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A new numerical method is developed to solve the three-dimensional compress-
ible boundary-layer equations, in integral form, on non-orthogonal grids. The finite-
volume scheme employed eliminates the need to compute metric-gradient terms found
in curvilinear-coordinate finite-difference methods. The integral method is based on
two equations for momentum and one for kinetic energy with empirical equilibrium
turbulent-flow closure relations selectively extracted from the literature. Johnston’s
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the Newton-Raphson method along a row of cells and the solution is marched succes-
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Chapter 1

Introduction

There have been astonishing advances, over the last several years, in the development
of Navier-Stokes solvers capable of generating solutions over realistic aircraft configura-
tions. The generation of each solution requires, however, the expenditure of considerable
resources, both in terms of hardware and run times, and their routine use, especially
by aircraft designers, is still not feasible. To satiate the need for fast, workstation-
based solvers, it is, then, only natural to assume one more level of approximation:
coupled Euler/boundary-layer or Potential/boundary-layer methods. Not surprisingly,
these methods do not significantly reduce accuracy given the considerable empiricism
built into Navier-Stokes solvers for turbulent flow. It is with a view to contributing
to the viscous aspect of this demand through a coupled approach that this project is

undertaken.

Considerable progress has been achieved in the computation of two-dimensional
boundary-layer flow and many research forays into three-dimensional flow draw heavily

from this experience. This thesis is no exception.

The prediction of three-dimensional turbulent boundary layer flows has only recently
begun to garner enough attention, unlike their two-dimensional counterparts, to match
their ubiquitous presence in nature. One obvious reason for this historical reticence has
been the sheer complexity of general extensions into a third dimension. In addition, for
the case of turbulent flow, prediction is still largely an empirical exercise. Therefore,
fundamental physical issues continue to strongly motivate current research efforts. In
practice, the intrinsic empiricism in turbulent flow prediction has thwarted many efforts
at sophisticated modelling of other relevant physics. The present thesis, therefore,
attempts to keep the modeling simple while awaiting the ultimate three-dimensional

11



turbulence model.

The ability to handle non-orthogonal grids is crucial in aircraft design. In the usual
finite-difference curvilinear approach, cumbersome metrical terms have to be evaluated.
The main focus of this thesis is the attempt to apply finite-volume discretization in
order to pose the computational problem in a simple locally-Cartesian form, without

any additional metric-gradient terms.

The desire to develop a fast scheme suggests the use of an integral form of the equa-
tions instead of the more fundamental differential form. This choice is reinforced by
the fact that interest is largely confined to the computation of integral quantities. The
disadvantage is in the increased reliance on empiricism. In reality, however, integral
methods have historically produced results of comparable accuracy to those generated
by differential schemes. The gain is an order-of-magnitude increase in speed. Integral
schemes also tend to be more robust and are better suited for viscous/inviscid calcula-

tions.

This thesis contains the description of a novel compressible, turbulent, integral
boundary-layer prediction method on non-orthogonal grids called OMAR (to preempt
the inevitable query, the title is not an acronym; in fact, it means nothing). Chapter 2
contains a derivation of the boundary layer equations in an integral form. The nec-
essary closure for turbulent flow is introduced in Chapter 3. Details of the numerical
scheme, including finite-volume discretization and the solution method are provided in
Chapter 4. The results from two computations, one for a famous infinite swept wing ex-
periment and another for a fully three-dimensional compressible flow over a finite wing,
are presented in Chapter 5. In Chapter 6, some suggestions for future work conclude

the thesis.

12



Chapter 2

Governing Equations

2.1 Differential Form

This section contains a brief outline of the derivation of equations in the form that will
be used in § 2.2 for integration starting from the more general Navier-Stokes equations.

This thesis is concerned cnly with the stcady flow of Newtonian fluids.

The steady compressible boundary-layer equations are obtained from the Navier-
Stokes equations by neglecting the effects of transverse pressure variation and diffusion
in the streamwise and crosswise directions. In three dimensions, these assumptions leave

the equation for mass conservation unchanged,

Opu  Opv  dpw
5s T oy T s = (2.1)

but the momentum conservation equations simplify to

)

oz " 9y T V9z) " "oz "oy [Pyl

dp
3y~ (2.2)

and

P\"0z Ty TV8z) T T8z " oy Moyl -

For a turbulent flow, Reynolds averaging is usually employed to obtain equations

for the meanflow quantities. Variables are decomposed into meanflow and fluctvating
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components such that p=p+p,u=8+u,v=9+v,w=0+w and p =g+ o'
These expressions are substituted in Equations 2.1 and 2.2 which are then ensemble

averaged.
The averaging procedure results in the mass conservation equation taking the form

dpv | 0pw | dp'v’ | Bp'w'

o7
oy T oz T o T e O (2.3)

dz

+

Now, in a boundary-layer, p'u’ < p and p'w’ < pi so that the last two terms in Equa-
tion 2.3 can be ignored. These terms also appear in the ensemble-averaged momentum
equations, which are not presented here, but there are also ignored. This is generally a
good assumption except in the region of separation due to vanishing skin friction [1, 21].

However, p'v' ~ pb and is hence retained, embedded in the second term of Equation 2.3.

The transverse momentum equation,

0 [ —
3_31 = —55 (pv'v') R

is no longer trivial but the Reynolds normal stress, pv'v’, is usually also neglected.
This term is important, however, in supersonic turbulent flow with adverse pressure

gradients [21, pages 606, 626].

In compressible flow, mass-weighted variables are traditionally employed in the
Reynolds averaging to decouple density from the other variables (see for example [1,
page 217]). For the present development, this is only performed with the transverse
velocity. The mass-weighted velocity ¢ is defined such that

o= (p5+0v) /p

and, therefore, pv = pv.

Henceforth, the pressure p will be set equal to the value at the edge of the boundary
layer p.. In addition, the notation will be modified slightly for the sake of brevity in

14



that the overbar will be abandoned. By virtue of Bernoulli’s theorem applied to the
external flow region, pressure gradient terms in the momentum equations can be written

in terms of velocity gradients,

ape - aue awc
9z . Pe (u, bz + ""a_z)

and

Op. _ Ju, ow,
0z € (u, a9z + ""W) ’

If, furthermore, the external flow is assumed to be irrotational, V x ¢e =0, then

9z . Pe oz €0z
and
dp.

— _ ( %_{_ aw’)
8z Pe uet?z e 8z )"

Finally, introducing the equality sign, the differential form of the relations needed

in § 2.2 are obtained,

dpu  8pd  Bpw _
9z ' Oy t o T 0
ou _Ou Oou\ ou, ou, 0T,
P (ua + v-b; + wa) = Pe (ueT?-; + we'a—z) + By (2.4)

and

P\" %z dy 9z) = P \" 52z € 9z dy’

where the overall stresses
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and

ow _

=g - Y

include the Reynolds stress terms.

The various assumptions inherent in these equations limit their range of applicabil-
ity. In particular, in the neighborhood of separated flow, both due to vanishing skin
friction and the three-dimensional focusing of characteristic lines, many of the physical

assumptions made so far are strictly not valid [3].

2.2 Integral Form

Integral equations are derived by integrating combinations of Equations 2.4 in the y
direction in such a manner that they can be written as a function of many kinds of of
physically-meaningful quantities, depending on the desired closure [21, p. 513]. In the
literature, momentum-integral relations are ubiquitously found with one or more addi-
tional relations, usually for entrainment, but also for kinetic energy, turbulent energy,

various moments of momentum and others.

The calculation presented in this thesis makes use of the momentum-integral rela-
tions with an additional equation for the kinetic energy. The entrainment relation was
not considered because closure would entail use of the boundary layer thickness §, which
historically has produced results inferior to the momentum-integral relation [21, p. 516]

due, presumably, to the amorphous nature of § in experimental work.

