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Working towards precision medicine: predicting phenotypes 
from exomes in the Critical Assessment of Genome 
Interpretation (CAGI) challenges

A full list of authors and affiliations appears at the end of the article.

Abstract

Precision medicine aims to predict a patient€s disease risk and best therapeutic options by using 
that individual€s genetic sequencing data. The Critical Assessment of Genome Interpretation 
(CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; 
participants build models, undergo assessment, and share key findings. For CAGI 4, three 
challenges involved using exome sequencing data: bipolar disorder, Crohn€s disease, and warfarin 
dosing. Previous CAGI challenges included prior versions of the Crohn€s disease challenge. Here, 
we discuss the range of techniques used for phenotype prediction and discuss the methods used for 
assessing predictive models. Additionally, we outline some of the difficulties associated with 
making predictions and evaluating them. The lessons learned from the exome challenges can be 
applied to both research and clinical efforts to improve phenotype prediction from genotype. In 
addition, these challenges serve as a vehicle for sharing clinical and research exome data in a 
secure manner with scientists who have a broad range of expertise, contributing to a collaborative 
effort to advance our understanding of genotype-phenotype relationships.

Keywords

exomes; phenotype prediction; machine learning; Crohn€s disease; bipolar disorder; warfarin

Introduction

Precision medicine aims to use a patient€s genomic and clinical data to make predictions 
about medically relevant phenotypes such as disease risk or drug efficacy (Ashley, 2015; 
Ashley, et al., 2010).

The Critical Assessment of Genome Interpretation (CAGI) is a community experiment, 
which aims to advance methods for phenotype prediction from genotypes through a series of 
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•challenges‚ with real data (CAGI, 2011). Exome sequencing data, which captures exons 
and nearby flanking regulatory regions, is already being used clinically to solve medical 
mysteries with well-defined symptoms (Brown and Meloche, 2016). However, in order to 
advance precision medicine, clinicians and scientists will need to be able to make inferences 
about disease risk or drug efficacy from genetic data. Interpretation of genetic data is one of 
the major difficulties in the implementation of precision medicine (Fernald, et al., 2011).

CAGI is an example of the Common Task Framework, a phrase coined by Mark Liberman to 
describe the approach of using shared training and testing datasets and evaluation metrics to 
advance machine learning (Committee on Applied and Theoretical Statistics; Board on 
Mathematical Sciences and Their Applications; Division on Engineering and Physical 
Sciences; National Academies of Sciences, 2016; Donoho, 2015). The Common Task 
Framework has been called the „secret sauce€ behind the recent successes in machine 
learning (Donoho, 2015). Starting with common task challenges in the 1980€s for machine 
translation, this approach has led to significant gains in speech recognition and dialog 
systems, protein structure prediction, biomedical natural language processing, autonomous 
vehicles, and collaborative filtering for consumer preferences (Bell and Koren, 2007; 
Morgan, et al., 2008; Moult, et al., 2014; Thrun, et al., 2006; Walker, et al., 2001). Through 
this same approach, CAGI aims to push forward the field of precision medicine.

At CAGI 4 held in 2016, three challenges involved making predictions using exome 
sequence data: a Crohn€s disease challenge, a bipolar disorder, and a warfarin dosing 
challenge. These challenges represent the spectrum of phenotypes seen in clinical practice. 
Bipolar disorder and Crohn€s disease are discrete phenotypes, with the former being a 
clinical diagnosis (based on meeting clinical criteria) and the latter a pathological diagnosis 
(based on biopsies). Therapeutic warfarin dose, on the other hand, is a continuous 
phenotype.

The Crohn€s disease challenge has been a part of previous CAGI iterations, while the 
warfarin dosing and bipolar disorder challenges debuted during CAGI 4. We will describe 
the nature of each challenge in greater detail. The number of groups participating in each 
challenge can be found in Table 1.

Crohn€s Disease Challenge

Crohn€s disease is a chronic inflammatory bowel disease marked by transmural 
inflammation of the gastrointestinal tract that can occur anywhere from the mouth to the 
rectum (Cho, 2008). Symptoms include pain and debilitating diarrhea, which can lead to 
malnutrition (Cho, 2008). Monozygotic twin studies have shown a concordance of 40ƒ50%, 
and genomewide association studies have identified genetic risk loci (Cho, 2008; 
Halfvarson, et al., 2003). Age of onset is typically between 20ƒ40 years old, but early age of 
onset, such as in early childhood is associated with more severe disease features (Uhlig, et 
al., 2014).

The 2011 (CAGI 2) dataset has 56 exomes (42 cases, 14 controls), all of German ancestry 
(Ellinghaus, et al., 2013). The 2013 (CAGI 3) dataset has 66 exomes (51 cases, 15 controls). 
Though these samples were also of German ancestry; cases were selected from pedigrees of 
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German families with multiple occurrences of Crohn€s disease. As such, some of these cases 
were related. For the most part, the samples sequenced as controls were unrelated healthy 
individuals; the exceptions to this were the unaffected parents of three cases and the 
unaffected twin of one case. The most recent challenge, CAGI 4 in 2016, was to identify 
cases from controls in 111 unrelated German ancestry exomes (64 cases, 47 controls). For 
CAGI 4, submitting groups were allowed to use the data from the Crohn€s disease CAGI 
challenges of 2011 and 2013. In all iterations of the challenge, groups were asked to report a 
probability of Crohn€s disease (between 0 to 1) for each individual and a standard deviation 
representing their confidence in that prediction. For the most recent Crohn€s disease 
evaluation, teams were also asked to predict if age of onset was greater or less than age 10; 
an age cutoff selected by CAGI based on the literature (Uhlig, et al., 2014). Additional 
details of the CAGI 4 challenge can be found under Supplementary Exhibit 1.

