
 
 

 

 

 

 

 

 

Finite Element Methods 

Daphne Lin 

2.S976 Finite Element Methods for Mechanical Engineers 

16 May 2019 

MIT Department of Mechanical Engineering 

  



 
 

Project Abstract 

Finite Element Methods are becoming a commonly used tool in engineering. Design can be a 

costly process, especially if a model is built and tested but fails. Iterating through versions of a 

design can cost millions, even billions depending on the project. Rather than building a physical 

model and testing for the design’s failure points, engineers can use FE packages that use a virtual 

model (CAD model) of the design and analyze the design computationally, saving resources and 

lowering cost. While various companies offer different FE packages, the underlying logic is 

similar across the packages. 

The 5 chapters that follow below cover the derivation, implementation, and verification analysis 

of FE methods as well as provide case studies to showcase the capabilities of the methods. The 

project primarily uses Matlab to run computational methods and refers to 2.S976 Lecture Notes 

written by Professor Anthony Patera. 

In Chapter 1, we start off by introducing the Rayleigh-Ritz Method which is a simple form of 

what FE methods do. Using a set of 3 basis functions, we are able to show the importance of 

selecting basis functions in approximating a solution. We demonstrate the Rayleigh-Ritz Method 

on 2 different heat transfer models with Neumann/Robin and Dirichlet boundary conditions. We 

see that when an exact solution has steep features, depending on the basis functions used by the 

Rayleigh-Ritz Method, we are not always able to capture these features. 

In Chapter 2, we introduce a specific set of basis functions called hat functions which we use in 

our FE method. We also introduce meshes as well as mesh refinement; we assign a set of hat 

functions to each element in our mesh which allows us to capture finer features in the solution. 

Using the same Model 2 from Chapter 1 as well as an additional Model 3, we can demonstrate 



 
 

that the FE method using hat functions and mesh refinement improves on the method we had 

used in Chapter 1. 

Chapter 3 is the final chapter which deals with heat transfer problems. After introducing the 

Finite Difference method which incorporates time-dependency into our solutions, we run a case 

study of flipping burgers (modeled as an infinite fin). Using the FD-FE method, we are able to 

predict and optimize the best time to flip a burger so that health (raw vs cooked burger) and taste 

(Maillard) constraints are met. 

Chapter 4 is the first chapter to deal with structural analysis. We modify the FE method, so we 

can account for beam bending. Rather than using the hat functions from our heat transfer FD-FE, 

we use Hermitian basis functions in our beam bending FE method. Using the Euler-Bernoulli 

beam model which holds for slender beams, we optimize (tune) and design xylophone bars. We 

see the effect of having a numerical model which may not necessarily hold for what we are 

analyzing. 

The final chapter applies the FE method in self-buckling analysis, a serious and common failure 

in the real world. Using a new model for self-buckling, we aim to design the tallest structure that 

will not buckle under its own weight (with given constraints on volume, radius dimensions, and 

radius profile continuity). Non-dimensionalizing our analysis, we can use the figure of merit 

(FOM) to judge our designs (a higher FOM represents a taller structure). In this project, the 

highest FOM achieved was 1.645. 

This project, as a whole, gives insight into FE package algorithms analyze models. In addition to 

the logic behind the computations, we also learned how to interpret the solutions given to us by 

the FE method. Misinterpreting results can be just as detrimental as a bad design. The FE method 



 
 

paired with good engineering judgment proves to be a powerful tool, one that not only saves time 

and cost but also encourages safe designs. 

Acknowledgements 

Thank you Prof. Anthony Patera for instructing the course, providing well-written lecture notes, 

and providing the FE method Matlab codes. This has been one of the most interesting and most 

rewarding classes I’ve taken at MIT, and I’m so glad I was lucky enough to work with and learn 

from you. Thank you for not only being a knowledgeable professor but also a professor that 

cares about each student. 

Thank you James Penn for providing physical representations and models of the case studies we 

used throughout the semester.  



 
 

 

 

 

 

 

 

 

 

Chapter 1: The Rayleigh-Ritz Method

  



1 
 

1.1 – Abstract 

The Rayleigh-Ritz Approximation Method aims to find the lowest energy solution to a model by 

linearly combining a given set of basis functions. It is a fundamental idea behind the Finite 

Element Method and can output an accurate solution if given an appropriate set of basis 

functions. 

In this chapter, we explored the Rayleigh-Ritz Method using two different heat transfer models. 

The first model (Model 1) is a conical frustum with Neumann/Robin heat flux boundary 

conditions at both ends. The second model (Model 2) is a right-cylinder thermal fin with a 

Dirichlet temperature boundary condition on the left end (x = 0) and a Neumann/Robin heat flux 

boundary condition on the right end (x = L). 

To implement the Rayleigh-Ritz Method, we defined energy functionals for both models based 

on the general form of a Neumann/Robin and Dirichlet problem. The minimization proposition 

states that the exact solution of a model will result in the global minimum of the energy 

functional. Subsequently, accurate approximations of the exact solution will have low values of 

the energy functional. Knowing this, we used the minimization proposition to determine the 

Rayleigh-Ritz constants that would, when combined with the corresponding basis functions, 

result in the lowest value of the energy functional. 

For this implementation of the Rayleigh-Ritz Method, we considered two sets of basis functions. 

The first set of basis functions included the exact solution to the model. The second set of basis 

functions included a constant function, a linear function, and a quadratic function. As expected 

from the minimization proposition, running the Rayleigh-Ritz Method using the first set of basis 

functions resulted in an approximation that was equal to the exact solution of the models. 



2 
 

Running the Rayleigh-Ritz Method using the second set of basis functions highlighted the 

convergence of the method as well as the importance of selecting good basis functions. The 

addition of a basis function in a set will result in either the previous/same approximation or a 

better approximation but never a worse approximation. However, the accuracy of the 

approximation depends on the set of basis functions. 

Overall, the Rayleigh-Ritz Method resulted in acceptable approximations for both Models when 

parameter values were low. However, as the parameter values increased, the exact solutions 

gained sharper features, and the Rayleigh-Ritz Method was unable to output an accurate 

approximation. 

1.2 - Implementation 

Energy Functional 

In order to run a Rayleigh-Ritz Approximation for the given models, we first define our energy 

functional in terms of w, a continuous function of candidate temperatures. To find the energy 

functional, we can use the heat transfer differential equation for the given system as well as 

boundary conditions as shown below for both Model 1 and Model 2. By scaling the boundary 

conditions of Model 1 by κ(x), we can use the general form of a Neumann/Robin problem to 

express the energy functional, giving us the following function: 

𝛱(𝑤) =
1

2
∫ 𝜅𝜋𝑅0

2 (1 +  𝛽 (
𝑥

𝐿
))

2

(
𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥 − 𝑞1𝜋𝑅0
2 + 𝜂2(𝑤 − 𝑢∞)(𝜋𝑅0

2(1 +  𝛽)2)
𝐿

0
  (1.1) 

In Model 2, we can express the energy functional using the Dirichlet form: 

Π(𝑤) =  
1

2
∫ 𝜅 (

𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥 +  
𝜇0𝜅

𝐿2 (
1

2
𝑤2 − 𝑢∞𝑤) 𝑑𝑥

𝐿

0
   (1.2) 



3 
 

To ensure we have defined the appropriate energy functionals, we propose a temperature, u, 

which will minimize the energy and prove that any perturbations, v, from u will increase the 

energy. We set our candidate temperature, w, equal to u + v. By rearranging the terms in the 

functional, we can define E1, E2, and E3. E1 will only depend on the temperature, u while E3 will 

only depend on the value, v. E2 should become zero if the energy functional and grouped terms 

are correct. This leaves us with the following: 

Π(𝑢 + 𝑣) = 𝐸1(𝑢) + 𝐸3(𝑣)  (1.3) 

Comparing Π(u) and Π(u + v), we see that Π(u) will always be greater than Π(u + v) if E3 is 

positive for any value of v. If our energy functional is correct, this should be true, and we can 

continue with our Rayleigh-Ritz Approximation. 

