A. Simple Robot Pool Player
by
Wesley H. Huang

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Electrical Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1991
(© Wesley H. Huang, MCMXCI.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Author................ Y ST e e
Department of Electrical Engineering and Computer Science

May 17, 1991

Certified by.. S T P e B s T
Christopher G. Atkeson

Associate Professor

Thesis Supervisor

Accepted by ... e e

Leonard A. Gould
Chairman, Department Committee on Undergraduate Theses

A Simple Robot Pool Player
by
Wt :ley H. Huang

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 1991, in partial fulfillment of the
requirements for the degree of
Bachelor of Science in Electrical Engineering

Abstract

The game of pool can be studied at many levels. One can apply learning algorithms to
the problem of sinking a single ball, controlling the position of the cue ball after a shot,
or finding an effective game strategy. This thesis presents the design, construction,
and testing of a simple robot pool player. It is limited to playing a modified game of
pool because of simplifications in its design. In order to determine the usefulness of
this robot pool player as a tool for doing learning research on pool, it has been tested
for accuracy and resolution.

Thesis Supervisor: Christopher G. Atkeson
Title: Associate Professor

Acknowledgments

Many thanks to Gerrie van Zyl for suggestions and advice in both the design and
construction phases of the robot pool player.

Thanks to Andrew Moore for working with me on parts of this project.

And thanks to Chris Atkeson for circus trips, support, and guidance over the

course of this thesis.

Contents

1 Introduction

2.4 6811 computer

3.1 The Datacube

2 Design and Construction
2.1 Design Considerations
2.2 Structural Components
2.3 Electromechanical components
2.3.1 Steppermotorst ieeeeeee..
232 Solenoid
2.3.3 Potentiometer

Sensory Input: Vision

3.2 TheVideoCamera uuueini..

3.3 Vision Algorithms,
4 Testing and Results

4.1 Repeatability of the cueactuator

4.2 Calibration of vision system

4.3 Testing shots

44 Angular trajectoryresults

4.5 Velocity results

5 Conclusion

10
11
11
12
13
13
13
14

15
15
16
16

18
19
19
20
22
23

25

A Mechanical drawings of the robot pool player
B Wiring of electromechanical elements

C Program listings
C.1 FORTH procedures for 6811 board
C.2 Visionroutines it
C.2.1 track.c o L
C.2.2 Selected routines from the dc ibrary
C.3 Data processing proceduresot
C.3.1 bblisp o o i it
C.3.2 bbvlisp i e e e

27

40

List of Figures

2-1 Block diagram of the robot pool player

4-1 Trajectories used for test shots

......................

List of Tables

4.1 Measurements of cue actuatordraw
4.2 Angularstatistics L. . o .,
4.3 Velocity statistics

Chapter 1

Introduction

The game of pool offers researchers in artificial intelligence and robotics a small
wealth of opportunities to explore learning and control. Pool can be studied on many
different levels. One can study how a robotic pool player might simply sink a single
ball. Adding bounces off the bumpers would add an additional degree of difficulty.
Adding spin would open a whole new dimension to sinking a ball. Beyond the level of
sinking a single ball, there are also various game-oriented issues that can be addressed,
such as deciding which ball to sink and where to leave the cue ball for the opponent.

This thesis describes the design, construction, and testing of a simple robot pool
player. This system consists of two parts: the manipulator and the sensors.

A general purpose manipulator for pool would be a very complex undertaking.
One might want to position it anywhere on the table or at any orientation with
respect to that point. This would require up to 5 degrees of freedom. The design
would be further complicated by the fact that sometimes the cue must be removed
from the table quickly in order to get out of the way of a shot.

The simple manipulator designed and built in this thesis project has only two
degrees of freedom. It is limited to shooting from a fixed position. While this disal-
lows the ability to play a normal game of pool, it greatly simplifies the design and
construction process. It is still useful because it is possible to study the basic ele-
ments of playing pool — how the sensors can work with the manipulator to make a

shot — without using a general purpose manipulator. The details of the design and

construction of this manipulator are discussed in chapter 2.

The manipulator alone is not of much use; the robot must somehow sense its world
and the effect of its actions upon the world. Vision is the easiest and perhaps the
most obvious way of sensing the pool table. An overhead camera looks down on the
pool table and can detect and track the locations of both balls. Chapter 3 discusses
how the vision hardware is used to provide this sensory data.

There are many variables in the system as a whole that can change between
shots. The manipulator will not deliver ezactly the same shot every time, and vision
algorithms may not return exactly the same data every time. Some noise of this sort
is, of course, expected. In Chapter 4, I discuss some of the possible sources of this
noise and tests done to determine the accuracy of the system.

Finally, some conclusions are presented in chapter 5 along with some suggestions

for future work in this direction.

Chapter 2

Design and Construction

Many ideas were generated for possible designs for actually hitting the cue ball. Some
of the considerations that led to the choice of the design implemented are discussed
in section 2.1. The drawings for the robot appear in appendix A and are discussed
in section 2.2.

I built the robot for this project in the Artificial Intelligence iaboratory machine
shop. It consists of a spring loaded ‘cue stick’ (not unlike a pinball plunger) mounted
so that it may rotate. The cue ball is placed at the center point, and the cue actuator
pivots about the center of the ball in order to make shots from different angles.

Because we are limited to making shots from a fixed point and because of the
design of the rotating mount, a miniature pool table has been modified by removing
the bumper from one of the ends. Thus, this robot will play its ‘game’ of pool on just
one half of the table.

The cue actuator and its mechanical components are not the only elements of this
system. Figure 2-1 on page 12 shows how the mechanical components fit it with the
electromechanical, electrical, and computer elements of this system. These aspects

are discussed in section 2.3.

