%,

midterms: 83.4%), followed by cases where users mutually follow each

other (O=O, news: 4.9%, midterms: 7.75%) or the replier follows the poster

(O←O, news:3.31%, midterms: 7.24%). The most rare case is when the

poster follows the replier, but not the other way around (O→O, news:

0.97%, midterms: 1.64%).

Figure 3.10 shows the complementary cumulative distribution of em-

beddedness, i.e., the number of common friends, for each edge type. We
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observe that in both datasets, dyad users who follow each other (O=O) are

more likely to have more common friends. Dyad users who have a one-way

follow edge (O←O or O→O) are less likely to have higher embeddedness

than dyads who mutually follow each other, but are more likely to have

higher embeddedness than users who do not follow each other (O O).

toxicity type. We start by analyzing how the probability of a toxic

reply varies depending on whether the parent post is toxic or not. We find

that toxic tweets are 65% in the news and 64% in the midterms dataset

more likely than nontoxic tweets to elicit toxic replies; the probability of a

toxic reply given a toxic post is 0.3 in the news and 0.27 in the midterms

dataset, while the probability of a toxic reply given a nontoxic post is 0.18

in the news and 0.16 in the midterms dataset. The toxicity type is the most

defining characteristic of the dyad. We find that, in general, the patterns

in other dyad characteristics differ significantly depending on whether the

parent post is toxic or not. Therefore, in all subsequent analyses, we report

how our findings differ in these two cases.

edge type. Next, we look at how toxicity varies across different edge

types. We find that the probability of a toxic reply varies significantly

depending on the edge type (Figure 3.11). Given a toxic post, a toxic

reply is more likely to come from another user who neither follows nor is

followed by the parent user (news: 0.30, midterms: 0.28). The probability

of a toxic reply among the other edge types (O=O, O←O, or O→O) is

very similar, ranging between 0.22 and 0.24 in the news and between 0.2

and 0.24 in the midterms dataset.

Given a nontoxic post, it is more likely that a toxic reply will be posted

by another user who does not have any follow relationship with the poster

(news: 0.18, midterms: 0.17). However, in this case, the probability that a

toxic reply comes from a user who follows the poster, but not vice versa

(O←O), is higher (news: 0.158, midterms: 0.156) compared to the other

two edge types (O=O, news: 0.12, midterms: 0.11; or O→O, news: 0.10,
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Figure 3.11: Probability of a toxic reply given a toxic (left) or nontoxic (right) post
depending on the edge type between the users in the dyad. Toxic
replies are more likely to be posted by users who do not have any
follow relationship with the poster (O O), or, in the case of nontoxic
posts, from users who follow the poster but are not followed back
(O←O).

midterms: 0.09). This suggests that more influential users are more likely

to be a target of toxic replies. We investigate this hypothesis next.

influence gap. We define the influence gap as the ratio between the

parent’s and the child’s number of followers. Since the distribution of

the number of followers is long-tailed, we compute the log of the ratio:

log10(|parent’s followers|) - log10(|child’s followers|). Although most

dyadic interactions occur among users with a similar number of followers,

users are more likely to reply to tweets posted by others who have more

followers than they do. In the news dataset, when the parent’s post is
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Figure 3.12: Probability of a toxic reply as a function of the influence gap, i.e.,
the log difference between the poster’s and replier’s number of
followers. (A, C) Given a nontoxic post, a toxic reply is more likely
to be posted by a user who has less followers than the poster. (B, D)
This phenomenon is most pronounced in dyads where the users do
not follow each other (O O), or the replier follows the poster but not
vice versa (O←O).
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toxic, the probability of a toxic reply is roughly the same, regardless of

the influence gap (Figure 3.12A). In contrast, in the midterms dataset, the

probability of a toxic reply increases when the parent has more followers

than the child (Figure 3.12C). When the parent’s post is nontoxic, then

the influence gap matters even more. In both datasets, the probability

that a reply will be toxic is higher when the parent has significantly more

followers than the child. Interestingly, this relationship is asymmetric, i.e.,

the probability of a toxic reply does not decrease when the child has more

followers than the parent.

We also observe a strong heterogeneity in the effect of the influence gap

among the four edge types (Figure 3.12, B and D). Both when the parent is

toxic and when it is nontoxic, the effect is most pronounced among dyads

where the two users do not have any follow relationship (O O) and when

the replier follows the poster but not vice versa (O←O).

embeddedness. We define the embeddedness of a dyad as the num-

ber of common friends between the poster and the replier. Higher embed-

dedness suggests that the two users have similar interests and overlapping

social contexts. This, in turn, may influence the behavior of the replier:

their potentially toxic behavior is more likely to be observed by others that

both poster and the replier are mutually aware of and may increase the

social cost of toxic behavior [20].

We find that the probability of a toxic reply significantly decreases

as the embeddedness increases (Figure 3.13, A and C). This is the case

regardless of whether the parent post is toxic or not. Given a toxic post,

the probability of a toxic reply is 11% lower in the news (dropping from

0.315 to 0.206) and 9% lower in the midterms dataset (dropping from 0.29

to 0.2) if the poster and the replier have 100 vs. 1 common friend. Similarly,

given a nontoxic post, the probability of a toxic reply goes down from

0.191 to 0.134 in the news and from 0.178 to 0.123 in the midterms dataset

when the dyad users have 100 vs. 1 common friend.
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Figure 3.13: Relationship between embeddedness, i.e., the number of common
friends, and the probability of a toxic reply. (A, C) A toxic reply is
less likely to be posted by users who share more common friends
with the poster, regardless of whether the post is toxic or not. (B,
D) This effect is most pronounced among user dyads who do not
follow each other (O O) and dyads where only the replier follows
the poster but not vice versa (O←O).
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Figure 3.13 (B and D) shows the relationship between embeddedness

and the probability of a toxic reply for each edge type. In the news dataset,

we find that given a toxic post, the probability of a toxic reply decreases as

the embeddedness increases only for dyads where the users do not follow

each other (O O). This effect is less pronounced in the midterms dataset.

Given a nontoxic post, embeddedness is negatively correlated with the

probability of a toxic reply, both when the dyad users do not follow each

other (O O) and when only the replier follows the poster (O←O). This

effect is consistent across the two datasets.

bifurcations. To further examine the robustness of the results pre-

sented so far, we repeated all analyses but only considered the dyads

where bifurcations occurred. Bifurcations, places where the reply tree

splits and the parent tweet has more than one child/reply tweet, allows us

to measure the correlation between the dyad characteristics and toxicity

while holding everything else constant. While the exact point estimates are

slightly different and the confidence intervals larger6, we find the same

substantive results.

6 Due to the smaller number of data points.
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Figure 3.14: Relationship between reply tree size (number tweets and number
of users) and the mean fraction of toxic tweets in the conversation.
Larger conversations tend to be more toxic.

3.5.3 Reply Tree Structure

When a user posts a tweet, other users may choose to post a reply tweet,

which in turn can lead to subsequent replies. The result is a reply tree of

tweets, rooted in the original tweet (Figure 3.1b). Here, we investigate the

relationship between the structural characteristics of the reply tree and the

overall toxicity of the conversation. We define the toxicity of a reply tree

as the fraction of toxic tweets. We note that the results presented are also

consistent with a slightly different definition, in which we compute the

mean or the median of the toxicity scores.

tree size. First, we consider the size of the tree in terms of the number

of tweets and the number of users who posted the tweets. We find a clear,

positive relationship between these two measures of tree size and its

toxicity. As shown in Figure 3.14, larger trees tend to be more toxic both in

the news and the midterms dataset. While the two size metrics (number

of tweets and number of conversation participants) are strongly correlated

(news: ρ = 0.98, midterms: ρ = 0.99), we present them both since they

reflect slightly different aspects of a conversation.
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Figure 3.15: Relationship between reply tree depth and the mean fraction of toxic
tweets in the conversation. Conversations with deeper reply trees
tend to be more toxic.
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Figure 3.16: Relationship between reply tree depth and the mean fraction of toxic
tweets in the conversation. Conversations with wider reply trees
tend to be more toxic.

tree depth and width. Next, we consider tree depth and width,

which we use as summary metrics of the tree structure. We define the tree

depth as the depth of its deepest node, and tree width as the maximum

number of nodes at any depth in the tree. Using these two metrics, we

find that both wider and deeper trees tend to be more toxic, as shown

in Figures 3.15 and 3.16. This pattern holds in both the news and the

midterms dataset. It is worth noting that both of these metrics are positively
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correlated with tree size (news: ρdepth = 0.53, ρwidth = 0.97; midterms:

ρdepth = 0.48, ρwidth = 0.97) and may be proxies for size. Later in this

chapter, we will evaluate their usefulness as features in a predictive task.

wiener index. While tree size, depth, and width summarize impor-

tant aspects of a tree, we present an additional metric that helps us charac-

terize the internal structure and complexity of a tree. The Wiener index

w(T) of a reply tree T is defined as the average distance between all pairs

of nodes; that is for n > 1 nodes,

w(T) =
1

n(n− 1)

n

∑
i=1

n

∑
j=1

dij,

where dij denotes the length of the shortest path between nodes i and j.

The Wiener index was initially proposed in mathematical chemistry to

characterize the structure of a molecule [95]. More recently, it has been

used to characterize the structure of information diffusion cascades, and

in particular to quantify whether information spreads in broadcast or viral

(person-to-person) fashion [33].