The derivation of the equations is shown in some detail.

16



2.2.1 Momentum Relations

The momentum-integral equation along x can be derived by considering the combina-
tion (u — u.) X continuity-equation + x-momentum-equation, which can be compactly

written as

-—[W(u ue)l+ 5~ [Pv(u )]+ 5~ 0 fow (u— o)) +

3u, 0T
(pette — pu) 3 -+ (pewe — pw) = =%

This equation is integrated with respect to y, from the wall, where ¥ = 0, to the edge
of the boundary layer, where y = §, to yield

% (Peqczaa:.'e) + 'aa_z (Peqfazz) + PeQe6:;aa + peq e‘s‘aa = Tew (25)

where the displacement thicknesses, §3 and 6}, are defined as
'
peact: = [ (pete — pu)dy
and
1)
peQe6; = ‘/0 (Pe’we - Pw) dy,
and the momentum thicknesses, 0., and 0,,, are defined as
R 5
Peq:0z2 = /; (ue — u)pudy

and

1)
Peqzezz = /; (2e — u)pwdy.

17



The partial-differentiation and integration in Equation 2.5 are interchangeable because,
in compliance with Leibnitz’s rule, the integrands are zero between y = § and y = oo.
Furthermore, the second term disappears because 4 = 0 at the lower limit and (u—1,) =

0 at the upper limit.

An equation for the momentum in the z direction can similarly be obtained by
considering the combination (w — w,) :< continuity-equation + z-momentum-equation,

which can be expressed as

aelouto =~ wall + 2 lpa(w - w)] + 5 {pw(w - we)] +

(pette = U} 22 (pow, — pro) e = O
Peltie = PU) 5y T \Petle = P 8z oy’

As before, this equation is integrated along y to yield
a 2 a 2 " 310, - aw, _
%(queoz:c) + a(pCngzz) + Pe‘kﬁz 9z + peq,6zﬁ = Tz s
where the momentum thicknesses, 6., and ., are defined as
2 6
Peq:0:c = /o (we — w)pudy
and

&
pa’0.. = /0 (we — w)pwdy.

These momentum integral relations are simply three-dimensional extensions of the well-

known von Kirmén equation in two dimensions.

2.2.2 Kinetic-Energy Relation
The relation involving the kinetic-energy thicknesses is also readily derived. The ex-

pression (g2 — ¢2) X continuity-equation + 2u X x-momentum-equation + 2w X z-

momentum-equation can be written as

18



—[pu(q -+ 3 [pv(q —qf)]+—fpw(q - ¢2)]

dq? dq: | O, or,
= (pe = plum - — (P — plwp > = 2ug, TG,

Integration along y yields

dq? dq?
* I 3% %~ de " de _ .
52 (peqe9z)+ (peqel’ )+ Pedel 5 = + peged;’ 5= = 2D

where

Pea8 = / (g2 — ¢*)pudy,
&

pai0; = /o (42 - ¢*)pwdy,

Peqed; / (pe — p)udy,

é
PeQe6:‘ = ./(; (pe - P)wdy

and

D= f(rzau+rza )dy

D is known as the dissipation or shear-work integral and can be written as the sum of
two components, one due to the wall-normal gradient of velocity in the z direction and

the other due to the gradient in the 2z direction, so that

D=D.+D,.

19



2.2.3 Summary

For clarity of presentation, the equations that form the basis of the calculation method

are reproduced below.

a—ax' (Peqzozz) + % (peqzozz) + Pegef, aa + Peged aa = Tzy

, w, D,
Oz (Peqe 2=)+ dz (Peqeozz) +peqe > a +Pe e6 52 = Tz (2_6)
* * "a e ua ez
(peqeo )+ -——(peqao ) + Pegeb? aq + Peg.S: aqz =2D

2.3 Primary Variables

Equations 2.6 are functions of many variables. In the next chapter, all of these vari-
ables will be related to three primary ones through empirical relations. The primary
variables are chosen to be 6., > and tan(B,), where the coordinate z is parallel to
the external-flow streamline. Figure 2.1 shows a typical distribution of velocity in a
three-dimensional boundary layer along the normal to the wall. The variable 3,, is the
angular difference between the direction of the external-flow streamline and that of the
limiting wall streamline. The limiting wall streamline, or simply limiting streamline, is
the streamline in the limit of vanishing distance from the wall.

It will be useful, at this juncture, to define an independent ccordinate system in
terms of external-flow streamlines. One family of a set of mutually orthogonal coordinate
curves is formed by the projection onto the surface of the streamlines just external to
the boundary layer. The direction of an external streamline is called the streamwise
direction and boundary-layer flow normal to an external streamline and parallel to the
surface is called crossflow. The boundary layer in Figure 2.1 is shown in this coordinate

system.

20



Crosswise profile

Streamwise profile

Figure 2.1: Velocity distribution in a typical 3D boundary layer

The two orientation-dependent primary variables when in this coordinate system
will be written with numeric subscripts: 6,; and §;. As a general syntactic rule, in
this coordinate system, z and z will be replaced by 1 and 2 respectively, in variable

subscripts.

For notational efficiency, the vector of primary unknowns,

is defined.

21



2.4 Nature of the System

2.4.1 Domains of Influence and Dependence

The hyperbolic nature of the system of integral equations is exceedingly important in
their calculation. The characteristic directions determine whether or not the solution

of the equations can be marched in a particular direction.

Consider, first, the differential form of the equations. The study of the characteristics
of a system involves only the highest derivative terms in each equation. The character-
istic determinant yields a characteristic equation; the sign of the roots of this equation
describes the nature of the system. The characteristic equation for the incompressible
Navier-Stokes system has no real root, expressing their well-known elliptic properties.
On the other hand, in the case of the boundary-layer Equations 2.1 and 2.2, all the

roots are real and equal, indicating their parabolic nature [19].

A physical interpretation was offered by Raetz who studied the laminar boundary-
layer equations [10, 12]. In the boundary layer approximation, the equations are hy-
perbolic in surfaces parallel to the wall and, therefore, imply the existence of domains
of déi;endence and influence in the same way as in any other hyperbolic system. In-
formation is convected aloug-strcarnlines in the boundary layer and also transported
along lines normal to the wall by viscous diffusion. On this basis, Raetz articulated an
“influence principle” which stated that conditions at some point in the boundary layer
depend only on conditions in a wedge-like domain of dependence, extending upstream
from the point, bounded by two surfaces normal to the wall which just enclose all the
streamlines passing through their line of intersection. The downstream extension defines

the domain of influence.

The idea of subcharacteristics, which are defined as the characteristics of the cor-
responding inviscid equations, can be used to arrive at the same physical picture as
that of Raetz [19]. For both the Navier-Stokes system and the boundary layer system,

subcharacteristics are associated with streamlines. In the case of the Navier-Stokes

22



Zone of

dependence Zone of
influence

Characteristics Projection of outmost
subcharacteristics

Figure 2.2: Zones of influence and dependence in a 3D boundary layer

equations, the convection of a disturbance along the streamlines is masked by diffusion;
in the case of the boundary-layer equations, on the other hand, diffusion prevails only
in the direction normal to the surface and, therefore, subcharacteristics or streamlines
do play a role in determining the main flow structure. Consequently, a disturbance at
the point P in Figure 2.4.1 first affects instantly — in the incompressible limit — the
normal line AB through P, and is then convected downstream by all the streamlines

crossing AB.