10

2.1 Design Considerations

For the initial efforts at this problem, a minature pool table is used; it has approxi-
mately the same characteristics as a regular sized pool table and allows the robot to
be scaled down in both size and power.

Many ideas for the design of a pool cue manipulator were considered. Some ideas
were very similar to how humans handle a cue stick; others were less similar. In the
end, I decided to use a spring loaded cue stick. This was the simplest design for a
cue actuator. It allows fairly easy construction, variation in the speed of a shot, and
the potential for good repeatability.

A rotating cue actuator, as it has been constructed here, does restrict the robot
pool player to playing some modified game of pool, as it can only shoot from a fixed
point. But again, this design is simpler to construct, and for an initial effort, it is

sufficient to start studying some of the aspects of playing pool.

2.2 Structural Components

The robot pool player can be divided into two parts: the cue actuator, which is
responsible for actually hitting the cue ball, and the cue positioner, which allows the
cue actuator to pivot about the cue ball. The mechanical drawings for the robot pool
player appear in appendix A. See the assembly diagrams for an overall view of the
robot.

The cue actuator is contained within a rectangular ‘frame’. In the front is a linear
bearing through which the cue stick passes. The cue stick is not of the same type
used by human players, but rather a steel shaft with an ordinary cue tip on the end.

The spring loaded cue stick is drawn back by a mechanism under computer control.
A motor turns a ball screw which in turn causes a platform to move back and forth
along the length of the frame. There is a catch on this platform which hooks on to
the end of the cue stick. When a shot is made, the platform moves to the front of the

frame until it latches onto the end of the cue stick. Then the platform is moved back

11

St ! R
HO‘b‘\' 68 (i g m : C '
—*Dcwers e
Compoter | Compter || | oo Bick
' L LSo\a\o\& —1
Cue
fotertio Acviar
Ocentation

Figure 2-1: Block diagram of the robot pool player

a distance proportional to the desired speed of the shot. A solenoid on the platform
releases the cue stick.

The cue positioner consists of two bearings mounted vertically under the pool
table. The cue ball is placed right above the bearing so that the cue actuator can
rotate abount it. The cue actuator is aligned so that the end of the cue just reaches
the cue ball.

An arm is attached to the bearing so that it can swing back and forth. The cue
actuator is mounted on a bracket fastcned to the arm. The bracket was designed so
that we could vary the height and angle of the cue actuator, which may be useful

should we experiment with the effects of spin.

2.3 Electromechanical components

Although the design and fabrication of all the mechanjcal components of this robot
took considerable effort and time, there are still the electromechanical, electrical, and
computer components of the system to consider. Figure 2-1 shows a block diagram

of the entire system, from the cue to the host computer.

12

2.3.1 Stepper motors

The motor used to draw back the cue stick is a stepper motor. It rotates a fixed
increment every time the coils of the motor are energized in the proper sequence.
It has the advantage of offering reasonably precise positioning using only open loop
control.

The driver serves to switch the coils of the stepper motors on and off in the proper
sequence for the motor to take a step. For each pulse received on the step input, the
driver will sequence the motor coils so that the motor will take a single step. The
wiring diagram for the drivers appears in appendix B.

One disadvantage of using stepper motors is that there is no feedback in the case
when the motor does not complete a step increment. If the load on the motor is too
great, the motor will not be able to take the commanded step before the next step
arrives. It is possible for the motor to skip steps in this manner if the motor is not
large enough for the load and the commanded velocity. This issue is discussed further

in section 4.1.

2.3.2 Solenoid

The solenoid used to release the cue stick is a 24 volt DC solenoid. Its ‘driver’ consists
of an inverter, an optoisolator, and a relay. The schematic appears in appendix B.
The solenoid, like the stepper motors, is actuated through parallel output ports of
the 6811 processor.

2.3.3 Potentiometer

The angular position of the cue manipulator with respect to the cue ball is measured
by a potentiometer attached to the shaft directly under the cue ball. The potentiome-
ter serves as a voltage divider to divide the 5 volts supplied by the 6811 computer

down to a voltage proportional to the angular position of the manipulator.

13

2.4 6811 computer

A 6811 based computer is used between the host computer and the drivers to solve
a communication problem. The easiest way to communicate with a Sun, the host
computer used in this project, is through a serial line. The drivers require a parallel
output port. The use of the 6811 computer also makes it possible to use any host
computer that has the capability to communicate on a serial line. The 6811 has
built-in analog to digital converters (8 bits) which make it easy to convert the voltage
from the potentiometer into a number that can be used to determine the orientation
of the cue actuator.

The 6811 computer used here has a FORTH interpreter stored in ROM. It takes
some of the computing load off the host computer. The host computer gives posi-
tioning commands to the 6811 which computes the appropriate pulse stream to send

to the drivers. Section C.1 shows the code that runs on this computer.

14

Chapter 3

Sensory Input: Vision

Feedback to the robot pool player is provided by a vision system. A camera mounted
above the pool table is able to see the entire hLalf-table upon which the robot pool
player plays. Data from the vision system is used to determine the position of the
ball on the table as well as track the ball during a shot.

The vision system used for this project is the Datacube image processing system.
The vision algorithms are discussed in detail in section 3.3, following some prelimi-
nary discussion on the Datacube hardware and video camera in sections 3.1 and 3.2

respectively.

3.1 The Datacube

The Datacube is a pipelined image processing system. It consists of a set of special-
ized boards that live on the VME bus. Each board has a particular function which
it performs on the image stream. One board digitizes incoming video, another board
serves to store images, and yet another can perform thresholding or histogram oper-
ations. These boards are connected to one another by special connectors which plug
into the back of a board. In this manner, a custom configuration can be set up for
any particular application.

