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GauGAN: 281G MACs Ours: 31.7G (8.8×)

Input CycleGAN: 56.8G MACs Ours: 2.67G (21.2×)

Input Pix2pix: 56.8G MACs Ours: 4.81G (11.8×)

Figure 1

Figure 1: We introduce GAN Compression, a general-purpose method for compressing conditional GANs. Our method reduces
the computation of widely-used conditional GAN models including pix2pix, CycleGAN, and GauGAN by 9-21× while
preserving the visual fidelity. Our method is effective for a wide range of generator architectures, learning objectives, and both
paired and unpaired settings.

Abstract

Conditional Generative Adversarial Networks (cGANs)
have enabled controllable image synthesis for many com-
puter vision and graphics applications. However, recent
cGANs are 1-2 orders of magnitude more computationally-
intensive than modern recognition CNNs. For example, Gau-
GAN consumes 281G MACs per image, compared to 0.44G
MACs for MobileNet-v3, making it difficult for interactive
deployment. In this work, we propose a general-purpose
compression framework for reducing the inference time and
model size of the generator in cGANs. Directly applying ex-
isting CNNs compression methods yields poor performance
due to the difficulty of GAN training and the differences
in generator architectures. We address these challenges in
two ways. First, to stabilize the GAN training, we transfer
knowledge of multiple intermediate representations of the
original model to its compressed model, and unify unpaired
and paired learning. Second, instead of reusing existing
CNN designs, our method automatically finds efficient archi-
tectures via neural architecture search (NAS). To accelerate
the search process, we decouple the model training and
architecture search via weight sharing. Experiments demon-

strate the effectiveness of our method across different super-
vision settings (paired and unpaired), model architectures,
and learning methods (e.g., pix2pix, GauGAN, CycleGAN).
Without losing image quality, we reduce the computation of
CycleGAN by more than 20× and GauGAN by 9×, paving
the way for interactive image synthesis. The code and demo
are publicly available.

1. Introduction
Generative Adversarial Networks (GANs) [16] excel at

synthesizing photo-realistic images. Their conditional exten-
sion, conditional GANs [50, 29, 80], allows controllable im-
age synthesis and enables many computer vision and graph-
ics applications such as interactively creating an image from
a user drawing [52], transferring the motion of a dancing
video stream to a different person [66, 9, 1], or creating VR
facial animation for remote social interaction [68]. All of
these applications require models to interact with humans
and therefore demand low-latency on-device performance
for better user experience. However, edge devices (mobile
phones, tablets, VR headsets) are tightly constrained by
hardware resources such as memory and battery. This com-
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putational bottleneck prevents conditional GANs from being
deployed on edge devices.

Different from image recognition CNNs [34, 61, 21,
27], image-conditional GANs are notoriously computation-
ally intensive. For example, the widely-used CycleGAN
model [80] requires more than 50G MACs*, 100× more
than MobileNet [27]. A more recent model GauGAN [52],
though generating photo-realistic high-resolution images,
requires more than 250G MACs, 500× more than Mo-
bileNet [27, 57, 26].

In this work, we present GAN Compression, a general-
purpose compression method for reducing the inference time
and computational cost for conditional GANs. We observe
that compressing generative models faces two fundamental
difficulties: GANs are unstable to train, especially under
the unpaired setting; generators also differ from recognition
CNNs, making it hard to reuse existing CNN designs. To
address these issues, we first transfer the knowledge from the
intermediate representations of the original teacher generator
to its corresponding layers of its compressed student gener-
ator. We also find it beneficial to create pseudo pairs using
the teacher model’s output for unpaired training. This trans-
forms the unpaired learning to a paired learning. Second, we
use neural architecture search (NAS) to automatically find an
efficient network with significantly fewer computation costs
and parameters. To reduce the training cost, we decouple the
model training from architecture search by training a “once-
for-all network” that contains all possible channel number
configurations. The once-for-all network can generate many
sub-networks by weight sharing and enable us to evaluate the
performance of each sub-network without retraining. Our
method can be applied to various conditional GAN models
regardless of model architectures, learning algorithms, and
supervision settings (paired or unpaired).

Through extensive experiments, we show that our method
can reduce the computation of three widely-used conditional
GAN models including pix2pix [29], CycleGAN [80], and
GauGAN [52] by 9× to 21× regarding MACs, without
loss of the visual fidelity of generated images (see Figure 1
for several examples). Finally, we deploy our compressed
pix2pix model on a mobile device (Jetson Nano) and demon-
strate an interactive edges2shoes application (demo).

2. Related Work
Conditional GANs. Generative Adversarial Networks
(GANs) [16] are excel at synthesizing photo-realistic re-
sults [31, 5]. Its conditional form, conditional GANs [50, 29]
further enables controllable image synthesis, allowing a user
to synthesize images given various conditional inputs such

*We use the number of Multiply-Accumulate Operations (MAC) to
quantify the computation cost. Modern computer architectures use fused
multiply–add (FMA) instructions for tensor operations. These instructions
compute a = a+ b× c as one operation. 1 MAC=2 FLOPs.
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Figure 2: Conditional GANs require two orders of magnitude
more computation than image classification CNNs, making
it prohibitive to be deployed on edge devices.

as user sketches [29, 58], class labels [50, 5], or textual de-
scriptions [55, 77]. Subsequent works further increased the
resolution and realism of the results [67, 52]. Later, sev-
eral algorithms were proposed to learn conditional GANs
without paired data [63, 59, 80, 32, 71, 43, 13, 28, 35].

The high-resolution, photo-realistic synthesized results
come at the cost of intensive computation. As shown in
Figure 2, although the model size is of the same magnitude
as the size of image recognition CNNs [21], conditional
GANs require two orders of magnitudes more computations.
This makes it challenging to deploy these models on edge
devices given limited computational resources. In this work,
we focus on efficient image-conditional GANs architectures
for interactive applications.

Model acceleration. Extensive attention has been paid to
hardware-efficient deep learning for various real-world ap-
plications [20, 19, 79, 65, 18]. To reduce redundancy in
network weights, researchers proposed to prune the con-
nections between layers [20, 19, 69]. However, the pruned
networks require specialized hardware to achieve its full
speedup. Several subsequent works proposed to prune entire
convolution filters [23, 38, 44] to improve the regularity of
computation. AutoML for Model Compression (AMC) [22]
leverages reinforcement learning to determine the pruning ra-
tio of each layer automatically. Liu et al. [45] later replaced
the reinforcement learning by an evolutionary search algo-
rithm. Recently, Shu et al. [60] proposed co-evolutionary
pruning for CycleGAN by modifying the original Cycle-
GAN algorithm. This method is tailored for a particular
algorithm. The compressed model significantly increases
FID under a moderate compression ratio (4.2×). In contrast,
our model-agnostic method can be applied to conditional
GANs with different learning algorithms, architectures, and
both paired and unpaired settings. We assume no knowledge
of the original cGAN learning algorithm. Experiments show
that our general-purpose method achieves 21.1× compres-
sion ratio (5× better than CycleGAN-specific method [60])
while retaining the FID of original models.