In the case of laminar flow, the angle included between the surfaces bounding the
domains of dependence and influence can never be smaller than the wall crossflow angle;
the two are usually equal. One of the bounding surfaces is tangential to the external
streamlines and the other is tangential to the limiting streamline [10]. In the case of tur-
bulent flow, however, Wesseling suggested that the extent of the domains of dependence
and influence may be smaller on the basis of a set of equations which are hyperbolic in

planes normal to the wall as well in the surfaces parallel to it {10, 20].

Consider, now, the integral form of the equations. For an incompressible, turbulent
system of momentum-integral and entrainment relations, Cousteix and Houdeville show

that the roots of the characteristic equation are real and distinct, indicating that the
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system is hyperbolic [4]. A qualitatively similar result was also obtained in a separate
study by Myring who employed slightly different closure relationships [9]. Systems of
integral equations are expected to be hyperbolic because the elliptic/diffusive nature of
the differential equations in the direction normal to the wall is integrated out.

The number of roots of the characteristic equation (these roots are referred to as
characteristic lines or directions on the basis of their physical interpretation) depends
on the number of global equations employed. Therefore, for the set of integral equations
in this thesis, there are three equations. Additional equations can be employed but the
main features of the flow are adequately described by three [4].

One of the characteristic lines can be identified with the limiting wall streamline [4].
The other two lie between the external-flow streamline and the limiting wall stream-
line [3].

The hyperbolicity of the set of integral equations implies the relevance of the concept
of domains of dependence and influence. This has practical consequences for their
calculation. For example, the number of boundary conditions needed is the same as
the number of characteristics entering the domain. In general, the development of a

numerical scheme must incorporate knowledge of characteristic directions.

2.4.2 Calculation of Characteristic Directions

Equations 2.6 can be written in a form where the left hand side includes all the deriva-

tives of the vector of primary unknowns U,

96, N 06;,

a5 T on A
80y | 86,
B T on =2

and

24



a0
ds

965
on %

+

Note that the derivatives are taken with respect to the streamwise and crossflow direc-

tions. This system of equations is further manipulated so that the primary unknowns
appear explicitly,

1 0 0 8632 8032 8612

86,; Btan(Buw) 867 | .
8623 86 863 ou + 8822 8822 8622 U — A
86y, 8tnn(ﬁ.,) 85; 0s 861y atm(p,,) 85; on ’
99; 80“ Qi 89; 89; i’i
86,y OBtan(fw) 863 86y; Otan(fw) 867
and then,
aUu ou
i + B___-___ — A”
ds on ’
where
-1
1 0 0 882 80;12 8912
80,; 8tan(By) 887
B = 862 8631 8623 8632 8622 8622
86;y Otan(Bw) 867 86y, 8tan(By) 863
30; 80; gfi 803‘ 802' 8_05_
86841 Btan(ﬂw) 85; 8041 8tan(ﬂ..,) 86;

The system is diagonalized through multiplication by the inverse of the matrix of eigen-
vectors of B,
ou

T‘l—é—— + T 'BTT

19U
s 0

=T"14",
n

Then, rewriting in terms of the vector of characteristic variables W = T-1U,

ow ow .,
3s T A an A%
the individual equations decouple. Here, A is the diagonal matrix of eigenvalues. These

eigenvalues are also the roots of the characteristic equation of B and represent the

tangent of the angle that the characteristic lines make with the external streamline.
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Empirical relationships, to be introduced in the following chapter, enter the analysis
through these Jacobian matrix elements. Calculation of reasonable characteristic direc-

tions, therefore, constitutes a demonstration of the coherence of the employed closure.
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Chapter 3

Empirical Relationships for Closure

3.1 Introduction

Equations 2.6 form the basis of the calculation method, but to make the problem deter-
minate, the number of unknowns contained therein must be reduced to three. This is
done by relating all variables to the three primary unknowns, 6,3, 67 and tan(f,,) using
assumed forms of velocity profiles together with empirical skin-friction and dissipation
relations derived from experiment. The dissipation formula requires the assumption of

a turbulence model.

The traditional methodology in three-dimensional closure has been to assume two-
dimensional-like behavior of the boundary layer in the streamwise direction. One for-
tunate outcome of this assumption is that empirical correlations of the streamwise vari-
ables in three-dimensional flows can draw a considerable amount of information from
the better-explored two-dimensional flows. Fortunately, there is a close experimental
resemblance between three-dimensional streamwise profiles and two-dimensional bound-

ary layers [10]. Such an approach is obviously most valid when the crossflow is smali.

In the crossflow direction, a suitable model for the velocity profile is formulated
in terms of the streamwise profile and is used to relate the crossflow variables to the

streamwise ones.

In this thesis, since the accuracy of closure is not the major issue, only equilibriurn
models of the flow are ccnsidered. More sophisticated closure which takes into account
turbulent lag effects important in three-dimensional flow (for example the shear-stress

vector lagging behind the velocity-gradient vector) have been widely used [18]. However,
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the extra effort entailed was not deemed necessary for this method.

It will be useful to define a set of shape factors that appear in the expressions in the
following two sections. These shape factors are simply ratios of the cunsidered variable

to 647 so that

H =$§7/6n1, Hg, = E1./0n, Hse =61*/611 and Hg, = 6,/61:.

In the following sections, the overbar notation will be employed to denote corresponding
incompressible values (where density is assumed constant through the boundary layer)

of compressible variables.

3.2 Streamwise Closure

3.2.1 Streamwise Velocity Profile

Turbulent boundary layers have a two-layer structure where the thickness of each layer
scales differently with Regy. Therefore, at least two independent parameters are needed

to adequately describe a velocity profile.

The analytical formula that is employed in this calculation method was developed by
Swafford [15]. It is the sum of two independent transcendental functions, one expressed

in terms of the inner variable 4 and the other expressed in terms of the outer variable

/9,

b
S —+ _y_ 57 ) 1/2 (2)
0,09 retan (0.095™) + (uc 016 tanh [a 3) |-

Here §+ = Reg, s = &;/|¢s| and

v at

- = b
ue aF
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where @} = (2/|¢4|)!/2. The factor s appears because this expression is valid for sepa-
rated as well as attached flows. The two parameters that describe the given boundary-

layer profile are a and b and these are functions of &y, H and Rey.

The compressible and corresponding incompressible values of 6 are related by

0.92 M2

b1
6 ~ 1.09+ M2

tanh{1.49(H - 0.9)],

a formula developed by Whitfield [23].

3.2.2 Skin Friction

Following the observation that the velocity distribution in the streamwise direction may
be represented by profile families developed for two-dimensional flows, it has often been
assumed that the streamwise component of skin friction may also be obtained by using
skin-friction relations applicable to two-dimensional flows [10]. The presence of the law-
of-the-wall as one component of the two-parameter family of profiles described abeve
enables one to correlate %} in terms of two integral parameters, for example H and
Rey,,, thereby yielding an expression for the streamwise component of skin friction.

The relation employed in this calculation method,

0.3e‘1'333

- . H
. (logm EO)L“M.MH ' (1.1 x 30 4) [tanh (4 B m) - 1] ’

was developed by Swafford [15]. The compressible value is given by

ci_l

cy F, ’

where

F, = 1+7;1M3
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Figure 3.1: Empirical variation of streamwise skin friction for M, = 0

for a gas with constant specific heat ratio 4, and a constant total enthalpy at the
boundary-layer edge. A representative family of curves is shown in Figure 3.1. As
expected for turbulent flow, the variation is very sensitive at low Reg but asymptotes
rapidly at higher Rey. The two-dimensional separation value for H also exhibits the

same behavior as a function of Reg.

