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Abstract

This thesis was written in the midst of the COVID-19 pandemic as location datasets became
crucial sources of information to address the global health emergency. The subject of this
thesis is how location data collected from mobile devices can be used to benefit the public
and preserve individuals’ privacy. The work presented in this thesis directly addresses the
public health emergency as well as how these datasets can serve the public beyond the time
of crisis. For example this thesis explores privacy-preserving technologies that use data
collected from personal devices to scale contact tracing efforts. This is in order to stymie
disease transmission as well as stem the adoption of privacy-violating technologies that were
initially deployed by governments contending with COVID-19. The work in this thesis
also leverages a high-precision and up-to-date location dataset collected from millions of
smartphones across the U.S. to better understand the impacts of COVID-19 on communities
and human behaviors. This includes developing new metrics to improve the monitoring and
modeling of disease transmission. This thesis also explores strategies using machine learning
models to generate privacy-preserving synthetic location data that can retain the utility of
real location data and supplement traditional survey datasets.

Surveys collected by government agencies and research institutions often produce datasets
and knowledge that serve as public goods. This thesis frames the ongoing collection of
location data as an ongoing population survey. The ethics of data collection are beyond the
scope of this work. Instead this thesis shows how location data which primarily benefits
private industry can also benefit the public from whom it is sourced, in ways similar to
traditional survey data, and protect individuals’ privacy.

Thesis Supervisor: Kent Larson
Title: Principal Research Scientist
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Chapter 1

Introduction

There is an ongoing and ubiquitous collection of high-precision location data from mobile

devices. As these devices continue to become increasingly pervasive parts of modern life,

the datasets collected from them will become increasingly powerful tools. Location datasets

are passively collected through a variety of mobile applications and they serve a flourishing

data economy. They are highly valuable to the companies who collect them and are highly

useful to those who pay to use them. Common use cases include improved advertisement

targeting, company analytics, and other means for private profit.

Yet the true value and utility of location data has not yet been fully realized, as location

datasets also have the potential to better serve the public.

Government agencies and research organizations commonly collect surveys and use survey

data to better understand and provide benefit to the populations from whom the data are

sourced1. Often the resulting datasets are released as public goods. The ongoing collection

of data from mobile devices can be considered an ongoing population survey. And this new

data source can better serve many of the same use cases as traditional survey data, as well

as provide for new ones.

1For example, the U.S. Census Bureau oversees the collection of a variety of surveys and makes the
data publicly available. The datasets range from information about housing supply, businesses, income and
employment levels, as well as population demographics and social characteristics. This information informs
planning decisions such as where to locate job training centers, build roads and schools, or provide services
for the elderly [1]. The second part of this thesis includes examples of how publicly available survey data
about trips between geographic regions inform disease transmission models [2].
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This became urgently clear in the midst of the COVID-19 pandemic as location datasets

became crucial sources of information to address the global health crisis. Many researchers

used outdated and otherwise limited survey data to understand and model the response

to the crisis. Location data collected from mobile devices provided a higher-resolution and

more real-time source of information for these same purposes as well as for contact tracing.

These use cases are the focus of the second part of the thesis.

There is precedent for publicly releasing mobility data collected from the public, such as

through the use of transportation systems2. Datasets can serve as powerful tools and de-

mocratizing data in this way expands the possible uses and benefits they can serve [7]. The

location datasets that are the subject of this work can serve as even more powerful tools

than these other sources because they are higher precision and their continuous collection

makes them more complete.

However, many of the same qualities that make this new data source highly useful also

present privacy risks. Location data can reveal information about where people live, work,

and frequent, and other places they went and when they went there. These data can rep-

resent people’s activities and behaviors. This information is both useful and sensitive. For

example, sensitive information such as religious affiliation, sexual preferences, medical his-

tory or political activity could be exposed [8]. Common strategies to anonymize location

datasets do not effectively remove privacy risks [9]. Other methods used to curtail the pri-

vacy risks of these data involve aggregation or otherwise reducing the amount of information

within the data, as doing so reduces the likelihood that an individual within the dataset

could be re-identified, or reduces the likelihood that sensitive information about them could

be recovered. However, methods that reduce the level of information in the data can also

reduce the utility of the data. There is often then a trade-off between the utility and privacy

of such datasets. The following chapters of this thesis further detail and address these issues.

This thesis is about using location data while addressing privacy risks. In particular, it

is about using location data collected via mobile devices, which primarily serve private

interests, in order to benefit the public from whom it is sourced.

2Many local governments publicly release mobility data collected through use of public infrastructure.
A few common examples include data about bike-share trips, taxi rides, and metro station entrances and
exits [3, 4, 5, 6]. This is often due to explicit open data policies made by cities and transportation agencies.

12



The contributions of this thesis are presented in two parts: The first part of the work is

about generating new privacy-preserving synthetic location datasets. The second part is

about using real location data to address the global COVID-19 health crisis, with a focus

on privacy.

In the first part of the work, I present a system designed to generate synthetic data that

represent real location data. By generating realistic data, the utility of the real data can

be retained, while privacy risks for real users can be circumvented because the generated

data represent the location histories of a synthetic population. Previous works have also

generated synthetic datasets; I cover these related works as well as their limitations. In

short, they do not cover the full scope of the work I present. The models developed in

this work take information about a population distribution as input to generate realistic

location data for that given population. A location based services dataset is used to train

the system’s models and evaluate the generated output by how well it preserves the utility of

the real data, as well as preserves privacy. Through this work I encountered a shortcoming

in the privacy literature. I address this by developing privacy criteria, which builds upon

related computational privacy works, to evaluate privacy for synthetic mobility data.

In this work I approach the problem of generating realistic location data by exploiting the

patterns inherent in individuals’ mobility data, in order to generate data that retain these

patterns. Patterns in mobility data reflect the routines of everyday life. The sequences of

where people go, and when they go there, are laden with spatial and temporal relationships.

By recognizing these patterns we can model an individual’s mobility data as analogous to

words in a sentence, or notes in music, and approach the data generation problem with

machine learning models that have been successful in text and music generation.

In the second part of the thesis I demonstrate important ways location data can benefit the

public, namely by serving as a tool to address the COVID-19 global health crisis. This part

also discusses the resulting privacy implications and ways to mitigate them.

From the beginning of the crisis, contact tracing emerged as a useful strategy to limit disease

transmission. However, many of the early successful contact tracing outcomes were due to

using location data in ways that jeopardized privacy and freedom. In chapter 5 I demonstrate

how more privacy-preserving technologies can be built and still deliver useful information

13



with the immediacy required by the crisis. Chapter 4 provides a more comprehensive analysis

of the various ways contact tracing technologies can use location data, and the trade-offs

with respect to privacy and effectiveness.

Chapters 6 and 7 are about using location data to better study and monitor the response to

the COVID-19 pandemic. My collaborators and I leverage a high-resolution location dataset

to detect when people come into contact with each other. The aggregate “contacts” metrics

we derive can protect privacy while still supplying the precise information we use to measure

“social distancing” behaviors.

Through these contributions this thesis demonstrates the value location data can serve as a

public good while respecting privacy.
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Chapter 2

Motivation

Official statistics are traditionally collected through government surveys that ask respon-

dents questions. The resulting datasets are often publicly published so that organizations

and researchers beyond the agencies that collected the information can use them. The

datasets, as well as research insights they lead to, serve as public goods.

Common examples of such surveys in the United States are the decennial census, which

counts the entire population, and the American Community Survey, which targets a sample

of the population to provide population estimates more frequently [10, 11]. Governments

also collect travel surveys, which are central to the motivation of this work.

These datasets are considered authoritative sources, but they are severely limited when com-

pared to new sources of information. Surveys are costly [12, 13] and collected infrequently,

and the data often suffer from small samples with reporting bias [14, 15]. Surveys rely on

respondents answering a set of preconceived questions, limiting the amount of information

they can provide, and they rely on the accuracy of respondents’ answers (i.e. they are

subject to recall bias [16, 17]). They also can only report on a snapshot in time.

In contrast, location data are continuously collected from personal mobile devices. This

process creates up-to-date datasets representing large samples of the population, where the

accuracy of the data are not dependent on the memory of the “surveyed” population. These

datasets are generated by multiple sources. For example, location data can come from
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devices probing for Wi-Fi access points, or from posts by social media app users, such as

with geotagged tweets or check-ins at restaurants. The datasets motivating this work are

from mobile network operators and location based services. These datasets are already

amassed and accessible by single entities and their collection process is ubiquitous and

passive. Location data are collected by mobile network operators when phones connect with

cell towers. Location based services (LBS) data are collected from smartphones by software

in a variety of applications, including when applications are running in the background.

While data from Wi-Fi or social apps may be limited to a smaller number of places, such as

near Wi-Fi access points, or places where social app users chose to post, data can be collected

by mobile network operators and location based services anywhere a user might have network

coverage. And unlike data from sources like social apps, these data are collected passively,

without device users taking explicit actions.

Datasets from mobile phones have been identified by governments and researchers as in-

expensive tools to produce or update population estimates, or when used in combination

with traditional surveys, reduce sample sizes, reduce costs, and reduce the respondent bur-

den [18, 19]. Countries such as Estonia and Indonesia are already using data from mobile

phones as part of the regular production of official statistics [20].

Our particular focus is on mobility data traditionally collected from travel surveys. Mobility

data from these surveys inform transit engineers, decision makers, and researchers about the

travel behaviors of the population. Mobile phone data can provide clear benefits over the

data collected by these surveys, and has already been used by departments of transportation

in several states of the U.S.1 The National Household Travel Survey (NHTS) provides an

explicit example for our motivation.

The NHTS is collected by the U.S. federal government2 and is “the authoritative source on

the travel behavior of the American public” [23]. Yet the information it provides is limited

to only one randomly chosen day of travel and it is collected only once about every 8 years.

Furthermore, the tiny sample size and high nonresponse bias of target survey respondents

1Use cases for mobile phone data by U.S. DOTs have ranged from measuring and signaling fluctuations of
traffic speed [21], inferring traffic on major highways, and creating what are called origin-destination (O-D)
matrices for the purposes of transportation modeling [22].

2The agency that oversees the NHTS is the Federal Highway Administration and the data collection and
reporting is contracted out to a third party firm. This has not always been the case.
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Figure 2-1: Flowchart summarizing the recruitment process for 2017 NHTS survey respon-
dents, from figure 2-1 of the 2017 NHTS Data User Guide [24].

negatively affect the accuracy of the analyses that use this data. For example, the most re-

cent survey (2017) includes only 804 people from the Boston Core Based Statistical Area, an

area with a population estimate of 4,840,000 (i.e. approximately 0.017% of the population).

So few survey respondents cannot accurately represent the overall population.

The NHTS reaches target respondents by sending survey packets to their mailing addresses

(7.5% of packets are reported dropped), and recipients must then go through a multipart

process to complete the survey, for which they receive a minor cash incentive3 [24]. (See

figure 2-1 for a diagram summarizing the recruitment process for 2017 survey respondents.)

Unlike previous survey years, only a small fraction of target respondents (15.6%) completed

the surveys4 (see table 2.1). Coupling this statistic with the bothersome survey process and

3The NHTS incentive plan incrementally rewards participation. In the 2017 survey design, each sampled
address received a $2 cash incentive in the initial recruitment mailing. The travel log package sent to each
recruited household contained a $5 cash incentive. Finally, when the entire household completed the retrieval
survey the household received an additional $20.

4The methods to collect survey data have changed over the years. The earliest versions of the NHTS,
conducted in 1969, 1977, and 1983, were administered face-to-face using Census Bureau staff. These earlier
surveys were also all conducted as retrospectives (e.g. a recall of the household’s travel ‘yesterday’) rather
than the recent method that tells respondents ahead of time the day to report on. To improve coverage and
keep costs within reason, the 1990 survey was conducted by telephone, using a Random-Digit Dialing sample
frame and Computer-Aided Telephone Interviewing. By 2009, however, there was real concern about the
representativeness of the sampled population, which only included land-line telephone numbers. The 2017
NHTS used an address-based sample frame and a two-stage collection process.
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survey year 1977 1983 1990 1995 2001 2009 2017
response rate 85.3% 94% 73% 37% 41% 19.8% 15.6%

Table 2.1: Travel survey response rates over time. Adapted from table 3-1 of the 2017 NHTS
Data User Guide [24].

limited incentives makes clear that the resulting data suffer from nonresponse bias5.

Despite these limitations, NHTS datasets are used as primary sources of information for

research involving traffic safety, congestion, the environment, energy consumption, demo-

graphic trends, bicycle and pedestrian studies, and transit planning [26].

To overcome small sample sizes, researchers typically combine NHTS data with other sources

that contain aggregate population estimates, such as census data, using statistical methods

such as iterative proportional fitting6. This procedure generates a synthetic population that

is more representative of the true population. However, it is still based on the original NHTS

sample and limited by its potential bias and lack of diverse information.

Synthetic populations generated from NHTS data are also used to simulate the mobility

behaviors of synthetic agents in agent-based models (ABMs). In particular, this is often

done by researchers in the Media Lab’s City Science research group, which is where this

thesis work takes place.

Our lab also obtained access to a location based services (LBS) dataset that was provided

by a location intelligence firm7. The dataset is representative of LBS datasets collected by

similar and competitor companies. Data are collected daily and continuously without relying

on respondents’ memory or attention. This is in contrast to the most recent NHTS that

asked respondents to report on their travel histories for just one day in 2017. The LBS data

also represent a larger population sample than the NHTS. For example, our LBS dataset

reports data for approximately 2.7% of the Boston area population, versus the 0.017% from

the NHTS. (See the appendix section A.1 about data representativeness.)

5The organization that collects the survey acknowledges the issue of nonresponse bias [25].
6The iterative proportional fitting procedure is more commonly referred to as “raking” in survey statistics,

such as with the weighting recommendations released with the NHTS [25].
7The LBS data was provided through a special program where the company grants access to anonymous,

privacy-compliant location-based data for academic research and humanitarian initiatives related to human
mobility.
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However the LBS data also has limitations. While it represents a significantly larger sample

of the population than the NHTS, it still does not represent the entire population. In

addition, data collected from mobile devices and applications suffer from their own sources

of bias, in that they only represent people using the devices or applications. Researchers

often use other sources, such as official statistics from surveys, to better understand the

degree of this bias. And similarly to NHTS data, census data are used to handle the small

sample sizes. Later portions of this thesis work present examples of using these data sources

together in such ways. Data from traditional surveys are also used to validate research

results that are produced with mobile phone data [22, 27, 28].

For these reasons, data from traditional surveys play important roles in the use of data

collected from mobile phones and these data sources can play complementary roles. Survey

data can better inform the use of mobile phone data while data from mobile phones can add

valuable information to supplement survey data.

Yet there are additional and important limitations for data collected from personal devices,

such as the LBS data obtained by City Science: these datasets are highly sensitive. Public

use of these datasets would present privacy risks for the device users from whom the data

were collected and could detract value from the firms that collect them.

This part of the thesis approaches these issues with the generation of privacy-preserving

synthetic data. In particular, by designing models, that are trained on real LBS data, to

generate data that realistically represent the real data while sufficiently varying from it.

In addition, the models can use population information from the official census in order to

generate location data representing the full population. For example, for each person the

ACS reports living in each census tract, the models can generate corresponding data.

The synthetic mobility datasets that are produced can be used to simulate the behaviors

of the synthetic agents in agent-based models. They can also support the other kinds of

research traditionally supported by travel surveys. By retaining the aggregate statistical

properties of the real data, they can provide insights and answers for researchers’ queries.

When the synthetic data sufficiently vary from the real data, the privacy of real users can

be preserved. At the same time, the companies that are in the business of collecting the
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data can retain value. By preserving their exclusive access to the real, and possibly higher

precision data, they can continue to sell information for commercial uses that only the real

data can provide (e.g. whether customers who were presented with an advertisement were

more likely to then enter a store8).

Synthetic mobility datasets that are based on real LBS data but sufficiently vary from it,

might then be made publicly available9. They can then complement travel surveys. And

like traditional surveys, they can serve as public goods.

8For example, the LBS company GroundTruth described, as case studies on their website, how clients
use their services to measure the impact advertisements have on driving store visits [29].

9As an alternative to publishing one static dataset, a trained model could be published instead. This
would enable the generation of additional datasets that are also based on the real LBS data used for training.
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Chapter 3

Generating synthetic mobility data

with conditional neural networks: An

implementation and evaluation

framework to preserve utility and

privacy

In the previous chapter I presented motivation for developing a system that can generate re-

alistic, yet synthetic, mobility data. Namely, while location data collected from smartphones

can be highly useful, it also has limitations such as small sample sizes and its sensitive na-

ture. My contribution1 in this chapter is to address these limitations with a new approach

for generating synthetic mobility data that uses deep recurrent neural networks. The sys-

tem I present is designed to take information about a population distribution as input in

order to generate mobility data for that population. I also develop a framework to evaluate

both the utility and privacy of the generated dataset. This includes a contribution to the

computational privacy literature, with new “indistinguishability” criteria to show that the

generated mobility data differ as much from the real data as the real data differs from itself.
1While the described work is my own, it benefited from invaluable ideas and feedback from Ronan

Doorley and Esteban Moro.
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The data generated by the models in this work retain aggregate statistical properties of the

real data, as well as the patterns present in mobility traces at the individual level. The data

also sufficiently varies at the individual level in order to protect user privacy. This work

uses the location based services dataset referenced in the previous chapter in order to train

the models and evaluate the output.

3.1 Introduction

Location data collected from user devices represent the histories of the device users. These

location histories represent the behaviors of the individuals from whom it is collected, show-

ing where they go and when, and it is laden with patterns that illustrate the routines of

everyday life. Additional information can be inferred for the users represented in the data,

such as home and work locations, as well as demographics.

As the previous chapters described, these data are highly valuable to the parties who collect

it and those who pay to use it, and it is also highly useful to researchers and departments

of transportation (DOTs) and other public agencies [30, 22].

However these data have limitations and their usage presents issues. One limitation is size.

Obtained datasets often only represent a small sample of the population, making them

less useful for analyses that are meant to address the full population. Another issue is

privacy. Location data can reveal sensitive information about the people whose locations

were collected, such as where they live, work, and frequent, and other places they went and

when they went there.

A simple approach to protect user privacy is de-identification by means of attaching ran-

dom identifiers to user data and removing identifying attributes of individuals. However,

this is insufficient for spatiotemporal data where a subset of data points or areas visited

can be unique to a user. Such a subset of data points is referred to as a location-based

quasi-identifier (LBQID) [31] and researchers have demonstrated that knowledge of only

a few spatiotemporal points or areas are needed to form an LBQID and re-identify most

users in a de-identified dataset [32]. Researchers have also shown a variety of ways to use

"side information" that is collected from other data sources, to re-identify users in location
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datasets (in what are known as record linkage attacks) [33, 34, 35, 9].

Prior works have attempted to mitigate these privacy attacks with techniques known as

"cloaking", such as data suppression [36], adding noise to location datasets [37], or otherwise

reducing data accuracy or precision [38, 39]. Other techniques include segmenting single

mobility traces into multiple pieces with different pseudo-identifiers [40] or swapping points

between users’ mobility traces [41]. Yet even so, researchers have shown that the privacy

and re-identification risks that these techniques attempt to mitigate are still present [9].

Moreover, by modifying these datasets to mitigate privacy risks, these techniques decrease

the utility of the data. This trade-off between privacy and utility is a well-acknowledged

and studied problem inherent in the publication of microdata such as the location datasets

addressed in this work.

In this work we approach the problem of the utility and privacy trade-off, as well as the

problem of small data samples, by developing a machine learning model that generates

synthetic data. We use a location based services dataset collected from user devices in 3

counties surrounding Boston, Massachusetts, and that represents roughly 2.7% of the area’s

population, in order to train the model and evaluate its output. The mobility traces used

are from individuals over a 5-day workweek and the synthetic mobility traces generated by

the model are representative of the real users’ activity over that same time period.

The model is designed to generate a realistic synthetic dataset that retains the utility of

the real data by retaining its properties, while mitigating privacy risks because it represents

synthetic users whose data sufficiently differs from real users’ data at the individual level.

Furthermore, our model is a conditional model that uses home and work areas as labels and

as inputs in order to generate realistic location data for synthetic users with the given home

and work areas. While synthetic data addresses the issue of privacy, this approach also

addresses the issue of limited sample sizes. Population data, such as that reported by the

census, can then be used to create the input data necessary to output a synthetic location

dataset that represents the true population in size and population distribution.

Other works have also addressed privacy issues surrounding trajectory microdata with the

generation and use of synthetic data. However we take a new approach in how we use deep
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recurrent neural networks that have been successful in text generation as conditional models

to generate synthetic mobility traces.

Contribution. Our approach exploits the patterns inherent in individuals’ mobility traces

in order to generate realistic synthetic mobility traces that retain these patterns. At the

same time, our approach allows calibrating the amount of random noise in the model to

better manage the utility and privacy trade-off. Calibrating the randomness enables our

system to balance the extent to which generated mobility traces retain the properties of the

real dataset (utility) with the extent to which they vary at the individual level (privacy).

Our contributions are further described in the context of related works in later sections. In

short, other works do not address the full scope of this work, which we summarize as follows.

Our system generates realistic spatiotemporal data that represents users activities over an

extended duration of time. The system takes home and work locations as inputs, enabling

it to generate data for a given population distribution.

We also develop an evaluation framework to address the utility and privacy of synthetic

trajectory data that is more comprehensive than other works. This includes new "indistin-

guishability" privacy criteria to establish that the synthetic dataset differs as much from the

real dataset as the real dataset differs from itself.

Outline. This chapter first discusses related approaches to the generation of synthetic

mobility data and how this work differs. It then describes how we model the problem of

synthetic mobility data generation, including the description of our deep neural network

model. It then provides our evaluation framework in the context of how others have ap-

proached location data synthesis and anonymization, in terms of both utility and privacy.

Our evaluation framework is divided into separate sections for utility and privacy. Each

section presents an overview of related concepts and works, before presenting our framework

and metrics. Finally, we present our implementation with real data and our recurrent neural

network (RNN) model, and evaluate the resulting synthetic data that it generates with the

described evaluation framework.
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3.2 Related Work

There is a large body of work using location data collected by mobile devices to extract

information about a population’s trips between places. Many of these previous works use

call detail records (CDRs) to construct origin-destination matrices [42, 43, 28], as well infer

users’ home and work locations from this data for use in a variety of applications [44, 45].

Location data provided by CDRs is similar to location based services data collected from

smartphone applications (which is what our case study uses) in that the location data is

passively collected from mobile devices. However the location information from location

based services data is more precise. Our work is applied to location based services data and

builds upon methodology previously applied to CDRs.

Many works with CDRs address the problem of limited sample sizes that we named above by

labeling individuals’ data with inferred home and work locations and then using census data

to expand their datasets to match known population quantities [22, 46]. A common approach

to such mobility data generation processes is to derive aggregate statistical properties from

the real data and then use these properties, often as parameters, in generative algorithms

to produce synthetic trajectories for individuals. These processes are often implemented as

markov chain models [47, 46].

Many of these generative algorithms are designed as "Exploration and Preferential Return"

(EPR) models [48, 47, 49], where exploration is a random walk process [48] and preferential

return accounts for the likelihood of people returning to previously frequented locations [50].

They leverage the predictable nature of human mobility and are designed to have users at

their predetermined places of home and work during predefined hours for home and work,

respectively.

However, the aforementioned works tend to focus on only the utility of datasets, and main-

taining or enhancing that utility in the generation of synthetic data, without addressing

privacy. More recently, there are also generative algorithms designed to balance the trade-

off between utility and privacy for synthetic location trajectories by using differential privacy

mechanisms [51] (differential privacy is further described in the privacy evaluation section).

This includes the n-gram model by Chen et al. [52, 53] and the DP-Star [54], DPT [55], and
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DP-WHERE [56] projects. They operate under a predefined privacy budget (𝜀) and spread

that budget throughout their data generation process. They do this either by injecting cal-

ibrated levels of laplacian noise in each step of their generation process, or by only keeping

elements in their generation process that maintain the conditions of the predefined privacy

budget. There are many more works that similarly employ differential privacy for synthetic

data generation, but with methods designed for relational databases and image datasets and

that cannot be readily applied to sequential location data [57, 58, 59, 60, 61, 62].

The above cited works that generate synthetic mobility data with differential privacy claim

to achieve privacy due to their generation process. However, they do not evaluate privacy

by inspecting the generated output. Their work remains theoretical and they do not address

whether the generated data is "private enough" or what their process of generating data

with noise means for the privacy of users in the original datasets used for their generation

processes. In our evaluation framework, we evaluate privacy with metrics that compare the

generated output to real data.

