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ABSTRACT: Herein, we describe an efficient method to 
prepare polysubstituted pyrroles via a copper-hydride 
(CuH)-catalyzed enyne-nitrile coupling reaction. This 
protocol accommodates both aromatic and aliphatic sub-
stituents and a broad range of functional groups, provid-
ing a variety of N-H pyrroles in good yields and with 
high regioselectivity. We propose that the Cu-based cat-
alyst promotes both the initial reductive coupling and 
subsequent cyclization steps. Density functional theory 
(DFT) calculations were performed to elucidate the reac-
tion mechanism. 

Pyrroles are one of the most prevalent five-
membered heterocycles, and are present in a large num-
ber of natural products,1 pharmaceuticals,2 and function-
al materials.3 In addition, they are valuable and useful 
building blocks in the preparation of complex mole-
cules.4 Consequently, numerous synthetic strategies 
have been developed to access this important class of 
compounds. Traditional approaches, including the 
Knorr,5 Hantzsch,6 and Paal-Knorr reactions,7 allow for 
the construction of polysubstituted pyrroles through the 
condensation of carbonyl compounds and amines (Fig-
ure 1a). The conditions employed in these examples, 
such as high reaction temperatures and the use of strong 
acids to facilitate the initial condensation, often result in 
limited scope and functional group compatibility. Re-
cently, numerous methods, including multicomponent 
reactions8 and transition-metal-catalyzed couplings,9 
have been established to produce pyrroles under rela-
tively mild conditions with better control of regioselec-
tivity. Despite these advances, highly functionalized 
starting materials are often required, (e.g., iminoallenes, 
alkynyl aziridines, or azides), which limits the range of 
accessible products. Further, many existing strategies 
necessitate the use of substrates with protected nitrogens, 
which must be first installed and subsequently removed 
or exchanged after the assembly of the pyrrole ring, sig-

nificantly decreasing the efficiency of the process. A 
complementary strategy to access unprotected pyrroles 
from readily available starting materials that operates 
under mild conditions would thus be of significant utili-
ty.  

 
Figure 1. (a) Classic approaches to access polysubstituted 
pyrroles; (b) CuH-catalyzed enyne-ketone and (c) enyne-
nitrile coupling reactions (this work). 

Over the past few years, CuH catalysis has emerged 
as a useful and robust technique for olefin hydrofunc-
tionalization.10 In these reactions, an underlying concept 
is the generation of nucleophilic alkyl copper intermedi-
ate from the reaction of a ligated copper hydride species 

(a) Classic approaches to access polysubstituted pyrroles

(c) Synthesis of pyrroles via  CuH-catalyzed enyne-nitrile coupling (this work)

(b) CuH-catalyzed asymmetric enyne-ketone coupling reaction
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and an unsaturated hydrocarbon. In this way, widely 
available and stable olefins can serve as surrogates for 
traditional organometallic reagents. By changing the 
supporting ligand, the reactivity of the corresponding 
alkyl copper species can be modulated.11 Furthermore, 
the mildness of CuH reaction conditions enables the use 
of substrates containing sensitive functional groups that 
are incompatible with many preformed organometallic 
reagents (e.g., Grignard and alkyllithium reagents). We 
recently disclosed a CuH-catalyzed asymmetric addition 
reaction to ketones (Figure 1b),10e in which conjugated 
enynes were employed as precursors to the key nucleo-
philic propargyl- (A)/allenylcopper intermediates (B). 
The reactivity manifested by in situ generated species A 
and B caused us to survey their reactions12 with other 
readily available electrophiles.13 Herein, we report the 
unexpected formation of polysubstituted pyrroles via a 
CuH-catalyzed coupling reaction of 1,3-enynes and ni-
triles (Figure 1c). This process features mild reaction 
conditions and demonstrates excellent functional group 
compatibility, allowing the access to free N-H pyrroles 
with a wide range of substitution patterns from commer-
cially available nitriles and easily accessible enynes.14  
 
Table 1. Evaluation of Reaction Conditions for CuH-
Catalyzed Enyne-Nitrile Coupling Reactions a 

 
entry ligand solvent temp., °C 1a:2a yield 3a’,b % 

1 L1 THF 25 1:1.2 40 
2 L2 THF 25 1:1.2 <5 
3 L3 THF 25 1:1.2 <5 
4 L4 THF 25 1:1.2 0 
5 L5 THF 25 1:1.2 0 
6 L1 toluene 25 1:1.2 40 
7 L1 1,4-dioxane 25 1:1.2 69 
8 L1 DME 25 1:1.2 54 
9 L1 cyclohexane 25 1:1.2 12 