The streamwise value of the shear stress, required by Equations 2.6, is related to

the skin friction through its definition,

—_ 1 2
Tlw = EPeQe Cf -

The assumption that the streamwise component of wall shear is related to the
streamwise velocity profile implies that the law of the wall applies to the velocity profile
in its usual two dimensional form. Strictly, this is incorrect. This assumption is likely to
be of more consequence, however, in methods employing differential equations while in
the integral methods, errors thus introduced are unlikely to be more serious than those

originating from other sources [10].
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3.2.3 Kinetic-Energy Thickness

A thickness E;; that depends only on the streamwise velocity in the boundary layer is
defined such that

)
PaiEn = fo pu(u? — u?)dy.

This thickness is the streamwise component of 8] and can be correlated to H and Reg,,

through the streamwise velocity profile. The correlation employed is one due to Drela [6],

(1.505 + < + (0.165 — L& | H—B)"* if A < H,
Re. v Rep
HEu = W
4 7 2 | 0.04 In(Reg) e i
1.505 + === + (H — H, + 0.007 =) if H>H,,
Reo R (H—H + )
{ °7 In(Reg)
where
H,=3.0+ % .

The corresponding compressible quantity is obtained from the relation

He = Hg,, +0.028 M?
Bu = 7710014 M2

due to Whitfield et. al. [22].

In addition to this relation, another proposed by Whitfield et. al. [23] was consid-
ered. It produced reasonable results almost indistinguishable from those using Drela’s
equation. However, for one calculation (the van den Berg/Elsenaar infinite wing in
Chapter 5) it failed to yield characteristic directions coherent with the computed result.
The failure was presumably due to an assumption in their derivation, as Drela notes,
that effectively eliminated the dependence on Reynolds number [6]. Consequently, the

sensitivity of the characteristic directions to the Jacobian-matrix elements involving
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Figure 3.2: Empirical variation of streamwise kinetic energy for M, = 0

Hg,,, especially at low Reynolds numbers, would likely have yielded highly-erroneous
results. Drela’s expression does not include this simplification. The variation of Hg,,

with H is shown for two values of Rey in Figure 3.2 .

3.2.4 Density Thickness

The correlation for compressible density thickness employed is only a function of the

shape parameter and Mach number,

0.064
H-038

Hsse = [ + 0.251] M2,

and is given by Whitfield et. al. [23]. It is also necessary to define an auxiliary density
thickness,

ré
Py = jo (Pe — p)dy,

which is not to be confused with é;* or §3*. Donegan [16] correlated Hp, with H and
M.,
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Hq, = M?(0.185 H + 0.150) .

It is required in some definitions of crossflow variables in a later section.

3.2.5 Dissipation

The coefficient of dissipation due to the surface-normal gradient of velocity in the
streamwise direction was derived by numerically evaluating the dissipation integral us-
ing a constant laminar plus turbulent shear stress in the region very near the wall, an
eddy-viscosity model in the inner and outer regions and the streamwise velocity profile

of Whitfield et. al. [16, 22),

o 0009 - 0.011e~%158 | 3.0 x 10-5¢2117H? | g(Req) 0574
D= F, (1 + 0.05 M14) ,

where cp, = D1/p.q® and

0.438 — 0.280 H if H <35
0.160(H — 3.5) — 0.550 if H > 3.5.

a=

This expression is also taken from Whitfield et. al. [23]. A representative family of

curves is shown in Figure 3.3. The variation is quite severe at low values of Reg.

3.3 Crosswise Closure

3.3.1 Crosswise Velocity Profile

There are two widely used crossflow models. The earlier was proposed by Mager (1952)
and is parabolic in the hodograph plane [8]. The other was suggested by Johnston
(1957) and is hodographically triangular [7]. Both of these models are unidirectional
so that the crossflow velocity does not change sign along the normal to the surface.
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Figure 3.3: Empirical variation of streamwise dissipation for M, = 0

The Johnston model, however, contains two parameters, one more than Mager’s, and is
hence a considerable improvement over many of the earlier models. More sophisticated
models that allow bidirectional skewing, for example that of Smith (1966) {13], have
also been proposed but have produced worse correlations with experiment as compared
to the Mager or Johnston models [21, pg. 544] in spite of the intrinsic restriction
in the uni-directional models of the limiting-streamlines being normal to the surface
isobar [13, 21].

The crossflow model employed in this calculation method is Johnston’s triangular
model which defines two distinct layers. In the thin layer adjacent to the surface, the

crosswise velocity is related to the streamwise one by

w

- = ta'n(ﬂw) .

- =
Over the remaining portion of the boundary layer,

- af- ()

The parameter A is a measure of the crossflow magnitude and can be related to §,,.

Smith provides such a relation,
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\/c,c1 cos(By)(1 + 0.18 M2)
0.10 — 4 /cy, cos(By,)(1 + 0.18 M?) B

4 = —tan(fy)

which includes the effects of compressibility [14].

While A appears explicitly instead of 8, in the remaining relations, the latter is,
nevertheless, chosen as a primary variable because it is uniquely related A. The reverse

is not true.

38.3.2 Skin-friction

Following Smith [13, 14] and Myring [9], the crossflow component of skin friction is
easily related to the streamwise one through the limiting-streamline angle,

cs, = — tan(By) ¢y, -
The minus sign appears due to the convention of considering counter-clockwise angles

positive. The crosswise shear stress, as required in Equations 2.6, is identically related

to the skin-friction,
(1
To, = Epeqe Cfy .

3.3.3 Dissipation

The dissipation due to the crossflow is expressed in terms of that due to the streamwise

flow and the parameter A,

|A|+10.0
lA' 1020 cp, +4.0
D2 = (14667 D, + 3.0) ’

where cp, = Dy/p.q3. This correlation was derived by numerically evaluating the
integral
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J u
[ 1@l ay,

using Cebeci-Smith’s two-layer eddy-viscosity model [2] and the streamwise velocity

profile discussed in § 3.2.1.

38.3.4 Crossflow Thicknesses

The remaining thickness variables can be readily related to the streamwise ones through

the shape factors using the assumed shape of the crossflow velocity profile. These are

listed below.
0 = —-Aby
& = 021(H - Hop)
02 = —A 0y

3 =A(0, - &%)
E12= 612 + 621(HE,, — 2)
En= -0 — AEy
Eyy= —A(E3 — 622)

The kinetic-energy thicknesses are defined to be

5
PetSEr2 = ‘[) pw(u? — u?)dy,

6
pediEn = — /(; puw? dy
and
3 5 3
Peq. B2z = —fo pudy.

These thicknesses are simply components of the previously-defined thicknesses 6} and

*
29
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0} = By + Eyy

and

0; = Ey2 + Ea,.

In addition, there is the identity

012 = 021 - 5; .

It is important to point out that these relationships were derived using only the
outer portion of Johnston’s model, which is equivalent to assuming that the profile
w(u) is linear in the hodograph plane. Obviously, the hypothesis of linearity is wrong
near the wall because of the no-slip condition, but the concerned region is very thin.
Cousteix and Houdeville claim that the resulting error in the estimated thicknesses is
negligible even if the maximum value of w occurs where u/q. is approximately 0.6 [4].
Consequently, this approximation is expected to be valid and is unlikely to significantly

affect the accuracy of the crossflow results.
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Chapter 4

Numerical Scheme

4.1 Introduction

In the previous chapters, three integral equations were derived and the number of un-
knowns was reduced to match the number of equations. This chapter contains a de-
sciiption of the local discretization of Equations 2.6 and the Newton-Raphson-based
technique for their solution. The coupled discrete equations are solved simultaneously
along a row of cells aligned roughly perpendicular to the external-flow streamlines, and
this procedure is repeated for subsequent downstream rows. Figure 4.1 depicts a row
of cells and illustrates the labeling convention employed for cells and nodes in this

document.

