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ABSTRACT
Scienti�c and business practices are increasingly resulting in large
collections of randomized experiments. Analyzed together multiple
experiments can tell us things that individual experiments cannot.
We study how to learn causal relationships between variables from
the kinds of collections faced by modern data scientists: the number
of experiments is large, many experiments have very small e�ects,
and the analyst lacks metadata (e.g., descriptions of the interven-
tions). We use experimental groups as instrumental variables (IV)
and show that a standard method (two-stage least squares) is bi-
ased even when the number of experiments is in�nite. We show
how a sparsity-inducing l0 regularization can (in a reversal of the
standard bias–variance tradeo�) reduce bias (and thus error) of
interventional predictions. We are interested in estimating causal
e�ects, rather than just predicting outcomes, so we also propose a
modi�ed cross-validation procedure (IVCV) to feasibly select the
regularization parameter. We show, using a trick from Monte Carlo
sampling, that IVCV can be done using summary statistics instead
of raw data. This makes our full procedure simple to use in many
real-world applications.
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1 INTRODUCTION
Randomized experiments (i.e. A/B tests, randomized controlled
trials) are a popular practice in medicine, business, and public policy
[6, 24]. When decision-makers employ experimentation they have a
far greater chance of learning true causal relationships and making

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyons, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04..
https://doi.org/10.1145/3178876.3186151

good decisions than via observation alone [20, 25, 28]. However,
a single experiment is often insu�cient to learn about the causal
mechanisms linking multiple variables. Learning such multivariate
causal structures is important for both theory building and making
decisions [16, 21].

Consider the situation of a internet service for watching videos.
The �rm is interested in how watching di�erent types of videos
(e.g., funny vs. serious, short vs. long) a�ects user behaviors (e.g.
by increasing time spent on the site, inducing subscriptions, etc.).
Such knowledge will inform decisions about content recommen-
dation or content acquisition. Even though the �rm can measure
all relevant variables, training a model on observational data will
likely be misleading. Existing content recommendation systems and
heterogeneous user dispositions will produce strong correlations
between exposure and time spent or subscription, but the mag-
nitude of this correlation will, in general, not match what would
occur if the decision-maker intervened and changed the promotion
or availability of various video types. Thus, we are interested not
just in prediction but prediction under intervention [9, 10, 30].

The standard solution is to run a randomized experiment expos-
ing some users to more of some type of video. However, a single
test will likely change many things in the complex system. It is hard
to change the number of views of funny videos without a�ecting
the number of views of serious videos or short videos. This is some-
times called the problem of ‘fat hand’ because such interventions
touch multiple causal variables at once and so the e�ect on a single
variable is not identi�ed. To solve this issue the company would
need to experiment with several factors simultaneously, perhaps
conducting new experiments speci�cally to measure e�ects via
each mechanism [21].

However, because routine product experimentation is common
in internet companies [5, 24, 38], this �rm has likely already run
many A/B tests, including on the video recommendation algorithm.
The method proposed in this paper can either be applied to a new
set of experiments run explicitly to learn a causal e�ect vector [as
in, e.g., 13], or can be applied to repurpose already run tests by
treating them as random perturbations injected into the system
and using that randomness in a smart way.

Our contributions arise from adapting the econometricmethod of
instrumental variables [IV; 1, 32, 40] to this setting. It is well known
that a standard IV estimator — two-stage least squares (TSLS) — is
biased in �nite samples [3, 35]. For our case, it also has asymptotic
bias. We show that this bias depends on the distribution of the
treatment e�ects in the set of experiments under consideration.

Our main technical contribution is to introduce a multivariate l0
regularization into the �rst stage of the TSLS procedure and show
that it can reduce the bias of estimated causal e�ects. Because in
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�nite samples this regularization procedure reduces bias but adds
variance, we introduce a method to trade these o� and select a reg-
ularization parameter. We call this procedure instrumental variables
cross-validation (IVCV). In an empirical evaluation that combines
simulation and data from hundreds of real randomized experiments,
we show that the l0 regularization with IVCV outperforms TSLS
and a Bayesian random e�ects model.