Knowledge distillation. Hinton et al. [25] introduced the
knowledge distillation for transferring the knowledge in a
larger teacher network to a smaller student network. The stu-
dent network is trained to mimic the behavior of the teacher

https://youtu.be/31AhcLqWc68
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Figure 3: GAN Compression framework: À Given a pre-trained teacher generator G′, we distill a smaller “once-for-all”
student generator G that contains all possible channel numbers through weight sharing. We choose different channel numbers
{ck}Kk=1 for the student generator G at each training step. Á We then extract many sub-generators from the “once-for-all”
generator and evaluate their performance. No retraining is needed, which is the advantage of the “once-for-all” generator. Â
Finally, we choose the best sub-generator given the compression ratio target and performance target (FID or mIoU), perform
fine-tuning, and obtain the final compressed model.

network. Several methods leverage knowledge distillation
for compressing recognition models [48, 10, 36]. Recently,
Aguinaldo et al. [2] adopts this method to accelerate un-
conditional GANs. Different from them, we focus on con-
ditional GANs. We experimented with several distillation
methods [2, 72] on conditional GANs and only observed
marginal improvement, insufficient for interactive applica-
tions. Please refer to Appendix 6.2 for more details.

Neural architecture search. Neural Architecture Search
(NAS) has successfully designed neural network architec-
tures that outperform hand-crafted ones for large-scale image
classification tasks [82, 40, 41]. To effectively reduce the
search cost, researchers recently proposed one-shot neural
architecture search [42, 8, 70, 17, 26, 4, 7] in which different
candidate sub-networks can share the same set of weights.
While all of these approaches focus on image classification
models, we study efficient conditional GANs architectures
using NAS.

3. Method

Compressing conditional generative models for interac-
tive applications is challenging due to two reasons. Firstly,
the training dynamic of GANs is highly unstable by na-
ture. Secondly, the large architectural differences between
recognition and generative models make it hard to apply
existing CNN compression algorithms directly. To address
the above issues, we propose a training protocol tailored
for efficient generative models (Section 3.1) and further in-
crease the compression ratio with neural architecture search

(NAS) (Section 3.2). The overall framework is illustrated in
Figure 3. Here, we use the ResNet generator [30, 80] as an
example. However, the same framework can be applied to
different generator architectures and learning objectives.

3.1. Training Objective

Unifying unpaired and paired learning. Conditional
GANs aim to learn a mapping function G between a source
domain X and a target domain Y . They can be trained using
either paired data ({xi,yi}Ni=1 where xi ∈ X and yi ∈ Y )
or unpaired data (source dataset {xi}Ni=1 to target dataset
{yj}Mj=1). Here, N and M denote the number of training
images. For simplicity, we omit the subscript i and j. Sev-
eral learning objectives have been proposed to handle both
paired and unpaired settings (e.g., [29, 52, 67, 80, 43, 28]).
The wide range of training objectives makes it difficult to
build a general-purpose compression framework. To address
this, we unify the unpaired and paired learning in the model
compression setting, regardless of how the teacher model is
originally trained. Given the original teacher generator G′,
we can transform the unpaired training setting to the paired
setting. In particular, for the unpaired setting, we can view
the original generator’s output as our ground-truth and train
our compressed generator G with a paired learning objective.
Our learning objective can be summarized as follows:

Lrecon =

{
Ex,y‖G(x)− y‖1 if paired cGANs,
Ex‖G(x)−G′(x)‖1 if unpaired cGANs.

(1)



Here we denote Ex , Ex∼pdata(x) and Ex,y , Ex,y∼pdata(x,y)

for simplicity. ‖‖1 denotes L1 norm.
With such modifications, we can apply the same compres-

sion framework to different types of cGANs. Furthermore,
As shown in Section 4.4, learning using the above pseudo
pairs makes training more stable and yields much better
results, compared to the original unpaired training setting.

As the unpaired training has been transformed into paired
training, we will discuss the following sections in the paired
training setting unless otherwise specified.

Inheriting the teacher discriminator. Although we aim
to compress the generator, a discriminator D stores useful
knowledge of a learned GAN as D learns to spot the weak-
ness of the current generator [3]. Therefore, we adopt the
same discriminator architecture, use the pre-trained weights
from the teacher, and fine-tune the discriminator together
with our compressed generator. In our experiments, we ob-
serve that a pre-trained discriminator could guide the training
of our student generator. Using a randomly initialized dis-
criminator often leads to severe training instability and the
degradation of image quality. The GAN objective is formal-
ized as:

LcGAN = Ex,y[logD(x,y)] + Ex[log(1−D(x, G(x)))],
(2)

where we initialize the student discriminator D using the
weights from teacher discriminator D′. G and D are trained
using a standard minimax optimization [16].

Intermediate feature distillation. A widely-used method
for CNN model compression is knowledge distillation [25,
48, 10, 72, 36, 53, 12]. By matching the distribution of
the output layer’s logits, we can transfer the dark knowl-
edge from a teacher model to a student model, improv-
ing the performance of the student. However, conditional
GANs [29, 80] usually output a deterministic image, rather
than a probabilistic distribution. Therefore, it is difficult to
distill the dark knowledge from the teacher’s output pixels.
Especially for paired training setting, output images gener-
ated by the teacher model essentially contains no additional
information compared to ground-truth target images. Experi-
ments in Appendix 6.2 show that for paired training, naively
mimicking the teacher model’s output brings no improve-
ment.

To address the above issue, we match the intermediate
representations of the teacher generator instead, as explored
in prior work [36, 75, 10]. The intermediate layers contain
more channels, provide richer information, and allow the
student model to acquire more information in addition to
outputs. The distillation objective can be formalized as

Ldistill =

T∑
t=1

‖ft(Gt(x))−G′t(x)‖2, (3)

where Gt(x) and G′t(x) are the intermediate feature acti-
vations of the t-th chosen layer in the student and teacher
models, and T denotes the number of layers. A 1× 1 learn-
able convolution layer ft maps the features from the student
model to the same number of channels in the features of the
teacher model. We jointly optimize Gt and ft to minimize
the distillation loss Ldistill. Appendix 6.1 details which layers
we choose in practice.