Rayleigh-Ritz Approximation 

For our Rayleigh-Ritz Approximation, we define a set of basis functions. We then find a set of 

constants, α, which, when multiplied with the basis functions, minimizes the energy functional 

(equations 1.1 and 1.2). We define the set of constants that minimizes the energy functional as 

αRR or our Rayleigh-Ritz constants.  

The general solution to minimize the energy functionals is: 

𝐴𝛼𝑅𝑅 = 𝐹   (1.4) 

where matrices A (SPD) and F (column vector) can be found from E2 of the energy functionals. 

For our particular models, the entries of matrices A and F are defined as follows: 

Model 1 



4 
 

𝐴𝑖𝑗 =  ∫ 𝜅𝜋𝑅0
2 (1 +  𝛽 (

𝑥

𝐿
))

2
𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
 𝑑𝑥

𝐿

0
+  𝜂2𝜋𝑅0

2(1 +  𝛽)2𝜓𝑖(𝐿)𝜓𝑗(𝐿)  (1.5) 

𝐹𝑖 = 𝑞1𝜋𝑅0
2𝜓𝑖(0) +  𝜂2𝜋𝑅0

2(1 +  𝛽)2𝑢∞𝜓𝑖(𝐿)   (1.6) 

Model 2 

𝐴𝑖𝑗 =  ∫ 𝜅
𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
+  

𝜇0𝜅

𝐿2 𝜓𝑖𝜓𝑗  𝑑𝑥
𝐿

0
   (1.7) 

𝐹𝑖 = ∫
𝜇0𝜅

𝐿2 𝑢∞𝜓𝑖  𝑑𝑥
𝐿

0
   (1.8) 

Once we solve for the matrix αRR, we multiply αRR with the basis functions and linearly combine 

the results, giving us the Rayleigh-Ritz Approximation for the models. 

1.3 - Results 

In the Matlab code, we define two cases: exactinclude and constlinquad. In exactinclude, we 

include the exact solution to the model as part of the set of basis functions. In constlinquad, we 

consider a constant, a linear equation, and a quadratic equation as the set of basis functions. 

Case 1: exactinclude 

Based on the results from exactinclude, we can conclude that the Rayleigh-Ritz Approximation 

code appears to work. When forming the approximation of the solution, the Rayleigh-Ritz 

method aims to minimize the given energy functional. The exact solution will result in the global 

minimum of the energy functional. We expect the corresponding Rayleigh-Ritz constant of the 

exact solution to be 1 and the Rayleigh-Ritz constants of the remaining basis functions to be 0, 

giving us a Rayleigh-Ritz Approximation that equals the exact solution. Based on the graphs 

generated by the code, the approximation and exact solution appear to be the same. Additionally, 



5 
 

checking the values of αRR also confirms that exactinclude works as expected. The exact solution 

of Model 1 

𝑢 = 𝑢∞ +  
𝑞1𝐿

𝜅
 (

1+ 𝛽+ 
𝜅

𝜂2𝐿

(1+ 𝛽)2 −  
(

𝑥

𝐿
)

1+ 𝛽(
𝑥

𝐿
)
)  (1.9) 

is included in the set of basis functions, and the output is shown below. 

 

Figure 1.1. Model 1 exactinclude output when β equals 1. 

As β increases and steepens the solution’s features, exactinclude is still able to provide the exact 

solution as the approximation. 



6 
 

 

Figure 1.2. Model 1 exactinclude outputs when β equals 100 and 1600.  

 

 

Similarly, for Model 2, the exact solution included in the basis functions is: 

𝑢 = 𝑢∞ + (𝑢Γ1
− 𝑢∞)

cosh(√𝜇0(1−
𝑥

𝐿
))

cosh(√𝜇0)
   (1.10) 

where μ0 is: 

𝜇0 =  
𝜂3𝑃𝑐𝑠𝐿2

𝜅𝐴𝑐𝑠
   (1.11) 

The approximation when η3 equals 1 [W/m⁰C] is graphed below. Again, we see that exactinclude 

is able to output the exact solution as the approximation. 



7 
 

 

Figure 1.3. Model 2 exactinclude output when η3 equals 1 [W/m⁰C]. 

As η3 increases, the behavior of the exact solution changes, and exactinclude continues to solve 

the Rayleigh-Ritz Approximation with the exact solution. 

 

Figure 1.4. Model 2 exactinclude outputs when η3 equals 80 [W/m⁰C] and 10000 [W/m⁰C]. 

Case 2: constlinquad 



8 
 

In constlinquad, we denote the number of basis functions to include as the integer nRR. For 

Model 1, nRR can range from 1 to 3 while in Model 2, the constant basis function is always 

included to satisfy the temperature boundary condition and nRR can be 1 or 2. 

If we initially start with one basis function (i.e. Ψ1 = 1), we expect the Rayleigh-Ritz 

approximation to be an αRR multiplied with Ψ1. If we add another basis function (i.e. Ψ2 = x) and 

approximate again, the solution will be a linear combination of the two basis functions. There are 

two possible outcomes from this: the solution stays the same as before or the solution becomes a 

better approximation. If the addition of Ψ2 does not further minimize the energy functional, the 

solution given by the Rayleigh-Ritz solution will be the same as when only Ψ1 was considered. If 

the addition of Ψ2 results in a smaller energy than when only Ψ1 is considered, both αRR terms 

will be non-zero, and the solution is a linear combination of the two basis functions. This result 

gives a solution that should be closer to the exact solution since the value of the energy 

functional has decreased. 

We expect the results of constlinquad to follow the situations described above. When we add a 

basis function (while keeping the previous functions) to the set, the approximation and energy 

should either stay the same (compared to the previous) or get closer to the exact solution.  

Looking at Model 1 results, when we only include Ψ1 = 1 in our basis function set, we get the 

following when β equals 1. As expected, the Rayleigh-Ritz solution, uRR, is not similar to the 

exact solution. 



9 
 

 

Figure 1.5. Model 1 constlinquad outcome when β equals 1 and nRR equals 1. The value of the energy 

function, Π(uRR), is -36.9491 [W]. 

Adding a second basis function, Ψ2 = x, gives a slightly more accurate Rayleigh-Ritz solution. 

We also see the energy functional has decreased slightly as expected. However, the Rayleigh-

Ritz solution is limited to linear basis functions (resulting in a linear solution) and is unable to 

capture the curvature of the exact solution. 



10 
 

 

Figure 1.6. Model 1 constlinquad outcome when β equals 1 and nRR equals 2. The value of the energy 

function, Π(uRR), is -37.0837 [W]. 

Finally, we add in the third basis function, Ψ2 = x2. The Rayleigh-Ritz Approximation follows 

the exact solution much more closely than before; additionally, the value of the energy functional 

has decreased again. 

 



11 
 

 

Figure 1.7. Model 1 constlinquad outcome when β equals 1 and nRR equals 3. The value of the energy 

function, Π(uRR), is -37.1045 [W]. 

Looking at the results of constlinquad for Model 2, we define a basis function to be Ψ0 = 1 to 

satisfy the Dirichlet boundary condition. Our first basis function, Ψ1 = x, gives us the following 

approximation which doesn’t capture the exact solution very well. 



12 
 

 

Figure 1.8. Model 2 constlinquad outcome when η3 equals 1 [W/m⁰C] and nRR equals 1. The value of the 

energy function, Π(uRR), is 966.4238 [W]. 

Adding the second basis function, Ψ2 = x2, improves the Rayleigh-Ritz Approximation and as 

expected, decreases the value of the energy functional. 

 



13 
 

 

Figure 1.9. Model 2 constlinquad outcome when η3 equals 1 [W/m⁰C] and nRR equals 2. The value of the 

energy function, Π(uRR), is 955.291 [W]. 

