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Abstract

Björner-Ekedahl [5] prove that general intervals [e, w] in Bruhat order are
“top-heavy”, with at least as many elements in the i-th corank as the i-th
rank. Well-known results of Carrell [7] and of Lakshmibai-Sandhya [9] give
the equality case: [e, w] is rank-symmetric if and only if the permutation w

avoids the patterns 3412 and 4231 and these are exactly those w such that
the Schubert variety Xw is smooth.

In this paper we study the finer structure of rank-symmetric intervals
[e, w], beyond their rank functions. In particular, we show that these intervals
are still “top-heavy” if one counts cover relations between different ranks.
The equality case in this setting occurs when [e, w] is self-dual as a poset;
we characterize these w by pattern avoidance and in several other ways.

1 Introduction

We say a complex projective variety X has a cellular decomposition if X is covered
by the disjoint open sets {Ci}, each isomorphic to affine space of some dimension,
and such that each boundary Cj \ Cj is a union of some of the {Ci}. Given a
variety with such a decomposition, it is natural, following Stanley [14], to define a
partial order QX on the {Ci} by setting Ci ≤ Cj whenever Ci ⊆ Cj .

∗C.G. was partially supported by an NSF Graduate Research Fellowship under grant No.
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When X = G/B, the quotient of a complex semisimple algebraic group by a
Borel subgroup, the Bruhat decomposition

G =
⊔

w∈W

BwB

induces a cellular decomposition {BwB/B | w ∈ W} of X , where W is the Weyl
group of G. In this case the partial order QX on W is the well known Bruhat
order. For w ∈ W the closure Xw = BwB/B itself has the cellular decomposition
{BuB/B | u ∈ W, u ≤ w}, and so its poset of cells QXw is the interval [e, w] in
Bruhat order on W below the element w. The varieties Xw are called Schubert
varieties.

Much of the structure of the Bruhat order is well-understood combinatorially;
see Section 2 for some basic definitions and results. It is graded with the rank of
an element w being the length ℓ(w) in the Weyl group, it has minimal element
e, the identity element of W and maximal element w0, the longest element of W .
A great deal of work has been done on the structure of intervals [e, w] in Bruhat
order [3, 6, 15]. Most of this paper will focus on the “type An−1” case, where the
Weyl group W is the symmetric group Sn.

For w ∈ W and k = 0, 1, . . . , ℓ(w), let

Pw
k := {u ≤ w : ℓ(u) = k}.

We call this set the k-th rank of [e, w] and call Pw
ℓ(w)−k

the k-th corank. When
the element w is well understood, we may simplify our notation and just write
Pk instead. We have Pw

0 = {e} and Pw
ℓ(w) = {w}. Let Γw (resp. Γw) denote the

bipartite graph on Pw
1 ⊔ Pw

2 (resp. Pw
ℓ(w)−1 ⊔ Pw

ℓ(w)−2) with edges given by cover

relations in Bruhat order (see Figure 2 for an example).

Theorem 1 (Björner and Ekedahl [5]). Bruhat intervals are “top-heavy”, that is,
for all 0 ≤ k ≤ ℓ(w)/2,

|Pw
k | ≤ |Pw

ℓ(w)−k|.

Given a permutation π ∈ Sm, we say w ∈ Sn avoids π if there are no indices
1 ≤ i1 < · · · < im ≤ n such that w(i1), . . . , w(im) are in the same relative order
as π(1), . . . , π(m).

Theorem 2 (Carrell; Lakshmibai and Sandhya [7, 9]). The following are equiva-
lent for w ∈ Sn:

S.1 the interval [e, w] is rank-symmetric, that is, |Pw
k | = |Pw

ℓ(w)−k
| for all 0 ≤

k ≤ ℓ(w)/2;

S.2 w avoids 3412 and 4231;

S.3 the Schubert variety Xw is smooth.
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Permutations satisfying the equivalent conditions of Theorem 2 are called
smooth permutations.

Theorem 3 shows that, even when [e, w] is rank-symmetric, so that Theorem 1
does not give an asymmetry between ranks and coranks, the interval is still “top
heavy” if we also consider cover relations. For u ∈ [e, w] we write udegw(u) for
the number of v ∈ [e, w] covering u, and ddegw(u) for the number covered by u.
A poset is called self-dual if it is isomorphic to its dual poset, which has the same
elements with the order relation reversed.

Theorem 3. Let w ∈ Sn be a smooth permutation, then

max
u∈Pw

1

udegw(u) ≤ max
u∈Pw

ℓ(w)−1

ddegw(u),

with equality if and only if [e, w] is self-dual.

Stanley wondered [14] if the posets QX for X smooth are always self-dual
(they are rank-symmetric by the Hard Lefschetz Theorem); although this is the
case for many small examples, it is not true for the smooth Schubert varietyX34521

(see Figure 2). Theorem 4 below characterizes self-dual intervals in Bruhat order
on the symmetric group.

Theorem 4. The following are equivalent for w ∈ Sn:

SD.1 the bipartite graphs Γw and Γw are isomorphic;

SD.2 w avoids the smooth patterns 3412 and 4231 from (S.2) as well as 34521,
45321, 54123, and 54312;

SD.3 w is polished (see Definition 9);

SD.4 the interval [e, w] in Bruhat order is self-dual.

Remark 5. In Section 3.3 we prove that (SD.3)⇒(SD.4) in general finite Coxeter
groups, however in Section 4 we give counterexamples to the other implications in
general Coxeter groups.

The equivalence of (SD.1) and (SD.4) is notable because it implies that self-
duality of [e, w] may demonstrated by comparing only two pairs of ranks and
coranks. This is in contrast to the case of rank-symmetry, where Billey and Post-
nikov [1] conjecture that one must check that |Pw

i | = |Pw
ℓ(w)−i| for around the first

r pairs of ranks and coranks, where r is the rank of the Weyl group. In particular,
(SD.1) gives a new sufficient (but not necessary) condition for the smoothness of
Xw which may be checked by comparing only two pairs of ranks and coranks. See
[11] for discussion of a similar problem in certain infinite Coxeter groups.

The remainder of the paper is organized as follows. In Section 2 we recall
background on Bruhat order and give the definition of polished elements. Section
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3 gives the proof of Theorem 4 and Theorem 3, with each implication in Theorem 4
(SD.1)⇒(SD.2), (SD.2)⇒(SD.3), and (SD.3)⇒(SD.4) occupying a subsection and
the proof of Theorem 3 occupying the last subsection. Finally, Section 4 shows
that Theorem 4 does not extend to other finite Coxeter groups.

2 Background and definitions

Let (W,S) be a finite Coxeter system; we write ∆S for the associated Dynkin
diagram (see Björner and Brenti [4] for basic results and definitions). For w ∈ W ,
the length ℓ(w) is the shortest possible length for an expression w = s1 · · · sℓ with
the si ∈ S; such an expression for w of minimal length is called a reduced expression
or reduced decomposition. The parabolic subgroup WJ for J ⊆ S is the subgroup
generated by J , and (WJ , J) is a Coxeter system. The unique element of maximum
length in WJ is denoted w0(J). Each left coset wWJ (resp. right cosetWJw) ofWJ

in W has a unique representative wJ (resp. Jw) of minimal length, and the set of
these representatives is the parabolic quotient W J (resp. JW ). Given J ⊆ S, each
element w ∈ W may be uniquely written w = wJwJ with wJ ∈ W J and wJ ∈ WJ

(resp. w = Jw
Jw with Jw in JW and Jw in WJ) with J and this decomposition

satisfies ℓ(w) = ℓ(wJ ) + ℓ(wJ ); whenever we write an element w as a product of
two elements whose lengths sum to ℓ(w), we say this product is length-additive.
The support Supp(w) is the set of s ∈ S appearing in a given reduced expression
for w (it is known that the support does not depend on the reduced expression).