Full objective. Our final objective is written as follows:

L = LcGAN + λreconLrecon + λdistillLdistill, (4)

where hyper-parameters λrecon and λdistill control the impor-
tance of each term. Please refer to Appendix 6.1 for more
details.

3.2. Efficient Generator Design Space

Choosing a well-designed student architecture is essential
for the final performance of knowledge distillation. We find
that naively shrinking the channel numbers of the teacher
model fails to produce a compact student model: the perfor-
mance starts to degrade significantly above 4× computation
reduction. One of the possible reasons is that existing gener-
ator architectures are often adopted from image recognition
models [46, 21, 56, 46], and may not be the optimal choice
for image synthesis tasks. Below, we show how we derive a
better architecture design space from an existing cGAN gen-
erator and perform neural architecture search (NAS) within
the space.

Convolution decomposition and layer sensitivity. Exist-
ing generators usually adopt vanilla convolutions to follow
the design of classification and segmentation CNNs. Recent
efficient CNN designs widely adopt a decomposed version
of convolutions (depthwise + pointwise) [27], which proves
to have a better performance-computation trade-off. We
find that using the decomposed convolution also benefits the
generator design in cGANs.

Unfortunately, our early experiments have shown that
directly applying decomposition to all the convolution layers
(as in classifiers) will significantly degrade the image quality.
Decomposing some of the layers will immediately hurt the
performance, while other layers are more robust. Further-
more, this layer sensitivity pattern is not the same as recog-
nition models. For example, in ResNet generator [21, 30],
the resBlock layers consume the majority of the model pa-
rameters and computation cost while is almost immune to
decomposition. On the contrary, the upsampling layers have
much fewer parameters, but are fairly sensitive to model
compression: moderate compression can lead to a large FID
degradation. Therefore, we only decompose the resBlock
layers. We conduct a comprehensive study regarding the
sensitivity of layers in Section 4.4.



Automated channel reduction with NAS. Existing gen-
erators use a hand-crafted (and mostly uniform) channel
numbers across all the layers, which contains redundancy
and is far from optimal. To further improve the compres-
sion ratio, we automatically select the channel width in the
generators using channel pruning [23, 22, 44, 81, 47] to re-
move the redundancy, which can reduce the computation
quadratically. We support fine-grained choices regarding the
numbers of channels. For each convolution layers, the num-
ber of channels can be chosen from multiples of 8, which
balances MACs and hardware parallelism [22].

Given the possible channel configurations
{c1, c2, ..., cK}, where K is the number of layers to
prune, our goal is to find the best channel configuration
{c∗1, c∗2, ..., c∗K} = argminc1,c2,...,cK L, s.t. MACs < Ft

using neural architecture search, where Ft is the com-
putation constraint. A straight-forward approach is to
traverse all the possible channel configuration, train it to
convergence, evaluate, and pick the generator with the best
performance. However, as K increases, the number of
possible configurations increases exponentially, and each
configuration might require different hyper-parameters
regarding the learning rates and weights for each term. This
trial and error process is far too time-consuming.

3.3. Decouple Training and Search

To address the problem, we decouple model training from
architecture search, following recent work in one-shot neu-
ral architecture search methods [8, 7, 17]. We first train
a “once-for-all” network [7] that supports different chan-
nel numbers. Each sub-network with different numbers of
channels are equally trained and can operate independently.
Sub-networks share the weights with the “once-for-all” net-
work. Figure 3 illustrates the overall framework. We assume
that the original teacher generator has {c0k}Kk=1 channels. For
a given channel number configuration {ck}Kk=1, ck ≤ c0k, we
obtain the weight of the sub-network by extracting the first
{ck}Kk=1 channels from the corresponding weight tensors of
“once-for-all” network, following Guo et al. [17]. At each
training step, we randomly sample a sub-network with a
certain channel number configuration, compute the output
and gradients, and update the extracted weights using our
learning objective (Equation 4). Since the weights at the first
several channels are updated more frequently, they play a
more critical role among all the weights.

After the “once-for-all” network is trained, we find the
best-performing sub-network by directly evaluating the per-
formance of each candidate sub-network on the validation set
through two types of search methods, as mentioned below:

• Brute Force: we directly evaluate the performance of
each candidate sub-network under a certain computa-
tion budget. Though this method will definitely return

the best-performing one. However, this search process
is rather time-consuming.

• Evolution: we include this search method since arXiv
v3, which resorts to the evolution algorithm [54] to
search for the best-performing sub-network. This
method is much more efficient (about 20× faster than
the brute force) and could support a much larger search
space.

Since the “once-for-all” network is thoroughly trained
with weight sharing, no fine-tuning is needed. This approxi-
mates the model performance when it is trained from scratch.
In this manner, we can decouple the training and search
of the generator architecture: we only need to train once,
but we can evaluate all the possible channel configurations
without further training, and pick the best one as the search
result. Optionally, we fine-tune the selected architecture to
further improve the performance. We report both variants in
Section 4.4.

4. Experiments
4.1. Setups

Models. We conduct experiments on three conditional
GAN models to demonstrate the generality of our method.

• CycleGAN [80], an unpaired image-to-image translation
model, uses a ResNet-based generator [21, 30] to trans-
form an image from a source domain to a target domain,
without using pairs.

• Pix2pix [29] is a conditional-GAN based paired image-
to-image translation model. For this model, we replace
the original U-Net generator [56] by the ResNet-based
generator [30] as we observe that the ResNet-based gen-
erator achieves better results with less computation cost,
given the same learning objective. See Appendix 6.2 for a
detailed U-Net vs. ResNet benchmark.

• GauGAN [52] is a state-of-the-art paired image-to-image
translation model. It can generate a high-fidelity image
given a semantic label map.

We re-trained the pix2pix and CycleGAN using the of-
ficial PyTorch repo with the above modifications. Our re-
trained pix2pix and CycleGAN models (available at our
repo) slightly outperform the official pre-trained models. We
use these re-trained models as original models. For Gau-
GAN, we use the pre-trained model from the authors. See
Appendix 6.2 for more details.