Parameter Effects 

We have verified that the code for constlinquad works and outputs reasonable Rayleigh-Ritz 

Approximations for Model 1 when β equals 1 and for Model 2 when η3 equals 1 [W/m⁰C]. 

However, when we vary β and η3, we see that the exact solution changes and can affect the 

Rayleigh-Ritz Approximation. 

Looking at the exact solution of Model 1, we see that if the parameter β is increased, the solution 

becomes steeper on the left and decays faster. When β is 100, the approximation when nRR is 3 

appears to have a larger relative error than the approximation when β is 1. 



14 
 

 

Figure 1.10. Model 1 constlinquad when β equals 1 and 100 when all basis functions are considered. 

Here, we see a potential problem with the Rayleigh-Ritz Method. When β becomes large, the 

Rayleigh-Ritz solution fails to capture the steepness on the left of the solution. Because the 

approximation is limited to a linear combination of the basis functions, if the basis functions do 

not resemble the shape of the solution, it is difficult for the Rayleigh-Ritz Method to output a 

close approximation to the exact solution. This is particularly noticeable when β becomes 1600; 

the best the Rayleigh-Ritz Method can achieve is to capture the right side of the solution. 

 

Figure 1.11. Model 1 constlinquad when nRR equals 1 and 3 and β equals 1600. 



15 
 

We see that as we increase nRR for this case, constlinquad outputs an approximation that places a 

heavier weight on Ψ1 (constant function) than the other two basis functions. Even with the 

addition of Ψ2 and Ψ3, the solution that minimizes the energy functional is mostly a constant 

function. The Rayleigh-Ritz constant corresponding to Ψ1 remains at about 24 while the 

Rayleigh-Ritz constants of the other two basis functions are on the magnitude of 0.001. 

With Model 2, a similar result occurs as η3 increases. Again, the basis functions are unable to 

capture the shape of the exact solution. 

 

Figure 1.12. Model 2 constlinquad outputs when η3 equals 1 [W/m⁰C] and 80 [W/m⁰C] when all basis 

functions are considered. 

Because Model 2 has a Dirichlet constraint when x = 0, we see the Rayleigh-Ritz method outputs 

a solution that satisfies the boundary condition, even at high η3 values.  



16 
 

 

Figure 1.13. Model 2 constlinquad output when η3 equals 10000 [W/m⁰C] when all basis functions are 

considered. 

The rest of the approximation is inaccurate because the shapes of the basis functions cannot be 

linearly combined to form the features of the exact solution. 

Comparison of exactinclude and constlinquad 

While constlinquad is able to provide approximations that are reasonably close to the exact 

solution with the given basis functions, exactinclude will be able to give the exact solution as the 

approximation because of the basis function set. Looking at our results, we would expect to see 

exactinclude to always have a lower value energy functional than constlinquad since 

exactinclude will be able to reach the global minimum of the functional. The table below 

compares energy functional values between the different cases run. 

 

 



17 
 

Table 1.1. Values of Energy Functional given by constlinquad and exactinclude in [W]. 

Model 1 

β constlinquad nRR = 1 constlinquad nRR = 2 constlinquad nRR = 3 exactinclude 

1 -36.9491 -37.0837 -37.1045 -37.1061 

100 -92297.2276 -92297.2277 -92297.2278 -92297.2307 

1600 -23191297.0361 -23191297.0361 -23191297.0361 -23191297.0362 
 

Model 2 

η3 [W/m⁰C]  constlinquad nRR = 1 constlinquad nRR = 2 exactinclude 

1 966.4238 955.291 955.291 

80 -61078.2609 -96087.3776 -96359.6564 

10000 -39950738.9163 -48793722.8209 -52819958.1592 

 

1.4 – Final Thoughts 

The Rayleigh-Ritz Method provides a simple and straightforward way to approximate solutions 

of models. However, the accuracy of the method depends heavily on the set of basis functions 

chosen. Because the basis functions must be continuous functions, it may be difficult to capture 

characteristics of the exact solution. As we saw with the models considered in this chapter, if the 

exact solution of a model has a curvature, it is difficult to capture the behavior if the basis 

functions are linear. Similarly, if the basis functions do not contain similar shapes to the exact 

solution, it is also difficult to output a good approximation. 

1.5 – References 

1. Anthony T Patera, 2019, “Rayleigh-Ritz Method for Expositional Problem.” 

2. Anthony T Patera, 2019, “Rayleigh-Ritz Method for General 1D 2nd-Order SPD BVP.” 

  



 
 

 

 

 

 

 

 

 

 

Chapter 2: The Finite Element Method for 1D 2nd-Order SPD BVPs

 



1 
 

2.1 - Abstract 

In this chapter, we discuss the implementation and results of the Finite Element Method (FE 

Method). 

Building off the Rayleigh-Ritz Method that we discussed in Chapter 1, the FE Method is 

implemented in a similar way. The main difference between the Rayleigh-Ritz Method and the 

FE Method is the set of basis functions used. In Rayleigh-Ritz, we chose basis functions, but 

with the FE Method, we use a special set of functions known as hat functions. These functions 

are defined based off a mesh consisting of nodes and elements that span the length of the domain 

of interest. 

After defining the hat functions, solving for the approximation, uh, follows the same logic as the 

Rayleigh-Ritz Method. However, in implementation, we take several steps to create cleaner and 

more versatile code. We map the hat functions to 2 shape functions and rewrite elements in 

matrices A and F in terms of these shape functions. From there, we use direct stiffness to form A 

and F before adding in the boundary condition elements. Finally, we solve for the coefficients 

that multiply with hat functions to linearly form the approximation. 

In addition to the implementation of the FE Method, we also discuss sources of error in this 

chapter. Error primarily comes from three factors: implementation, numerical specification, and 

mathematical model. We can identify when there is an implementation error using convergence 

plots that plot error over norms that we define. Convergence plots are a useful tool that give us 

confidence to whether or not our code works. Additionally, we can define upper bounds based 

off the plots for our models to account for worst case scenarios. 



2 
 

The FE Method is able to approximate solutions with high accuracy, especially with a refined 

mesh. When properly implemented, it is also a relatively fast method that runs on the order of 

O(n) where n is determined by the number of nodes. 

2.2 - Models 

To test our FE Method, we define three models, two of which are from Chapter 1 (Models 1 and 

2). The models are redefined below. 

Model 1 consists of heat conduction through a conical frustum with insulated lateral surfaces. 

The heat transfer differential equation is: 

−𝜅
𝑑

𝑑𝑥
 (𝜋𝑅0

2 (1 + 𝛽
𝑥

𝐿
)

2 𝑑𝑢

𝑑𝑥
) = 0 in Ω = (0, L)  (2.1) 

The boundary conditions on the left and right surfaces are: 

𝜅
𝑑𝑢

𝑑𝑥
=  −𝑞1 on Γ1 = {0} (2.2) 

−𝜅
𝑑𝑢

𝑑𝑥
=  𝜂2(𝑢 − 𝑢∞) on Γ2 = {L}   (2.3) 

Note that these boundary conditions correspond to a Neumann/Robin boundary condition in 

which the heat flux and heat transfer coefficient are defined. 

The output of interest is: 

𝑠 ≡ 𝑢(0) at x = 0 (2.4) 

Model 2 consists of a right-cylinder thermal fin. 

The heat transfer differential equation is: 



3 
 

−𝜅𝐴𝑐𝑠  
𝑑2𝑢

𝑑𝑥2
+  𝜂3𝑃𝑐𝑠(𝑢 − 𝑢∞) = 0 in Ω = (0, L)  (2.5) 

The boundary conditions on the left and right surfaces are: 

𝑢 = 𝑢Γ1  on Γ1 = {0}           (2.6) 

−𝜅
𝑑𝑢

𝑑𝑥
= 0 on Γ2 = {L}  (2.7) 

The boundary condition on the left face is a Dirichlet condition in which the temperature is 

defined while the boundary condition on the right face is a Neumann/Robin condition. 