Figure 3.17 shows six sample reply trees of size between 250 and 1,000

from the midterms dataset with Wiener index raging between 2.55 and

46.1. As it can be observed from the figure, the Wiener index interpolates

between two extremes: reply trees in which participants only respond to

the original tweet and do not engage with each other (low w(T)), and reply

trees with a single branch in which participants have many back-and-forth

exchanges (high w(T)).

In the news dataset, we find that reply trees with a larger Wiener index

tend to be more toxic (Figure 3.18A). In the midterms dataset, the mean

toxicity of reply trees with varying Wiener index is mostly the same, except

for a small fluctuation for trees with a low Wiener index (Figure 3.18B).

A more complicated picture emerges when we plot the relationship

between the Wiener index and toxicity for reply trees of different sizes. In

Figure 3.18 (C and D), we divide all reply trees into five logarithmically-
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(a) Wiener index = 2.55 (b) Wiener index = 3.74 (c) Wiener index = 7.62

(d) Wiener index = 16.8 (e) Wiener index = 34.4 (f ) Wiener index = 46.1

Figure 3.17: Sample reply trees with different values of the Wiener index.

0.00

0.05

0.10

0.15

0.20

1 3 10

Wiener index (log)

M
ea

n 
fr

ac
tio

n 
of

 to
xi

c 
tw

ee
ts

Dataset: NewsA

0.0

0.1

0.2

0.3

1 3 10

Wiener index (log)

M
ea

n 
fr

ac
tio

n 
of

 to
xi

c 
tw

ee
ts

Number of Tweets

[1,5.4972]
(5.4972,30.22]
(30.22,166.12]
(166.12,913.22]
(913.22,5020.2]

C

0.00

0.05

0.10

0.15

1 3 10

Wiener index (log)

M
ea

n 
fr

ac
tio

n 
of

 to
xi

c 
tw

ee
ts

Dataset: MidtermsB

0.00

0.05

0.10

0.15

0.20

0.25

1 3 10

Wiener index (log)

M
ea

n 
fr

ac
tio

n 
of

 to
xi

c 
tw

ee
ts

Number of Tweets

[1,5.8865]
(5.8865,34.65]
(34.65,203.97]
(203.97,1200.7]
(1200.7,7067.6]

D

Figure 3.18: The relationship between the Wiener index of the reply tree and the
mean fraction of toxic tweets, in overall (A and B) and by tree size
(C and D).
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sized groups according to their size. (We chose the largest number of

groups that will leave us with enough data points to compare the relation-

ship between the Wiener index and size.) In the news dataset, we find that

for smaller reply trees, the toxicity of the conversations does not vary as

a function of the Wiener index; however, for larger reply trees, we find

that the toxicity decreases as the Wiener index increases (Figure 3.18C).

In the midterms dataset, the fraction of toxic tweets in the conversation

decreases as the Wiener index increases for all tree sizes, although the

negative correlation is stronger for larger trees (Figure 3.18D).

We use regression analysis to further investigate this phenomenon (Ta-

ble 3.19). We regress the fraction of toxic tweets as a function of (i) number

of tweets (i.e., tree size), (ii) Wiener index, and (iii) both number of tweets

and Wiener index. (We make log10 transformations of all independent vari-

ables.) We find that, when regressed individually, the number of tweets

and the Wiener index are both positively correlated with the fraction of

toxic tweets (Table 3.19, Models i and ii). However, we when we regress

both variables together, the coefficient for the number of tweets remains

positive, but the coefficient for the Wiener index becomes negative (Ta-

ble 3.19, Model iii). This pattern is consistent across the news and the

midterms dataset and confirms our previous analysis (Figure 3.18).

The tweets that constitute reply trees make up an important part of the

discourse on Twitter. Through the affordances provided by the platform,

users can contribute their commentary to a discussion prompted by an

initial tweet. No single user shapes the emergent reply tree structure,

yet there are consistent relationships between the tree structure and the

toxicity of its content.
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(Intercept) 0.12∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(0.00) (0.00) (0.00)
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(0.00) (0.00)

RMSE 0.19 0.19 0.19

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

(a) News
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(0.00) (0.00) (0.00)
log10(n tweets) 0.02∗∗∗ 0.05∗∗∗
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(b) Midterms

Figure 3.19: Regression analysis of the relationship between the fraction of toxic
tweets, and the Wiener index and size (number of tweets) of the
reply trees.
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3.5.4 Follow Graph Structure

Next, we analyze the relationship between the structure of the follow

graph (Figure 3.1d) among the conversation participants and the overall

toxicity of the conversations. Similar to the previous section, we define the

overall toxicity of the conversation as the fraction of toxic tweets; other

definitions such as the mean or the median of the toxicity scores lead to

very similar results. It is worth noting that the conversation participants

have only a local view of the follow graph, they may recognize their

friends or followers, but are unlikely to know how other participants are

connected.

graph size and density. We start by investigating how the size of

the graph is related to the overall toxicity. Unsurprisingly, given the results

from the previous section, larger follow graphs containing more nodes

and more edges tend to be more toxic. However, we find that the density

of the connections between the participants also matters (Figure 3.20).

The graph’s density is defined as the number of edges over the number

of pairs of nodes in the graph. We find that, both in the news and the

midterms dataset, conversations in which the participants are more densely

connected in the follow graph tend to be less toxic. Larger density of

connections in the follow graph suggests that the conversation participants

are more familiar with each other, which in turn increases the social cost

of toxic behavior.

While it is clear that a higher density of connections among the conver-

sation participants correlates negatively with overall toxicity, it is unclear

whether the way these connections are distributed in the follow graph

impacts toxicity. A follow graph may have high density either because

groups of users are very densely connected to each other, or because

there are simply many edges uniformly distributed over the graph. In

the rest of this section, we use three different graph metrics (number of
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Figure 3.20: The relationship between the density of the connections between
the users in the Twitter follow graph and the mean fraction of toxic
tweets.

connected components, modularity, and overall embeddedness) to answer

this question.

number of connected components. We start by looking at the

relationship between the number of connected components in the follow

graph and overall toxicity. A connected component of a graph is a subgraph

in which there is a path between any pair of nodes in the subgraph and

no path to nodes in the rest of the graph. Here we compute the weakly

connected components of the conversation follow graph, i.e., we ignore the

direction of the edges when we compute the connected components. The

number of connected components has been recently used to quantify the

structural diversity of an individual’s ego graph and has been shown to

explain product adoption decisions made by the ego [91]. In the context of

the conversation follow graph, a larger number of connected components

suggests that there are many smaller groups of participants who know

each other but do not know any other conversation participants. We

find that, both in the news and the midterms dataset, the number of

connected components is positively correlated with the overall toxicity of

the conversation (Figure 3.21).
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Figure 3.21: The relationship between the number of connected components in
the follow graph among the conversation participants and the mean
fraction of toxic tweets.

modularity. Next, we analyze the relationship between the modular-

ity of the conversation follow graph and the conversation toxicity. Given

a partitioning of a graph, modularity measures whether there are more

or less edges within the partitions than we would expect at random [72,

73]. It is strictly less than 1, it takes positive values if there are more edges

within the partitions than we would expect by chance, and negative values

if there are less. We first partition the conversation follow graphs using

the Louvain algorithm, and then we compute the modularity of the best

partitioning. Louvain is a computationally efficient algorithm that uses

greedy optimization to detect partitions with maximum modularity [10].

Partitioning the graph with Louvain is a more flexible way of grouping the

users than computing the connected components of the graph, allowing

for some edges between users of different groups.

We find that conversations in which the follow graph among the par-

ticipants has higher modularity tend to be more toxic (Figure 3.22). This

pattern holds in both datasets, but it is more pronounced in the midterms

dataset. We note that a large fraction of conversation follow graphs have a

modularity value of zero, 69.1% in the news and 76.35% in the midterms
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Figure 3.22: The relationship between the modularity of the follow graph among
the conversation participants after applying the Louvain community
detection algorithm and the mean fraction of toxic tweets.

dataset. We suspect that this is due to the fact that many of the follow

graphs are sparse.

embeddedness. In Section 3.5.2, we analyzed the relationship be-

tween embeddedness and toxicity at the dyad level, and we found that

replies in which the poster and the replier have many friends in com-

mon are less likely to be toxic. Here, we look at the relationship between

embeddedness and toxicity at the group level.

Embeddedness allows us to measure the strength of the relationship

between the conversation participants, even among those that are not

connected to each other in the follow graph. For each conversation, we

compute the number of common friends in the follow graph between every

pair of conversation participants and calculate the mean and the entropy

of the distribution. The mean captures the overall level of embeddedness,

and the entropy captures the diversity of the strength of the relationships

among the participants.

While we do not observe any relationship between the mean embedded-

ness and toxicity, we find that conversations with higher embeddedness

entropy tend to be more toxic, both in the news and the midterms dataset
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Figure 3.23: The relationship between the entropy of the distribution of the
embeddedness (i.e., number of common friends) among all the of
pairs conversation participants and the mean fraction of toxic tweets.