10 L1 1,4-dioxane 40 1:1.2 78 
11 L1 1,4-dioxane 50 1:1.2 85 (78)c 
12 L1 1,4-dioxane 60 1:1.2 83 
13 L1 1,4-dioxane 50 1:1.5 80 
14 L1 1,4-dioxane 50 1.2:1 78 

 
a Conditions: 0.10 mmol 1a (1.0 equiv), 0.12 mmol 2a (1.2 
equiv), copper(II) acetate (5.0 mol %), ligand (6.0 mol %), 
DMMS (4.0 equiv), in solvent (0.20 mL), see the Supporting 
Information for further details. DMMS = dimethoxy(methyl) 
silane. b Yield of major product 3a’ determined by 1H NMR 

using 1,1,2,2-tetrachloroethane as the internal standard. c Iso-
lated yield of N-H pyrrole on 0.50 mmol scale after NH4F 
workup.   

The reaction conditions were optimized using enyne 
1a and benzonitrile 2a as the model substrates (Table 1). 
The N-silylated trisubstituted pyrrole 3a’ was obtained 
in 40% 1H NMR yield when DTBM-SEGPHOS (L1) 
was employed as the supporting ligand (Table 1, entry 1). 
Commonly used bisphosphine ligands, including 
SEGPHOS (L2), BINAP (L3), dppbz (L4), and DCyPE 
(L5), all failed to promote the desired transformation 
under the same conditions (Table 1, entries 2-5). Subse-
quent screening of reaction solvents indicated that the 
use of 1,4-dioxane was best, affording the pyrrole in 69% 
NMR yield (Table 1, entries 6-9). Considering the lower 
reactivity of nitriles toward the nucleophilic addition of 
organometallic reagents compared to carbonyl com-
pounds, we reasoned that elevated temperature might be 
beneficial to promote the desired reaction. We found 
that 50 °C was optimal for this coupling process, and the 
1H NMR yield of the pyrrole product was further im-
proved to 85% (Table 1, entries 10-12). Finally, examin-
ing different ratios of two starting materials revealed that 
the use of a slight excess of nitrile provided the best re-
sult for this transformation (Table 1, entries 13 and 14). 
It is worth mentioning that the formation of a minor re-
gioisomer 3a’’ was also observed. The ratio of two 
products (3a’: 3a’’ = 8:1) was not significantly affected 
by variation of the reaction conditions. 
Table 2. Substrate Scope of Aryl-Substituted Enynesa 
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a All yields represent average isolated yields of two runs, 

performed on 0.50 mmol scale. See the Supporting Infor-
mation for detailed conditions. rr = regioisomeric ratio.15 

With the optimized conditions for the pyrrole synthe-
sis established, the reactivity of aryl-substituted enynes 
was first evaluated (Table 2). A variety of enynes with 
different substitution patterns on the aryl ring were con-
verted to desired pyrrole products in good yields (3b-d). 
Moreover, substrates containing heterocycles, such as a 
pyridine (3e), a pyrimidine (3f), and a thiophene (3n), 
were also coupled with similar levels of efficiency. We 
observed that aromatic substrates with both electron-
donating (3g) and -withdrawing groups (3h, 3l) were 
good coupling partners. Aliphatic nitriles, typically less 
reactive compared to their aromatic counterparts, were 
also found to successfully engage in this transformation 
(3m, 3n), providing the corresponding 2,3-dialkyl, 5-
arylsubstituted pyrroles with moderate yields. Because 
of the mildness of the reaction conditions, a wide array 
of functional groups, such as a phenol (3i), an aryl bro-
mide (3j), an ethyl ester (3l), a terminal olefin (3m), an 
aryl chloride (3n), and a silyl-protected alcohol (3p), 
were all well accommodated. Additionally, internal 

enynes are generally more challenging substrates, since 
the barrier of hydrocupration step is higher for the steri-
cally more hindered double bond.11a Using this catalytic 
system, internal enynes were successfully coupled to 
benzonitrile, providing the desired products with good 
efficiency (3o, 3p), although diminished regioselectivity 
was observed in some cases (3p). 
Table 3. Substrate Scope of Alkyl-Substituted Enynes.a 

 
a All yields represent average isolated yields of two runs, 

performed on 0.50 mmol scale. See the Supporting Infor-
mation for detailed conditions.  