Finally, we show how to perform this estimation in a computa-
tionally and practically e�cient way. Our regularization and cross-
validation procedures only require summary statistics at the level
of experimental groups. This is advantageous when using raw data
is computationally or practically burdensome, e.g., in the case of
internet companies. This means the computational and data stor-
age complexities of the method are actually quite low. In addition,
standard A/B testing platforms [5, 41] should already compute and
store all the required statistics, so the method here can be thought
of as an “upcycling” of existing statistics.

2 CONFOUNDING AND THE BASIC IV MODEL
Suppose we have some (potentially vector valued) random variable
X and a scalar valued outcome variable Y . We want to ask: what
happens to Y if we change some component of X by one unit,
holding the rest constant? Formally, we study a linear structural
(i.e. data generating) equation pair

X = U� + �X

Y = X� +U� + �Y

whereU , �X , and �Y are independent random variables with mean
0, without loss of generality. Note that in A/B testing we are often
interested in relatively small changes to the system, and thus we can
just think about locally linear approximations to the true function.
We can also consider basis expansions. We refer to X as the causal
variables (in our motivating example this would be a vector of time
spent on each video type), Y as the outcome variables (here overall
user satisfaction),U as the unobserved confounders, � as noise, and
� as the causal e�ects.

In general, we are interested in estimating the causal e�ect �
because we are interested in intervention, e.g., one which will
change our data-generating model to

X = U� + �X + a.

In the presence of unobserved confounders trying to learn causal
relationships using predictive models naively can lead us astray
[9, 10, 30, 33]. Suppose that we have observational data of the form
(X ,Y ) withU completely unobserved. If we use this data to estimate
the causal e�ect � we can, due to the in�uence of the unobserved
confounder, get an estimate that is (even in in�nite samples) larger,
smaller or even the opposite sign of the true causal e�ect � .

To see this consider the linear structure equation model above
and suppose that we only observe (X ,Y ) where both are scalar.
Since the underlying model is linear, we can try to estimate it using
a linear regression. However, not including the confounder U in
the regression yields the estimator:

�̂obs = (X 0X )�1 (X 0Y )

When all variables are scalar algebra yields

E[�̂obs] = � + �
Cov(X ,U )

Var(X )
.

Thus, the best linear predictor of Y given X (�̂obs) may not be
lead to a good estimate of what would happen to Y if we intervened
(�).

Figure 1: DAG representing our structural equations, in
which the relationship between X and Y is confounded by
U , and including the instrumental variable Z . Crosses rep-
resent causal relationships that are ruled out by the IV as-
sumptions.

We now discuss instrumental variable (IV) estimator as a method
for learning the causal e�ects. Suppose that we have some variable
Z that has two properties (see Figure 1 for the directed acyclic graph
which represents these assumptions):

(1) Z is not caused by anything in the (X ,U ,Y ) system; that is,
Z is as good as randomly assigned.

(2) Z a�ects Y only via X . This is often called the exclusion
restriction or complete mediation assumption [3]

In terms of the structural equations, this modi�es the equation
for X to be

X = Zµ +U� + �X

with the appropriate independence assumptions.
The standard IV estimator for � is two-stage least squares (TSLS)

and works o� the principle that the variance in X can be broken
down into two components. The �rst component is confounded
with the true causal e�ect (i.e. comes from U ). The second com-
ponent, on the other hand, is independent ofU . Thus, if we could
regress Y only on the random component, we could recover the
causal e�ect � . Knowing Z allows us to do exactly this (i.e. by using
only the variation in X caused by Z notU ).

TSLS can be thought of as follows: in the �rst stage we regress
X on Z . We then replace X by the predicted values from the regres-
sion. In the second stage, we regress Y on these �tted values. It is
straightforward to show that as n approaches in�nity this estimator
converges to the true causal e�ect � [39, Theorem 5.1].

All IV methods make a full rank assumption. In order to estimate
the e�ect of each variableX j onY with the otherX ’s held constant it
must be the case that Z is such that it causes independent variation
in all dimensions of X . This implies that we must, at least, have
as many instruments as the dimension of � for TSLS to work. An
interesting and fruitful direction for future work is what to do when
some subspace of X is well spanned by our instruments but some
some subspace is not.
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3 IV WITH TEST GROUPS WITHOUT
METADATA

In our setting of interest, randomly assigned groups from a large
collection of experiments are the instruments.

