
MIT Open Access Articles

Solving graph compression via optimal transport

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Garg, Vikas K. and Tommi Jaakkola. “Solving graph compression via optimal transport.”
Advances in Neural Information Processing Systems, 32 (May 2019) © 2019 The Author(s)

As Published: https://papers.nips.cc/paper/2019/hash/8fc983a91396319d8c394084e2d749d7-
Abstract.html

Publisher: Morgan Kaufmann Publishers

Persistent URL: https://hdl.handle.net/1721.1/129373

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129373

Solving graph compression via optimal transport

Vikas K. Garg
CSAIL, MIT

vgarg@csail.mit.edu

Tommi Jaakkola
CSAIL, MIT

tommi@csail.mit.edu

Abstract

We propose a new approach to graph compression by appeal to optimal transport.
The transport problem is seeded with prior information about node importance,
attributes, and edges in the graph. The transport formulation can be setup for
either directed or undirected graphs, and its dual characterization is cast in terms
of distributions over the nodes. The compression pertains to the support of node
distributions and makes the problem challenging to solve directly. To this end, we
introduce Boolean relaxations and specify conditions under which these relaxations
are exact. The relaxations admit algorithms with provably fast convergence. More-
over, we provide an exact O(d log d) algorithm for the subproblem of projecting a
d-dimensional vector to transformed simplex constraints. Our method outperforms
state-of-the-art compression methods on graph classification.

1 Introduction

Graphs are widely used to capture complex relational objects, from social interactions to molecular
structures. Large, richly connected graphs can be, however, computationally unwieldy if used
as-is, and spurious features present in the graphs that are unrelated to the task can be statistically
distracting. A significant effort thus has been spent on developing methods for compressing or
summarizing graphs towards graph sketches [1]. Beyond computational gains, these sketches take
center stage in numerous tasks pertaining to graphs such as partitioning [2, 3], unraveling complex or
multi-resolution structures [4, 5, 6, 7], obtaining coarse-grained diffusion maps [8], including neural
convolutions [9, 10, 11].

State-of-the-art compression methods broadly fall into two categories: (a) sparsification (removing
edges) and (b) coarsening (merging vertices). These methods measure spectral similarity between
the original graph and a compressed representation in terms of a (inverse) Laplacian quadratic form
[12, 13, 14, 15, 16]. Thus, albeit some of these methods approximately preserve the graph spectrum
(see, e.g., [1]), they are oblivious to, and thus less effective for, downstream tasks such as classification
that rely on labels or attributes of the nodes. Also, the key compression steps in most of these methods
are, typically, either heuristic or detached from their original objective [17].

We address these issues by taking a novel perspective that appeals to the theory of optimal transport
[18], and develops its connections to minimum cost flow on graphs [19, 20]. Specifically, we interpret
graph compression as minimizing the transport cost from a fixed initial distribution supported on
all vertices to an unknown target distribution whose size of support is limited by the amount of
compression desired. Thus, the compressed graph in our case is a subgraph of the original graph,
restricted to a subset of the vertices selected via the associated transport problem. The transport
cost depends on the specified prior information such as importance of the nodes and their labels or
attributes, and thus can be informed by the downstream task. Moreover, we take into account the
underlying geometry toward the transport cost, unlike agnostic measures such as KL-divergence [21].

There are several technical challenges that we must address. First, the standard notion of optimal
transport on graphs is tailored to directed graphs where the transport cost decomposes as a directed

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

flow along the edge orientations [22]. To circumvent this limitation, we extend optimal transport on
graphs to handle both directed and undirected edges, and derive a dual that directly measures the
discrepancy between distributions on the vertices. As a result, we can also compress mixed graphs
that contain both directed and undirected edges [23, 24, 25, 26].

The second challenge comes from the compression itself, enforced in our approach as sparse support
of the target distribution. Optimal transport (OT) is known to be computationally intensive, and
almost all recent applications of OT in machine learning, e.g., [27, 28, 29, 30, 31, 32] rely on
entropy regularization [33, 34, 35, 36, 37] for tractability. However, entropy is not conducive to
sparse solutions since it discourages the variables from ever becoming zero [22]. In principle, one
could consider convex alternatives such as enforcing `1 penalty [38]. However, such methods require
iterative tuning to find a solution that matches the desired support, and require strong assumptions such
as restricted eigenvalue, isometry, or nullspace conditions for recovery. Some of these issues were
previously averted by introducing binary selection variables [39, 40] and using Boolean relaxations
in the context of unconstrained real spaces (regression). However, they do not apply to our setting
since the target distribution must reside in the simplex. We introduce constrained Boolean relaxations
that are not only efficient, but also provide exactness certificates.

Our graph compression formulation also introduces new algorithmic challenges. For example,
solving our sparsity controlled dual transport problem involves a new subproblem of projecting on the
probability simplex ∆ under a diagonal transformation. Specifically, let D(ε) be a diagonal matrix
with the diagonal ε ∈ [0, 1]d \ {0}. Then, for a given ε, the problem is to find the projection x ∈ Rd
of a given vector y ∈ Rd such that D(ε)x ∈ ∆. This generalizes well-studied problem of Euclidean
projection on the probability simplex [41, 42, 43], recovered if each εi is set to 1. We provide an exact
O(d log d) algorithm for solving this generalized projection. Our approach leads to convex-concave
saddle point problems with fast convergence via methods such as Mirror Prox [44].