The output of interest is: 

𝑠 ≡  −𝜅
𝑑𝑢

𝑑𝑥
 at x = 0          (2.8) 

Model 3 consists of a wall with equal cross sectional area and different ambient temperatures on 

both sides. 

The heat transfer differential equation is: 

−𝜅𝐴𝑐𝑠
𝑑2𝑢

𝑑𝑥2 = 0 Ω = (0, L)     (2.9) 

The boundary conditions on the left and right surfaces are:  

−𝜅𝐴𝑐𝑠
𝑑𝑢

𝑑𝑥
=  𝜂4(𝑢 − 𝑢∞)𝐴𝑐𝑠 on Γ1 = {0}       (2.10) 

−𝜅𝐴𝑐𝑠
𝑑𝑢

𝑑𝑥
=  𝜂4(𝑢 − 𝑢∞)𝐴𝑐𝑠 on Γ2 = {L}       (2.11) 

In this model, we have defined a Neumann/Robin boundary condition on both of our surfaces 

unlike in Model 1 where the left side is only a Neumann boundary condition (eqn. 2.2). 

The outputs of interest are: 



4 
 

𝑠 ≡ 𝑢(0) at x = 0    (2.12) 

𝑠 ≡ 𝑢(𝐿) at x = L    (2.13) 

2.3 - Implementation 

In this chapter, we implement a specific case of the Rayleigh-Ritz Method to create our Finite 

Element Method code. 

Hat Functions 

In Chapter 1, we saw the important of choosing basis functions for a Rayleigh-Ritz 

approximation. For the Finite Element Method, we use special basis functions know as hat 

functions or φ functions for our approximation. To help define these hat functions, we set up a 

mesh along the length we are interested it. We set points along the length which we will call 

nodes (x) and define the spaces between the points elements (T) of length, h. In this chapter, we 

will be using a uniform mesh meaning the nodes are spaced equally throughout the length of 

interest. The hat functions will correspond to each node meaning for nnode nodes, there will be 

nnode hat functions. Hat functions must satisfy the following conditions: 

1. φi is a continuous function. 

2. φi is 1 at node i (xi) and 0 at all other nodes. 

3. φi is linear. 

 



5 
 

Figure 2.1. Example of a mesh with hat functions satisfying the conditions above. In this mesh, there are 

4 nodes, 3 elements, and 4 hat functions. 

Given these conditions, derivatives of hat functions must also have the following properties: 

1. φi’ is piecewise constant. 

2. φ1’ is −
1

ℎ1
 in T1and 0 through all other elements. 

3. φnode’ is 
1

ℎ𝑛𝑜𝑑𝑒 in Tnode –1 and 0 through all other elements. 

4. For nodes 2 through nnode – 1, φi’ is −
1

ℎ𝑖−1 in Ti-1, 
1

ℎ𝑖 in Ti, and 0 through all other 

elements. 

 

Figure 2.2. Example of mesh from Fig. 2.1 with derivatives of hat functions satisfying the properties 

above. 

By using hat functions, we are able to use the same set of basis functions for both 

Neumann/Robin and Dirichlet boundary condition problems. In the case of Dirichlet, we no 

longer need to define a special basis function that equals 1 at the boundary and 0 everywhere else 

because the hat function takes care of this requirement. 

Mapping and Matrices 



6 
 

Once we have defined our hat functions, we can solve for our approximation, uh(x), similarly to 

Chapter 1. The matrix of coefficients that we will use to define uh(x) is related as follows: 

𝐴𝑢ℎ = 𝐹 (2.14) 

To solve for the components of matrices A and F, we first solve for the matrices without 

considering the boundary conditions. Additionally, we denote A as the sum of matrices K and M. 

The general form of the matrices’ components are as follows: 

𝐾𝑖𝑗
𝑁 =  ∫ 𝜅(𝑥)

𝑑𝜑𝑖

𝑑𝑥

𝐿

0

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥  (2.15) 

𝑀𝑖𝑗
𝑁 =  ∫ 𝜇(𝑥)𝜑𝑖𝜑𝑗𝑑𝑥

𝐿

0
  (2.16) 

𝐴𝑁 = 𝐾𝑁 + 𝑀𝑁   (2.17) 

𝐹𝑖
𝑁 =  ∫ 𝑓Ω(𝑥)𝜑𝑖𝑑𝑥

𝐿

0
  (2.18) 

To simplify our FE method code, we solve for matrices A and F by introducing a new concept of 

mapping. Because our hat functions share common features, we can map them to 2 shape 

functions (shown below); by doing so, we can shorten our code and will not need to write new 

code to solve for every instance in matrices A and F whenever the size of an element changes in 

the mesh. 

 

Figure 2.3. Example of shape functions and quadrature points used for mapping. 



7 
 

We rename the nodes as xlg(α,m) where α can either be 1 or 2 (left or right, respectively) and m 

corresponds with the element number. Rewriting Equations 2.15 through 2.18 above gives us the 

following: 

𝐾𝛼𝛽
𝑒𝑙𝑚 =  ∫ 𝜅(𝑥)

𝑑𝜑

𝑑𝑥
lg (𝛼, 𝑚)

𝑥lg(2,𝑚)

xlg (1,𝑚)

𝑑𝜑

𝑑𝑥
lg (𝛽, 𝑚)𝑑𝑥  (2.19) 

𝑀𝛼𝛽
𝑒𝑙𝑚 =  ∫ 𝜇(𝑥)𝜑lg(𝛼,𝑚)

𝑥lg(2,𝑚)

xlg (1,𝑚) 𝜑lg(𝛽,𝑚)𝑑𝑥   (2.20) 

𝐴𝑁 = 𝐾𝑁 + 𝑀𝑁      (2.21) 

𝐹𝛼
𝑒𝑙𝑚 =  ∫ 𝑓Ω(𝑥)𝜑lg(𝛼,𝑚)

𝑥lg(2,𝑚)

xlg (1,𝑚) 𝑑𝑥   (2.22) 

The nodes are then mapped to quadrature points 𝑥̂1 and 𝑥̂2 such that x can be written as 

xlg(α,m)+hm𝑥̂. To get the equations above in terms of the mapping, we can write dx as the product 

of the size/length of the element, hm, and 𝑑𝑥̂. From there, we can write 
𝑑

𝑑𝑥
 as 

1

ℎ𝑚

𝑑

𝑑𝑥̂
. Subbing in 

the shape functions into the equations above gives: 

𝐾𝛼𝛽
𝑒𝑙𝑚 =

1

ℎ𝑚 ∫ 𝜅(𝑥lg(1,𝑚) + ℎ𝑚𝑥̂)𝑆̂𝛼
′ (

1

0
𝑥̂)𝑆̂𝛽

′ (𝑥̂)𝑑𝑥̂  (2.23) 

𝑀𝛼𝛽
𝑒𝑙𝑚 = ℎ𝑚 ∫ 𝜇(𝑥lg(1,𝑚) + ℎ𝑚𝑥̂)𝑆̂𝛼(𝑥̂)𝑆̂𝛽(𝑥̂)

1

0
𝑑𝑥̂  (2.24) 

𝐴𝑁 = 𝐾𝑁 + 𝑀𝑁      (2.25) 

𝐹𝛼
𝑒𝑙𝑚 =  ∫ 𝑓Ω(𝑥lg(1,𝑚) + ℎ𝑚𝑥̂)𝑆̂𝛼(𝑥̂)

1

0
𝑑𝑥̂  (2.26) 

Using direct stiffness to construct our matrices in Matlab, we then add the proper boundary 

conditions. In the case of a Neumann/Robin boundary condition, we add γ to the boundary 

components of A and fΓ to the boundary components of F. For a Dirichlet boundary condition, 

we use the following to modify A and F: 



8 
 

𝐴𝑢ℎ = 𝐹 − 𝑢Γ𝑏  (2.27) 

where vector b can be taken from the column of matrix A that corresponds to the boundary (i.e. 

if a Dirichlet condition was applied to the left most surface, vector b would be the first column of 

matrix A). 