The elements of T = {wsw−1 | w ∈ W, s ∈ S} are called reflections. For
w ∈ W and t ∈ T , we write w ≤ wt whenever ℓ(wt) > ℓ(w); the Bruhat order on
W is the transitive closure of this relation. The Bruhat order is graded, with rank
function given by ℓ, has unique minimal element e and unique maximal element
w0 = w0(S). If above we instead require that t ∈ S, the resulting partial order is
called the right weak order, denoted ≤R (if we require that t ∈ S and multiply on
the left, we obtain the left weak order ≤L on W ). We write [u,w] for the interval
between u and w in Bruhat order, and [u,w]L and [u,w]R for intervals in left and
right weak orders, respectively; we also write [u,w]J for [u,w] ∩W J .

Proposition 6 (See, e.g. [4]). The map u 7→ uJ from W → W J preserves Bruhat
order.

The right inversion set TR(w) of w ∈ W is {t ∈ T | ℓ(wt) < ℓ(w)}; the right
descent set is DR(w) = TR(w)∩S. We similarly define left inversions and descents
by multiplying by t on the left. It is not hard to check that

W J = {w ∈ W |DR(w) ⊆ S \ J}

and that DR(w0(J)) = DL(w0(J)) = J . It is well known that s ∈ DR(w) (resp.
s ∈ DL(w)) if and only if w has a reduced expression ending with s (resp. beginning
with s).

The following characterization of Bruhat order is well known.
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Proposition 7. Let u,w ∈ W , then u ≤ w if and only if for some (equivalently,
for any) reduced expression w = s1 · · · sℓ there is a substring si1 · · · sik with i1 <
· · · < ik which is a reduced expression for u.

2.1 Billey-Postnikov decompositions

Let w ∈ (W,S) and J ⊆ S, we say the parabolic decomposition w = wJwJ is a
Billey-Postnikov decomposition (or BP-decomposition) if

Supp(wJ ) ∩ J ⊆ DL(wJ ).

For any u ∈ W and any J ⊆ S, it was shown in [2] that

[e, u] ∩WJ = [e,m(u, J)]

for some element m(u, J) ∈ W , and we take this as the definition of m(u, J).

Proposition 8 (Richmond and Slofstra [12]). If the parabolic decomposition u =
uJuJ is a BP-decomposition, then uJ = m(u, J).

2.2 The symmetric group as a Coxeter group

Much of the paper will focus on the case of the symmetric group Sn, the Coxeter
group of type An−1. We make the conventions for the symmetric group that the
simple generators are S = {s1, ..., sn−1} where si is the adjacent transposition
(i i+ 1). It is not hard to see that the reflections T are exactly the transpositions
(ij), for which we sometimes write tij .

In this case descents and inversions correspond to the familiar notions by
the same name which appear in the combinatorics of permutations. Namely, for
w = w(1) . . . w(n) in one-line notation, (ij), i < j is a right inversion of w if
w(i) > w(j) and a right descent if this is true and j = i+1. The length ℓ(w) is the
number of inversions of w, and the longest element w0 is the reversed permutation
with one-line notation n n− 1 · · · 2 1.

2.3 Polished elements

We now define the polished elements appearing in the statement of Theorem 4.

Definition 9. Let (W,S) be a finite Coxeter system, we say that w ∈ W is
polished if there exist pairwise disjoint subsets S1, ..., Sk ⊆ S such that each Si is a
connected subset of the Dynkin diagram and coverings Si = Ji ∪ J ′

i for i = 1, ..., k
with Ji ∩ J ′

i totally disconnected so that

w =

k∏

i=1

w0(Ji)w0(Ji ∩ J ′
i)w0(J

′
i)
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where the product is taken from left to right as i = 1, 2, ..., k (if the Sj are re-
ordered, we obtain a possibly different polished element).

In light of Theorem 4, the word “polished” is meant to indicate that these
elements are even nicer than smooth elements.

Example 10. The following element (shown in Figure 1) with k = 2, J1 = {s8},
J ′
1 = ∅, J2 = {s2, s3, s4, s6, s7}, J

′
2 = {s4, s5, s6}, and multiplication in the order

of

w =w0(J1)w0(J2)s4s6w0(J
′
2)

=123456798 · 154328769 · 123546789 · 123457689 · 123765489

=154973268

is a polished element. Notice that J2 ∩ J ′
2 = {s4, s6} is totally disconnected.

• • • • • • • •

J2 J ′
2 J2

s4 s6

J1

Figure 1: A polished element 154963287 in S9.

The permutation 34521 ∈ S5, whose graphs Γ34521 and Γ34521 are shown
in Figure 2, is not polished. This can be checked directly or seen to follow from
Theorem 4, since Γ34521 6∼= Γ34521.

3 Proof of Theorem 4

It is clear that (SD.4)⇒(SD.1), as any antiautomorphism of [e, w] induces an
isomorphism Γw

∼= Γw. We are going to show that (SD.1)⇒(SD.2), (SD.2)⇒(SD.3)
and (SD.3)⇒(SD.4) in the following sections.

3.1 Proof of direction (SD.1)⇒(SD.2)

For w ∈ Sn, let bl(w) be the largest b ≥ 1 such that [n] := {1, 2, . . . , n} can be
partitioned into consecutive intervals J1 ⊔ J2 ⊔ · · · ⊔ Jb such that w · Ji = Ji for
all i = 1, . . . , b. We write w = w(1) ⊕ · · · ⊕ w(b) where w(i) ∈ S|Ji| and say that w
has bl(w) blocks. Equivalently, bl(w) is the cardinality of S \Supp(w), thus we see
that bl(w) = n− |Pw

1 |.

Definition 11. We say that an inversion (i, j) of w isminimal if i < j, w(i) > w(j)
and there does not exist k such that i < k < j and w(i) > w(k) > w(j).
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34251 32541 24531 34512

34215 34152 32514 32451 31542 24513 24351 23541 14532

21345 13245 12435 12354

23145 31245 13425 14235 21435 12453 12534 13254 21354

Figure 2: The bipartite graphs Γ34521 (top) and Γ34521 (bottom). Note that the
graphs are not isomorphic.

In other words, (i, j) is a minimal inversion of w if and only if wtij is covered
by w is in the strong Bruhat order. So the minimal inversions of w are in bijection
with Pw

ℓ(w)−1. We generalize this definition to minimal pattern containment.

Definition 12. We say that w ∈ Sn contains pattern π ∈ Sk at indices a1 <
· · · < ak if w(ai) < w(aj) if and only if π(i) < π(j) for all 1 ≤ i < j ≤ n. We
say that this occurrence of π is minimal if there does not exist an occurrence of
the pattern π at different indices a′1 < · · · < a′k such that a′1 ≥ a1, a

′
k ≤ ak,

mini w(a
′
i) ≥ miniw(ai), maxi w(a

′
i) ≤ maxiw(ai) and at least one of these four

inequalities is strict.

Example 13. The permutation 45321 contains the pattern 3421 at indices 1,2,4,5
but this containment is not minimal since 45321 also contains 3421 at indices
1,2,3,4.