Bipolar Disorder Challenge

Bipolar disorder is a mood disorder marked by elevated mood (mania or hypomania) and 
depressed mood that disrupts an individual€s ability to function (Craddock and Sklar, 2013). 
In the general population, the lifetime risk of bipolar disorder is 0.5ƒ1% (Craddock and 
Jones, 1999). However, bipolar disorder has a high component of heritability, with studies 
demonstrating a 40ƒ70% monozygotic twin concordance (Craddock and Jones, 1999). In 
this CAGI 4 challenge, 1000 exomes of unrelated bipolar disorder cases and age/ancestry-
matched controls of Northern European ancestry were provided. 500 exomes were used as 
the training set and 500 exomes were for the prediction set (Monson, et al., 2017). Groups 
were asked to report a probability of bipolar disorder (between 0 to 1) for each individual 
and a standard deviation representing their confidence in that prediction. Additional 
information on the challenge can be found under Supplementary Exhibit 2.

Warfarin Dosing Challenge

Warfarin is an anticoagulant with over 30 million prescriptions written in 2011 (IMS, 2012). 
Warfarin remains a clinical staple despite the introduction of novel oral anticoagulants 
because of multiple factors ƒ warfarin€s lower cost, longer half life, and clinical indications 
for which novel oral anticoagulants have not yet been approved (Bauer, 2011). However, 
warfarin is responsible for one third of hospitalizations due to adverse drug events because 
of its narrow therapeutic index and high inter-individual dose variability (Budnitz, et al., 
2011). Both clinical and genetic factors affect the therapeutic dose of warfarin (Klein, et al., 
2009). For this challenge, participants were provided with exomes of African Americans on 
tail ends of the warfarin dose distribution (… 35 mg or † 49 mg) (Daneshjou, et al., 2014). 
Clinical covariates were provided for all exomes. The training set consisted of 50 exomes, 
and participants submitted dose predictions with standard deviations on 53 test set exomes. 
Additional details of the challenge can be found under Supplementary Exhibit 3.

Methods

Data Distribution

Data was distributed to the participants who consented to the CAGI data use agreement. 
Data providers worked with their home institution to ensure adherence with local privacy 
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regulations and predicting groups agreed not to share the anonymized data. Data was 
provided as described above, with genetic variant data shared in the VCF file format.

Predicting Phenotypes

Predicting groups were required to return a simple text file with appropriate predicted values 
(such as disease status and confidence in prediction) for each sample. They were also 
provided with a validation script to check their output formatting. Submitting groups were 
asked to submit a methods description for each submission. The prediction results from 
selected groups that submitted predictions and methods descriptions were presented at the 
CAGI meeting. Additionally, the ground truth data and scoring scripts used to perform the 
evaluation were shared with participants.

Data Quality

For the Crohn€s disease and bipolar disorder exome challenges, biases in the data were 
assessed using principal component analysis and clustering after pruning for linkage 
disequilibrium using plink (Purcell, et al., 2007).

For the warfarin challenge, data had previously undergone QC using ancestry informative 
markers to confirm self-reported ancestry and identity by State (IBS) analysis in order to 
ensure that samples were not related, as previously described (Daneshjou, et al., 2014).

Assessing Discrete Phenotypes (Crohn€s Disease and Bipolar Disorder)

A simple accuracy of prediction per sample score, such as derivable from setting a threshold 
for prediction (such as 0.5), although tantalizing in its simplicity neither supports the goals 
of CAGI nor is it representative of a likely clinically relevant scenario for prediction. 
Because the genetic datasets from CAGI are drawn from case-control studies, as well as 
pedigree studies in families with a strong burden of disease, it does not represent a random 
sampling of the population. Requiring a fixed threshold for evaluation and reporting a basic 
accuracy score of prediction in such a dataset would obscure interpretation. Also, using this 
as a figure of merit for ranking encourages participants to optimize their system predictions 
for the anticipated case/control distribution instead of focusing on features that selectively 
prioritize and rank disease likelihood in the absence of that calibration. The use of Receiver 
Operator Characteristics (ROC) curves for genomic test evaluation has been previously 
investigated by Wray et, al (Wray, et al., 2010).

The ROC offers many advantages for evaluating a test, and is often used to characterize 
clinical tests. The shape of a ROC curve can help differentiate between highly sensitive tests, 
which could rule in a possible diagnosis, and highly specific tests that could rule out a 
diagnosis. The prediction of Crohn€s disease status from sequencing data might be used in 
either of those situations depending on clinical presentation, risk factors, or stage of patient 
evaluation. Additionally, ROC curves allow easy selection of a classification threshold 
(based on selecting a position on the curve). Based on the selected threshold, a positive or 
negative likelihood ratio can be derived and applied in standard evidence based techniques 
of patient diagnosis, which rely on a Bayesian framework that takes into account the pre-test 
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probabilities and the characteristics of a given test depending on the threshold chosen for 
prediction (Fagan, 1975).

Additionally, we evaluated the robustness of the prediction accuracy when making 
predictions on different subsamples of exomes and assessed the confidence intervals 
reported by the participants.