4.2 Discrete Formulation

The major steps involved in the construction of a a full set of discrete equations are

described individually and then assembled in the last subsection.

4.2.1 Coordinate Systems

The basic computationzl element is a planar cell, individually constructed from the
coordinates of the body in the global Cartesian system. Accordingly, a local Cartesian
cell coordinate system can be defined as illustrated in Figure 4.2. The process of con-
structing these cells effectively corresponds to locally laying the surface-hugging grid
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out flat. A key feature of the numerical algorithm, as discussed previously, is that the
surface-defining grids can be non-orthogonal.

The local cell-based coordinate system, denoted (z, z), in the current algorithm is
assigned so that the z-axis is parallel to face 1-2 of the the cell, as shown in Figure 4.3.
The x-axis corresponds roughly to the external streamline direction and to the solution
marching direction. A right-handed coordinate system will, therefore, correspond to the

y-axis pointing out of the cell.

Two additional coordinate systems are defined at each of the four nodes. The first is
denoted by (s,n), and is defined by the external flow streamline at the node so that s is

along the streamline direction and n-is along the crossflow direction. This is the diserete
version of the analytic streamline system discussed earlier. The second is defined so that
at node 1, for instance, the z; coordinate is parallel to edge 1-4 (and the z; coordinate
perpendicular to that). This second system is necessary only to define the direction
of the external flow streamline in terms of the grid. However, in order for this second
nodal system to be meaningful, the geometry of the surface cell adjacent to edge 3-4
also has to be defined in the coordinate system of the primary cell (bounded by nodes
1,2,3 and 4).
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Figure 4.2: Global and cell coordinate systems

Figure 4.3: Cell and nodal streamline coordinate systems
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4.2.2 Rotational Transformations

The embpirical relationships of Chapter 3 are only applicable in the (s,n) coordinate
system. The variables thus determined at each of the four nodes have to be rotated into

the common cell coordinate system for inclusion in the discretized equations.

Following the convention of considering counterclockwise angles positive, transfor-
mation relations for a generic rotation a are readily obtained by substituting the rotated

velocity components (i, @),

i cos(a) —sin(a)) [u

W sin(a) cos(a)) \w
into the variable definitions. The resulting relations are listed below.

81 = cos(a) 6% — sin(a) 67

83 = sin(a) 6% + cos(a) &

07 = cos(a) 8 — sin(a) 6}

03 = sin(a) 6% + cos(a) 8}

81*= cos(a) 62* — sin(a) 63*

§3*= sin(a) 62* + cos(a) 63*

011= cos®(a) 8., + sin*(a) 0., — cos(a) sin(a) (0z; + 0.2)
02,= sin%(a) 0., + cos®(a) 0., + cos(a) sin(a) (02, + 0.-)
0,2= cos?(a) 0, — sin®(a) 0, + cos(a) sin(a) (02 — 6..)

021= cos?(a) 0, — sin®(a) ,; + cos(a) sin(a) (02 — 0..)

Rotation of all vector quantities into the local cell system before differencing properly
accounts for the grid non-orthogonality. These transformations are effectively equivalent
to adding the necessary metric-gradient terms that arise when the equations are written

for a general curvilinear coordinate system.
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4.2.3 Derivative Terms

The derivative terms are discretized using Green’s theorem,

op
f;sz_—//so—zds

and

ide:[,{g%g—dS,

where P(z,z) and Q(z,z) are continuous functions and have continuous first order
partial derivatives in a region, 5. The first order derivative terms in Equations 2.6 on

a cell of area S are, thereiore, approximated by

oP 1[(PL+P P, + P P; + P, P, + P,
= .= [(Lz)AZM + LL‘*)AZM + MAz.;s + (—4+—1—)A214]
0z S 2 2 2 2
and
ad 1[(P+P P, + P P; + P, P, + P
8_2 =3 [—( 1 3 Z)Aa'-:u + (P2t Py) 2; 3)A232 + (P + Py) 3; 4)A=B43 + (PatP1) 4; 1)A214] ’
where the face lengths

Azpn=2z—2,
Azgy=2z3 — 2,
Azy3=2z4 ~ z3
A214=21 — 24
Az21=22 -2
Azzz=23 — 23
Azy3=z4 — 23

Azy4=21 — 24
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are defined in a counterclockwise direction. The numeric subscripts refer to the nodes

in Figure 4.3. The area S is calculated by

1
S = -5 (A231A24z - Az42Az31) .

4.2.4 9Odd-Even Decoupling and Source Terms

The finite-volume box scheme developed here is equivalent to central-differencing the
derivative terms along the considered row of cells on a uniform Cartesian mesh. Hence,
given that the analytic equations have no intrinsic dissipation terms, the numerical
scheme permits sawtooth oscillations in the selution which not only mask the physics
of the flow but also cause substantial stability problems.

The problem of saw-tooth modes is largely rectified by weighting or biasing the
values of variables at each of the four nodes in the evaluation of the source terms in
Equations 2.6 on a cell. (This is achieved at the expense of some formal numerical

accuracy.) For instance, the displacement thickness is calculated from
G=01-n)[A-2& + 286, +9A&, + (1 -2 ],

where 7 and A control the weighting in the z and z directions, respectively. The formu-
lation of biasing in this manner is consistent because the sum of the coefficients at each

of the four nodes is unity.

A demonstration of the effectiveness of source-term weighting in mitigating saw-
tooth modes is provided in Figures 4.4 and 4.5. The associated cause will become

evident in the section on Jacobian-matrix structure.

4.2.5 Local Construction of Discrete Equations

Each row of cells is solved separately, as indicated earlier. For each of these rows, the

constituent cells are visited individually at each iteration and a cell residual-vector, R,
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is constructed. The individual procedures involved, described in the preceding sections,
are assembled here. The method developed in this thesis is a box scheme; the solution
is, therefore, stored at the four nodes. The scheme is formally second-order accurate in

space with no source-term weighting.

The vector of primary variables, U, is known at nodes 1 and 2 from the solution at
the previous upstream row. The values at nodes 3 and 4 are unknown. In OMAR, they
are initialized to be those at nodes 1 and 2 respectively, recognizing that these values
are all in the local (3, n) coordinate system.

The procedure employed at each of the nodes at a cell is as follows. First, the
closure formulae are applied to determine all the non-primary unknowns from U, in
the (s,n) system. Next, these unknowns are rotated into (z,z) coordinates. Then,

in Equations 2.6, which are reproduced below for convenience, the derivative terms are

approximated by the finite-volume method of § 4.2.3 and the source terms are evaluated
as described in § 4.2.4. The derivatives of velocities are also evaluated as described in
§ 4.2.3 from their known components in the (z, z) system at the nodes and then simply

multiplied to the remaining snurce-term cell-averaged variables.

a% (peg26z2) + ‘,% (P420e:) + pege ,% + peqeﬁ‘% = Ty,

o, B,
9z (Peqe zz)+ 9z (Peqc zz)+Peqe = a +Pe e6 a = Tze

8 3% a 3% *% aqe 12 8q§ _
%(peqeaz) + Eg(peqeoz) + pcqe&z a + peqeﬁz az =2D

The system of three discrete equations, thus developed, can be expressed as a function of
the unknowns by writing the residual vector R as a function of U at the two downstream
nodes 3 and 4,

R(U;,U,) = R((611)3, tan(Bu)s, (67)3, (611)4, tan(Buw)s, (61)s) = 0. (4.1)
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4.3 Initial Condition

The term initial condition is used by analogy to the corresponding time-marching
scheme. For the boundary layer, an initial condition needs to be prescribed along
the first row of cells to start the calculation. In general, fluid has to be entering the
calculation domain along this initial row of cells to satisfy the characteristic direction re-
quirement. Usually, in calculations performed to compare with experimentally-obtained
results, the initial condition is provided by the experiment. This is the case with the
first set of results in this thesis.

