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ABSTRACT

Small-angle X-ray scattering (SAXS) experiments provide valuable structural data for biomolecules

in solution. We develop a highly efficient maximum entropy approach to fit SAXS data by

introducing minimal biases to a coarse-grained protein force field, the associative memory,

water mediated, structure and energy model (AWSEM). We demonstrate that the resulting

force field, AWSEM-SAXS, succeeds in reproducing scattering profiles, and models pro-

tein structures with shapes that are in much better agreement with experimental results.

Quantitative metrics further reveal a modest, but consistent improvement in the accuracy of

modeled structures when SAXS data are incorporated into the force field. Additionally, when

applied to a multi-conformational protein, we find that AWSEM-SAXS is able to recover the

population of different protein conformations from SAXS data alone. We, therefore, con-

clude that the maximum entropy approach is effective in fine-tuning the force field to better

characterize both protein structure and conformational fluctuation.
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INTRODUCTION

As workhorses of the cell, proteins perform a myriad of tasks via folding into various 3D

conformations.1 The importance of structures to protein function has resulted in extensive

experimental efforts to their determination. Tremendous progress has been achieved in build-

ing protein structures at atomic resolution with X-ray crystallography, and many classes of

protein families with different structural folds have been resolved.2 Challenges, however, still

exist for determining the structure of large proteins with multiple domains and with flexible

and disordered regions.3,4 We present an integrative approach to study protein structure and

dynamics by combining computational modeling with experimental data.

Due to its efficiency and relatively low cost, computer simulation offers a promising

alternative to construct structural models for proteins.5,6 Molecular mechanics based mod-

eling approaches are particularly powerful for studying proteins.7–9 In addition to predicting

static configurations, they can further characterize conformational fluctuation and dynami-

cal properties that play crucial roles for protein function. Guided by the energy landscape

theory,10,11 these approaches have provided great insight into protein folding,12–14 protein

structure prediction,15 and protein-protein interaction.16 Central to the success of these ap-

proaches is the development of accurate force fields that describe the interaction among

amino acids. Atomistic force fields derived from first principles quantum mechanics calcula-

tions are widely popular,17–19 and recent developments in both software and hardware have

significantly improved their accuracy and performance. Unfortunately, applying them for de

novo structure prediction via direct simulations of the folding process remains impractical.

Folding for most proteins occurs over ms to s, a timescale that is beyond the accessible range

of atomistic simulations. For this reason, parameterizing coarse-grained models has been a

key scientific interest as they can greatly expand the accessible timescale in molecular sim-

ulations by reducing the system size.20 In this paper, we introduce an algorithm to improve

the accuracy of coarse-grained protein force fields using corrections derived from small-angle

X-ray scattering (SAXS) experiments.
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Integrating modeling with experiment can potentially expand the applicability of both

approaches in determining high-resolution protein structures. In particular, a variety of

techniques, including Cryo-electron microscopy (EM), nuclear magnetic resonance (NMR),

electron paramagnetic resonance (EPR), and SAXS, are becoming increasingly popular for

studying systems where difficulties in sample preparation have prevented the application

of X-ray diffraction. Their limited data resolution, however, renders the determination of

atomic structures from these experiments alone rather challenging. Thus, numerous methods

have been developed to help with their interpretation and to build structures using additional

inputs provided from computational modeling.21–24 Though significant innovation has been

devoted to address the unique features of data from each type of experiment, a recurring

theme in these methods is a structure-centered refinement procedure. Often, an ensemble of

structures is constructed by computational modeling to select out one or multiple configu-

rations that best fit the data. While such post-processing techniques are quite successful at

deriving structures for the protein of interest, they cannot be generalized to study protein

dynamics and protein-protein interactions. To overcome these limits, we adopt an energy

landscape based perspective to improve the accuracy of computational models by refining

their force field.

We develop an algorithm inspired by the maximum entropy principle to directly incor-

porate experimental constraints derived from SAXS data into a coarse-grained protein force

field, associative memory, water mediated, structure and energy model (AWSEM). This algo-

rithm is computationally efficient and provides a rigorous way to improve force field accuracy.