More commonly, a standard configuration will be established, and each program

will route the image stream accordingly. This is made possible by the multiple outputs

15

and multiplexing circuitry available on most of these boards.

3.2 The Video Camera

Another very important aspect of the vision system is the video camera. There are
many aspects of the video camera that must be taken into consideration; the two
most important are the aspect ratio of the camera and the shutter speed.

The aspect ratio of the camera is a measure of the distortion that results from
having a rectangular frame which has the same horizontal and vertical dimensions
in pixels. This means that the pixels are actually rectangular, so if you examine a
spherical ball, it will appear elliptical. Generally, video monitors also have rectangular
pixels, so the effect is not noticed there, but in order to accurately measure angles
and compare velocities, distances in pixels must be scaled appropriately.

The scaling of the measurements from the vision system is not done until the data
is analyzed. This is discussed in section 4.2 of chapter 4.

The shutter speed of the camera may also affect the quality of the data. A normal
video camera averages the image over 1/30 second. If an object such as a pool ball is
moving across the frame during that time, it will become smeared. Instead of being
circular, it will be an elongated oval. The cameras used for this project have the
capacity of using a high speed shutter (1 ms.) which will freeze the ball much more

effectively.

3.3 Vision Algorithms

The most commonly used feature of the Datacube system for this project is its ability
to do feature extraction in real time. We are working with light coloured balls on a
dark green table. This lends itself to a simple thresholding operation to pick out the
brightest pixels in the frame; the feature extraction of the datacube will record the
coordinate pairs of these pixels. The host computer can read this list of pixels and

simply calculate a centroid to determine the ball’s position.

16

I implemented this method on the datacube using two boards. The first board,
the DigiMax, digitizes the incoming video signal. The second board, the FeatureMax,
is capable of performing a comparison on each pixel in real time. If the comparison
is true, then the x and y coordinates of that pixel are stored in a table (the feature
table).

In order to achieve real time tracking of the balls, the FeatureMax looks at one
field of the video signal. During the second field of the frame, the host computer
reads the data from the feature table and performs centroid operations and/or other
computations.

The tracking program used to measure shots appears in section C.2.1. It makes
use of library routines which I wrote in order to take care of the lower level datacube
functions. These library routines appear in appendix C.2.2. This program tracks a
single ball for 5 seconds or until it stops moving. It reports every position at which
the ball was seen, as well as the number of pixels in the image that belonged to the
ball in that frame.

The tracking program fires up the datacube, performing a few centroid operations
just to get warmed up. It takes another centroid for a reference frame. Generally,
there is nothing in the frame, so it ‘sees’ a centroid of (0,0). Then, it keeps performing
centroid operations until the frame changes!. The program enters its recording mode,
and records the centroids of every frame for up to 150 frames (5 seconds worth of
video) or until the ball stops moving?.

The program is fairly robust, alththough it sometimes skips a frame, reporting a
centroid of (0,0) when there is certainly a ball within the fame. But overall, it is a

quick way to get reasonably accurate data for a shot in real time.

! Actually, until the centroid changes.
2This is determined by waiting until there are 5 identical frames in a row.

17

Chapter 4

Testing and Results

Once completed, the robot pool player was tested for repeatability and the resolution
of its sensing. This included testing the repeatability of the draw of the cue stick, the
variance in direction and velocity of the shots, and a comparison with the angular
resolution of the sensing.

First, two basic elements of the system were tested: the cue actuator and the
vision system. Since the cue actuator is run under open loop control, it is possible for
the drawback mechanism to accumulate some offset over time. The testing method
and results for the cue actuator are discussed in section 4.1. The vision system needs
calibration because of the aspect ratio of the video camera. In other words, something
10 pixels high and 10 pixels wide is not actually square in the real world. The method
and results for testing the vision system are given in section 4.2.

Finally, the shooting characteristics of three different shots (soft, medium, and
hard) from two different angles are tested. The results are analyzed for repeatability in
both the angle and velocity of the shot. The testing method is presented in section 4.3,
the angular trajectory results are discussed in section 4.4, and the velocity results

appear in section 4.5.

18

Draw (# of steps) || 4096 | 5376 || 8192 || 9472
Trial 1 extended || 5.072 || 5.468 || 6.342 {l 6.379
rest || 3.785 || 3.786 || 3.788 || 3.789 |
Trial 2 extended |[5.065 || 5.463 || 6.339 || 6.739
rest |[3.787 || 3.787 || 3.788 || 3.788
Trial 3 extended [5.065 || 5.460 || 6.345 || 6.739
rest || 3.787 || 3.789 |[3.790 || 3.784

Draw 4096 5376 8192 9472
Average draw 1.281 || 1.677 || 2.553 || 2.948
Pulses per inch drawn | 3197.5 | 3205.7 (| 3208.8 || 3208.7

Table 4.1: Measurements of cue actuator draw. (All measurements are in inches.)
4.1 Repeatability of the cue actuater

As discussed in section 2.3.1 of chapter 2, it is possible for the motor to skip pulses if
the load is too large. This is a result of commanding an instantaneous velocity from
the stepper motor. Since the motor is reasonably powerful, and it is geared down
with a ball screw, I expected little problems with repeatability for this reason.

The repeatability of the cue actuator was determined by measuring the distance
from the inside of the front of the shooter to the front of the traveling platform
(which draws back the cue stick). The front to platform distance was measured both
at the rest position and at the maximum draw for the shot. Four different draws were
tested three times each. The three trials for each amount of draw were performed
consecutively. The measurements appear in table 4.1. It turns out that the draw
was repeatable to within 0.007 inches, which is more than precise enough to give
a repeatable shot, though small errors could accumulate over time. The figures for
average pulses per inch also indicate that the shooter is fairly consistent but hint that

the motor may be skipping a few pulses.