(Figure 3.23). We observe the same relationship between embeddedness

entropy and toxicity when we calculate the embeddedness entropy only

among pairs of participants that have a follow relationship or have replied

to each other. This suggests that even if there are strong ties among the

conversation participants, the presence of some weak ties may be enough

to lead to higher toxicity.
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3.6 predicting future toxicity

So far, we analyzed the correlation between toxicity and various structural

measures of the conversation, after the conversation has ended. In the

next two sections, we consider two prediction tasks that will allow us to

measure how useful are the structural properties of the conversation in

forecasting how it will unfold in the future. In the first task, we focus

on predicting whether the conversation as a whole will become more or

less toxic, and in the second task, we focus on predicting the behavior of

individual users and whether their next reply will be toxic or not.

In this section, we consider the first task. Given the initial stages of

the conversation, e.g., the first ten replies, we are interested in predicting

whether the rest of the conversation will turn more or less toxic than

expected. To make predictions, we will compute various metrics that char-

acterize the relations among the tweets and the users in the conversation

prefix. Figure 3.24 shows a sample conversation and how its reply tree

looks at different stages. Our goal is to predict how the shaded regions of

the conversation will look, given the highlighted regions.

Beyond allowing us to evaluate which metrics are good indicators of

future toxicity, this task also has several important practical applications.

First, accurate predictions of future toxicity can be used to decide how

much visibility a conversation should be given. For instance, if we suspect

that a conversation will turn very toxic, we may decide to downrank the

root tweet in users’ feeds. These predictions can also be combined with

engagement predictions to surface relevant, but nontoxic conversations.

Second, early warnings of derailment can be used to prompt the initiator

of the conversation to moderate the discussion and prevent it from turning

toxic. This is particularly useful for accounts that post frequently, such as

news outlets, but do not have the capacity to monitor the conversations.

Twitter is currently testing new features that allow users to actively mod-

erate the conversations prompted by their tweets by hiding or prohibiting

some replies.
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(a) Prefix = 10 (b) Prefix = 20

(c) Prefix = 30 (d) Prefix = 50

(e) Prefix = 100 (f ) Complete Reply Tree

Figure 3.24: Illustration of the task of predicting future conversation toxicity. The
figure shows the state of the reply tree at different stages of the
conversation, including the first 10, 20, 30, 50 replies, and the final
reply tree. The goal of the task is to predict how the rest of the
conversation will unfold (grey nodes/edges), given the conversation
prefix (colored nodes/edges).



120 the structure of toxic conversations

3.6.1 Experimental Setup

controlling for prefix toxicity. A common way to formulate the

task for the prediction problem we are interested in is to predict whether

the level of toxicity in the conversation suffix will be above or below the

median toxicity of all conversations. For instance, this setup has been

used to test if it is possible to predict whether a conversation thread will

grow [3] or whether an information cascade will grow [16]. However, our

scenario is slightly different as the toxicity in the suffix is confounded by

the toxicity in the prefix. Even if we fix the size of the prefix, different

conversations may contain a different number of toxic tweets in the prefix.

Figure 3.25 shows the relationship between the number of toxic tweets

in the prefix and the fraction of toxic tweets in the suffix. Unsurprisingly,

across all prefix sizes, conversations with more toxicity in the prefix have

a higher fraction of toxic tweets in the suffix.

To address this issue, for each prefix size, we first bucket the conversa-

tions by the number of toxic tweets in the prefix and then assign the labels

depending on whether the fraction of toxic tweets in the suffix is above or

below the median of all conversations in the bucket. For example, given

the first ten replies of the conversation, four of which are toxic, we aim to

predict whether the toxicity in the conversation suffix will be higher than

the median toxicity of all conversations that had four toxic tweets within

the first ten tweets.

Figure 3.26 shows the distribution of the number of conversations per

bucket (i.e., toxic tweets in the prefix) for different prefix sizes. To ensure

that there are enough positive and negative examples in each bucket, we

only consider buckets with at least 200 conversations. We also exclude

conversations smaller than twice the size of the prefix in order to ensure

that we have a good estimate of the fraction of toxic tweets in the suffix7.

7 We also tested computing the fraction of toxic tweets over the first ten tweets in the suffix;
while this increases the number of data points, the results are substantively the same.
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Figure 3.25: Relationship between the number of toxic tweets in the prefix and
fraction of toxic tweets in the suffix for different prefix sizes. Buckets
with less than 50 conversations were excluded.
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Figure 3.26: Distribution of the number of conversations per bucket, i.e., number
of toxic tweets in the prefix. The dashed horizontal line shows
the threshold of minimum number of conversations per bucket
(n = 200).
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Table 3.4: Number of conversations for each prefix size in the news and the
midterms dataset.

Prefix Size News Midterms

10 148,970 84,542

20 112,462 51,316

30 91,134 38,418

40 76,568 31,290

50 65,802 26,474

60 57,204 22,968

70 50,654 20,080

80 44,890 17,700

90 40,112 16,060

100 35,798 14,338

This process results in a balanced dataset in which there is no correlation

between the labels and the number of toxic tweets in the prefix. Table 3.4

shows the number of data points (i.e., conversations) per prefix size in

both the news and the midterms datasets.

methods used for learning. We tested a variety of linear and non-

linear machine learning methods, including Logistic Regression, Linear

SVM, Random Forests, and Gradient Boosted Regression Trees (GBRTs).

We find that non-linear models perform significantly better (with increases

in accuracy ranging between 2% to 5%) and that among them, GBRTs

perform best. To simplify the exposition of the results, we only report the

performance of the GBRT models.

To evaluate the performance of the models, we used nested cross-

validation: in the inner-loop, we perform 5-fold cross-validation to se-

lect the best hyper-parameters and refit the model with the best settings,

and in the outer-loop, we perform 10-fold cross-validation to measure

the performance of the tuned model on unseen data. This procedure

leads to unbiased estimates of the expected accuracy of the models after

hyper-parameter tuning [14, 92].
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We report the mean and 95% confidence intervals of the classification

accuracy, the area under the ROC curve (AUC), and the F1 score; all

computed across the 10 outer folds.

3.6.2 Feature Sets

Next, we describe the features that we use to predict future toxicity. The

goal of these features is to characterize the relationships between the

tweets and the users in the initial stages of the conversations. To measure

the predictive power of the content, we consider summary statistics of the

raw toxicity scores of the tweets in the prefix. We also include features that

characterize the sequence in which users contribute to the conversation,

and the rate the conversation unfolded, both of which have been shown to

be predictive of conversation growth [3].

We group the feature into nine feature sets: toxicity, reply tree, follow

graph, reply graph, subgraphs, embeddedness, political alignment, arrival

sequence, and rate features. In Table 3.5, we show a detailed list of all

features.

toxicity features. To control for the toxicity in the prefix, we buck-

eted the conversations by the number of toxic tweets in the prefix. We

assigned a binary label, toxic vs. nontoxic, to each of the tweets in the

prefix by thresholding their toxicity scores (i.e., ptoxic). While counting

the number of toxic tweets allows us to control for the overall toxicity in

the prefix, there still might be some variation in the toxicity scores that

we have not accounted for. For example, two conversations may have the

same number of toxic tweets in the prefix, but the tweets in one of them

may have much higher toxicity scores. This, in turn, may influence the

level of toxicity in the suffix.

To test how predictive are the toxicity scores of the tweets in the pre-

fix, we compute a number of features that summarize their distribution

(mean, std, min, max, quartiles). We consider these features as a baseline,
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capturing how predictive of future toxicity is the content of the tweets in

the prefix.

reply tree features. We significantly expand the set of features

characterizing the structure of the reply trees we considered in Section 3.5.3.

In addition to depth, width, and Wiener index, we include features that

summarize the distribution of the number of nodes at different depths,

the depth of all nodes, the depth of the leaf nodes, and the number of

children per node (i.e., branching factor). Since most reply trees have a

large number of nodes in the first level of the tree (i.e., direct replies to

the root post), we also measure what fraction of nodes are in the first

level, how many of them got replies, and how diverse in size are the

sub-conversations that they prompt (i.e., the size of the subtrees rooted in

them). To capture whether the conversation is dominated by a few users,

we also summarize the distribution of the number of tweets per user.

follow and reply graph features. In addition to the follow graph

among the conversation participants, we also consider the reply graph,

a user-centric view of the reply-tree in which two users are connected if

they have replied to each other. We compute various statistics on both

the directed and undirected versions of these graphs. We measure the

size and density of the graphs, summarize the degree distributions, and

calculate the degree assortativity8. We also measure how centralized the

graphs are using different centrality measures: betweenness, closeness,

eigenvalue centrality, and pagerank. We quantify the level of transitivity

in the graph by calculating the local and global clustering coefficients. To

measure whether there is a group structure in the graph, we compute the

modularity of the best partitions found by Louvain [10], the number of

connected components above a certain size, and summary statistics of the

k-core and k-truss of the graph.

8 Degree assortativity measures whether high-degree users are more or less likely to connect
to other high-degree users [71].
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Beyond the connections within the conversation, we also compute sum-

mary statistics of the number of friends and followers of the conversation

participants in the Twitter graph, as well as the level of assortativity, i.e.,

the tendency for users with a large number of friends/followers to follow

or reply to other users with a large number of friends/followers. We also

consider the level of assortativity in terms of political alignment, i.e., to

what extent users with similar political alignment follow or reply to each

other.

subgraph features. To further characterize the structure of the fol-

low and the reply graphs, we compute the dyadic and the triadic census

(i.e., we count the frequency of all possible subgraphs of size two and

three) of the follow graph, the reply graph, and the intersection of the two.