Notice that if w ∈ Sn contains π ∈ Sk, then w must have some minimal
occurrence of π.

Lemma 14. For w ∈ Sn, we always have |Pw
ℓ(w)−1| ≥ |Pw

1 | and if w contains the

pattern 4231, then |Pw
ℓ(w)−1| > |Pw

1 |.

Remark 15. The inequality |Pw
ℓ(w)−1| ≥ |Pw

1 | follows directly from Theorem A of

[5]. We will still give the full proof here as the idea will also be useful later on.
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Proof. Use induction on n. Let a = bl(w) and w = w(1) ⊕ · · · ⊕ w(a). Then

|Pw
ℓ(w)−1| =

∑a

i=1 |P
w(i)

ℓ(w(i))−1
| and |Pw

1 | =
∑a

i=1 |P
w(i)

1 |. As bl(4231) = 1, w con-

tains 4231 if and only if one of w(i) contains 4231. Therefore we can assume without
loss of generality that a = 1. Consequently, Pw

1 consists of all simple transpositions
si for i = 1, . . . , n− 1 so |Pw

1 | = n− 1.
Let u ∈ Sn−1 be the permutation obtained from w by restricting to the

relative ordering of w(2), . . . , w(n). Let b = bl(u) and u = u(1) ⊕ · · · ⊕ u(b) with
u(i) being a permutation on Ji ⊂ {2, . . . , n}. An example is shown in Figure 3.
Since bl(w) = 1, we necessarily have that w(1) is greater than the smallest entry

•

u(1)

u(2)

u(3)

•

•r

•p

•
q

A C

B

Figure 3: The decomposition of w with the first entry deleted. The permutation
diagrams in Figures 3-9 use matrix coordinates; there is a dot in position (i, j)
whenever w(i) = j.

in Jb. The minimal inversions of w contain all minimal inversions in u(i)’s and
minimal inversions of the form (1, k). By the induction hypothesis, the number of
minimal inversions in u(i) is at least |Ji| − 1. And for the minimal inversions in
the form of (1, k), we can take k = w−1(max Ji − 1), for i = 1, . . . , b− 1 (the right
most element in each block u(i)) and w−1(w(1) − 1) (the right most element in
the left part of u(b)). Together, we obtain |Pw

ℓ(w)−1| ≥ n− 1 as desired. Moreover,

by the induction hypothesis, if any u(i) contains 4231, then the above inequality
is strict as well. Thus, we may assume that none of the u(i)’s contain 4231.

We now assume that w contains 4231 and all of the 4231’s inside w involve
the entry (1, w(1)). Among all 4231 patterns at indices 1, p, q, r, choose one where p
is minimal and among those, choose one where w(q) is maximal. Since the pattern
231 satisfies bl(231) = 1, the entries at p, q, r belong to the same block Ji (see
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Figure 3). Consider regions A,B,C defined as follows:

A = {k ∈ Ji : k < p,w(p) < w(k) < w(q)},

B = {k ∈ Ji : p < k < q,w(q) < w(k) ≤ |J1|+ · · ·+ |Ji|},

C = {k ∈ Ji : k < p,w(q) < w(k) ≤ |J1|+ · · ·+ |Ji|}.

By minimality of p, Amust be empty and by maximality of w(q), B must be empty.
As u(i) avoids 4231, C must be empty. As a result, A = B = C = ∅. This means
that both (1, p) and (1, q) are minimal inversions of w. As w has strictly more than
1 minimal inversions of the form (1, k) for k ∈ Ji, the inequality |Pw

ℓ(w)−1| ≥ n− 1
is strict, so we are done.

Lemma 16. If w ∈ Sn avoids 4231 and has minimal inversions at (p, q) and
(q, r), then both wtpq and wtqr cover wtpqtqr and wtqrtpq in the Bruhat interval
[e, w].

Proof. We have that p < q < r and w(p) > w(q) > w(r). Since (p, q) and (q, r)
are minimal inversions, the sets

{(a, w(a)) | p < a < q,w(q) < w(a) < w(p)}

and
{(a, w(a)) | q < a < r,w(r) < w(a) < w(q)}

must be empty. Moreover, since w avoids 4231,

{(a, w(a)) | p < a < q,w(r) < w(a) < w(q)}

and
{(a, w(a)) | q < a < r,w(q) < w(a) < w(p)}

must be empty as well. As a result,

{(a, w(a)) | p < a < r,w(r) < w(a) < w(p)} = {(q, w(q))}.

A useful visualization can be seen in Figure 4.
It is now clear that both (q, r) and (p, r) are minimal inversions of wtpq . So

wtpq covers wtpqtqr and wtpqtpr = wtqrtpq. Similarly, wtqr also covers wtpqtqr and
wtqrtpq as desired.

Lemma 17. For w ∈ Sn avoiding 4231, if w satisfies (SD.1) then w avoids 34521,
45321, 54123, 54312 and 3412.

Proof. All four patterns mentioned in this lemma have one block, so we can
again without loss of generality assume that bl(w) = 1 and therefore that Pw

1 =
{s1, . . . , sn−1}. Assume that w avoids 4231 and it satisfies condition (SD.1). Thus
there exists some graph isomorphism Γw ∼= Γw identifying Pw

ℓ(w)−1, which is in
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bijection with minimal inversions, and Pw
1 , which is the set of simple transposi-

tions. We will label all minimal inversions by {1, 2, . . . , n − 1} corresponding to
their associated simple transpositions.

The following fact is going to be very useful. Assume w satisfies (SD.1) and
w avoids 4231. Then if w has minimal inversions at (p, q) and (q, r) with labels i
and j respectively, then i and j must differ by one (see Figure 4).

•

•

•

C D

A B

j

i

p

r

q

Figure 4: Adjacent labels

To see this fact, we use Lemma 16. The graph isomorphism Γw
∼= Γw implies

that there exists two elements in Pw
2 that cover both si and sj in the strong

Bruhat order. As a result, |i− j| = 1 since otherwise, there exists only one element
sisj = sjsi ∈ Pw

2 that covers both si and sj .
We first deal with the patterns 34521, 45321, 54123, 54312 of size five. If w

contains 45321, take a minimal pattern at indices a1 < a2 < a3 < a4 < a5 and
consider the 16 regions indicated in Figure 5. Since w avoids 4231, we know that
A11, A12, A21, A22, A31, A33, A34, A42, A43, A44 are all empty. If A41 is non empty
and contains some (a′, w(a′)), then w contains a pattern 45321 at indices a1 < a2 <
a3 < a4 < a′, contradicting the minimality of a1 < a2 < a3 < a4 < a5. Similarly,
the rest of the regions A13, A14, A23, A24, A32 are all empty by the minimality. As

•

•

•

•

•

a5

a4

a3

a2

a1

A41

A31

A21

A11

A42

A32

A22

A12

A43

A33

A23

A13

A44

A34

A24

A14

Figure 5: A minimal 45321.

a result, we now have minimal inversions at (a1, a3), (a2, a3), (a3, a4) and (a4, a5)
and let their labels be i1, i2, i3, i4 respectively. By the fact regarding adjacent labels
above, we know that i3 is simultaneously adjacent to i1, i2 and i4. This yields a

10



contradiction. We will have the same contradiction if w contains 54312, the inverse
of 45321.

So we assume further that w avoids 54312 and 45321. If w contains 34521, we
similarly take a minimal 34521 at indices a1 < · · · < a5, and consider the regions
shown in Figure 6 (left) as before. The cases are slightly more complicated here.