Formally, here the IV is a categorical variable indicating which
of K test groups a unit (e.g., user) was assigned to in one of many
experiments. For simplicity of notation, we assume that each treat-
ment group � 2 {1, ...,K } has exactly n� = nper units assigned to it
at random.

3.1 Computational Properties
The way to represent the �rst stage regression of the TSLS is to
use the one-hot representation (or dummy-variable encoding) of
the group which each unit is assigned to, such that Zi is a K-
dimensional vector of 0s and a single 1 indicating the randomly
assigned group.

In this setup the TSLS estimator has a very convenient form.
The �rst stage regression of X on Z simply yields estimates that
are group level means of X in each group. This means that if each
group has the same number of units (e.g., users) and the same error
variance, the second stage has a convenient form as well: we can
recover � by simply regressing group level averages of X on Y [3,
section 4.1.3].

Thus, to estimate causal e�ects from large meta-analyses practi-
tioners do not need to retain or compute with the raw data (which
can span millions or billions of rows in the context of A/B testing
at a medium or large internet company), but rather can retain and
compute with sample means ofX andY in each A/B test group (this
is now just thousands of rows of data). These are quantities that
are recorded already in the most automated A/B testing systems
[5, 41]. Working with summary statistics simpli�es computation
enormously and allows us to reuse existing data.

3.2 Asymptotic Bias in the Grouped IV
Estimator

There are now multiple ways to think about the asymptotic prop-
erties of this “groups as IVs” estimator. Either we increase the
size of each experiment (nper ! 1) or we get more experiments
(K ! 1). The former is the standard asymptotic sequence, but for
meta-analysis of a growing collection of experiments, the latter is
the more natural asymptotic series, so we �x nper but we raise K .

We �x ideas with the case whereX ,Y ,Z ,U are scalar. We denote
the group level means of our variables with bars (e.g., X̄ to be the
random variable that is the group-level means of X ). Recall that our
TSLS is, in the group case, a regression of Ȳ on X̄ .

Decompose the causal variable group level average into

X̄ = Z̄ + Ū� + �X̄ ,

where
Z̄ ⌘ Zµ = E[X |Z ]

is the true �rst stage of the IV model (i.e. what we are trying to
learn in the �rst stage of the TSLS). In the case of experiments as
instruments this term has a nice interpretation: it is the true average
value of the causal variables when assigned to that experimental
group. If we assume (without loss of generality) that the mean of X

is 0 then this �rst-stage can also be interpreted as the true treatment
e�ect of the experiment.

While we are not considering asymptotic series where nper goes
to in�nity, nper will generally also be large enough that so that we
can use the normality of sample means guaranteed by the central
limit theorem. Thus, Ū and �̄X are normal with mean 0 and variance
proportional to nper �1.

With �nite nper we can show that, even as K ! 1, TSLS will be
biased [cf. 2, 7]. Suppose for intuition that Z̄ has mean 0 and �nite
variance � 2

Z̄ this bias has the closed form which can be derived as
follows. First, denote Ā as the group level mean of variable A. From
the structural equations we know that:

X̄ = Z̄ + Ū� + �X̄

Ȳ = X̄� + Ū� + �Ȳ
Since the TSLS estimator in this case is a regression of X̄ on Ȳ

we can use the equation derived above for the scalar case to rewrite

E[�TSLS ] = � + �
Cov(X̄ , Ū )

Var(X̄ )
.

plim
K!1

�̂TSLS = � +
��

� 2
U

nper

� 2 � 2
U

nper
+

� 2
�X
nper
+ � 2

Z̄

.

To understand where this bias comes from, think about the case
where Z̄ is always 0. The instrument does nothing, however the
group-level averages still include group-level confounding noise;
that is, for �nite nper, Ū has positive variance.

Thus, we simply recover the original observational estimate that
we have already discussed as including omitted variable bias. When
Z is not degenerate, X̄ and Ȳ include variation from both Ū and
Z̄ . As nper increases the in�uence of Ū decreases and so �̂TSLS is
consistent for � .