To capture confidence intervals on the predictions, multiple samples with replacement were 
drawn. Each prediction was then modified by adding a random amount drawn from a normal 
distribution with a mean of zero and a standard deviation equivalent to the standard 
deviation reported for the original prediction. If no confidence interval was reported for the 
original prediction, the standard deviation was taken to be zero. If a prediction for a 
particular exome was missing, the prediction score for that sample was set to the mean 
reported prediction value in that submission. In order to compare submissions by a single 
figure of merit, the average area under the ROC curves from the bootstrap sampling was 
used, accompanied by the bootstrapped confidence interval around that area under the curve, 
to estimate the robustness of differences between prediction performances. The evaluation 
scripts were provided to all participants.

A cross-validated logistic regression based meta-classifier using lasso regularization was 
also trained on the submissions as features for CAGI 4 Crohn€s disease and CAGI 4 bipolar 
disorder. This step allowed us to assess whether combining the features selected across the 
different groups would improve prediction over a single method. The meta-classifier could 
perform better than any single method if the different methods use significantly different 
predictive features.

Assessing Continuous Phenotypes (Therapeutic Warfarin Dose)

For the warfarin exomes challenge, several metrics of assessment were used. Each 
participant provided a predicted therapeutc dose of warfarin for each individual as well as a 
standard deviation for that prediction.

To look at the amount of variation in dose explained by the predicted doses, we used linear 
regression with the linear model function (lm) in the R statistical package (v 2.15.3). We 
evaluated each method using the R2 and the sum of squared errors. Additionally, we 
compared each prediction against one of the best performing warfarin predictive algorithms, 
the International Warfarin Pharmacogenetic Consortium (IWPC) algorithm (Klein, et al., 
2009).

To assess, on average, how many participant-provided standard deviations the predicted dose 
was from the actual dose, we used a mean of the absolute value of the z-score for each 
prediction, as seen in equation 1. Here, dose_actual is the known therapeutic dose of 
warfarin for each individual i, while dose_predicted is the therapeutic dose predicted by that 
group for that individual. SD_predicted is the standard deviation for each individual€s 
predicted dose, as provided by the participant€s prediction method. The number of 
individuals is n.
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Equation 1

To assess the range of the each prediction€s standard deviation compared to the predicted 
dose, we calculated the mean of the coefficient of variation, which was the mean of the 
standard deviation for each prediction divided by the predicted dose, as seen in equation 2.

Equation 2

We also evaluated the mean absolute value of the z-score multiplied by the mean coefficient 
of variation for each method. This value allowed us to assess the mean z-scores with a 
penalization for mean z-scores whose values were closer to 0 because of larger standard 
deviations.

Additionally, we calculated rho and p-values using the spearman rank correlation between 1) 
each group€s predicted warfarin doses and the actual therapeutic doses across individuals 
and 2) each group€s predicted warfarin doses and the IWPC predicted doses across 
individuals. These calculations were made with the spearmanr command from the stat 
package in scipy (python v 2.7.5).

Results

With each year, CAGI has expanded the number of challenges and participants. Table 1 
displays the number of participants and predictions for each CAGI challenge.

Crohn€s Disease Exomes Challenge (CAGI 2•4)

For the 2011 Crohn€s disease (CAGI 2) challenge, during the assessment phase, a substantial 
batch effect was discovered in the data as a side effect of sample preparation and sequencing 
(Figure 1). Overall, the control samples that clustered separately due to this batch effect had 
overall fewer variants reported that did not match the reference genome. The participants 
were not aware of this batch effect; their methods were not designed to exploit it. However, 
this raises the possibility that techniques that used a very large list of genes were more likely 
to correctly identify case samples as coming from individuals with Crohn€s disease. Indeed, 
many different methods did better than random based on AUC, with a maximum AUC of 
0.94, and in general approaches that favored a large list of potentially Crohn€s disease 
related genes and gave more weight to rarer variants did the best. A full description of all 
methods used by the participants can be found in the supplement under Exhibit 1:CAGI 2. 
Supplemental File 1 shows comparative results of the CAGI 2 Crohn€s disease challenge 
predictive methods. It is certainly biologically plausible that increased burden of variation in 
a large number of Crohn€s disease related genes leads to increased likelihood of disease; 
however, it is also possible that there was systematic over reporting of variation as a batch 
effect. Therefore, it was important to re-evaluate with more data.
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In the 2013 CAGI 3, a much greater effort was made to carefully collect and prepare 
samples in a completely consistent way. In this case, case samples were collected from 
German families with a particularly high burden of Crohn€s disease (two or more effected 
family members), including a pair of twins discordant for disease, and another pair of twins 
concordant with disease. Additional healthy controls were drawn from the unaffected 
German general population. During the 2013 CAGI 3, there was once again a substantial 
difference in clustering between cases and controls, but in this dataset there was 
substantially more homogeneity in the cases. Individuals from different case families 
clustered much more closely with other high Crohn€s burden family individuals (Figure 2). 
This prompted two possible hypotheses. The first is that there might be a hidden founder 
effect and that these families with a high burden of disease may all actually be closely 
related. The second is that reduced heterogeneity and perhaps increased ancestor 
consanguinity may contribute to increased risk of Crohn€s disease in these families with a 
high burden. Either one alone or a mixture of both possibilities is biologically plausible. In 
this instantiation of CAGI, groups that simply did some version of partitioning the test 
datasets based on hierarchical clustering did quite well, and the top performing methods had 
an AUC of 0.87. Once again, all of these methods were implemented without awareness of 
the bias in the data. A full description of all methods used by the participants can be found in 
the supplement under Exhibit 1:CAGI 3. Supplemental File 2 shows comparative results of 
the CAGI 3 Crohn€s disease challenge.