Previous work has shown that the observed distribution of dyads and

triads is useful in classifying whether a conversation is on a controversial

topic or not [21]. Here, we test whether it is indicative of future toxicity.

embeddedness. To measure the overlap of the social contexts/in-

terests among the conversation participants, we compute a number of

embeddedness features. We define three variations of embeddedness be-

tween users i and j: a) number of common friends (ncij), b) number of

common friends normalized by the smaller friend count among two users

(ncij/ min( fi, f j)), and c) normalized by the total number of unique friends

of i and j (ncij/( fi + f j− ncij). We compute summary statistics (mean, vari-

ance, entropy, and Gini coefficient) of the distribution of embeddedness

among all pairs of users and among pairs of users that have no, one-way,

and two-way connections in the reply/follow graph. These features allow

us to go beyond the direct connections between the conversation partic-

ipants and to capture broader, more contextual information about their

relationships.
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political alignment features. To measure the overall political

alignment of the conversation participants, we compute summary statis-

tics of the distribution of both the numerical alignment scores (mean, std,

min, max, quartiles, and interquartile range) and categorical (left vs. right)

alignment scores (number of left-leaning users, number of right-leaning

users, and entropy).

arrival sequence features. The arrival sequence features, pro-

posed in [3], summarize the specific order in which users contribute to

the conversation. They consist of two sets of features. The first set is the

temporal ids of the user contributing each reply, where the ids are assigned

by when the user contributed their first reply. For instance, the sequence

of ids: 0, 1, 0, 1, represents a back-and-forth conversation between the

first two users. The second set captures the number of unique users at

every point of the conversation. Previous work has demonstrated that

these features are predictive of the future growth of a conversation [3].

rate features. These features measure the “speed” at which the

initial stage of the conversation unfolded. They capture how much time

elapsed between the root tweet and the ith reply, how much time elapsed

between replies (i− 1 and i), the average time between replies in overall

and between tweets in the first and the second part of the conversation pre-

fix. Rate characteristics have been shown to be indicative of future growth

of both conversations [3] and information cascades [16] on Facebook.
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Table 3.5: List of features used to build models that, given the initial state
of the conversation, predict whether it will become more or less
toxic than expected.

Toxicity Features

p_toxmean/std/min/max/quartiles
Summary stats of the toxicity scores of
the tweets in the conversation prefix

Reply Tree Features

depth Depth of the reply tree

width Width of the reply tree

wiener_index Wiener index, i.e., average distance be-
tween all pairs of nodes

depth_n_nodesi Number of nodes at depth i

depth_n_nodesmean/var/h-idx/gini/ent

Summary stats (mean, var, h-index, Gini,
and entropy) of distribution of number
of nodes at every depth

depth_n_nodes_ratio Ratio between the depth and the number
of nodes in the tree

nodes_depthsmean/var/h-idx/gini/ent Summary stats of the depths of all nodes

leaves_depthsmean/var/h-idx/gini/ent
Summary stats of the distribution of leaf
node depths

n_childrenmean/var/hidx
Summary stats of the distribution of
number of children

lvl1_replies f Fraction of nodes in the first level

lvl1_replies_with_replies f
Fraction of nodes in the first level that
received a reply

lvl1_subtree_sizesgini/entropy
Diversity in the sizes of the subtrees root
at nodes in the first level

lvl1_max_subtreedepth_size_ratio
Faction between depth and size of the
largest subtree rooted in a first level reply

alignment_corrnum/cat
Assortativity in political alignment (nu-
merical and categorical) among the users
that replied to each other

user_n_tweetsmean/var/h-idx/gini/ent
Summary stats of the distribution of
number of tweets per user

(Continued on next page)
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Follow / Reply Graph Features

n_nodes Number of nodes

n_edgesdi/ud Number of edges in the directed and
undirected version of the graph

n_densitydi/ud Density of the graph

degreesmean/var/ f 0/gini/h-idx
Summary stats of the degrees: mean, vari-
ance, fraction positive, Gini, h-index

degrees_corr Degree assortativity

in_degreesmean/var/ f 0/gini/h-idx
Summary stats of the in-degrees: mean,
variance, fraction positive, Gini, h-index

out_degreesmean/var/ f 0/gini/h-idx
Summary stats of the out-degrees: mean,
variance, fraction positive, Gini, h-index

out_in_degrees_corr Out and in degree assortativity

dyadsno/1way/2way
n/ f

Number / fraction of pairs on nodes with
no, 1-way, and 2-way edges

f _connected_node_pairsdi/ud Fraction of node pairs connected by a
path of any length

centdi/ud
x

Centralization in the graph, x: between-
ness, closeness, eigenvalue, pagerank

algebraic_connectivity Algebraic Connectivity of the largest
Connected Component in the graph

global_clusteringdi/ud Global clustering coefficient

local_clusteringdi/ud Local clustering coefficient

modularityud Modularity of the best partitioning found
by Louvain

n_CC1 f _nodes Fraction of nodes in the largest CC

n_CC > x Number of Connected Components
larger than x = 1, 2, 3, 5, 10

k-coren_nodes/n_edges/density/n_CC
Summary stats of the k-core of the graph
for k = 1 . . . 5

k-trussn_nodes/n_edges/density/n_CC
Summary stats of the k-truss of the graph
for k = 1 . . . 5

n_ f ollowersmean/var/gini/h-idx
Summary stats of the users’ number of
followers

n_ f riendsmean/var/gini/h-idx
Summary stats of the users’ number of
friends

(Continued on next page)
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n_ f riends_n_ f ollowers_corr Assortativity between number of friends
and number of followers

alignment_corrdi/ud
num/cat

Assortativity of the political alignment
among the users, numerical and categor-
ical (L vs. R)

alignment_corr_modularity Modularity of the partitions defined by
the categorical political alignment

Subgraph Features

dyads f ollow/reply/ f ollow ∩ reply
n/ f

triads f ollow/reply/ f ollow ∩ reply
n/ f

Dyadic and triadic census of the follow,
reply, and the intersection of the follow
and reply graphs

Embeddedness

embn/mean/var/ent/gini
n/ f _min/ f _union

Summary stats of the user’s number and
fraction of common friends with all pairs
of conversation participants

emb_ f ollow_e0n/mean/var/ent/gini
n/ f _min/ f _union

emb_ f ollow_e1n/mean/var/ent/gini
n/ f _min/ f _union

emb_ f ollow_e2n/mean/var/ent/gini
n/ f _min/ f _union

Summary stats (n, mean, variance, en-
tropy, Gini coefficient) of the distribution
of the number and the fraction of com-
mon friends among all pairs of users that
have no (e0), one-way (e1), or two-way
(e2) connections in the follow graph

emb_reply_e0n/mean/var/ent/gini
n/ f _min/ f _union

emb_reply_e1n/mean/var/ent/gini
n/ f _min/ f _union

emb_reply_e2n/mean/var/ent/gini
n/ f _min/ f _union

Summary stats (n, mean, variance, en-
tropy, Gini coefficient) of the distribution
of the number and the fraction of com-
mon friends among all pairs of users that
have no (e0), one-way (e1), or two-way
(e2) connections in the reply graph

Political Alignment Features

algmean/std/min/max/quartiles/iqr
Summary stats of the (numerical) politi-
cal alignment of the users

algn_le f t/n_right/entropy

Number of left and right leaning users
and entropy of the (categorical) align-
ment distribution

(Continued on next page)
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Arrival Sequence Features

user_idi

The temporal id (assigned sequentially to
the every new replier) of the user posting
the ith reply

unique_usersi
Number of unique users up to the ith
reply

Rate Features

timei
Time elapsed between the root tweet and
the ith reply

time_di Time elapsed between reply i− 1 and i

time_dmean Mean time between replies

time_dmean
1...k/2

Mean time between replies in the first
half of the conversation prefix

time_dmean
k/2...k

Mean time between replies in the second
half of the conversation prefix

3.6.3 Results

Next, we evaluate our method’s performance in predicting future toxicity

given different sizes of the conversation prefix. We report the classification

accuracy (ACC), the area under the ROC curve (AUC), and the F1-score,

across the 10 cross-validation folds for both the news and the midterms

dataset. Since the classification task is balanced, random guessing would

results in a performance of 0.5.

We find that, in both datasets, our method achieves the best performance

when combining all feature sets, with classification accuracy ranging

between 0.61 and 0.64 in the news and between 0.61 and 0.63 in the

midterms dataset. While each feature set is individually significantly

better than predicting at random, it is the reply graph and embeddedness

feature sets that perform best across different prefix sizes in the news

dataset and the reply graph feature set in the midterms dataset.

To measure the contribution of the toxicity features to the performance

of the full model, we train a classifier with all but the toxicity features
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(Figures 3.27 & 3.28, All / Toxicity). Unlike the other feature sets, the

toxicity features are based on the content of the tweets in the conversation

prefix. We find that, when combined together, the structural features

perform significantly better than the toxicity features. However, adding

the toxicity features to the structural features (Figures 3.27 & 3.28, All)

significantly improves the overall performance of the model. This implies

that the structural features capture distinct predictive characteristics of the

conversations that are not captured by the content features.