To summarize, we make the following contributions. We propose an approach for graph compression
based on optimal transport (OT). Specifically, we (a) extend OT to undirected and mixed graphs
(section 2), (b) introduce constrained Boolean relaxations for our dual OT problem, and provide
exactness guarantees (section 3), (c) generalize Euclidean projection onto simplex, and provide an
efficient algorithm (section 3), and (d) demonstrate that our algorithm outperforms state-of-the-art
compression methods, both in accuracy and compression time, on classifying graphs from standard
real datasets. We also provide qualitative results that our approach provides meaningful compression
in synthetic and real graphs (section 4).

2 Optimal transport for general edges

Let ~G = (V, ~E) be a directed graph on nodes (or vertices) V and edges ~E. We define the signed
incidence matrix ~F : ~F (~e, v) = 1 if ~e = (w, v) ∈ ~E for some w ∈ V , −1 if ~e = (v, w) ∈
~E for some w ∈ V , and 0 otherwise. Let c(~e) ∈ R+ be the positive cost to transport unit mass along
edge ~e ∈ ~E, and ∆(V) the probability simplex on V . The shorthand a � b denotes that a(i) ≤ b(i)
for each component i. Let 0 be a vector of all zeros and 1 a vector of all ones. Let ρ0, ρ1 ∈ ∆(V) be
distributions over the vertices in V . The optimal transport distance ~W (ρ0, ρ1) from ρ0 to ρ1 is [22]:

~W (ρ0, ρ1) = min
J∈R|~E|
0 � J

∑
~e∈~E

c(~e)J(~e) s.t. ~F>J = ρ1 − ρ0 ,

where J(~e) is the non-negative mass transfer from tail to head on edge ~e. Intuitively, ~W (ρ0, ρ1) is
the minimum cost of a directed flow from ρ0 to ρ1. In order to extend this intuition to the undirected
graphs, we need to refine the notion of incidence, and let the mass flow in either direction. Specifically,
let G = (V,E) be a connected undirected graph. We define the incidence matrix pertaining to G as
F (e, v) = 1 if edge e is incident on v, and 0 otherwise. With each undirected edge e ∈ E, having
cost c(e) ∈ R+, we associate two directed edges e+ and e−, each with cost c(e), and flow variables
J+(e), J−(e) ≥ 0. Then, the total undirected flow pertaining to e is J+(e) + J−(e). Since we incur
cost for flow in either direction, we define the optimal transport cost W (ρ0, ρ1) from ρ0 to ρ1 as

min
J+,J−∈R|E|
0 � J+,J−

∑
e∈E

c(e)(J+(e) + J−(e)) s.t. F>(J− − J+) = ρ1 − ρ0 . (1)

2

We call a directed edge e+ active if J+(e) > 0, i.e., there is some positive flow on the edge (likewise
for e−). Moreover, by extension, we call an undirected edge e active if at least one of e+ and e− is
active. We claim that at most one of e+ and e− may be active for any edge e.
Theorem 1. The optimal solution to (1) must have J+(e) = 0 or J−(e) = 0 (or both) ∀ e ∈ E.

The proof is provided in the supplementary material. Thus, like the directed graph setting, we either
have flow in only one direction for each edge e, or no flow at all. Moreover, Theorem 1 facilitates
generalizing optimal transport distance to mixed graphs G̃(V,E, ~E), i.e., where both directed and
undirected edges may be present. In particular, we adapt the formulation in (1) with minor changes:
(a) we associate bidirectional variables with each edge, directed or undirected. For the undirected
edges e ∈ E, we replicate the constraints from (1). For the directed edges ~e, we follow the convention
that J+(~e) denotes the outward flow along ~e whereas J−(~e) denotes the incoming flow (from head
to tail), and impose the additional constraints J−(~e) = 0. We will focus on undirected graphs
G = (V,E) since the extensions to directed and mixed graphs are immediate due to Theorem 1.

3 Graph compression

We view graph compression as the problem of minimizing the optimal transport distance from an
initial distribution ρ0 having full support on the vertices V to a target distribution ρ1 that is supported
only on a subset SV (ρ1) of V . The compressed subgraph is obtained by restricting the original graph
to vertices in SV (ρ1) and the incident edges. The initial distribution ρ0 encodes any prior information.
For instance, it might be taken as a stationary distribution of random walk on the graph. Likewise, the
cost function c encodes the preference for different edges. In particular, a high value of c(e) would
inhibit edge e from being active. This flexibility allows our framework to inform compression based
on the specifics of different downstream applications by getting to define ρ0 and c appropriately.

3.1 Dual characterization of the transport distance

Note that (1) defines an optimization problem over edges. However, our perspective requires
quantifying W (ρ0, ρ1) as an optimization over the vertices. Fortunately, strong duality comes to our
rescue. Let c = (c(e), e ∈ E) be the column vector obtained by stacking the costs. The dual of (1) is

max
0�y,0�z

−c � F (y−z)�c

(y − z)>(ρ1 − ρ0), or equivalently, max
t∈R|V |
−c �Ft�c

t>(ρ1 − ρ0) . (2)

This alternative formulation ofW (ρ0, ρ1) in (2) lets us define compression solely in terms of variables
over vertices. Specifically, for a budget of at most k vertices, we solve

min
ρ1∈∆(V)
||ρ1||0≤k

max
t∈R|V |
−c�Ft�c

t>(ρ1 − ρ0) +
λ

2
||ρ1||2︸ ︷︷ ︸

Lλ(ρ1,t;ρ0)

, (3)

where λ > 0 is a regularization hyperparameter, and ||ρ1||0 is the number of vertices with positive
mass under ρ1, i.e., the cardinality of support set SV (ρ1). The quadratic penalty is strongly convex
in ρ1, so as we shall see shortly, would help us leverage fast algorithms for a saddle point problem.
Note that a high value of λ would encourage ρ1 toward a uniform distribution. We favor this penalty
over entropy, which is not conducive to sparse solutions since entropy would forbid ρ1 from having
zero mass at any vertex in the graph.