After finding matrics A and F, we can solve for the vector uh using Equation 2.14 where each 

component of the vector is a coefficient, uhi. We then linearly combine the products of the 

coefficients and hat functions to solve for the FE approximation, uh.  

2.4 - Results 

Using the FE method, we approximate solutions for all 3 models and compare uh to exact 

solutions over a series of mesh refinements (adding nodes/elements and decreasing hm). 

Additionally, we calculate and graph the error between the approximation and exact solutions as 

well as the error between each mesh. 

form_elem_mat_sver 

This function forms the elemental matrices A and F as described in Equations 2.23 through 2.26. 

This function does not impose boundary conditions. 

We will verify that our implementation is correct using Model 2 by running the FE method code 

with 6 uniform refinements. Our initial mesh consists of 6 elements and gives the following 

approximation: 



9 
 

 

Figure 2.4. Temperature and derivative approximations compared to the exact solution of Model 2 using 

an initial mesh with 6 elements. 

Looking at the approximation given by the initial mesh, we can see the influence of the hat 

functions. This approximation is not close to the exact solution. The derivative approximation is 

also off and doesn’t capture the steep left side of the exact solution’s derivative. 

After refining the mesh 6 times, our approximation becomes:  

 



10 
 

Figure 2.5. Temperature and derivative approximations compared to the exact solution of Model 2 after 6 

uniform refinements. 

Both the approximation as well as the derivative has converged to the exact solution. We can 

also confirm that our implementation has worked by checking errors which are graphed below in 

4 different norms. 

 

Figure 2.6. Error convergence plots in 4 norms of Model 2. The errors denoted by circles are calculated 

using the exact solution and the FE method approximation. The errors denoted by the pink “x”s are 

calculated using the previous mesh’s approximation and the current mesh’s approximation. 

Error in the FE method can come from 3 sources: implementation, numerical specification, and 

mathematical modeling. If the implementation is correct, we expect to see the difference between 

the previous approximation and the current approximation to approach 0 as the mesh is refined. 

∥ 𝑢ℎ − 𝑢ℎ
𝑐𝑜𝑑𝑒 ∥ = 0 in infinite precision  (2.28) 



11 
 

∥ 𝑢ℎ − 𝑢ℎ
𝑐𝑜𝑑𝑒 ∥ = 0∗ (𝜖𝑝𝑟𝑒𝑐) in finite precision  (2.29) 

Depending on the norm that we calculate the error in, the error will approach 0 as the mesh is 

refined at a specific slope. 

Looking at the convergence plots, we see that the error due to implementation shown in pink 

“x”s does in fact decrease at the expected slopes for each norm which suggests our 

implementation is correct for Model 2. However, this is not enough to ensure that 

form_elem_mat_sver is bug-free. In Model 2, we had defined 𝜇(𝑥) as a constant. If we wanted to 

test the function more thoroughly, we could implement a model that satisfied the following 

equations: 

−
𝑑

𝑑𝑥
(𝜅(𝑥)

𝑑𝑢

𝑑𝑥
) +  𝜇(𝑥)𝑢 = 𝑓Ω(𝑥) in Ω = (0, L)  (2.30) 

𝑢 = 𝑢Γ1
 on Γ1 = {0}  (2.31) 

−𝜅(𝑥)
𝑑𝑢

𝑑𝑥
=  𝛾2𝑢 − 𝑓Γ2

 on Γ2 = {L}   (2.32) 

where 𝜅(𝑥), 𝜇(𝑥), 𝑓Ω(𝑥) all vary with x. This would allow us to be more confident that our 

mapping and formation of the elemental matrices were correctly implemented. If we were to 

create a model that satisfied these equations and the errors still converged with the correct slopes, 

we could be more confident that our implementation is correct. 

Unfortunately, it would be difficult to solve for the exact solution of a model where the 

parameters all depend on x. Without the exact solution, we cannot calculate error by comparing 

the approximation with the exact solution. Instead, we can use a method called Manufactured 

Solutions to help calculate error and check if our approximation is accurate. 



12 
 

Manufactured Solutions 

Manufactured Solutions is a way to verify implementation when the exact solution is unknown 

which is often the case in FE analysis. 

We start with a set of equations similar to the ones above and take 𝜅(𝑥), 𝜇(𝑥), 𝛾1, 𝛾2, 𝑢∞ as 

givens. From there, we choose a smooth solution as u(x) and solve 𝑓Ω(𝑥) using Equation 2.30 

and 𝑓Γ2
 using Equation 2.32 such that:  

𝑓Ω(𝑥) =  −
𝑑

𝑑𝑥
(𝜅(𝑥)

𝑑𝑢

𝑑𝑥
) +  𝜇(𝑥)(𝑢 − 𝑢∞)   (2.33) 

𝑓Γ2
= 𝛾2𝑢 + 𝜅(𝑥)

𝑑𝑢

𝑑𝑥
 (𝑥 = 𝐿)  (2.34) 

We then go back and solve for uh using the Equations 2.33 and 2.34 and calculate the error in the 

norm ∥ 𝑢 − 𝑢ℎ ∥. We continue this re-iterating until we reach an error such that: 

∥ 𝑢 − 𝑢ℎ ∥𝐻1(Ω) ≤  𝜖𝑡𝑜𝑙  (2.35) 

We would then graph these errors in their respective norms and expect to see convergence if 

implementation is correct. 

impose_boundary_cond_sver 

After running form_elem_mat_sver, we run impose_boundary_cond_sver to add the boundary 

conditions to matrices A and F. We will use Models 1 and 3 to check our implementation of this 

function. 

Looking at Model 1, our initial mesh with 6 elements gives us the following approximation: 



13 
 

 

Figure 2.7. Temperature and derivative approximations compared to the exact solution of Model 1 using 

an initial mesh with 6 elements. 

Unlike Model 2, we see that the initial mesh does a passable job approximating the exact 

solution. However, looking at the derivative plot, we see that the initial mesh does not do a good 

job of approximating the derivative and will require a more refined mesh. 

Again, like with Model 2, we run 6 uniform refinements on the mesh and get the following 

approximations: 

 



14 
 

Figure 2.8. Temperature and derivative approximations compared to the exact solution of Model 1 after 6 

uniform refinements on the initial mesh. 

Now the approximations for both the temperature and the derivative of the temperature have 

converged much closer to the exact solution which is a good sign that our implementation could 

be correct. To further verify our implementation, we can look at the error convergence plots: 

 

Figure 2.9. Error convergence plots in 4 norms of Model 1. 

Like we saw in Model 2, the errors converge like we expect them to (following the slopes in 

each respective norm). This is sufficient evidence that our implementation of the FE method 

worked for Model 1. However, if we wanted to further test our implementation of 

impose_boundary_cond_sver, we could use a model that defines a heat flux at both the left 



15 
 

boundary and the right. We have defined Model 3 to have these boundary conditions (Equations 

2.10 and 2.11). 

Running the FE method on Model 3, the initial mesh with 6 elements gives us the following 

approximation: 

 

Figure 2.10. Temperature and derivative approximations compared to the exact solution of Model 3 using 

an initial mesh with 6 elements. 

Again, we see that the approximation of the temperature converges faster than the derivative 

approximation. We uniformly refine the mesh 6 times and get the following approximations: 

 



16 
 

Figure 2.11. Temperature and derivative approximations compared to the exact solution of Model 3 after 

6 uniform refinements on the initial mesh. 

We see that the approximation converges to the exact solution. The derivative appears to not 

converge, but if we read the y-axis scale, we see that it does converge to the derivative of the 

exact solution. There appears to be error on the order of 10-10, but this is not due to 

implementation, numerical specification, or mathematical model. This is simply due to the 

limited precision of the CPU. CPUs nowadays tend to have precision up until the 15th decimal 

place (my laptop might have less because it’s old). This finite precision also affects our 

convergence plots as seen below: 

 

Figure 2.12. Error convergence plots in 4 norms of Model 3. 