•

•

•

•

•

a5

a4

a3

a2

a1

B41

B31

B21

B11

B42

B32

B22

B12

B43

B33

B23

B13

B44

B34

B24

B14

•

•

•

•

•

a5

a4

a3

a2

a1

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

•
•

∅

∅

∅

∅

B14

Figure 6: A minimal 34521.

Since w avoids 4231, B11, B21, B31, B42, B43, B44 are empty. Since w avoids 45321,
B22, B33 are empty. Since a1 < · · · < a5 is minimal, B41, B32, B12, B13, B24, B34

are empty. Thus, among the regions shown in Figure 6, all regions but B23 and B14

must be empty. Since w avoids 4231, entries in region B23 must be decreasing and
let them be (c1, w(c1)), . . . , (ck, w(ck)), k ≥ 0 where c1 < · · · < ck and w(c1) >
· · · > w(ck), shown in Figure 7 (right). By the fact above regarding adjacent
labels, we can conclude that the labels of the minimal inversion (a4, a5) must be
simultaneously adjacent to the labels of (a1, a4), (ck, a4) and (a3, a4) with the
convention that c0 = a2. This yields a contradiction. Elements inside region B14

will not affect our argument. The case where w contains 54123 is the same as
54123 is the inverse of 34521.

Finally, we can assume that w avoids 4231, 34521, 45321, 54123 and 54312.
Suppose that w contains 3412 and let a minimal 3412 be at indices a1 < a2 <
a3 < a4. By minimality, all regions except C1, C2, C3 must be empty, as shown
in Figure 7. Since w avoids 4231, elements in C2 must be decreasing. Then as w

•

•

•

•

a4

a3

a2

a1
C1

C2

C3

∅

∅ ∅

∅

∅

∅

Figure 7: A minimal 3412

avoids 45321 (or 54312), |C2| ≤ 2. We divide into cases depending on the value of
|C2|.
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If |C2| = 2, let it be (c1, w(c1)) and (c2, w(c2)) with c1 < c2 and w(c1) >
w(c2). As w avoids 4231, C1 and C3 must now be empty. The label of the minimal
inversion (c1, c2) must now be simultaneously adjacent to (a1, c1), (a2, c1), (c2, a3)
and (c2, a4) and this is clearly impossible. If |C1| = 1, let it be (c1, w(c1)). Similarly
C1 and C3 must be empty. Let the labels of the minimal inversions (a1, c1), (a2, c1),
(c1, a3) and (c1, a4) be i1, i2, i3 and i4 respectively. Then i1 is adjacent to i3, i1 is
adjacent to i4, i2 is adjacent to i3 and i2 is adjacent to i4. This is again impossible.

The last remaining case is that C2 is empty so C1 and C3 may not be empty.
As w avoids 4231, elements in C1 and C3 are decreasing. Now we use the strategy
in the proof of Lemma 14 to show that |Pw

ℓ(w)−1| > |Pw
1 |, contradicting the fact

that w was assumed to satisfy (SD.1). Without of loss generality assume that
bl(w) = 1 so that |Pw

1 | = n − 1. Let u be obtained from w by removing index
1 and let b = bl(u) with blocks J1, . . . , Jb. Recall that |Pℓ(w)−1| is at least the
number of minimal inversions inside each block Ji plus the number of minimal
inversions involving index 1 while the number of minimal inversions inside Ji is at
least |Ji| − 1 by induction and the number of minimal inversions involving 1 and
block Ji is at least 1. They sum up to n − 1. Now if a1 > 1, since bl(3412) = 1,
indices a1, . . . , a4 together with C1 and C3 must lie in the same block Ji in u. We
can then use induction to see that the number of minimal inversions inside Ji is
strictly larger than |Ji| − 1 and as a result, |Pℓ(w)−1| > n− 1. The critical case is
that a1 = 1. Let C1 consists of (c1, w(c1)), . . . , (ck, w(ck)) with c1 < · · · < ck and
w(c1) > · · · > w(ck), k ≥ 0. Again, indices a2, a3, a4 together with C1 and C3 all
lie in the same block Ji of u. As a result, minimal inversions involving 1 and Ji
contain (1, ck), where c0 = a3 if k = 0, and (1, a4), contributing at least 2 to the
sum. Therefore, we conclude |Pw

ℓ(w)−1| > |Pw
1 | as well.

Direction (SD.1)⇒(SD.2) follows from Lemma 14 and Lemma 17.

3.2 Proof of direction (SD.2)⇒(SD.3)

Throughout this section, assume that w ∈ Sn is a permutation that avoids 3412,
4231, 34521, 45321, 54123 and 54312. We are going to use the permutation matrix
of w, as in Section 3.1, to give a decomposition of w.

We first divide all such permutations w into different “types”. Consider
the region C = {(a, w(a)) | 1 ≤ a ≤ w−1(1), 1 ≤ w(a) ≤ w(1)} which con-
tains (1, w(1)) and (w−1(1), 1) and define t = t(w) = |C| − 1 (see Figure 8).
If w(1) = 1, C contains only (1, 1) and we say that such w is of type n, where
n stands for “none”. We also observe that entries in C are decreasing, meaning
that if (a1, w(a1)), (a2, w(a2)) ∈ C with a1 < a2, then w(a1) > w(a2). This is
because otherwise, w would contain a pattern 4231 at indices 1, a1, a2, w

−1. As-
sume that C contains (c0, w(c0)), . . . , (ct, w(ct)) where 1 = c0 < · · · < ct and
w(c0) > · · · > w(ct) = 1.
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Then let

R = {(a, w(a)) | 1 < a < w−1(1), w(a) > w(1)}

and
L = {(a, w(a)) | a > w−1(1), 1 < w(a) < w(1)}.

Since w avoids 3412, at least one of R and L must be empty. Otherwise, say
(a1, w(a1)) ∈ R and (a2, w(a2)) ∈ L, then automatically w(1) 6= 1 and w contains
a pattern 3412 at indices 1, a1, w

−1(1), a2. It is certainly possible that L = R = ∅,
in which case we say that w is of type n as above. If L 6= ∅, we say that w is of
type l, where l stands for either “left” or “lower” and if R 6= ∅, we say that w is of
type r, where r stands for “right”. If w is of type l, then w−1 is of type r, so these
two cases are completely analogous.

•

•

L

R
C

•

•

•

•
•

•

•

•

∅

ct

ct−1

ct−2

c0
∅

R1

R0

• • • •

Figure 8: Structure of smooth permutations (left) and structure of permutations
avoiding 3412, 4231, 34521, 45321, 54123 and 54312 (right).

So far we have only used the condition that w is smooth, meaning that w
avoids 4231 and 3412. The above analysis has also appeared in previous works
including [8] and [10].

Now assume that w is of type r so that L = ∅ and R 6= ∅. We can further
divide R as a disjoint union R0 ⊔R1 ⊔R2 (see Figure 8) where

R0 = {(a, w(a)) | ct−1 < a < ct},

R1 = {(a, w(a)) | ct−2 < a < ct−1}, and

R2 = {(a, w(a)) | 1 < a < ct−2}.