Our next result reveals the structure of optimal solution ρ∗1 in (3). Specifically, ρ∗1 must be expressible
as an affine function of ρ0 and F . Moreover, the constraints on active edges are tight. This reaffirms
our intuition that ρ∗1 is obtained from ρ0 by transporting mass along a subset of the edges, i.e., the
active edges. The remaining edges do not participate in the flow.

Theorem 2. The optimal ρ∗1 in (3) is of the form ρ∗1 = ρ0 + F>η , where η ∈ R|E|. Furthermore,
for any active edge e ∈ E, we must have Ft∗(e) ∈ {c(e),−c(e)}.

3.2 Constrained Boolean relaxations

The formulation (3) is non-convex due to the support constraint on ρ1. Since recovery under `1
based methods such as Lasso often requires extensive tuning, we resort to the method of Boolean

3

relaxations that affords an explicit control much like the `0 penalty. However, prior literature on
Boolean relaxations is limited to variables that have no additional constraints beyond sparsity. Thus, in
order to deal with the simplex constraints ρ1 ∈ ∆(V), we introduce constrained Boolean relaxations.
Specifically, we define the characteristic function gV (x) = 0 if x ∈ ∆(V) and∞ otherwise, and
move the non-sparsity constraints inside the objective. This lets us delegate the sparsity constraints to
binary variables, which can be relaxed to [0, 1]. Using the definition of Lλ, we can write (3) as

min
ρ1∈R|V |
||ρ1||0≤k

max
t∈R|V |
−c�Ft�c

Lλ(ρ1, t; ρ0) + gV (ρ1) .

Denoting by � the Hadamard (elementwise) product, and introducing variables ε ∈ {0, 1}|V |, we get
min

ε∈{0,1}|V |
||ε||0≤k

min
ρ1∈R|V |

max
t∈R|V |
−c�Ft�c

Lλ(ρ1 � ε, t; ρ0) + gV (ρ1 � ε) .

Adjusting the characteristic term as a constraint, we have the following equivalent problem
min

ε∈{0,1}|V |
||ε||0≤k

min
ρ1∈R|V |

ρ1�ε∈∆(V)

max
t∈R|V |
−c�Ft�c

Lλ(ρ1 � ε, t; ρ0) . (4)

Algorithm 1 Algorithm to compute
Euclidean projection on the d-simplex
∆ under a diagonal transformation.
Input: y, ε
Define I> , {j ∈ [d] | εj > 0}
Define I= , {j ∈ [d] | εj = 0};
y> , {yj | j ∈ I>}; ε> , {εj | j ∈ I>}
Sort y> into ŷ> and ε> into ε̂>, in non-
increasing order, based on yj/εj , j ∈ I> .
Rename indices in (ŷ>, ε̂>) to start from 1.
Let π map j ∈ I> to π(j) ∈ [|ŷ>|]. Thus

ŷ1/ε̂1 ≥ ŷ2/ε̂2 ≥ . . . ≥ ŷ|I>|/ε̂|I>|

bj = ŷj+ ε̂j
(1−

∑j
i=1 ε̂iŷi)∑j
i=1 ε̂

2
i

, ∀j ∈ [|y>|]

` = max {j ∈ [|y>|] | bj > 0}

α =
(1−

∑`
i=1 ε̂iŷi)∑`
i=1 ε̂

2
i

xj = max{ŷπ(j) + αε̂π(j), 0}, ∀ j ∈ I>
xj = yj ,∀ j ∈ I=

Algorithm 2 Mirror Prox algorithm to (approximately)
find ε in relaxation of (9). The step-sizes at time ` with
respect to ε, t, and ζ are α`, β`, and γ` respectively.

Input: ρ0, k, λ; iterations T
Define Ẽk = {ε ∈ [0, 1]|V | | ε>1 ≤ k}
Define TF,c as in (5)
Define ψρ0(ε, t, ζ) as in (9)
Initialize ε(0) = k1/|V |, t(0) = 0, and ζ(0) = 0
for ` = 0, 1, . . . , T do

Gradient step:

ε̂(`) = ProjẼk
(
ε(`) − α`∇εψρ0(ε(`), t(`), ζ(`))

)
t̂(`) = ProjTF,c

(
t(`)+ β`∇tψρ0(ε(`), t(`), ζ(`))

)
ζ̂(`) = ζ(`)+ γ`∇ζψρ0(ε(`), t(`), ζ(`))

Extra-gradient step:

ε(`+1) = ProjẼk
(
ε(`)−α`∇εψρ0(ε̂(`), t̂(`), ζ̂(`))

)
t(`+1)= ProjTF,c

(
t(`)+β`∇tψρ0(ε̂(`), t̂(`), ζ̂(`))

)
ζ(`+1) = ζ(`)+ γ`∇ζψρ0(ε̂(`), t̂(`), ζ̂(`))

end for
ε̂ =

∑T
`=1 α` ε̂

(`)
/∑T

`=1 α`

Our formulation in (4) requires solving a new subproblem, namely, Euclidean projection on the
d-simplex ∆ under a diagonal transformation. Specifically, let D(ε) be a diagonal matrix with the
diagonal ε ∈ [0, 1]d \ {0}. Then, for a given ε, the problem is to find the projection x ∈ Rd of a given
vector y ∈ Rd such that D(ε)x = x� ε ∈ ∆. This problem generalizes Euclidean projection on the
probability simplex [41, 42, 43], which is recovered when we set ε to 1, i.e., an all-ones vector. Our
next result shows that Algorithm 1 solves this problem exactly in O(d log d) time.
Theorem 3. Let ε ∈ [0, 1]d \ {0} be a given vector of weights, and y ∈ Rd be a given vector of
values. Algorithm 1 solves the following problem in O(d log d) time

min
x∈Rd : x�ε∈∆

1

2
||x− y||2 .