4.2 Calibration of vision system

The scaling factors relating distance in the real world to distance in the image were

determined by placing a six inch and a twelve inch ruler on the pool table. Aligning

19

the rulers horizontally resulted in a scale of 15.69 pixels per inch in the x-direction.
Vertical alignment showed a scale of 19.88 pixels per inch in the y-direction. This
works out to give us pixels that are 0.064 inches wide and 0.050 inches tall.

Thus, the pixels are not square, but short fat rectangles.

4.3 Testing shots

There are many factors that can change between ‘identical’ shots. For instance, the
draw of the cue manipulator may vary slightly or the angle of the cue may change
slightly, even though it is clamped into place. The primary source of error for this
system, however, is positioning the cue ball. Currently, we are using an allen wrench
taped to the pool table to reposition the ball for each shot. A secondary source of
error could possibly be the rotation of the cue stick. Since the cue tip is probably not
perfectly symmetric, rotation of the cue stick could result in different trajectories for
the cue ball.

Yet another alignment problem could cause variance between shots from different
angles. Ideally, the cue manipulator rotates about the center of the cue ball. If
instead, it rotates about a different center, shots from different angles would not be
consistent because they would be hitting the cue ball to one side.

The tests shots were made from two different positions and with three different
draws. The first position was approximately normal to the back bumper. The second
position was still aimed at the back bumper, but close to the corner pocket. See
figure 4-1 for an illustration of the two trajectories.

For each trajectory, three trials were made: soft (4096 steps), medium (6144
steps), and hard (8192 steps). Each trial consisted of 10 shots. For each shot, the
cue stick was drawn back, the cue ball placed in position, and the tracking program!
started. Once the tracking program had established the state of the pool table, the
cue stick was released, and the tracking program waited until there was no longer any

change in the pool table.

1See section 3.3 for details about the tracking program.

20

sition Z
/

Bsiton 1.

@, * Q
Figure 4-1: Trajectories used for test shots

Some shots were discarded because of errors in the tracking program; from time to
time, it missed a frame and decided that there was no ball on the table. The first few
points of each shot were also discarded because the ball had not completely entered
the frame, so the centroid returned was inaccurate. Points were discarded based on
the number of pixels that were detected in the ball.

For the rest of the data analysis in this thesis, the data is restricted to the trajec-
tory during the time from when the ball completely enters the frame until just before
it bounces off the back bumper. The latter criteria is easily determined because the
pool table is aligned so that the back bumper is horizontal. Thus, we look at the data
until the y coordinate stops increasing.? Section C.3 contains the LISP program that
processed the raw data and transformed it into the proper format for the statistics

package used for analysis.

2The coordinate axes of the video screen are oriented so that the origin is the top left hand corner
of the screen. The x-axis increases to the right of the screen , the y-axis towards the bottom.

21

4.4 Angular trajectory results

Statistical analysis of the trajectory data was done using RS1. A linear regression
was performed on each shot to fit a line to the data points. The angle of the shot was
computed from the slope of the line, and statistics were computed on all the angles
of a trial. Table 4.2 shows the results.

The last column in table 4.2, the extended standard deviation, is a measure of the
distance along the back bumper covered by the angle of the standard deviation. The

extended standazd deviation is computed from the expression
6
2d tan —
2

where d is the distance from the starting point of the cue ball to the back bumper.
For the setup used in these trials, d = 31 inches. Most combinations of position and
shot strength can deliver a consistent shot accurate to an eighth of an inch at this
distance.

Note that the extended standard deviation is, in general, two to three times the
size of a pixel, so the resolution of the vision system is sufficient to give us useful
information about the state of the pool table.

The A/D readings from the potentiometer for the two posi‘ions are 140.6 (average
of 10 readings) and 150. The average angles from the two positions are 90.18° and

77.39°. So the angular resolution of the potentiometer and A/D converter is
g

90.18° — 77.39°

150 — 1406 — -0

If this angle is extended to the back bumper, we find that it covers a distance of
0.747”. So, the resolution of the shooting angle measurement is much coarser than

the resolution of the vision system.

22

Extended
Standard | Standard
Position | Trial Meai angle | deviation | deviation
1 soft 90.56° 0.25° 0.135”
medium 90.70° 0.19° 0.1027 |
hard 89.29° 0.19° 0.100” |
2 soft 77.43° 0.27° 0.146”
medium 77.62° 0.12° 0.065” |
hard 77.13° 0.35° 0.1917 |

Table 4.2: Angular statistics. All trials consist of 10 shots. See text for explanation
of extended standard deviation.

4.5 Velocity results

In addition to being able to shoot the cue ball accurately in a certain direction, it is
also desirable to be able to control its velocity. The velocity of the ball for these tests
was computed by subtracting two consecutive position vectors. If the coordinates
have been scaled so that they are in inches, the units of the velocity are inches per
1/30 second. For N points of position data, there would be N — 1 points of velocity
data, but since it is possible that the last position data point has occurred after a
bounce, the last velocity data point is discarded. The same LISP procedures were
used to generate the position data from the raw data except for some modifications
which appear in section C.3.2.

Similar statistical analysis was performed on the velocity data. It turns out that
a line very closely approximates the curve formed by plotting the velocities versus
the distance from the shooting point of the cue ball. The equation of the line was
evaluated at 13” for trials in position 1 and 14” for trials in position 2. Statistics
were computed on these velocities. The results appear in table 4.3.