We demonstrate that the experimentally augmented force field, which we term as AWSEM-

SAXS, produces scattering profiles that are in much better agreement with experimental

results than AWSEM. Furthermore, even though the improvement in the overall accuracy

of modeled protein structures is modest, the simulated protein shapes as measured by the

radius of gyration and extensions along the principal axes are significantly improved. Finally,

we apply the algorithm to a multi-domain protein and find that it succeeds in extracting
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the population of two protein conformations from the SAXS data alone. Thus incorporating

experimental data into the force field can lead to more accurate energy landscapes to study

both protein folding and conformational fluctuation.

METHODS

Maximum Entropy Approach for Improving AWSEM Force Field

with SAXS

AWSEM is a coarse-grained protein force field built upon the energy landscape theory10,11

to sculpt a funnel-like landscape with minimal frustration for well-folded proteins. It utilizes

a combination of physically motivated and bioinformatics based potentials to recreate pro-

tein structure with only three sites per amino acid.14,15,25–28 AWSEM has been successfully

applied to study protein-protein interaction,16 protein aggregation,29 and membrane protein

folding;30,31 meanwhile, it has been extended for protein-DNA complexes32–34 and intrinsi-

cally disordered proteins.35 Our study further improves the accuracy of the AWSEM force

field with SAXS data through the maximum entropy principle.36

SAXS is an effective way of obtaining low-resolution structural data for biomolecules

and offers a promising alternative for characterizing protein structures in solution.37,38 The

resolution of the SAXS technique is limited by an orientational average, and its output

is often represented as a one-dimensional intensity profile. These profiles provide valuable

information about the shapes and dimensions of protein molecules. Through an indirect

Fourier transform, the scattering profile is related to the pair-wise distance distribution

function of electrons, p(r), which can be viewed as a series of ensemble averages

p(rk)∆r = 〈N (rk)〉SAXS =

〈
2

N(N − 1)

∑
i>j

Θk(rij)

〉
, for k = 1, · · · , n, (1)

where rij is the distance between a pair of electrons i and j, N refers to the total number
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of electrons, ∆r ≈ 1.5Å measures the size of the bin used for calculating the distance

distribution, and n is the total number of bins. The switching function

Θk(rij) =
1

4
{1 + tanh[η(rij − rmin)]}{1 + tanh[η(rmax − rij)]}, (2)

where rmin = rk − ∆r
2

, rmax = rk + ∆r
2

, and η = 7Å
−1

. Θk(rij) is equal to 1 in a narrow

region around rk and 0 otherwise. The angular brackets in Eq. 1 represents an average over

all the conformations adopted by the molecule in solution. A corresponding quantity as that

in Eq. 1 can be defined in computer simulations, 〈N (rk)〉sim, by calculating the average over

the simulated conformational ensemble. For coarse-grained models, an approximation for

〈N (rk)〉sim, which was shown to be sufficient to reproduce SAXS data in previous studies,39–41

can be obtained using pair-wise distances between α-carbons only instead of electrons. If the

simulation accurately models the structure(s) for the molecule of interest, then 〈N (rk)〉sim ≡

〈N (rk)〉SAXS ≡ p(rk)∆r, for k = 1, · · · , n; otherwise, the discrepancy between simulation

and experiment can be used to improve the accuracy of the force field used in simulation.

To improve the agreement between simulated and experimental scattering profiles and

the accuracy of structures modeled by AWSEM, we introduce biases derived from the max-

imum entropy principle to the force field. Maximum entropy approaches provide the min-

imally biased choice of restraint potential to nudge simulations toward experimental mea-

surements,36,42–44 and have been successfully applied to study a wide range of problems.45–48

Beginning with the AWSEM force field, the overall energy that maximizes the information

entropy while reproducing the experimental scattering profile is

HAWSEM−SAXS = HAWSEM +
n∑

k=1

αkN (rk) (3)

where {αk} are external parameters whose values can be fine tuned to ensure that 〈N (rk)〉sim ≡

〈N (rk)〉SAXS for k = 1, · · · , n.