Theorem 3 allows us to relax the problem (4), and solve the relaxed problem efficiently since the
projection steps on the other constraint sets can be solved by known methods [45, 46]. Specifically,
since ε consists of only zeros and ones, ||ε||0 = ||ε||1 = ε>1 and ε� ε = ε. So, we can write (4) as

min
ε∈Ek

min
ρ1∈R|V |

ρ1�ε∈∆(V)

max
t∈TF,c

Lλ(ρ1 � ε� ε, t; ρ0) ,

4

where we denote the constraints for ε and t respectively by

Ek , {ε ∈ {0, 1}|V | | ε>1 ≤ k} , and TF,c , {t ∈ R|V | | − c � Ft � c} . (5)

We can thus eliminate ε from the regularization term via a change of variable ρ1 � ε→ ρ̃1

min
ε∈Ek

min
ρ̃1∈R|V |

ρ̃1�ε∈∆(V)

max
t∈TF,c

L0(ρ̃1 � ε, t; ρ0) +
λ

2
||ρ̃1||2 . (6)

We note that (6) is a mixed-integer program due to constraints Ek, and thus hard to solve. Nonetheless,
we can relax the hard binary constraints on the coordinates of ε to [0, 1] intervals to obtain a saddle
point formulation with a strongly convex term, and solve the relaxation efficiently, e.g., via customized
versions of methods such as Mirror Prox [44], Accelerated Gradient Descent [47], or Primal-Dual
Hybrid Gradient [48]. An attractive property of our relaxation is that if the solution ε̂ from the
relaxed problem is integral then ε̂ must be optimal for the non-relaxed hard problem (6), and so the
original formulation (3). We now pin down the necessary and sufficient conditions for optimality of ε̂.
Theorem 4. Let SV (ρ∗1) = {v ∈ V | ρ∗1(v) > 0} be the support of optimal ρ1 in the original
formulation (3). Let the indicator IS∗V ∈ {0, 1}

|V | be such that IS∗V (v) = 1 if v ∈ SV (ρ∗1) and 0
otherwise. The relaxation of (6) is guaranteed to recover SV (ρ∗1) if and only if there exists a tuple
(γ, t̂, ν̂, ζ̂) ∈ R+ × R|V | × R|V |+ × R such that the following holds for all vertices v ∈ V ,

|t̂(v)− ν̂(v) + ζ̂|
{
> γ if v ∈ SV (ρ∗1)

< γ if v /∈ SV (ρ∗1)
, where (7)

(t̂, ν̂, ζ̂) ∈ arg max
t∈TF,c

max
ν∈R|V |+

max
ζ∈R

−
(

1

2λ

∣∣∣∣(t− ν + ζ1)� IS∗V
∣∣∣∣2 + t>ρ0 + ζ

)
. (8)

The quantity |t̂(v) − ν̂(v) + ζ̂| in (7) may be viewed as the strength of a signal. In that sense, we
require the vertices in support of optimal ρ1 to have a strictly higher signal that the vertices not in
the support. Such signal detection conditions appear in various contexts and often have information
theoretic implications, e.g., Ising models [49]. (7) is also reminiscent of the β-min condition on
regression coefficients for variable selection with Lasso in high-dimensional linear models [50].

For some applications projecting on the simplex, as required by (6), may be an expensive operation.
We can invoke the minimax theorem to swap the order of ρ̃1 and t, and proceed with a Lagrangian
dual to eliminate ρ̃1 at the expense of introducing a scalar variable. Thus, effectively, we can replace
the projection on simplex by a one-dimensional search. We state this equivalent formulation below.
Theorem 5. Problem (6), and thus the original formulation (3), is equivalent to

min
ε∈Ek

max
t∈TF,c
ζ∈R

− 1

2λ

∑
v:t(v)≤−ζ

(
ε(v)(t(v) + ζ)2 + 2λt(v)ρ0(v)

)
−

∑
v:t(v)>−ζ

t(v)ρ0(v)− ζ

︸ ︷︷ ︸
ψρ0 (ε,t,ζ)

. (9)

We present a customized Mirror Prox procedure in Algorithm 2. The projections ProjTF,c and ProjẼk
can be computed efficiently [45, 46]. We round the solution ε̂ ∈ [0, 1]|V | returned by the algorithm to
have at most k vertices as the estimated support for the target distribution ρ1 if ε̂ is not integral. The
compressed graph is taken to be the subgraph spanned by these vertices.

3.3 Specifying the cost function

In our experiments, we fixed the cost of each edge, computed based on the agreement between
the associated vertex labels. Here we illustrate briefly how to parameterize the cost and how the
parameters could be learned. Define `(i, j) = 1 for edge (i, j) if vertices i and j have the same label,
and −1 otherwise. Let the cost function be parameterized by θ = (θs, θd), θs > 0, θd > 0 such that

cθ(i, j) = 0.5(θd(1− `(i, j)) + θs(1 + `(i, j))) .

5

Table 1: Description of graph datasets, and comparison of accuracy on test data. We provide
the statistics on the number of graphs, number of classes, average number of nodes, and average
number of edges in each dataset. The classification test accuracy (along with standard deviation) when
each graph was (roughly) compressed to half is shown for each method for each training fraction in
{0.2, . . . , 0.8}. The algorithm having the best performance is indicated with bold font in each case.
’-’ entries indicate that the method failed to compress the dataset (e.g. due to matrix singularity).