While in many cases, where variation induced by instrumental
variables is large, this bias can be safely ignored, in the case of
online A/B testing this is likely not the case. Since much of online
experimentation involves hill climbing and small improvements (on
the order of a few percent or less) that add up, the TSLS estimator
can be quite biased in practice (more on this below).

4 BIAS-REDUCING REGULARIZATION
We now introduce a regularization procedure that can decrease bias
in the TSLS estimator. We show that, in this setting a l0-regularized
�rst stage is computationally feasible and can help reduce this bias
under some conditions on the distribution of the latent treatment
e�ects.

4.1 Intuition via a Mixture Model
There are many types of A/B tests conducted — some are micro-
optimizations at the margin and some are larger explorations of
the action space. Consider the stylized case with two types of tests
calling the smaller variance type ‘weak’ tests while the larger vari-
ance ones are ‘strong.’ Here we can model the �rst stage Z̄ as being
drawn from a two-component mixture distribution:

Z̄ = E[X |Z ] ⇠
8><>:
N (0,� 2

weak ) with probability p
N (0,� 2

stron� ) with probability (1 � p)
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If we knew which group was drawn from which component and
ran two separate TSLS procedures using only groups whose Z̄ is
drawn from the same component, we would asymptotically get two
estimators:

plim
K!1

�̂TSLS, j = � + �
�

� 2
U

nper

� 2 � 2
U

nper
+

� 2
�X
nper
+ � 2

j

Here j 2 {weak, strong} representing the component from which
a particular group’s Z̄ is drawn. Because � 2

strong > � 2
weak we will

have that �̂TSLS, strong is a less asymptotically biased (and thus
asymptotically better) estimator than �̂TSLS, weak. Thus, if we could
choose, we would choose to only use strong tests for our estimation
of the causal e�ect.

In reality, we would likely not know which component each
group is drawn from and if simply ran a TSLS on the full data set,
this estimator will be a weighted combination of the two estimators.

Within this discrete mixture model, we are limited to how much
we can reduce bias (since plimK!1 �̂TSLS, strong , �). However if
the treatment e�ects are drawn from a distribution which is an
in�nite mixture of normals that has full support on normals of all
variances (for example a t distribution) then we can asymptotically
reduce the bias below any � by using only observations which come
from components with arbitrarily large variances.

We now introduce a regularization procedure that tries to per-
form this selection. Because using this regularization e�ectively
decreases our dataset size, decreasing the bias increases the variance.
Thus, afterwards we will turn to a procedure to set the regulariza-
tion parameter to make good �nite sample bias–variance tradeo�s.

4.2 Formalizing First Stage Regularization
Consider a data set (X̄� , Ȳ� ) of vectors of group-level averages. Let

p (x ) = Pr( |Ū� + �̄x,� | > |x |)
be the p-value for a group-level observation x under a ‘no inter-
vention’ null with Z = 0. Given that under no-intervention X̄ is
distributed normally computing p is straightforward and requires
simply the observational (within-condition) covariance matrix of
X .

For a given threshold q 2 (0, 1], let

X̄
q
� ⌘

8><>:
X̄� if p (X̄� ) < q

0 otherwise.

We then de�ne the regularized IV estimator as

�̂q = (X̄q0X̄q )�1 (X̄q0Ȳ ).

Thus, this procedure is equivalent to an l0 regularization in the
�rst stage of the TSLS regression. In particular, when Ū� + �̄x,� has
a normal distribution, as in the present case, then this is equivalent
to l0-regularized least squares.

Recall that in the binary mixture example above, this regulariza-
tion would preferentially retain groups that come from the higher
variance (strong) component. This extends to in�nite mixtures,
such as the t , where this procedure will preferentially set X̄� to zero
for groups where Z̄� is drawn from a lower variance component.

So far we have focused on scalar X . This procedure naturally
extends to multidimensional settings. Just as with the single di-
mension we compute the ‘null’ distribution from no-intervention
conditions. We then compute p (X̄� ) for each group and threshold
all dimensions of the experimental group �; that is, if this proba-
bility is above a threshold q we set the whole vector X̄� to 0. This
gives us the multi-dimensional, group-based l0 regularizer which
we will apply in our experiments.