We also note that while there is some variation in the performance

of the different structural feature sets, combining them together (All /

Toxicity), we obtain a significantly better performance than using any

feature set individually. This pattern holds in both datasets. This suggests

that each feature set captures a different and complementary aspect of the

conversational structure.

Intuitively, we would expect the performance of the classifiers to increase

as we observe more of the conversation. However, we find the opposite to

be true, especially in the news dataset. We offer two possible explanations

for this phenomenon. First, as we increase the prefix size, the number of

conversations that are big enough to be considered decreases significantly.

For instance, there are 149k conversations in the news prefix 10 dataset and

36k data points in the news prefix 100 dataset. Less training data makes

generalization harder and often results in lower prediction performance on

unseen data. Second, since we define the classification labels by bucketing

the conversations by the number of toxic tweets in the prefix, the prediction

problem itself becomes harder and more nuanced as we increase the prefix.

There are significantly more prefix toxicity buckets as we increase the size

of the prefix (Figure 3.26). In fact, due to the differences in the distribution

of conversation sizes between the two datasets, for larger prefix sizes there

are fewer prefix toxicity buckets that meet the minimum threshold in the

midterms than in the news dataset (Figure 3.26, prefix = 10). This may

explain the steeper decrease in performance for larger prefix sizes in the

news dataset.
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Figure 3.27: Classification performance of predicting future toxicity in the con-
versation given the initial 10, 50, and 100 replies.
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Figure 3.28: Classification accuracy of predicting future conversation toxicity
given different prefix sizes, prefix = {10, 20, 30, 40, 50, 60, 70, 80, 90,
100}.
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Figure 3.29: The median time (in minutes) it takes for a conversation to reach a
certain size.

To put the prediction performance in perspective and understand how

early we can give a warning that the conversation may derail, we com-

pute the median time it takes for a conversation to reach a certain size

(Figure 3.29). The conversations in the news dataset grow much faster

than those in the midterms dataset. This is not surprising given the much

higher follower counts of the news outlets. In the news dataset, half of the

conversations have 10 replies within the first 5 minutes and reach a size of

100 within 30 minutes. In the midterms dataset, half of the conversations

reach size of 10 within an hour and size of 100 within 130 minutes. This

suggests that we can give a reasonably accurate warning that the conver-

sation may become toxic as early as 5 minutes after the root tweet was

posted in the news dataset and within one hour in the midterms dataset.
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3.7 next reply predictions

The goal of the first prediction task was to predict how the conversation,

as a whole, will unfold in the future by characterizing how the participants

are connected to and interact with each other during the initial stages of the

conversation. In the second prediction problem, we focus on forecasting

the behavior of individual users.

In particular, we aim to predict whether the next reply by a specific user

will be toxic, given the conversation so far and the user’s relationship to

other conversation participants, including the user that they are replying

to. This prediction problem is inspired by the practical need to rank the

different branches of a conversation to present them to the end-user in a

linear order. While Twitter conversations have a tree structure (Figure 3.1b),

Twitter’s user interface displays the replies in a linear order, which requires

one to decide how to order the different branches of the conversation tree.

If we can estimate how likely the user is to post a toxic reply to each of

the conversation branches, then we can display the branches for which the

user is least likely to post a toxic reply first. This will make it less likely

for the user to reach parts of the conversation that may prompt them to

post a toxic reply.

It is worth noting that unlike the previous prediction problem where we

did not know who will contribute to the conversation next, here we assume

that we know the identity of the user who will reply next, but we do not

know whether their reply will be toxic or not. This setup matches exactly

the scenario that we would face in a production system: when a specific

user opens a tweet, we need to decide how to rank the reply branches of

the conversation such that, if they post a reply, they are more likely to post

a nontoxic one. Moreover, this setup creates an opportunity for building

personalized models that rank the branches of the conversation based on

the identity of the user viewing the conversation.
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3.7.1 Experimental Setup

controlling for content. The content of the root tweet may, to

a large extent, drive the structure and the toxicity of the conversation.

For instance, tweets by news outlets that cover divisive topics or tweets

by midterm candidates sharing their policies on contested issues may be

more likely to spur toxic conversations. Moreover, the content discussed

across different communities (e.g., audiences of different news outlets)

may vary significantly. This, however, does not imply that we should limit

the conversations on contested topics altogether. All these considerations

motivate the need for an experimental setup that allows us to evaluate

the predictive power of the metrics that we propose, but factors out the

influence of the content.

To achieve this, we control for the content by using a paired prediction

scheme: for each conversation, we sample a pair of a toxic and a nontoxic

tweet and aim to predict which one of the two tweets is more likely to be

toxic (Figure 3.30). Each pair of tweets is one instance of the prediction

task. To represent a pair, we take the difference of the features of the

individual tweets and define the label as positive if the first tweet was

toxic and negative otherwise. To ensure a balance between the positive

and negative class, we construct the pairs such that in exactly half of them,

the first tweet is toxic. To avoid overrepresenting any one conversation in

the dataset, we sample at most one pair per conversation9. While sampling

tweets, we exclude self-replies and direct replies to the root as we are

interested in identifying indicators of toxicity among the conversation

participants. We also exclude tweets whose toxicity scores were close to

the threshold and consider only tweets for which the Perspective API

prediction (ptoxic) was below 0.25 or above 0.75.

This paired prediction scheme has been used to control for content in

several previous studies [50, 90, 98]. While controlling for the content

9 Some conversations did not have any pairs of tweets that fit our criteria.
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(a) Nontoxic tweet (b) Toxic tweet

Figure 3.30: Illustration of the next reply paired prediction scheme. Each image
shows the state of the conversation right before the sampled tweets
were posted, and the highlighted nodes represent the two randomly
sampled tweets.

makes the prediction problem more difficult, it allows us to measure the

predictive power of the structural representation of the conversations.

methods used for learning. Similar to the previous prediction

task, we experimented with different linear and non-linear models and

found that Gradient Boosted Regression Trees (GBRTs) perform best. We

follow the same nested cross-validation setup, selecting the best hyper-

parameters using 5-fold cross-validation in the inner loop, and mea-

suring the performance on unseen data using 10-fold cross-validation

in the outer loop. We tuned only one hyper-parameter, the number

of GBRT estimators, choosing one of the following values: nestimators ∈
{10, 25, 50, 100, 500, 1000, 2000, 3000, 5000, 10000}. As before, to measure

the classification performance, we compute accuracy, area under the ROC

curve (AUC), and F1 score.

3.7.2 Feature Sets

We proceed by describing the features that we use to predict whether the

next reply will be toxic. The goal of these features is to capture the struc-
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tural relationship between the next tweet and tweets in the conversation

so far, and between the user and the current conversation participants.

We significantly expand on the individual level and dyad-level proper-

ties described in Section 3.5. We group the features into ten feature sets:

features capturing the current state of the conversation, properties of the

user-parent and user-root dyadic relationship, the tweet’s position in the

reply tree, features describing the user’s position in the follow and reply

graphs, the level of embeddedness between the user and other conversa-

tion participants, the political alignment of the user relative to other users,

and general user features. Below we describe the most important features

of each group, and in Table 3.6, we present a detailed list of all features.

conversation state features. In the analysis in Section 3.6.1, we

saw that the level of toxicity in the initial portion of the conversation is

highly correlated with how the rest of the conversation will unfold. Thus,

it is reasonable to assume that the initial level of toxicity is also correlated

with the probability that the next reply will be toxic. We record the number

of toxic tweets in the conversation so far, but also the number of toxic

tweets posted by the user or posted in reply to previous tweets by the user.

dyadic relationship features. In Section 3.5.2, we found that the

dyadic relationship between the user and the parent (i.e., the user they are

replying to) is highly correlated with the probability of a toxic reply. In

addition to the user-parent relationship, here we also describe the user-

root relationship. We use a number of features that characterize different

aspects of these relationships.

We capture the relationship of the two users in both the follow and reply

graphs10 as well as the difference of their centrality score according to a

number of different measures (degree, betweenness, closeness, eigenvalue,

and pagerank). We also record the number of interactions between the two

10 We use both the directed and undirected versions of these graphs.
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users in the conversation so far, and how many of them were toxic. Lastly,

we measure whether their political alignments are similar.

reply tree features. In Section 3.5.3, we found that the size, depth,

and width of the reply tree are correlated with toxicity. Here, we slightly

adapt these features to characterize the position of the tweet in the reply

tree. We record the depth, number of siblings (i.e., number of other replies

to the same tweet), and the size of the subtree that the tweet belongs to.

follow and reply graph features. In Section 3.5.4, we found a

strong correlation between the structure of the participants’ follow graph

and the overall toxicity of the conversation. Here, in addition to the

follow graph, we also consider the reply graph, which is a user-centric

view of the reply tree. We characterize the user’s position in the two

graphs by measuring the user’s centrality (degree, betweenness, closeness,

eigenvalue, and pagerank) and the size of the connected component and

Louvain partition that the user belongs to. We also record the number

of edges to toxic and nontoxic users. To capture how the strength of the

relationship between the user and other conversation participants varies

depending on their connection in the graph, we break down the user’s

embeddedness summary statistics by edge type (below we give more

details about the embeddedness metrics).

overall embeddedness features. To capture the strength of the

relationship between the user and the other conversation participants,

we compute a number of summary statistics of the embeddedness be-

tween the user and others. We define three variations of embeddedness

between users i and j: a) number of common friends (ncij), b) number of

common friends normalized by the smaller friend count among two users

(ncij/ min( fi, f j)), and c) normalized by the total number of unique friends

of i and j (ncij/( fi + f j − ncij). We characterize the user’s overall embed-
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dedness by computing the mean, variance, entropy, and Gini coefficient of

the distribution of embeddedness with all other users.

toxic embeddedness features. Similar to the overall embedded-

ness features, we also measure the strength of the user’s relationship with

toxic vs. nontoxic users by computing the same summary statistics of the

distribution of user’s embeddedness with users from each group. Here,

we consider a user as toxic if they contributed at least one toxic tweet to

the conversation.

political alignment features. To capture how politically aligned

the user is with other conversation participants, we compute the mean

difference between the user’s numerical alignment score and the alignment

score of all other users as well as the fraction of users who have the same

categorical alignment (left vs. right, categories obtained by thresholding

the numerical alignment).

user information features. We record the number of friends and

followers of the user in the follow graph at the time when the conversation

occurred.
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Table 3.6: List of features used to build models that predict whether the
next reply will be toxic.