The velocities are actually very consistent. Though the standard deviation of the
velocities for the trials are all fairly close together, the percent standard deviation
is much greater for the soft shots than the other amounts of draw. Note that the
maximum standard deviation is 0.0259 inches per 1/30 second, but a pixel is 0.064
inches wide and 0.050 inches talll The accuracy of producing a desired velocity is

greater than the accuracy of the vision system.

23

Percent

Standard | standard

Position | Trial Mean velocity | deviation | deviation

1 soft 1.129 0.0259 2.29%

medium 1.916 0.0202 1.05%

hard 3.025 0.0249 0.82%

2 soft 1.140 0.0282 2.47%
medium 1.887 0.0142 0.75% |

hard 2.976 0.0236 0.79%

Table 4.3: Velocity statistics. Mean velocity and standard deviation are in units of
inches per 1/30 second.

24

Chapter 5

Conclusion

In the course of this thesis project, I have designed, built, and tested a robot pool
player. Currently, the sensing of the orientation of the cue stick is the limiting factor
that prevents the system from accurately shooting the cue ball along an arbitrary
trajectory.

There is an easily implemented solution that may solve the problem of orientation
sensing. Currently a potentiometer acts as a voltage divider to provide the input to an
analog to digital (A/D) converter. Since the whole range of the potentiometer is not
being used, an amplifier could be inserted between the potentiometer and the A/D
converter. This could increase the resolution of the orientation sensing by a factor
of 6, enough to bring the accuracy of the orientation sensing to a level comparable
to the accuracy of shooting the cue ball. If even more resolution were needed in the
orientation sensing, a video camera could be mounted atop the cue actuator to look
down the cue stick, just as people do when they play pool.

This modification would make the error in placing a shot the limiting factor of the
system. It may be the case that shooting the cue ball must be made more accurate. It
is likely that the repositioning of the cue ball at its shooting point is a main cause of
the noise in the system. A better method of repositioning the ball would be required.
Additionally, a second linear bearing, installed to reduce the amount of play in the
cue stick, could also help.

The velocity produced by the cue actuator turns out to be very consistent; the

25

vision system is the limiting factor for determining the velocity. I believe that the
velocity repeatability is more than accurate enough to play pool since variations in
the direction of a shot have far more effect on the shot than variations in velocity.

Though the robot pool player is currently limited to shooting from a fixed point,
this rotating mount could potentially be attached to a movable base so that the robot
pool player might play a semi-normal game of pool. The robot pool player could then
choose not only the direction and power of the shot, but also where to hit the cue
ball to impart the desired amount of spin. An additional camera, mounted atop the
cue actuator, would most likely be needed to guide the precise positioning of the cue
stick; the overhead camera would not have enough resolution to do so. The cue ball
repositioning problem would then be completely eliminated.

The work in this thesis can be extended and built upon in order to study various
aspects of learning through the many levels of playing pool. One could write down
the physics of two ball collisions in order to have a system that could sink a single
ball. Alternatively, the robot pool player could be told nothing about the physics of
pool and be left to learn on its own. Controlling the position of the cue ball after a
shot and overall game strategy are two other areas that could be studied. There are

many possibilities.

26

Appendix A

Mechanical drawings of the robot

pool player

27

eys Wiyl g

L | N sy | ¢

o)y Moo o Wy Bviwooy |
oW sadAokey] | | Rapeip beyww | £
APUANAI L 8 | Mgt 0y My | 7
o) RINONWARY] £ sy) |

skely YO) Y0 M sy weR\] f;;aof

28

A= AT

doyg,) |5l
w87 20D 1 hy
ARG WY | <

AN ey | 20
~o5 Jiggy |\
provwelas | Qi
AN o
Shunde,

oty

buiseaq Bu\7
wr3le)g
Hos P0Y
P

ey

Ly /29246

N Thal ol O o

JozeRy) AL
oy weikey] hgwessy

29

@

peRl myeRy 3
sy weaber(q ﬁscﬁv{

O\

\H\

o

N7
218y Jory [hl &W\Mw n_,u, 5@5& ;
woyed |)] Wil g ot
MG \8G) | 2\ Vg = [L ..H..m >
WHE] X9 | 1] oG Wy | 9 1?:%% .,m

30

" 1= ..r_ ARG

Wiy egweow

wopo

.\CC.XUQ

2plc

O T

R\eeVy D
sy agucoy
oy wbey hgwassy

31

oy By o

|

_
30 N.Lﬁ
dey lewl\ o A

gm_...rH ~ He V/.

,.‘.\afl_\w_ bt T

e

e

32

Wy Jenizy 30

2e-9 2%-9
l./.r. A] K] H “I/IL
B i | L

2%92 y "
r /8 a wiSi
- 'l/ lﬁ _— 2¢<-8

)

42 . +‘A| T
y R

I

2. 8
2
H
=

S

_ /]
kN o { “”Nm‘. t w X J
WJ T n .w&_ b \ L

33

PG KB S0

T
tO
2ree))
\Il 2e-9 4
:..\H ___.. rb_ \ \
/ |
* % 7S
A\
o\
_. A
Ik# w- \\ 7
.. Yk ORI
s :
W eb

w0} (2| a oLeniiyd X

2 l\

dey j59—"

'
NeR)) 28-9
des Nw.wulmwlﬁ
l
._N_N
vaeo 2¢-9 L doy 708 P
. mb. ..G\h 3, =$m
P " wlS
— \L r/.o\n ¢ \—P *
% ﬁ
Ay . eh nf S 1
_“ T a._st(uleﬁ—.wm\w §! L
2 97 1 i iT T
[o y