17 
 

At first glance, it seems that our errors don’t converge, suggesting an implementation error. 

However, this is not the case; we have simply hit the limit of precision which is around 10-12. If 

we had a CPU with infinite precision, our error would in fact continue to converge to 0 (Equation 

2.28). 

If we wanted to continue testing our implementation of our FE method code, we could create 

more complex models and include parameters that depended on x. However, with Model 3 and 

the boundary conditions imposed in the model, we can be more confident that our 

implementation is correct than if we only tested with Model 1. 

Convergence 

As we discussed above, to be sure that our implementation was correct, we cannot just check to 

see if our approximation converged to the exact solution. To be confident, we checked the errors 

across 4 different norms to make sure they were converging at the correct rates. Similarly, we 

cannot just rely on the error convergence plots to know if our approximation is converging to the 

exact solution. As we discussed previous, there are 3 possible sources of error. We mainly 

looked into implementation errors, but there are still numerical specification errors and 

mathematical model errors. Numerical specification errors come from the precision of our mesh 

and of the parameters we are giving the FE method solver. For example, if a Model X had a η 

value of 92, but we rounded and gave the solver a η of 100, we would see that our Model doesn’t 

converge to the exact solution. Additionally, if we model the system incorrectly, we could have a 

mathematical model error and our approximation would not converge to the exact solution either. 



18 
 

Looking more at our error norms and how mesh size affects convergence, we will use Model 2 

and run the FE method code with 8 uniform refinements. Below is the approximation after all 

refinements as well as the convergence plots. 

 

Figure 2.13. Temperature and derivative approximations of Model 2 after 8 uniform refinements on the 

initial mesh. 



19 
 

 

Figure 2.14. Error convergence plots in 4 norms of Model 2. 

Using the convergence plot, we can calculate upper bounds for our outputs and errors. This can 

be useful if we are trying to get an idea of what temperature we can expect the physical system to 

be at. We can also calculate in safety factors to anticipate worst case outputs. 

Let us consider the norm ∥ 𝑢 − 𝑢ℎ ∥𝐿∞(Ω) for Model 2 (the maximum error over all x in Ω). If we 

want our solution to have an error less than 2%, we can estimate that the coarsest mesh we would 

need to reduce error would be mesh 7 (the 6th refinement) where the log of the error in the norm 

is approximately -0.1967 or an error of 0.6358⁰C. Depending on what system requirement we are 

designing to, we can place different upper bounds on ∥ 𝑢 − 𝑢ℎ ∥𝐿∞(Ω). If we want the maximum 

temperature different on our surface to be within 1⁰C, then we could set the upper bound of this 

norm in mesh 7 to be 0. This would give us a safety factor of about 1.57 which would be a rather 



20 
 

strict requirement. Conversely, if we were not concerned about the range of temperatures on the 

surface, we could increase the upper bound on the norm which would allow more error. 

We can also use the values from the convergence plots to set an upper bound on the error. For 

example, if we take mesh 5 in the error in output norm, we see that the log10 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 is 

equal to 1.443 which corresponds to an error of of 27.7332⁰C. Again, we can add a safety factor 

depending on our system requirements. 

If we run the FE method to verify these upper bounds, we would expect the values to remain 

below the upper bounds.  

Mesh 7 gives the following approximation. The greatest difference between the approximation 

temperatures and the exact solution temperatures does not exceed the upper bound we defined 

above. 

 

Figure 2.15. Temperature and derivative approximations of Model 2 after 6 uniform refinements on the 

initial mesh. 



21 
 

Mesh 5 gives the following approximation, and the output of the approximation does not exceed 

the upper bound defined above. 

 

Figure 2.16. Temperature and derivative approximations of Model 2 after 4 uniform refinements on the 

initial mesh. 

2.5 - Final Thoughts 

The FE Method is a special case of the Rayleigh-Ritz Method and shows the importance of 

choosing basis functions. In Chapter 1, we saw how difficult it was to resolve sharp/steep 

features in the exact solution using the Rayleigh-Ritz Method and the basis functions we chose. 

However, in Chapter 2, using hat functions as our basis functions, we were able to approximate 

the exact solutions of both Model 1 and 2. Additionally, we saw how refining a mesh could 

increase the accuracy of our approximation. 

In addition to seeing better approximations, we also explored an important debugging tool: 

convergence plots. By examining convergence plots, we can get a better idea of if our code was 

implemented correctly. When implemented correctly, the errors should converge at specific rates 



22 
 

for given norms. We also saw that even without the exact solution, we can still get an idea of 

error convergence using Manufactured Solutions. 

Running the FE Method this chapter was pretty fast because of the implementation and use of 

sparse matrices. The FE Method runs on the order of O(n) which corresponds to the number of 

nodes in our mesh. While we only ran uniform meshes and refinements, given a more 

complicated model/geometry, we might consider varying the mesh across a domain. To 

maximize the efficiency of the FE Method, we could consider increasing the number of elements 

around areas of interest while decreasing elements in other areas. This would give us the 

resolution we need in our approximation while still keeping the runtime reasonable. 

2.6 - References 

1. Anthony T Patera, 2019, “FE 1D SPD BVP Formulation.” 

2. Anthony T Patera, 2019, “FE 1D SPD BVP Theory.” 

3. Anthony T Patera, 2019, “FE 1D SPD BVP Implementation (rev 2).” 

4. Anthony T Patera, 2019, “FE 1D SPD BVP P2 Elements.” 

5. Anthony T Patera, 2019, “Around Verification (Implementation, Accuracy).” 

  



 
 

 

 

 

 

 

 

 

 

 

Chapter 3: The FD-FE Method for 1D Heat Equation: Flipping Burgers

 



1 
 

3.1 - Abstract 

Before this chapter, we had explored the FE Method for steady state heat transfer problems; we 

only looked at temperature as a function of space/position. However, in the real world, we may 

be concerned with heat transfer over time as well. In this chapter, we introduce and implement 

the Finite Difference Method (FD) to solve for temperature as a function of space and time. 

To set up our implementation so that we can solve time-dependent heat transfer problems, we 

start by grouping the time-dependent term with the output terms in matrix F (from previous 

chapters). We can then apply our FE Method from Chapter 2 which will give us a matrix 

equation. From there, we bring out the time-dependent term and apply the FD Method to solve 

for the temperature in terms of time. In the FD Method, we use approximations to estimate 

temperature in terms of time. In this chapter, we primarily focus on using an Euler Backward 

approximation or a Crank-Nicholson approximation. 

Applying our implementation of FE-FD to the problem of properly cooking a burger, we are able 

to see how numerical specifications affect our analysis. In the FE Method, when we run a higher 

order analysis (p = 2, φ functions are 2nd order), we note that the temperature approximations 

converge to the exact solution quicker than the FE Method with p = 1. In the FD Method, we see 

that with a Crank-Nicholson approximation, we can better account for overestimation and 

underestimation than with an Euler Backward approximation which may favor overestimating or 

underestimating depending on the shape of the function. Because of this, running Crank-

Nicholson FD Method helps converge the approximation quicker than Euler Backward. We 

proved this by comparing the computational times of a 1st order FE Method, Euler Backward FD 

Method (theoretically the least efficient) with a 2nd order FE Method, Crank-Nicholson FD 

Method (theoretically the most efficient). 



2 
 

By adding the FD Method to our code, we can analyze more complex problems. However, due to 

the added dimension of time, we see that optimizing the mesh size as well as the time step size 

becomes crucial for decreasing computation time. When we increase only one specification, we 

run the risk of increasing our run time without increasing the quality of our approximation. 

However, with the right numerical specifications, the FE-FD Method can be a very useful tool 

for analysis. 

3.2 - Finite Difference and Finite Element 

Previously, we had explored the implementation and analysis of the Finite Element Method in 

space for steady state problems (time-independent). In this chapter, we will be adding in a Finite 

Difference Method, so we can analyze time-dependent problems, specifically heat transfer over 

time. 