Datasets. We use the following five datasets:

• Edges→shoes. We use 50,025 images from UT Zap-
pos50K dataset [73]. We split the dataset randomly so

https://github.com/mit-han-lab/gan-compression


Model Dataset Method #Parameters MACs
Metric

FID (↓) mIoU (↑)

CycleGAN horse→zebra

Original 11.4M – 56.8G – 61.53 – –
Shu et al. [60] – – 13.4G (4.2×) 96.15 (34.6 /) –
Ours (w/o fine-tuning) 0.34M (33.3×) 2.67G (21.2×) 64.95 (3.42 /) –
Ours 0.34M (33.3×) 2.67G (21.2×) 71.81 (10.3 /) –
Ours (Fast) 0.36M (32.1×) 2.64G (21.5×) 65.19 (3.66 /) –

edges→shoes

Original 11.4M – 56.8G – 24.18 – –
Ours (w/o fine-tuning) 0.70M (16.3×) 4.81G (11.8×) 31.30 (7.12 /) –
Ours 0.70M (16.3×) 4.81G (11.8×) 26.60 (2.42 /) –
Ours (Fast) 0.70M (16.3×) 4.87G (11.7×) 25.76 (1.58 /) –

Pix2pix Cityscapes

Original 11.4M – 56.8G – – 42.06 –
Ours (w/o fine-tuning) 0.71M (16.0×) 5.66G (10.0×) – 33.35 (8.71 /)
Ours 0.71M (16.0×) 5.66G (10.0×) – 40.77 (1.29 /)
Ours (Fast) 0.89M (12.8×) 5.45G (10.4×) – 41.71 (0.35 /)

map→arial photo

Original 11.4M – 56.8G – 47.76 – –
Ours (w/o fine-tuning) 0.75M (15.1×) 4.68G (12.1×) 71.82 (24.1 /) –
Ours 0.75M (15.1×) 4.68G (12.1×) 48.02 (0.26 /) –
Ours (Fast) 0.71M (16.1×) 4.57G (12.4×) 48.67 (0.91 /) –

GauGAN

Cityscapes

Original 93.0M – 281G – – 62.18 –
Ours (w/o fine-tuning) 20.4M (4.6×) 31.7G (8.8×) – 59.44 (2.74 /)
Ours 20.4M (4.6×) 31.7G (8.8×) – 61.22 (0.96 /)
Ours (Fast) 20.2M (4.6×) 31.2G (9.0×) – 61.17 (1.01 /)

COCO-Stuff
Original 97.5M – 191G – 21.38 – 38.78 –
Ours (Fast, w/o fine-tuning) 26.0M (3.8×) 35.4G (5.4×) 28.78 (7.40 /) 31.77 (7.01 /)
Ours (Fast) 26.0M (3.8×) 35.4G (5.4×) 25.06 (3.68 /) 35.34 (3.45 /)

Table 1: Quantitative evaluation of GAN Compression: we use the mIoU metric (the higher the better) for the Cityscapes and
COCO-Stuff datasets, and FID (the lower the better) for other datasets. Ours denotes GAN Compression and Ours (Fast)
denotes Fast GAN Compression as described in Section 4.1. Our method can compress state-of-the-art conditional GANs
by 9-21× in MACs and 5-33× in model size, with only minor performance degradation. For CycleGAN compression, our
general-purpose approach outperforms previous CycleGAN-specific Co-Evolution method [60] by a large margin.

that the validation set has 2,048 images for a stable evalua-
tion of Fréchet Inception Distance (FID) (see Section 4.2).
We evaluate the pix2pix model on this dataset.

• Cityscapes. The dataset [14] contains the images of Ger-
man street scenes. The training set and the validation set
consists of 2975 and 500 images, respectively. We evaluate
both the pix2pix and GauGAN model on this dataset.

• Horse↔zebra. The dataset consists of 1,187 horse images
and 1,474 zebra images originally from ImageNet [15]
and is used in CycleGAN [80]. The validation set contains
120 horse images and 140 zebra images. We evaluate the
CycleGAN model on this dataset.

• Map↔aerial photo. The dataset contains 2194 images
scraped from Google Maps and used in pix2pix [29]. The
training set and the validation set contains 1096 and 1098

images, respectively. We evaluate the pix2pix model on
this dataset.

• COCO-Stuff. COCO-Stuff [6] dataset is derived from the
COCO dataset [39]. It has 118,000 training images and
5,000 validation images. We evaluate the GauGAN model
on this dataset.

Pipelines. We propose two pipelines for compressing con-
ditional GAN generators.

• GAN Compression. For each model and dataset, we first
train a MobileNet [27] style network from scratch, and
then use the network as a teacher model to distill a stu-
dent network. Initialized by the distilled student network,
we train a “once-for-all” network. We then evaluate all
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Figure 4: Detailed pipelines of the GAN Compression and
Fast GAN Compression. Fast GAN Compression does not
need “Mobile Teacher Training” and “Pre-distillation”, and
switches the “Brute-force Search” to “Evolution Search”.
The steps embraced by the dashed line are optional. If the
original model has been pre-trained, the step “Pre-training”
could be skipped. The “Fine-tuning” is also optional as
reported in Section 3.3.
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Figure 5: Training and search time comparison of GAN Com-
pression and Fast GAN Compression. Fast GAN Compres-
sion could save 1.7 ∼ 3.7× training time and 3.5 ∼ 12×
search time. CycleGAN, pix2pix and GauGAN models are
measured on horse→zebra, edges→shoes and Cityscapes
datasets. The training time of GauGAN is measured on 8
2080Ti GPUs, while others are all on a single 2080Ti.

sub-networks under a certain computation budget. After
evaluation, we choose the best-performing sub-network
within the “once-for-all” network and fine-tune it to ob-
tain our final compressed model. The detailed pipeline is
shown in Figure 4a. The sizes of the from-scratch Mo-
bileNet style teacher and the distilled student for each
task are listed in Table 5. If not specified, our models are
compressed with this pipeline.

• Fast GAN Compression. To further simplify and speed
up the compression procedure, since arXiv v3, we propose
an improved pipeline, Fast GAN Compression, which
could produce comparable results as GAN Compression
but with a much simpler and faster pipeline. In the training
stage, we no longer need to train a MobileNet [27] style
teacher network and run the pre-distillation. Instead, we
directly train a MobileNet style “once-for-all” [7] network
from scratch using the original full network as a teacher.
In the search stage, instead of evaluating all sub-networks,

we adopt the evolution algorithm [54] to search for the
best-performing sub-network under a certain computation
budget within the “once-for-all” network and fine-tune
it with the pre-trained discriminator to obtain our final
compressed model. The detailed differences between the
GAN Compression and Fast GAN Compression are shown
in Figure 4b. With this pipeline, we could save up to
70% training time and 90% search time of GAN Com-
pression as shown in Figure 5. Since the search space of
Fast GAN Compression is larger than GAN Compression
thanks to removing pre-distillation (the “once-for-all” net-
work is larger) and a more efficient search method (see
Appendix 6.1), its performance is on par with GAN Com-
pression, as shown in Table 1. Please refer to our code for
more details.