It has been shown previously,36,45 that the values for the list of α = {αk} can be found
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by taking extrema of the approximate objective function

Γ(α) =
β2

2
αT ∗B ∗α− β [〈N (r)〉sim − 〈N (r)〉SAXS]T α (4)

where T represents the transpose operator, and β is the inverse temperature. B is the

covariance matrix with the elements Bkl = 〈N (rk)N (rl)〉sim − 〈N (rk)〉sim 〈N (rl)〉sim.

Following Zhang and Wolynes,45 we used an iterative expression to update αt+1 based on

values from a previous iteration αt and ensemble averages calculated with those parameters

αt+1 = αt +
1

β
B−1[〈N (r)〉sim − 〈N (r)〉SAXS]T . (5)

Specifically, we used the following three steps to determine the maximum entropy biases.

1) Perform simulations with HAWSEM−SAXS to collect an ensemble of protein structures and

estimate the averages 〈N (r)〉sim and B. 2) Calculate the relative error between simulated

and experimental pair-wise distance distributions defined as

ε =

∑
k | 〈N (rk)〉sim − 〈N (rk)〉SAXS |∑

k 〈N (rk)〉SAXS

(6)

to see if it is lower than a user-defined tolerance. 3) If ε is less than the tolerance, the force

field has been successfully updated to incorporate SAXS data. If not, α will be updated

according to Eq. 5 to carry out another round of iteration. The entire protocol is summarized

as a flow chart in Figure 1.

Simulation Details

To calculate the ensemble averages, we carried out constant temperature and volume simula-

tions (NVT) using the molecular dynamics package Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS).49 Simulations were initialized with extended protein config-

urations and lasted for 1500000 steps, with the first 500000 steps discarded for equilibration.
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Initial protein configurations were obtained from a high temperature simulation conducted

at 1000K. Note that the time scale in coarse grained models is typically not well defined,

and one simulation step in similar models has been mapped to 1 ps by matching the diffu-

sion coefficient of protein domains between coarse grained and all atom simulations.50 We

further applied the parallel tempering technique51 and utilized four independent tempering

trajectories to enhance the efficiency of conformational sampling. A total of six replicas with

equally spaced temperatures from 300K to 500K were used for each tempering trajectory.

Default parameters in the AWSEM force field, which can be found in Table S1, were used

to conduct the simulations unless otherwise specified. A key component of the force field

is a bioinformatics inspired memory term that biases consecutive fragments of nine residues

in length toward a set of conformations with high sequence similarity collected from the

Protein Data Bank (PDB). Homologues were excluded when building this dataset to mirror

a de novo prediction.

To evaluate the accuracy of force fields in modeling protein structures, we performed

simulated annealing calculations. Starting again from extended protein configurations pro-

duced from the high temperature simulation mentioned above, Langevin dynamics reduced

the temperature from 500K to 200K over 8000000 steps. A total of 20 runs were performed

for each protein to ensure statistical significance.

SAXS Data

To provide a comprehensive evaluation of the performance of AWSEM-SAXS, we applied it

to a diverse set of proteins. This set covers a large range of amino acid lengths, and includes

proteins whose structures AWSEM is known to model both well and poorly. Details for all the

proteins are summarized in Table S2. Unfortunately, not all of these proteins have not been

studied with SAXS. For proteins without experimental data, we used the following protocol to

produce simulated SAXS profiles. First, we performed an NVT simulation of 1000000 steps,

during which the protein is restrained to the PDB structure using an amh-Gō potential52
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in addition to the standard AWSEM force field. From the simulated structural ensemble in

which the protein closely resembles the crystal structure, we determined the average pair-

wise distance distribution 〈N (r)〉SAXS using α-carbons only. This approximation maintains

residue-level accuracy, greatly reduces computational time, and has provided good results in

previous studies.39–41 For proteins with experimental data, we downloaded their scattering

profiles and pair-wise distance distributions from the small-angle scattering biological data

bank (SASBDB).53 We also ensured that high resolution structures are available for all

proteins to evaluate the accuracy of modeled protein conformations using metrics defined

below.