Other issues with the above mentioned generative algorithms include their inability to si-

multaneously capture individual level patterns while also allowing users to break away from

well defined patterns, as well as capture global patterns across individuals.

We also consider works that use neural networks to address problems related to the genera-

tion of sequential mobility data. These include generating non-sequential origin-destination

mobility data [63] and traffic forecasting [64, 65]. Other related works use neural networks

to generate time series, such as stocks data, but where the values in the generated data

lack the geospatial information and relationships of mobility data [66, 67]. Kulkarni et al.

(2017) [68] use recurrent neural networks to generate sequential traffic data, which we find

most similar to our work. However, their model does not perform well by their own utility

metrics and they do not address the evaluation of privacy.

Moreover, none of these related works can fully address the goal of this work which is to

simultaneously do the following.

1. Generate realistic spatiotemporal data representing users’ activity over an extended

duration of time and where the generated data matches a desired population distribu-
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tion, such as a distribution of home locations.

2. Balance the utility and privacy of the generated dataset, where utility is evaluated by

how well the generated data retain properties of the real data.

Our contribution is to meet this goal by building upon these previous contributions. We

further discuss in more detail the related work in utility and privacy evaluations for synthetic

data, and how we draw from this work, in our evaluation framework sections.

3.3 Modeling the problem

This section describes our approach and methods. The details of our implementation are in

section 3.6.

The goal of this work is to design a system that when given home and work locations as

inputs, the system produces realistic location data for users with those home and work

locations, where the location data represents an extended time period spanning multiple

days or weeks. In this case, realistic is determined by how well the output corresponds to

the real data, as evaluated by the evaluation framework. At the same time, the system

should introduce variability. When given the same home and work location pair multiple

times, the system should be able to produce different data each time, and the produced data

must also sufficiently vary from the real data in order to protect the privacy of users whose

data is in the real dataset. This too is evaluated by the evaluation framework.

We use home and work locations as inputs because data sources such as the census provide

demographic information on where people live and work. This information can then be used

by a system such as ours to produce a synthetic population with demographics representing

the true population. Even in the case when home location may seem sufficient for repre-

senting the desired population demographics, the work location can play an important role

in generating a synthetic population with sufficient variation, where the users from a single

home area exhibit different mobility patterns.
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3.3.1 Primitive functions

In this work we define and use two functions as primitives.

𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎)→ 𝑙𝑖𝑘𝑒𝑙𝑦 ℎ𝑜𝑚𝑒 (1)

𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎)→ 𝑙𝑖𝑘𝑒𝑙𝑦 𝑤𝑜𝑟𝑘 (2)

The 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒 function takes a single user’s location dataset as input and returns a likely

home location, determined by where they spent the most time in the nighttime hours.

Likewise, the 𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘 function returns where a user spent the most time during the

workday hours (Monday to Friday). We call this the work location, but it could instead

represent a different type of secondary location to the home, or might be the same as the

home location.

These functions are used throughout this work for multiple purposes, including the labeling

of training data as well as the evaluation of output data. In our implementation with a

real geolocation dataset provided by a location based services company, we also use these

functions to evaluate how well this data represents the true population estimates reported

by census data (see section 3.6).

3.3.2 Mobility patterns

Our model for synthetic data generation is informed by how geolocation and mobility

datasets are laden with patterns that reflect the routines of everyday life [69, 70]. For

example, people tend to spend the night time hours in their home, and the hours of a work

day at their place of work. Additional places people frequent may reflect other routines

in people’s lives, such as dropping children off at school, going to an art class, or grocery

shopping. We can see these patterns in the real data by plotting the places an individual

frequents over the hours of the day (see figure 3-1). These patterns should also be present

in the generated synthetic data.

Our methods exploit these patterns. We consider a user’s location data as a sequence of
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device ID latitude longitude timestamp dwelltime
abc1234xyz345 42.472539 -71.107958 2018-05-06-18:11:1 5.02
abc123xyz345 42.427205 -71.014071 2018-05-06-19:01:53 45.10
def456qrs678 42.485207 -71.172924 2018-05-07-03:17:38 2.03

Table 3.1: Fake set of user location data, representing rows of a real LBS dataset. Each
latitude and longitude point is a geolocation recorded by the associated device ID at the
given timestamp. "Dwelltime" represents how long the user stayed in the reported location.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 ... 𝑡𝑇
A B B null C ... D

home work 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 ... 𝑡𝑇
A C A B B null C ... D

Table 3.2: Top: A representation of a "stay trajectory". Bottom: The same stay trajectory
prefixed by a home and work location. Areas visited are represented by letters.

places visited and transform our data and choose our neural net architecture accordingly.

3.3.3 Data representation

Location based services (LBS) datasets are often collected and provided as timestamped

geolocations, with latitude and longitude coordinates, where each data point has an associ-

ated pseudo-anonymized device ID for the user device from which the data was collected.

It may also include how long the device reported a user stayed in the reported location. An

example is provided in table 3.1.

We transform this dataset into a set of what we call "stay trajectories" for each user. An

example stay trajectory is shown in table 3.2.

The indices of each user’s stay trajectory (𝑡1, 𝑡2, ..., 𝑡𝑇 ) represent time intervals, while

the values represent the places, or areas, where the user stayed for the most time within

the associated time interval. Areas are often repeated across time intervals, or sometimes

the area is null valued in time intervals when no location data was reported for the user’s

device2. In this work we use census statistical areas to represent the places users stay because

there is published demographic information about how many people live and work in these

geographies. Census statistical areas are available in varying levels of granularity such as

2While we could infer values for missing data, our work is focused on the use case of generating synthetic
data with properties similar to the true original dataset, including its sparsity.
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Figure 3-1: Mobility patterns seen in a sample of our user location data. Each plot represents
a single user’s sequence of places that they visited over a period of a 5-day workweek. The
period is divided into 1-hour intervals. The hour is on the x-axis. A point is plotted above
each hour of reported data for the user where the point represents the place the user spent
the most time within that hour. When no data is reported for a user within an hour then
no point is plotted. The y-axis represents the total amount of time the user spent in a
given location relative to the other locations visited over the 5-day period: Locations were
sorted by the total number of hours the user spent there, and the y-axis value indicates
the sorted order. Distinct locations that were visited the same number of times are plotted
with the same y-value. Home and work/secondary locations and any other locations are
each plotted with different icons. These plots show patterns and user tendencies to either
return to frequented locations or visit new ones at similar hours of the day, as well as
how individual users’ temporal patterns and routines vary across users. More plots can
be viewed in our evaluation code notebook: https://github.com/aberke/lbs-data/blob/
master/trajectory_synthesis/evaluation/evaluate_rnn.ipynb
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Figure 3-2: The diagram represents our preprocessing steps to transform tabular LBS data
into "stay trajectories" that are then prefixed by their inferred home and work locations.

census tract, census block group, or census block. This level of granularity can be considered

a tunable parameter. Likewise, the size of the intervals in which a time period is divided

is tunable as well. With enough data, finer levels of granularity can be chosen for more

precision.

Stay trajectories are thus sequences of areas representing where a user stayed, where the

areas are discrete values. The area values have a spatial relationship, as some are spatially

close together and therefore more likely to appear close together in a sequence, while others

are miles apart, and therefore highly unlikely or impossible to directly follow one another in

a stay trajectory.

There are further relationships between these areas and the patterns in which they appear

embedded in these sequences. For example, someone who lives in area A, and works in area

B is likely to spend many hours during the week day in area B and return to area A each

night. Or people who spend time in area C may also tend to spend time in area D, or people

may not spend time in area E during nighttime hours.

The ideal model learns the relationships between areas and the patterns and distributions of

how people spend their time in these areas. The model should generate realistic sequences

of areas based on these patterns at the individual level, while also introducing variability.

The generated data should also retain aggregate statistical properties of the real training

data.
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3.3.4 Data definitions and model inputs and outputs

𝐷: The full dataset of real stay trajectories.

𝑆: A sampled subset of 𝐷.

𝑆′: A set of synthetic stay trajectories generated by the model.

𝑠 = ⟨𝑠1, 𝑠2, ..., 𝑠𝑇 ⟩ 𝜖 𝑆 represents a stay trajectory for a user, where each 𝑠𝑖 represents an

area. A ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair is associated with each 𝑠 in 𝑆, where the home and work values

represent areas and are also 𝑠𝑖 values in 𝑠.

The 𝑠′ 𝜖 𝑆′ match the format of 𝑠 and represent stay trajectories for synthetic users over

the same time period.

The model is trained with the entire dataset 𝐷. 𝑆 is randomly sampled from 𝐷 and used

to generate input for the model and to then evaluate the output.

Each ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair for each sampled 𝑠 𝜖 𝑆 is used as input for the model to then

generate a corresponding 𝑠′ with the same ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair. This results in 𝑠′ such that

|𝑆| = |𝑆′| and where the distribution of ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs is consistent for 𝑆 and 𝑆′. These

consistencies are crucial for proper utility and privacy evaluation, as the evaluation compares

the real data to the synthetic data. However, any distribution or number of ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩

pairs can then be used as input for the model to generate a synthetic dataset.

3.3.5 Deep recurrent neural network model

Text and music have similar properties and patterns as stay trajectories. There are temporal

and spatial relationships between words in text and notes in music.

In each case, data can be considered as a sequence of tokens, where the tokens can be

characters or words in text, notes in music, or areas in stay trajectories. In this way we

consider stay trajectories analogous to sentences of text or lines of music, where each area

in a stay trajectory sequence is analogous to a word or musical note.

Recurrent neural networks (RNNs) that use long short-term memory (LSTM) [71] units have
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been successful in generating complex sequences [72] that retain the structural properties

inherent in text [73, 74] and music [75, 76, 77], which we also see with our stay trajectory

data.

RNNs are trained by processing each sequence in a training set one element at a time,

and predicting a next element. Each prediction is conditioned on the previous elements

encountered in the sequence. That is, for a generic input vector sequence 𝑥 = ⟨𝑥1, ..., 𝑥𝑇 ⟩

and output vector sequence, 𝑦 = ⟨𝑦1, ..., 𝑦𝑇 ⟩, each output vector 𝑦𝑡 is used to parameterize

a predictive distribution, 𝑃𝑟(𝑥𝑡 + 1|𝑦𝑡). The loss of wrong predictions is propagated back

through the network for the model to "learn" from.

This same process can then be used for sequence generation by feeding the model’s pre-

dictions back to the model as input for the next step as if they were real rather than the

model’s own inventions. Each prediction step injects stochasticity, where the model samples

from a distribution of candidate next elements that is conditioned on the previous elements.

This sampling process offers the opportunity to introduce varying levels of randomness and

variation in the output. The overall process allows for the generation of novel sequences that

are similar to the training set. It also simulates a high-dimensional interpolation between

training examples that distinguish RNNs from n-gram or other generative algorithms.

RNNs can be further improved with the Attention mechanism [78]. With Attention, a

vector of importance weights can be learned by the network and then used to predict a next

element in a sequence based on how strongly it is correlated to, or "attends to", previously

encountered elements.

As described above, RNNs are conditional models by nature in that they predict a next ele-

ment in a sequence conditioned on previous sequence elements. We leverage this conditional

process for our use case.

We concatenate each stay trajectory, 𝑠, in our training set with its associated ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩

label pair, resulting in a sequence of tokens where the ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pair is a prefix

for 𝑠, ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘 : 𝑠⟩ = ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘, 𝑠1, 𝑠2, ..., 𝑠𝑇 ⟩. These prefixed stay trajectories are

used to train the model. The model learns the relationships and patterns of tokens (areas)

in the sequences. It also learns the relationship between the ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ area prefixes

35



Stay 
trajectories

D

RNN 
model

model training

data generation

RNN 
model

Synthetic stay 
trajectories

S’

home work t1 t2 ... tT
A B A C ... D

C H D C ... H

...
D B D D ... F

home work

A B

C H

... ...
D B

home work t1 t2 ... tT
A B A A ... B

C H C H ... H

...
D B F A ... B

Figure 3-3: The model is trained with real location trajectory data where each user’s tra-
jectory data is labeled by home and work locations. The model is then used by taking home
and work location labels as input to generate corresponding synthetic trajectory data.

and the distribution of area tokens that then follow in 𝑠. For example, it might learn that

the area token in the home prefix position is most likely to occur in the sequence positions

representing nighttime hours, and similarly that the area in the work prefix position is a

more likely candidate for sequence positions representing work hours, as well as learn other

structural relationships and patterns between area tokens.

For the generation phase, we then feed ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs to the trained network for

it to generate corresponding stay trajectories. The network treats the input ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩

pairs as prefixes for sequences that it has learned to complete. The sequences of generated

tokens that follow are the generated synthetic stay trajectories, 𝑠′ in 𝑆′, with the given

⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs.

Basic deep recurrent neural network. A recurrent neural network (RNN), such as

the model used in this work, is a network of "neural" unit nodes organized into layers.

An exterior "input" layer of nodes receives input, and an exterior "output" layer of nodes

produces the network’s output. Between these are "hidden" layers of nodes where additional

layers add additional depth to a deep neural network. Each node within a layer has a one-way

weighted connection to each node in the successive layer. The weights for the connections are
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Figure 3-4: A recurrent neural network with 2 hidden layers, adapted from figure 1 of
Sutskever et al. (2011) [74]. Weights between units are shared across time. The nonlinear
activation function used by the hidden units is a source of the RNN’s rich dynamics.

learned during the training process, but the architecture for the network, such as the number

of layers and the type and number of neural units within each layer, must be determined

beforehand. The parameters that determine such variations to the network architecture are

"hyperparameters".

Each node in the network has a nonlinear "activation function" that allows the network

to share varying levels of state across time as it sequentially processes items, while also

providing a source of rich dynamics. A basic illustration of an RNN is shown in figure 3-4.

Network architecture and hyperparameters. The recurrent neural network architec-

ture used has a series of connected layers illustrated in figure 3-5. The embedding layer

encodes the input into a form for the network to process. It is followed by "hidden" layers

of LSTM units. The LSTM is bidirectional to improve the training process. The embedding

and LSTM layers are each skip-connected to the attention layer, which is connected to the

final output layer3.

3The system borrows from the textgenrnn project architecture, https://github.com/minimaxir/
textgenrnn.
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Figure 3-5: The recurrent neural network is a series of connected layers. An embedding layer
encodes the input into a form for the network to process. It is followed by "hidden" layers
of LSTM units. The embedding and LSTM layers are each skip-connected to the attention
layer, which is connected to the final output layer.

This general architecture has a variety of hyperparameters.

∙ Dimension of the embedding: The embedding determines how each token in a sequence

is represented for the network, and is learned during training. The dimension of the

embedding is a hyperparameter.

∙ Layer size: The number of LSTM units in each hidden layer.

∙ Layers: The number of hidden layers.

∙ Dropout: The rate at which weighted connections between neural units are randomly

excluded for each training sample. Dropout is a regularization method that helps

prevent overfitting and improves model performance.

∙ Maximum length: The maximum number of input tokens in the sequence that the

network considers when predicting the next token. This number should be long enough

to allow the model to learn recurrent patterns in sequences, yet additional length adds

complexity.

∙ Temperature: The amount of random noise added to the predictive sampling for each

next token in a sequence.
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In our implementation (see section 3.6) we tested models with a variety of these hyperpa-

rameters and their combinations and evaluated results with our evaluation framework.

3.4 Evaluation framework: Utility

3.4.1 Related work in utility evaluation

Works that apply differentially private techniques are helpful references, although they often

use relational data rather than sequential data. They commonly evaluate statistical utility

by computing the distribution of attributes in their datasets, or the distribution of k-way

marginals drawn across attributes (for some small k), and comparing the distributions to

those computed for the original dataset [57, 79]. Total variation distance [80] is a metric used

to quantify the difference in distributions. Another evaluation metric used is the agreement

rate in a machine learning label prediction task [57, 79]. Specifically the agreement rate

is defined as the percentage of records for which two classifiers make the same prediction,

where one classifier uses the real original data, and the other classifier uses the sanitized

data.

Another evaluation strategy uses counting queries. This is more common with location

trajectory data [54, 55, 81] and other sequential data generation or sanitization frameworks

[53, 82]. A counting query defines 𝑄(𝐷) as the count of items in dataset 𝐷 that satisfy the

query 𝑄. For example, Torres et al. (2016) [81] use spatiotemporal range queries to count the

number of users within a given area within a given time period. They then evaluate sanitized

trajectory databases by how closely the query counts match the query counts returned by

querying the original data. A common way to quantify this evaluation uses relative error,

𝑅𝐸 = |𝑄(𝐷)−𝑄(𝑆𝐷)|
𝑚𝑎𝑥{𝑄(𝐷),𝑏} , where 𝑆𝐷 is a sanitized dataset that is meant to mimic the utility of

𝐷, and 𝑏 is a sanity bound.

Differentially private sequential data generation frameworks such as DP-Star [54], DPT [55],

and the n-gram model by Chen et al. (2012) [53] also use sequential pattern mining as an

evaluation strategy. They identify the most frequent sequential patterns, where a pattern is

a subsequence of a full trajectory sequence. Utility loss is then quantified with the rate at
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which the most frequent patterns change between the original and sanitized datasets. The

DPT and DP-Star projects also evaluate utility with a measurement over the distribution of

where trips originate and end. DPT measures trip distribution quantitatively, while DP-Star

uses visuals to evaluate how well their framework preserves the spatial density of real taxi

trips data. They plot the trip origin and destination points in a single color on an x-y plane

for both the real data and their generated synthetic data to evaluate how well their system

preserves the spatial density of these points (see figure 1 from Gursoy et al. (2019) [54]4).

While these works provide helpful reference, we note that the form of the sequences they

evaluate differs from our dataset. They either lack temporal information, or they represent

moving objects over shorter durations, where adjacent items in a sequence likely differ. For

example, n-gram uses sequences of station visits by Montreal transportation system users,

and DPT and DP-Star use taxi trips data and trips data generated by Thomas Brinkhoff’s

network-based generator for moving objects [83]. Each of these trips is considered a full

trajectory sequence rather than how our stay trajectories follow users across a time period

with a series of days and trips, and where patterns should be captured at a higher level.

Moreover, in our dataset we expect subsequences that represent users staying in a single

location for a long duration, or subsequences with no reported data. Despite these differ-

ences, we make special note that these related works examine patterns, measure aggregate

distributions of land use, and use visuals; our utility evaluations do this as well.

3.4.2 Utility evaluation used

Our utility evaluation framework is composed of multiple tests and metrics. We describe

each one in this section with more implementation details and results in section 3.6.

∙ Home and work labels match generated data.

∙ Trips between places are realistic.

∙ The aggregate distribution of where users spend time is consistent with real data.

4Link to image for figure 1 from Gursoy et al. (2019) [54]: https://ieeexplore.ieee.org/
mediastore_new/IEEE/content/media/7755/8821494/8481494/gurso1-2874008-hires.gif
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∙ The distribution of the number of distinct places individuals visit within a time period

is consistent with real data.

∙ Mobility patterns at the individual level are retained.

Home and work labels match generated data. Our model is designed to take

⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs as input and output corresponding synthetic stay trajectories. We

apply the 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒 and 𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘 functions to the output synthetic stay trajectories

and quantify the rate at which the input labels match the inferred labels. That is, for each

input label pair ⟨ℎ𝑜𝑚𝑒𝑖, 𝑤𝑜𝑟𝑘𝑖⟩ and corresponding synthetic trajectory 𝑠′𝑖 in 𝑆′ there is a

home label match when ℎ𝑜𝑚𝑒𝑖 = 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒(𝑠′𝑖) and a work label match when 𝑤𝑜𝑟𝑘𝑖 =

𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘(𝑠′𝑖). We quantify the number of home and work label matches.

Trips between places are realistic. Synthetic stay trajectories should not contain any

sequences of stays that represent impossibly far trips within the time period the trip spans,

and trips users make in the synthetic data should be consistent with the real data.

We consider two consecutive stay locations in a stay trajectory as a bigram, (A, B). First

we check that the geographic distance between all bigram locations can be traveled within

the time period represented by the bigram. Second, we call a bigram (A, B) that occurs in

the synthetic data an "unseen bigram" if neither it nor its reverse, (B, A), occur in the real

data. We count the total number of "unseen bigrams", with duplicates, and quantify the

portion of unseen bigrams as the total number of "unseen bigrams" over all total bigrams

in the synthetic data, (𝑢𝑛𝑠𝑒𝑒𝑛 𝑏𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑆′)
𝑎𝑙𝑙 𝑏𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑆′ .

The aggregate distribution of where users spend time is consistent with real

data. Individual stay trajectories vary in where the users they represent go, and when.

However, in aggregate the distributions of where users spend time should be consistent across

the real and synthetic data. We compute the aggregate amount of time intervals users spend

in each area for the real data, 𝑆, and synthetic data, 𝑆′, and measure the correlation between

their distributions. Note that where users spend time is biased to where they work and live,

which is why it is important to compare 𝑆′ to 𝑆 (rather than 𝐷), where the distribution of
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⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs is consistent across the two datasets.

The distribution of the number of distinct places individuals visit within a time

period is consistent with real data. There is variation in the number of distinct areas in

each stay trajectory due to the heterogeneity in users’ levels of activity or activity diversities.

For example, some users have stays in only 2 or 3 distinct areas per week, while other users

have stays in many more distinct areas, either because they have more active lives and visit

more different places, or because their devices report data more often. This distribution of

distinct places per stay trajectory should be maintained across real and synthetic datasets.

We use the Pearson’s chi-squared test for homogeneity to determine whether this distribution

is maintained by considering 𝑆 and 𝑆′ two samples that might be drawn from the same

population. Specifically, we consider the number of distinct areas in each stay trajectory

as a category and count the frequency of this category in each of 𝑆 and 𝑆′. We then test

the null hypothesis: The proportion of 𝑠′ in 𝑆′ with 𝑃 distinct areas is the same as the

proportion of 𝑠 in 𝑆 with 𝑃 distinct areas, for each 𝑃 occurring in either 𝑆′ or 𝑆.

We test the null hypothesis with a significance level of 0.05.

Mobility patterns at the individual level are retained. Similar to the DP-Star

authors [54], we use a visual mechanism to evaluate the quality of our synthetic data. We

visualize individual mobility patterns over the duration of stay trajectories by plotting visited

areas over the intervals of stay trajectories, and comparing plots from the real and synthetic

datasets (see figure 3-1).

3.5 Evaluation Framework: Privacy

In order to validate the value of using synthetic data as a means to protect user privacy,

it is necessary to evaluate how well a synthetic dataset, which is based on a real dataset,

avoids leaking private information about individuals represented in the real dataset. As

an extreme example, if systems such as ours are overtrained, or do not generate data with

sufficient randomness, then generated synthetic trajectories might match real trajectories
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from the training set (in which case a system might just as well sample from the real

dataset). With the specifics of our machine learning system in mind, we approach privacy

by evaluating whether individual stay trajectories sufficiently differ between the real and

synthetic datasets.

3.5.1 Related work in privacy evaluation

There are well established privacy criteria that are related to our work. They tend to

measure "indistinguishability" as a way to validate that any private record in a database is

not distinguishable from a large enough group of other records. This section describes them,

as well as their limitations with respect to our use case. We build upon them to establish

our method for privacy evaluation.

𝑘-anonymity. 𝑘-anonymity was first published as a privacy criterion for relational micro-

data [84] and has since been adapted and widely used for spatiotemporal trajectory data.

The central concept is that a subset of points in any user’s data should be present in 𝑘 − 1

other users’ data. When this is the case then 𝑘-anonymity is achieved, since 𝑘 users are

indistinguishable. When applied to spatiotemporal trajectory data, a subset of a user’s

geolocation points is considered a location-based quasi-identifier (LBQID) and 𝑘-anonymity

can be formally defined as follows [9].

Definition for k-anonimity. Let 𝐷 be a database of trajectories and 𝐿𝐵𝑄𝐼𝐷 the asso-

ciated location-based quasi-identifier, and let 𝐷[𝐿𝐵𝑄𝐼𝐷] be the set of records returned by

a query for 𝐿𝐵𝑄𝐼𝐷 on 𝐷. Then, 𝐷 satisfies 𝑘-anonymity if and only if there are at least 𝑘

records in 𝐷[𝐿𝐵𝑄𝐼𝐷].

Other works have achieved 𝑘-anonymity for spatiotemporal data via data suppression or

other modifications [85, 86, 87, 88, 81]. However this definition of 𝑘-anonymity is not

directly applicable to privacy risks for synthetic data. 𝑘-anonymity addresses the risk of

a user being re-identified in a de-identified database based on the uniqueness of their data.