In CAGI 4, the 111 exomes were derived from a mix of 64 Crohn€s disease patients, with a 
skew toward early onset of disease, and 47 healthy controls, all taken from individuals of 
German descent. With this data, the simple separation of cases and controls based on genetic 
variants was not present (Figure 3), suggesting the problems with batch effects and sampling 
bias were no longer present; the only noticeable structure indicated the possibility of a few 
related samples, as seen in the PCA and IBD plots shown in Supplementary Figure S1 and 
Supplementary Figure S2. Correspondingly, the peak performance dropped from previous 
CAGI iterations down to an AUC of 0.72. However, given the elimination of biases in the 
data, this incarnation of the Crohn€s disease challenge is likely the best reflection of how the 
prediction methods perform. A meta-classifier created by the assessment team using all 
submitted methods for this challenge, as shown in Supplementary Figure S3, had an AUC of 
0.78, a small improvement over the top method. The distribution of AUCs across methods is 
shown in Figure 4. A full description of all methods used by the participants can be found in 
the supplement Exhibit 1:CAGI 4. Supplemental File 3 shows comparative results of the 
CAGI 4 Crohn€s disease challenge.

The top approach in CAGI 4 used a compiled list of genes and genomic regions associated 
with Crohn€s disease from prior studies, used imputation to evaluate risk contribution from 
known regions associated with Crohn€s disease but not covered by exome sequencing, and 
used the Welcome Trust Case Control Consortium (WTCCC) Crohn€s disease genotyping 
array data to train a disease classifier to score relative risk for each sample.

Across participants, numerous methods were used for selecting the covariates, highlighting 
the many different approaches to building a Crohn€s disease classifier. Similar to the top 
approach, many groups used variants previously found to be associated in genome-wide 
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association studies; the NHGRI catalog was a popular choice to identify these associated 
variants (Welter, et al., 2014). Other approaches relied on gene lists of associated and 
•predicted‚ Crohn€s disease genes to select variants of interest. To create the •predicted‚ list 
of Crohn€s disease genes, groups used a variety of methods. Examples include using (1) 
existing tools such as Phenolyzer, which associates disease terms with genes based on prior 
research, expands the gene list by using gene-gene relationships, and then creates a ranked 
list of candidate genes and (2) creating gene lists based on GO pathways enriched with 
Crohn disease associated variants (3) using natural language processing to identify genes of 
interest from Pubmed abstracts (Ashburner, et al., 2000; Yang, et al., 2015). From a gene 
level, different groups would then devise different strategies to select variants of interest. For 
some approaches, population level frequency data was used to help distinguish variants more 
likely to be pathogenic. Other methods relied on pathogenicity prediction tools such as 
SNAP, PON-P2, SNPs&GO, and Variant Effect Predictor to inform variant selection and 
weighting (Bromberg and Rost, 2007; Calabrese, et al., 2009; McLaren, et al., 2010; 
Niroula, et al., 2015).

A range of machine learning approaches were used to actually build the classifiers-na‡ve 
Bayes, logistic regression, neural nets, and random forests. Additionally, some groups 
improved on prior iterations by creating meta-classifiers based on combinations of prior 
methods.

Bipolar Disorder Exomes Challenge (CAGI 4)

As noted, a substantial difference between the Crohn€s disease phenotypic prediction 
challenge and the bipolar disorder challenge, was that a substantial amount of training data 
was provided for the bipolar disorder challenge, with 500 of the 1000 exomes randomly 
selected and provided as training data for the challenge. These samples were unrelated, and 
analysis steps assessing the relationships between samples can be found in Supplementary 
Figures S4, S5, and S6. The top performing group had a method with an AUC of 0.64. The 
distribution of AUCs across methods is shown in Figure 5. Although many groups used 
approaches similar to those used for the Crohn€s disease challenge, the top performing group 
(which did not apply this method to Crohn€s disease data), treated the genotype data as 
linear features and trained a neural network with 3 hidden layers, with the middle layers 
looking at local features in the linear space of the ordered SNPs of the VCF file, tuning for 
performance using cross validation on the test data. Importantly, this approach used 
essentially no prior knowledge of genetics or the results of prior studies on disease-gene 
relationships. Supplemental File 4 shows comparative results of the CAGI 4 bipolar disorder 
challenge. Overall descriptions of prediction methods are available under Exhibit 2: CAGI 4. 
A meta-classifier created by the assessment team using all submitted methods for this 
challenge, as shown in Supplementary Figure S7, had an AUC of 0.64, which was not 
significantly different from the top method.

Warfarin Exomes Challenge (CAGI 4)

With the warfarin exomes challenge, similar to the Crohn€s disease challenge, many groups 
used a priori data to create a list of covariates used. This included known pharmacokinetic 
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and pharmacodynamic warfarin genes, genes mentioned in the literature, and also using 
tools to find functional neighbors of the known gene set.

One prediction method (Group 50, Prediction 1) was ahead of the others when looking 
across multiple performance metrics described in the methods section - R2, mean absolute 
value of z score, and mean absolute value of z score multiplied by the coefficient of variation 
(Figures 6AƒD, Supplementary Table S1). The R2 of the top prediction method was 0.25, 
compared to 0.35 for the IWPC prediction method, one of the best performing predictive 
algorithms. A visualization of the predictions compared to the actual dose can be seen in 
Supplementary Figures S8 and S9. Details of all methods can be found under Supplementary 
Exhibit 3:CAGI 4.

The methods submitted for this challenge had several similar features. Every method 
submitted took advantage of the fact that the range of doses were published in the paper 
from which the data came. Thus, these methods either fit rankings to the dose range or set 
doses above or below the known range to the lower or upper limits. Additionally, most 
methods used prior information from the literature to help set the initial clinical and genetic 
covariates to consider in their models.