As w is of type r, t ≥ 1. If t = 1, R1 = R2 = ∅ and if t = 2, R2 = ∅ automatically.
Regardless, we see that in fact, if R2 6= ∅ and contains (a, w(a)), then w would
contain a pattern 45321 at indices 1, a, ct−2, ct−1, ct. Thus, R2 = ∅. Moreover, we
see that entries in R1 must be decreasing: otherwise if (a, w(a)), (a′, (w(a′)) ∈ R1

with a < a′ and w(a) < w(a′), then w would contain a pattern 34521 at indices
1, a, a′, ct−1, ct, a contradiction. If R1 6= ∅, we further say that w is of type r1 and
if R1 = ∅, then R0 6= ∅ and we say that w is of type r0. Similarly we can define
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type l1 and type l0. Equivalently, we can also say that w is of type li if w
−1 is of

type ri, i ∈ {0, 1}.
The following lemma allows us to inductively decompose w. As a piece of

notation, if w ∈ Sn satisfies w(1) = 1, . . . , w(m) = m for some m, then w lies in
the parabolic subgroup of Sn generated by J = {sm+1, . . . , sn−1}. In this case, we
will naturally consider w ∈ (Sn)J as a permutation in Sn−m.

Lemma 18. Let w ∈ Sn be a permutation that avoids the six patterns in (SD.2).
Let J = {s1, . . . , st} ⊂ S = {s1, . . . , sn−1} be a connected subset of of the Dynkin
diagram of Sn, where t = t(w) as above.

• If w is of type n, w · w0(J) = w0(J) · w ∈ (Sn)(S\J)\{st+1} is a permutation
of size n− t− 1 that avoids the six patterns in (SD.2).

• If w is of type r0, w0(J) · w ∈ (Sn)S\J is a permutation of size n − t that
avoids the six patterns in (SD.2).

• If w is of type r1, w
′ = st ·w0(J) ·w ∈ (Sn)(S\J)∪{st} is a permutation of size

n− t+1 that avoids the six patterns in (SD.2). Considered as a permutation
in Sn−t+1, t(w

′) = |R1|+ 1 and w′ is not of type r1. Moreover, if |R1| = 1,
w′ is not of type l1 either.

Proof. First notice the simple fact that if u ∈ Sn contains one of the patterns
in (SD.2) and {u(1), . . . , u(m)} = {1, . . . ,m}, then such a pattern appears either
within the first m indices or within the last n−m indices.

If w is of type n, then w(1) = t + 1, w(2) = t, . . . , w(t + 1) = 1. After
multiplying by w0(J) on either side, we obtain w′ = w0(J)w = ww0(J) satisfying
w′(i) = i for i ≤ t+1 and w′(i) = w(i) for i > t+1. Clearly w′ avoids the patterns
of interest, as w avoids them.

If w is of type r0, then w(1) = t + 1, w(2) = t, . . . , w(t) = 2 and w(ct) = 1
where ct > t + 1. Let w′ = w0(J) · w. We see that w′(1) = 1, . . . , w′(t) = t,
w′(ct) = t + 1 and w′(i) = w(i) if i /∈ {c0, . . . , ct}. So we do have w′ ∈ (Sn)S\J .
By our argument above, if w′ contains a pattern π mentioned in (SD.2), then none
of the indices 1, . . . , t can be involved, and since w avoids π, the index ct must
be involved. Say w′ contains pattern π at indices a1 < · · · < ak with ai = ct. As
a1 > t, the relative ordering of the entries does not change after we multiply w
by w0(J) on the left to obtain w′, so w must also contain pattern π at the same
indices. This yields a contradiction so w′ must avoid all six patterns of interest.

The critical case is that w is of type r1. Let w
′ = st·w0(J)·w (see Figure 9). We

observe that w′(i) = i for i ≤ t−1, w′(ct−1) = w(1), w′(ct) = w(2) while w′ and w
agree on other indices. Thus, w′ lies in the parabolic subgroup of Sn generated by
st, . . . , sn−1. We next argue that w′ avoids the six patterns of interest. Assume for
the sake of contradiction that w′ contains one of the patterns in (SD.2) at indices
a1 < · · · < ak. First, a1 > t − 1 by the argument above. But when restricted to
the last n− t+ 1 indices, w and w′ agree by construction, so w must also contain
one of the patterns at the same set of indices. This yields a contradiction.
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Let R1 = {(t, w(t)), . . . , (t + m − 1, w(t + m − 1))} where |R1| = m with
w(t) > · · · > w(t+m−1). Then ct−1 = t+m. Let w′′ ∈ Sn−t+1 be the permutation
of w′ restricted to the last n− t+1 indices. In other words, w′′(i) = w′(i+ t− 1).
Consider the possible types for w′′. It is more convenient to stay with the figure
of w′. If w′′ were of type r1, then the set

{(a, w′(a)) | t < a < t+m,w′(a) > w′(t)}

cannot be empty, contradicting the fact that entries in R1 are decreasing. Moreover,
if m = |R1| = 1, w′′ cannot be of type l1 because otherwise

{(a, w′(a)) | a > ct, w
′(ct) < w′(a) < w′(ct−1)}

cannot be empty, contradictingw being type r. It is also evident that t(w′′) = m+1,
as there are m + 2 entries weakly inside the rectangle bounded by (t, w′(t)) and
(ct, w

′(ct)).

•
•

•

•

•

∅

ct

ct−1

ct−2

c0
∅

R1

R0

• • • •

•
•
•

•

•

∅

ct

ct−1

ct−2

c0

• • • •
∅

∅ R0

∅

Figure 9: A permutation w of type r1 (left) and the modified permutation w′ =
st · w0(J) · w (right).

We are now ready to prove the implication (SD.2)⇒(SD.3) by a repeated
application of Lemma 18.

Proof of implication (SD.2)⇒ (SD.3). Given w avoiding the six patterns of inter-
est, with t = t(w) and J = {s1, . . . , st}, we can obtain w′ ∈ (Sn)S′ depending on
the type of w listed in Table 1, by Lemma 18.

type of w w′ S′

n w0(J)w = ww0(J) {st+2, . . . , sn−1}
r0 w0(J)w {st+1, . . . , sn−1}
r1 stw0(J)w {st, . . . , sn−1}
l0 ww0(J) {st+1, . . . , sn−1}
l1 ww0(J)st {st, . . . , sn−1}

Table 1: A summary of decomposing w after one step
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Continuing with this operation for w′ and so on down to the identity, we
record each nonempty J as K(1),K(2), . . . ,K(m) ⊂ {s1, . . . , sn−1} along the way
and assume that w(i) is obtained from w(i−1) as w′ is obtained from w above, where
we start with w(0) = w and end with w(m) = id. Notice that J is empty if and only
if w(1) = 1, which is equivalent to saying that w is of type n and t(w) = 0. When
w(1) = 1, we will just consider w as living in the parabolic subgroup generated by
{s2, . . . , sn−1}. Assume that K(i) = {sai

, . . . , sbi}, for ai ≤ bi. We label each K(i)

by the type of w(i−1). Note that K(m) is of type n.
By Lemma 18, if K(i) is of type n, then bi < ai+1−1 which is also saying that

any two simple transpositions in K(i) and K(i+1) commute; if K(i) is of type r0 or
l0, then bi = ai+1−1 and if K(i) if type r1 or l1, then bi = ai+1 so K(i) and K(i+1)

intersects at exactly one position. Moreover, if K(i) is of type r1, then bi − ai ≥ 1
and if further K(i+1) is of type l1, then we necessarily have bi+1 − ai+1 ≥ 2 by
Lemma 18 so that any simple transposition in K(i) and any simple transposition
in K(i+2) commute.