Dataset method acc@0.2 acc@0.3 acc@0.4 acc@0.5 acc@0.6 acc@0.7 acc@0.8

MSRC-21C REC .485±.016 .543±.010 .595±.010 .625±.013 .641±.008 .696±.013 .738±.016
graphs: 209 Heavy .408±.016 .479±.015 .516±.009 .538±.009 .557±.011 .602±.022 .653±.011
classes: 20 Affinity .413±.021 .489±.008 .516±.011 .549±.010 .560±.016 .607±.019 .654±.021
nodes: 40.3 Alg. Dist. .452±.036 .498±.035 .524±.021 .535±.027 .531±.029 .590±.032 .652±.044
edges: 96.6 OTC .548±.004 .605±.003 .639±.006 .679±.003 .696±.002 .742±.007 .778±.005

DHFR REC .681±.011 .704±.014 .724±.007 .738±.009 .749±.008 .756±.011 .771±.011
graphs: 467 Heavy .719±.010 .751±.010 .776±.012 .782±.008 .777±.009 .786±.014 .799±.013
classes: 2 Affinity .717±.013 .733±.011 .745±.014 .761±.014 .771±.019 .767±.015 .785±.013

nodes: 42.4 Alg. Dist. .743±.011 .761±.012 .768±.022 .786±.019 .810±.025 .817±.033 .809±.030
edges: 44.5 OTC .757±.004 .784±.003 .797±.005 .799±.003 .811±.007 .814±.006 .823±.004
MSRC-9 REC .738±.011 .782±.010 .817±.009 .818±.013 .835±.020 .833±.018 .840±.013

graphs: 221 Heavy .648±.019 .710±.024 .766±.014 .773±.010 .786±.009 .796±.010 .813±.009
classes: 8 Affinity .665±.015 .722±.005 .762±.010 .774±.014 .789±.026 .786±.019 .801±.017

nodes: 40.6 Alg. Dist. .666±.048 .717±.051 .756±.029 .771±.039 .798±.032 .803±.030 .809±.046
edges: 97.9 OTC .784±.005 .808±.005 .826±.007 .846±.003 .839±.006 .842±.007 .854±.003
BZR-MD REC .525±.011 .548±.015 .563±.020 .553±.021 .563±.012 .569±.012 .587±.020

graphs: 306 Heavy .497±.000 .546±.000 .555±.000 .522±.000 .550±.000 .572±.000 .558±.000
classes: 2 Affinity .508±.006 .534±.012 .534±.017 .532±.015 .549±.020 .567±.033 .562±.029

nodes: 21.3 Alg. Dist. .497±.021 .546±.026 .555±.038 .522±.028 .550±.028 .572±.024 .558±.039
edges: 225.06 OTC .534±.000 .569±.000 .547±.000 .579±.000 .572±.000 .607±.000 .603±.000
Mutagenicity REC .713±.006 .730±.006 .742±.005 .752±.004 .758±.005 .765±.007 .769±.007
graphs: 4337 Heavy .718 ±.006 .738±.004 .753±.004 .763±.004 .771±.003 .779±.004 .783±.004

classes: 2 Affinity - - - - - - -
nodes: 30.3 Algebraic - - - - - - -
edges: 30.8 OTC .749±.002 .768±.003 .779±.003 .787±.004 .792±.004 .795±.003 .799±.003

Thus, cθ(i, j) ∈ {θs, θd} depending on whether i and j have the same label.

The cost parameters couldn’t be driven solely by the compression criterion as this objective would
lead to a trivial all-zero solution. Instead, θ must be in part driven by an external classification loss.
In other words, we can learn θ by trading off compression loss against, for example, the ability to
correctly classify the resulting reduced graphs. We leave this for future work.

3.4 Relation to other compression techniques

Most compression algorithms try to preserve the graph spectrum via a (multi-level) coarsening
procedure: at each level they compute a matching of vertices and merge the matched vertices, e.g.,
Heavy Edge [2] contracts those edges (i, j) that are incident on low degree vertices. Likewise REC
[1] follows a randomized greedy procedure for generating maximal matching incrementally. Let di
be the degree of node i. Setting the cost c(i, j) = max(di, dj) in our framework will incentivize flow
on edges with low degree vertices, and in turn, compression of one of their end points. The vertices
not in support of target distribution may then be viewed as being matched to (a subset of) adjacent
vertices that they transfer flow to. Unlike other methods, our approach is flexible in terms of defining
c(i, j).

4 Experiments

We conducted several experiments to demonstrate the merits of our method. We start by describing
the experimental setup. We fixed the value of hyperparameters in Algorithm 2 for all our experiments.
Specifically, we set the regularization coefficient λ = 1, and the gradient rates α` = 0.1, β` =

6

0.1, γ` = 0.1 for each ` ∈ {0, 1, . . . , T}. We also let ρ0 be the stationary distribution by setting
ρ0(v) for each v ∈ V as the ratio of deg(v), i.e. the degree of v, to the sum of degrees of all the
vertices. Note that the distribution thus obtained is the unique stationary distribution for connected
non-bipartite graphs, and a stationary distribution for the bipartite graphs. Moreover, for non-bipartite
graphs, it has a nice physical interpretation in that any random walk on the graph always converges to
this distribution irrespective of the graph structure.

The objective of our experiments is three-fold. Since compression is often employed as a preprocess-
ing step for further tasks, we first show that our method compares favorably, in terms of test accuracy,
to the state-of-the-art compression methods on graph classification. We then demonstrate that our
method performed the best in terms of the compression time. We finally show that our approach
provides qualitatively meaningful compression on synthetic and real examples.