Discussion

The CAGI exome challenges revealed lessons specific to each particular challenge as well as 
generalizable principles for future genotype-phenotype prediction challenges.

Crohn€s Disease

Overall, there were substantial challenges with bias and population stratification in the 
datasets that make evaluation and comparison of techniques for identifying Crohn€s Disease 
status from exome data difficult. In the latest crop of prediction systems, it may be that 
techniques such as using imputation to infer variants in regions not covered by the exome 
sequencing and large external microarray SNP chip datasets are key factors in superior 
performance. The top AUC varied across the three evaluations, demonstrating the substantial 
differences in the data sets. Groups who created meta-classifiers based on combining 
previous methods from previous CAGI challenges demonstrated the value of applying the 
Common Task Framework to genetic problems ƒ through iteratively improving their 
methods based on prior learning. Importantly, across the three CAGI evaluations, the 
average system performance performed better than random, including in the most recent, 
CAGI 4, implying that there is some level of useful information in predicting likelihood of 
Crohn€s disease from exome data in the population, something previously not demonstrated.

Bipolar Disorder

Surprisingly, the group that created the best performing prediction in the Bipolar disorder 
challenge acknowledged having little background in biomedicine or genetics. This group 
approached the problem as purely a data classification challenge. On the one hand this may 
be hailed another example of the unreasonable effectiveness of data and the success of 
machine learning over human expertise; the quotation •Every time I fire a linguist, the 
performance of our speech recognition system goes up,‚ has been attributed to Fred Jelinek 
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in the 1980€s, and something similar may be afoot in genomics, promising an exciting future 
as datasets expand and machine learning techniques improve. However, one of the major 
challenges is that prediction accuracy with case-control data does not really reflect most 
applications we can envision for a phenotypic prediction system. Moreover, while not 
detected by any of our quality control methods, it is still possible that the top performing 
method picked up on hidden population stratification/biases in the data. Although we were 
unable to find evidence of this, a sophisticated machine learning system may be identifying 
features which partition the cases and controls but which are not related to biological drivers 
of disease risk. Unfortunately, the tools to dissect the deep neural net architecture in the 
context of genomic features are currently too primitive to help us deepen our biological 
understanding using these results. There has been recent work into advanced techniques to 
understand the decisions made by previous black box systems in areas like image processing 
and natural language processing; however, similar tools for understanding genomic 
prediction systems are less developed (Ribeiro, et al., August 2016).

Warfarin

Predicting warfarin dose using clinical information and genetics is a difficult problem; one 
of the best performing algorithms (IWPC) has an R2 of 0.35 on this data set. Existing 
algorithms have poorer performance on diverse populations since most algorithms are 
trained on European descent populations (Klein et al. 2009; Daneshjou et al. 2014). For this 
challenge, the winning method had an R2 of 0.25.

The warfarin exomes challenge had several limitations. The sample size was limited, with 
only 50 samples for training and 53 for testing. This data was generated at a time when 
exome sequencing was more expensive; falling costs may allow an expansion of available 
exome data. Additionally, all groups used the known dose range of the cohort when 
assigning their predicted doses. Because of the use of this known range, some of these 
methods may be tailored particularly to this challenge and not be generalizable to the wider 
population.

Overall lessons from CAGI exomes challenge

An advantage of the common task structure is the ability to iterate quickly and learn from 
the setbacks of the groups analyzing the data. The exome challenges allowed us to glean 
several important lessons that will inform future iterations of CAGI.

The importance of population stratification, batch effects, and hidden biases became evident 
early on with CAGI 2 Crohn€s disease challenge (Figure 1). In that particular instance, either 
population stratification or batch effects created a discernable difference between cases and 
controls that was unlikely related to actual disease status. Based on that finding in CAGI 2, 
every subsequent CAGI challenge included a pre-analysis of the whole exome data trying to 
identify if there were samples that clustered together inappropriately based on case-control 
status. Population stratification has long been an issue in genetic studies. The most obvious 
issue arises when cases and controls come from distinctly different ancestral populations ƒ 
such as comparing Northern European cases against Chinese controls. However, less 
obvious stratification can also be an issue ƒ such as differences in admixture/population 
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substructure or cryptic relatedness (Price, et al., 2010). Batch effects can occur at many 
different steps in the pipeline, for example if samples from the cases and controls have 
differences in sample preparation, DNA quality, sequencing coverage, or genotype calling. 
Any of the above can result in prediction methods that perform well due to systemic biases 
between cases and controls rather than true features that define case-control status.

How these challenge datasets emulate the real world was another important consideration 
and was a topic of discussion among the CAGI 4 community. A majority of the challenges 
used samples of Northern European ancestry ƒonly the warfarin dose prediction challenge 
used samples of African ancestry. In order for the methods to be generalizable to real world 
populations, representation of human diversity is necessary, particularly since disease risk 
and pharmacogenetic variants can be population-specific (Rosenberg, et al., 2010). 
Moreover, the CAGI exome datasets all came from research studies, which are often 
designed to maximize the possibility of picking up a significant signal. One way to achieve 
this is through selecting for extreme phenotypes ƒ a strategy employed by both the Crohn€s 
disease exome dataset (which selected a subset of cases who had early-onset Crohn€s 
disease) and the warfarin prediction exome dataset (selected from individuals requiring 
•low‚ and •high‚ doses to achieve the therapeutic index) (Manolio, et al., 2009). However, 
while this strategy works well for increasing signal strength in research, using such data for 
building a classifier may lead to a biased predictor that has difficulty differentiating between 
the more subtle variations seen in the real world. Having larger datasets and using data 
generated for clinical use may help remedy some of these issues in the future.