Structural Analysis

We used four metrics, fraction of native contacts (Q), root mean squared displacement

(RMSD), radius of gyration (Rg), and principal moments of initia or extensions along prin-

cipal axes (λ), to evaluate the accuracy of modeled structures. Coordinates of α-carbons

were used to calculate these quantities. Q measures the similarity between a modeled struc-

ture with the PDB conformation and takes values between 0 and 1, with larger values

corresponding to agreement. It takes the form

Q =
2

(N − 2)(N − 3)

∑
i<j−2

exp

(
−

(rij − roij)2

2σ2
ij

)
, (7)

where roij is the pair-wise distance between α-carbons i and j in the crystal structure, N

is the number of amino acids, i and j are amino acids separated by a distance rij, and

σij = (1 + |i− j|)0.15.

RMSD similarly measures the difference between a modeled structure and a reference

structure. After removing translations and rotations,

RMSD =

√√√√ 1

N

N∑
i=1

||~ri − ~roi ||2, (8)
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where ~ri and ~roi are the positions of the i-th α-carbon in the current and the reference

structure and N is the number of amino acids. The double bars denote the Euclidean norm.

Rg is a measurement of protein size, and takes the form

Rg =

√√√√ 1

N

N∑
i=1

||~ri − ~rcom||2, (9)

where ~rcom is the average position of all α-carbons and other symbols are similarly defined

as in Eq. 8.

λ = {λx, λy, λz} measures the extension of a protein along its principal axes and provides

a more comprehensive characterization of protein shape than Rg. λ can be determined as

eigenvalues of the inertia matrix I, whose elements are defined as

Ikl =
1

N

N∑
i=1

(rki − rkcom)(rli − rlcom), (10)

where k, l = 1, 2, 3 are indices of the three Cartesian axis, rcom is the protein center of mass,

and i loops over all the α-carbons. Denoting λz as the one that is along the most deviant

axis and differs the most from the mean of the three eigenvalues, we then define the shape

anisotropy (∆) as

∆ = |λz −
1

2
(λx + λy)|. (11)

We further normalize ∆ by R2
g to remove protein size dependence.

Additionally, we computed SAXS curves for proteins with experimental scattering profiles

for a direct comparison. A total of 4000 representative structures were selected from the

simulated conformational ensemble at 300K to calculate SAXS profiles using CRYSOL.54
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RESULTS AND DISCUSSION

Optimization Algorithm Succeeds in Reproducing SAXS Data

As a proof of principle, we first applied the maximum entropy approach on a small protein

with two helices (PDB ID: 4djg). The AWSEM force field alone succeeds in modeling the

structure of this protein. For testing purposes, we therefore turned off tertiary interactions in

the force field, the water-mediated potential. In addition, we only included fragment memory

terms for the helical, but not the hinge, regions of the protein. The resulting potential Hinitial

poorly describes the protein structure, and the simulated 〈N (r)〉sim differs significantly from

the “experimental” one created using our protocol detailed in the Methods section.

Starting from Hinitial, we performed the optimization procedure to derive the biasing

terms to the force field. As shown in Figure 2A, the difference between simulated and

experimental probability distribution for pair-wise distances decreases quickly, and the error

defined in Eq. 6, ε, drops to less than 6% during our optimization procedure. The best

structure modeled by the optimized Hamiltonian using annealing simulations is in good

agreement with the PDB structure with a RMSD less than 1 Å.

Augmenting AWSEM with SAXS Data Improves Structure Mod-

eling

To more systematically evaluate the performance of AWSEM-SAXS in structure modeling,

we applied it to eleven proteins that fell into two groups. The first group consists of proteins

studied in previous AWSEM studies.15,55 Since these proteins have not been studied using

SAXS, we simulated pair-wise distance distributions according to the procedure outlined in

the Methods section. For the other set of proteins that consists of 1soy and 3mzq, both PDB

and SAXS data are available. We carried out the iterative optimization algorithm to derive

the force field correction terms for each protein. As shown in Figure S1, we were able to

reach an error ε between simulated and experimental pair-wise distance distribution (see Eq.
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6) less than 5% for the first group, and 10% for the second group.