4.1 Classifying standard graph data

We used several standard graph datasets for our experiments, namely, DHFR [51], BZR-MD [52],
MSRC-9, MSRC-21C [53], and Mutagenicity [54]. We focused on these datasets since they represent
a wide spectrum in terms of the number of graphs, number of classes, average number of nodes per
graph, and average number of edges per graph (see Table 1 for details). All these datasets have a
class label for each graph, and additionally, labels for each node in every graph.

We compare the test accuracy of our algorithm, OTC (short for Optimal Transport based Compression),
to several state-of-the-art methods: REC [1], Heavy edge matching (Heavy) [2], Affinity vertex
proximity (Affinity) [14], and Algebraic distance (Algebraic) [12, 13]. Amongst these, the REC
algorithm is a randomized method that iteratively contracts edges of the graph and thereby coarsens
the graph. Since the method is randomized, REC yields a compressed graph that achieves a specified
compression factor, i.e., the ratio of the number of nodes in the reduced graph to that in the original
uncompressed graph, only in expectation. Therefore, in order to allow for a fair comparison, we first
run REC on each graph with the compression factor set to 0.5, and then execute other baselines and
our algorithm, i.e. Algorithm 2, with k set to the number of nodes in the compressed graph produced
by REC. Also to mitigate the effects of randomness on the number of nodes returned by REC, we
performed 5 independent runs for REC, and subsequently all other methods.

Each collection of compressed graphs was then divided into train and test sets, and used for our
classification task. Since our datasets do not provide separate train and test sets, we employed the
following procedure for each dataset. We partitioned each dataset into multiple train and test sets
of varying sizes. Specifically, for each p ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, we divided each dataset
randomly into a train set containing a fraction p of the graphs in the dataset, and a test set containing
the remaining 1 − p fraction. To mitigate the effects of chance, we formed 5 such independent
train-test partitions for each fraction p for each dataset. We averaged the results over these multiple
splits to get one reading per collection, and thus 5 readings in total for all collections, for each fraction
for each method. We averaged the test accuracy across collections for each method and fraction.

We now specify the cost function c for our algorithm. As described in section 3, we can leverage the
cost function to encode preference for different edges in the compressed graph. For each graph, we set
c = 0.01 for each edge e incident on the nodes with same label, and c = 0.02 for each e incident on
the nodes that have different label. Thus, in effect, we slightly biased the graphs to prefer retaining the
edges that have separate labels at their end-points. In our experiments, we employed support vector
machines (SVMs), with Weisfeiler-Leman subtree kernel [55] to quantify the similarity between
graphs [53, 56, 57]. This kernel is based on the Weisfeiler-Leman test of isomorphism [58, 59], and
thus naturally takes into account the labels of the nodes in the two graphs. We fixed the number of
kernel iterations to 5. We also fixed T = 25 for our algorithm. For each method and each train-test
split, we used a separate 5-fold cross-validation procedure to tune the coefficient of error term C over
the set {0.1, 1, 10} for training an independent SVM model on the training portion.

Table 1 summarizes the performance of different methods for each fraction of the data. As the
numbers in bold indicate, our method generally outperformed the other methods across the datasets.
We observe that on some datasets the discrepancy between the average test accuracy of two algorithms
is massive for every fraction. Note that though OTC performs the best on DHFR, the performance of
most methods is similar (except REC, which lags behind). In contrast, REC performs better than all
methods except OTC on MSRC-9. This seems to suggest that REC performs well on graphs with

7

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.39

0.47

0.55

0.63

0.71

0.79

Training fraction

Av
er

ag
e

ac
cu

ra
cy

MSRC-21C

OTC
REC
Affinity
Algebraic
Heavy

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.67

0.7

0.73

0.76

0.79

0.82

0.85

Training fraction

Av
er

ag
e

ac
cu

ra
cy

DHFR

OTC
REC
Affinity
Algebraic
Heavy

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.69

0.71

0.73

0.75

0.77

0.79

0.81

Training fraction

Av
er

ag
e

ac
cu

ra
cy

Mutagenicity

OTC
REC

Heavy

OTC
REC

Affinity

Algebraic
Heavy0

1

2

3

4

5

6

7

C
om

pr
es

si
on

tim
e

(s
)

OTC
REC

Affinity

Algebraic
Heavy2

4

6

8

10

12

14

C
om

pr
es

si
on

tim
e

(s
)

OTC
REC

Affinity

Algebraic
Heavy8

16

24

32

40

48

C
om

pr
es

si
on

tim
e

(s
)

Figure 1: Comparison on standard graph datasets. The top row shows the average test accuracy
and corresponding standard deviation for our method (OTC) and state-of-the-art baselines for different
fractions of training data. The bottom row compares the corresponding compression times. Our
method outperforms the other methods in terms of both accuracy and compression time.

strong connectivity, while others might be better on data with a long backbone besides these ring
structures. We believe robust performance of OTC across these datasets comprising graphs with
vastly different topologies underscores the promise of our approach.

Further, as Fig. 1 shows, OTC performed best in terms of compression time as well. We emphasize
that the discrepancy in compression times became quite stark for larger datasets (i.e., DHFR and
Mutagenicity). To provide more evidence on the scalability of our method, we also experimented
with the larger Tox21AR-LBD data,1 which consists of about 8600 graphs. Both our method and
Algebraic distance performed very well in terms of classification accuracy (∼ 97%) on this data. Our
approach took in total about 39 seconds to compress graphs in this dataset to 90% (low compression),
and about 41 seconds in total to compress to 10% (high compression). In contrast, the Algebraic
distance method took about 48 seconds to compress to 90% and a significantly longer time, i.e., 3.5
minutes to compress to 10%. The other baselines failed to compress this data.