Finite Element in Space 

When we formulated the Finite Element Method for a Neumann-Robin boundary condition, we 

solved and implemented the method for a general form of a heat transfer equation 

−
𝛿

𝛿𝑥
(𝜅(𝑥)

𝛿𝑢

𝛿𝑥
) +  𝜇(𝑥)𝑢 = 𝑓Ω in Ω  (3.1) 

where u is a function of only x. Now, we are interested in finding a solution u that is a function 

of x and t (space and time) using a new heat transfer equation: 

−
𝛿

𝛿𝑥
(𝜅(𝑥)

𝛿𝑢

𝛿𝑥
) +  𝜇(𝑥)𝑢 = 𝑓Ω −  𝜌(𝑥)𝑢̇ in Ω, 0 < 𝑡 ≤ 𝑡𝑓   (3.2) 

Our boundary conditions remain the same on Γ1 and Γ2, but in the new heat transfer equation, we 

also include a third boundary condition stating the initial temperature when t = 0 such that 



3 
 

𝑢 = 𝑢𝑖𝑐(𝑥) in Ω, t = 0   (3.3) 

To solve the heat transfer equation in space and time, we first apply similar principles from the 

Finite Element Method from Chapter 2 by grouping the time-dependent terms with the external 

driving term, fΩ. Rewriting the heat transfer equation gives: 

−
𝛿

𝛿𝑥
(𝜅(𝑥)

𝛿𝑢

𝛿𝑥
) +  𝜇(𝑥)𝑢 = 𝑓Ω −  𝜌(𝑥)𝑢̇ = 𝑓Ω

+ in Ω, 0 < 𝑡 ≤ 𝑡𝑓   (3.4) 

which resembles the heat transfer equation from Chapter 2 (Equation 3.1). We can set up 

matrices such that: 

𝐴 𝑢ℎ =  𝐹+     (3.5) 

However, the matrix F+ includes the time-dependent terms. Writing out the terms of F+ gives: 

∫ 𝑓Ω
+𝜑𝑖𝑑𝑥 + 𝑓Γ1

𝜑𝑖(0) + 𝑓Γ2
𝜑𝑖(𝐿)

𝐿

0
    (3.6) 

which, splitting up the integral term, can be written as 

∫ 𝑓Ω𝜑𝑖𝑑𝑥 + 𝑓Γ1
𝜑𝑖(0) + 𝑓Γ2

𝜑𝑖(𝐿) −  ∫ 𝜌(𝑥)𝑢ℎ𝜑𝑖𝑑𝑥̇𝐿

0

𝐿

0
    (3.7) 

where 

∫ 𝜌(𝑥)𝑢ℎ𝜑𝑖𝑑𝑥̇𝐿

0
=  ∫ 𝜌(𝑥)𝜑𝑖 ∑ 𝑢̇ℎ𝑗

𝑛
𝑗=1 𝜑𝑗𝑑𝑥

𝐿

0
=  ∑ ∫ 𝜌(𝑥)

𝐿

0
𝑛
𝑗=1 𝜑𝑖𝜑𝑗𝑑𝑥 𝑢̇ℎ𝑗  (3.8) 

To continue solving, we define a new matrix called the inertia matrix such that 

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =  ∫ 𝜌(𝑥)𝜑𝑖𝜑𝑗𝑑𝑥
𝐿

0
 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛    (3.9) 

Plugging Equation 3.8 into Equation 3.7 and grouping time-independent terms into the matrix F, 

we rewrite matrix F+ as 



4 
 

𝐹+ = 𝐹 −  𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑢̇ℎ (3.10) 

Using Equation 3.10, we can also rewrite Equation 3.5 as shown below and create a system of n 

ODEs in time 

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑢̇ℎ +  𝐴 𝑢ℎ =  𝐹  , 0 < 𝑡 ≤ 𝑡𝑓  (3.11) 

𝑢ℎ = (𝐼ℎ𝑢𝑖𝑐)  , 𝑡 = 0   (3.12) 

which we can solve by using the Finite Difference Method. 

Finite Difference Method in Time 

To solve for uh(x, t), we will iterate through time steps (ntsteps) and approximate u. For the 

approximation, we can choose between Euler Forward (using the previous time step 

approximation), Euler Backward (using the current time step approximation), or Crank-Nicolson 

(using an average of the previous and current time step approximation). We will define a 

variable, θ, to denote which approximation we are using such that θ = 0 is Euler Forward, θ = 

0.5 is Crank-Nicholson, and θ = 1 is Euler Backward. 

We can set up Equation 3.11 using approximations for uh and k as our iteration count (point in 

time) as follows: 

𝑢ℎ,Δ𝑡
𝑘 = (𝐼ℎ𝑢𝑖𝑐)  , 𝑘 = 1   (3.13) 

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑢ℎ,Δ𝑡
𝑘 −𝑢ℎ,Δ𝑡

𝑘−1

Δ𝑡
+ 𝐴(𝜃𝑢ℎ,Δ𝑡

𝑘 + (1 −  𝜃)𝑢ℎ,Δ𝑡
𝑘−1) = 𝐹  , 2 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠   (3.14) 

In implementation, there are different ways to store the previous u approximations. For this 

chapter’s implementation of Finite Difference Method, we will be storing all previous values in 

an nnode x ntsteps array rather than overwriting previous values (saving only the previous value). 



5 
 

Implementation and Verification 

In this chapter, we have added the implementation of the Finite Difference Method to our 

Chapter 2 implementation of the Finite Element Method. To test our implementation, we ran a 

uniform refinement on a new model, semiinf_plus, with three different sets of parameters. The 

first run was using linear φ equations (p = 1) for FE and Euler Backward approximation (θ = 1) 

for FD. The second run was using 2nd-order quadratic equations (p = 2) for FE and Euler 

Backward approximation (θ = 1) for FD. Finally, the third run was using 2nd-order quadratic 

equations (p = 2) for FE and Crank-Nicholson approximation (θ = 0.5) for FD. 

Running the uniform refinements, we see that the approximated solutions, uh, converge to the 

exact solution provided in the model. Additionally, the approximated solutions reflect our 

choices of p and θ. We expect a higher p value will initially give us a better approximation of the 

exact solution as well as the exact solution’s derivative because our φ functions will have higher 

order and be able to better capture the complexity of a curve. With the choice of approximation 

used for FD, we expect a Crank-Nicholson approximation to generate better results than an Euler 

Backward or Forward. With an Euler Backward or Forward, depending on the shape of the 

curve, the approximation will favor either overestimating or underestimating. For example, if we 

had a concave curve and used Euler Backward, we would always be underestimating. 



6 
 

 

Figure 3.1. Euler Backward on concave curve. Due to the choice of approximation, the approximated 

value will be an underestimate the exact value. 

With a Crank-Nicholson approximation, we use an average between the previous and current 

approximation values which helps diminish overestimating/underestimating. If we use the 

previous example, we see that on the left half of a given rectangle, we are underestimating; 

however, this underestimating is canceled out by the overestimation in the right half of the 

rectangle. 

 

Figure 3.2. Crank-Nicholson approximation on concave curve. The underestimation in the left of the 

rectangles is decreased by the overestimation in the right of the rectangles. 



7 
 

Based on the parameters we picked, we expect that initially, Run 1 will have the worst 

approximation between the three runs while Run 3 should have the best (closest to the exact 

solution). 

 

Figure 3.3. Approximated solution and derivative (black) for Mesh 0 of Run 1 graphed with the exact 

solution (pink).  

 



8 
 

Figure 3.4. Approximated solution and derivative (black) for Mesh 0 of Run 2 graphed with the exact 

solution (pink).  

 

Figure 3.5. Approximated solution and derivative (black) for Mesh 0 of Run 3 graphed with the exact 

solution (pink).  