For a wing calculation, the initial condition can be generated by solving the attach-
ment line equations. For turbulent flow, this is an involved effort (see, for example,
Cumpsty and Head [5]). In OMAR, the initial condition is prescribed from the solution
of the incompressible equations for laminar flow using Falkner-Skan profiles to generate
a value for 6} at the nodes on either side of the attachment line [3]. The assumption that

the flow is locally identifiable with the flow on the leading edg
swept wing is made. In addition, a value for H is specified to yield the initial condition
for 6,1, while the initial value of 3, is approximated to be zero. This process only
requires du./dn at the attachment line and the laminar viscosity x as inputs. While
this approach yields slightly inaccurate initial conditions, it is still employed because,
even for very high freestream Reynolds numbers, Reg,, is very low near the attachment
line. Furthermore, the strong favorable pressure gradient which exists just downstream
will tend to make conditions over the major part of the wing comparatively insensitive

to conditions on the attachment line [5].

4.4 Boundary Conditions

Boundary conditions can be applied along the two sides of the domain parallel to the
marching direction. The boundary condition along the remaining side was discussed in

the previous section.
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Along a row of N cells, there are 3N+3 primary unknowns but only 3N discrete
equations. Therefore, three additional equations need to be supplied. This requirement
is merely a numerical consequence and is distinct from physical issues although, as will
be discussed shortly, the location of the application of these additional equations is

subject to the flow solution.

The requirement for the additional equations is fulfilled by the specification of bound-
ary conditions. While the numerical scheme allows a generous latitude in the nature
of these conditions, one particular type is empirically found to be most suitable for the

generic case.

In general, simple Dirichlet boundary conditions are found to trigger large-amplitude
saw-tooth modes in the solution. Therefore, despite their obvious utility in cases where
the physical state of the boundary layer at the edge of the domain is known, they are not
considered here. Similarly, Neumann boundary conditions of the type where a certain
gradient is enforced also usually excite saw-tooth oscillations. The most successful
boundary conditions tested are those where the edge node is simply extrapolated from
the two adjacent interior nodes. These will be referred to as zero-curvature Neumann
conditions. For instance, the displacement thickness at the boundary is calculated from
61, =261, | —61, ,. Of all the various types tried, zero-curvature boundary conditions
are empirically found to least excite saw-tooth modes. Figure 4.6 shows the dramatic
difference in the solution when zero-curvature conditions are applied instead of zero-

gradient ones.

Following the discussion in § 2.4, it is clear that domains of influence and dependence
dictate the application of boundary conditions along those edges of the domain where
characteristic directions indicate the passage of information into the domain. In prin-
ciple, as many boundary conditions as their are characteristics crossing the boundary
are required. A corollary to this is that in regions where characteristics indicate that
information is outbound, ro conditions are needed; if any are applied, they will exert

no influence on the solution in the interior of the domain.

Boundary conditions should ideally be in a form where the values of the characteris-
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Figure 4.6: Comparison of zero-gradient and zero-curvature boundary conditions

tics are enforced depending on their directions relative to the domain boundary. Clearly,
specifying all three characteristics is equivalent to specifying U. Situations where, at
a boundary, some characteristics are outbound and others inbound are expected to be
infrequent and transitory. Enforcing U in such situations is, therefore, found to be
justified. It is sensible to prescribe either all three primary variables, or none at all,
regardless of the number of inbound or outbound characteristics. This is not a problem

in practice.

The effect of boundary conditions on the solution is limited to regions bounded by
the path traced by the most angularly-directed characteristic, by virtue of the existence

of a domain of influence.

In OMAR, zero-curvature boundary conditions are applied at both side boundaries,
unless otherwise specified. Three extra equations replace the three residual vector com-

ponents at one end of the row of cells.

4.5 Solution Method

The previous section described the construction of the system of discrete Equations 4.1
for a row of cells in terms of U at the downstream nodes. This system is solved in

OMAR using the well-known Newton-Raphson method.
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4.5.1 Newton-Raphson Method

The basic Newton-Raphson method for a system of non-linear equations is exactly

analogous to its scalar analog. The vecter of equations F
F(V)=o0,

is solved where V is the vector of unknowns. At the m®" iteration level, the Newton-

Raphson solution procedure is
AaF|™ __ .

(22T gy = pm.
The variables at the next iteration level are simply updated

Vm+1 =V™ 4+ §V™ ,
where

oF™"
m _ | =

V™ = [ F1% F™.
These updates can be under-relaxed for strongly non-linear equations. The Jacobian
matrix [g‘Fy ™ must be computed and inverted for each Newton-Raphson step. This

system represents the partial derivative of each of the equations in the vector F' with

respect to each of the variables in V.

4.5.2 Jacobian-Matrix Structure
An interior row of the Jacobian-matrix consists of two blocks. Each block is a 3x 3 matrix

representing the sensitivity of the vector of residuals at a cell R; to the vector of primary

unknowns Uj; at either node j or node j+1,
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S8R, 8R; OR,
86;; 8tan(Bw) 863

OR] _ lsr, _sm, oR,
U |; 80,1 Stan(Bv) 857
8Ry _O6Ry _ 8Ry
86y atnn(ﬁ.,) 85; j OF j+1
Each element of the 3x3 block is constructed from individual components using
the chain rule. In order to illustrate this, an overbar notation is introduced first for
convenience to denote the residual written in terms of less fundamental constituents.

Then, using the first component of R, for instance,

RI(U49 Us) Rl(ozzn zT3) ozzg 3 ozzs’ 6 :s cf.) ’

the Jacobian is constructed as follows:

6R1 R, OF; 961, 'aR1 962 ] N [ OR; 802,
0011 9611, 3912 86y, 4 _3021 3011_ . _3922 3011_ 4
Jfomos] | [0Riden] | [0R1de,
862 3011 14 _8(!!l 3011- ach 8011

In the expression above, some derivatives are related to empirical relationships, for
example 30;,/30;,. These are also constructed using a series of chain rules. An example

of the construction of the other kind of derivative is

OR _ 0F; 0., | OF; 06
86y, ~ 86,. 86, ' 89.,80,,

Here, derivatives of the type 30,./06,, are obtained from the rotational transformations.

All Jacobian-matrix elements are assembled at the FORTRAN level within OMAR
through simple multiplication and addition of constituent elements. Such an approach
simplifies program debugging and provides a framework for readily incorporating changes,

for example in empirical relations, in future versions of the code.

The discretization scheme results in a Jacobian matrix that is bidiagonal in the

interior of a row. Therefore, the matrix can be structured so that either the upper or
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Figure 4.7: Upper-diagonal Jacobian-matrix structure

lower diagonal can be employed. The two possibilities are illustrated in Figures 4.7
and 4.8. The structure in both cases is recognized to contain the zero-curvature type
boundary condition applied at both ends of the row. One set of residual equations at

either edge cell is overwritten by one set of the boundary conditions.

The efficacy of source-term weighting in suppressing saw-tooth modes can be under-
stood in terms of the Jacobian-matrix structure. In the case of the upper diagonal being
filled, assigning a value less than 0.5 to A results in increasing the diagonal dominance
of the matrix. Similarly, a value greater than 0.5 increases the diagonal dominance of
the lower-diagonal matrix. On the other hand, assigning to  a value greater than 0.5
increases the norm of the Jacobian matrix but does not significantly affect its diagonal

dominance. Therefore, biasing 7 is not expected to affect the appearance of saw-tooth

modes in the solution. This expectation is empirically confirmed.
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Chapter 5

Results and Discussion

Some results from two calculations are presented in this chapter. The first was performed
to simulate a quasi-two-dimensional flow. The primary intention was to compare the
computed results with a well-known experiment in order to ascertain the veracity of the
employed empirical closure. The latter calculation was performed over a finite swept
tapered wing mainly to demonstrate OMAR’s three dimensional capabilities.