Let S1, . . . , Sk be connected components of the Dynkin diagram ofSn formed
by K1, . . . ,Km in this order. We are now going to show that each Si can be covered
by Ji ∪ J ′

i such that Ji ∩ J ′
i is totally disconnected and w can be written as the

product shown in Definition 9. This is done by induction on k. The base case k = 0
and w = id is trivial. Let S1 = K1 ∪ · · · ∪Kf . Then K1, . . . ,Kf−1 are of types l1
and r1 and are alternating between these two. Without loss of generality, let us
assume that K1 is of type r1, since we can invert everything to go from type l1 to
type r1. There are the following cases that are almost identical to each other. We
will explain the first case in details.
Case 1: f = 2g − 1 is odd and Kf is of type r0. By a repeated application of
Lemma 1, we arrive at

w(f) =
(
w0(K2g−1)

)(
sb2g−3w0(K2g−3)

)
· · ·

(
sb3w0(K3)

)(
sb1w0(K1)

)
w

(
w0(K2)sb2

)(
w0(K4)sb4

)
· · ·

(
w0(K2g−2)sb2g−2

)
,

w =
(
w0(K1)sb1

)(
w0(K3)sb3

)
· · ·

(
w0(K2g−3)sb2g−3

)(
w0(K2g−1)

)
w(f)

(
sb2g−2w0(K2g−2)

)
· · ·

(
sb4w0(K4)

)(
sb2w0(K2)

)
.

Recall that if j − i ≥ 2, then aj − bi ≥ 2 so any u in the parabolic subgroup
generated by Kj would commute with any v in the parabolic subgroup generated
by Ki. Inside the above expression for w, w(f) commutes with all the factors on
the right hand side so we can move it all the way to the right. We can also move
all the w0(K2i−1)’s all the way to the left and similarly move all the w0(K2i)’s all
the way to the right, leaving the sbi ’s in the middle. Let J = K1 ∪K3 ∪ · · ·K2g−1,
J ′ = K2 ∪K4 · · ·K2g−2 so that J ∩ J ′ = {b1, b2, . . . , bf−1} is totally disconnected.
We have that w = w0(J)w0(J ∩ J ′)w0(J

′)w(f).
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Case 2: f = 2g − 1 is odd and Kf is of type l0. Then

w =
(
w0(K1)sb1

)(
w0(K3)sb3

)
· · ·

(
w0(K2g−3)sb2g−3

)
w(f)

(
w0(K2g−1)

)
(
sb2g−2w0(K2g−2)

)
· · ·

(
sb4w0(K4)

)(
sb2w0(K2)

)
.

Now we can commute w(f) all the way to the left instead. Also let J = K1 ∪K3 ∪
· · ·K2g−1, J

′ = K2 ∪K4 · · ·K2g−2 so that

w = w(f)w0(J)w0(J ∩ J ′)w0(J
′).

Case 3: f = 2g is even and Kf is of type r0. Then

w =
(
w0(K1)sb1

)(
w0(K3)sb3

)
· · ·

(
w0(K2g−1)sb2g−1

)(
w0(K2g)

)
w(f)

(
sb2g−2w0(K2g−2)

)
· · ·

(
sb4w0(K4)

)(
sb2w0(K2)

)
.

Let J = K1 ∪K3 ∪ · · ·K2g−1, J
′ = K2 ∪K4 · · ·K2g. We have

w = w0(J)w0(J ∩ J ′)w0(J
′)w(f).

Case 4: f = 2g is even and Kf is of type l0. Then

w =
(
w0(K1)sb1

)(
w0(K3)sb3

)
· · ·

(
w0(K2g−1)sb2g−1

)
w(f)

(
w0(K2g)

)
(
sb2g−2w0(K2g−2)

)
· · ·

(
sb4w0(K4)

)(
sb2w0(K2)

)
.

Let J = K1 ∪K3 ∪ · · ·K2g−1, J
′ = K2 ∪K4 · · ·K2g. We have

w = w(f)w0(J)w0(J ∩ J ′)w0(J
′).

The cases where Kf is of type n can be done in the exact same way as
either Kf is of type r0 or l0. Continuing with the next connected components in
{Kf+1, . . . ,Km} and so on, we deduce that w has the same form as in Definition 9
so it is polished.

Remark 19. In this section, the purpose of distinguishing between type l and r
is to specify the order of multiplying permutations in the decomposition of w.
This order can also be seen as governed by the staircase diagram introduced by
Richmond and Slofstra [13]. We did not discuss the notion of staircase diagrams
since they were not needed in full generality.

3.3 Proof of direction (SD.3)⇒(SD.4)

We now prove the implication (SD.3)⇒(SD.4) for general finite Coxeter groups
W . Throughout this section s1 . . . sn is a generic reduced expression; we drop the
convention from the previous section that si is the specific simple reflection (ii+1).
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Proposition 20. Suppose that for w ∈ W we can write w = uv with Supp(u) ∩
Supp(v) = ∅, then

[e, w] ∼= [e, u]× [e, v].

Proof. Let J = Supp(v); since DR(u) ⊆ Supp(u) ⊆ S \ J , we have u ∈ W J , so
in particular ℓ(w) = ℓ(u) + ℓ(v). Let u = s′1 · · · s

′
m and v = s1 · · · sn be reduced

expressions, then
w = s′1 · · · s

′
ms1 · · · sn

is a reduced expression for w, with all s′i ∈ S \ J and all sj ∈ J . By Proposition
7, [e, w] is the set of all reduced subwords of this word ordered by containment as
subwords. Any subword σ of s′1 · · · s

′
ms1 · · · sn consists of some elements of S \ J

followed by some elements of J , and by the above argument σ is reduced if and
only if each of these segments is reduced. Thus multiplication gives an isomorphism
of posets [e, u]× [e, v] → [e, w].

As products of self-dual posets are clearly self-dual, Proposition 20 implies
that it suffices to prove the implication (SD.3)⇒(SD.4) in the case where the
polished element w has a single block S1 = S. For the remainder of this section,
let w = w0(J)∩w0(J ∩ J ′)w0(J

′) with S = J ∪ J ′ and J ∩ J ′ totally disconnected
be such a polished element of (W,S).

Lemma 21. With w = w0(J)w0(J ∩ J ′)w0(J
′) as above, we have

wJ′ = w0(J
′),

wJ′

= w0(J)w0(J ∩ J ′),

and this decomposition w = wJ′

wJ′ is a BP-decomposition.

Proof. We know w0(J) ≥L w0(J ∩ J ′) since w0(J) is the unique maximal element
of WJ under weak order, thus we may write

w0(J) = s1 · · · skw0(J ∩ J ′)

with lengths adding, for some reduced expression s1 · · · sk with each si ∈ J . Since
w0(J ∩ J ′) is an involution, we see that

w0(J)w0(J ∩ J ′) = s1 · · · sk;

furthermore, since s1 · · · skw0(J ∩ J ′) was length-additive, we know that

DR(s1 · · · sk) ∩ (J ∩ J ′) = ∅.

As DR(s1 · · · sk) ⊆ J , we conclude that w0(J)w0(J ∩ J ′) = s1 · · · sk ∈ W J′

. Now,

w = s1 · · · skw0(J
′)
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is length-additive, so by uniqueness of parabolic decompositions we conclude wJ′ =
w0(J

′) and wJ′

= w0(J)w0(J ∩ J ′). Finally, it is trivially true that

(Supp(wJ′

) ∩ J ′) ⊆ J ′ = DL(wJ′),

so this is a BP-decomposition.