And finally, one of the most promising lessons from CAGI was on the effectiveness of data. 
As mentioned before, for complex tasks, the common task framework has provided a way to 
have many people work on a problem and iterate quickly. After a challenge has ended, 
sharing the evaluation scripts and the challenge answers allows participants to analyze when 
their prediction methods succeed or fail in order to improve further. Additionally, large 
datasets, even if imperfect, have also been shown to be a critical part of developing 
algorithms to tackle a complicated task (Pereira, et al., 2009). Critical to accumulating large 
enough datasets is data sharing, and the open data movement aims to encourage increased 
biomedical data sharing (McNutt, 2016). However one of the difficulties with genetic data 
that includes protected health information is sharing data in a secure manner. CAGI, which 
includes data encryption and verifies the groups participating can provide a platform to 
facilitate sharing such data. As a result of the data accumulated thus far, CAGI has 
demonstrated how data can, in certain cases, surmount prior biological knowledge. For 
CAGI 4, the Bipolar Disease challenge was the best example; individuals with no biological 
background, but a strong background in data science had the best performance. In particular, 
this should inspire a more multi-disciplinary approach to genotype-phenotype prediction and 
a greater effort to engage those whose backgrounds are more data-driven rather than 
biologically-driven.

Overall, the CAGI exome challenges provided an opportunity to begin building the 
classifiers required to implement precision medicine. While there is still a long road ahead 
for genotype-phenotype prediction, the accumulation of larger datasets and the participation 
of more groups with every subsequent CAGI holds promise for continued improvement.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Roxana Daneshjou1, Yanran Wang2, Yana Bromberg2, Samuele Bovo3, Pier L 
Martelli3, Giulia Babbi3, Pietro Di Lena4, Rita Casadio3,5, Matthew Edwards6, David 
Gifford6, David T Jones7, Laksshman Sundaram8, Rajendra Bhat9, Xiaolin Li8, 
Lipika R. Pal9, Kunal Kundu9,10, Yizhou Yin9,10, John Moult9,11, Yuxiang Jiang12, 
Vikas Pejaver12,13, Kymberleigh A. Pagel12, Biao Li14, Sean D. Mooney13, Predrag 
Radivojac12, Sohela Shah15, Marco Carraro16, Alessandra Gasparini16,17, 
Emanuela Leonardi17, Manuel Giollo16,18, Carlo Ferrari18, Silvio C E Tosatto16,19, 
Eran Bachar20, Johnathan R. Azaria20, Yanay Ofran20, Ron Unger20, Abhishek 
Niroula21, Mauno Vihinen21, Billy Chang22, Maggie H Wang22,23, Andre Franke24, 
Britt-Sabina Petersen24, Mehdi Pirooznia25, Peter Zandi26, Richard McCombie27, 
James B Potash28, Russ Altman1, Teri E. Klein1, Roger Hoskins29, Susanna 
Repo29, Steve E Brenner29, and Alexander A Morgan30

Affiliations
1Department of Genetics, Stanford School of Medicine, Stanford, California 
2Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 
New Jersey 3Biocomputing Group, BiGeA/CIG, €Luigi Galvani• Interdepartmental 
Center for Integrated Studies of Bioinformatics, Biophysics, and Biocomplexity, 
University of Bologna, Italy 4Biocomputing Group/Department of Computer Science 
and Engineering, University of Bologna, Italy 5€Giorgio Prodi• Interdepartmental 
Center for Cancer Research, University of Bologna, Bologna, Italy 6Computer 
Science and Artificial Intelligence Laboratory, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 7Bioinformatics Group, Department of 
Computer Science, University College London, London, United Kingdom 8Scalable 
Software Systems Laboratory, NSF I/UCRC Center for Big Learning, University of 
Florida, Gainesville, Florida 9Institute for Bioscience and Biotechnology Research, 
University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 10Computational 
Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, 
University of Maryland, College Park, Maryland 11Department of Cell Biology and 
Molecular Genetics, University of Maryland, College Park, Maryland 12Department 
of Computer Science and Informatics, Indiana University, Bloomington, Indiana 
13Department of Biomedical Informatics and Medical Education, University of 
Washington, Seattle, Washington 14Gilead Sciences, Foster City, California 
15Qiagen Bioinformatics, Redwood City, California 16Department of Biomedical 
Science, University of Padova, Padova, Italy 17Department of Woman and Child 
Health, University of Padova, Padova, Italy 18Department of Information 
Engineering, University of Padova, Padova, Italy 19CNR Institute of Neuroscience, 
Padova, Italy 20The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan 
University, Ramat-Gan, Israel 21Protein Structure and Bioinformatics Group, 
Department of Experimental Medical Science, Lund University, Lund, Sweden 

Daneshjou et al. Page 12

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC 
School of Public Health and Primary Care, Chinese University of Hong Kong, 
Shatin, N.T., Hong Kong 23CUHK Shenzhen Research Institute, Shenzhen, China 
24Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, 
Germany 25Department of Psychiatry, The Johns Hopkins University School of 
Medicine, Baltimore, Maryland 26Department of Mental Health, Johns Hopkins 
Bloomberg School of Public Health, Baltimore, Maryland 27Cold Spring Harbor 
Laboratory, Cold Spring Harbor, NY 28Department of Psychiatry, University of Iowa, 
Iowa City, Iowa 29Department of Plant and Microbial Biology, University of California, 
Berkeley, Berkeley, California 30Stanford School of Medicine, Stanford, California

Acknowledgments

The CAGI experiment coordination is supported by NIH U41 HG007446 and the CAGI conference by NIH R13 
HG006650.