But for synthetic data, there is no real user to be re-identified.
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Differential privacy. Much of the modern literature about publication of private datasets

focuses on differential privacy [51], which has been adopted in both academia and industry5.

A core concept of differential privacy (DP) is in line with this work: Querying a published

dataset reveals information about a population without revealing information about partic-

ular individuals. With 𝜀-differential privacy there is a privacy "budget" parameter, 𝜀 , which

regulates the amount of variation to expect from a query result when any individual in a

dataset is removed from that dataset. In other words, if two datasets 𝐷1, 𝐷2, differ in only

one sample, then the amount by which their results for the same query differ should be within

the bounds defined with 𝜀, in which case the querying mechanism is 𝜀-indistinguishable.

Definition for 𝜀-differential privacy. A randomized algorithm 𝐴 : 𝐷 → 𝑅 satisfies

𝜀-differential privacy if for any two adjacent databases, 𝐷1, 𝐷2, which differ in only one

sample, and for any subset of output 𝑆 𝜖 𝑅, 𝑃𝑟[𝐴(𝐷1) 𝜖 𝑆] ≤ 𝑒𝜀 × 𝑃𝑟[𝐴(𝐷2) 𝜖 𝑆].

Differential privacy is most commonly used to address privacy for relational databases, where

records with many attributes often have only one or a few sensitive attributes that should be

considered private. This kind of database differs from the trajectory microdata addressed in

this work, where user records represent sequences of spatiotemporal data points. Moreover,

differential privacy was developed for the purposes of data mining rather than synthetic data

generation. Even so, differential privacy has been adapted and applied to work in differential

private data generation.

𝜀-differential privacy is often achieved by applying Laplacian noise to the output of queries,

where the noise is calibrated according to 𝜀. There are compositional properties of 𝜀-

differential privacy that allow a total privacy budget, 𝜀, to be divided among queries or

other processes, so that when combined they can achieve more complex 𝜀-differentially pri-

vate algorithms. This has led to theoretically provable 𝜀-differentially private data generation

techniques [55, 62, 58, 60, 61, 57, 92, 93, 59, 56]. For example, deep neural networks have

been designed to satisfy 𝜀-differential privacy by injecting noise throughout their training

processes, where the cumulative noise is tracked (often with a "moment accountant" [94])

and calibrated to the privacy budget, 𝜀. Other works divide 𝜀 among sequential queries to
5Various implementations of differential privacy have been adopted by industry giants such as Apple,

Google (Chrome), Microsoft (Windows 10 operating system), Uber, as well as by federal agencies such as
the U.S. Census Bureau [89, 90, 91].
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produce sequential data such as trajectory microdata. In these cases, the authors provide

theory to prove that the algorithmic process of the data generation satisfies 𝜀-differential

privacy. However, they do not evaluate the privacy properties of the output, leaving compar-

isons between generated and real datasets, and therefore real privacy implications, outside

the scope of their work.

Plausible deniability. Another privacy criterion developed to more directly address pri-

vacy risks and indistinguishability for synthetic trajectory data is "plausible deniability"

[95]. It is developed for a model where a subset of seed records, such as 𝑆, is sampled from

a dataset of real records, such as 𝐷, and where each seed is then transformed to produce

a synthetic record. The plausible deniability criterion is then met if each synthetic record

could have been generated by a sufficiently large number of real records, making the input

for the generation process indistinguishable. It can be formally summarized for trajectory

data as follows.

Definition for plausible deniability. A synthetic trajectory 𝑠′𝑖 generated from a seed

trajectory 𝑠𝑖 𝜖 𝑆 ⊂ 𝐷 satisfies (𝑘, 𝛿)-plausible deniability if there are at least 𝑘 ≥ 1 alternative

trajectories 𝑠𝑗 𝜖 𝐷 such that the similarity, 𝜎, of 𝑠′𝑖 and 𝑠𝑖 is within 𝛿 of the same similarity

measured between 𝑠′𝑖 and any 𝑠𝑗 , i.e. |𝜎(𝑠𝑖, 𝑠′𝑖)− 𝜎(𝑠𝑗 , 𝑠
′
𝑖)| ≤ 𝛿.

In this definition, 𝑘 is the threshold number of trajectories in the real database 𝐷 with which

any seed in 𝑠 is indistinguishable, allowing the "plausible deniability" that 𝑠 was used to

produce 𝑠′. It requires defining a metric, 𝜎, to measure the similarity between trajectories,

as well as defining a threshold 𝛿 for similarity.

A limitation of the plausible deniability criterion is that it assumes each synthetic output

record is produced by transforming a single real input record. This prevents it from being

applied to more general data generation systems, including the system presented in this

work - our system uses all real input records as training data input so that output synthetic

records are produced as an interpolation across them.

A further limitation of each of the criteria above is their abstract nature; their real applica-

tion requires determining reasonable privacy parameters, such as 𝑘 and 𝛿 for (𝑘, 𝛿)-plausible
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deniability, 𝜀 for 𝜀-differential privacy, and 𝑘 for 𝑘-anonymity. Determining these parameters

is often left outside the scope of work.

Our evaluation method considers privacy and indistinguishability with attention to privacy

parameters by measuring the indistinguishability of synthetic records among real records as

compared to the indistinguishability of real records among themselves.

3.5.2 Privacy evaluation used

A goal of this work is to ensure any synthetic stay trajectory generated by a model, 𝑀 , is

sufficiently different from any real stay trajectory that was in the model training set.

For any two trajectories, 𝑠𝑖, and 𝑠𝑗 , we use a distance metric to measure the difference

between them, denoted 𝑑𝑖𝑠𝑡(𝑠𝑖, 𝑠𝑗).

We compute the minimum distance between a given 𝑠 and any other 𝑠𝑗 in a set of stay

trajectories, 𝐷, which we call 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷).

𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) = 𝑑𝑖𝑠𝑡(𝑠, 𝑠𝑗) such that ∀ 𝑠𝑗 , 𝑠𝑘 𝜖 𝐷, 𝑑𝑖𝑠𝑡(𝑠, 𝑠𝑗) ≤ 𝑑𝑖𝑠𝑡(𝑠, 𝑠𝑘)

Our privacy criterion then evaluates for a distance 𝑚, and small probability 𝛿,

𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚] ≤ 𝛿

The evaluation is over a probability to address the evaluation of the model 𝑀 , which is a

stochastic process used to generate 𝑆′, rather than a specific static set 𝑆′.

The process of sampling real trajectories 𝑆 from 𝐷 (where the distribution of labels in 𝑆 is

then used to generate 𝑆′ with a matching distribution) is also stochastic.

In order to determine the proper 𝛿 value for a given distance 𝑚 and apply the criterion

for a synthetic data generation model, we compute the distance metric for both the syn-

thetic trajectories and the sampled real trajectories, and then compare their probability

distributions.

Values 𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) are computed for each 𝑠′ in 𝑆′ as 𝑑𝑖𝑠𝑡(𝑠′, 𝑠𝑗) such that
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∀ 𝑠𝑗 , 𝑠𝑘 𝜖 𝐷, 𝑑𝑖𝑠𝑡(𝑠′, 𝑠𝑗) ≤ 𝑑𝑖𝑠𝑡(𝑠′, 𝑠𝑘).

Values 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) are similarly computed for each 𝑠 in 𝑆 ⊂ 𝐷, but where direct comparison

of 𝑠 to itself is avoided.

The privacy criterion is then satisfied if, for any distance 𝑚,

𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) ≤ 𝑚] ≤ 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚]

Meaning that the probability that a synthetic trajectory 𝑠′ differs from any real trajectory

in 𝐷 by less than 𝑚, is less than or equal to the probability that a real sampled trajectory,

𝑠, differs from other real trajectories in 𝐷 by less than 𝑚. In other words, the level of

indistinguishability between synthetic trajectories and real trajectories is at least the level

of indistinguishability within the set of real trajectories which the synthetic trajectories are

meant to represent.

Distance metric. To compute the difference between stay trajectories, we use the Lev-

enshtein edit distance which was developed as a metric for sequences [96]. The Levenshtein

edit distance between two sequences is the minimum number of insertions, deletions, or

substitutions necessary to transform one sequence into the other. In our case, the tokens

subject to insertion, deletion, or substitution, are the areas represented in stay trajectory

sequences.

Prior works have used other difference metrics for location trajectory data, such as Euclidean

distance [97]6, Longest Common Subsequence [98]7, Hausdorff distance [99, 100], Manhattan

norm [81], and compared them [101, 102]. A comparison of similarity measures for location

trajectory data by Chen et al. (2005) [102] found edit distance8 to be a more robust metric

in terms of accuracy and accounting for noise.

The Levenshtein edit distance can be recursively defined as the length between two se-

6When used as a metric for location trajectories, Euclidean distance is defined as the average euclidean
distance between corresponding points within a trajectory, where the length of trajectories are the same.

7When used as a metric for location trajectories, Longest Common Subsequence finds the alignment
between two sequences that maximize the length of common subsequence.

8The authors, Chen et al. (2005), refer to the edit distance used in their paper as "Edit Distance on
Real sequence" (EDR) [102]. It is based on Levenshtein’s edit distance and modified to handle real-valued
locations, as opposed to the discrete values in the sequences used in this work.
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quences, 𝑎 and 𝑏, with lengths |𝑎| and |𝑏|, respectively, as 𝑑𝑖𝑠𝑡𝑎,𝑏(|𝑎|, |𝑏|), where:

𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑎𝑥(𝑖, 𝑗) if min(i, j) is 0

𝑚𝑖𝑛

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑑𝑖𝑠𝑡(𝑖− 1, 𝑗) + 1

𝑑𝑖𝑠𝑡(𝑖, 𝑗 − 1) + 1

𝑑𝑖𝑠𝑡(𝑖− 1, 𝑗 − 1) + 1𝑎𝑖 ̸=𝑏𝑗

otherwise
(3)

The term 1𝑎𝑖 ̸=𝑏𝑗 is equal to 0 when 𝑎𝑖 = 𝑏𝑖 and 1 otherwise. At any indices 𝑖 and 𝑗,

𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗) is the distance between the first 𝑖 and 𝑗 tokens of 𝑎 and 𝑏, respectively.

3.6 Implementation and results evaluation

3.6.1 Data source

This work used location based services (LBS) data provided by a location intelligence and

measurement company. The data was provided as pseudo-anonymized GPS locations from

users who opted-in to share their data anonymously through a GDPR-compliant framework.

Researchers followed a strict contract with obligations to not share data beyond aggregate

statistics, or to attempt to de-identify data.

3.6.2 Data panel and preprocessing

The trajectory microdata was provided as tables of "stays" data where each row includes a

pseudo-anonymized device ID, latitude and longitude coordinates, timestamp, and estimated

time the device was active in that location (see table 3.1).

Geography and time period. We used data reported by user devices in 3 counties

surrounding Boston, Massachusetts (Middlesex, Norfolk, and Suffolk counties) and used

data from the first 5 day workweek of May 2018.
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Total device count: 83,827
data points unique days of data unique nights of data

mean 10.013 2.783 2.352
std 12.654 1.605 1.395

minimum 1 1 1
25% 2 1 1
50% 5 2 2
75% 13 4 3

maximum 222 5 5

Table 3.3: Statistics for the data reported by each device over the 5-day workweek used,
from 3 counties surrounding Boston MA.

Data filtering and panel9. We dropped all data points representing more than 24 hours

spent in one location. This resulted in 839,368 data points reported by 83,827 unique

user device IDs. This population represents roughly 2.7% of the total population for the 3

counties, based on the ACS 2018 estimates [103].

However, the reported data is highly sparse, with high levels of variation in the number of

datapoints reported by each device, and the number of unique days and nights for which

their data is reported. Table 3.3 shows statistics for the number of data points reported by

each device as well the number of unique days and nights for which data is reported by each

device.

We restricted the data used in this work to user devices reporting at least 3 unique days

and 3 unique nights of data. The resulting data panel includes data from 22,707 user de-

vices, representing roughly 0.726% of the population. See the appendix (A.1) for additional

information about data representativeness.

Granularity. The 5-day time period of stay trajectories is divided into 1 hour time inter-

vals. Census tracts are used as the area values. Each item in a stay trajectory sequence then

represents the census tract where a user stayed most in the corresponding 1 hour interval.

These parameters are chosen due to the size and sparsity of our dataset, however, with more

data our methods can be applied with higher levels of spatial and temporal precision to

generate synthetic data with more information about user activity throughout the day.

9The data preprocessing code used can be viewed in our open source repository: https://github.com/
aberke/lbs-data/blob/master/preprocess_filtering.ipynb.
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Figure 3-6: Population estimates from the 2018 ACS 5-Year estimates [103] for the 3 Boston
area counties used for in our dataset. The provided location services data used in this work
includes data from roughly 2.7% of the area population.

Data transformation. LBS data from the data panel was transformed into stay trajecto-

ries representing the location histories for each user device in the panel. Each stay trajectory

is prefixed with its inferred home and work locations. The 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒 and 𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘 func-

tions are implemented with the nighttime hours that determine the inferred home locations

defined as 8pm to 9am, while the remaining hours of the day are used to infer work loca-

tion. We validated this choice of hours used for home inferences by comparing our resulting

census tract population estimates to census data, and find a correlation of 𝜌=0.648 (see the

Appendix section about data representativeness).

We note that as the resulting stay trajectories are used for the model training and generation

processes, the area labels within them can be arbitrary. What is important for the model’s

success is the relationship between them. For this reason we map real census areas to

integers, and map each area in stay trajectories to the integer representing the area. The

transformed stay trajectories can then be more safely shared and used in remote computing

environments while the mapping between real census areas and their integer representations
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is kept private10. We use such transformed stay trajectories for model training and data

generation, and then map the integers in the model’s output stay trajectories back to the

real areas they represent.

Data used for model training, generation and evaluation.

𝐷 is the dataset of 22,707 stay trajectories from panel users and is used to train the model.

𝑆 is a subset of 2000 stay trajectories randomly sampled from 𝐷.

𝑆′ is 2000 synthetic stay trajectories where the distribution of ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs is

consistent between 𝑆 and 𝑆′. 𝑆′ is generated by providing the ⟨ℎ𝑜𝑚𝑒𝑖, 𝑤𝑜𝑟𝑘𝑖⟩ label pair for

each 𝑠𝑖 in 𝑆 to the trained model to produce a corresponding 𝑠′𝑖 in 𝑆′.

Each stay trajectory has a length of 120 indices (5 days x 24 hours) and there is a token

vocabulary size of 652 (corresponding to the census tracts in the chosen geography).

The code that implements what is described above can be viewed open source11.

3.6.3 Model and evaluation

We trained over 70 models with a variety of hyperparameters and their combinations, as

described in section 3.3.5. A summary of the hyperparameters and evaluation results for

8 of the best models is shown in table 3.4. These best models were chosen by evaluating

their output. They were first filtered to meet a home match rate threshold of 0.85, then

sorted and filtered by how well they met the privacy criteria. From the filtered list a "best"

model, 𝑀 , was chosen as the model that performed well by the variety of privacy criteria

and utility metrics, and best by the chi-squared test for homogeneity where there was the

10We published the transformed stay trajectories used in this work to Github, where their real
areas are mapped to arbitrary integers and the mapping between real areas and integers is kept
private. https://raw.githubusercontent.com/aberke/lbs-data/master/trajectory_synthesis/data/
relabeled_trajectories_1_workweek.txt.

11The code that implements what is described above is viewable open source. Code and
tests for functions to transform and label data: https://github.com/aberke/lbs-data/blob/master/
trajectory_transformers.py. Code notebook for transforming and prefixing the data panel and gen-
erating the samples used: https://github.com/aberke/lbs-data/blob/master/trajectory_synthesis/
trajectory_synthesis_notebook.ipynb.
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Models
A B C D E F G M

pa
ra

m
et

er
s embedding dimension 100 100 100 128 128 128 128 128

max length 72 72 72 70 70 60 60 60
layers 2 2 2 3 3 3 3 3

layer size 256 256 256 128 128 128 128 128
dropout 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1

m
et

ri
cs

re
su

lt
s

work label match rate 0.818 0.790 0.760 0.774 0.765 0.767 0.692 0.733
portion unseen bigrams 0.006 0.014 0.036 0.002 0.005 0.003 0.015 0.006

correlation for time in areas 0.942 0.934 0.936 0.915 0.916 0.935 0.930 0.936
𝑋2 homogeneity test 𝑝-value 0.016 0 0 ∼0 ∼0 ∼0 0 0.429

minimum m-dist(s’, D) 0 0 2 0 3 0 2 2
1% cutoff for m-dist(s’, D) 4 5 9 3 5.49 3 6 5
5% cutoff for m-dist(s’, D) 9 12 20 6 9 7 14 10
10% cutoff for m-dist(s’, D) 13 18 27 9 12 10.9 18 14
10% cutoff for m-dist(s”, S’) 18 28 41 13 20 15 29 20

Table 3.4: Model parameters and results for 8 of the best models, where the models are
sorted by home label match rate. The chosen "best" model is M.

most variation in results (this test was used to evaluate the distribution of the number of

distinct places visited). In what follows, we describe M and describe the evaluation results

for the synthetic dataset it generated, 𝑆′. All code for evaluations as well as results for

additional models can be viewed in our open source code notebook via Github12.

The chosen "best" model M has a 128-dimensional embedding layer, and is composed of 3

bidirectional LSTM layers with 128 LSTM units each and a 0.1 dropout.

3.6.4 Utility evaluation implementation and results

Home and work labels match generated data. We apply our 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒 and

𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘 functions to each pair of input labels ⟨ℎ𝑜𝑚𝑒𝑖, 𝑤𝑜𝑟𝑘𝑖⟩ and corresponding output

𝑠′𝑖 in 𝑆′ and quantify the home label matches where ℎ𝑜𝑚𝑒𝑖 = 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒(𝑠′𝑖) and work la-

bel matches where 𝑤𝑜𝑟𝑘𝑖 = 𝑖𝑛𝑓𝑒𝑟𝑊𝑜𝑟𝑘(𝑠′𝑖). We measure the quantities as a portions over 𝑆′,

home match rate = home label match
|𝑆′| ,

work match rate = work label matches
|𝑆′| .

12Open source evaluation code and results for additional models are in the notebook: https://
github.com/aberke/lbs-data/blob/master/trajectory_synthesis/evaluation/evaluate_rnn.ipynb.
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What is a reasonable match rate? We cannot expect a match rate of 100%. Variation

exists within the real data that we quantify and compare our results to. We compute a

secondary user data panel, defined with the same criteria as described in section 3.6.2, and

over the same geography, but for a different 5-day workweek. (The primary user panel used

to produce 𝐷 and 𝑆 is for the first 5-day workweek of May 2018. The secondary user panel

is for the second 5-day workweek of May 2018.) 62% of the users in the primary data panel

(N=22673) also met the data reporting criteria for inclusion in the secondary user panel

(14076 out of N=22522). For users in both data panels, we apply the 𝑖𝑛𝑓𝑒𝑟𝐻𝑜𝑚𝑒 and

inferWork functions to each week of their data separately and count a match as when the

inferred label is consistent across the weeks. The home label match rate is 91.3%. The work

label match rate is 75.4%. We use these quantities as benchmarks for our synthetic data

evaluation13.

The home label match rate for 𝑆′ is 86.2% and the work label match rate is 73.2%. We note

that other models performed better by this metric, with home and work label match rates

above the real sample benchmarks (see table 3.4), however they did not perform as well in

other respects, such as privacy.

Trips between places are realistic. The portion of unseen bigrams over 𝑆′ is 0.5%. In

other words, of all the trips between places in the synthetic data, only 0.5% do not also occur

in the real data. We verify that the synthetic data does not have users make impossibly

far trips. Since any bigram in the real data is a possible trip, we only check the "unseen

bigrams". We measure distance between areas in a bigram as the line distance between the

centroids of the census tracts they represent. See figure 3-7 for a histogram of distances

between all "unseen bigrams" in 𝑆′. Given that two consecutive time intervals in our stay

trajectories data represent a period of two hours, and users in our dataset can drive 50 miles

per hour in a car, we verify that the 2 consecutive areas of all "unseen bigrams" in 𝑆′ are

within 100 miles of one another, which they are.

13Computation of these benchmarks can be found at: https://github.com/aberke/lbs-data/blob/
master/evaluate_home_work_changes.ipynb.
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Figure 3-7: Distances between consecutive area pairs ("unseen bigrams") that occur in the
synthetic stays trajectory dataset but that do not also occur in the real dataset. To evaluate
the quality of the synthetic data, we verify that all distances between consecutive areas can
be realistically traveled within the time period spanned by the trip that they represent.

The aggregate distribution of where users spend time is consistent with real

data. The correlation between the distribution of aggregate time spent in each area, when

comparing 𝑆 and 𝑆′ is 𝜌=0.936.

The distribution of the number of distinct places individuals visit within a time

period is consistent with real data. The frequencies for the number of distinct areas

in each stay trajectory in the real dataset, 𝐷, is shown in figure 3-9.

The numbers of distinct areas per stay trajectory are binned into 6 equal quantiles deter-

mined by the distribution of distinct areas per stay trajectory in 𝐷. Each bin is used as

a category in the Pearson’s chi-squared test for homogeneity, and expected frequencies are

computed from the proportions of frequencies in 𝐷. We test the null hypothesis with a

significance level of 0.05.

To test the methodology, we first test the real data sample 𝑆 against 𝐷, resulting in a

chi-square test statistic of 2.06 and 𝑝-value of 0.841 (see figure 3-10).

Testing 𝑆′ results with a p-value of 0.429, allowing us to keep the null hypothesis that the

distributions of frequencies are consistent between the synthetic and real data (see figure

3-11).

54



Figure 3-8: The proportion of aggregate time spent in each area for the real and synthetic
datasets, 𝑆 and 𝑆′, respectively. The aggregate distributions of where synthetic users spend
time should be consistent across the real and synthetic data. We compute the aggregate
amount of time intervals users spend in each area for the real data, 𝑆, and synthetic data,
𝑆′, and measure the correlation between their distributions. 𝜌=0.936.

Figure 3-9: The distribution of the number of distinct areas in stay trajectories, counted
over the entire real dataset, 𝐷.
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Figure 3-10: Comparing 𝑆 against 𝐷 with respect to frequencies of distinct places per stay
trajectory. The chi-square test statistic is 2.06 and the 𝑝-value is 0.841.

Figure 3-11: Comparing 𝑆′ against 𝐷 with respect to frequencies of distinct places per stay
trajectory. The Pearson’s chi-square test for homogeneity tests the null hypothesis that
the distributions are consistent. The resulting 𝑝-value is 0.429, which is more than the
significance level of 0.05, so we do not reject the null hypothesis.
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Figure 3-12: Individual mobility patterns plotted for a sample of synthetic stay trajec-
tories. The plotted patterns can be compared to those for real stay trajectory data
shown in figure 3-1. More plots for this model and others can be viewed in our open
source evaluation code notebook: https://github.com/aberke/lbs-data/blob/master/
trajectory_synthesis/evaluation/evaluate_rnn.ipynb

Mobility patterns at the individual level are retained. We show in figure 3-12 a

sample of plotted synthetic stay trajectories in 𝑆′. For comparison, plots of mobility for

individual stay trajectories from the real dataset, 𝐷, are shown in figure 3-1.

3.6.5 Privacy evaluation implementation and results

To evaluate how well the model meets our privacy criteria, we computed the minimum

edit distance 𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) for each synthetic stay trajectory 𝑠′ in the set 𝑆′ to yield a

corresponding set of minimum edit distance values.

{𝑠′1, 𝑠′2, ...} → {𝑚-𝑑𝑖𝑠𝑡(𝑠′1, 𝐷),𝑚-𝑑𝑖𝑠𝑡(𝑠′2, 𝐷), ...}

𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) ≤ 𝑚] is then estimated as the proportion of 𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) values such that

𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) ≤ 𝑚.
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We similarly compute the 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values over the real sample, 𝑆.

{𝑠1, 𝑠2, ...} → {𝑚-𝑑𝑖𝑠𝑡(𝑠′1, 𝐷),𝑚-𝑑𝑖𝑠𝑡(𝑠′2, 𝐷), ...}

And estimate 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚] as the proportion of 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values such that

𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚.

We use these proportions to compare 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) ≤ 𝑚] to 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚] for

any possible value of 𝑚.

A caveat

The following evaluations compare values for 𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) and 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷). Since 𝑆 is

a subset of 𝐷 and the edit distance between any 𝑠 and itself is of course 0, computation

for the distribution of 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values must avoid directly comparing any 𝑠 to itself, in

order to avoid yielding a distribution of 0’s. Our implementation removes any 𝑠 in 𝑆 from

𝐷 when computing 𝑚-𝑑𝑖𝑠𝑡 values for stay trajectories in the real sample, so that results

for 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values are instead computed for 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷 ∖ 𝑆). 𝑚-𝑑𝑖𝑠𝑡(𝑠′𝐷) values for

synthetic stay trajectories, 𝑠′ in 𝑆′, are still computed over all of 𝐷14.