35

ps
Preg hpoy

[

eseNn) oz |II/

v 2%-8 N

| \

W

S

uhl

\S%4

o

e

\\N

36

iy

YR Y..fd?
N NN K H
s AN hlr
PV Y~
Qaz-%, —\ »Hvaedl) 26-8 N\
\\ﬁ— V\./ Y-.//
22 \\ Y,
a, Pany J7: X%
A2 AV N
Mo 1 7k
r v ..Q\nn
..¢\m * :*\.m

S

37

Papooy sy

..— = _.r? yw\.vm
2igy) boproyy

llllllll

‘GCBU i W r) .r\._nHll
d
12pay Aoy -y te
A \I 2
v xﬁ\v\ WAl
' _‘]
g —
lﬂ
._a\. 3 oA\ 1
= N2 "
T_
bl l\n
®RFOF | 2, N _
.b = :.3 e . \.I- Qﬂv Q2 AX
n ! - .— b L
wiy atjunaw -
\._HH O -
.m__H _
"
'] i

39

Appendix B

Wiring of electromechanical

elements
broble S, tkn
2 ‘n%ﬁ!—m\m& Triver /
2 ©
et B 4 Purgle. t fowiew 3
o Green 2 {step ITn
ced 2145
681\ [jA?V black 0 | enp
W _-].;'- Evabkle [
+74% —1 e -Z—-.—Q)
Port € O »% 1Y* e’ 2 (molor
e Parertiometer Ociver
Selerod Vinver 2 2
Gezea W] =

40

Appendix C

Program listings

41

C.1 FORTH procedures for 6811 board

(Move

(user

(memory
HEX

100 TIB !
50 TIB 2+ !
200 DP !
DECIMAL

3 CONSTANT COUNTUP (delay between pulses
3000 CONSTANT COUNTUP2 (delay until releasing solenoid
VARIABLE PORTB O PORTB ! (variable to hold value to be written

(pulse delay routine)

: DELAY COUNTUP 1 DO LOOP ;
(solenoid delay routine)

: DELAY2 COUNTUP2 1 DO LOOP ;

HEX
(write the variable PORTB to Port B
: WRITE-OUT PORTB @ BO04 C! ;
(turn on the solenoid
: SOLON PORTB @ 8 OR PORTB ! ;
(turn off the solenoid
: SOLOFF PORTB @ F7 AND PORTB ! ;
(turn on motor 1
: MOTOR1ON PORTB @ 1 OR PORTB ! ;
(turn off motor 1
: MOTOR10FF PORTB @ FE AND PORTB ! ;
(Set direction of motor 1 clockwise
: CLOCKW PORTB @ 2 DR PORTB ! ;
(Set direction of motor 1 counter clockwise
: CCLOCKW PORTB @ FD AND PORTB ! ;
(enable the motor
: ENERGIZE PORTB @ 4 OR PORTB ! WRITE-OUT ;
(disable the motor
: POWERDOWN PORTB € FB AND PORTB ! WRITE-OUT ;
(waits for keystroke
: WFT BEGIN ?TERMINAL UNTIL ;
(send single pulse
: PULSATE MOTOR10N WRITE-OUT DELAY MOTOR10FF WRITE-OUT ;
(send a continuous stream of pulses
: PULSECOUNT 1 DO PULSATE LOOP ;

42

(send a continuous stream of pulses until user hits a key
: PULSESTREAM BEGIN PULSATE ?TERMINAL UNTIL ;

(move platform forwards until keystroke
: FORWARDS CLOCKW PULSESTREAM ;

(move platform backwards until keystroke
: DRAWBACK CCLOCKW PULSESTREAM ;

(release the pool cue
: LETGO SOLON WRITE-OUT DELAY2 SOLOFF WRITE-OUT ;

(shoots the cue. called preceeded by one argument, the number of
(steps to draw back the cue. Maximum shot is approximately 2000

(for example: 1500 SHOOT

(note that these are hex numbers: 1000 SHOOT sends 4192 pulses

: SHOOT ENERGIZE DUP CCLOCKW PULSECOUNT WFT LETGO CLOCKW PULSECOUNT

POWERDOWN ;

HEX
80 B038 C! (power up a/d converters
30 B030 C! (set up a/d for continuous conversion of an0-3

: RAD BO31 C@ . ; (read a/d converter, channel 1
: SCANAD BEGIN RAD CR 100 1 DO LOOP ?TERMINAL UNTIL ;
(continuously scan a/d converter until a key is hit

43

C.2 YVision routines

C.2.1 track.c

/e s e s sk o ok sk ok ke oo R R ok e ook e ko s ke o sk s kol ke s o ko ok ok
track.c by Wes Huang spring 1991

This program will track a single ball in real time, reporting
the centroid and the number of pixels for each frame.

Data is output to stdout and can be saved to a file using
unix output redirection. Messages to the user appear
on stderr, so they will not be recorded in the file.

**/

#include <stdio.h>
#include <dc.h>

/* Threshold for determining whether a pixel is a part of the ball
Use 35 for high speed shutter, 175 for normal shutter */
#define BALL_THRESH 35

/* how many frames for no change to stop recording */
#define NCHANGE 5

/* max number of frames to record (at 30 frames per second) */
#define MAXFRAMES 150

main()

{

/* pointers to the datacube boards */
DG_DESC *dg0, *dg1;
FM_DESC *fmO;

/* storage for centroids and number of points */
int Cx[MAXFRAMES],Cy[MAXFRAMES] ,n[MAXFRAMES] ;

int frames,k,l;
dg0 = dgOpen(DG_BASE, DG_VECTOR, 0);

dgl = dgOpen(DG1_BASE, DG1_VECTOR, 0);
fm0 = fmOpen(FM_BASE,O) ;