4.2 Compressing synthetic and real examples

We now describe our second set of experiments with both synthetic and real data to show that our
method can be seeded with useful prior information toward preserving interesting patterns in the
compressed structures. This flexibility in specifying the prior information makes our approach
especially well-suited for downstream tasks, where domain knowledge is often available.

Fig. 2 demonstrates the effect of compressing a synthetic tree-structured graph. The penultimate
level consists of four nodes, each of which has four child nodes as leaves. We introduce asymmetry
with respect to the different nodes by specifying different combinations of c(e) for edges e between
the leaf nodes and their parents: there are respectively one, two, three and four heavy edges (i.e. with
c(e) = 0.5) from the internal nodes 1, 2, 3, and 4 to their children, i.e., the leaves in their subtree.

As shown in Fig. 2, our method adapts to the hierarchical structure with a change in the amount
of compression from just one node to about three-fourths of the entire graph. We also show mean-

1https://tripod.nih.gov/tox21/challenge/data.jsp

8

(a) Synthetic graph (b) Compressed graph (k = 20) (c) Compressed graph (k = 15)

(d) Compressed graph (k = 5) (e) Mutagenicity (f) MSRC-21C

Figure 2: Visualizing compression on synthetic and real examples. (a) A synthetic graph struc-
tured as a 4-ary tree of depth 2. The root 0 is connected to its neighbors by edges having c(e) = 0.3.
All the other edges have either c(e) = 0.5 (thickest) or c(e) = 0.1 (lightest). The left out portions
are shown in gray. (b) Leaf node 13, which is in the same subtree as three nodes with heavy edges
14-16, is the first to go. (c) Proceeding further, 9 and 10 are left out followed by the remaining nodes
(i.e. 5, 6,7) connected by light edges. (d) When the graph is compressed to 5 vertices, only the root
and its neighbors remain despite bulkier subtrees, e.g. the one with node 4 and its neighbors, that
are discarded. Thus, our method yields meaningful compression on this synthetic example. (e-f)
Compressed structures pertaining to some sample graphs from real datasets that have some other
interesting motifs. In each case, the compressed graph consists of red edges and the incident vertices,
while the discarded parts are shown in gray. All the figures here are best viewed in color.

ingful compression on some examples from real datasets. The bottom row of Fig. 2 shows two
such examples, one each from Mutagenicity and MSRC-21C. For these graphs, we used the same
specification for c as in section 4.1. The example from Mutagenicity contains patterns such as rings
and backbone structures that are ubiquitous in molecules and proteins. Likewise, the other example is
a good representative of the MSRC-21C dataset from computer vision.

Thus, our method encodes prior information, and provides fast and effective graph compression for
downstream applications.

Acknowledgments

We thank the anonymous reviewers for their thoughtful questions that led to sections 3.3 and 3.4, and
experiments on the Tox21 data. We are grateful to Andreas Loukas for the code of their algorithm [1].
VG and TJ were partially supported by a grant from the MIT-IBM collaboration.

9

References
[1] A. Loukas and P. Vandergheynst. Spectrally approximating large graphs with smaller graphs.

In International Conference on Machine Learning (ICML), 2018.
[2] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel

approach. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 29, 2007.
[3] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph. In International

Conference on Data Engineering (ICDE), pages 568–579, 2014.
[4] E. Ravasz and A.-L. Barabasi. Hierarchical organization in complex networks. Physical Review

E, 67(2):026112, 2003.
[5] B. Savas and I. Dhillon. Clustered low rank approximation of graphs in information science

applications. In SIAM International Conference on Data Mining (SDM), 2011.
[6] R. Kondor, N. Teneva, and V. K. Garg. Multiresolution matrix factorization. In International

Conference on Machine Learning (ICML), pages 1620–1628, 2014.
[7] N. Teneva, P. K. Mudrakarta, and R. Kondor. Multiresolution matrix compression. In In-

ternational Conference on Artificial Intelligence and Statistics (AISTATS), pages 1441–1449,
2016.

[8] S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: A unified framework for
dimensionality reduction, graph partitioning, and data set parameterization. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 28(9):1393–1403, 2006.

[9] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral networks and locally connected
networks on graphs. In International Conference on Learning Representations (ICLR), 2014.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Neural Information Processing Systems (NIPS), 2016.

[11] M. Simonovsky and N. Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[12] D. Ron, I. Safro, and A. Brandt. Relaxation-based coarsening and multiscale graph organization.
Multiscale Modeling & Simulation, 9(1):407–423, 2011.

[13] J. Chen and I. Safro. Algebraic distance on graphs. SIAM Journal on Scientific Computing,
33(6):3468–3490, 2011.

[14] O. E. Livne and A. Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear solver.
SIAM Journal on Scientific Computing, 34, 2012.

[15] D. I. Shuman, M. J. Faraji, and P. Vandergheynst. A multiscale pyramid transform for graph
signals. IEEE Transactions on Signal Processing, 64(8):2119–2134, 2016.

[16] F. Dörfler and F. Bullo. Kron reduction of graphs with applications to electrical networks. IEEE
Transactions on Circuits and Systems I: Regular Papers, 60(1):150–163, 2013.

[17] G. B. Hermsdorff and L. M. Gunderson. A unifying framework for spectrum-preserving graph
sparsification and coarsening. In arXiv:1902.09702, 2019.

[18] C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

[19] G. Karakostas. Faster approximation schemes for fractional multicommodity flow problems.
ACM Transactions on Algorithms, 4(1):13:1–13:17, 2008.