Proposition 4.2 of [12] strengthens the following lemma, whose short proof
we include for convenience:

Lemma 22. Let u ∈ W and K ⊆ S be such that u = uKuK is a BP-decomposition,
then the multiplication map

[e, uK ]K × [e, uK ] → [e, u]

is an order-preserving bijection.

Proof. The map is injective by the uniqueness of parabolic decompositions. To see
surjectivity, suppose that v ∈ [e, u], then by Proposition 6 we have that vK ≤ uK .
On the other hand, by Proposition 8, we have vK ≤ uK , since vK ≤ v ≤ u and
vK ∈ WK . Thus v = vKvK is in the image. The order-preserving property is
immediate from the fact that all products are length-additive and the subword
characterization of Bruhat order in Proposition 7.

Remark 23. A word of caution when reading Lemma 22: except in very special
cases it is not true that [e, uK ]K × [e, uK ] and [e, u] are isomorphic as posets, as
[e, u] may contain extra order relations not coming from the product.

We are now ready to prove the implication (SD.3)⇒(SD.4) from Theorem 4.

Proof of implication (SD.3)⇒(SD.4) from Theorem 4. Let w be a polished ele-
ment of W with

w = w0(J)w0(J ∩ J ′)w0(J
′),

we want to show that the interval [e, w] is self-dual by exhibiting an explicit bi-
jection [e, w] → [e, w] sending u 7→ u∨ such that u ≤ v if and only if v∨ ≤ u∨ (an
antiautomorphism).

We observe that

wJ′

= w0(J)w0(J ∩ J ′) = w0(J)
J∩J′

.

If u ∈ [e, w0(J)
J∩J′

], then Supp(u) ⊆ J , so DR(u) ⊆ J . Thus if u ∈ W J∩J′

we
have in fact that u ∈ W J′

. Thus we have that

[e, w0(J)w0(J ∩ J ′)]J
′

= [e, w0(J)
J∩J′

]J
′

= [e, w0(J)
J∩J′

]J∩J′

= W J∩J′

J .

Clearly we also have [e, w0(J
′)] = WJ′ and so by Lemmas 21 and 22 multiplication

is an order preserving bijection

W J∩J′

J ×WJ′ → [e, w].
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It is well known that W J∩J′

J and WJ′ are self-dual as posets under Bruhat
order with duality maps u 7→ w0(J)uw0(J ∩J ′) and u 7→ uw0(J

′) respectively (see
[4]). This suggests the duality map

u 7→ u∨ := w0(J)u
J′

w0(J ∩ J ′) · uJ′w0(J
′)

for [e, w]. Note that, by Remark 23, we still need to check whether this map is
indeed an antiautomorphism of [e, w] (indeed, up to this point we have not needed
the assumption that J ∩ J ′ is totally disconnected).

Suppose we have a cover relation u ⋖ v in [e, w]; to complete the proof we
need to show that v∨ ⋖ u∨. Choose reduced decompositions of vJ

′

and vJ′ to get
a reduced decomposition

v = vJ
′

vJ′ = (s1 · · · sk)(s
′
1 · · · s

′
k′ ).

By Proposition 7, we know u has a reduced decomposition obtained by omitting
one of the simple generators above. If the generator omitted is one of the s′i, then

we have uJ′

= vJ
′

and uJ′ ⋖vJ′ because WJ′ is an order ideal under Bruhat order.
In this case, the fact that our duality map is known to be an antiautomorphism
for W J∩J′

J ×WJ′ implies that v∨ ⋖ u∨.
The case where the omitted generator is one of the si needs another argument,

as W J∩J′

J is not an order ideal (so uJ′

may not equal s1 · · · ŝi · · · sk). Suppose we

are in this case, with vJ
′

= s1 · · · sk, vJ′ = s′1 · s
′
k, and

u = s1 · · · ŝi · · · sks
′
1 · · · s

′
k′ ,

and all of these expressions reduced, and let z = s1 · · · ŝi · · · sk. For convenience,
we write x for J∩J′(vJ′) and y for J∩J′

(vJ′ ) (so xy = vJ′ with lengths adding).
Then we have length-additive products

v = vJ
′

xy (1)

u = zJ
′

zJ′xy. (2)

Since zJ′ , x, and y are all in WJ′ , so is their product. And since the above decom-
position u = zJ

′

(zJ′xy) is length-additive, uniqueness of parabolic decompositions
implies that zJ

′

= uJ′

and zJ′xy = uJ′ . Also, because y ∈J∩J′

WJ′ has no left
descents from J ∩ J ′, we know that yw0(J

′) has all elements of J ∩ J ′ as descents,
and therefore y ≥R w0(J ∩ J ′), so we may write yw0(J) = w0(J ∩ J ′)y′ for some
element y′ with ℓ(y) = ℓ(w0(J ∩ J ′)) + ℓ(y′).

Now, we have

u∨ = w0(J)u
J′

w0(J ∩ J ′)uJ′w0(J
′)

= w0(J)u
J′

w0(J ∩ J ′)zJ′xyw0(J
′)

= w0(J)u
J′

w0(J ∩ J ′)zJ′xw0(J ∩ J ′)y′

= w0(J)u
J′

zJ′xy′
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where in the last step we have used that zJ′x ∈ WJ∩J′ , which is abelian by
our assumption that J ∩ J ′ is totally disconnected, and therefore commutes with
w0(J ∩ J ′). Similarly, we have

v∨ = w0(J)v
J′

xy′.

In the following computation, we write NK for ℓ(w0(K)) for any subset K ⊆
S. Computing lengths, we have

ℓ(u∨) = ℓ(w)− ℓ(u)

= (NJ +NJ′ −NJ∩J′)− (ℓ(uJ′

) + ℓ(zJ′) + ℓ(x) + ℓ(y))

= (NJ − ℓ(uJ′

)− ℓ(zJ′)− ℓ(x)) + ℓ(y′)

where in the first step we have used the length-additive decomposition (2) and in
the second we have used the fact that yw0(J

′) = w0(J ∩J ′)y′ with the right-hand-
side being length-additive, and the left-hand-side having length NJ′ − ℓ(y). This
implies that

u∨ = (w0(J)u
J′

zJ′x) · y′

is length-additive. A similar calculation shows that

v∨ = (w0(J)v
J′

x) · y′

is also length-additive. Thus v∨ ⋖ u∨ if and only if

w0(J)v
J′

x⋖ w0(J)u
J′

zJ′x,

which, because w0(J) is an antiautomorphism of Bruhat order on WJ , is true in
turn if and only if uJ′

zJ′x ⋖ vJ
′

x. These decompositions are length-additive, as
they come from parabolic decompositions, thus we need to check that uJ′

zJ′ ⋖vJ
′

.
Finally we see this is true by recalling that

uJ′

zJ′ = zJ
′

zJ′ = z = s1 · · · ŝi · · · sk

and vJ
′

= s1 · · · sk. This completes the proof of implication (SD.3)⇒(SD.4).

3.4 Proof of Theorem 3

We obtain Theorem 3 as a corollary of the already established Theorem 4, with
technology similar to that of Section 3.1.