For a more direct comparison, we further constructed the scattering profiles using con-

formations collected at 300K for the two proteins with experimental SAXS data. Figures

3A and 3B demonstrate that, for both proteins, AWSEM-SAXS produces profiles that are

in better agreement with experimental ones than those obtained with AWSEM, especially in

the small s (large distance) regime. We further quantified the similarity between simulated

and experimental scattering profiles using χ2 defined below

χ2 =
1

N − 1

N∑
i=1

(
Iexp(si)− cIsim(si)

σ(si)

)2

(12)

where N is the total number of data points. Iexp and Isim are the experimental and simulated

scattering profiles, and σ is the standard deviation of the experimental profile. c is a scaling

factor tuned to minimize χ2. We computed the overall χ2 as well as χ2
0.15 that only includes

data for the region where s < 0.15. The results confirm our qualitative observations and are

summarized in Table 1.

To examine the overall quality of protein configurations modeled by AWSEM-SAXS ver-

sus AWSEM, we determined the mean and standard deviation of the radius of gyration,

Rg, using the ensemble of structures collected at 300 K. We further calculated experimental

Rg directly from SAXS data when available, and from the PDB structures otherwise. As

shown in Figure 3C, AWSEM (green) generally over-predicts the size of the studied proteins,

as indicated by large deviations from the experimental values (blue). On the other hand,

with SAXS biasing (red), we consistently reproduce experimental Rg with high accuracy,

and therefore provide a much better description for protein size. We further characterized

the shapes of modeled protein conformations by analyzing the extensions along their prin-

cipal axes and calculating the anisotropy measure ∆/R2
g. As shown in Figure 3D and S3A,

compared with AWSEM-SAXS, AWSEM over estimates the size along the longest axis. Con-

sistent with these observations, the Pearson correlation coefficient between ∆/R2
g calculated
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using PDB and AWSEM-SAXS structures (0.85) is significantly higher than that between

PDB and AWSEM structures (0.57) (see S3B-D). It is important to note that these im-

provements in protein shape characterization hold true for proteins optimized using both

simulated and experimental SAXS data.

Finally, we carried out simulated annealing simulations for each protein using the two

force fields to compare the performance of top-ranking structures. The highest Q and lowest

RMSD values along each simulation are shown in Figure 4, with red and blue for AWSEM-

SAXS and AWSEM results respectively. For most proteins, AWSEM-SAXS outperforms

in providing structures with larger Q and smaller RMSD. These results suggest that incor-

porating SAXS data into the force field leads to a modest, but consistent improvement in

the accuracy of modeled structures. We further tracked protein configurations with lowest

energies along these simulations. As shown in Figure S2, we again observe a systematic

improvement in the similarity between simulated and PDB structures using AWSEM-SAXS.

Figure 4 also shows that the improvement in structural modeling is rather heteroge-

neous. For example, while AWSEM-SAXS significantly outperforms AWSEM for protein

256b, the two force fields are comparable for protein 1n2x. To better understand the uneven

performance for different proteins, we computed the contact maps for modeled structures.

As shown in Figure 5A, protein 256b adopts a rather simple fold as a four helix bundle.

AWSEM alone succeeds in predicting the secondary structures (left panel). The improved

compactness from incorporating SAXS data translates well into a better model for the ter-

tiary structure. On the other hand, protein 1n2x has a more complex fold with long loop

regions that are not well predicted by AWSEM. The poor quality of secondary structures

is not rectified by AWSEM-SAXS due to the low resolution of SAXS data. Therefore, the

accuracy of the overall structure does not see a dramatic change despite a significant im-

provement in protein shape. The slight decrease in Q for protein 1n2x is because that Figure

4 reports the highest value over all the conformations explored along the simulated anneal-

ing trajectories. AWSEM-SAXS force field is less flexible due to the added constraints, and
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therefore has more limited conformational exploration compared to AWSEM. These results

suggest that better secondary structure predictions could potential result in more significant

improvement in modeling protein tertiary structures using AWSEM-SAXS.