To make for a better comparison, the computations for 𝑚-𝑑𝑖𝑠𝑡(𝑠′𝑖, 𝐷) and

𝑚-𝑑𝑖𝑠𝑡(𝑠𝑖, 𝐷 ∖ 𝑆) values skip any 𝑠′ in 𝑆′ and 𝑠 in 𝑆 with unique ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs.

This is done because it is already effectively done for the computation over the real sample

since any 𝑠 in 𝑆 with a unique ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair will not be compared to any other stay

trajectory with that ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair when evaluating 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷 ∖ 𝑆). We expect any

stay trajectories with matching ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs to be similar, so ignoring the unique

⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs for the real sample, 𝑆, without also doing so for the synthetic sample,

𝑆′, would throw off what are intended as comparative distributions for 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) and

𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷)15. The following evaluations still refer to the distributions of minimum edit

distances as 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) and 𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) for notational convenience, and we note that the

resulting distributions still conveniently have the same number of total values. Later in this

14The 𝑠 in 𝑆 are removed from 𝐷 only once, so any 𝑠 with a duplicate in 𝐷 will still be found in 𝐷 ∖ 𝑆,
resulting in a minimum edit distance of 0. This does occur in our dataset.

15Research from 2009 found that more than 5% of individuals in the U.S. working population have unique
combinations of home and work census tract locations [104]. For this reason, excluding unique home and
work location pairs from our privacy analysis would leave open to question the ability of the generated
dataset to leak other sensitive location information.
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section we describe how we account for these modifications with an additional evaluation.

Comparing probability distributions

At various levels of 𝛿 we find the value 𝑚 for the real data, 𝑆, such that

𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚] ≤ 𝛿

i.e. this is the value 𝑚 such that the proportion of 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values less than or equal to

𝑚 is 𝛿 .

We also find the corresponding value, 𝑚, for the synthetic data, 𝑆′,

𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) ≤ 𝑚] ≤ 𝛿

And we compare these values of 𝑚 directly.

The privacy criteria is satisfied when the 𝑚 value for the synthetic data is equal or greater

than the 𝑚 value for the real data.

To evaluate the results over the full range of possible 𝛿 values, we used Q-Q plots. See figure

3-13 for the Q-Q plot evaluating 𝑆′.

The Q-Q plot matches the corresponding 𝑚 values for the 𝑆 and 𝑆′ against each other,

with values for 𝑆 and 𝑆′ on the x and y axes, respectively. Each point then shows data

for a different 𝛿, where the point’s x-value is the corresponding 𝑚 value for 𝑆, and the

point’s y-value is the corresponding 𝑚 value for 𝑆′. A 45-degree line represents a matching

distribution of values, and points on or above the 45-degree line represent where the privacy

criteria is met. The values closer to the origin are the more important values, as these are

for the smaller minimum edit distance values, 𝑚, where privacy risk is higher.

The values for our model closely track the 45-degree line, particularly at the smaller and

more sensitive values. In other words, the distribution of minimum edit distance values for

𝑆′ closely matches the distribution for 𝑆, as desired, without perfectly satisfying our privacy

criteria.

We also established benchmarks by choosing values for 𝛿 as 0.01, 0.05, and 0.10 to find the
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mean 31.398
std 13.176

minimum 0
1% 5
5% 11
10% 14
25% 22
50% 32
75% 40

maximum 75

Table 3.5: The distribution of 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values. Values for the 1%, 5%, 10% percentiles
are used as benchmarks to evaluate 𝑆′.

corresponding 𝑚 values for the real data, 𝑆. In other words, these values are cutoffs for the

1%, 5%, and 10% percentiles for the distribution of 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values. These benchmark

values are 5, 11, and 14, respectively, and are shown in table 3.5. The corresponding values

for 𝑆′ are 5, 10, and 14. Values for other models are shown in table 3.4.

Additional evaluation

In order to handle the caveat described above, where stay trajectories with unique

⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs are ignored, we do the following. We used M to generate an additional

synthetic dataset, 𝑆′′, with the same distribution of ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs as 𝑆′ and 𝑆. We

then compared the distributions of minimum edit distances between 𝑆′ and 𝑆′′, using all

stay trajectories in the evaluation, including those with unique ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs. In other

words, we computed 𝑚-𝑑𝑖𝑠𝑡(𝑠′′, 𝑆′) for each 𝑠′′ in 𝑆′′ over all 𝑠 in 𝑆′.

We then evaluated modified privacy criteria, 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠′′, 𝑆′) ≤ 𝑚] ≤ 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚],

using the benchmarks already established for 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚]. The 1%, 5%, and 10%

percentile cutoff values are 8, 15, and 20, respectively, satisfying the modified privacy crite-

ria.

3.7 Discussion and Conclusion

In this chapter I presented a model to use real and private location data that was sampled

from the population in order to generate synthetic data that is representative of the real
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Figure 3-13: A Q-Q plot comparing the distributions of 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷 ∖ 𝑆) values and
𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) values. The 𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) values are on the x-axis and the 𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷)
values are on the y-axis. To create the points in the plot, the values of the sets
{𝑚-𝑑𝑖𝑠𝑡(𝑠1, 𝐷),𝑚-𝑑𝑖𝑠𝑡(𝑠2, 𝐷), ...} and {𝑚-𝑑𝑖𝑠𝑡(𝑠′1, 𝐷),𝑚-𝑑𝑖𝑠𝑡(𝑠′2, 𝐷), ...} were sorted and
matched by their ordered index. Each point on or above the 45-degree line represents where
𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠′, 𝐷) ≤ 𝑚] ≤ 𝑃𝑟[𝑚-𝑑𝑖𝑠𝑡(𝑠,𝐷) ≤ 𝑚] for the corresponding value 𝑚, satisfying
the privacy criterion.
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data and preserves its utility, while also preserving user privacy. The model was designed

to generate data for synthetic users with a desired distribution of home and work locations,

in order to serve applications that model the entire population.

We intend for this work to be extended to allow for privacy-safe public usage and democ-

ratization of the information provided by location data. Datasets such as the LBS dataset

used in this work are often kept private to serve the business interests of the companies that

collect them or because their publication would risk user privacy. Their utility then cannot

be fully realized, as they cannot be used by the many organizations and researchers whose

work could benefit from them, and whose work could benefit the greater good. Yet synthetic

datasets could be published as a public good. This need not detract from the bottom line

of private companies who collect the real data from which the synthetic data is produced.

While synthetic datasets that preserve the properties of real datasets can be useful, private

companies could still profit from exclusive access to the real data which provides precision

and accuracy and serves specific use cases that synthetic data cannot.

The presented work applied our methodology to a small and sparse dataset, which neces-

sitated limited levels of spatial and temporal precision for the generated synthetic output.

However with larger datasets, the methodology we presented can be applied for higher levels

of precision.

Moreover our approach to synthetic data may offer a unique opportunity to safely use larger

datasets and combine multiple datasets from various sources. Data from different sources

might contain different or overlapping data points for the same users, collected at different

times and locations by various applications or devices or methods. In most location data use

cases this would incite the need to merge data sources so that each user is only represented

once in the dataset [105]. Merging data for users in this way is difficult to do with accuracy.

Moreover, successfully doing so further risks the privacy of users by adding more information

and sources of uniqueness to their trajectory data. However in our use case, where data is

used to train a model to generate synthetic data, multiple datasets with possibly duplicated

data could be combined and leveraged to improve the model without a need to merge them.

The methods presented in this chapter can also be applied to other types of location data.

Our preprocessing transformed location based services data, with real-valued latitude and
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longitude points, into sequences of discrete tokens, which we called “stay trajectories”. Yet

many other types of mobility data already represent visits to a discrete set of places and are

then already in a similar form. Common examples include datasets for station visits within

a transportation system and check-ins at points of interest (“POI” data).

Future works can extend our utility and privacy framework to meet the needs of these other

location data types and sources. The framework should also be extended to address the

additional levels of precision needed if this work is applied to larger and higher resolution

data. Extensions might include making the metrics more granular in terms of inspecting

where users spend time and inspecting temporal and spatial attributes together, as well as

adding additional metrics informed by the cited related works.

Furthermore, this work addresses a lack of robust criteria and methods to evaluate privacy

for synthetic location datasets. This chapter presented new “indistinguishability” criteria to

evaluate the privacy preserving properties of synthetic location data and fill this void. The

criteria are generalizable and future work can expand upon them.
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Part II

USING LOCATION DATA TO

ADDRESS THE COVID-19

CRISIS
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In the midst of this thesis work, the COVID-19 health crisis became a global pandemic. At

the same time, location data emerged as an important tool to better understand and help

mitigate the crisis. As a researcher working with this data, I redirected my work towards

these efforts.

This part of the work begins with privacy risks and challenges when using location data for

contact tracing. It also shows how location data can be used to address the health crisis

while better preserving privacy.

Overall this work demonstrates how location data can serve the public as an important and

useful tool, particularly when contending with a public health crisis.
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Chapter 4

Contact tracing technologies:

Methods and trade-offs

In the spring of 2020, governments around the world considered the deployment of contact

tracing technologies to help contain the spread of COVID-19 and mitigate its economic

impacts. Combined with increased testing, effective contact tracing offered the opportunity

to improve policy decisions by providing information to help safely re-open economies and

intervene only upon the detection of new outbreaks.

However, it was not yet known whether contact tracing technologies could deliver their

desired outcomes. They would need to be widely adopted and accurate in order to be

effective, and they would need to provide enough information about their users to health

authorities or governments in order to guide future policy decisions. These challenges raised

both technical issues and societal issues, as deploying effective contact tracing technologies

risked jeopardizing individual privacy rights and freedoms. The use of location data was

central to many of these issues.

This chapter presents work done in the spring of 2020, as governments and societies grappled

with these challenges, and is adapted from a whitepaper I coauthored with Kent Larson [106].

This chapter describes various ways contact tracing technologies can be designed, and how

each design decision leads to different trade-offs between their potential accuracy, adoption,

usefulness, and privacy risks. We did this work in order to inform decision makers who
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sought these technologies and the communities who might then use them. We believed it

important for the public to understand how contact tracing systems use location data, and

their alternatives, because their widespread adoption could drastically impact privacy and

change how people move in public.

This chapter begins by providing an overview of contact tracing technologies already de-

veloped. It explains how they work and then how alternatives could work instead. The

following sections cover differences in how location data is sourced and used to detect con-

tacts, whether the flow of information is centralized or decentralized, how COVID-positive

cases are reported, how exposure risk is assessed and how the system’s users are impacted.

These sections also cover how these differences lead to trade-offs between accuracy, adoption,

usefulness, and privacy.

The goal of this work was to help inform readers about the trade-offs of contact tracing

technologies as well as raise critical questions. Can any of these technologies be useful

enough to be worth their trade-offs?

4.1 Background: Contact tracing & technology

Contact tracing is a longstanding public health strategy for reducing the spread of infectious

disease by identifying people who may have been exposed. Traditionally, contact tracing

involves asking infected people to disclose where they have recently been and with whom

they may have come in contact, and then following up with those contacts. But this process

is labor-intensive and many people cannot sufficiently recall all of their recent movements,

or know all of the people they came in contact with.

Technology can help make this process both more efficient and more accurate, and help scale

up existing human-driven contact tracing initiatives. For example, location data collected by

mobile phones can aid a patient’s memory and increase the accuracy and speed of traditional

contact tracing interviews. Mobile applications can also be used to connect people with

resources for getting tested or provide guidance for quarantine or other means to reduce the

spread of infection. This overview focuses on systems that go beyond assisting human-driven

contact tracing interviews. It focuses on technologies that use location data to automatically
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identify and notify individuals who may have been exposed and assess risk.

4.2 Early efforts for contact tracing

By early spring of 2020 there were already significant efforts to use technology to scale up the

process of contact tracing in order to control the outbreak of COVID-19, including projects

coordinated by governments, open source communities, and private companies. Notable

examples had already been deployed by governments in Asia.

South Korea effectively traced travel routes and contacts for infected patients by using a

range of data sources, such as in-person interviews, GPS data from cell phones, and credit

card transactions [107, 108], to all of which they have legal access. There were multiple

websites and smartphone apps that published this location data with timelines and maps,

including granular details such as which bus someone took, when and where they got on and

off, or whether they were wearing a face mask [109, 110]. The government also broadcasted

emergency alert information to nearby citizens whenever new cases were discovered in their

districts. This provided a basic way to inform people of their risk of exposure, based on

whether they may have crossed paths with those infected.

In China, the “Alipay Health Code” system involved a mobile app that created colored QR

codes for each user, where a color of red, yellow or green indicated the user’s exposure risk

level determined by the system, and dictated their quarantine [111]. Exactly how exposure

risk was determined was not public, but involved combining people’s personal information

with their recent travel histories and locations. Using this app, or systems like it, became

a de facto requirement in hundreds of cities across China, where scanning a green QR code

was required to enter many buildings, or travel, or return to work.

In Singapore, The Ministry of Health and Government Technology Agency launched the

TraceTogether mobile app for more targeted contact tracing [112]. Instead of using geo-

graphic location data to detect whether people were in the same place at the same time, the

system was designed to use Bluetooth signals to detect whether two app users came into

proximity of one another. The app was voluntary and its limited use raised the question

of whether opt-in systems could be effective or whether there would need to be ways to
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Figure 4-1: (Left) In South Korea, multiple apps and websites published maps and detailed
timelines for infected patients’ travel histories. (Center) The AliPay Health Code app used
in China. (Right) Singapore’s TraceTogether app.

incentivize their use.

In all of these described systems, the collection and management of their users’ data was

centralized, allowing the governing authority to more effectively act upon it.

4.2.1 Independent projects and research

Many more independent projects and proposals were developed using data in similar ways

to those systems implemented by governments, but with more privacy-preserving and de-

centralized technology designs. Projects such as CoEpi [113], Covid-Watch [114], DP-3T

[115], and PACT (Private Automated Contact Tracing) from MIT [116] were designed to

limit centralized collection of people’s private data in order to limit its potential abuse.

Many of these systems focused on the use of Bluetooth technology because it provides ways

of precisely detecting whether users of an app come into contact with each other without

exposing other sensitive information that location histories can reveal.
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Shared protocols

These projects were designed to interoperate with shared protocols (e.g. TCNCoalition

[117]), so that information about infection status could be shared across users of different

mobile applications and systems. How a user’s infection exposure risk level is assessed and

shared could then be tailored to each project’s specific objectives.

From independent projects and research to adoption

The ideas from these independent projects and proposals were incorporated into a framework

created in a joint effort by Apple and Google. The Apple-Google framework provides a

software layer that interfaces with Bluetooth, on top of which software developers who work

on behalf of various public health authorities can build apps. The framework is designed

around providing security and privacy for users, and the early drafts for the Bluetooth and

cryptography specifications [118] closely followed the suggestions of the privacy-preserving

research proposals, such as PACT and DP-3T. (The appendix section B.1 provides a high-

level description of how these specifications work.) Their intentions also seemed consistent

with the desire to protect users’ data from the centralized collection by governments. This

initially put them at odds with French and British health authorities, which had plans for

more centralized contact tracing systems [119, 120].

Using Bluetooth to create effective contact tracing systems had previously been difficult due

to compatibility issues between Google Android and Apple iOS devices, as well as iOS limi-

tations on the continuous broadcasting of Bluetooth signals (due to privacy considerations).

Needless to say, the new Apple-Google framework changed this by providing an interface to

more easily use Bluetooth for contact tracing, and also improving interoperability between

Android and iOS devices.

4.3 Implementation differences and trade-offs

The previously described contact tracing technologies and their possible alternatives differ

in a number of ways including:
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∙ How data is used to detect contacts

∙ How trust and the flow of information is managed

∙ How positive cases are reported

∙ How exposure risk is assessed and how it impacts users

These methodological differences in turn lead to trade-offs between:

∙ Adoption

∙ Accuracy

∙ Usefulness to public health authorities and decision makers

∙ Usefulness to individuals

∙ Privacy

The following sections discuss these trade-offs. But first, let’s consider privacy in terms of

whose privacy is protected and from whom privacy is being protected. We can consider two

categories of users for contact tracing apps: users who report as infected and share their

data, and users with whom they may have come in contact with and may therefore have

been exposed. We can consider three different notions of privacy for users: (1) privacy from

authorities administering the system or app, (2) privacy from potential contacts, and (3)

privacy from anyone else. “Anyone else” might include snoopers trying to collect information

about individuals, or it might include companies increasing their existing collection of user

data to help them better target ads or for other means of private profit.

All of the presented contact tracing projects and research proposals assume that users with

a positive COVID-19 test result must surrender some privacy when reporting their data.

However, the amount of privacy they surrender, and to whom, varies depending on imple-

mentation.

To further protect user privacy, any contact tracing system should only collect data relevant

to the disease or situation it is targeting and data should be deleted after a predefined period
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that experts consider medically relevant. These data minimization and storage limitation

measures are not specific to any of the alternative technology designs or methods later

discussed, they are simply standard good practice as well as part of GDPR compliance

[121].

4.3.1 How data is used to detect contacts: Location data versus Blue-

tooth co-locations

Different forms of data can be used for contact tracing including location data such as

timestamped geolocation coordinates, or data collected via Bluetooth signals. There are

also different ways this data can serve contact tracing, for example, by creating maps and

aggregate statistics, or detecting whether two people have come into contact. In what follows

I explain these different data sources and ways to use them, as well as their trade-offs.

How data is collected and what makes it useful

People’s location histories are commonly recorded by applications installed on their mo-

bile devices in the form of timestamped geolocation coordinates, often collected via GPS.

Co-location data collected via Bluetooth is different. Devices that broadcast and receive mes-

sages over short-range Bluetooth signals can exchange data peer-to-peer when they come

in close enough proximity to one another. This data exchange provides information about

whether people were co-located rather than just their geographic locations. This section

describes how this can be useful for privacy-preserving contact tracing.

Once collected, geolocation and Bluetooth data can be used to scale up contact tracing

efforts in multiple ways. One way that geolocation data can be used, but that Bluetooth

data cannot, is to create maps and timelines or aggregate statistics about when and where

people went before they were diagnosed as infected. These data and the resulting visual-
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izations can be useful to public health agencies, and making this information public can

help inform other people of their exposure risk. This approach was used in South Korea,

with the release of detailed timelines showing the locations of infected individuals. However,

publishing this detailed information risks exposing private information about the infected

people reported on, and risks the stigmatization of the businesses or communities that these

people visited. This data could instead be more safely anonymized and aggregated, but

there is a trade-off: the data is more informative when it is more detailed, but safer for use

from a privacy perspective when it is more aggregated and less detailed. Even in aggregated

form, however, geolocation data can be used to create heatmaps and for statistical analysis

to better understand geographic transmission flow and trends of disease outbreaks.

Another use case for both geolocation data and Bluetooth co-location data is in more tar-

geted person-to-person contact tracing.

Trade-offs: Accuracy, usefulness, and privacy

Location data approach: Geolocation data can be used to estimate an individual’s

disease exposure risk by detecting whether their mobile device reported a location near an

infected person’s at roughly the same time, and noting how long they were in that place

together.

One drawback to using geolocation data in this way is that it often relies on GPS which

suffers from limited accuracy in dense urban areas or indoors, and cannot pinpoint which

room or floor in a building an individual was, making it less useful for detecting if people

came in contact. However, GPS accuracy can be somewhat improved when combined with

data logged by wifi routers.

Another drawback to using geolocation data is privacy, as location histories can reveal private
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and sensitive information about people. This is the case even when data is anonymized,

because statistical methods can be used to reconstruct location histories and re-identify

people [32]. Redaction can help mitigate this risk. For example, systems like SafePaths

[122] allow health providers or users to retroactively redact their location histories before

sharing them. Apps could also allow users to proactively set places and times when their

data will not be recorded at all.

Bluetooth co-location data approach: Some of the issues with location data can be

resolved by using Bluetooth co-location data for the more targeted person-to-person contact

tracing. (This approach is used by TraceTogether, CoEpi, COVID-Watch, PACT, DP-3T,

the Apple-Google framework, and others.) Applications installed on users’ mobile devices

use the Bluetooth Low Energy (BLE) protocol to broadcast IDs and listen for IDs broadcast

from other devices. Each app records information about their broadcast IDs and received

IDs. Since Bluetooth signals are short-range, the apps can only exchange IDs when devices

come in close proximity of one another, serving as a good proxy for whether users came in

close enough contact to transmit disease. Users who later report a positive infection status

can share information about the IDs their app broadcast or received (depending on the

implementation). Exposure risk for other users can then be assessed by whether their app

exchanged IDs with infected users’ apps.

One of the benefits of using Bluetooth for more targeted contact tracing is that it can

allow a system to better preserve user privacy. While location data can expose people’s

private information, using Bluetooth mitigates privacy risks by detecting when people come

into contact without using location data. The app that broadcasts IDs from users’ devices

can generate the IDs in such a way as to make them look random, and it can change IDs

frequently. It is still possible to track people between the places they go by recording the IDs

their devices broadcast and the locations where they are broadcast. However, this requires

devices to be located at the places people go in order to receive the broadcasts, and the

places people are tracked would be limited to those locations. Tracking people in this way
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is further made difficult when the broadcast IDs change.

Another benefit of the Bluetooth approach is that it can overcome the accuracy issues of

GPS. The Bluetooth signal is short-range and degrades when crossing between the walls

and floors of a building, enabling a more precise detection of whether two people were in a

shared space. A measure of signal strength can also be used as a proxy for how closely two

people came into contact and this measure can be used to better assess exposure risk.

Yet by itself Bluetooth data may not be accurate or useful enough, as its lack of location

information also means a lack of contextual information. For example, Bluetooth data alone

cannot differentiate between contact with an infected user while in a closed setting like a

restaurant, where many people may touch surfaces, versus outdoors. These very different

settings imply different levels of exposure risk.

Another trade-off between privacy and usefulness to consider for Bluetooth-based systems is

that Bluetooth can only detect when people were in the same place at the same time. It may

miss situations when people shared common spaces at slightly different times. In these cases

disease may transmit across commonly touched surfaces (fomites), such as grocery check-out

counters. Geolocation-based approaches can be more accurate in this regard because they

can account for time ranges when comparing time and location to detect points of contact. To

resolve this issue for apps that use Bluetooth, dedicated beacons that act as signal repeaters

can be installed at common locations. These beacons could repeat the signals broadcast by

app users that came near them for a limited time period, so that the next app user that

comes near the beacon also receives the signal. However, associating Bluetooth beacons

with dedicated locations, and having these beacons listen to users’ broadcast signals then

degrades the central privacy feature for using Bluetooth: signals received about co-location

are not associated with locations. If the beacons store information about the signals received,

this information could be used to determine where someone was, and who else was there

with them.

The potential use of beacons also raises new privacy questions. Bluetooth beacons are

already used by retailers in stores to track customers’ behaviors in order to better sell

their products [123]. We can imagine a future where beacons like these are as common

in our environments as the ubiquitous collection of GPS location data from our mobile
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devices. Building contact tracing technologies that cause our devices to constantly broadcast

Bluetooth signals may bring about this future more quickly. That is, even though Bluetooth-

based systems may better preserve location privacy right now, building these systems may

create more precise ways to track people in the future.

Hybrid approach: Using Bluetooth co-location data in combination with geolocation

histories would likely result in the most accurate and useful contact tracing systems. Blue-

tooth co-location data can be used for the more precise detection of contacts, while GPS

location histories can provide data for aggregated statistics and heatmaps.

Location data can also improve contact detection done via Bluetooth. For example, when an

app using Bluetooth exchanges IDs with another app, it might also record metadata, such

as the time and location where those IDs were broadcast or received. If those IDs are later

shared by an infected person in order to indicate exposure risk to their contacts, a system

can then connect those IDs to the time and place an app stored them. This can provide

useful context about where a user was at these points of contact in order to better assess

exposure risk.

However, while this exchange may make an app more useful, it also re-introduces the privacy

issues associated with location data, as co-locations are then reconnected to locations. An

app could mitigate this risk for its user by only storing locations locally and never sharing

them, so that only the app’s user would see where it came into contact with infected people.

However, this does little to preserve the privacy for the infected users who shared their data,

as their locations will then be shared with their contacts who could then identify them.