Implementation details. For the CycleGAN and pix2pix
model, we use a learning rate of 0.0002 for both genera-
tor and discriminator during training in all the experiments.
The batch sizes on dataset horse→zebra, edges→shoes,
map→aerial photo, and cityscapes are 1, 4, 1, and 1, re-
spectively. For the GauGAN model, we followed the setting
in the original paper [52], except that the batch size is 16
instead of 32. We find that we can achieve a better result
with a smaller batch size. See Appendix 6.1 and our code
for more implementation details.

4.2. Evaluation Metrics

We introduce the metrics for assessing the equality of
synthesized images.

Fréchet Inception Distance (FID) [24]. The FID score
aims to calculate the distance between the distribution of
feature vectors extracted from real and generated images
using an InceptionV3 [62] network. The score measures the
similarity between the distributions of real and generated
images. A lower score indicates a better quality of gener-
ated images. We use an open-sourced FID evaluation code†.
For paired image-to-image translation (pix2pix and Gau-
GAN), we calculate the FID between translated test images
to real test images. For unpaired image-to-image translations
(CycleGAN), we calculate the FID between translated test
images to real training+test images. This allows us to use
more images for a stable FID evaluation, as done in previ-
ous unconditional GANs [31]. The FID of our compressed
CycleGAN model slightly increases when we use real test
images instead of real training+test images.

Semantic Segmentation Metrics. Following prior
work [29, 80, 52], we adopt a semantic segmentation
metric to evaluate the generated images on the Cityscapes
dataset. We run a semantic segmentation model on the

†https://github.com/mseitzer/pytorch-fid

https://github.com/mit-han-lab/gan-compression
https://github.com/mit-han-lab/gan-compression
https://github.com/mseitzer/pytorch-fid
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Figure 6: Qualitative compression results on Cityscapes, Edges→Shoes and Horse→Zebra. Our methods (GAN Compression
and Fast GAN Compression) preserves the fidelity while significantly reducing the computation. In contrast, directly training a
smaller model (e.g., 0.25 CycleGAN, which linearly scales each layer to 25% channels) yields poor performance.

generated images and compare how well the segmentation
model performs. We choose the mean Intersection over
Union (mIoU) as the segmentation metric, and we use
DRN-D-105 [74] as our segmentation model for Cityscapes
and DeepLabV2 [11] for COCO-Stuff. Higher mIoUs imply

that the generated images look more realistic and better
reflect the input label map. For Cityscapes, we upsample the
DRN-D-105’s output semantic map to 2048×1024, which is
the resolution of the ground truth images. For COCO-Stuff,
we resize the generated images to the resolution of the



ground truth images. Please refer to our code for more
evaluation details.

4.3. Results

Model CycleGAN Pix2pix GauGAN

Metric
FID (↓) 61.5→65.0 24.2→26.6 –

mIoU (↑) – – 62.2→ 61.2

MAC Reduction 21.2× 11.8× 8.8×
Memory Reduction 2.0× 1.7× 1.8×

Xavier CPU 1.65s (18.5×) 3.07s (9.9×) 21.2s (7.9×)

Speedup GPU 0.026s (3.1×) 0.035s (2.4×) 0.10s (3.2×)

Nano CPU 6.30s (14.0×) 8.57s (10.3×) 65.3s (8.6×)

Speedup GPU 0.16s (4.0×) 0.26s (2.5×) 0.81s (3.3×)

1080Ti Speedup 0.005s (2.5×) 0.007s (1.8×) 0.034s (1.7×)

Xeon Silver 4114
0.11s (3.4×) 0.15s (2.6×) 0.74s (2.8×)

CPU Speedup

Table 2: Measured memory reduction and latency speedup
on NVIDIA Jetson AGX Xavier, NVIDIA Jetson Nano,
1080Ti GPU and Xeon CPU. CycleGAN, pix2pix, and Gau-
GAN models are trained on horse→zebra, edges→shoes and
Cityscapes datasets.

Quantitative Results We report the quantitative results
of compressing CycleGAN, pix2pix, and GauGAN on five
datasets in Table 1. By using the best performing sub-
network from the “once-for-all” network, our method GAN
Compression achieves large compression ratios. It can com-
press state-of-the-art conditional GANs by 5-21×, and re-
duce the model size by 4-33×, with only negligible degrada-
tion in the model performance. Specifically, our proposed
method shows a clear advantage of CycleGAN compression
compared to the previous Co-Evolution method [60]. We can
reduce the computation of CycleGAN generator by 21.2×,
which is 5× better compared to the previous CycleGAN-
specific method [60] while achieving a better FID by more
than 30‡.

Performance vs. Computation Trade-off Apart from the
large compression ratio we can obtain, we verify that our
method can consistently improve the performance at differ-
ent model sizes. Taking the pix2pix model as an example, we
plot the performance vs. computation trade-off on Cityscapes
and Edges→shoes dataset in Figure 8.

‡In CycleGAN setting, for our model, the original model, and baselines,
we report the FID between translated test images and real training+test
images, while Shu et al. [60]’s FID is calculated between translated test im-
ages and real test images. The FID difference between the two protocols is
small. The FIDs for the original model, Shu et al. [60], and our compressed
model are 65.48, 96.15, and 69.54 using their protocol.

First, in the large model size regime, prune + distill (with-
out NAS) outperforms training from scratch, showing the ef-
fectiveness of intermediate layer distillation. Unfortunately,
with the channels continuing shrinking down uniformly, the
capacity gap between the student and the teacher becomes
too large. As a result, the knowledge from the teacher may
be too recondite for the student, in which case the distillation
may even have negative effects on the student model.

On the contrary, our training strategy allows us to auto-
matically find a sub-network with a smaller gap between the
student and teacher model, which makes learning easier. Our
method consistently outperforms the baselines by a large
margin.