We next focused our efforts on investigating the abil-
ity of alkyl-substituted enynes to participate in this cou-
pling reaction. As shown in Table 3, an assortment of 
alkyl enynes underwent the desired transformation with 
good efficiency. Importantly, various functional groups 
remained intact under the current conditions, including a 
tertiary amide (4b), a benzyl protected alcohol (4c), a 
sulfonamide (4d), an alkyl tosylate (4e), an aryl chloride 
(4c), an alkyl chloride (4g), and a methyl ester (4h). 
Moreover, both aromatic and aliphatic nitriles were 
found to react well with these enynes (4f, 4g). Finally, 
we demonstrated that an alkyl-substituted internal enyne 
was a competent coupling partner as well, affording the 
desired product 4h with good yield and regioselectivity. 
Scheme 1. CuH-Catalyzed Intramolecular Enyne-Nitrile Cou-
pling Reaction. 

 
This CuH-catalyzed enyne-nitrile coupling could be 

performed in an intramolecular fashion by using a sub-
strate containing both an enyne and a pendant nitrile. 
Under the standard conditions with decreased reaction 
concentration, the corresponding pyrrole 5a was pre-
pared in 44% isolated yield (Scheme 1). 
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Based on previously developed methods and past 
mechanistic studies, we proposed a plausible reaction 
mechanism outlined in Figure 2. First, a propargyl-
copper intermediate II could be generated from the hy-
drocupration of enyne 1a with a bisphosphine-ligated 
CuH species (I). Rapid 1,3-isomerization of II might 
lead to the formation of a thermodynamically more sta-
ble allenylcopper isomer III, which would then undergo 
a nucleophilic addition reaction with benzonitrile 2a via 
a six-membered transition state, providing imine inter-
mediate IV. Subsequent ring closure16 of IV followed by 
1,5-H shift and σ-bond metathesis with hydrosilane 
could produce the desired pyrrole product in a silylated 
form, while regenerating CuH catalyst I. A pathway in-
volving propargyl copper intermediate II that reacts to 
form imine species VII (Figure 2, inner cycle), followed 
by cyclization to VIII would produce the minor regioi-
somer 3a’’. 

 
Figure 2. Proposed catalytic cycle. 

 
Figure 3. Reaction energy profile and transition state structures of the CuH-catalyzed coupling of enyne 1a and nitrile 2a.  

We performed density functional theory (DFT) cal-
culations to validate the proposed mechanism and to 
investigate the origin of the observed regioselectivity 

(Figure 3). Consistent with previous DFT studies,17 the 
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low barriers. The addition of the allenyl- and propargyl-
copper intermediates to the nitrile occur via six-
membered cyclic transition states (TS3 and TS4, respec-
tively).18 The resulting Cu-imine species (8 and 9) un-
dergo facile cyclization via TS5 and TS6 to form 3H-
pyrrol-4-yl and 2H-pyrrol-3-yl anions (10 and 11), re-
spectively, which upon 1,5-H shift yield the more stable 
1-pyrrolylcopper species 12 and 13. The computed natu-
ral population analysis (NPA) atomic charges indicate 
that charge transfer from Cu facilitates the cyclization 
(see Figure S2 in the Supporting Information). It is con-
ceivable that a small amount of Lewis acidic copper 
species could be formed under the experimental condi-
tions,19 which will further accelerate this nucleophilic 
cyclization process via coordination with the alkyne or 
allene to enhance the electrophilicity of the π bond20 (see 
the Supporting Information for the Lewis-acid promoted 
cyclization pathway). The nitrile addition and cycliza-
tion transition states leading to the major regioisomer 
(TS3 and TS5) are both more stable than corresponding 
transition states to the minor regioisomer (TS4 and TS6). 
Both TS4 and TS6 are destabilized by steric repulsions 
between the two adjacent phenyl groups about the form-
ing C−C bond, which is constrained to a syn-periplanar 
conformation in the planar cyclic transition states. 

In conclusion, we have developed a CuH-catalyzed 
enyne-nitrile coupling reaction that utilizes readily 
available building blocks to synthesize polysubstituted 
pyrroles. Both aromatic and aliphatic substrates were 
successfully engaged under the standard conditions, thus 
allowing the construction of pyrroles featuring diverse 
substitution patterns and functional groups with good 
efficiency. DFT calculations elucidated the mechanism 
and suggested the origins of regioselectivity. Studies on 
CuH-catalyzed reactions for the preparation of other 
heterocycles are currently ongoing.  
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