44

/* initializes boards, ensures that camera input is routed properly
through the pipeline, and sets the threshold for the featuremax
board */

dgMaster(dg0);

setupDG (dg0,dgl,DC_INTERNAL,BILLIARD3_1);

setupFM(fm0,BALL_THRESH) ;

mvRefresh(); -

for (k=0;k<MAXFRAMES;k++)
Cx[k]=Cy [k]=n[k]=0;

initial_point (fm0,dg0,&Cx[0],&Cy[0],&n[0]);

/* message displayed to user */
fprintf(stderr,"Waiting for start.\n");

frames = wait_and_record(fmo,ng,Cx,Cy,n);

for (k=0;k<frames;k++)
printf("%d %d %d\n",Cx[k],Cy[k],n[k]);

dgClose(dg0);

dgClose(dgl);

fmClose (fm0) ;
}

/***

initial_point does a Zew centroids to
warm up, waits for the frame to stabilize
and settle down, then measures the
reference frame

stk ke ek ke s ke o sk oo e ok e o e o ko ok o ok ok ok /
initial_point(fm,dg,x,y,n)
FM_DESC *fm;
DG_DESC *dg;
int *x,*y, *n;
{
int x1,y1,n1,k;

for (k=0;k<10;k++) { /* do 10 frames just to get warmed up */
extract (fm,dg);
nl = centroid(fm,&x1,&y1);

}

45

/* get the reference frame */
extract (fm,dg) ;
*n = centroid(fm,x,y);

/* if the reference frame wasn’t the same as the previous frame,
things haven’t settled down yet. Keep doing centroids until
we get two consecutive centroids that are the same. */

while ((n1 != 0) && (*n != 0) && (x1 != *x) && (y1 != *y)) {

x1 = *x; y1 = *y;nl = *n;
extract (fm,dg) ;
*n = centroid(fm,x,y);
}
}

/************************************

wait_and_record does centroids on the incoming video signal until it
finds a frame that has changed from the reference frame. Then every
frame is recorded until there are NCHANGE identical frames or until

MAXFRAMES have been recorded.

s ek s e o ok oo o ks s o s e e ool e e o e e /
wait_and_record(fm,dg,x,y,n)

FM_DESC *fm;

DG_DESC *dg;

int x[HAXFRAHES],y[HAXFRAHES],n[HAXFRAHES];
{

int same,k;

extract (fm,dg) ;
n[i] = centroid(fm,&x[1],&y[1]);

/* wait until change */

while ((x[1] == x[0]) && (y[1] == y[0])) {
extract (fm,dg) ;
nf1] = centroid(fm,&x[1],&y[1]);

}

/* There has been a change, so start recording */
k=2; /* number of next frame to be recorded */
same = 0; /* how many identical frames have been recorded? */

46

do {
extract (fm,dg);
n[k] = centroid(fm,&x([k],&y[k]);
if ((x[k] == x[k-1]) && (y[k] == y[k-1]))

same +=1;
else

same = 0;
k++;}

while ((same < NCHANGE) && (k < MAXFRAMES));

return(k);

}

47

C.2.2 Selected routines from the dc library
C.2.2.1 setupDG()

/*
setupDG (dg0,dgl,display,view_camera)

initializes the digimax boards, sets the input for the D/A section,
and sets the input for the A/D section.

the argument ’display’ may be set to:
DC_INTERNAL

DC_Pé6 (6)

DC_P7 (7)

DC_P8 (8)

the argument ’view_camera’ is simply passed to select_camera.
it may be set to:

DC_QUERY

or to a camera name/number

*/
setupDG(dg0,dgl,display,view_camera)
DG_DESC *dgO, *dgi;
int display,view_camera;
{
dgInit (dg0,DG_UNSGD) ;
dgInit(dgl,DG_UNSGD);
switch (display) {
case DC_INTERNAL: dgDtoASrc(dg0,DG_INTDISP);
dgDtoASrc(dgl,DG_INTDISP) ;break;
case DC_P6: dgDtoASrc(dg0,DG_P6DISP);
dgDtoASrc(dgl,DG_P6DISP) ;break;
.ase DC_P7: dgDtoASrc(dg0,DG_P7DISP);
dgDtoASrc(dgl,DG_P7DISP) ;break;
case DC_P8: dgDtoASrc(dg0,DG_PSDISP);
dgDtoASrc(dgl,DG_PSDISP) ;break;
}

select_camera(dg0,dgl,view_camera);

48

C.2.2.2 setupFM()

/%
setupFM(fm,comp_val)

sets up the featuremax board to do feature extraction

the argument ’comp_val’ may be set to the desired comparator value,
or DC_QUERY, in which case the procedure will ask for a comparator
value.

if an illegal comparator value is provided, the procedure will do
nothing and return -1.

successful completion of the procedure will return the comparator
value

*/

setupFM(£fm, comp_val)

FM_DESC *fm;

int comp_val;

{

int c;

if (comp_val == DC_QUERY) {
printf("Enter value for feature comparator:\n");
scanf ("%d",&c);

}

else
¢ = comp_val;

if ((c<0) || (c>258)) {
printf("illegal featuremax comparator value.\n");
return(-1);

}

fmInit (fm);

fmInt1Md (fm,FM_INTL);
fmBlankMd (fm,FM_BL1);
fmDataMd(fm, DQ_2SCMP);
fmComp (fm, c) ;

fmHOffs (fm,14);
fmFeatMd (fm,FM_GTNOTAG) ;
fmMapMd (fm,FM_XYMAP) ;
return(c);

49

C.2.2.3 extract()
/*

extract (fm,dg)

operates the featuremax in feature extraction mode for one field as
determined by the digimax board.