Qualitative Results Figure 6 shows several example re-
sults. We provide the input, its ground-truth (except for
unpaired setting), the output of the original model, and the
output of our compressed models. Our compression methods
well preserve the visual fidelity of the output image even
under a large compression ratio. For CycleGAN, we also
provide the output of a baseline model (0.25 CycleGAN:
14.9×). The baseline model 0.25 CycleGAN contains 1

4
channels and has been trained from scratch. Our advantage
is distinct: the baseline model can hardly create a zebra pat-
tern on the output image, given a much smaller compression
ratio. There might be some cases where compressed models
show a small degradation (e.g., the leg of the second zebra
in Figure 6), but compressed models sometimes surpass the
original one in other cases (e.g., the first and last shoe images
have a better leather texture). Generally, GAN models com-
pressed by our methods perform comparatively compared to
the original model, as shown by quantitative results.

Accelerate Inference on Hardware For real-world inter-
active applications, inference acceleration on hardware is
more critical than the reduction of computation. To verify
the practical effectiveness of our method, we measure the in-
ference speed of our compressed models on several devices
with different computational powers. To simulate interactive
applications, we use a batch size of 1. We first perform 100
warm-up runs and measure the average timing of the next
100 runs. The results are shown in Table 2. The inference
speed of compressed CycleGAN generator on edge GPU of
Jetson Xavier can achieve about 40 FPS, meeting the demand
of interactive applications. We notice that the acceleration
on GPU is less significant compared to CPU, mainly due to
the large degree of parallelism. Nevertheless, we focus on
making generative models more accessible on edge devices
where powerful GPUs might not be available, so that more
people can use interactive cGAN applications.

4.4. Ablation Study

Below we perform several ablation studies regarding our
individual system components and design choices.

https://github.com/mit-han-lab/gan-compression
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Figure 8: Trade off curve of pix2pix on Cityscapes and
Edges→Shoes dataset. Pruning + distill method outperforms
training from scratch for larger models, but works poorly
when the model is aggressively shrunk. Our GAN Compres-
sion method can consistently improve the performance vs.
computation trade-off at various scales.

Advantage of unpaired-to-paired transform. We first
analyze the advantage of transforming unpaired conditional
GANs into a pseudo paired training setting using the teacher
model’s output.

Figure 9a shows the comparison of performance between
the original unpaired training and our pseudo paired training.
As our computation budget reduces, the quality of images
generated by the unpaired training method degrades dra-
matically, while our pseudo paired training method remains
relatively stable. The unpaired training requires the model to
be strong enough to capture the complicated and ambiguous
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Figure 9: Ablation study: (a) Transforming the unpaired
training into a paired training (using the pseudo pairs gen-
erated by the teacher model) significantly improves the per-
formance of efficient models. (b) Decomposing the convolu-
tions in the original ResNet-based generator into a channel-
wise and depth-wise convolutoinal filters improves the per-
formance vs. computation trade-off. We call our modified
network MobileNet generator.

mapping between the source domain and the target domain.
Once the mapping is learned, our student model can learn it
from the teacher model directly. Additionally, the student
model can still learn extra information on the real target
images from the inherited discriminator.

The effectiveness of intermediate distillation and inher-
iting the teacher discriminator. Table 3 demonstrates the



Dataset Setting
Training Technique Metric

Pr. Dstl. Keep D. FID (↓) mIoU (↑)

Edges
→

shoes

ngf=64 24.91 –

ngf=48

27.91 –

X 28.60 –

X X 27.25 –

X X 26.32 –

X X 46.24 –

X X X 24.45 –

ngf=96 – 42.47

ngf=64

– 40.49

X – 38.64

Cityscapes X X – 40.98

X X – 41.49

X X – 40.66

X X X – 42.11

Table 3: Ablation study. Pr.: Pruning; Dstl: Distilla-
tion; Keep D.: in this setting, we inherit the discrimina-
tor’s weights from the teacher discriminator. Pruning com-
bined with distillation achieves the best performance on both
datasets.

Model ngf FID MACs #Parameters

Original 64 61.75 56.8G 11.38M

Only change downsample 64 68.72 55.5G 11.13M
Only change resBlocks 64 62.95 18.3G 1.98M
Only change upsample 64 61.04 48.3G 11.05M

Only change downsample 16 74.77 3.6G 0.70M
Only change resBlocks 16 79.49 1.4G 0.14M
Only change upsample 16 95.54 3.3G 0.70M

Table 4: We report the performance after applying convolu-
tion decomposition in each of the three parts (Downsample,
ResBlocks, and Upsample) of the ResNet generator respec-
tively on the horse→zebra dataset. ngf denotes the number
of the generator’s filters. Both computation and model size
are proportional to ngf2. We evaluate two settings ngf=64
and ngf=16. We observe that modifying ResBlock blocks
shows a significantly better performance vs. computation
trade-off, compared to modifying other parts of the network.

effectiveness of intermediate distillation and inheriting the
teacher discriminator on the pix2pix model. Solely pruning
and distilling intermediate feature cannot render a signifi-
cantly better result than the baseline from-scratch training.
We also explore the role of the discriminator in the prun-

ing. As a pre-trained discriminator stores useful information
of the original generator, it can guide the pruned generator
to learn faster and better. If the student discriminator is
reset, the knowledge of the pruned student generator will
be spoiled by the randomly initialized discriminator, which
sometimes yields even worse results than the from-scratch
training baseline.

Effectiveness of convolution decomposition. We system-
atically analyze the sensitivity of conditional GANs regard-
ing the convolution decomposition transform. We take the
ResNet-based generator from CycleGAN to test its effective-
ness. We divide the structure of ResNet generator into three
parts according to its network structure: Downsample (3
convolutions), ResBlocks (9 residual blocks), and Upsample
(the final two deconvolutions). To validate the sensitivity
of each stage, we replace all the conventional convolutions
in each stage into separable convolutions [27]. The perfor-
mance drop is reported in Table. 4. The ResBlock part takes
a fair amount of computation cost, so decomposing the con-
volutions in the ResBlock can notably reduce computation
costs. By testing both the architectures with ngf=64 and
ngf=16, the ResBlock-modified architecture shows better
computation costs vs. performance trade-off. We further
explore the computation costs vs. performance trade-off of
the ResBlock-modified architecture on Cityscapes dataset.
Figure. 9b illustrates that such Mobilenet-style architecture
is consistently more efficient than the original one, which
has already reduced about half of the computation cost.

5. Conclusion

In this work, we proposed a general-purpose compres-
sion framework for reducing the computational cost and
model size of generators in conditional GANs. We have
used knowledge distillation and neural architecture search to
alleviate training instability and to increase the model effi-
ciency. Extensive experiments have shown that our method
can compress several conditional GAN models while pre-
serving the visual quality. Future work includes reducing the
latency of models and efficient architectures for generative
video models [66, 64].
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6. Appendix

6.1. Additional Implementation Details

Training Epochs. In all experiments, we adopt the Adam
optimizer [33] and keep the same learning rate in the begin-
ning and linearly decay the rate to zero over in the later stage
of the training. We use different epochs for the from-scratch
training, distillation, and fine-tuning from the “once-for-
all” [7] network training. The specific epochs for each task
are listed in Table 5.