[20] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu. Negative-weight shortest paths and
unit capacity minimum cost flow in Õ(m10/7 log w) time: (extended abstract). In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 752–771, 2017.

[21] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher. Continuous-flow graph transportation
distances. In arXiv: 1603.06927, 2016.

[22] M. Essid and J. Solomon. Quadratically regularized optimal transport on graphs. SIAM Journal
on Scientific Computing, 40(4):A1961–A1986, 2018.

[23] P. Hansen, J. Kuplinsky, and D. de Werra. Mixed graph colorings. Mathematical Methods of
Operations Research, 45(1):145–160, 1997.

10

[24] B. Ries. Coloring some classes of mixed graphs. Discrete Applied Mathematics, 155(1):1–6,
2007.

[25] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks and
Expert Systems: Exact Computational Methods for Bayesian Networks. Springer Publishing
Company, Incorporated, 1st edition, 2007.

[26] M. Beck, D. Blado, J. Crawford, T. Jean-Louis, and M. Young. On weak chromatic polynomials
of mixed graphs. Graphs and Combinatorics, 31(1):91–98, 2015.

[27] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning (ICML), pages 214–223, 2017.

[28] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy. Joint distribution optimal trans-
portation for domain adaptation. In Neural Information Processing Systems (NIPS), 2017.

[29] I. Redko, N. Courty, R. Flamary, and D. Tuia. Optimal transport for multi-source domain
adaptation under target shift. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 849–858, 2019.

[30] C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio. Learning with a wasserstein
loss. In Neural Information Processing Systems (NIPS), pages 2053–2061, 2015.

[31] D. Alvarez-Melis, T. Jaakkola, and S. Jegelka. Structured optimal transport. In International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 84, pages 1771–1780,
2018.

[32] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty. Optimal transport for structured
data. In arXiv: 1805.09114, 2018.

[33] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Neural
Information Processing Systems (NIPS), 2013.

[34] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative bregman projections for
regularized transportation problems. SIAM Journal on Scientific Computing, 37:A1111–A1138,
2015.

[35] J. Solomon. Convolutional wasserstein distances : Efficient optimal transportation on geometric
domains. ACM Transactions of Graphics (TOG), 34(4):66:1–66:11, 2015.

[36] A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochastic optimization for large-scale optimal
transport. In Neural Information Processing Systems (NIPS), pages 3440–3448, 2016.

[37] V. Seguy, B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel. Large-scale opti-
mal transport and mapping estimation. In International Conference on Learning Representations
(ICLR), 2018.

[38] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (methodological), 58(1):267–288, 1996.

[39] M. Tan, I. W. Tsang, and Li Wang. Towards ultrahigh dimensional feature selection for big data.
Journal of Machine Learning Research (JMLR), 15(1):1371–1429, 2014.

[40] M. Pilanci, M. J. Wainwright, and L. E. Ghaoui. Sparse learning via boolean relaxations.
Mathematical Programming, 151(1):63–87, 2015.

[41] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the `1-ball for
learning in high dimensions. In International Conference on Machine Learning (ICML), 2008.

[42] W. Wang and M. A. Carreira-P. Projection onto the probability simplex: An efficient algorithm
with a simple proof, and an application. In arXiv: 1309.1541, 2013.

[43] L. Condat. Fast projection onto the simplex and the `1 ball. Mathematical Programming,
158(1–2):575–585, 2016.

[44] A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

[45] A. Beck and M. Teboulle. A fast dual proximal gradient algorithm for convex minimization and
applications. Operations Research Letters, 42(1):1–6, 2014.

[46] V. K. Garg, O. Dekel, and L. Xiao. Learning small predictors. In Neural Information Processing
Systems (NeurIPS), 2018.

11

[47] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[48] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[49] N. P. Santhanam and M. J. Wainwright. Information-theoretic limits of selecting binary graphical
models in high dimensions. IEEE Transactions on Information Theory, 58(7):4117–4134, 2012.

[50] P. Bühlmann. Statistical significance in high-dimensional linear models. Bernoulli, 19(4):1212–
1242, 09 2013.

[51] J. J. Sutherland, L. A. O’Brien, and D. F. Weaver. Spline-fitting with a genetic algorithm: a
method for developing classification structure-activity relationships. J. Chem. Inf. Comput. Sci.,
43:1906–1915, 2003.

[52] N. Kriege and P. Mutzel. Subgraph matching kernels for attributed graphs. In International
Conference on Machine Learning (ICML), 2012.

[53] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting. Propagation kernels: efficient graph
kernels from propagated information. Machine Learning, 102(2):209–245, 2016.

[54] J. Kazius, R. McGuire, , and R. Bursi. Derivation and validation of toxicophores for mutagenicity
prediction. Journal of Medicinal Chemistry, 48(1):312–320, 2005.

[55] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research (JMLR), 12:2539–
2561, 2011.

[56] S. V. N. Vishwanathan, N. Schraudolph, R. Kondor, and K. Borgwardt. Graph kernels. Journal
of Machine Learning Research (JMLR), 11:1201–1242, 2010.

[57] R. Kondor and H. Pan. The multiscale laplacian graph kernel. In Neural Information Processing
Systems (NIPS), pages 2990–2998, 2016.

[58] B. Y. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 9, 1968.

[59] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations (ICLR), 2019.

[60] M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

12

	Introduction
	Optimal transport for general edges
	Graph compression
	Dual characterization of the transport distance
	Constrained Boolean relaxations
	Specifying the cost function
	Relation to other compression techniques

	Experiments
	Classifying standard graph data
	Compressing synthetic and real examples