setupFM() must be run before the first call of this procedure

this procedure will wait for the completion of the extraction

*/

extract (fm,dg)
FM_DESC *fm;
DG_DESC *dg;

{

/* dgWaitEven(dg);*/

fmCtrlMd(£fm,
fmTrigMd(fm,
fmTrigMd(fm,
fmCtriMd(fm,
fmTrigMd(fm,
dgWaitFld(dg,
fmTrigMd(fm,
mvRefresh() ;
/* mvRefresh();
}

FM_FTCNTR); /#* Clear counter. */

FM_FREE); /* start triggering unconditionally */
FM_SAFE); /* stop triggering */

FM_FTEXT); /* set feature extraction */
FM_FREE);

1); /* process one field */

FM_SAFE);

*/

50

C.2.2.4 centroid()

/*
centroid(fm,Cx,Cy)

when called after an extract operation, this procedure will find the
centroid of the pixels in the feature memory

it will only examine up to MAXFEAT pixels

returns the number of features counted (which may be greater than
MAXFEAT)
*/
centroid(fm,Cx,Cy)
FM_DESC *fm;
int *Cx,*Cy;
{
int feats,f,k;
unsigned short *ptr;
long int Sx,Sy;

feats = (int) fmGetFCount (fm);

if (feats > MAXFEAT)
f = MAXFEAT;

alse
f = feats;

if (£>0) {
ptr = (unsigned short *) (fm->MemBase + 2);
Sx = Sy = 0;
for (k=0;k<f;k++) {
Sx += (long int) (*ptr++);
Sy += (long int) (*ptr++);

}
*Cx = Sx/f;
*Cy = Sy/f;
}
else
*Cx = *Cy = 0;
return(feats);
}

51

C.3 Data processing procedures

These routines were used to process the raw data produced by track.c to select the
data points before the first bounce of the ball and to put the data in a format that
can be read by RS1, the package used for statistical computations.

C.3.1 bb.lisp

(in-package ’user)

;; bb = selects data points Before the Bounce
HH (where y coordinate stops increasing)

(setq xscale 15.69)
(setq yscale 19.88)

(defun process-datafiles ()
(format t "Enter the base file name to be processed."Y")
(setq fbasename (read-line))
(format t "Enter output file name.~%")
(setq foutname (read-line))
(format t "~YProcessing files..."%")
(with-open-file (ofile foutname :direction :output)
(do ((i 1 (+ i 1)))
((= i 11))
(progn
(setq fname (concatenate ’string fbasename
(format nil "~2,’0D" i)))
(format t "~a =" fname)
(process-file fname ofile)))))

(defun process-file (infile outfile)
(with-open-file (ifile infile :direction :input)
(setq frstpt (read-first-point ifile))
(setq datapts (cons frstpt
(read-rest-points ifile (cadr frstpt))))
(format t "~d points.~)" (length datapts))
(write-out outfile datapts O #’car)
(write-out outfile datapts O #’cadr)))

(defun read-first-point (ifile)
(let ((x (read ifile))

(y (read ifile))

(n (read ifile)))

52

(if (> n 235)
(1ist (/ x xscale) (/ y yscale))
(read-first-point ifile))))

(defun read-rest-points (ifile prevy)
(let ((x (read ifile nil ’all-dome))

(y (read ifile nil ’all-~done))
(n (read ifile nil ’all-done)))

(if (or (eq x ’all-dome)

(< y prevy))
nil
(cons (list (/ x xscale) (/ y yscale)) (read-rest-points ifile y)))))

(defun write-out (ofile data written function)
(cond ((and (eq written 10)
(not (eq data nil)))
(format ofile " &~%")
(write-out ofile data 0 function))
((eq data nil)
(format ofile "*%"))
(t
(format ofile "~d " (apply function (list (car data))))
(write-out ofile (cdr data) (+ writtem 1) functiomn))))

53

C.3.2 bbv.lisp

(in-package ’user)

(setq xcenter 12.8592)
(setq ycenter -8.96)

(defun radius (pt)
(let ((x (- (car pt) xcenter))
(y (- (cadr pt) ycenter)))
(sqrt (+ (* x x) (* y ¥)))))

(defun process-file (infile outfile)
(with-open-file (ifile infile :direction :input)
(setq frstpt (read-first-point ifile))
(setq datapts (cons frstpt
(read-rest-points ifile (cadr frstpt))))
(format t "~d points.~%" (length datapts))
(wvrite-out outfile datapts O #’radius)
(wov outfile datapts 0)))

(defun write-out (ofile data written function)

(cond
((eq (length data) 2)
(format ofile "*%"))
((and (eq written 10)

(not (eq data nil)))
(format ofile " &~%")
(write-out ofile data 0 function))
(t
(format ofile "~f " (apply function (list (car data))))
(write-out ofile (cdr data) (+ written 1) function))))

(defun wov (ofile data written)

(cond ((eq (length data) 2)

(format ofile "~%"))
((and (eq written 10)

(not (eq data nul)))

(format ofile " &~%")

(wov ofile data 0))
(¢

(format ofile "“f " (velocity (car data) (cadr data)))
(wov ofile (cdr data) (+ written 1)))))

(defun velocity (pt1 pt2)

54

(let* ((dx (- (car pt2) (car pt1)))

(dy (- (cadr pt2) (cadr pti1)))

(v (sqrt (+ (* dx dx) (* dy dy)))))
v))

55

Bibliography

[1] W. Cheung, K. Khodabandehloo, and I.J. Rennell. Development of expert robot
systems for skilled operation. In Proceedings of the 20t* International Symposium

on Industrial Robots in Tokyo, Japan, 1989.

[2] C.B. Daish. The Physics of Ball Games. Hodder and Stoughton, 1972.

56