Distillation Layers. We choose 4 intermediate activations
for distillation in our experiments. We split the 9 residual
blocks into groups of size 3, and use feature distillation every
three layers. We empirically find that such a configuration
can transfer enough knowledge while is easy for student
network to learn as shown in Appendix 6.2.

Loss function. For the pix2pix model [29], we replace
the vanilla GAN loss [16] by a more stable Hinge GAN
loss [37, 51, 76]. For the CycleGAN model [80] and Gau-
GAN model [52], we follow the same setting of the original
papers and use the LSGAN loss [49] and Hinge GAN loss
term, respectively. We use the same GAN loss function for
both teacher and student model as well as our baselines. The
hyper-parameters λrecon and λdistill as mentioned in our paper
are shown in Table 5.

Discriminator. A discriminator plays a critical role in the
GAN training. We adopt the same discriminator architec-
tures as the original work for each model. In our experiments,
we did not compress the discriminator as it is not used at
inference time. We also experimented with adjusting the ca-
pacity of discriminator but found it not helpful. We find that
using the high-capacity discriminator with the compressed
generator achieves better performance compared to using a
compressed discriminator. Table 5 details the capacity of
each discriminator.

Search Space. The search space design is critical for
“once-for-all” [7] network training. Generally, a larger search
space will produce more efficient models. To reduce the
search cost, we remove certain channel number options in
earlier layers, such as the input feature extractors. As we
remove “pre-distillation” and use evolution search algorithm,
Fast GAN Compression could support a much larger search
space. The detailed search space sizes of GAN Compression
and Fast GAN Compression are shown in Table 10. Please
refer to our code for more details about the search space.
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Figure 10: Performance vs. computation trade-off curve of
pix2pix model on the Cityscapes dataset [14]. The output-
only distillation method renders an even worse result than
from-scratch training. Our GAN compression method sig-
nificantly outperforms these two baselines.

6.2. Additional Ablation Study

Distillation. Recently, Aguinaldo et al. [2] adopts the
knowledge distillation to accelerate the unconditional GANs
inference. They enforce a student generator’s output to ap-
proximate a teacher generator’s output. However, in the
paired conditional GAN training setting, the student gener-
ator can already learn enough information from its ground-
truth target image. Therefore, the teacher’s output contains
no extra information compared to the ground truth. Fig-
ure 10 empirically demonstrates this observation. We run
the experiments for the pix2pix model on the cityscapes
dataset [14]. The results from the distillation baseline [2]
are even worse than models trained from scratch. Our GAN
Compression method consistently outperforms these two
baselines. We also compare our method with Yim et al.[72],
a state-of-the-art distillation method used in recognition net-
works. Table 6 benchmarks different distillation methods
on cityscapes dataset for pix2pix model. Our GAN Com-
pression method outperforms other distillation methods by a
large margin, paving the way for interactive image synthesis.

Network architecture for pix2pix. For pix2pix experi-
ments, we replace the original U-net [56] by the ResNet-
based generator [30]. Table 7 verifies our design choice.
The ResNet generator achieves better performance on both
edges→shoes and cityscapes datasets.

https://github.com/mit-han-lab/gan-compression


Model Dataset
Training Epochs Once-for-all Epochs

λrecon λdistill λfeat GAN Loss
ngf

ndf
Const Decay Const Decay Teacher Student

Pix2pix
edges→shoes 5 15 10 30 100 1 - Hinge 64 48 128

cityscapes 100 150 200 300 100 1 - Hinge 96 48 128
map→arial photo 100 200 200 400 10 0.01 - Hinge 96 48 128

CycleGAN horse→zebra 100 100 200 200 10 0.01 - LSGAN 64 32 64

GauGAN cityscapes 100 100 100 100 10 10 10 Hinge 64 48 64

Table 5: Hyper-parameters setting of GAN Compression. Step 1,“Training Epochs” means the epochs for the from-scratch
training, distillation and fine-tuning. Step 2, “Once-for-all Epochs” means epochs for the “once-for-all” network training.
“Const” means the epochs of keeping the same initial learning rate, while “Decay” means epochs of linearly decaying the
learning rate to 0. λrecon and λdistill are the weights of the reconstruction loss term (in GauGAN, this means VGG loss term)
and the distillation loss term. λfeat is the weight of the extra GAN feature loss term for GauGAN. “GAN Loss” is the specific
type of GAN loss we use for each model. ngf, ndf denotes the base number of filters in a generator and discriminator,
respectively, which is an indicator of the model size. Model computation and model size are proportional to ngf2 (or ndf2).

Method MACs mIoU ↑

Original Model 56.8G – 42.06 –
From-scratch Training 5.82G (9.5×) 32.57 (9.49 /)

Aguinaldo et al. [2] 5.82G (9.5×) 35.67 (6.39 /)
Yim et al. [72] 5.82G (9.5×) 36.69 (5.37 /)
Intermediate Distillation 5.82G (9.5×) 38.26 (3.80 /)

GAN Compression 5.66G (10.0×) 40.77 (1.29 /)

Table 6: Comparison of GAN Compression and different
distillation methods (without NAS) for pix2pix model on
cityscapes dataset. Our intermediate distillation outperforms
other methods.

Dataset Arch. MACs #Params
Metric

FID (↓) mIoU (↑)

Edges→shoes
U-net 18.1G 54.4M 59.3 –

ResNet 14.5G 2.85M 30.1 –

Cityscapes
U-net 18.1G 54.4M – 28.4

ResNet 14.5G 2.85M – 33.6

Table 7: The comparison of U-net generator and ResNet
generator for pix2pix model. The ResNet generator outper-
forms the U-net generator on both edges→Shoes dataset and
cityscapes dataset.