This group-l0 regularization can be ine�cient in certain regi-
ments of treatment e�ects — for example, in a regime where each
A/B test explicitly only moves a single dimension of X (i.e. ‘skinny
hand’ interventions). We show how this can go wrong in our syn-
thetic data experiment but we also see that real A/B tests appear
not to fall into this regime.

5 CAUSAL CROSS-VALIDATION
We now turn to an important practical question: because there is a
bias–variance tradeo� how should one set the regularization param-
eter when K is �nite to optimize for prediction under intervention?

First, let us suppose that we have access to the raw data where
a row is a (Xi ,Zi ,Yi ) which is a unit i’s, X , Y and treatment as-
signment Z . We propose a procedure to set our hyperparameter
q. We describe 2-fold version as it conveys the full intuition, but
extension to k-folds is straightforward.

Instrumental variables cross-validation algorithm (IVCV):
(1) Split each treatment in the data set into 2 folds, call these

new data sets {(X 1
i ,Y

1
i ,Z

1
i )} and {(X 2

i ,Y
2
i ,Z

2
i )}.

(2) Compute treatment level averages {(X̄ 1
� , Ȳ

1
� )} and {(X̄ 2

� , Ȳ
2
� )}

as described abovewhere j now indexes experimental groups.
(3) Compute �̂q for a variety of thresholds q using {(X̄ 1

� , Ȳ
1
� )}.

(4) Compute treatment level predictions of Y using fold 1 for
each level of q: Ŷq� = X̄ 1�̂q .

(5) Choose q which minimizes IVCV(q) =
P
j (Ȳ

2
� � Ŷ

q
� )

2.

The intuition behind IVCV is similar to the main idea behind IV
in general. Recall that our objective is to use variation in X that
is not caused by U . The IVCV algorithm uses the X value from
fold 1 and compares the prediction to the Y value in fold 2 because
fold 1 and fold 2 share a Z but di�er in U (sinceU is independent
across units but Z is the same within group). This intuition has
been exploited in split-sample based estimators [2, 18, 22].

We can demonstrate the importance of using the full causal loss
by comparing the IVCV procedure to other two candidates. The
�rst is simply applying naive CV in the second stage (i.e., splitting
each group into 2, training a model on fold 1 and computing the CV
loss naively as kY2 � X2�̂q k2). The second is stagewise, in which
the regularization parameter is chosen to minimize MSE in the �rst
stage, and then the second stage is �t conditional on the selected
model [as in 8, 19]. We compare these approaches in a simple linear
model with scalar X , such that

Ȳ = X̄ + Ū�

X̄ = Z̄ + Ū .

We set the �rst stage to have fat tails

Z̄ = E[X | Z ] ⇠ t (d f = 3, scale = .4).
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Figure 2: Comparison of stagewise vs. IVCV method. X-axis is the strength of regularization (lower p-value implies stronger
regularization). Optimizing for stagewise loss would imply using almost no regularization whereas optimizing for IVCV loss
implies strong regularization. Causal loss coincides much more with IVCV loss than stagewise loss.

So there is confounding in the observational case set � = 10, nper =
100 and K = 2500.

Recall that our goal is to �nd a hyperparameter (regularization
threshold) which gives us the best prediction �̂q of the causal pa-
rameter. Formally, we write this as

CausalLoss(q) =
X

k
(�̂qk � �k )2.

The causal loss is an unobserved quantity in the IV problem and
thus we need to choose a surrogate loss to try to approximate it
in our cross-validation procedure. A good choice of CV procedure
is one whose loss function tracks closely with the true causal loss
function.

This gives us 3 candidate cross-validation loss functions to com-
pare to the true casual loss in our simulations

(1) The second stage CV loss
X

�
(Ȳ 2
� � X̄ 2

� �̂q )
2

(2) The �rst stage CV loss
X

�
(X̄ 2

� � ˆ̄X 2q
� )2

(3) The IVCV loss
X

�
(Ȳ 2
� � X̄ 1

� �̂q )
2

Figure 2 shows these losses as a function of the parameter q
averaged over 500 simulations of the model above. We see that both
the �rst stage loss curve and the second stage loss curve look very
di�erent from the causal loss curve. However, the IVCV loss curve
matches almost exactly. Thus, either stage error naively yields a
very di�erent objective function from minimizing the causal error.
In particular, we see that making the bias–variance tradeo�s for the
�rst stage need not coincide with a desirable bias-variance tradeo�
for inferring � .