Incorporating SAXS Data Enables Fine-Tuning of the Energy Land-

scape

The results presented so far suggest that the maximum entropy approach, when applied to

proteins with unique conformations, can improve the accuracy of modeled structures. Here,

we further apply this approach to a multi-conformational protein and demonstrate that

the relative population of different conformations can be decoded from SAXS data as well.

SAXS profiles are ensemble averages determined using all possible protein conformations, and

therefore, encode the population information. Previous structure-centered post-processing

approaches were indeed able to extract this information for different clusters of protein

conformations.23,56 Quantifying the conformational population is of significant interest since

it can help distinguish the two different mechanisms of protein function, i.e., conformational

selection versus induced fit.57

As a proof of principle, we engineered a bistable system using the same protein studied in

Figure 2. In its native state, which we will refer to as Structure 1, the two helices of protein

4djg are in contact, as can be seen in Figure 6A. As mentioned previously, the AWSEM force

field stabilizes the native state, and only exhibits a single basin. To create a second energy

basin, we introduced a Gaussian bias to the force field,

HGaussian = −k e−(RMSD2−2)2/4, (13)

where k = 20 kcal/mol. RMSD2 is the minimal root mean squared displacement from

Structure 2, in which the alpha helices extend in opposite directions, as shown in the right

panel of Figure 6A. Our initial Hamiltonian becomes Hinitial = HAWSEM +HGaussian.
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Starting from Hinitial, we performed a series of optimizations in which the force field

is steered toward simulated SAXS data calculated using different populations of the two

structures shown in Figure 6A. These “experimental” distributions were created using linear

combinations of the pair-wise distance distributions calculated from simulations constrained

to each protein structure

〈N (r)〉SAXS = p1 〈N (r)〉1 + p2 〈N (r)〉2 . (14)

We studied a total of three states where p1 = 0, 0.5 and 1.0 and p2 = 1 − p1 respectively.

The resulting probability distributions are shown in Figure 6B and are compared to those

obtained from optimized force fields in Figure S4.

To monitor the ensemble of modeled protein conformations, we measured Q and RMSD

with respect to each structure, as denoted by the subscript. In addition, we tracked an

angle θ between the 4th, 21st, and 40th amino acids. As illustrated in Figure 6A, the angle

easily distinguishes the two conformations with values of 24o and 172o. Figures 6C, 6D and

6E present the probability distribution for θ, Q2 − Q1 and RMSD2 − RMSD1 calculated

using AWSEM-SAXS derived for different mixtures of protein conformations (see Figure S5

for individual distributions of RMSD2,RMSD1, Q2, and Q1). From these distributions, it

is clear that the resulting force fields succeed in capturing the dramatic shift in population

of different protein conformations. Assuming that protein conformations with RMSD2 −

RMSD1 less than zero correspond to the Structure 1 ensemble, we obtained populations of

6.0%, 53.6% and 100% for p1 = 0, p1 = 0.5, and p1 = 1 respectively. Therefore, we were

able to quantitatively recover the population information encoded in the SAXS data within

6%. Using θ or Q instead of RMSD to measure the ensemble population results in similar

conclusions. These results demonstrate our method’s potential for quantitatively adjusting

the energy landscape for modeling multi-domain proteins.
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CONCLUSIONS

This study utilized the maximum entropy principle to bias coarse grained MD simulations

toward experimental SAXS profiles. We demonstrated that our biased force field, AWSEM-

SAXS, models protein shapes that are in much better agreement with experimental struc-

tures. Furthermore, it improves structure modeling by finding a higher Q and lower RMSD

for most proteins studied when compared with the original AWSEM force field. In addition

to well-folded proteins, we applied the maximum entropy approach to a multi-conformational

protein, and found that incorporating SAXS data into the force field leads to a fine tuning

of the energy landscape to match the conformational population. In the studied case, we

were able to recreate a mixture of extended and closed protein conformations within 6% of

the real distribution. Since protein conformational dynamics are dictated by the underlying

energy landscape, we anticipate that AWSEM-SAXS may lead to more accurate modeling

of dynamical quantities as well. To rigorously address the shortcoming of simulating kinetic

properties in general, however, might require explicit incorporation of dynamical measure-

ments into the model.58

Our results further suggest that incorporating SAXS data into the force field will be most

useful when protein secondary structures are known or can be well predicted by the force field.