To further improve the accuracy of GPS location and Bluetooth data, new data sources

were also proposed for contact tracing [124]. For example, high pitched audio signals above

the human audible range could be transmitted between contact tracing apps instead of

Bluetooth signals. These audio signals are more likely than Bluetooth signals (transmitted

over radio waves) to be stopped by walls, ceilings and floors, and can be used to more
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accurately measure distance between devices because they travel through air more slowly

than radio. More sensors that measure air quality, such as the barometers that measure air

pressure in some smartphones, can be used to provide more information on whether people

were in a shared space together, sharing the same air [125]. Combining a variety of data

sources may be key to reducing the rate of false negatives and false positives and increasing

the overall accuracy and usefulness of any contact tracing system.

In addition to data directly collected by smartphones, data sources such as credit card trans-

actions, transit pass records, or CCTV footage (all of which have been used in South Korea’s

contact tracing efforts), also provide useful information to improve accuracy. However, each

of these data sources also present trade-offs between the added accuracy and usefulness they

provide, and privacy.

Trade-offs: Adoption

An important issue to consider for Bluetooth-based systems is adoption. Systems that rely

on using Bluetooth to detect contacts will require the mass adoption of a new mobile app

before they can be useful, while this is not necessarily the case for systems using geolocations.

Users of Bluetooth-based contact tracing apps need to exchange enough data via the apps,

before infected users report their data, in order for their contacts to be detected. In addition,

a substantially large portion of the population needs to consistently use the system in order

for it to provide enough useful information to the people who do use it. Even in Singapore

where there is a government app (TraceTogether), fewer than 20% of people had downloaded

it months after it was released. If only 20% of people use an app, the system can only hope

to detect about 4% (0.2 x 0.2) of the encounters between people. Needless to say, too many

points of contact with infected people will go undetected for an app like TraceTogether to

have a meaningful impact.

On the other hand, geolocation data is already collected from mobile devices by a variety of

apps and companies, and two users do not need their devices to directly interact via an app

in order for this data to be useful for contact tracing. This data can even be used before

the adoption of new apps. For example, users can export their Google location histories1, or
1https://takeout.google.com/settings/takeout
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companies might share or be compelled to share, the location data they have been amassing.

Countries such as China and Israel made use of data already collected from people’s devices,

rather than allowing users to opt-in to their surveillance. This data provided a way to scale

contact tracing efforts as well as enforce quarantines by monitoring whether people stayed

at home. Using location data in this way can make a system useful with the immediacy

needed to effectively stem the rate of further infections, but may forfeit the privacy and

rights of the citizens who did not explicitly consent to being tracked by the system.

4.3.2 How trust and the flow of information is managed: Centralized

versus decentralized

The contact tracing technology systems used by South Korea, China (AliPay Health Code),

and Singapore (TraceTogether) are centralized, meaning a single entity collects location, co-

location or other data from all users whether or not they have positively tested as infected.

These entities also control the flow and use of this information. For example, China’s system

could use location histories from all of its users to find similarities and determine which users

were more likely exposed to infected users.

Similarly, Singapore’s TraceTogether app, which uses Bluetooth to exchange IDs, keeps a

database linking IDs that users broadcast to users’ identities and phone numbers. When

users are diagnosed as infected, they must then share the IDs that their app received from

other users (their likely contacts) with TraceTogether’s central server. These IDs are then

connected back to the information stored about these users so that authorities can learn

who was exposed and reach out to them via their phone numbers.

Decentralized systems, such as those proposed by CoEpi, Covid-Watch, PACT, and enabled

by the Apple-Google framework, work slightly differently. When users are diagnosed as

infected, they (optionally) share their data. This data may even be shared to a central
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database. What makes the system decentralized is that other users can then download or

query this data without sharing their own information. The data they receive can then be

used to assess their exposure risk within their app.

Trade-offs: Privacy and usefulness

The centralized and decentralized system designs differ in terms of whose privacy is preserved

and from whom. In each case, infected users give up some privacy when reporting their data,

but with a centralized system design, they need only share this data with the authority

managing the system. Centralized designs can work well for users if they trust the authority

managing the system because by collecting data from all users, the system can do the

work of finding points of contact while protecting users’ privacy from others. But no users

have privacy from the central authority, which may be a government, an organization or

a company. The authority may reserve the right to act on its knowledge of contacts, not

only to notify people of their exposure risk, but possibly to ensure that exposed contacts

quarantine or limit their travel, as happened in China. The amount of information and

level of control afforded to governments may make the centralized system most useful for

them and their citizens and therefore most desirable. Or it may raise concerns. In countries

like the US, citizen concerns about forfeiting privacy and control to a central authority may

stymie the adoption of a centralized system, making it less effective.

In the case of a decentralized system, users can query the system to find whether they had

contact with infected users without sharing their own information. This makes it difficult

for an authority to gain an overall view of which or how many users came into contact with

infected users. A decentralized approach can increase privacy for most users, but at the

potential cost of privacy for infected users who share their data and whose data is then

accessible. Some systems use additional privacy protection measures, such as mixnets2 and

private set intersection protocols3, to limit the amount of information anyone can have about

infected users’ data, as well as the amount of information users can expose by querying

the system [126, 127]. However, these additional privacy measures add implementation

complexity.
2https://en.wikipedia.org/wiki/Mix_network
3https://en.wikipedia.org/wiki/Private_set_intersection
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We might also consider systems that notify contacts of contacts. Users will often become

contagious and expose their contacts to risk well before they report as infected and notify

their contacts. During this time, their contacts may expose other users, who could later be

notified of their risk as well. Centralized systems may be better equipped to handle this

because they can detect contacts of contacts, assess their risk, and notify them, without

relying on the users who were the directly exposed contacts to take any extra action or

share new information.

In general, the decentralized approach provides users with more privacy and autonomy, and

authorities with less information and control.

4.3.3 How positive cases are reported

Many systems were designed to use information only from positive test results submitted by

trusted health agencies to inform exposure risk. This submission process can be distributed

in a secure way. For example, Covid-Watch and PACT proposed the idea of “permission

numbers”. With this scheme, each testing authority generates a list of permission numbers

that are distributed to health providers that are authorized to diagnose individuals. Each

permission number is “use once”, meaning it is used to authorize the upload of information

from one diagnosed individual. And permission numbers are generated in a way to make

them nearly impossible to guess, keeping the system secure from unauthorized data uploads.

Other system designs allow users to self-report symptoms. For example, the CoEpi team

developed an app for users to voluntarily report symptoms and symptom severity from the

app. This can allow for more immediate identification of positive cases and exposed contacts,

and may be ideal for areas with limited testing resources, but this feature also has trade-offs.

4.3.4 Trade-offs: Usefulness

Including self-reported data can enable any system to more quickly scale its collection of

data without the bottlenecks of hospital visits and limited access to certified test results.

This could allow a system to be more useful, more quickly, to more users. On the other
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hand, including self-reported data could degrade the quality and integrity of the system’s

data, as people may misdiagnose their own illness or share low quality or false data, either

unintentionally or intentionally. This could decrease the accuracy of the system as well as

users’ trust in the system, making it less useful.

Systems that use self-reported data can interoperate with systems that only use data shared

by authorized healthcare providers, which creates a middle ground. For example, Covid-

Watch and CoEpi both planned to implement the same protocol to allow data sharing across

their users but CoEpi uses self-reported data while Covid-Watch does not. Metadata can

be connected to reported data points to indicate whether these data points came from a

self-report or a trusted health provider. Different applications may then choose to treat this

data differently. For example, an app could ignore self-reported data or use it as a weaker

indicator than data submitted by health providers in its assessment of exposure risk. A

system that successfully leverages self-reported data in combination with official test results

could prove most useful.

4.3.5 How exposure risk is assessed and how it impacts users

Contact tracing systems can differ in how they assess exposure risk and present this infor-

mation in apps for their users. These systems can also use risk assessments to limit the

mobility of their users. For example, China’s AliPay Health Code app uses color codes

to show users their assessed risk levels. The colors and associated QR codes were used to

limit and further track the mobility of the app’s users. This feature was very useful to the

Chinese government for managing the health crisis, but it limited the freedom and privacy

of citizens. Another issue was transparency. Users were not told how their risk level was

determined, so the color code was not very informative. And because they cannot control

or contest the color codes fairness was an issue as well.

Other apps could tell a user the estimated number of times they came in contact with

infected people, or their estimated total contact duration, and evaluate exposure risk based
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on these numbers in a more transparent way. Apps might even show a user when or where

contact with infected people occurred. As previously described, this can make an app more

informative for users, but it can also present privacy issues by potentially exposing the

identities of infected people to their contacts.

Other systems may incorporate more personalized information and AI into their risk calcu-

lation. For example, the MILA group4 designed a contact tracing system for the Canadian

government with a machine learning component to predict a person’s probability of having

COVID-19 based on their medical information in combination with location data. This was

done to more intelligently estimate personalized risk levels for users.

All contact tracing systems will have limits to their accuracy due to the limitations of

technology and the complexity of human interactions. Potential false positives or false

negatives require careful handling. Reporting false positives can be harmful for users who

might then go to a hospital to seek a test, or who are wrongfully directed to quarantine.

Similarly, false negatives are also an issue. These can occur when points of contact are

missed, for example, because someone does not consistently carry a mobile device or use

an app, or because the system is not sensitive enough. If apps give users a false sense of

security when false negatives occur, users may then expose themselves or others to risk.

There is then a trade-off between providing users with sufficiently detailed information to

demonstrate a level of confidence needed to make recommendations for testing or quarantine,

versus providing less precise indicators of exposure risk to hedge against wrongfully reporting

information.

4.4 Risks and questions beyond contact tracing

For any contact tracing technologies, we have to question how useful they can really be, and

how to even measure their effectiveness. We also have to question what their deployments
4https://mila.quebec/en/covid-19/
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will mean for privacy and freedom in both the immediate and distant futures. Even research

proposals that use Bluetooth protocols and decentralized designs to best protect users’

privacy from central authorities may still create new ways for people to be tracked. Can the

potential benefits of contact tracing technologies be worth their trade-offs?

Even if the technology for these contact tracing systems could work with a high degree

of accuracy, we must question whether they could provide a solution to the COVID-19

epidemic. Suppose there are far more asymptomatic cases than confirmed cases; is the

tracing of only those who test positive even useful? The most accurate systems would likely

require adoption of a new app to use Bluetooth. Researchers estimated that a majority of

the population would need to use a Bluetooth app for it to be useful [128]. Yet only about

1 in 5 people in Singapore used their government’s TraceTogether app in the midst of the

epidemic. Can we expect enough people to opt in to such a system, or will governments

need to enforce or otherwise incentivize its use?

Moreover, these technologies can only be useful if the people they notify about potential

exposure risk are able to be tested, get treatment, or self-isolate. Could these options be

made available and affordable for enough of the population?

This chapter presented alternative methods and trade-offs to consider when building contact

tracing technologies; but ultimately, how these systems are built and used rests on the

consideration of societal questions about privacy and freedom and access to health services.

If we do not think about these questions as a society and intentionally design our technologies

and policies to address them, then these decisions might be made for us. Consider how the

QR codes from China’s AliPay Health Code were used. We might imagine a future where

presenting an app that shows a low exposure risk or confirmation of good health becomes

necessary to board a train or airplane, or enter a building or place of work. Then, even

systems that were designed as opt-in could become effectively required.

In the spring of 2020, contact tracing technologies were already being built and used to

address the health crisis in ways that risked individual privacy and freedom. When weighing

the trade-offs for technologies such as these, we must also consider that the risks they pose

can last beyond a time of crisis.
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Chapter 5

Assessing disease exposure risk with

location data: A proposal for

cryptographic preservation of privacy

5.1 Introduction

In the previous chapter I outlined alternative contact tracing technologies and their trade-

offs. In the months preceding that work, this range of alternatives had not yet been fully

developed or explored. This chapter summarizes work done during those earlier stages of

the COVID-19 crisis, as my colleagues and I took on the task of exploring and developing

alternatives; this work was also described in a paper I coauthored with colleagues1 [127].

During that time, it became clear that contact tracing could serve as a crucially effective tool

as health entities, communities and governments attempted to contain the viral outbreak.

It was also clear that location data collected from personal devices could enable contact

tracing processes to scale.

There were already digital approaches to contact tracing that used location histories but

many threatened individual rights and privacy [129]. The approaches we saw implemented

1I led this work and coauthored a paper that was published as a preprint with colleagues Michiel Bakker,
Praneeth Vepakomma, Kent Larson, and Alex ’Sandy’ Pentland. https://arxiv.org/abs/2003.14412.
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were centralized, controlled by government authorities, or otherwise operated on a skewed

trade-off between privacy and effectiveness. The goal of this work was to break past the false

dichotomy of effective versus privacy-preserving contact tracing. We offered an alternative

approach to assess and communicate users’ exposure risk while preserving individual privacy.

Our proposal uses recent GPS location histories, which are transformed and encrypted, and

a private set intersection protocol to interface with a semi-trusted authority.

There were some other proposals for privacy-preserving contact tracing, based on Bluetooth

and decentralization, that could further eliminate the need for trust in authority [112, 114,

113, 130, 131]. However, at the time the solutions with Bluetooth were technically limited2

- Apple and Google had not yet announced any plans for their unified contact tracing

framework. There was also the issue that Bluetooth-based systems required mass adoption

before they could be effective, while location data was already being collected and used.

Furthermore, these systems were not perfectly privacy-preserving either3 and the solutions

with additional measures for decentralization added additional complexity that hindered

their viability.

The goal of this work was two-fold: To propose a location-based system that was more

privacy-preserving than what was being adopted by governments around the world, and

that was also practical to implement with the immediacy needed to stem a viral outbreak.

5.1.1 Trust & privacy principles

The privacy and trust principles central to the design of this work are summarized below:

∙ Keep location data private. Locations visited are kept private for all users including

those who are diagnosed disease carriers.

∙ Avoid surveillance. The system can detect points of contact between users without

precise location histories being exposed.

2Bluetooth-based systems suffered from interoperability issues across devices as well as iOS specific
limitations on using Bluetooth in background processes.

3See a description for how these systems were susceptible to privacy attacks, namely by other users, in
work by Cho et al. [126].
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∙ Only allow one-way private data publication. Only diagnosed carriers ever

publish data, but this data remains encrypted and private, and their identities remain

protected. Other users can check if they came in contact with carriers without sharing

their location histories.

Any privacy-preserving contact tracing framework should be considered a “best effort” and

avoid promising to be perfectly private. Our primary contribution to the space of existing

frameworks and digital tools was the degree to which our cryptographic approach could

preserve user privacy while providing highly useful and accurate information through indi-

viduals’ location data.

The following sections describe our proposed system design. The objective of this work was

not to implement such a system. It was instead to show that there were effective and more

privacy-preserving alternatives to the systems we saw governments adopting.

5.2 A GPS-based privacy-preserving scheme

5.2.1 A useful first step

A simple first version of a system that provides exposure risk information is one that collects,

anonymizes, and aggregates the recent GPS location histories of diagnosed carriers. This

information allows the creation of a spatiotemporal heatmap representing large geographic

regions where diagnosed carriers spent time and when.

Individuals’ data and areas visited must be aggregated and obfuscated in a way that mini-

mizes what can be learned about individual people or places visited in the dataset. This is

done in order to protect people and businesses from potential stigmatization or any other

threat. This aggregated view can provide helpful information about infection risk across

different areas, types of places, and time periods for both health authorities and the general

public. This aggregated data can be further analyzed to better understand the flow and

trends of disease transmission.
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5.2.2 Contribution

This work builds upon this first step with a private set intersection protocol to provide more

precise risk assessments to individual users based on points of contact with individuals who

were later diagnosed as disease carriers. Our approach partitions the space of fine-grained

GPS location and time data into discrete spatiotemporal points that represent location

histories. This combination of a partition scheme and private set intersection protocol

allows the system to detect when a user came in contact (e.g. was in close proximity) with

diagnosed carriers to assess and inform them of their risk, while preserving the privacy of

individuals.

The following sections describe what type of information our proposed system provides

before showing a high-level system overview. I then explain the trust and privacy model

it is designed for, and finally provide a more technical description with details on how the

system could be built in practice.

5.2.3 Probabilistic risk assessment

The proposed system provides a probabilistic measure of disease exposure risk for a user,

based on the time they have spent in spaces shared with users who were later diagnosed as

disease carriers. More time spent in such shared spaces indicates higher levels of risk, but

this risk is also dependent on where those spaces are.

Any technological system should be wary of claiming to precisely determine exposure risk,

due to the limitations of the technologies used for detection, and the ambiguity over what

types of interactions between people, shared spaces, or common surfaces, most elevate risk.

Our proposed system uses GPS points collected from users’ devices and can be extended

to use Bluetooth to indicate locations visited as well. It is worth noting that GPS has

limited accuracy, especially in dense urban environments or multi-story buildings. But even

detecting whether a user spent sustained time in a crowd or multi-story building with a

diagnosed carrier may be useful, due to the heightened likelihood of sharing not only space

but surfaces such as door handles or elevator buttons, which help a virus spread [132]. For

this reason, we proposed a probabilistic risk assessment based on the amount of time and
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Figure 5-1: High-level schematic showing the major steps in the system’s process for privacy-
preserving contact tracing: (1) data collection, (2) redaction and transformation of data, (3)
secure data exchange, and (4) individualized risk assessment and notification, as well as the
distribution of aggregated data to create a ‘heatmap’ to inform the public of more general
risk. A more detailed description of the process includes usage of discrete spatiotemporal
‘point intervals’ and a private set intersection protocol and is described later on in this
chapter.

number of places that a user shared with a disease carrier, which we call “points of contact”.

5.2.4 System overview

This section provides a high-level overview of our system and walks through an illustrated

example.

Our proposed system follows four steps: (1) data collection, (2) redaction and transformation

of data, (3) secure data exchange, and (4) risk assessment and notification.

Step 1: Data collection. An application (app), installed on the mobile device of the user,

collects timestamped GPS points throughout the user’s day, every 𝑡 minutes. The

sequence of points represents their location history.

Step 2: Redaction and transformation of data. All collected location histories are

redacted, transformed, and encrypted before leaving the device, to protect user privacy.

In the case that a user is diagnosed, their points are transformed and shared with the

server in a way that maintains their privacy. Collected points are deleted from both

devices and servers 𝑑 days after they were collected, where 𝑑 is the period of possible

disease transmission informed by medical experts.
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Step 3: Secure data exchange. In this phase, using the agreed secure data exchange

mechanism, the mobile app (acting as the client) establishes a secure channel with

the designated server. Within this secure channel, the mobile application requests the

server for the ‘point interval’ data of known infected carriers for a chosen duration of

time (e.g. the last 2 weeks) for a given region (e.g. Boston).

The infected carriers’ data in the server’s possession is anonymized and has already

undergone redaction and transformation to remove sensitive information to limit the

risk for re-identification, and contains no personally-identifying information (PII).

Users’ apps can check whether they came in contact with carrier users, and how often,

while preserving privacy. This is done with a cryptographically secure “private set

intersection” (PSI) protocol to find matches between encrypted ‘point intervals’ for

carriers and other users.

Step 4: Risk assessment and notification. The app assesses risk for its user based on

the points of contact it found via (3) and can notify users of risk. Users whose apps

find them at risk due to contact with carriers can then be encouraged to get tested or

self-quarantine. The app can optionally show the user where and when the points of

contact occurred.

Steps 2 and 3 are expanded upon in the following section.

Storing and sharing GPS histories

As GPS points are collected by a user’s device, sensitive areas are removed through either

automatic redaction or manually by the user. Redaction is an important privacy step, as

knowledge about where someone was when, or where they commonly spend time, such as

their home area, can be used to re-identify pseudo-anonymized users [104, 35].

The system provides two methods of redaction: automatic and manual. Home areas can

be easily inferred by the app based on where users spend time in the nighttime, and these

can be automatically redacted. In addition, the app can provide the user with an interface

to mark additional sensitive areas for redaction. Any GPS point collected within an area

marked for redaction is deleted and not shared. To further protect the user’s privacy, this
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redaction happens on the user’s device and the remaining points are then transformed or

obfuscated before they are stored. Redacting and modifying GPS points on the device,

rather than after points are shared, is an important privacy measure to prevent users from

being coerced into providing information on where they have been.

If a mobile app user is diagnosed as a carrier (e.g. by professional medical personnel), the

proposed system provides two different ways for that user to anonymously share their GPS

points to provide important information to healthcare professionals, other system users, and

the general public.

The two GPS transformations that support these different use cases are:

(a) GPS points are replaced by larger geographic areas that contain them to represent the

areas where carriers spent time and when, without representing precise locations.

(b) Precise timestamped GPS points are transformed into “point intervals” and obfuscated

using a one-way hash function (e.g. NIST standard SHA256 hash algorithm).

The first way (a) is used for the aggregated view of data that was previously described as a

motivating first step. The granularity level can be dialed-up or dialed-down depending on

the circumstances. The more fine-grain granularity means an increase in likelihood that the

user can be re-identified.

The second way (b) is used for contact tracing. This use case is where we made a new

contribution with our approach to finding points of contact while preserving privacy.

The two different use cases that (a) and (b) serve are both central to this work. However

the remainder of this chapter focuses on (b), as it is our main contribution and requires

explanation.

5.2.5 Trust and privacy model

The proposed system is designed around a model that assumes there is a semi-trusted

authority maintaining the server with diagnosed carriers’ redacted location histories. Such

semi-trusted authorities could be local hospitals or local government agencies chartered and
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regulated to hold citizen data and maintain data privacy. We believe that a common goal –

one that would make the proposed system usable while preserving individual privacy – is to

minimize the amount of information from a diagnosed carrier that is exposed to other users

and to the semi-trusted authority.

The proposed system is designed to minimize the amount of diagnosed carriers’ information

that is exposed, and to maximize the privacy for all other users of the system. These

other users need not share any of their location data in order to find points of contact

with diagnosed users. However, diagnosed users do risk forfeiting some privacy when they

share their location histories with the authority managing the server 4. Even though they

only share their redacted and encrypted location data, given enough computational resources

and malicious intent, the managing authority can attempt to circumvent these measures and

reconstruct location history data from the encrypted data that was shared by the infected

users5.

There is a clear need for a governance model regarding this data collection and use. For

example, data should be deleted 𝑑 days after it was shared, where 𝑑 is informed by medical

experts. There should also be a legal framework in place to end the practice of collecting

data in this way once the health crisis is under control6.

That said, we also acknowledge that governments already have potential access to the mas-

sive amounts of location data that our proposed system would collect. Location histories

are already collected by apps on users’ smartphones, and the cellular towers they connect

to, and through credit card purchases.

4Even systems designed to be opt-in on the part of users sharing data can be abused and made compulsory
by authorities once they are built. In Singapore, people contacted by health authorities are required by law
to assist in the activity mapping of their movements and interactions [112, 133].

5The authority managing the server with redacted and encrypted user data can attempt a grid search
(brute force) attack over all possible encrypted point intervals in order to find hash collisions and reverse
the one-way hash function that encrypted the point intervals that users shared, and thereby expose the
underlying data. They can then attempt to reconstruct location histories based on the spatiotemporal
correlation between data points or re-identify users due to the unique nature of location histories [134].

6We have examples to be wary of regarding measures taken in times of crisis that extend indefinitely.
Israel declared a state of emergency during its 1948 War of Independence, justifying a range of “temporary”
measures that removed individual freedoms. They won the War of Independence but never declared their
state of emergency over, and many of the “temporary” measures are ongoing [135]. Israel also approved
cellphone tracking for its COVID-19 patients [136]. Similarly COVID-19 surveillance innovations in China
are likely to be used by China’s counterterrorism forces beyond the pandemic to further monitor and regulate
the movement of its people. Consider the Uighur people. The Chinese government has categorized this ethnic
group as terrorists and has subjected many of them to forced labor [137].
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5.3 Technical description

Our proposed system broadly involves data collection followed by a method to determin-

istically construct hashed spatiotemporal intervals that discrete points in users’ location

histories are mapped to. These intervals are then used with a private set intersection proto-

col to inform users when points in their location histories match the points in the location

histories of diagnosed carriers. These steps are described in the following sections.

1. Collecting and Representing GPS points

2. Detecting Points of Contact Using Private Set Intersection

3. Assessing Risk and Notifying Users

5.3.1 Collecting and representing GPS points

Timestamped GPS points are collected within user devices as they move throughout their

day. These points are collected as tuples of latitude, longitude, and time: (latitude, longi-

tude, time). A user’s app checks for matches between their collected points and the points

shared by users who were diagnosed as carriers in order to identify points of contact.

Partition space and time into intervals

For privacy purposes, GPS points are never directly compared in order to find these matches.

Timestamped GPS points are instead first mapped to a 3-dimensional grid, where two di-

mensions are for geographic space (latitude and longitude), and the third dimension is time.