The l0-regularized IV estimator only requires the kinds of sum-
mary statistics per experimental group that are already recorded
in the course of running A/B tests, which has practical and com-
putational utility. However, the cross-validation procedure above

requires the use of raw data. We now turn to the following question:
if the raw data is unavailable, but summary statistics are, can we
use these summary statistics to choose a threshold q?

Suppose that we have access to summary means {(X̄� , Ȳ� )} for
each treatment j and the covariance matrix of (X̄ , Ȳ ) conditional on
Z = 0 which we denote by � . We note that � can be estimated very
precisely from observational data or, in the case of the experimental
meta-analysis just looking at covariances among known control
groups. We assume that nper is large enough such that the distri-
butions of U and � in groups of size nper

2 are well approximated by

the Gaussian N (0, � 2
i

nper
2

).

To perform IVCV under these assumptions, we use a result from
the literature on Monte Carlo [29, ch. 8]. If some vector X is dis-
tributed

X ⇠ N (µ, �)

then any linear combination T = �X has a normal distribution.
Moreover, conditional on T = t the distribution of X is also normal
and can be written explicitly as

X |T = t ⇠ N (µ + ��0(t � �µ )), � � ��0(���0)�1��).

This means if we know the observational covariance matrix �
then for every group�we can take the group level averages (X̄� , Ȳ� )
and sample using the equation above to get X̄ 1

� and X̄ 2
� such that

X̄ 1
� + X̄

2
� = 2X̄� . Since by the central limit theorem the generating

Gaussian model is approximately correct, this procedure simulates
the split required by IVCV without having access to the raw data.
The algorithm is as follows:

Summary statistics instrumental variables cross-validation
algorithm (sIVCV):

(1) Start with data comprising of treatment groupmeans {(X̄� , Ȳ� )}.
(2) Use the covariance matrix to perform Monte Carlo sampling

to simulate groups

{(X 1
i ,Y

1
i ,Z

1
i )}

{(X 2
i ,Y

2
i ,Z

2
i )}

(3) Use the IVCV algorithm to set the hyperparameter using the
simulated splits.
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more outliers than a multivariate normal would suggest. Right: QQ-plots for the dimensions of the sampled test groups (X̄� ).
For each variable the marginal distributions are notably non-normal.

(4) Estimate � using the selected hyperparameters on the full
data set.

6 EVALUATION
We now evaluate the IVCV procedure empirically. True causal ef-
fects in real IV data are generally unobservable, so comparisons of
methods usually lack a single number to validate against. Examples
of the kinds of evaluations usually done in work on IV include com-
paring di�erent procedures and showing that one yields estimates
which are more ‘reasonable.’

Simulations allow us to know the true causal e�ects, but can
lack realism. We strike a middle ground by using simulations where
we set the causal e�ects ourselves but use real data to generate
distributions for other variables. In our simulations we use a model
given by

X̄ = Z̄ + Ū

Ȳ = X� + Ū� .

Thus, in this case all the variance in X that is not driven by our
instruments is confounding variance.

6.1 Real A/B Tests
The multivariate case is made di�cult and interesting when U has
a non-diagonal covariance matrix and Z̄ has some unknown un-
derlying distribution, so we generate these distributions from real
data derived from 798 randomly assigned test groups from a sam-
ple of A/B tests run on a recommendation algorithm at Facebook.
We de�ne our endogenous, causal X s as 7 key performance indi-
cators (i.e. intermediate outcomes examined by decision-makers
and analysts); we standardize these to have mean 0 and variance
1. As the distribution ofU we use the estimated covariance matrix
among these outcomes in observational data. Third, we take the
experiment-level empirical means of the X s as the true Z̄ , to which
we add the confounding noise according to the distribution ofU .