SAXS data itself cannot provide such information due to the low resolution. Fortunately, in

many cases, including intrinsically disordered proteins, multi-domain proteins, and protein

protein complexes, the structures for individual monomers or domains can be or have been

determined. For these systems, we anticipate the maximum entropy approach developed

here will find its most success by correctly modeling the shape of the overall complex. As

experimental biases are directly incorporated into the force field, AWSEM-SAXS can be

applied to study the aggregation of intrinsically disordered proteins and to probe the sequence

features of these proteins in driving the formation of phase-separated liquid droplets.

Finally, we emphasize that the maximum entropy approach is not restricted to the

AWSEM potential or even to proteins. Implemented in the LAMMPS collective variable
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module,59 the maximum entropy correction terms defined in Eq. 3 may be combined with

other force fields for dynamical simulation of any bimolecular molecule where SAXS data is

available.

SUPPORTING INFORMATION DESCRIPTION

The Supporting Information includes additional simulation details and analysis and is avail-

able free of charge.
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Figure 1: Illustration of the iterative optimization algorithm to bias the AWSEM force field
with SAXS data.
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Figure 2: The maximum entropy approach provides a force field that succeeds in structure
modeling and reproducing SAXS-data. (A) The relative error between experimental and
simulated pair-wise distance distribution as a function of iterations of the optimization al-
gorithm. The insert shows the similarity between the modeled (red) and the PDB (gray)
structure. (B) Comparison between simulated pair-wise distance distributions calculated us-
ing the initial (red line) and biased force field (red dots) with the experimental one (black).
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Figure 3: Incorporating experimental biases into the force field improves the modeling of
scattering profiles and protein shapes. (A) Comparison between scattering profiles for pro-
tein 3mzq calculated with structure models from AWSEM (green) and from AWSEM-SAXS
(red). The experimental profile is shown in blue dots, with the standard deviations shown in
grey. (B) The same data as in part (A) but for protein 1soy. (C) Comparison of the radius of
gyration for experimental (blue), AWSEM (green) and AWSEM-SAXS (red) protein struc-
tures. The error bars correspond to standard deviations from the mean. (D) Comparison of
the shape anisotropy for different protein structures. The coloring scheme is the same as in
part (C).
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Figure 4: The highest Q (A) and lowest RMSD (B) values for protein structures explored in
20 simulated annealing simulations carried out with the AWSEM (blue) and AWSEM-SAXS
(red) force field. The boxes represent the 25% and 75% quantities of the distribution, and
the line inside each box corresponds to the median value. Whiskers indicate the last values
that fall within 1.5 times the interquartile range.
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Figure 5: Comparison between contact maps calculated using highest-Q-value AWSEM
structures (left panels) and AWSEM-SAXS structures (right panels) with that for PDB
structures (grey). 3D rendering of the corresponding structures are shown on the side.
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Figure 6: The maximum entropy approach succeeds in extracting the conformational pop-
ulation of a multi-domain protein from SAXS data. (A) Representative structures from
the two energy basins adopted by the protein. (B) Comparison of the pair-wise distance
distribution, p(r), determined with the initial Hamiltonian Hinitial (black), from structure 1
(yellow), from structure 2 (blue), and from an equal mix of both structures (green). (C, D,
E) Probability distributions as a function of different structural variables calculated using
Hinitial (black) and using AWSEM-SAXS derived with p1 = 0 (blue), p1 = 0.5 (green) and
p1 = 1 (yellow).
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Table 1: Difference between experimental and simulated scattering profiles.

PDB ID χ2 before bias χ2 after bias χ2
0.15 before bias χ2

0.15 after bias

3mzq 3.154 1.124 5.077 0.894
1soy 2.397 1.515 2.828 1.347
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