Conversation State Features

repliesn/n_tox/ f _tox
Total number of replies, number and fraction
of toxic replies in the conversation

f rom_repliesn/n_tox/ f _tox
Total number of replies, number of toxic and
fraction of toxic replies posted by the focal user

to_repliesn/n_tox/ f _tox
Total number of replies, number of toxic and
fraction of toxic replies to the the focal user

User-Parent / User-Root Dyadic Features
(∗: user-parent only)

tweet_tox Whether the parent / root tweet is toxic

f ollow_edge_type One of four types: O←O, O→O, O=O, O O

embeddedness Number and fraction of common friends

n_ f riends_d Difference in friend counts

n_ f ollowers_d Difference in follower counts

f ollow_di_d_centx ∗
Difference in centrality scores in the directed
follow graph, x: in-degree, out-degree, between-
ness, closeness, eigenvalue, pagerank

f ollow_ud_d_centx ∗
Difference in centrality scores in the undirected
follow graph, x: degree, betweenness, closeness,
eigenvalue, pagerank

f ollow_ud_sameCC/LP ∗
Whether the users are in the same Connected
Component / Louvain partition

f ollow_ud_d_sizeCC/LP ∗
Difference in size of the Connected Compo-
nents / Louvain partitions of the two users

reply_di_d_centx ∗
Difference in centrality scores in the directed
reply graph, x: in-degree, out-degree, between-
ness, closeness, eigenvalue, page-rank

reply_ud_d_centx ∗
Difference in centrality scores in the undirected
reply graph, x: degree, betweenness, closeness,
eigenvalue, pagerank

reply_ud_sameCC/LP ∗
Whether the users are in the same Connected
Component / Louvain partition

reply_ud_d_sizeCC/LP ∗
Difference in size of the Connected Compo-
nents / Louvain partitions of the two users

replies f _tox
Fraction of toxic replies between the user and
the parent / root

(Continued on next page)
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replieschild→parent/root
n,n_tox, f _tox

Number of replies, number of toxic and frac-
tion of toxic replies from the child to the par-
ent / root

repliesparent/root→child
n,n_tox, f _tox

Number of replies, number of toxic and frac-
tion of toxic replies from the parent / root to
the child

alg_num_d Difference in numerical political alignment

alg_cat_same Whether their categorical political alignment
(left vs. right) is the same

Follow / Reply Graph Features

di_centx

Centrality score of the user in the directed ver-
sion of the graph, x: in-degree, out-degree,
betweenness, closeness, eigenvalue, page-rank

di_edgesin/out/2way
n/n_tox/ f _tox

Number / fraction of in, out, and two-way
edges between the user and other toxic and
nontoxic users in the directed graph

ud_centx

Centrality score of the user in the undirected
version of the graph, x: degree, betweenness,
closeness, eigenvalue, page-rank

ud_edgesn/n_tox/ f _tox

Number / fraction of edges between the user
and other toxic and nontoxic users in the undi-
rected version of the graph

ud_CCn/ f
Number and fraction of other nodes in the
same Connected Component as the user

ud_LPn/ f
Number and fraction of other nodes in the
same Louvain partition as the user

emb_non/mean/var/ent/gini
n/ f _min/ f _union

emb_inn/mean/var/ent/gini
n/ f _min/ f _union

emb_outn/mean/var/ent/gini
n/ f _min/ f _union

Summary statistics (n, mean, variance, entropy,
Gini coefficient) of the distribution of the num-
ber and the fraction of common friends with
other users who are not connected to the user
(emb_no), the user is connected to (emb_in),
and are connected to the user (emb_out)

Reply Tree Features

n_siblings Number of siblings in the reply tree

depth Depth of the tweet

subtreesize, f _size
Size of the subtree the reply belongs to and
fraction of tweets in the subtree

depth/subtree_size Ratio between the depth of the tweet and the
subtree size

(Continued on next page)
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Overall Embeddedness

embn/mean/var/ent/gini
n/ f _min/ f _union

Summary statistics of the user’s number and
fraction of common friends with all other con-
versation participants

Toxic Embeddedness

emb_toxn/mean/var/ent/gini
n/ f _min/ f _union

Summary statistics of the user’s number and
fraction of common friends with users with at
least one toxic tweet

emb_nontoxn/mean/var/ent/gini
n/ f _min/ f _union

Summary statistics of the user’s number and
fraction of common friends with users with no
toxic tweets

Political Alignment Features

alignment_deltaavg
Average difference between the user’s (numer-
ical) alignment score and all other users

alignment_ f _same Fraction of other users with the same (categor-
ical) alignment as the user

User Information Features

n_ f riends Number of friends in the follow graph

n_ f ollowers Number of followers in the follow graph

f riends_ f ollowers_ratio Ratio between the number of friends and fol-
lowers

3.7.3 Results

Next, we evaluate our method’s performance in predicting the toxicity

of the next reply under the paired prediction scheme defined above. We

sample 96,520 pairs of tweets from the news and 50,143 pairs of tweets

from the midterms dataset, where each pair is sampled from a different

conversation. We report the classification accuracy, area under the ROC

curve (AUC), and F1 score for each dataset over 10 cross-validation folds.

Since there is an equal number of positive and negative examples in each

class, random guessing would result in a performance of 0.5.
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Figure 3.31: Classification performance of predicting whether the next reply will
be toxic in a paired prediction scheme. The error bars represent 95%
confidence intervals computed over the 10 cross-validation folds.
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We find that our method achieves surprisingly strong performance in

both datasets: accuracy of 0.712 and AUC of 0.797 in the news dataset, and

accuracy of 0.737 and AUC of 0.829 in the midterms dataset (Figure 3.31).

When we consider the performance of the individual feature sets, we

find that features capturing the state of the conversation perform best.

To understand whether we could do well without the conversation state

features, we trained a classifier which excluded them. We find that while

the classification accuracy drops by 0.032 in both datasets, we are still able

to obtain reasonable performance even without these features. We achieve

similar performance when we use just the conversation state features and

just the structural features (i.e., Figure 3.31: All / Conversation State).

Moreover, we find that, in both datasets, combining the two (i.e., using

all features) significantly improves the classification performance. This

suggests that the conversation state features and the structural features

capture different and complementary aspects of the conversation that are

predictive of whether the next reply will be toxic.

We find that both the absolute and relative performance of the individual

features sets is similar in both datasets. This is perhaps due to the fact that

our experimental setup was designed to control for the content of the root

tweets and suggests that the proposed features could generalize beyond

political conversations. We also observe that most feature sets perform

significantly better than random, which suggests that our predictions do

not rely on any individual feature set and demonstrates that the predictions

are robust.

3.7.4 Remarks

We designed the prediction problem with the assumption that the user will

contribute to the conversation, i.e., we consider the probability of a toxic

reply given a reply. In other words, we do not consider counterfactual cases

in which the user would have replied but did not. Nevertheless, we think

that this assumption is realistic and useful in the context of automatically
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moderating online conversations that we consider. The usual caveat of

prediction models holds here too: the models capture associations rather

than causal relationships.

Our models can be used to rank the branches of the conversation such

that they are least likely to prompt the user to post a toxic reply. One

may worry that this will reduce the number of replies in the conversation,

which might be an objective that the platform designers aim for. There is a

trivial way to reduce the number of toxic replies by simply not allowing

any replies to be posted. In fact, currently, Twitter is testing a feature

that allows the user who posted the tweet to allow replies by only users

who were @mentioned, which if the tweet does not contain @mentions, it

means no replies are allowed. In practice, the models that we propose here

may be used in tandem with other models that predict engagement, and

together aim to maximize the number of replies but minimize the number

of toxic ones.

3.8 conclusion

In this chapter, we focused on the structural view of political conversations

on Twitter and the relationship to toxicity. We examined 1.18M conversa-

tions rooted in tweets that are posted by or mention the Twitter accounts

of major news outlets and 2018 midterm election candidates.

To understand the link between structure and toxicity, we analyzed the

conversations at three levels: individual, dyad, and group level.