YB and YW were supported by the NIH U01 GM115486; YB was also supported by U24 MH068457 and the 
Informatics Research Starter grant from the PhRMA foundation

MHW was supported by National Science Foundation of China [81473035, 31401124] to MHW?

R.U is partially supported by grant 772/13 from the Israeli Science Foundation

References

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 
Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, 
Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene 
Ontology Consortium. Nat Genet. 2000; 25(1):25ƒ9. [PubMed: 10802651] 

Ashley EA. The precision medicine initiative: a new national effort. JAMA. 2015; 313(21):2119ƒ20. 
[PubMed: 25928209] 

Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, Pavlovic 
A, Morgan AA, Pushkarev D, Neff NF, Hudgins L, Gong L, Hodges LM, Berlin DS, Thorn CF, 
Sangkuhl K, Hebert JM, Woon M, Sagreiya H, Whaley R, Knowles JW, Chou MF, Thakuria JV, 
Rosenbaum AM, Zaranek AW, Church GM, Greely HT, Quake SR, Altman RB. Clinical assessment 
incorporating a personal genome. Lancet. 2010; 375(9725):1525ƒ35. [PubMed: 20435227] 

Bauer KA. Recent progress in anticoagulant therapy: oral direct inhibitors of thrombin and factor Xa. J 
Thromb Haemost. 2011; 9(Suppl 1):12ƒ9. [PubMed: 21781237] 

Bell RM, Koren Y. Lessons from the Netflix prize challenge. SIGKDD Explor. Newsl. 2007; 9(2):75ƒ
79.

Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic 
Acids Res. 2007; 35(11):3823ƒ35. [PubMed: 17526529] 

Brown TL, Meloche TM. Exome sequencing a review of new strategies for rare genomic disease 
research. Genomics. 2016

Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug 
events in older Americans. N Engl J Med. 2011; 365(21):2002ƒ12. [PubMed: 22111719] 

CAGI. Critical Assessment of Genome Interpretation. 2011. https://genomeinterpretation.org/
Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the 

predictive score of human disease-related mutations in proteins. Hum Mutat. 2009; 30(8):1237ƒ44. 
[PubMed: 19514061] 

Daneshjou et al. Page 13

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://genomeinterpretation.org/


Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 
2008; 8(6):458ƒ66. [PubMed: 18500230] 

Committee on Applied and Theoretical Statistics; Board on Mathematical Sciences and Their 
Applications; Division on Engineering and Physical Sciences; National Academies of Sciences E, 
and Medicine. Statistical Challenges in Assessing and Fostering the Reproducibility of Scientific 
Results: Summary of a Workshop. Washington DC: National Academies Press; 2016. 

Craddock N, Jones I. Genetics of bipolar disorder. J Med Genet. 1999; 36(8):585ƒ94. [PubMed: 
10465107] 

Craddock N, Sklar P. Genetics of bipolar disorder. Lancet. 2013; 381(9878):1654ƒ62. [PubMed: 
23663951] 

Daneshjou R, Gamazon ER, Burkley B, Cavallari LH, Johnson JA, Klein TE, Limdi N, Hillenmeyer S, 
Percha B, Karczewski KJ, Langaee T, Patel SR, Bustamante CD, Altman RB, Perera MA. Genetic 
variant in folate homeostasis is associated with lower warfarin dose in African Americans. Blood. 
2014; 124(14):2298ƒ305. [PubMed: 25079360] 

Donoho, D. 50 years of data science. MIT; 2015. http://courses.csail.mit.edu/18.337/2015/docs/
50YearsDataScience.pdf:

Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, 
Keller A, Rivas MA, Skieceviciene J, Doncheva NT, Liu X, Liu Q, Jiang F, Forster M, Mayr G, 
Albrecht M, Hasler R, Boehm BO, Goodall J, Berzuini CR, Lee J, Andersen V, Vogel U, 
Kupcinskas L, Kayser M, Krawczak M, Nikolaus S, Weersma RK, Ponsioen CY, Sans M, 
Wijmenga C, Strachan DP, McArdle WL, Vermeire S, Rutgeerts P, Sanderson JD, Mathew CG, 
Vatn MH, Wang J, Nothen MM, Duerr RH, Buning C, Brand S, Glas J, Winkelmann J, Illig T, 
Latiano A, Annese V, Halfvarson J, D€Amato M, Daly MJ, Nothnagel M, Karlsen TH, Subramani 
S, Rosenstiel P, Schreiber S, Parkes M, Franke A. Association between variants of PRDM1 and 
NDP52 and Crohn€s disease, based on exome sequencing and functional studies. Gastroenterology. 
2013; 145(2):339ƒ47. [PubMed: 23624108] 

Fagan TJ. Letter: Nomogram for Bayes theorem. N Engl J Med. 1975; 293(5):257. [PubMed: 
1143310] 

Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB. Bioinformatics challenges for 
personalized medicine. Bioinformatics. 2011; 27(13):1741ƒ8. [PubMed: 21596790] 

Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G. Inflammatory bowel disease in a Swedish twin 
cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology. 2003; 
124(7):1767ƒ73. [PubMed: 12806610] 

IMS. The Use of Medicines in the United States: Review of 2011. IMS Institute for Healthcare 
Informatics; 2012. http://www.theimsinstitute.org

Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, 
Wagner MJ, Caldwell MD, Johnson JA. Estimation of the warfarin dose with clinical and 
pharmacogenetic data. N Engl J Med. 2009; 360(8):753ƒ64. [PubMed: 19228618] 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, 
Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, 
Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, 
Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. 
Nature. 2009; 461(7265):747ƒ53. [PubMed: 19812666] 