We call these 3-dimensional grid cells ‘point intervals’. The point intervals are then obfus-

cated with a deterministic one-way hash function. Identifying points of contact becomes

a matter of matching hashed point intervals. Transforming GPS histories in this way to

map (latitude, longitude, time) points that occur within a continuous spatiotemporal space

into discrete ‘point intervals’ makes comparing hashed GPS histories possible. It also makes

sense for our use case of finding time intervals where users occupied the same spatial area7.
7Phones collect GPS data with limited accuracy and therefore trying to match users across spatial areas

with radii too small will miss points of contact.
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Figure 5-2: A geographic area partitioned by a hexagonal H3 grid. Points are mapped to
an index corresponding to their containing grid cell.

There are established ways to partition a geographic space, such as with geohashes8 for

square grid cells or with the hexagonal global geospatial indexing system of H3 grid9.

Similarly, time can be partitioned into intervals. For example, if an interval size is 2 minutes,

then an interval boundary can always fall on the hour, and on the 2nd minute of the hour,

and so on. The 3-dimensional grid of point intervals is an underlying system parameter (or

logical “map”) that is agreed-upon and shared across all user devices in the system. The

specific partition scheme and interval sizes used are implementation details. What matters

more is that the chosen partition scheme and the geographic and temporal resolution used

are consistent across devices.

We note that when collecting GPS points there is a trade-off between accuracy in detecting

points of contact and the amount of data that must be then stored and processed. For

example, if data is collected more frequently, the system is more likely to detect when

users spend little time near each other, such as sharing a bus ride. However, this requires

collecting and storing more data, and hence more compute resources. We also note that the

geographic partition of space can be expanded to include specific locations. For example,

a bus line might install Bluetooth beacons on its buses with unique identifiers to serve as

the geographic portion of point intervals, allowing users with an app that supports this

functionality to later detect if they shared a bus ride with a diagnosed carrier.

8https://en.wikipedia.org/wiki/Geohash
9https://h3geo.org/
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Checking for matches across obfuscated GPS histories

Since the point intervals are transformed with a one-way hash function, they cannot be

easily reversed to expose underlying location histories of users.

Yet, since this transformation is deterministic, users’ apps can still check for points of contact

with diagnosed users by checking for matches between their transformed point intervals and

those returned by a server. Verifying whether two individuals came into contact becomes a

matter of comparing whether the hashed point intervals that were constructed from times-

tamped GPS points (latitude, longitude, time) collected by their devices coincide with any

of the hashed point intervals provided by the server (as well as adjacent point intervals)10.

5.3.2 Detecting points of contact using private set intersection

We now describe the protocol that facilitates the private detection of matches across users’

GPS histories. We assume that there is a semi-trusted authority (e.g. a local health agency)

operating a server. When a patient is diagnosed as a disease carrier, they share their

redacted, anonymized, hashed point intervals to the central server. Other users’ apps pe-

riodically exchange information about their own hashed point intervals with the server to

detect if their hashed point intervals match against those shared by diagnosed carriers. They

do so with a private set intersection protocol.

Private set intersection (PSI) enables two parties to compute the intersection of their data

in a privacy-preserving way, such that only the common data values are revealed. It has

applications in a variety of privacy sensitive settings, from measuring conversion rates for

online advertising [138] to securely testing sequenced human genomes [139].

In our case, the two parties involved are the server storing the hashed point intervals shared

by diagnosed carriers, and another user’s device - the client. Their data are their respective
10Technical note about matching against adjacent intervals: Since the partition of geographic space into

intervals was predetermined, two points may be close together in space but fall into different intervals. For
this reason a user’s app checks each of their collected point intervals, as well as the spatially adjacent intervals
against the diagnosed carriers’ shared point intervals. That is, if we use a spatial grid of hexagons (like H3),
a user’s collected point falls within a grid cell and that grid cell is used as an interval. We must check
that interval as well as the surrounding 6 hexagons in the grid against each data point shared by diagnosed
carriers. This adds some complexity in terms of processing power to make the comparisons 7𝑁𝑢 ×𝑁𝐼 rather
than just 𝑁𝑢 ×𝑁𝐼 .

95



hashed point intervals. We can leverage PSI in a way so that only the user learns about the

intersection of their data - the server does not learn whether it shares any point intervals

in common with the user, while the user’s client app does learn this. Therefore, our use of

PSI is designed to maximize the privacy for users who may be wary of surveillance or who

do not fully trust the entities that maintain the server.

There are many PSI schemes that would fit our needs. These different schemes vary in their

computational complexity, speed, and accuracy. Researchers have developed fast PSI pro-

tocols optimized for a client-server model, including those where the client is a smartphone

app [140] and where the server’s dataset is significantly larger than the client’s [141], which

is the case for our system11. A good overview and comparison of PSI protocols can be found

in [138].

Example PSI scheme with Diffie-Hellman

To aid the reader in understanding how PSI supports our privacy goals, I provide a simple

scheme using the Diffie-Hellman protocol [142, 143] in the appendix section B.2.

To briefly summarize the example: Infected users’ point intervals are already obfuscated

with a hash function and shared with the server. This set of hashed points intervals from

infected users is represented as 𝐻(𝑃𝐼). Any other user’s point intervals, 𝑃𝑈 , are obfuscated

with the same hash function to locally store 𝐻(𝑃𝑈 ). The goal with PSI is for a user’s app

to detect the intersection of the hashed point intervals, 𝐻(𝑃𝐼) ∩ 𝐻(𝑃𝑈 ), as this also then

reflects the intersection of unhashed point intervals 𝑃𝐼 ∩ 𝑃𝑈 . This detection is done locally

within the app, without the app directly sharing the user’s 𝐻(𝑃𝑈 ) with the server. In the

example provided with a Diffie-Hellman approach, the user’s app encrypts their hashed point

intervals with a key, 𝑎, to send 𝐻(𝑃𝑈 )
𝑎 to the server. The server encrypts 𝐻(𝑃𝐼) with its

own key, 𝑏, to return the encrypted set 𝐻(𝑃𝐼)
𝑏. It also encrypts 𝐻(𝑃𝑈 )

𝑎 with 𝑏 to return

𝐻(𝑃𝑈 )
𝑎𝑏 as well. The client can then further encrypt 𝐻(𝑃𝐼)

𝑏 with 𝑎 to result in the set

𝐻(𝑃𝐼)
𝑏𝑎. Due to the multiplicative properties of the group under which the values were

11However many of these PSI protocols achieve their improved efficiency at the cost of accuracy, allowing
a small number of false positives, such as by employing bloom filters. This may not be an acceptable trade-
off for a disease contact tracing system where false positives can lead to panic or the wrong people seeking
scarce medical resources.
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encrypted, values in the intersection 𝐻(𝑃𝐼)∩𝐻(𝑃𝑈 ) are also represented in the intersection

𝐻(𝑃𝐼)
𝑏𝑎∩𝐻(𝑃𝑈 )

𝑎𝑏. The user’s client app learns of this intersection while the server does not.

The appendix section B.2 provides a more fully explained example which is also illustrated

in figure B.2.1.

PSI benefits and implementation notes

The use of a PSI protocol adds an extra layer of privacy protection for both the diagnosed

carriers and the other users, beyond just the redaction and obfuscation of data12.

Other users only ever learn points shared by diagnosed carriers (𝑃𝐼) that their own points

(𝑃𝑈 ) matched with (the intersection 𝑃𝐼∩𝑃𝑈 ). This further protects the privacy of diagnosed

carriers. Moreover, the server need not learn whether any points match; only the other user

learns the intersection of points. This further protects the privacy of undiagnosed users

who may be wary of their location histories leaving their device, or being shared with an

authority.

There are implementation details that can further enhance privacy and efficiency. For ex-

ample, servers can hold data specific to local geographic regions, so that users with location

histories specific to an area (e.g. the Boston area) need not interact with servers holding

data specific to a far away region (e.g. the Bay Area in California). This helps subset the

data so as to run PSI on a much smaller dataset, thereby helping computational efficiency.

In addition, data shared by diagnosed carriers to servers should be deleted after 𝑑 days, as

both a privacy and efficiency measure.

The server should also limit the amount of data that a user’s client device can exchange with

it. It is only relevant to compare recent location histories (i.e. from the past 𝑑 days). Since

points are partitioned into consistent time intervals, there is therefore an upper bound on

the number of points, N, that any app needs to check against the server’s set of points, 𝑃𝐼 .

The server can limit the exchanges with any client to N points per exchange, and limit the

number of queries per day. This limitation is important for preventing privacy attacks where

12When other users send their point intervals to the server, their point intervals are effectively encrypted
twice. First with the deterministic hash function (𝐻) that encrypts all point intervals in the same way.
Second by the PSI protocol.
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an adversary might attempt querying over the entire spatiotemporal grid to reconstruct the

location histories of diagnosed carriers. It also reduces the computational burden for servers.

5.3.3 Assessing risk and notifying users

A user’s app can assess their risk of infection based on the comparison (performed on the

user’s device) between the point intervals on the user’s device with those received from the

server. Users whose apps find them at reasonable risk can then be encouraged to get tested

or self quarantine.

The implementation of our system can differ to either allow the app to learn just the number

of points of contact that occured, or where and when points of contact occurred. These

different implementations have different implications for the privacy and utility that our

system can offer to its users.

The number of detected points of contact is related to how likely a user was to have spent

sustained time in spaces shared with diagnosed users, so the number of detected points of

contact is commensurate with risk and can be used to provide a risk assessment. When the

locations of points of contact are known, the risk assessment can leverage context about these

locations, such as whether they are confined spaces versus multi-story office buildings versus

outdoor parks. Future work could further incorporate intelligence into the risk assessment.

5.4 Intermediary implementation

Given the urgency of the COVID-19 pandemic, we also described how intermediary steps

could be taken to implement the presented system: Even before a secure server is set up

to perform the private set intersection (PSI) protocol, hashed point intervals for diagnosed

carriers can be published to a flat data file for other users to download. While this would

speed up implementation, it would also diminish privacy guarantees13. Finally, this inter-

13Attackers could attempt to create points representing every potential point interval to check for matches.
Attackers could then attempt to reconstruct location histories of users diagnosed as carriers and possibly
re-identify them from their shared anonymized data. While the redaction step would decrease the likelihood
of an attacker’s success, some privacy risk remains.
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mediary implementation with a flat data file could then be subsequently transitioned to the

more secure implementation using a PSI protocol.

5.5 Discussion

In this work we proposed a technical design to address the problem of assessing users’ risk

of disease exposure with location histories. Our proposal was in response to existing digital

contact tracing technologies, with a more privacy-preserving approach.

We also noted that in contrast to these other technologies, it was important for any imple-

mented system to be opt-in, and to clearly communicate to users how it collects, retains,

and uses data. This was in order to provide users the opportunity to weigh the trade-off

between their individual privacy risk posed by sharing information with the system and the

ongoing risk posed by the pandemic.

As this work was developed, we were also encouraged by other privacy-sensitive proposals

that emerged for contact tracing [144, 126, 113, 114]. Some of these even extended our

notions of privacy by removing the need for trust in authorities who might abuse their

access to diagnosed patients’ encrypted data and violate their privacy. However, these

systems were more complex and required more infrastructure and coordination, making

them more difficult to implement. The goal of the work presented in this chapter was to

propose a system that was more privacy-preserving than the contact tracing technologies

that we saw governments around the world adopting, but that could also be practically

implemented with the immediacy needed to both stem the spread of disease and stem the

adoption of privacy-violating technologies.

What was clear throughout this work was that contact tracing could be a highly effective

strategy to mitigate the global health crisis, and location data collected from personal devices

could serve as a powerful tool in aiding this effort. In the face of the COVID-19 pandemic,

it seemed time for the ubiquitous collection of location data to serve as a tool for public

health.
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Chapter 6

Using location data to understand

social distancing behavior: A New

York case study

6.1 Introduction

The previous chapters discussed how location data could be used to mitigate the COVID-19

health crisis, namely to scale contact tracing efforts. This chapter and the following are

about how location data was used to better understand the health crisis and its impacts.

Awareness that COVID-19 could wreak havoc on the United States medical systems grew

in March of 2020. The United States declared a national emergency on March 13th. In

response to the oncoming crisis, many local governments across the United States issued

“stay-at-home” orders or shut down non-essential parts of their economies. These and other

“social distancing” policies were implemented as strategies to reduce interpersonal contact

and thereby limit disease transmission [145, 146, 147, 148, 149]. Even without these policies

in place or enforced, many people independently practiced social distancing as a responsi-

ble behavior to “flatten the curve”, or reduced their own activities out of personal health

concerns.
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During the same period, myself and a group of colleagues led by Esteban Moro gained access

to an up-to-date, and highly granular location based services (LBS) dataset. The data set

contained anonymized location history data collected from millions of mobile devices used

in metropolitan areas across the United States.

The research opportunity and potential importance of working with such a dataset was clear.

Location based services data provided unique opportunities to understand how people were

practicing social distancing behaviors in the United States, the extent to which they were

doing so, and how this differed across communities and demographics. This data would also

be used to study the impact of those behaviors on disease transmission rates.

This chapter describes work done in collaboration with Esteban Moro, Michiel Bakker, and

Matt Groh. In this work we used the LBS data to measure social distancing behaviors in the

New York City metropolitan area. At the time, New York City was considered the epicenter

of the pandemic in the U.S.

6.2 Data

Location based services data. The LBS data were provided by Cuebiq, a location in-

telligence and measurement company. They supplied anonymized records of GPS locations

from users who opted-in to share their data. The data were shared with us under a strict

contract with Cuebiq through their Data for Good program where they provide access to

de-identified and privacy-enhanced mobility data for academic research and humanitarian

initiatives. In order to preserve privacy, location data in the inferred residential and work

areas for users were aggregated to the Census Block Group level, thereby allowing for de-

mographic analysis while obfuscating the true home locations of the users.

The data were provided in the form of time-stamped coordinates reported by users’ devices.

From these coordinates we computed “stays” which represent visits to locations1. They were

detected as clusters of coordinates where a user spent at least 5 minutes. From these “stays”

we computed more metrics described below.

1We used the infostop algorithm [150]
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We used other available data sources in combination with the LBS data to add additional

insights.

POIs data. We used “points of interests” data, referred to as POIs, from Foursquare.

This secondary data source provided information about public places people visited, such

as names and locations, as well as categories (e.g. “grocery store” or “arts and entertain-

ment”). This allowed us to study changes in social distancing behaviors and understand

those changes, by the type of place where they occurred.

Census data. We inferred the home census areas (Census Block Group) for the LBS

data users we studied based on where they reported locations in the nighttime hours. The

American Community Survey (ACS) [103] reports estimated demographics for people living

in each of these census areas. We used this data to link demographic information to the

aggregation of the users based on their home census areas. This allowed us to study changes

in mobility and behaviors across demographic groups.

Data panel. From the LBS data we selected a panel of users who were sufficiently active

during our period of study 2 and who were residents of the New York City metropolitan

area. We restricted our analysis to those users. This panel represents a sample of a sample

of 567,000 people, or about 3% of the population. When we compared the inferred home

census tracts for this population to the ACS 2018 population estimates [103], we observed

a Pearson correlation of 0.68.

6.3 Metrics

From the LBS and computed “stays” data, we were able to derive a variety of metrics. We

explored these as ways to better empirically measure and understand how social distancing

behaviors were taking place.

2The data panel was restricted to users from whom there was location data reporting that they stayed
in their home Census Block Group for more than 10 days during the period of February 17 to March 9.
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These metrics included those traditionally used by researchers who study human mobility:

Daily trips (measured as the number of times users had stays data at distinct locations

outside their home area), daily distance traveled (measured as the line distance), and daily

radius of gyration (this represents the size of the area covered by users [50]).

We also explored new, less traditional metrics which were more relevant to the COVID-19

pandemic and social distancing behaviors. For example, the daily number of trips to POIs by

POI category, and the duration of the trips there, could help us understand which behavioral

changes were occurring. Before we decided to focus our initial analysis on the New York area,

we were considering analyses across the United States. We then considered measuring trips

by POI category as a means to quickly infer where and when local governments were enacting

social distancing policies. For example, by detecting the municipalities with significant

reduction in visits to schools or public offices, we might detect local policy changes made

across the U.S. in an efficient way when otherwise that information was difficult to quickly

attain.

We considered many other metrics, such as the density of users in public spaces, or the

diversity of places visited by users on a daily basis. In each case, the LBS data source

provided a unique opportunity to derive these metrics. The most important insight in

the exploration of new metrics was that we could measure what the following work calls

“contacts”. The “contacts” metric counts instances when an individual user comes into

proximity with another user. We were able to detect such instances with the LBS data

and attribute them to precise locations and durations of occurrence, as well as count and

distinguish the instances across users. Given that the primary goal of social distancing

was to limit disease transmission through interpersonal contact, this seemed like the most

relevant metric.

The following work focuses on these primary metrics and their relative changes:

Mobility

∙ Distance traveled.

∙ Radius of gyration.
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∙ Number of people staying home.

∙ Number of stays in public places, which this chapter calls visits.

Contacts

This metric was estimated as instances where two people stayed within 25 meters distance

from one another for at least 5 minutes.

6.4 NY Case study: Initial findings

We published our initial findings in a report at the end of March, which we updated mid

April3 4 [151]. The report also contains more details about our methods used.

Here I provide a summary of some of our main findings along with figures illustrating them.

The figures are timelines showing changes in behavior and the areas in gray are weekends.

In general the data showed dramatic changes in where people spent their time and with

how many people they interacted following the declaration of the national emergency and

implementation of social distancing policies. For example, when comparing weekends in

February and late March, we found:

∙ Distance travelled dropped by 70% from a weekend average of 25 miles in February to

7 miles in March.

∙ The number of contacts in places decreased by 93% from 75 to 5.

∙ The number of people staying home the whole day increased from 20% to 60%.

The data also showed that in normal times, mobility and social contacts vary significantly

by the demographic composition of a neighborhood. We studied this by attributing de-

mographic information from the ACS by census tract of the residents in our data panel.

3Report “Effect of social distancing measures in the New York City metropolitan area”: http:
//curveflattening.media.mit.edu/socialdistance4_14.pdf.

4The report reflects work led by my colleagues that I contributed to.
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Figure 6-1: Changes in mobility metrics in the New York City metro area.
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Figure 6-2: Change in visits to public places (i.e. stays in 3rd places).
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Figure 6-3: Change in the number of average daily contacts in the New York City area. The
bottom figure shows the fraction of where these contacts occur by POI category.
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Figure 6-4: Average number of contacts by day by people in different groups of tracts. A)
By median income, B) by percentage of population in the tract above 64 years old, and C)
by percentage of people with no insurance.
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Figure 6-5: Percentage of visits to public places outside the New York City metro area
during the weekend of February 21, from people in our data panel.

Following the social distancing policies, nearly everyone’s mobility and social contacts were

dramatically reduced to similar levels. This is shown in figure 6-4.

We also found that there was a spike in trips to grocery stores following the declaration of

the national emergency (i.e. panic buying). Even after this time, grocery stores continued

to be the primary places that New York residents came into contact with others (see figures

6-2 and 6-3).

In addition, we were able to measure the rate at which people (users in our data panel)

were leaving the New York City area for other states (shown in figure 6-5). This was con-

cerning from a public health perspective, as it was possible that these people were bringing

coronavirus from the epicenter of the crisis to these other states.

6.5 Further work

This report, and the LBS data it used, provided real-time information about how social

distancing was taking place in New York. Following the report, we continued using the data
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Figure 6-6: Percent of New York City residents in our data panel who left the city by week,
compared by income bracket.

source to derive additional insights.

In particular, we were interested in how social distancing measures impacted different income

groups. We studied the behaviors of panel users by the relative income brackets of their

home census tract. For example, there was a spike in trips to grocery stores directly following

the declaration of the national emergency on March 13. We found that while this change in

behavior was significant for users in the bottom 10% income bracket, this was not at all the

case for users in the top 10% income bracket.

We also looked at the disparate opportunities to escape the epicenter of the pandemic. We

knew anecdotally that many people who could leave New York City, such as for parents’

homes or second homes, did. This option was a privilege. Our data helped us quantify it:

we measured how many users in each income bracket in our starting data panel continued

to report data in the New York area each week. We found that those residing in the top

10% income bracket areas left New York in much greater rates than other New Yorkers (see

figure 6-6). This kind of analysis was later independently done and reported on by the New

York Times in their coverage of how the pandemic was impacting different socioeconomic

groups5.

There were many other questions about people’s behavior in the time of the pandemic

that we used our data to answer. For example, did special events, like Easter, lead to

5https://www.nytimes.com/interactive/2020/05/15/upshot/who-left-new-york-coronavirus.html
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significant increases in mobility and interpersonal contacts, which could increase disease

transmission? (For Easter the answer was no.) The LBS data source provided empirical

answers to questions that may have otherwise relied on anecdotal information. The data also

helped us fact-check claims made from other sources, such as by attempting to reproduce

results from other researchers. Other researchers and news outlets had access to this data and

similar datasets as well; overall it contributed important information to better understand

the health crisis at a time of panic and uncertainty.

The nature of this data, due to how it is collected from personal devices, made it particularly

informative. For example, its real-time nature delivered timely information. The fact that

we could trace users across the dataset allowed us to infer home areas, infer demographic

information, and glean additional insights. The high granularity of the data provided nu-

anced insights as well. It allowed us to study the types of places (POIs) where behavioral

changes took place. More importantly, it allowed us to detect and measure interpersonal

contacts.

However, while our analysis leveraged the highly precise nature of the data, it preserved the

privacy of individuals. From the high-precision data we derived the mobility and contacts

metrics, and then studied them in aggregate. For example, we were able to count the number

of daily contacts at grocery stores by the census tracts for users who made the contacts,

rather than for any individual users.

The use of aggregate contacts metrics provides a motivating example for how high-precision

LBS data can be highly useful in privacy-preserving ways, particularly in service of a public

health crisis.

Aggregate mobility metrics, such as the number of daily trips or distance traveled, by census

area, are often used. We can imagine common use of an aggregated contacts metric as

well. This metric could provide a better estimation for social distancing behavior than the

more traditional mobility metrics that we saw other researchers use and news organizations

report on during this time [152]. We also saw researchers use aggregate trips and distance

traveled metrics as proxies for social contact in disease transmission models [153, 2, 154, 155].

Contacts metrics could better serve these models as well.
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Future work could further leverage LBS data, or similar data sources, to derive contacts

metrics in different ways. For example, we could measure the diversity of contacts, as the

number of unique contacts a person has each day, or count contacts by people from different

census tracts or communities. Or we might estimate the duration of contacts. Each of

these differences may have different implications for measuring social distancing behaviors

and potential disease transmission. And each of these differences can provide for different

sources and uses of aggregate contacts metrics.

The potential utility of contacts metrics in addressing the health crisis motivates the work

in the following chapter.
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Chapter 7

A metric to better understand social

distancing: Contacts

This chapter extends the work described in the previous chapter to use our “contacts” metric

to address the monitoring and modeling of infectious disease transmission. This work was

done in collaboration with Bernardo Garcia Bulle, Esteban Moro, and Michiel Bakker 1.

7.1 Introduction

In the beginning of 2019 the outbreak of COVID-19 spread rapidly across the United States

as well as the rest of the world. In the absence of a vaccine and limited medical resources

to meet the demands of the disease, many local governments throughout the U.S. issued

stay-at-home orders or otherwise encouraged minimizing person-to-person contact, known

as “social distancing”.

Early studies indicated that social distancing interventions could be effective, such as the

severe travel restrictions in China [156, 157] and stay at home orders issued both abroad

[158] and in the U.S. [159]. Some of these studies measured the correlation between the time

public interventions took effect and the change in growth of reported cases [160].

1I led the work in this chapter and produced its contents.
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Many other studies used mobility metrics in order to monitor and model how social distanc-

ing measures impacted human mobility and disease transmission. These mobility metrics

were either collected by surveys or computed from geolocation data collected from smart-

phones. These uses of geolocation data and mobility metrics are the focus of our work.

For example Lai et al. used daily aggregate mobility metrics obtained from Baidu location

based services to model the impact of travel restrictions in China with an SEIR framework

[153]. Similarly in the U.S., Pei et al. used SEIR models to estimate the difference in likely

COVID-19 deaths if U.S. lockdowns had occurred on earlier dates. Their models used cen-

sus data reporting inter-county commuting flows from 2015 (ACS) in combination with data

about visits to points of interest (POIs)2 [2]. Many other studies in the U.S. used mobility

metrics from geolocation data to quantify the extent to which social distancing occurred due

to policy changes [161, 162] as well as measure and model the impact of social distancing

on the growth of reported COVID-19 cases [154, 155].

A critical limitation of these works is their use of mobility metrics as proxies for the extent

to which people were social distancing and limiting their contacts with others.