At the individual level, we found that toxicity is not concentrated among

a small number of highly toxic users, but it is rather distributed over many

low to moderately toxic users (Section 3.5.1). Highly toxic users tend to be

more active: beyond posting more toxic replies, toxic users tend to post

more replies in general.

At the dyad level, we found that toxic posts are more likely to attract

toxic replies than nontoxic posts (Section 3.5.2). Given a toxic post, a toxic
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reply is more likely to come from a stranger, i.e., a user who does not

have any follow relationship with the poster. Given a nontoxic post, a toxic

reply is more likely to be posted by a stranger or someone who follows

the poster but is not followed back. Users who are more embedded in the

social graph, i.e., have more common friends, are less likely to be toxic to

each other. This is especially pronounced among users who do not follow

each other.

At the group level, we found a strong correlation between the overall

structure of the conversation and the overall toxicity of the conversation

(Sections 3.5.3 and 3.5.4). Toxic conversations tend to have larger, wider,

and deeper reply trees. Conversations with more participants tend to be

more toxic; however, when the participants are more densely connected in

the follow graph, the conversations tend to be less toxic.

To test the predictive power of the structural characteristics of the

conversations, we also considered two prediction tasks. In the first task, we

aimed to predict whether the conversation will become more or less toxic

than expected, given the initial stages of the conversation (Section 3.6).

We found that we can predict how the conversation will unfold with an

accuracy of up to 0.62 given only the first ten replies, using only the

structural features and after controlling for the toxicity in the initial ten

replies. In the second task, we predicted whether the next reply, posted by

a specific user, will be toxic (Section 3.7). We found that we can predict

the toxicity of the next reply with an accuracy of up to 0.74, even after

controlling for the content of the tweets that prompted the conversation.

These findings advance our understanding of the social conditions that

are more likely to lead to toxic behavior online. They also have direct

practical applications: the models proposed in the two prediction tasks

can be readily used to curate conversations algorithmically and to provide

early warnings of conversation derailment. The predictions of future

toxicity based on the initial conversation tweets can be used to rank or

highlight conversations at their early stages (e.g., in users’ feeds) or to

alert the user who initiated the conversation that it may derail and prompt
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them to intervene. The predictions of whether the next reply posted by a

specific user will be toxic can be used to order the different threads of the

conversation such that the user is least likely to post a toxic reply.

While our analysis is based on Twitter data, we suspect that many of

our findings would apply to other online, conversational platforms with

similar network relationships between users and the ability to engage in

semi-public conversations.





4
T H E R E L AT I O N S H I P B E T W E E N

P O L A R I Z AT I O N A N D TO X I C I T Y

So far, we studied two different phenomena related to tweets posted by

political accounts: in Chapter 2 we focused on the political diversity of

the users who shared the tweets, and in Chapter 3 we focused on the

toxicity of the conversations prompted by them. The next logical step is to

investigate if and how these two phenomena—polarization and toxicity—

relate to one another. In this chapter, we analyze: (i) the relationship

between the political diversity of the users who shared a tweet and the

overall toxicity of the conversation prompted by the tweet, and (ii) the

relationship between the political diversity of the conversation participants

and the overall toxicity of the conversation.

4.1 conversation toxicity and retweeters’

political diversity

We start by analyzing the relationship between the political diversity of

the retweeters and the overall toxicity of the conversation prompted by

the tweet. We focus on tweets posted by the news outlets between May

2018 and May 2019, which corresponds to the overlapping time period

of the data we collected for our polarization (Section 2.3) and toxicity

(Section 3.3) analysis. We selected only tweets with at least three retweets

and at least two replies so that we could estimate the political diversity

of the audience and the overall toxicity of the conversation. In total, we

considered 160k tweets. To compute the political diversity of the audience,

we use the measure defined in Section 2.5.1, i.e., we compute the entropy
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Figure 4.1: The relationship between the political diversity of the retweeters and
the mean fraction of toxic tweets in the conversation for tweets in the
news dataset.

of the distribution of left- vs. right-leaning retweeters, and to measure the

overall toxicity of the conversation we calculate the fraction of toxic tweets

in the conversation.

We find a weak negative correlation between the political diversity of

the retweeters and the overall toxicity of the conversation, i.e., tweets

shared by a set of more politically diverse users tend to be slightly less

toxic (Figure 4.1). The overall correlation between the two variables is

ρ = −0.08 (p < 10−15). When we compute the correlation for each outlet

individually, we find a positive correlation in some cases and negative in

others; however, in all cases, the coefficient is close to zero (ρ between -0.13

and 0.07). In summary, we do not find a strong correlation between the

political diversity of the users that shared the tweet and the overall toxicity

of the conversation prompted by the tweet.
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4.2 conversation toxicity and participants’

political diversity

Next, we focus just on the conversations prompted by the tweets and, in

particular, the relationship between the political leaning of the conversation

participants and the toxicity of the conversation. We consider both the

news (510k conversations) and the midterms (676k conversations) datasets.

We provide more details about the datasets in Section 3.3.

4.2.1 Conversation Toxicity vs. Political Diversity of the Participants

We analyze how the conversation toxicity varies as a function of the overall

political diversity of the conversation participants. As before, we measure

the political diversity of the conversation participants by computing the

entropy of the distribution of left- vs. right-leaning users. We find that

conversations in which the participants are more politically diverse tend

to be less toxic (Figure 4.2). This pattern is more pronounced in the news

dataset where the mean fraction of toxic tweets drops significantly between

conversations with no diversity (i.e., entropy = 0) and conversations with

perfect audience diversity (i.e., entropy = 1). The pattern is slightly different

in the midterms dataset with the mean fraction of toxicity dropping for

conversations with political diversity between 0 and 0.6, and slightly

increasing between 0.6 and 1.

4.2.2 Conversation Toxicity vs. Political Alignment Assortativity

The entropy of the distribution of the conversation participants’ political

leanings measures the overall diversity of the conversation participants.

However, it does not take into account the structure of the conversation.

For instance, the conversation participants might be politically diverse, but

they may interact only with users who have similar political alignment, e.g.,
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Figure 4.2: The relationship between the political diversity of the conversation
participants and the overall toxicity of the conversation.

left-leaning users interacting with each other in one part of the reply tree

and right-leaning users in another. To quantify more precisely how users

with different political alignments interact with each other, we compute

the assortativity coefficient of the users in the reply graph. As a reminder,

the reply graph is a user-centric view of the conversation in which the

edges represent “replied to” relationships. The assortativity coefficient

measures to what extent users interact with other users who have similar

political alignment than we would expect by chance. It varies between

-1: when users interact only with other users who have different political

alignment, and 1: when users interact only with other users who have

similar political alignment.

We find that conversations with an assortativity coefficient close to zero

tend to be more toxic than conversations with an assortativity coefficient

closer to the extremes, i.e., -1 or 1 (Figure 4.3). This pattern holds in both

datasets but is more pronounced in the news dataset. We note that in both

datasets, a large fraction of conversations have an assortativity coefficient

close to zero.
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Figure 4.3: The relationship between the assortativity of the participants’ po-
litical alignments in the reply graph and the overall toxicity of the
conversation.

4.2.3 Toxicity and Political Alignment in Dyadic Interactions

Next, we study the relationship between political alignment and toxicity

at the dyad level. We compare the probability of a toxic reply conditioned

on whether the poster and the replier have the same or different political

leanings and whether the parent post is toxic or not. Similar to Section 3.5.2,

we do not consider direct replies to the root tweet and self-replies.

As we found in our previous analysis (Section 3.5.2) toxic posts are more

likely to receive toxic replies. Moreover, toxic replies are more likely to

come from users who have a different political leaning than the poster

(Figure 4.4). Given a toxic post, the probability of a toxic reply by a user

with a political leaning different from the poster is 6.8% higher in the

news and 7.2% higher in the midterms dataset. Similarly, given a non-toxic

post, the probability of a toxic reply from a user with different political

leaning is 5% higher in the news and 6.6% higher in the midterms dataset.

This finding is somewhat at odds with our previous two results, which

suggest that higher political diversity at the group level is associated with

lower toxicity. This discrepancy can be explained by the fact that in our
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Figure 4.4: The probability of a toxic reply conditioned on whether the poster and
the replier have the same or different political leaning and whether
the post is toxic or not.

dyadic analysis, we did not consider direct replies to the root, which in

most conversations constitute a large fraction of all replies.

4.2.4 Predictive Power of the Polarization Features

In Chapter 3, we considered two prediction tasks: (i) predicting how

the rest of the conversation will unfold given the conversation prefix

(Section 3.6), and (ii) predicting whether the next reply posted by a specific

user will be toxic given their relationship with the participants in the

conversation so far (Section 3.7). In both prediction tasks, we included

feature sets that capture the political alignment/leaning of the conversation

participants.

In the first prediction task, predicting future toxicity, we computed

summary statistics of the distribution of both the political alignment

scores (mean, std, min, max, quartiles, and interquartile range) and the

political leaning (number of left-leaning users, number of right-leaning
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users, and entropy) of the users in the conversation prefix. The prediction

accuracy of these features alone was significantly better than random,

ranging between 0.56 and 0.58 in the news dataset, and between 0.55 and

0.57 in the midterms dataset (Section 3.6.3). This suggests that the political

alignment of the conversation participants is predictive of how the rest of

the conversation will unfold.