Retrained models vs. pre-trained models. We retrain
the original models with minor modifications as mentioned
in Section 4.1. Table 8 shows our retrained results. For
CyleGAN model, our retrained model slightly outperforms
the pre-trained models. For the GauGAN model, our re-
trained model with official codebase is slightly worse than
the the pre-trained model. But our compressed model can

Model Dataset Setting
Metric

FID (↓) mIoU (↑)

Pre-trained 71.84 –
CycleGAN horse→zebra Retrained 61.53 –

Compressed 64.95 –

GauGAN

Pre-trained – 62.18
Cityscapes Retrained – 61.04

Compressed – 61.22

Pre-trained 21.38 38.78
COCO-Stuff Retrained 21.95 38.39

Compressed 25.06 35.34

Table 8: The comparison of the official pre-trained models,
our retrained models, and our compressed models. Our
retrained CycleGAN model outperforms the official pre-
trained models, so we report our retrained model results in
Table 1. For the GauGAN model, our retrained model with
official codebase is slightly worse than the pre-trained model,
so we report the pre-trained model in Table 1. However,
our compressed model achieves 61.22 mIoU on Cityscapes
compared to the pre-trained model.

also achieve 61.22 mIoU, which has only negligible 0.96
mIoU drop compared to the pre-trained model on Cityscapes.

Perceptual similarity and user study. For a paired
dataset, we evaluate the perceptual photorealism of our re-
sults. We use the LPIPS [78] metric to measure the percep-
tual similarity of generated images and the corresponding
real images. Lower LPIPS indicates a better quality of the
generated images. For the CycleGAN model, we conduct a
human preference test on the horse→zebra dataset on Ama-
zon Mechanical Turk (AMT) as there are no paired images.
We basically follow the protocol of [29], except we ask the



Model Dataset Method Preference LPIPS (↓)

Pix2pix

edges→shoes
Original – 0.185

Ours – 0.193(-0.008)
0.28 Pix2pix – 0.201(-0.016)

cityscapes
Original – 0.0435

Ours – 0.436(-0.001)
0.31 Pix2pix – 0.442(-0.007)

CycleGANhorse→zebra
Ours 72.4% –

0.25 CycleGAN 27.6% –

Table 9: Perceptual study: The LPIPS [78] is a perceptual
metric for evaluating the similarity between a generated
image and its corresponding ground truth real image. The
lower LPIPS indicates a better perceptual photorealism of
the results. This reference-based metric requires paired data.
For unpaired setting, such as the horse→zebra dataset, we
conduct a human study for our GAN compression method
and the 0.25 CycleGAN. We ask human participants which
generated image looks more like a zebra. 72.4% workers
favor results from our model.

Model Dataset
Number of Sub-networks

GAN Comp. Fast GAN Comp.

CycleGAN horse→zebra 6.6× 103 3.9× 105

edges→shoes 5.2× 103 5.8× 106

Pix2pix cityscapes 5.2× 103 1 5.8× 106

map→arial photo 5.2× 103 5.8× 106

GauGAN
Cityscapes 1.6× 104 1.3× 105

COCO-Stuff – 3.9× 105

Table 10: The detailed search space sizes of GAN Compres-
sion (GAN Comp.) and Fast GAN Compression (Fast
GAN Comp.). We use the number of sub-networks within
a search space to measure the size of the search space. For
the newest experiment of GauGAN on COCO-Stuff, we di-
rectly apply Fast GAN Compression, so we do not have the
search space for the GAN Compression. Benefiting from re-
moving “pre-distillation” and the evolution search algorithm,
Fast GAN Compression could support a much larger search
space than GAN Compression.

workers to decide which image is more like a real zebra
image between our GAN Compression model and the 0.25
CycleGAN. Table 9 shows our perceptual study results on
both the pix2pix model and the CycleGAN model. Our
GAN Compression method significantly outperforms the
straightforward from-scratch training baseline.

6.3. Additional Results

In Figure 11, we show additional visual results of our
proposed GAN Compression and Fast GAN Compression
methods for the CycleGAN model in horse→zebra dataset.

In Figure 12, 13 and 14, we show additional visual re-
sults of our proposed methods for the pix2pix model on
edges→shoes, map→arial photo and cityscapes datasets.

In Figure 15, we show additional visual results of our
proposed methods for the GauGAN model on cityscapes.

6.4. Changelog
v1 Initial preprint release (CVPR 2020)

v2 (a) Correct the metric naming (mAP to mIoU).
Update Cityscapes mIoU evaluation protocol
(DRN(upsample(G(x))) → upsample(DRN(G(x)))).
See Section 4.2 and Table 1 and 3. (b) Add more details
regarding Horse2zebra FID evaluation (Section 4.2). (c)
Compare the official pre-trained models and our retrained
models (Table 8).

v3 (a) Introduce Fast GAN Compression, a more efficient
training method with a simplified training pipeline and a
faster search strategy (Section 4.1). (b) Add the results of
GauGAN on COCO-Stuff dataset (Table 1).



Input
Original CycleGAN

MACs: 56.8G
FID: 61.5

GAN Compression
MACs: 2.67G (21.2x)

FID: 65.0

0.25 CycleGAN
MACs: 3.79G (15.0x)

FID: 106.4

Fast GAN Compression
MACs: 2.64G (21.5x)

FID: 65.0

Figure 11: Additional results of GAN Compression and Fast GAN Compression with comparison to the 0.25 CycleGAN
model on the horse→zebra dataset.



Input
Original Pix2pix

MACs: 56.8G
FID: 24.2

GAN Compression
MACs: 4.81G (11.8x)

FID: 26.6

0.28 Pix2pix
MACs: 4.75G (12.0x)

FID: 37.1
Ground-truth

Fast GAN Compression
MACs: 4.86G (11.7x)
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Figure 12: Additional results of GAN Compression and Fast GAN Compression with comparison to the 0.28 pix2pix model
on the edges→shoes dataset.
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Original Pix2pix

MACs: 56.8G
FID: 47.9

GAN Compression
MACs: 4.68G (12.1x)

FID: 48.0
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MACs: 5.27G (10.8x)

FID: 61.9
Ground-truth

Fast GAN Compression
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Figure 13: Additional results of GAN Compression and Fast GAN Compression with comparison to the 0.30 pix2pix model
on the map→arial photo dataset.
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Original Pix2pix
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GAN Compression
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0.31 Pix2pix
MACs: 5.82G (9.8x)

mIoU: 32.57

Fast GAN Compression
MACs: 5.45G (10.4x)

mIoU: 41.71

Figure 14: Additional results of GAN Compression and Fast GAN Compression with comparison to the 0.31 pix2pix model
on the cityscapes dataset.
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Ground-truth

Original GauGAN
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mIoU: 62.18

GAN Compression
MACs: 31.7G (8.8x)

mIoU: 61.22

Fast GAN Compression
MACs: 31.2G (9.0x)

mIoU: 61.17

Figure 15: Additional results of compressing GauGAN model on the cityscapes dataset.