Contribution. We measure contacts by leveraging highly granular anonymized geoloca-

tion data to detect when people are co-located for an extended duration of time. This

“contacts” metric intuitively serves as a more direct proxy for social distancing behavior and

exposure risk, as limiting contact between individuals is the intention of social distancing

measures. Our work uses location data collected from more than 1.8 million personal devices

from 7 U.S. metropolitan areas.

We show the relationship between our contacts metric and mobility metrics used by other re-

searchers, namely trips and distance traveled. We do so with analytical theory and empirical

results.

This serves 2 main purposes.

First, we show how our daily “contacts” metric can be estimated by the more common

2Despite the limits of their data source, estimates from this model were featured in a New York Times
article titled “Lockdown Delays Cost at Least 36,000 Lives, Data Show”, published on May 20, 2020: https:
//www.nytimes.com/2020/05/20/us/coronavirus-distancing-deaths.html.
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mobility metrics - either trips or distance traveled. This could improve the monitoring of

local changes in social distancing and potential disease transmission.

Second, and more importantly, we show how the relationship between contacts and these

other mobility metrics changed over the course of the health crisis. This is not surprising,

as people changed their behaviors to adapt to social distancing. In particular, we find that

increases in daily trips and distance traveled metrics do not correspond to increases in daily

contacts as much as they previously did. This can be seen in figures 7-1 and 7-2. They

show time series plots for the daily average metrics for each of the metropolitan areas in our

dataset.

The change in the relationship between metrics that we identify signals weaknesses in relying

on these other mobility metrics as proxies for social distancing behaviors. Our “contacts”

metric might serve as a better proxy and it could be used as a daily aggregate metric in

ways similar to how the trips and distance metrics currently do.

We also study the relationship between these mobility metrics and growth in reported cases

for each of the 7 metropolitan areas in our study, localized to county. In particular, this work

casts doubt on whether any of the metrics serve as sufficient proxies for disease transmission

models in the U.S. the ways researchers intend for them to.

Outline. In the following sections we first show the relationship between the contacts

metric and trips and distance traveled metrics with a theoretical framework (7.2), which we

later validate in section 7.4. We describe our data sources and how we compute the metrics

that are used in our analysis in section 7.3. We then show our analysis methods and results

in section 7.4.

7.2 Relationship between contacts, trips, and distance met-

rics: Theoretical framework

Previous works have addressed the scaling relationship between population density and the

rate of contacts which can lead to infectious disease [163, 164, 165]. This section builds
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upon these works to show how the contacts metric can be estimated by the more commonly

available mobility metrics of daily trips and distance traveled. We describe theory that we

later validate with regression models in section 7.4.

We consider (and later compute) these metrics localized to geographic areas, namely U.S.

counties.

∙ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠(𝑡): The total number of times individuals from a given area come into contact

with others, outside their own homes, on day 𝑡.

∙ 𝑑𝑖𝑠𝑡(𝑡): The total distance traveled by individuals from a given area on day 𝑡.

∙ 𝑡𝑟𝑖𝑝𝑠(𝑡): The total number of trips taken by individuals from a given area on day 𝑡.

We form the following relationships between these metrics:

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) ∼ 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)
2 (1)

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) ∼ [𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼𝑖 × 𝑑𝑖𝑠𝑡𝑖(𝑡)]
2 (2)

For area 𝑖, where 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 is the population density for area 𝑖, and where 𝛼 is a

positive value less than 1.

There is a third relationship between distance and trips (3).

𝑑𝑖𝑠𝑡𝑖(𝑡) ∼
[︂

1

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖

]︂𝛼
× 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡) (3)

Relationship (3) can be reformulated as (4)

𝑡𝑟𝑖𝑝𝑠𝑖(𝑡) ∼ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼𝑖 × 𝑑𝑖𝑠𝑡𝑖(𝑡) (4)

and relationship (2) is a result of combining relationships (1) and (4).
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In what follows we explain the theory for relationships (1) and (3), from which the other

relationships follow.

7.2.1 Relationship between distance traveled and trips

We might intuitively assume that users in more urban areas travel shorter distances on

average. For example, a city resident may not travel far to work or the grocery store,

while a suburban resident outside a city does. Previous works studying the relationship

between urbanity and average trip distance have shown this to be the case [166, 167, 168].

Population density is a commonly available metric. In the following theory and analysis we

use population density as a proxy for an area’s urbanity (which other works have done as

well [167]).

Relationship (3) states our theory that the average distance traveled by users in an area

depends on the average number of trips, weighted by the population density of that area,

𝑑𝑖𝑠𝑡𝑖(𝑡) ∼
[︂

1

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖

]︂𝛼
× 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡) (3)

where a positive 𝛼 value means users in less dense areas travel further to reach their trip

destinations.

In section 7.4 we use a log-linear regression model to validate this theory and identify the

𝛼 values for the counties and metro areas in our dataset. We find consistent 𝛼 values that

are positive but less than 1, indicating that the marginal impact of population density on

average distance traveled diminishes as population density increases.

7.2.2 Relationship between contacts and trips

The average number of contacts on day 𝑡 for a given area is proportional to the square

number of people taking trips on day 𝑡.

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) ∼ 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)
2 (1)
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Contacts that increase exposure risk can occur when two users are at the same place at the

same time. Ignoring contacts that occur within the home, users must make trips to these

places where they come into contact.

Consider two average users, 𝑢𝑗 and 𝑢𝑘 at time 𝑡. We approximate the likelihood of them

coming into contact based on the probability of them each making a trip versus staying at

home, and whether their trips are to the same destination.

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑗,𝑘(𝑡) = 0× 𝑃 (𝑢𝑗 𝑠𝑡𝑎𝑦𝑠 ℎ𝑜𝑚𝑒)

+ 0× 𝑃 (𝑢𝑘 𝑠𝑡𝑎𝑦𝑠 ℎ𝑜𝑚𝑒)

+ 𝑎× 𝑃 (𝑢𝑗 𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) × 𝑃 (𝑢𝑘 𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)

where 𝑎 is some constant representing the average likelihood that users make a trip to the

same place.

For any average user, 𝑢𝑗 , we can then approximate their number of contacts, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑗(𝑡),

by summing this approximation over all other users.

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑗(𝑡) ∼ 𝑃 (𝑢𝑗 𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) ×
∑︁
𝑘

𝑃 (𝑢𝑘 𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)

Since 𝑡𝑟𝑖𝑝𝑠(𝑡) approximates
∑︀

𝑃 (𝑢𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) we can reformulate this as

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑗(𝑡) ∼ 𝑃 (𝑢𝑗 𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)× 𝑡𝑟𝑖𝑝𝑠(𝑡)

When we sum over all users 𝑢𝑗 this becomes

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠(𝑡) ∼
∑︁
𝑗

𝑃 (𝑢𝑗 𝑚𝑎𝑘𝑒𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)× 𝑡𝑟𝑖𝑝𝑠(𝑡)

∼ 𝑡𝑟𝑖𝑝𝑠(𝑡)× 𝑡𝑟𝑖𝑝𝑠(𝑡)

∼ 𝑡𝑟𝑖𝑝𝑠(𝑡)2
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In section 7.4 we empirically validate this theory with log-linear regressions where the ex-

ponent, which our theory indicates as 2, is a free variable.

7.3 Data and computation of metrics

This work uses two primary data sources: geolocation data and daily reported cases. The

following sections describe the data sources and the computation of the following metrics

which we use in our analysis.

∙ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡): The number of contacts by residents of county 𝑖 on day 𝑡.

∙ 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡): The total trips made by residents of county 𝑖 on day 𝑡.

∙ 𝑑𝑖𝑠𝑡𝑖(𝑡): The total distance traveled by residents of county 𝑖 on day 𝑡.

7.3.1 Geolocation data

Data source and privacy

Contacts and mobility metrics are calculated by using data from Cuebiq, which is a location

intelligence and measurement company. The data was provided as anonymized GPS loca-

tions from users who opted-in to share their data anonymously through a GDPR-compliant

framework. Cuebiq provided the data through their Data for Good Program, where they

provide access to de-identified and privacy-enhanced mobility data for academic research

and humanitarian initiatives only. All researchers followed a strict contract obligating them

to not share data further or to attempt to de-identify data.

Data panel

The analysis is limited to data from users whom we determined provided sufficient data to

infer their area of residence. Specifically, it includes data from people for whom there is

location data reporting that they stayed in their home Census Block Group more than 10
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days during the period of February 17 to March 9. The final data panel includes 1,826,382

total users. See figure C.1.1 and table C.2 in the appendix C.1 for more information on

panel users and data representativeness.

7.3.2 Reported cases data

Reported COVID-19 cases are provided at the county-level by the New York Times as daily

cumulative diagnoses [169]3. A limitation of this dataset is that it only includes reported

diagnoses rather than true infection rates, and access to testing may vary across counties.

7.3.3 Geography and time frame

Our analysis uses data from counties surrounding 7 metropolitan areas: New York City

(23 counties), Washington D.C. (24 counties), Dallas (13 counties), Boston (7 counties),

Seattle (3 counties), Miami (3 counties) and LA (2 counties). The geolocation data used

was collected between February 17 2020 and June 27 2020. This was the data available to

us.

7.3.4 Computation of mobility and contacts metrics

The data are provided as time-stamped GPS coordinates sent as “pings” from user devices.

The first part of computing the contacts and mobility metrics is using the data to compute

likely “stay” points that best represent clustered locations reported by user devices. This

computation is done using the Infostop algorithm [150]. For each of the visits to a location,

a stay is the time a user arrived at a location, the duration of the stay, and the median

latitude and longitude computed for that location. The minimum duration of a stay is 5

minutes and each stay consists of at least 2 pings in order to avoid creating stay points that

represent when people walk or drive past a location.

We then compute the contacts metrics by detecting when two users have a stay within 25

3New York Times COVID-19 data are provided open source via Github: https://github.com/nytimes/
covid-19-data.
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meters distance from one another for at least 5 minutes4.

The 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) metric used in our analyses counts the number of times a user with residence

in county 𝑖 comes into contact with another user. We only count contacts that occur outside

users’ home areas (census block). When both users are residents of county 𝑖, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) is

incremented for both of them.

The trips metric for each county, 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡), is the total number of stays users from county 𝑖

have outside their home areas.

The distance metric is a proxy for the total distance people travel in a day. 𝑑𝑖𝑠𝑡𝑖(𝑡) is

measured as the total is the total line distance between consecutive stay points for users

with residence in county 𝑖. Consecutive stay points within users’ home areas do not add to

this metric.

7.4 Analysis and results

In our results we focus on the change in the relationship between the trips and contacts

metrics. However, we note that the trips metric is highly correlated to other mobility

metrics such as distance traveled and the number of users staying at home. This is shown

in the following sections.

Figures 7-1 and 7-2 show time series plots for average daily contacts and trips metrics for

each metropolitan area in our dataset. These plots more simply illustrate the trends and

changes that our analysis results describe numerically.

These average daily metrics are computed over all users in the panel. However there is

variation in the number of daily trips and contacts for each user. The distributions of these

per user metrics are shown in a series of plots in section C.2 in the appendix. In general the

distributions are highly skewed towards a small number of trips and contacts per user and

the distributions have long tails.

4Detecting contacts was done via an exhaustive search where each stay point was compared to each other
stay point for other users in the same metropolitan area. This method is not computationally efficient.
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Figure 7-1: Time series plots for daily average trips and contacts.
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Figure 7-2: Continued: Time series plots for daily average trips and contacts.
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7.4.1 Relationship between users staying at home and trips

Social distancing measures are often framed as “stay-at-home orders” intended to cause

more people to stay at home. In addition to our main analysis and results, we estimate the

relationship between the number of daily users staying at home and daily trips. The number

of users who are not staying home scales linearly with the number of trips.

𝑡𝑟𝑖𝑝𝑠 ∼ [1− (portion of users staying home)]

See the appendix section C.2 for details about our model and the results in figure C.2.6.

7.4.2 Relationship between trips and distance traveled metrics

Our theory about the relationship between daily trips and distance traveled for a given area

is described by the equivalent relationships (3) and (4).

𝑑𝑖𝑠𝑡𝑖(𝑡) ∼
[︂

1

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖

]︂𝛼
× 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡) (3)

𝑡𝑟𝑖𝑝𝑠𝑖(𝑡) ∼ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼𝑖 × 𝑑𝑖𝑠𝑡𝑖(𝑡) (4)

We estimate 𝛼 with a log-linear regression. The analysis is done for each metro area sep-

arately, using the daily trips and distance traveled metrics for each county, 𝑖, within the

metro area. Population density for each county is calculated using census data from the

ACS 2018 [103].

Our results are consistent across metro areas with a value for 𝛼 between 0 and 1. See the

appendix and table C.1 for details on the regression. The positive value for 𝛼 is consistent

with the hypothesis that lower population densities result in greater distances traveled for

each trip. We interpret the value of less than 1 to mean that the marginal impact of

population density on average distance traveled diminishes as population density increases.
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7.4.3 Relationship between trips and contacts5

Figure 7-3 shows daily average trips versus daily average contacts for each county, colored

by metro area, and where metrics are normalized by the county panel size.

We use linear regressions to empirically evaluate the theory that data should fit the model

of relationship 1.

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) ∼ 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)
2 (1)

Specifically, variables 𝑎 and 𝑏 in the model

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) = 𝑎× 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)
𝑏

are estimated as free variables with the hypothesis that 𝑏 is 2. This is done using the linear

regression model log(𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡)) = log(𝑎) + 𝑏× log(𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)).

The empirical results are generally consistent with our hypothesis. Using contacts and trips

data computed at the metro level over the entire period of our data (February 17 to June

27), we estimate 𝑏 = 2.08 (95% CI 2.03 to 2.13). See figure 7-4.

Our notable finding is that the relationship between contacts and trips changed with social

distancing measures, especially following the U.S. declared a national emergency due to

COVID-19 on March 13.

Figures 7-1 and 7-2 show this: there was a significant drop in each of the trips and contacts

metrics directly following the emergency declaration.

More importantly - later there were increases in daily trips (and distance traveled) without

commensurate increases in daily contacts. In other words, the relationship between the

mobility and contacts metrics changed over time.

We numerically estimate the change by fixing 𝑏 = 2 and estimating the change in 𝑎. The
5Code notebook that produced the plots and results in this section: https://github.com/aberke/covid-

19/blob/master/contacts_v_mobility.ipynb. The notebook has additional county and time specific plots
as well.
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Figure 7-3: Daily contacts and trips metrics shown by plotting daily average trips versus
daily average contacts for all counties in each of the 7 metro areas studied. Data points
are colored by metro area. Metrics are normalized by the county panel size. We find a
relationship between contacts and trips modeled by: 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) ∼ 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)

2.
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Figure 7-4: Daily contacts vs trips at the metro level, for February 17 through June 27,
2020.
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Figure 7-5: In our model, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) = 𝑎×𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)2, the value of 𝑎 represents the likelihood
of two people making a trip on day 𝑡 coming into contact. The value of 𝑎 changes with social
distancing behaviors as people make trips in ways to result in fewer contacts (e.g. to less
crowded places or spending less time in other places). Our data shows this change occurred.
The solid line indicates the estimated value of 𝑎, while the dotted lines show the 95%
confidence interval.

results are summarized in figure 7-5.

In our model, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) = 𝑎 × 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)
2, the value of 𝑎 represents the likelihood of

two people making a trip on day 𝑡 coming into contact. This value significantly decreased

following the social distancing measures that started in March, showing that people made

trips in ways to result in fewer contacts. This change reflects changes in social distancing

and mobility behaviors consistent with our previous analysis of the New York metro area

which showed how the relative portion of trips taken to places by category, such as offices,

food destinations, or grocery stores, changed drastically following the national emergency

[151]. Our results show that the relationship between contacts and trips continued to change

over the months that followed.

Future work can analyze the behavioral changes that drove the change in relationship be-

tween the contacts and trips metrics. For example, we can analyze the change in average

duration of stays, with the assumption that a shorter duration per trip results in fewer con-

tacts per trip. Consider the case where two people get dinner from the same restaurant. In

normal times they would more likely eat there at the same time and result in a “contact”.
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However, in order to practice social distancing, they might instead both get take-out and

stay there for a short time and not come into contact. We can also analyze the change in the

spread of time of day people make trips. The new social distancing life has afforded some

people more flexibility in when they make trips, such as when they grocery shop, and we

can hypothesize that as people make trips to the same places but at more spread out times,

this results in fewer contacts per trip. We can also further analyze the changes in the types

of places (POIs) visited.

Summary. Overall our results support our theory about the relationship between contacts

and trips, which can be estimated by our model 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) = 𝑎 × 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)
2. However,

given the change in the value of 𝑎, the contacts metric estimated directly from location

based services data is a preferable indicator.

7.4.4 Relationship between contacts and mobility metrics and reported

COVID cases

Researchers use mobility metrics such as daily trips and distance traveled to estimate and

model the impact of social distancing behavior on growth in COVID-19 cases. For example,

time series lead-lag regression analyses are used with the mobility metrics as the independent

variable [156, 155, 158] with the expectation that changes in mobility correspond to lagged

changes in new cases.

We developed our own lead-lag regression models based on the methods of other researchers.

We used each of our metrics computed at the county level - daily trips, distance traveled,

and contacts. Our models can be summarized by

𝑅𝑖(𝑡) ∼ 𝛽 ×𝑚𝑒𝑡𝑟𝑖𝑐𝑖(𝑡− 𝑙𝑎𝑔)

Where the dependent variable 𝑅𝑖(𝑡) is the estimated growth in new cases on day 𝑡 for county

𝑖, relative to the previous days. Separate models used the daily metrics 𝑡𝑟𝑖𝑝𝑠𝑖(𝑡), 𝑑𝑖𝑠𝑡𝑖(𝑡),

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖(𝑡) to serve as 𝑚𝑒𝑡𝑟𝑖𝑐𝑖.
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However the results of our models and many other researchers’ were inconclusive, with results

that can be better attributed to fixed effects rather than mobility changes (e.g. [154, 158]).

A simple hypothesis may assume that mobility and reported cases are positively correlated,

where decreases in mobility metrics would correlate with relative decreases in growth in

reported cases. However, we do not find this to be the case. On the contrary, the data

shows the opposite effect. We attribute these issues partly to the limitations and noise of

the reported cases data, as well as to the endogenous relationship between reported cases and

mobility metrics data. Communities may react to a growth in reported cases with more social

distancing and therefore a reduction in contacts and mobility. Additionally, these metrics

do not capture other behavioral changes and non-pharmaceutical interventions (NPIs) that

complement social distancing, such as the use of masks, increased hygiene, quarantines,

reduced international travel, and contact tracing, that can impact the spread of COVID-19

[170, 171, 172].

Figure 7-6 summarizes these findings. New reported COVID-19 cases, contacts, and trips are

aggregated by month for each county and relative changes across months are compared6.

Relative changes are computed as (median value for month(i))−(median value for month(i - 1))
(median value for month(i - 1)) in the

figure shown. This is to check if countries that had greater relative reductions in mobility

from month to month also had greater relative reductions in new cases month to month. The

data does not indicate a positive correlation between these metrics, as a simple hypothesis

might expect (correlation is indicated by 𝜌 in the figures). This also indicates why simple

lead-lag regression models might not be useful in this kind of analysis.

Despite the limitations for mobility and contacts metrics to serve disease modeling, they

may still be useful as monitoring tools. These metrics may help local health organizations

preemptively react to potential new cases by monitoring changes in these metrics.

6Code notebook that produced these summary figures and results: https://github.com/aberke/covid-
19/blob/master/cases_contacts_mobility_correlations.ipynb
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Figure 7-6: Relationship between changes in mobility and reported COVID-19 cases across
months: new reported cases, contacts, and trips are aggregated by month for each county and
relative changes across months are compared. The correlation (or lack thereof) is indicated
by 𝜌.
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7.5 Discussion and Conclusion

In this work we leverage highly granular geolocation data to estimate how often smartphone

users are in proximity of one another for an extended duration. We present this “contacts”

metric as a more direct proxy for interpersonal contact than the metrics more commonly

used by researchers to measure social distancing, as well as to model disease transmission.

We show the relationship between our contacts metric and the more common mobility met-

rics with a theoretical model which we validate with data from over 1.8 million smartphone

users. We also show how this relationship slightly changed over the duration of the crisis.

This change in the relationship highlights the importance of more precise metrics, such as

the contacts metric, especially when these metrics are used to inform policy decisions.

A limitation of our contacts metric is that it only detects when a limited set of smartphone

users come into proximity while allowing their locations to be recorded for a sustained

period. As collection and access of geolocation data further increases, the contacts metric

can improve.

A limitation of our contacts metric is that it only detects when a limited set of smartphone

users come into proximity while allowing their locations to be recorded for a sustained

period. As collection and access of geolocation data further increases, the contacts metric

can improve. However the high granularity of the geolocation data, which provides for the

detection of people coming into contact, also presents privacy risks. For this reason, contacts

metrics should only be used or shared in aggregate, such as how this paper aggregates metrics

over large geographic areas.

This work was produced in response to the global COVID-19 health pandemic. Researchers

around the world are doing important work to understand the impact of events and policies

on social distancing behavior and disease transmission. We intend for the contacts metric to

aid their work. It can also benefit health agencies, governments, and the people they serve.

For example, health agencies may monitor changes in social distancing to preemptively

react to potential spikes in new cases. Likewise, better metrics can help governments better

understand implications of policy changes and more safely reopen their economies. We hope

the contacts metric and work going forward can help stymie the growth of COVID-19 cases
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and related disease.
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Chapter 8

Conclusion

Large location datasets are being collected from personal devices, primarily by private firms.

Should this be the case? How can we design economic incentives and governance models to

ethically guide data collection and use? These questions are beyond the scope of this thesis

and can be addressed in future work.

Given that these datasets are collected, this thesis addresses how they can serve as public

goods. These datasets are collected from the public, and can be used to benefit the public

from whom they are sourced in ways similar to surveys collected by government agencies

and research organizations. Furthermore, data collected from personal devices can provide

unique value that traditional survey data cannot. In particular, this work demonstrates how

high-precision location data collected via personal devices can be used to address a public

health emergency, as well as serve the public beyond the COVID-19 crisis. Moreover, this

work shows how this can be done in ways that protect the privacy of individuals in the

datasets.

Will firms that collect location datasets readily democratize their use? Should they?

Again, these questions are beyond the scope of this work. Yet, this thesis presents ways to

leverage the unique value these datasets provide without jeopardizing the financial viability

of the companies who collect and share the data. For example, chapter 3 shows how real

data can be used to generate realistic, privacy-preserving synthetic datasets. The synthetic
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data can supplement traditional survey data and provide benefit to the public while the real

data remains private. Chapters 6 and 7 demonstrate how location data can be used to better

address the impacts of the COVID-19 health crisis. This work leverages the high-precision

and real-time nature of location data collected from personal devices to create new metrics

that are then used in aggregate. In each case, the companies collecting the data can continue

to derive commercial benefit from insights that neither the aggregate metrics nor synthetic

datasets can provide. At the same time, privacy can be preserved for real individuals.

Future work. The work in this thesis can be extended to continue to address the COVID-

19 health crisis. For example we can use insights from work described in chapters 6 and 7 to

further develop methods to better understand the impacts of governmental policy changes

and disease transmission. In these chapters we measured interpersonal contacts by leveraging

high-precision location data to detect when people came into proximity of one another for

a sustained duration. We then showed how the relationship between this contacts metric

and other mobility metrics, which were used as proxies for interpersonal contacts by other

researchers, changed as the crisis unfolded. This calls into question how well traditional

mobility metrics can serve such a crisis as people change their behaviors in order to adapt

to it. How can we use data to identify the most relevant metrics for current issues at hand?

In order to accommodate the expanding uses of location data, future work can also expand

upon the ways to understand and quantify data privacy. For example, chapter 3 describes

how privacy for a location dataset is often quantified by how unique any individual is within

the dataset. This is because even when datasets are anonymized, individuals with a unique

set of datapoints can be re-identified and private information about their location histories

can be revealed. 𝑘-anonymity attempts to quantify this privacy risk by how many other

individuals within a dataset any individual shares a set of points with. Here a larger group

of such individuals means less risk, since any individual within a group cannot be distin-

guished from any other within the group, and then cannot be re-identified. However, instead

of quantifying uniqueness, another perspective considers privacy risks due to the common-

alities of such a group. For example, if a group of individuals share sensitive information

in their location histories, then distinguishing them from one another is not important.