We show a projection of these Z̄ onto 2 of the X dimensions in
Figure 3(A). We see that the A/B tests appear to have correlated
e�ects but do span both dimensions independently, many groups
are retained even with strong �rst stage regularization, and the
distribution has muchmore pronounced extremes than would be ex-
pected under a Gaussian model. Figure 3(B) compares the observed
and Gaussian quantiles, illustrating that all dimensions are notably
non-normal (Shapiro–Wilk tests of normality reject normality for
all the variables at ps < 10�39).

We set � as the vector of ones and � as a diagonal matrix with
alternating elements 1 and �1, so that there is both positive and
negative confounding. For each simulated data set, we compute the
causal MSE loss for � ; that is, the expected risk from intervening
on one of the causal variables at random. If �̂ is our estimated �
vector then recall that this is given by

CausalLoss(�̂ ) =
X

k
(�̂k � �k )2.

6.2 Results
In addition to the l0-regularized IV method and TSLS, we examine a
Bayesian random e�ects model, as in Chamberlain and Imbens [12]
but with a t , rather than Gaussian, distribution for the instruments.
Formally we let

Z̄ ⇠ t (d )

with a standard choice of prior

d ⇠ Gamma(2, .2).

To tilt the evaluation against our procedurewe also give the Bayesian
model the true covariance matrix for Ū . To �t the Bayesian model
we use Stan [11]. We compare the Bayesian random e�ects model
and our regularized IV model to the infeasible Oracle estimator
where the estimate of the �rst stage E[X̄ | Z̄ ] is known with cer-
tainty.
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Figure 4: Left: Causal error (relative to a naive observational estimator) for the full l0-regularization path (solid black), TSLS
(solid red), IVCV selected parameters (dashed purple) and Bayesian random e�ects model (dashed teal). IVCV outperforms all
other estimation techniques. Right: Error in estimating causal e�ects for varying numbers of test groups K . IVCV is useful
even with a relatively small meta-analysis, while TSLS exhibits asymptotic bias. With a very small number of test groups, the
Oracle can actually underperform TSLS because of near collinearity.

Figure 4(A) shows the results for various dimensions of X for
1,000 simulations. Because of the high level of confounding in the
observational data, the observational (OLS) estimates of the causal
e�ect are highly biased, such that even the standard TSLS decreases
our causal MSE by over 70%.

We see that the l0-regularization path (black line) reduces error
compared with TSLS and, with high regularization, approaches the
Oracle estimator. Furthermore, feasible selection of this hyperpa-
rameter using IVCV leads to near optimal performance (purple line).
The Bayesian random e�ects model can reduce bias, but substan-
tially increases variance and thus MSE.

We also look at how large the collection of experimental groups
needs to be to see advantages of a regularized estimator relative to
a TSLS procedure.

We repeat the TSLS, Oracle, and l0-regularization with IVCV
analyses in 100 simulations with smaller K (Figure 4(B)) for the
case of the 7 dimensional X . Intuitively, what is important is the
relative size of the tails of the distribution of the latent treatment
e�ects Z̄ . As the tails get fatter, fewer experiments are required to
get draws from the more extreme components of the mixture. We
see that in this realistic case where Z̄ is determined using a sampled
set of Facebook A/B tests, feasible selection of the l0-regularization
hyperparameter using IVCV outperforms TSLS substantially for
many values of K . Thus, meta-analyses of even relatively small
collections of experiments can be improved by the �rst-stage l0
regularization.

7 FULLY SIMULATED DATA
In addition to the evaluation using a real data set. We also con-
sider the IVCV procedure in several completely synthetic data sets.
The completely synthetic experiments allows us to elucidate the
important assumptions for our procedure to work while the real
data-based experiment shows that these assumptions are indeed
satis�ed in real world conditions.

We consider the same exact model as in the previous section
except that we generate the �rst stage e�ects Z̄ from a known
parametric distribution and letU be normal. First, we consider

X = Z̄ +U

and we vary the distribution that Z̄ is drawn from. We consider
(1) Z̄ drawn from independent t with 3 degrees of freedom
(2) Z̄ drawn from t with 3 degrees of freedom and covariance

matrix drawn from inverse Wishart (a standard prior for
covariance matrices) with 10 ⇥ dim(X ) degrees of freedo

(3) Z̄ generated by �rst drawing � 2 from an inverse Gamma
distribution and then Z̄ drawn from multivariate normal
with mean 0 and covariance matrix � 2I