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of 
genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010; 26(16):
2069ƒ70. [PubMed: 20562413] 

McNutt M. #IAmAResearchParasite. Science. 2016; 351(6277):1005ƒ1005. [PubMed: 26941292] 
Monson ET, Pirooznia M, Parla J, Kramer M, Goes FS, Gaine ME, Gaynor SC, de Klerk K, Jancic D, 

Karchin R, McCombie WR, Zandi PP, Potash JB, Willour VL. Assessment of Whole-Exome 
Sequence Data in Attempted Suicide within a Bipolar Disorder Cohort. Mol Neuropsychiatry. 
2017; 3:1ƒ11. [PubMed: 28879196] 

Morgan AA, Lu Z, Wang X, Cohen AM, Fluck J, Ruch P, Divoli A, Fundel K, Leaman R, Hakenberg 
J, Sun C, Liu HH, Torres R, Krauthammer M, Lau WW, Liu H, Hsu CN, Schuemie M, Cohen KB, 
Hirschman L. Overview of BioCreative II gene normalization. Genome Biol. 2008; 9(Suppl 2):S3.

Daneshjou et al. Page 14

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf:
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf:
http://www.theimsinstitute.org


Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of 
protein structure prediction (CASP)--round x. Proteins. 2014; 82(Suppl 2):1ƒ6.

Niroula A, Urolagin S, Vihinen M. PON-P2: prediction method for fast and reliable identification of 
harmful variants. PLoS One. 2015; 10(2):e0117380. [PubMed: 25647319] 

Pereira F, Norvig P, Halevy A. The Unreasonable Effectiveness of Data. IEEE Intelligent Systems. 
2009; 24:8.

Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification in genome-
wide association studies. Nat Rev Genet. 2010; 11(7):459ƒ63. [PubMed: 20548291] 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker 
PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007; 81(3):559ƒ75. [PubMed: 17701901] 

Ribeiro MT, Singh S, Guestrin C. •Why should I trust you?‚ Explaining the Predictions of Any 
Classifier. arxiv. Aug.2016 1602.04938. 

Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. Genome-wide association 
studies in diverse populations. Nat Rev Genet. 2010; 11(5):356ƒ66. [PubMed: 20395969] 

Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, 
Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V, Stang P, Strohband S, Dupont C, Jendrossek 
L-E, Koelen C, Markey C, Rummel C, van Niekerk J, Jensen E, Alessandrini P, Bradski G, Davies 
B, Ettinger S, Kaehler A, Nefian A, Mahoney P. Stanley: The robot that won the DARPA Grand 
Challenge. Journal of Field Robotics. 2006; 23(9):661ƒ692.

Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, Ouahed J, Wilson DC, Travis 
SP, Turner D, Klein C, Snapper SB, Muise AM. Group CiIS, Neopics. The diagnostic approach to 
monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014; 147(5):990ƒ
1007. e3. [PubMed: 25058236] 

Walker, MA., Passonneau, R., Boland, JE. Proceedings of the 39th Annual Meeting on Association for 
Computational Linguistics. Toulouse, France: Association for Computational Linguistics; 2001. 
Quantitative and qualitative evaluation of Darpa Communicator spoken dialogue systems; p. 
515-522.

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, 
Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations. Nucleic Acids Res. 2014; 42(Database issue):D1001ƒ6. [PubMed: 24316577] 

Wray NR, Yang J, Goddard ME, Visscher PM. The genetic interpretation of area under the ROC curve 
in genomic profiling. PLoS Genet. 2010; 6(2):e1000864. [PubMed: 20195508] 

Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for 
human diseases. Nat Methods. 2015; 12(9):841ƒ3. [PubMed: 26192085] 

Daneshjou et al. Page 15

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Clustering of patients from the CAGI 2 Crohn€s Disease Challenge. The black and gray bars 
at the bottom represent the controls; the red represents the cases. Many of the controls 
cluster together, likely due to batch effects. For instance, the controls represented in black 
were sequenced separately from the gray controls and the cases.
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Figure 2. 
Clustering of samples for CAGI 3 Crohn€s Disease challenge. Black represents controls, 
while red represents cases. This dataset included healthy family members of cases as well as 
random controls. Samples with a •ped‚ designation in the sample name came from a 
pedigree; samples that share the same •ped‚ number came from the same pedigree.
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Figure 3. 
Clustering of samples for CAGI 4 Crohn€s Disease challenge. Black represents controls, and 
red represents cases.
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Figure 4. 
CAGI 4 Crohn€s disease challenge distribution of AUCs across all methods.
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Figure 5. 
CAGI 4 bipolar disorder challenge distribution of AUCs across all methods.
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Figure 6A€D. 
A. R2 between methods and actual dose. B. Sum of squared errors C. Mean z-scores 
between predicted doses with standard deviations and actual doses. D. Mean coefficient of 
variation (CV) and mean CV multiplied by mean z-score.
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Table 1

The number of predictors and predictions for each CAGI challenge.

Challenge Number of
predictors

Number of Predictions

Crohn€s Disease Exomes ChallengeCAGI 2 ƒ 10 groups CAGI 2 ƒ 33 predictions

CAGI 3 ƒ 14 groups CAGI 3 ƒ 58 (+3 late) predictions

CAGI 4 ƒ 14 groups CAGI 4 ƒ 46 predictions

Bipolar Exomes Challenge CAGI 4 ƒ 9 groups CAGI 4 ƒ 29 predictions

Warfarin Exomes Challenge CAGI 4 ƒ 3 groups CAGI 4ƒ 9 predictions
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