That is, if a group of individuals all went to the same sensitive location (e.g. a protest),
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then knowledge that an individual is within the group is enough to expose their sensitive

information without the individual being re-identified directly. Alternative privacy frame-

works, such as 𝑙-diversity, can help address issues such as these. What are better methods

to quantify privacy for location datasets? How should these methods address the different

qualitative risks that different kinds of sensitive locations present? What are ways to share

location datasets to address these risks while retaining their utility?

Furthermore, in order for these datasets to serve the public while preserving privacy, we must

address the logistics of how they are released. Future work can extend existing privacy-

preserving open data publishing models, as well as explore the use of decentralized data

ownership models.

As collection of location data from personal devices increases, larger and more comprehensive

datasets will be amassed. This will increase the amount of information location datasets can

provide, and therefore the amount of utility they can provide the public. At the same time,

this will increase privacy risks for individuals and the amount of information that the data

can reveal about them. For these reasons, finding new ways to understand and balance the

utility and privacy trade-offs for location data will become ever more important in order to

benefit the public.
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Appendix A

Details in generating synthetic data

A.1 Data representativeness

This work uses data reported by devices in 3 counties (Middlesex, Norfolk, Suffolk counties)

surrounding Boston MA. The combined population estimate for these counties is 3,127,354.

The provided data for this geographic area is from 83,827 unique devices, representing about

2.7% of the population. We restrict the data we use to a panel of 22,707 unique user devices

that reported at least 3 unique days and 3 unique nights of data during the first 5-day

workweek of May 2018. This allows us to more confidently infer home and work locations.

The dataset may already have bias, and by selecting for users who report more data, we may

introduce new bias to the panel. To better understand the degree of this bias, we do the

following. We infer the home census tracts for the users of these devices as the census tract

where they spent the most time within between the hours of 8pm and 9am. We compare

our resulting census tract population estimates to those provided by the ACS 2018 5-year

population estimates (see figure A.1.1). The correlation is 𝜌=0.648.
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Figure A.1.1: Comparing the numbers of home census tracts that were inferred for users in
our data panel to the corresponding census population estimates provided by the American
Community Survey 5-Year estimates. The correlation is 𝜌=0.648.
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Appendix B

Technical details for contact tracing

technologies

B.1 Privacy-preserving Bluetooth protocols for contact trac-

ing

This appendix section explains the concepts behind the more privacy-preserving Bluetooth

protocols designed for contact tracing, such as those from PACT [116], DP-3T [115], and

Apple-Google [118]. This section is included to help the reader understand how they work,

but also why they are imperfect. These protocols were designed to help keep secret the

identities of diagnosed users who share their data, as well as to help protect their movements

from being tracked.

These protocols employ similar ideas but differ in their specifics and terminology. This high

level explanation avoids the specific differences between protocols and uses terminology that

is most consistent with the Apple-Google framework.

At a high level:

Mobile devices broadcast random-looking IDs via Bluetooth Low Energy signals. They also

receive IDs broadcast by other devices and record these IDs along with the time at which
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they were received. Call these IDs “Rolling Proximity Identifiers”, or RPIs for short.

When users are diagnosed as infected, they share information about the RPIs they recently

broadcast (from whatever period is determined to be medically relevant) to a “diagnosis

server”. Other users’ apps can then periodically check if any of the RPIs they recently

received match the diagnosis server’s data. A match indicates that a user came into contact

with someone who was later diagnosed and their app can notify them of their exposure risk.

However, diagnosed users do not simply upload their broadcast RPIs to the “diagnosis

server”. Instead they upload the parameters that generated each RPI.

In computer science and cryptography, one-way and pseudorandom functions (PRFs) are

commonly used to hide secrets. Given such a function and its input, it is easy to compute

the output. But it is considered computationally infeasible to reverse the function and

compute input based on output. A PRF is used to generate the RPIs. Each RPI broadcast

by a user’s device is the output of a PRF that uses a key (k) that only the device knows

and time (t) as inputs.

𝑅𝑃𝐼 ←− 𝑃𝑅𝐹 (𝑘, 𝑡)

Each RPI is broadcast by a device for only a brief amount of time, after which a new RPI

is computed using the latest time as input, and then broadcast instead. Changing the RPI

in this way makes it more difficult to track devices or re-identify people who anonymously

shared their data to the diagnosis server (but as we’ll see, it is still possible).

What the device of a diagnosed user shares to a diagnosis server is the sets of inputs (k, t)

that were used to generate the RPIs it broadcast. Another user’s device can then use these

inputs along with the PRF to recompute the RPIs, and check if any of these RPIs and their

corresponding time inputs match against the received RPIs and times that the device stored

locally.

You might ask why do it this way? Why not just have users share their RPIs? The answer

is to maintain the integrity and security of the system.
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Suppose a malicious user wanted to generate false alarms or otherwise create distrust in the

system. They might rebroadcast RPIs that were recently uploaded to the diagnosis server.

They also might continuously rebroadcast as many RPIs as possible that they received from

other users (these malicious behaviors are referred to as “replay attacks”). Other users would

then receive the rebroadcast RPIs from the malicious user. If only the RPIs of diagnosed

users were uploaded to the diagnosis server rather than their (k, t) inputs, then these users

could be falsely notified that they were in contact with diagnosed users. This potential

integrity attack is prevented, however, because devices can check that the time they received

the RPIs matches against the corresponding (k, t) inputs that the diagnosis server stores.

This protocol also protects users from being framed. Suppose that a user is diagnosed and

instead of sharing information for their own RPIs to the diagnosis server, they attempt to

dishonestly share RPIs that were broadcast by another user. However, since they must share

the (k, t) inputs used to generate the RPIs, this requires knowledge of the other user’s key.

Since other users can keep their keys secret until they are diagnosed and then choose to

share them, this attack is prevented.

The kinds of attacks that the Bluetooth protocol was designed to prevent may seem far-

fetched, but keep in mind that the protocol must reliably work without anyone knowing

whose data belongs to whom and without depending on a central authority to intervene or

prevent misuse. Clever use of cryptography and protocols are then necessary to ensure trust

in the system.

This is a very high level overview of how Bluetooth protocols can work to improve the

privacy and security of contact tracing systems. There are many more complexities involved

in how keys and RPIs are generated. For details of the Apple and Google framework, refer

to their specifications: https://www.apple.com/covid19/contacttracing/.

For example with the Apple-Google framework, the key used by a single device to produce

RPIs periodically changes. This is done so that a user’s RPIs will be associated with different

sets of keys. Then, when they anonymously share their (k, t) data to the diagnosis server,

it will be more difficult to link their data points together, making it more difficult to track

them across the locations they visited, and more difficult to re-identify them. However, the

protocol is still imperfect and cannot guarantee this type of privacy for its users.
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Let’s look at another example. If a diagnosed user shares data for an RPI they broadcast

that is then received by a contact while receiving no other RPIs, then this contact can easily

re-identify them. We can also imagine a future where beacons that listen for Bluetooth

signals are sprinkled throughout our environment. (This might be done for a variety of

reasons, such as improving contact tracing, or tracking customers in stores and elsewhere to

better advertise products.) Users’ RPIs could then be recorded throughout the places they

go and linked back together once shared, creating a record of their location histories.

Some researchers have proposed using mix networks or private set intersection protocols to

mitigate these privacy and security issues [126, 127]. Others have considered reversing the

above scheme so that instead of users uploading data for their own broadcast RPIs, they

share the RPIs they have received from others (i.e. the “dual approach” [173]). However

each of these proposals are imperfect.

Ultimately, tracking people is central to the concept of contact tracing. Many of the newly

developed protocols found clever ways to minimize people’s loss of privacy while they are

tracked, but some privacy may still need to be forfeited for contact tracing to be effective.

B.2 An example private set intersection protocol using Diffie-

Hellman

This section outlines an example for how a contact tracing system like the one proposed in

chapter 5 could work with a simple Diffie-Hellman private set intersection (PSI) protocol.

Note that the actual implementation could differ from this example. The description assumes

familiarity with Diffie-Hellman, modular arithmetic and concepts from cryptography such

as the discrete log problem. Otherwise readers can skip to the protocol summary below.

Before we walk through this PSI protocol, we clarify the problem and notation.

Notation and Problem Statement: We call a point interval 𝑝, and a collected sequence

of point intervals 𝑃 = [𝑝1, 𝑝2, ...]. We call the users’ point intervals that are collected by
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their device 𝑃𝑈 . We call the point intervals collected for diagnosed carriers and later shared

with the server 𝑃𝐼 .

As noted earlier, each point interval is encrypted by a commonly shared deterministic hash

function, which we call 𝐻. This means that a user’s phone really stores

𝐻(𝑃𝑈 ) = [𝐻(𝑝𝑈1), 𝐻(𝑝𝑈1), ...𝐻(𝑝𝑈𝑛)], and the server stores

𝐻(𝑃𝐼) = [𝐻(𝑝𝐼1), 𝐻(𝑝𝐼1), ...𝐻(𝑝𝐼𝑚)].

If a user has a point interval matching one shared by a diagnosed carrier, i.e. 𝑝𝑈𝑖 = 𝑝𝐼𝑗 for

some 𝑝𝑈𝑖 in 𝑃𝑈 collected by the user’s device, and some 𝑝𝐼𝑗 in 𝑃𝐼 collected by a diagnosed

carriers’ device and later shared to the server, then the encrypted hashes of these point

intervals match as well. 𝐻(𝑝𝑈𝑖) = 𝐻(𝑝𝐼𝑗).

Consider 𝐻(𝑃𝑈 ) as a set which is stored on the user’s device, and 𝐻(𝑃𝐼) as a set stored

on the server. The problem is then to allow the user’s app to learn the set intersection of

𝐻(𝑃𝑈 ) and 𝐻(𝑃𝐼).

Protocol: The described use of Diffie-Hellman is written with the multiplicative group of

integers modulo 𝑝, where 𝑝 is prime, and 𝑔 is a primitive root modulo 𝑝.

Setup: The server and the client user’s device have an agreed upon modulus, 𝑝, and base

of the multiplicative group, 𝑔. The server and client each generate secret private keys, 𝑎 and

𝑏, respectively.

1. The client encrypts the user’s hashed point intervals, 𝐻(𝑃𝑈 ), with 𝑎 and sends this

data to the server.

𝐶𝑙𝑖𝑒𝑛𝑡→ 𝑆𝑒𝑟𝑣𝑒𝑟 : 𝐻(𝑃𝑈 )
𝑎 = [𝐻(𝑝𝑈1)

𝑎, 𝐻(𝑝𝑈1)
𝑎, ...,𝐻(𝑝𝑈𝑛)

𝑎] mod 𝑝

2. The server encrypts its stored hashed point intervals, 𝐻(𝑃𝐼), with 𝑏 and sends this

data to the client.

𝑆𝑒𝑟𝑣𝑒𝑟 → 𝐶𝑙𝑖𝑒𝑛𝑡 : 𝐻(𝑃𝐼)
𝑏 = [𝐻(𝑝𝐼1)

𝑏, 𝐻(𝑝𝐼1)
𝑏, ...𝐻(𝑝𝐼𝑚)𝑏] mod 𝑝

3. Upon receiving the encrypted hashed point intervals sent by the client 𝐻(𝑃𝑈 )
𝑎, the

server further encrypts this data with its key 𝑏 and sends the result back to the client.
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Figure B.2.1: This figure shows our private set intersection (PSI) protocol based on Diffie-
Hellman key exchange. The intersection is done on encrypted point intervals corresponding
to the client’s and carrier’s location traces. The encrypted point intervals from diagnosed
carriers are stored in a server. Only the client device learns the intersection of data, where
the intersection is the set of point intervals it has in common with the point intervals on the
server (𝑃𝑈 ∩ 𝑃𝐼). Points in (𝑃𝑈 ∩ 𝑃𝐼) are represented in (𝐻(𝑃𝑈 )

𝑎𝑏 ∩𝐻(𝑃𝐼)
𝑏𝑎).

𝑆𝑒𝑟𝑣𝑒𝑟 → 𝐶𝑙𝑖𝑒𝑛𝑡 : 𝐻(𝑃𝑈 )
𝑎𝑏 = [𝐻(𝑝𝑈1)

𝑎𝑏, 𝐻(𝑝𝑈1)
𝑎𝑏, ...,𝐻(𝑝𝑈𝑛)

𝑎𝑏] mod 𝑝

4. The client receives both 𝐻(𝑃𝐼)
𝑏 and 𝐻(𝑃𝑈 )

𝑎𝑏. The client then further encrypts 𝐻(𝑃𝐼)
𝑏

with its key 𝑎 to create

𝐻(𝑃𝐼)
𝑏𝑎 = [𝐻(𝑝𝐼1)

𝑏𝑎, 𝐻(𝑝𝐼1)
𝑏𝑎, ...,𝐻(𝑝𝐼𝑚)𝑏𝑎] mod 𝑝.

5. The client can then compute the set intersection by comparing the elements of 𝐻(𝑃𝑈 )
𝑎𝑏

and 𝐻(𝑃𝐼)
𝑏𝑎.

Due to the multiplicative properties of the group, any matching 𝐻(𝑝𝑈 ) and 𝐻(𝑝𝐼) values

will have matching 𝐻(𝑝𝑈 )
𝑎𝑏 and 𝐻(𝑝𝐼)

𝑏𝑎 values. This means that if the client has any point

intervals that match point intervals shared to the server, 𝑝𝑈 = 𝑝𝐼 , then 𝐻(𝑝𝑈 )
𝑎𝑏 = 𝐻(𝑝𝐼)

𝑏𝑎,

and these matches will be detected by the client.

Protocol summary

This protocol allows for flexibility in terms of whether it allows a client to learn which

of its points have matches versus how many of its points have matches. At step (3) of

the protocol the server further encrypts the data received from the client, 𝐻(𝑃𝑈)𝑎, and
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returns 𝐻(𝑃𝑈)𝑎𝑏. If the server maintains the order in the sequence of points intervals, then

the client can then learn exactly which hashed point intervals in the sequence it sent to

the server, 𝐻(𝑃𝑈 )
𝑎 = [𝐻(𝑝𝑈1)

𝑎, 𝐻(𝑝𝑈1)
𝑎, ...𝐻(𝑝𝑈𝑛)

𝑎] match against items in the server’s

encrypted data, 𝐻(𝑃𝐼)
𝑏𝑎. If the server instead shuffles the sequence before returning it in

step (3), then the client can learn how many of its point intervals match against the server’s

data, but not which ones do.

In this section I described a simple protocol in order to more easily explain how our proposed

system can operate. Optimizations can be made for efficiency. For example, the server can

reuse its private key, 𝑏, and set of encrypted data across multiple interactions with different

clients. It can refresh this key and re-encrypt its data periodically, or as new data is shared

by diagnosed carriers or deleted as it becomes old. Decreasing how often the server encrypts

its data can increase its efficiency. Faster PSI protocols have been developed, including those

that optimize for the exchange of information between a server and client, particularly where

the server has a much larger set of data than the client, such as in our use case [174, 141].
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Appendix C

Details for the analysis of contacts

and mobility metrics

C.1 Additional data details

Data panel and data representativeness1

Our analysis included data from 1,826,382 total users from counties surrounding 7 metro

areas. Figure C.1.1 shows the scatter plot of the census population (obtained through the

ACS 2018 5-year estimates [103]) and the number of users in our panel by county. We

observe a Pearson correlation of 0.952. Table C.2 shows information about the metro areas

and counties used in our analysis, and the number of users in our data panels.

Reported Cases Data

Figures C.1.2, C.1.3 show reported cases data for each county used in the analysis for the

relationship between contacts and mobility metrics and reported cases [169].

1Code notebook that produced the figures and tables in this section: https://github.com/aberke/
covid-19/blob/master/cumulative%20cases%20data.ipynb.

2Data for Los Angeles County, California is omitted from the scatter plot due to its high population
(10,098,052) but is included in the correlation.
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Figure C.1.1: Scatter plot of the number of users in our data panel vs the ACS population
estimates for each county. We observe a Pearson correlation of 0.95.

C.2 Contacts and mobility metrics: Additional analysis, de-

tails and figures

Distributions for trips and contacts metrics

Figure C.2.4 shows histograms representing the distribution of daily trips and contacts per

user. The x-axes show the number of trips and contacts and the y-axes show the number of

users in the panel who had that many trips or contacts on the given day. Users who stayed

home (i.e. had no trips or contacts) are excluded from the histograms.

The histograms show data for the first weekday and first weekend day for each month that we

have data for. This is in order to account for the difference between weekdays and weekends,

and show how the distributions slightly changed over time. In general the distributions are

highly skewed towards a small number of trips and contacts per user and the distributions

have long tails. The distributions become flatter and the tails for the contacts distributions

shorten after the month of March, following social distancing measures.
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Figure C.1.2: Reported cases data used for counties in analysis.
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Figure C.1.3: Reported cases data used for counties in analysis (continued).
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Figure C.2.4: Histograms showing the number of daily trips and contacts per user in the
data panel. Data are shown for the first weekday and weekend day for each month we have
data for. The number of trips and contacts is on the x-axis. The number of users who
reported that many trips or contacts is on the y-axis. Users who stayed home are excluded
from the figures.
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The plots shown are for the Boston area and are representative of the other metro areas. 3

Relationship between number of users staying at home and trips 4

We estimate the number of daily panel users staying at home for each county as the number

of total panel users minus the number of distinct panel users with no trips for the given day.

We compute metrics at the county level and normalize them by dividing by county panel

size. The resulting metrics we use for the following analysis are the portion of daily panel

users staying at home, and the average daily trips per user.

Figure C.2.5 shows a plot of daily trips versus users staying at home, for all counties in each

metro area.

We hypothesize that there is a linear relationship between the daily number of users not

staying home and the daily number of trips. To test the hypothesis, we run a regression

over the following model to estimate 𝑏, with the hypothesis that 𝑏 ∼ 1.

avg trips ∼ 𝑎× [1− (portion of users staying home)]𝑏

To do so, we compute the regression as

log(avg trips) = log(𝑎) + 𝑏× log(1− [portion of users staying home])

Results for the estimated 𝑏 values for each county are shown in figure C.2.6.

3More figures with the distributions of trips and contacts metrics, with more metro areas and more
days of data, can be viewed via the code notebook: https://github.com/aberke/covid-19/blob/master/
mobility_contacts_distributions.ipynb.

4Code notebook for this analysis: https://github.com/aberke/covid-19/blob/master/
trips_v_staying_home.ipynb.
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Figure C.2.5: Daily trips versus users staying at home, for all counties in each metro areas.
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Figure C.2.6: Box plot showing estimated 𝑏 values for the model
𝑡𝑟𝑖𝑝𝑠 ∼ 𝑎× [1− (portion of users staying home)]𝑏 computed for each county. Results
are grouped by metro area.

158



Pooled Boston NY Dallas Miami LA DC Seattle
Dep. variable 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡) 𝑙𝑜𝑔(𝑡𝑟𝑖𝑝𝑠/𝑑𝑖𝑠𝑡)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -3.139*** -3.444*** -3.072*** -2.903*** -2.928*** -2.209*** -3.178*** -3.14***
(0.01) (0.033) (0.031) (0.02) (0.146) (0.25) (0.014) (0.107)

𝑙𝑜𝑔(𝑑𝑒𝑛𝑠𝑖𝑡𝑦) 0.134*** 0.185*** 0.128*** 0.076*** 0.113*** -0.007 0.137*** 0.157***
(0.002) (0.005) (0.005) (0.004) (0.024) (0.035) (0.002) (0.02)

rsq 0.565 0.7 0.417 0.285 0.072 0.0 0.641 0.267
N 6262 665 1805 884 285 190 2280 153

Table C.1: Results from regression estimating the 𝛼 value in the model relating the daily trips
and distance traveled. log(𝑡𝑟𝑖𝑝𝑠𝑖(𝑡))−log(𝑑𝑖𝑠𝑡𝑖(𝑡)) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡+𝛼×log(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖)

Distance and Trips Analysis

To estimate the 𝛼 value for the distance and trips analysis we transform the following

equation and use an OLS model. Metrics are computed and used at the county level.

𝑡𝑟𝑖𝑝𝑠𝑖(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡× 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖
𝛼 × 𝑑𝑖𝑠𝑡𝑖(𝑡)

log(𝑡𝑟𝑖𝑝𝑠𝑖(𝑡)) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡+ 𝛼× log(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖) + log(𝑑𝑖𝑠𝑡𝑖(𝑡))

log(𝑡𝑟𝑖𝑝𝑠𝑖(𝑡))− log(𝑑𝑖𝑠𝑡𝑖(𝑡)) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡+ 𝛼× log(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖)

Results are shown in table C.1.
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Table C.2: Panel data used for contacts and mobility data analysis

metro area county panel size population

Dallas Tarrant County, Texas 92,346 2,019,977

Dallas Dallas County, Texas 74,937 2,586,552

Dallas Collin County, Texas 59,413 944,350

Dallas Denton County, Texas 52,067 807,047

Dallas Ellis County, Texas 11,797 168,838

Dallas Johnson County, Texas 11,556 163,475

Dallas Parker County, Texas 11,166 129,802

Dallas Kaufman County, Texas 9,104 118,910

Dallas Rockwall County, Texas 7,740 93,642

Dallas Hunt County, Texas 6,428 92,152

Dallas Wise County, Texas 4,816 64,639

Dallas Hood County, Texas 3,530 56,901

Dallas Somervell County, Texas 811 8,743

Seattle King County, Washington 53,136 2,163,257

Seattle Pierce County, Washington 27,187 859,840

Seattle Snohomish County, Washington 23,413 786,620

Washington Fairfax County, Virginia 29,146 1,143,529

Washington Montgomery County, Maryland 25,676 1,040,133

Washington Prince George’s County, Maryland 18,673 906,202

Washington Loudoun County, Virginia 16,732 385,143

Washington Prince William County, Virginia 15,108 456,749

Washington District of Columbia, District of Columbia 9,656 684,498

Washington Frederick County, Maryland 9,480 248,472

Washington Stafford County, Virginia 5,975 144,012

Washington Charles County, Maryland 5,117 157,671

Washington Spotsylvania County, Virginia 5,074 131,412

Washington Arlington County, Virginia 4,064 231,803

Washington Calvert County, Maryland 3,818 91,082

Washington Fauquier County, Virginia 2,542 69,115

Washington Alexandria city, Virginia 2,229 156,505

Washington Jefferson County, West Virginia 2,135 56,179

Washington Culpeper County, Virginia 1,701 50,450

Washington Warren County, Virginia 1,429 39,449

Washington Manassas city, Virginia 881 41,457

Washington Fredericksburg city, Virginia 773 28,469

Washington Fairfax city, Virginia 615 23,865

Washington Clarke County, Virginia 492 14,365

Washington Manassas Park city, Virginia 355 16,423

Washington Falls Church city, Virginia 309 14,067

Washington Rappahannock County, Virginia 165 7,332

New York City Suffolk County, New York 62,488 1,487,901

New York City Queens County, New York 58,916 2,298,513
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New York City Nassau County, New York 56,660 1,356,564

New York City Kings County, New York 56,499 2,600,747

New York City Bergen County, New Jersey 36,303 929,999

New York City Monmouth County, New Jersey 31,367 623,387

New York City New York County, New York 30,349 1,632,480

New York City Middlesex County, New Jersey 28,695 826,698

New York City Bronx County, New York 26,767 1,437,872

New York City Westchester County, New York 26,362 968,815

New York City Richmond County, New York 22,071 474,101

New York City Morris County, New Jersey 20,820 494,383

New York City Essex County, New Jersey 20,434 793,555

New York City Union County, New Jersey 16,448 553,066

New York City Hudson County, New Jersey 14,721 668,631

New York City Passaic County, New Jersey 13,961 504,041

New York City Somerset County, New Jersey 12,323 330,176

New York City Rockland County, New York 7,947 323,686

New York City Ocean County, New Jersey 7,667 591,939

New York City Sussex County, New Jersey 5,872 142,298

New York City Orange County, New York 5,413 378,227

New York City Hunterdon County, New Jersey 2,594 125,051

New York City Putnam County, New York 2,242 99,070

New York City Pike County, Pennsylvania 470 55,498

Miami Miami-Dade County, Florida 91,736 2,715,516

Miami Broward County, Florida 70,080 1,909,151

Miami Palm Beach County, Florida 53,017 1,446,277

Boston Middlesex County, Massachusetts 34,595 1,595,192

Boston Essex County, Massachusetts 18,721 781,024

Boston Norfolk County, Massachusetts 15,889 698,249

Boston Suffolk County, Massachusetts 13,707 791,766

Boston Plymouth County, Massachusetts 13,456 512,135

Boston Rockingham County, New Hampshire 10,301 305,129

Boston Strafford County, New Hampshire 3,615 128,237

LA Los Angeles County, California 220,900 10,098,052

LA Orange County, California 101,384 3,164,182
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