In the second prediction task, predicting whether the next reply posted

by a specific user will be toxic, we computed the mean difference between

the user’s political alignment and the alignment scores of all other users,

and the fraction of other users with the same political leaning as the

user. We found that these features alone perform only slightly better than

random with an accuracy of 0.51 in the news and 0.52 in the midterms

dataset (Section 3.7.3). However, we note that the dyadic feature set also

captures information related to the users’ political alignment, such as

whether the poster and the replier have the same political leaning, which

is predictive of toxicity.





5 C O N C L U S I O N A N D F U T U R E W O R K

5.1 conclusion

In this thesis, we conducted focused studies of two online phenomena:

political polarization and toxic behavior. In both studies, we took a compu-

tational approach, applying techniques from natural language processing

and social network analysis to model and understand new aspects of these

phenomena.

In the first part of this thesis, we focused on the role that media outlets

play in political polarization on social media. We studied how the language

they use to promote their content influences the political diversity of their

audience. We tracked the tweets posted by five major news outlets in the

US over three years and measured the political diversity of the users that

retweeted them. Using this data, we trained machine learning models that,

given the tweet text, predict the political diversity of the audience. We then

integrated these models into a web application that helps journalists craft

tweets that are engaging to politically diverse audiences by iterating on the

tweet text based on the model predictions. To test the effectiveness of our

approach in a real-world scenario, we partnered with the PBS documentary

series Frontline and ran a series of experiments on Twitter’s advertising

platform. In each experiment, we used our tool to select one treatment

tweet—predicted to be engaging to a more politically diverse audience,

and one control tweet—predicted to be engaging to a less politically

diverse audience, and ran advertising campaigns to test whether the

model predictions will materialize. We found that in five out of the seven

advertising experiments, the treatment tweets were indeed engaging to a

159
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more politically diverse audience, matching the predictions of our model.

These experiments illustrate that we can not only predict the political

diversity of the tweets accurately but also use the models to select tweets

that are engaging to a more politically diverse audience.

In the second part of this thesis, we studied the relationship between the

structure and the toxicity of political conversations on Twitter. We collected

data on conversations prompted by tweets posted by five news outlets

and candidates who ran for office during the 2018 midterm elections in

the US. To analyze the structure of the conversations, we constructed

three different views of each conversation: (i) reply tree, capturing which

tweet was posted in reply to which other tweet, (ii) reply graph, encoding

which users replied to each other, (iii) follow graph, capturing which users

have a follow relationship in the Twitter social graph. We analyzed the

conversations at the individual, dyad, and group levels. At the individual

level, we found that toxicity is not concentrated among a few highly-toxic

users, but it is rather dispersed across many low and moderately toxic

users. At the dyad level, we found that toxic posts are more likely to receive

toxic replies and that toxic replies are more likely to come from users who

do not have a social connection with the poster. At the group level, we

found that toxic conversations tend to be larger, have wider and deeper

reply trees, but less dense follow graphs. To test the utility of the structural

features of the conversations in forecasting toxicity, we considered two

prediction tasks. In the first task, we predicted whether the conversation,

as a whole, will become more or less toxic than expected, given the initial

stages of the conversation. In the second task, we predicted whether the

next reply, posted by a specific user, will be toxic, given the current state

of the conversation and the user’s relationship with the other conversation

participants. In both tasks, we demonstrated that the structural features

are highly predictive of future toxicity. We also showed that combining

the structural features with content features leads to even more accurate

predictions, suggesting that the two feature sets capture different but

complementary aspects of the conversations.
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5.2 future work

In this section, we outline potential future work that can be undertaken to

both broaden and deepen the research presented in this thesis.

using more granular categories. In both our analysis of political

polarization and conversation toxicity, we relied on coarse categorizations

of political alignment and tweet toxicity.

To analyze the political diversity of the audience that engages with

tweets posted by media outlets, we classified users in two broad categories:

users with left- and users with right-leaning media sharing patterns (Sec-

tion 2.3.2). We opted for this classification as it led to an intuitive definition

of diversity, i.e., the entropy of the distribution of left- vs. right-leaning

users. One direction for future work is to explore different definitions

of audience diversity by considering more granular categories of users’

political alignment. For instance, one can classify users as left-leaning,

moderate, and right-leaning; or even more granular categories: far-left,

left, moderate, right, far-right. The main challenges of adopting these

categories are to determine: (i) how to classify users in such fine-grained

classes accurately, and (ii) how to define audience diversity based on these

categories in a way that is intuitive and easy to explain.

To study the relationship between structure and toxicity in conversations,

we relied on a broad definition of toxic behavior (Section 3.4). We adopted

the definition used by the Perspective API [97], which considers a comment

to be toxic if it is “a rude, disrespectful, or unreasonable comment that may

make you leave a discussion.” Recent work has studied the differences

between several, more specific antisocial behaviors, such as offensive,

abusive, aggressive, and cyberbullying behavior [30]. One avenue for

future research is to explore how other, more specific antisocial behaviors

(e.g., abusive behavior) are related to the conversations’ structure.
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characterizing bridging language. In Chapter 2, we collected

a large number of tweets posted by media outlets and measured the

political diversity of the users that retweeted them. Using this data, we

built models that, given the tweet text, predict the political diversity of

the audience. While these models are useful in making predictions about

new tweets, they do not help us understand which characteristics of the

text are associated with a higher political diversity of the audience. As we

discussed in Section 2.2, previous studies have extensively investigated

the link between different text characteristics and popularity, finding that

posts that use emotional language [9], are shorter [32], and easier to

read [90] tend to be more popular. One avenue for future research is

to identify the text characteristics that best differentiate between tweets

that are engaging to a politically diverse audience and those that are

engaging to only left- or only right-leaning users. One rigorous way of

identifying such characteristics is by studying the differences between

tweets posted by the same media outlet, sharing the same article (i.e.,

URL), but with a different text. This would allow us to separate the

influence of the tweet text characteristics from the composition of the

outlet’s audience and the content of the article. Once we have identified the

differentiating characteristics, we can use them (i) to provide journalists

high-level guidance on how to write more bridging tweets, or (ii) to

supplement the model predictions by indicating whether the tweet drafts

have any of the characteristics that are associated with higher audience

diversity (similar to the idea of providing explanations based on Concept

Activation Vectors [53]).

running randomized advertising experiments. In Chapter 2,

we ran a series of advertising experiments on Twitter to test whether we

can effectively select tweets engaging to a politically diverse audience using

the models and tools that we developed. Running advertising campaigns

on Twitter gave us a unique opportunity to conduct realistic experiments

and measure how thousands of users respond to the selected tweets
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(Section 2.7). However, one limitation of these experiments is that they are

not randomized experiments or A/B tests. While we used various features

of Twitter’s advertising platform to design experiments that resemble A/B

tests as closely as possible, we were unable to remove the influence of

the advertising engine, which decides which subset of the targeted users

will be exposed to the advertisements. Due to algorithmic predictions

or market forces, the advertising engine may show the test tweets to

users who are more likely to engage with them, instead of a random

subset of the targeted users. As a result, we cannot rule out the possibility

that the higher audience diversity of the treatment tweets is not due to

differences in the tweet content, but due to differences in the delivery of

the advertisements.

One of the key future directions for this work is to repeat the experi-

ments using a randomized assignment administered by the advertising

engine when such a feature is available on Twitter’s advertising platform.

Other platforms, e.g., Facebook1, already offer such capability, and we

hope that a similar feature will soon be available on Twitter. Beyond our

research question, such capability will create a new opportunity for re-

searchers outside of the company to run realistic and methodologically

sound experiments.

predicting toxicity with graph neural networks. In Chapter 3,

we took a more traditional machine learning approach to modeling the

relationship between the structure and toxicity of conversations: we com-

puted many features that characterize various aspects of the conversation

structure (e.g., properties of the reply tree or the users’ follow graph) and

applied different learning algorithms. This allowed us to measure and

compare the predictive power of the different structural representations of

the conversation, e.g., the reply tree vs. the follow graph. In contrast, the

main idea behind deep learning methods is to learn meaningful represen-

tations of the data, rather than using hand-crafted features. Graph neural

1 https://www.facebook.com/business/help/1738164643098669

https://www.facebook.com/business/help/1738164643098669
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networks have recently spurred much excitement in the machine learning

community as they can be effectively used to learn representations of

graphs, which cannot be trivially represented in a Euclidean space [39, 96,

100]. They have been successfully applied to a wide range of tasks ranging

from drug discovery [86] to fake news detection [68]. One promising future

direction is to apply graph neural networks on the conversation reply and

follow graphs to predict future toxicity. This would allow us to learn con-

versation representations that are predictive of toxicity. The main question

then is whether these new representations will lead to significantly more

accurate predictions of future toxicity to justify the lack of interpretability

of the model and its predictions.

5.3 closing remarks

After the initial euphoria about the potential of the web and social media,

we are now slowly starting to realize that these technologies are not a

panacea. In fact, many feel that they are responsible for creating new and

amplifying existing social problems. However, from a historical perspective,

the web and social media are still nascent technologies, and we are just

starting to understand how they affect our society. Eventually, the long-

term effects of these technologies will depend on our ability to understand

their drawbacks and to find ways to improve them. By studying specific

aspects of two important online phenomena, polarization and toxicity, this

thesis hopes to be a small step in that direction.
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