5.1 An Infinite Swept Wing

5.1.1 Overview

The experimental results presented here were obtained on an “infinite swept wing”
under incompressible flow conditions [17]. The experiment was conducted by van den

Berg and Elsenaar at The Netherland’s National Aerospace Laboratory in 1972 [17].

The wing is actually a flat plate with an adverse pressure distribution induced on it
by a suitably-shaped body positioned near the plate. The experiment was designed so
that, over the forward portion of the experimental model, the pressure remained nearly
constant before being made to increase gradually through the presence of the body.
The pressure-gradient and sweep combine to induce three-dimensional separation in the

vicinity of the trailing edge.

Considerable care was exercised in the attempt to simulate infinite-wing conditions.
The boundary layer could be maintained very nearly quasi-two-dimensional with the

help of guide vanes on either side of the region of interest. The positions of the mea-
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surement stations relevant to this calculation are depicted on the experimental model
along with other notable features in Figure 5.1. The line of equally-spaced measurement

stations was 0.90 m long. The angle of sweep of the wing was 35°.

Detailed measurements and descriptions of the experimental techniques are provided
by the authors. This experiment has been extensively used to compare details of closure

assumptions in many different kinds of numerical methods [4, 14, 18].

5.1.2 Calculation Details

The calculaticn was performed on a 200x3 grid assuming quasi-two-dimensional flow.
One set of grid-lines was parailel to the freestream direction and the other to the wing
leading edge. The computational domain corresponded to the region enclesed by sta-

tions 1 and 10 in the experiment.

A cubic spline-interpolation technique was employed to smooth the supplied external
velocity measurements required as an input to OMAR. Figure 5.2 is a vector plot cf the

velocity field. The spanwise component of velocity gradually increases downstream.

The initial condition used was the set of experimentally-obtained values at the first
station. A simple zero-gradient boundary condition along the wing isobars, and thus
one set of grid lines, was enforced along the side of the computational domain with the
inflow. The use of this boundary condition meant that the Jacobian matrix could be

efficiently inverted by the established method for block-tridiagonal matrices.

The calculation was performed in the incompressible mode; the Mach number was

set to zero in the empirical relations.

5.1.3 Comparisons with Experimental Measurements

The computed results are presented in Figures 5.3 to 5.7 as the solid line. The
marching coordinate has been scaled by a length of 1 m which is on the order of the
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Figure 5.1: Schematic of van den Berg/Elsenaar experimental setup
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Figure 5.2: External-velocity vector plot
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wing chord.

The comparison for Reg,, is good up to the station near z/L = 1.0, where the
spanwise flow is still a small fraction of the flow in the marching direction. This is also
the case with the comparison for 3,,. The negative value of 3,, indicates that the limiting
streamlines are turning spanwise faster than the external flow streamlines with marching
distance. The tuft plot in Figure 5.4 vividly illustrates this turning. The calculated
three-dimensional separation line occurs where the limiting streamlines coalesce and this
is found to be close to the experimentally observed location. Experimentally, separation
is observed between stations 8 and 9, or where z/L ~ 1.3. Figure 5.5 (b) is a plot of
the variation of the three calculated characteristic directions, shown in broken lines,
juxtaposed against the solid line for 3,,. The three characteristic lines are observed to
be oriented largely within the angular limits defined by the external flow streamline (3,,,
4 = 0) and the limiting wall streamline. Furthermore, the line labeled v, is evidently
that associated with the limiting wall streamline.

The computed values of ¢; and H compare less favorably with the experimental
data. However, their values relative to experiment are consistent with one another:
where ¢y is under-predicted, H is over-predicted. The trend of c; closely follows that
of other published numerical case studies, employing equilibrium closure, for the same
experiment [14, 18]. Cemparisons are good to z/L = 1.0 but almost universally poor be-
yond, providing strong evidence for the widely-acknowledged inadequacy of equilibrium

closure for situations with separation and large crossflow.
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5.2 A Finite Swept Tapered Wing

5.2.1 Overview

The develcpment of a compressible boundary layer over a finite tapered swept wing,
at the moderate angle of attack of 1.5° and a Mach number of 0.3, was calculated to
demonstrate the full three-dimensional capabilities of OMAR. The wing section was a
NACA 0012 airfoil. The external inviscid velocity and density distributions, required
as inputs in OMAR, are supplied by a potential flow solver [11].

The calculation was performed at a large Reynolds number to ensure that the so-
lution throughout the domain was within the range imposed by the turbulent-flow em-

pirical relations.

While the computed results arz not compared with experiment, they are nevertheless
found to be physically realistic. Comparison with experiment was precluded by the
sheer volume of data that would have been required for a calculation of this nature.
Furthermore, most of the external flow data available in the literature are in terms of
pressure coefficients and currentlyy, OMAR only has the ability to handle velocities as

inputs.

For clarity, the graphical presentation that foliows has been organized in a concise
and consistent format; the lower-surface distributions are shown on the left and the

upper-surface ones are shown on the right.

5.2.2 Calculation Details

The wing-surface meshes are defined by the inviscid solution and are shown in Figure 5.8.
The meshes on the upper and lower surfaces are identical, measuring 57x23, with the

greater number of nodes in the chordwise direction.

The boundary-layer computations were performed independently on the upper and
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Figure 5.8: Plots of finite-wing computational meshes

lower surfaces. The actual tip of the wing was neglected in both cases because of the
large curvature and so no attempt was made to link the two computations along that
row. The practice of referring to the tip-most row of nodes as the tip will, nevertheless,

be employed in the presentation of the results.

It is important to note that the global z-coordinate direction on the lower surface is
opposite to that on the upper surface. This is necessitated by the convention that the
y-coordinate increase in the direction, normal to the surface, on the side with the flow.

All coordinates are normalized using the wingspan.

The inviscid speed and density distributions used as external-flow inputs in the
calculation are shown in Figures 5.10 and 5.9 as contour plots. Both variables have been
normalized against their freestream magnitudes. The inviscid velocity is aiso shown as
a vector piot (at only a selected number of nodes to avoid unnecessary cluttering) in
Figures 5.11. It is seen that the external fiow is nominally twe-dimensional over most
of the wing except in the leading edge and tip regions, where the spanwise components

of velocity are significant.

The calculation is performed for a freestream Reynolds number, based on the mid-
wing chord, Re., of 175x10°%. The typical magnitude of Re, for a large transport aircraft
in cruise is about 50 X 10 and the flow, under these conditions, is usually turbulent
over the entire wing surface. The abnormally large Reynolds number employed for this

calculation was necessary because the method employed to generate the initial condition

60



0.65 Lower surface Upper surface

0.65
-l -
4
0.40 998 0.40 r_———_—_—_____,_—————__——
290 /
T z A .93
895 98
0.16-
0.15 o1
—0.10 v . v ' v ; ! -0.10 T  § T T T T T
000 025 050 075 100 000 025 050 075  1.00
z z
Figure 5.9: External-density contour plots
0.65 Lower surface 0.65 Upper surface

Figure 5.10: External-speed contour plots

Lower surface Upper surface
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Figure 5.12: Spanwise variation of initial Reynolds number

(see § 4.3) yielded values of Rey,, , near the attachment line, too low to sustain turbulent
flow at an Re, of 50 X 10%. Such an initial condition would thus have been out of range of
the empirical correlations. The initial conditions corresponding to an Re. of 175 x 108,
along the gridlines on either side of the attachment line, are shown in Figure 5.12. For
the upper surface, it is seen that Reg,, is barely in the range considered necessary for

turbulent flow.