Note that in case 1 e�ects are axis aligned while in the next two
larger values of one dimension can predict more extreme values of
Z (andX ) on another dimension. The �nal setup corresponds to the
case where components are mean-uncorrelated but have correlated
variance. This is the multivariate analog of our motivating example
where some A/B tests are strong explorations of the parameter
spaces and others are micro-optimizations at the margin. Note that
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Figure 5: Performance of various IV estimation techniques
under various �rst stage data generating assumptions (top =
independent t , middle = Wishart t , bottom = correlated vari-
ances).We see that when theZ induced components ofX are
independent even for moderate dimensionality that the l0
regularization performs less well. However, as soon as there
is any correlation the IVCVprocedure performsmuch better
than TSLS and can both under or over-perform the Bayesian
random e�ects model.

the marginal distribution for each dimension is, in all cases, a t
distribution with 3 degrees of freedom (since the t can be written
as a mixture of normals drawn from the inverse gamma).

Figure 5 shows the results of applying IVCV to the data gen-
erating processes above (top = independent t , middle = Wishart
t , bottom = correlated variances). We restrict to dim(X ) 2 {2, 4}
because it is su�cient to illustrate our main points. We see that in
the independent t case the IVCV procedure (and indeed our multi-
variate l0 regularization) can underperform the Bayesian random
e�ects model fail to substantially improve on TSLS. This happens
because in the independent t case there is a high probability that
a single dimension is extreme enough to pass the regularization
threshold and thus even strong regularization does not necessarily
remove bias. On the other hand, when outcomes are correlated
(or their variances are) we see that multivariate IVCV performs
well because being extreme in one X component predicts having
extreme outcomes in other components. Note that the fact that
IVCV performs well in the distribution generated by real A/B tests
suggests that real world A/B test e�ect variance is correlated within
A/B test - ie. if a test moves one metric by a large amount, it likely
moves others by a large amount.

8 CONCLUSION
Most analysis of randomized experiments, whether in academia,
business, or public policy tends to look at each test in isolation.
When meta-analyses of experiments are conducted, the goal is
usually either to pool data about multiple instances of the same
intervention or to �nd heterogeneity in the e�ects of interventions
across settings. We instead propose that combining many experi-
ments can help us learn richer causal structures. IV models give a
way of doing this pooling. We have shown that in such situations
using easily-implemented l0 regularization in the �rst stage can
lead to much better estimates of the causal e�ects, and thus better
predictions about interventions, than using standard TSLS methods.

We expand on the literature which uses multi-condition exper-
iments as instruments [13, 15]. Such analyses usually feature a
smaller number of experimental groups and a single causal variable.
Our work contributes to the growing literature merging experimen-
tal techniques with methods from machine learning to allow deeper
analyses than has been traditionally possible [4, 9, 17, 31, 33? ]. In
addition, our procedure is intended to be simple to implement and
not require strong assumptions about the data-generating process.

Our work is also related to research on IV estimation with weak
instruments [34–36]. In addition, we also contribute to existing
research on regularized IV estimation [8, 12, 18]. In the case of uni-
variateX and disjoint groups as instruments, the post-lasso method
in Belloni et al. [8] coincides with the proposed l0 regularization,
however in the case where X is a vector, it does not.

Recently, active learning in the form of bandit optimization [14,
27] and reinforcement learning [37] have become quite popular in
the AI community. Such approaches can be used in many of the
same contexts as the IV analysis we have discussed here, and so
may appear to be substitutes. However, we note there are many
important di�erences the largest of which is that RL and bandit
approaches try to perform policy optimization rather than learning
of a causal graph. For this reason, often why RL/bandit estimated
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policies work can be hard to understand. This is in contrast to
explicit causal models (e.g., the linear model described above) which
can be stated explicitly and in terms that are more natural to human
decision-makers [23]. On the other hand, bandit/RL approaches
have advantages in that they are explicitly online whereas many
causal inference procedures (including the one we have described
here) are ‘batch’ procedures that assume that data collection is a
passive enterprise, separate from analysis. There is growing interest
in combining these approaches [26] and we think that future work
would bene�t greatly from this fusion of thought.
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