Proof of Theorem 3. Let w be smooth so that it avoids 3412 and 4231. We will
show that if w contains one of the patterns 34521, 45321, 54123 and 54312, then

max
u∈Pw

1

udegw(u) < max
u∈Pw

ℓ(w)−1

ddegw(u).
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On the other hand, we know from Theorem 4 that if w avoids these patterns, then
[e, w] in the Bruhat order is self-dual and clearly

max
u∈Pw

1

udegw(u) = max
u∈Pw

ℓ(w)−1

ddegw(u).

Thus, throughout the rest of the proof, assume that w contains one of 34521,
45321, 54123 or 54312.

We use induction on n to show that for any u ∈ Pw
1 , udegw(u) − |Pw

1 | ≤ 1,
and that there exists some u ∈ Pw

ℓ(w)−1 such that ddegw(u) − |Pw
1 | ≥ 2. This

statement suffices for the sake of the theorem.
We first reduce to the case where w does not lie in any proper parabolic sub-

group of Sn, or in other words, bl(w) = 1, with the notation defined in Section 3.1.
Let b = bl(w) ≥ 2 and w = w(1) ⊕ · · · ⊕ w(b). Now the Bruhat interval can be
factored as

[e, w] ∼= [e, w(1)]× · · · × [e, w(b)].

Each factor w(i) avoids 3412 and 4231 and is thus smooth, so that [e, w(i)] is rank
symmetric. Take u ∈ [e, w] and write it as u(1) ⊕ · · · ⊕ u(b) corresponding to the
decomposition of w. If ℓ(u) = 1, there exists some j ∈ {1, . . . , b} such that u(i) = e
for all i 6= j. Then

udegw(u) =
∑

i6=j

|P
w(i)
1 |+ udegw(j)(u(j)) = |Pw

1 |+ udegw(j)(u(j))− |P
w(j)
1 |.

By the induction hypothesis, udegw(j)(u(j)) − |P
w(j)
1 | ≤ 1 so udegw(u) − |Pw

1 | ≤
1. On the other hand, since all the four patterns of interest do not lie in any
proper parabolic subgroup of S4, there exists some w(j) containing one of the

patterns. By induction hypothesis, there exists some u(j) ∈ Pw(j)

ℓ(w(j))−1
such that

ddegw(j)(u(j)) − |Pw(j)

1 | ≥ 2. Construct u = u(1) ⊕ · · · ⊕ u(b) ∈ Pw
ℓ(w)−1 where

u(i) = w(i) for i 6= j. Similarly, we see that

ddegw(u) =
∑

i6=j

|Pw(i)

ℓ(w(i))−1|+ ddegw(j)(u(j))

≥
∑

i6=j

|Pw(i)

1 |+ |Pw(j)

1 |+ 2

=|Pw
1 |+ 2.

Now we know that w does not lie in any proper parabolic subgroup of Sn.
This means Pw

1 = {s1, . . . , sn−1} contains all simple transpositions. For any si,
the permutations that cover si in Pw

2 are contained in

{s1si, s2si, . . . , si−1si, si+1si, . . . , sn−1si} ∪ {sisi−1, sisi+1}

which has cardinality n if i ∈ {2, . . . , n− 2} and cardinality n − 1 if i = 1, n− 1.
As a result, udegw(u) ≤ n for all u ∈ Pw

1 . In other words, udegw(u)− |Pw
1 | ≤ 1.
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Next, we obtain a lower bound of n + 1 for ddegw(u) for some u ∈ Pw
ℓ(w)−1.

Recall the notion of a minimal inversion from Definition 11. The number of min-
imal inversions of w is exactly |Pw

ℓ(w)−1| = |Pw
1 | = n − 1. Suppose that (i1, j1)

and (i2, j2) are two minimal inversions of w with i1 ≤ i2, we claim that there
exists some v ∈ [e, w] covered by both wti1j1 and wti2j2 in the Bruhat order.
Consider the following cases. If {i1, j1} and {i2, j2} are not disjoint, then either
j1 = j2 or i1 = i2 or i2 = j1. If j1 = j2, then w(i1) < w(i2) by minimality, and
v = wti1j1ti2j2 = wti2j2ti1i2 is covered by both. The case i1 = i2 is the same. And
if i2 = j1, then by Lemma 16, there are two such v’s that serve the purpose. If
{i1, j1} and {i2, j2} are disjoint, then ti1j1 and ti2j2 commute. Pictorially, we just
need to check that in the permutation diagram, the rectangle formed by (i1, w(i1))
and (j1, w(j1)) is disjoint from the rectangle formed by (i2, w(i2)) and (j2, w(j2))
so that v = wti1j1ti2j2 is covered by both wti1j1 and wti2j2 . These two rectan-
gles overlap precisely when i1 < i2 < j1 < j2 and w(i2) < w(i1) > w(j2) > w(j1).
However, in this case, w contains 3412 at indices i1, i2, j1, j2, contradicting w being
smooth.

Fix a minimal inversion (p, q) of w. For other n− 2 minimal inversions (i, j),
let V(i,j) = {v ∈ Pw

ℓ(w)−2 |v < wtpq, v < wtij}. Since every Bruhat interval of rank 2

is isomorphic to a diamond (see for example [4]), we know that every v ∈ Pw
ℓ(w)−2

such that v < wtpq belongs to exactly one of V(i,j)’s. This means ddegw(wtpq)
is the sum of |V(i,j)|’s. Moreover, we have seen that |V(i,j)| ≥ 1 for all minimal
inversions (i, j) 6= (p, q) from the previous paragraph and that |V(i,j)| ≥ 2 if i = q
or j = p from Lemma 16. As a result, if there are at least three minimal inversions
(i, j) of w such that i = q or j = p, we know that ddegw(wtpq) ≥ n+ 1.

We apply arguments as in the proof of Lemma 17. If w contains 45321,
take a minimal pattern 45321 in the sense of Definition 12 at indices a1 < a2 <
a3 < a4 < a5 as in Figure 5 where all the regions A∗,∗’s are empty. Let (p, q) =
(a3, a4). Since (a1, a3), (a2, a3) and (a4, a5) are all minimal inversions, we know
that ddegw(wtpq) ≥ n+1. The case of 54312, which is the inverse of 45321, is the
same. If w avoids 45321 and 54312 but contains 34521, we take a minimal pattern
as in Figure 6. With notations in the proof of Lemma 17, we let (p, q) = (a4, a5).
Since (a3, a4), (a1, a4) and (ck, a4) are all minimal inversions, we also conclude
that ddegw(wtpq) ≥ n+1. The case of 54123, which is the inverse of 34521, is the
same. In both cases, ddegw(wtpq) ≥ n+ 1 so we are done.

4 Discussion of other types

Theorem 4 fails in general finite Coxeter groups, in particular we have the following
counterexamples for (SD.1)⇒(SD.4) and (SD.4)⇒(SD.3):

• For (W,S) if type B3 with generators chosen so that (s1s2)
3 = e and

(s2s3)
4 = e, the element

w = s3s2s3s1s2s3s1s2
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has Γw
∼= Γw, but [e, w] is not self-dual.

• The two elements of length three in W of type B2 have [e, w] self-dual, but
are not polished.

There is a notion of pattern avoidance for general finite Weyl groups (see
[1]). This notion was introduced by Billey and Postnikov in order to give a gener-
alization of the Lakshmibai-Sandhya smoothness criterion for Schubert varieties.
We do not know whether self-dual Bruhat intervals in types other than An−1 are
characterized by pattern avoidance.

Question 24. Is the set of elements w of finite Weyl groups such that [e, w] is
self-dual characterized by pattern avoidance in the sense of [1] as in (SD.3)?
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