For the initial condition calculation, the initial shape factor is specified to be 1.3.
The knowledge of the location of the attachment line is required a priori by OMAR, in
this case it lies between the row of nodes forming the leading edge and the adjacent row

on the lower surface.

The restriction on Re. is due entirely to the method employed to approximate the
initial condition at the wing leading edge, and therefore will disappear with the use
of a more accurate method. Furthermore, for this particular calculation, the magni-
tude of Re. is not a critical issue because interest is largely confined to the qualitative

performance of the method presented in this thesis.

For both surfaces, the calculations were performed with the zero-curvature boundary

condition imposed at the root and at the tip. It is empirically verified that over the upper
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surface, a tip boundary condition is necessary to successfully compute a solution. This
necessity is attributable to the characteristics crossing the domain boundaries because

of the physical presence of the wing-tip vortex.

In the evaluation of the residual source terms, X is set to 0.15 and 7 is kept at 0.50.

The upper-diagonal Jacobian-matrix structure is used.

The residual convergence rate for each row was very high, as expected. There was
a reduction of five orders of magnitude within 3 or 4 Newton-Raphson iterations. No

underrelaxation was found to be necessary.

5.2.3 Computed Results

Three sets of computed results, one each for Rey,,, B, and H, are shown in Figures 5.13
to 5.19. Each set consists of contour plots and line plots along three chordwise stations
for both the upper and lower surfaces: the root, near midwing and at the tip. In
addition, for B, “tuft” plots are shown to indicate the limiting streamline directions.

Note that counterclockwise angles are considered positive.

Unlike the infinite swept wing case where a sustained adverse pressure gradient
was applied to induce three-dimensional separation, it is found here that, for the Re.

considered, the flow is attached over the entire wing surface.

The boundary layer is observed to be marginally thicker on the upper surface than on
the lower surface in terms of Rey,, near the trailing edge. In both cases, the variation is
smooth and approximately two-dimensional in the direction perpendicular to the leading
edges. The only notable exception appears to be in the tip region on the upper surfacc
towards the rear of the wing. Here, the boundary layer is seen to thicken rapidly. This

region also contains the large spanwise flow maintained by the wing-tip vortex.

The variation of 3, confirms that the most severe three-dimensional effects are
largely restricted tc areas near the leading edges and wing tips. Immediately down-

stream of the leading edge, drastic variations are seen. These are numerical effects,
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Figure 5.15: Goinputed limiting-streamline-angle contour plots
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presumably a consequence of the slightly incorrect initial condition for 3,, the low
values of Reg,, and the strong pressure gradient associated with the attachment line.
However, the solution quickly becomes more placid with marching distance. As noted
in § 4.3, these variations are not expected to have a substantial effect on the physical

accuracy of the solution over the rest of the wing.

The direction of limiting streamlines is well known to be highly responsive to the
gradient of pressure. The pressure field around the wing produces three topologically
distinguishable regions in terms of 8.

The most extensive of these regicns is caused by the wing sweep creating a general
gradient of pressure perpendicular to the freestream direction over most of the wing.
Alternatively stated, the isobar lines are swept. Here, the limiting-streamlines are di-
rected more towards the tip than the external-flow streamlines. The magnitude of 3,
is small but is, nevertheless, discernibly negative on the upper surface and positive on

the lower surface.

Secondly, in the vicinity of the attachment line, the sharply decreasing pressure
tends to generate large positive values of 3, on the upper surface, and large negative
values on the lower surface. While these trends are initially obscured by the erratic
numerical behavior over most of the span, they nevertheless seem to persist nearer the

tip and are opposed by the sweep of the isobars.

Thirdly, near the tip on both surfaces, the pressure field responsible for the wing-
tip vortex dominates. It is in tandem with the pressure gradient near the attachment
line on the upper surface but in opposition to it on the lower surface. Consequently,
on the upper surface near the leading edge and tip, there is a sharp increase in 3, to
near midchord where the decreasing influence of the attachment-line results in a drop
in By. On the lower surface, the attachment-line pressure gradient initially causes 3,
to decrease but, towards the rear, the pressure field associated with the wing-tip vortex

causes 3, to rise sharply.

Juxtaposed on the these last two pressure field effects is the previously-discussed
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influence of swept isobars. On the lower surface, the contour of zero 3,, extends from
the root to near the tip where it turns downstream and meets the ¢ip near the trailing
edge. This contour separates the region influenced by the attachment line from that
influenced by the wing-tip vortex pressure field and swept isobars. On the upper surface,
the contour of zero B, also extends from the root to near the confluence of the tip and
leading edge and then tures sharply near midchord to meet the trailing edge a significant
distance away from the tip. This contour separates the region influenced by the mutually
reinforcing attachment line and wing-tip vortex fields from that influenced by the swept

isobar lines.

The information on the orientation of the limiting wall streamlines intrinsic in 3,, is
also a function of the external flow streamline directions because 3,, is fundamentally
defined in the streamline coordinate system. The tuft plots account for the variation in
the direction of external-flow streamlines and, hence, show the physical appearance of
the direction of the flow in the wall limit.

The effects of the pressure field are also manifest in the H distributions, although
to a less discernible extent. The most readily observed relation between the pressure
gradient and H is the two-dimensional version of separation; an adverse gradient pro-
motes separation while a favorable gradient opposes it. Therefore, as is observable in
Figures 5.18 and 5.19, regions of decreasing H correspond to favorable pressure gradi-

ents.
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Chapter 6

Conclusions and Future Work

This thesis has developed a novel numerical method for solving the three-dimensional
integral boundary layer equations on non-orthogonal grids. The chief singular achieve-
ment of the method is the application of a finite-volume formulation that keeps the
equations independent of surface and grid metrics. This results in substantial syntactic

simplification and great flexibility in the choice of grids.

The use of an integral form of the equations yields a very fast method; the calculation
on the finite wing takes only about 15 seconds on a DECstation 5000. In terms of integral
variables, this method is as accurate as many differential, equilibrium-closure methods

reported in a recent Eurovisc-Workshop [18].

The contextual basis of this thesis, as outlined in the Chapter 1, was tc develop a
boundary layer method with the eventual aim of incorporating it inte a viscous/inviscid
code. The use of the Newton-Raphson technique is very helpful in this regard; the
elements of the Jacobian-matrix can be appended to the global Jacobian matrix in a

Newton-Raphson-based Full-Potential code to develop a global coupled scheme.

While this thesis presents a complete working computational method, there are
nevertheless a few improvements that would enhance its robustness and place it on a
less ad hoc basis. The most important of these is to devise a better alternative to the
zero-curvature boundary conditions and source-term weighting to ameliorate odd/even
decoupling. Currently, this is envisioned to be achieved by upwinding characteristic
variables through an idea borrowed from the concept of retarded density in the solution
of the Full-Potential equation. Such an approach would largely maintain the current

compnter program structure.
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Improvements in the empirical correlations, especially at low Reg,,, can be made by
replacing the currently-employed correlations with more accurate ones. These can be
gleaned from the emerging literature. As has already been mentioned, the structure of
the program readily permits such changes. In the longer term, the equilibrium model
may, perhaps, be dropped in favor of one based on a transport equation, especially if it

incorporates a three-dimensional law of the wall.

The empiricisms can be easily extended to laminar flow through the assumption
of Falkner-Skan streamwise and Cook crossflow profiles. This is a necessity in the
wing attachment-line region to permit realistic flight Reynolds-number sclutions to be
computed. However, reliable transition criteria in three dimensions will then have to be

devised.
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