We see that Run 1’s initial mesh gave an approximation that deviates the most from the exact 

(although it roughly follows the exact solution). Between Run 2 and Run 3, the difference 

between approximations isn’t very large, but Run 3 appears to be a slightly better approximation. 

Similar observations can be see with the derivatives. Run 1 is limited to using constant piecewise 

functions to approximate the derivative, so the approximation is poor compared to Run 2 and 3.  

We can further verify the implementation of our FD Method by checking the convergence 

graphs. Now that we are considering both space and time, the quality of our analysis is 

dependent on mesh size, h, (Chapter 2) as well as time step size, Δt. Ideally, we wish to decrease 

and converge h and Δt at similar or equal rates, so our error is balanced and not dominated by 

one of the sizes. We have graphed error over 4 different norms as we did in Chapter 2 below. 



9 
 

 

Figure 3.6. Error convergence plots of Run 1. 

 

Figure 3.7. Error convergence plots of Run 2. 



10 
 

 

Figure 3.8. Error convergence plots of Run 3. 

We can see that the errors across the 4 norms are all converging which is good. Checking that the 

errors converge at the correct rates gives us more confidence that our implementation is correct. 

To do so, we can write the error as follows: 

∥ 𝑢(⋅, 𝑡𝑓) − 𝑢ℎ

𝑛𝑡𝑠𝑡𝑒𝑝𝑠 ∥𝑄
(𝑙)

 ∼ 𝐶𝑢,𝑄
1 𝜎−𝑞𝑙 + 𝐶𝑢,𝑄

2 2−𝑟𝑙 𝑎𝑠 𝑙 → ∞   (3.15) 

or 

∥ 𝑢(⋅, 𝑡𝑓) − 𝑢ℎ

𝑛𝑡𝑠𝑡𝑒𝑝𝑠 ∥𝑄
(𝑙)

 ∼ 2−𝑟𝑙(𝐶𝑢,𝑄
1 (

2𝑟

𝜎𝑞
)

𝑙

+ 𝐶𝑢,𝑄
2 ) 𝑎𝑠 𝑙 → ∞   (3.16) 

where Q is the norm of interest and l is the level at which we are calculating the error. 

To determine the value of (
2𝑟

𝜎𝑞), we can create a table based on the p and θ we used for our FD-

FE. To achieve optimal balance between time and space, we would like the value to equal 1. If 

we consider the H1(Ω) norm which is sub-optimal in time (values less than 1), the table is as 

follows: 



11 
 

Table 3.1. (
2𝑟

𝜎𝑞) for Q = H1(Ω) 

 

Looking at the L2 norm (the 2nd subplot in Figures 3.6, 3.7, and 3.8) which is optimal, our table is 

as follows: 

Table 3.2. (
2𝑟

𝜎𝑞) for Q = L2(Ω) 

 

Using the table values and combining 𝐶𝑢,𝑄
1  and 𝐶𝑢,𝑄

2  as 𝐶𝑢,𝑄, we can rewrite Equation 3.16 for the 

L2 norm as 

∥ 𝑢(⋅, 𝑡𝑓) − 𝑢ℎ

𝑛𝑡𝑠𝑡𝑒𝑝𝑠 ∥
𝐿2(Ω)

(𝑙)
 ~ 2−𝑟𝑙𝐶𝑢,𝑄 𝑎𝑠 𝑙 → ∞   (3.17) 

To get Equation 3.17 in terms of h, we can use ℎ(𝑙) = 2−𝑙ℎ0 to substitute 2−𝑙 with mesh size 

terms and get the following 

∥ 𝑢(⋅, 𝑡𝑓) − 𝑢ℎ

𝑛𝑡𝑠𝑡𝑒𝑝𝑠 ∥
𝐿2(Ω)

(𝑙)
 ~ (

ℎ(𝑙)

ℎ0
)

𝑟

𝐶𝑢,𝑄   (3.18) 

r = 1

p = 1

r = 2

p = 2

q = 1

θ = 1

σ = 4

0.5

σ = 8

0.5

q = 2

θ = 2

σ = 2

0.5 0.5

𝜎 = 2 2

r = 2

p = 1

r = 3

p = 2

q = 1

θ = 1

σ = 4

1

σ = 8

1

q = 2

θ = 2

σ = 2

1 1

𝜎 = 2 2



12 
 

By taking the log of both sides, we can get a linear equation where the slope is –r, the 

convergence rate. Looking back at the table, we expect Run 1 to converge at a rate of -2 and Run 

2 and 3 to converge at a rate of -3 in the L2 which is what we see in Figures 3.6, 3.7, and 3.8. 

Although the other 3 norms are not optimally balanced like L2, doing similar calculations with 

the other 3 norms to determine the convergence rates confirms that our implementation is 

correct.  

3.3 - Burger Model 

For this Chapter and to further test our FD-FE implementation, we have created a model of 

cooking a burger. We will be modeling the burger as a semi-infinite fin and assuming that our 

skillet is able to maintain a constant temperature gradient throughout the entire process. We have 

split the cooking into 3 stages: pre-flip, post-flip, and repose. We specified the times for each 

stage based on Bobby Flay’s suggested times and graphed the temperature approximation 

through the burger along with constraints we’ve set based on safety (Is the temperature in the 

burger above the cooked temperature Tdone?) and taste (Is the temperature in the burger above the 

Maillard temperature TMaillard? Has the burger rested for enough time trepose?). 

Results 

In the graph below, we see the temperatures of the burger faces along with the temperature in the 

middle of the burger as a function of time in seconds. 



13 
 

 

Figure 3.9. Temperature from FD-FE (p = 1, θ = 1) graphed as a function of time. At t = 180s, the burger 

is flipped. The burger is removed from the skillet at t = 420s and reposes for the remainder of the 

time. 

We also graph the temperature distribution in the Burger at the end of the repose stage. 



14 
 

 

Figure 3.10. Temperature distribution within the burger at the end of the repose stage (blue). The 

temperature at which the burger should be served is shown as well (green dashed). 

Implementation Verification 

Unlike Models in the previous chapters, we do not have an exact solution for our burger model. 

To check that our implementation is correct, we can directly compare our results with 

implementation that we believe to be correct. In this case, we will use the code that Prof. Patera 

has written. When we use the same parameters and values, Prof. Patera’s implementation gives 

the following results: 



15 
 

 

Figure 3.11. Temperature from Prof. Patera’s FD-FE graphed as a function of time. 

 

 



16 
 

Figure 3.12. Temperature distribution in burger at the end of repose stage given by Prof. Patera’s FD-FE. 

Looking at the graphs, it seems the two FD-FE implementations yielded the same results. Upon 

further inspection, the numerical values at tI, tII, and tIII also match as shown in Table 3.3. If we 

take Prof. Patera’s FD-FE implementation to be correct, then we can verify that our 

implementation is also correct. 

Table 3.3. Temperature values at specific time stamps from Ch. 3 FD-FE and Prof. Patera’s FD-FE. 

 

Numerical Specification Verification 

Next, we wish to verify our numerical specifications (mesh size, time step). We will do so by 

comparing performance when we switch p and θ between 2 cases. Case 1 will have [p = 1 and θ 

= 1], and case 2 will have [p = 2 and θ = 0.5]. 

First, we find the coarsest FE mesh that will get us within the error range that we want. In this 

case, we will look at the temperature of the burger on the skillet side at time tI before the flip. If 

we take the reference value of the burger to be 141.6019⁰C (found by running refinements using 

case 2 until output converged to a single value), we would like the error to be within 0.001⁰C of 

that value. The temperature values along with the error are shown in Table 3.4 below. 

Table 3.4. Temperature of the burger on the skillet side at time tI pre-flip along with the difference from 

141.6019⁰C, the accepted value of the temperature of the burger. 

Time (s) Ch. 3 FD-FE Prof. Patera Ch. 3 FD-FE Prof. Patera Ch. 3 FD-FE Prof. Patera

0 4 4 4 4 4 4

180 141.6 141.6 7.022 7.022 16.93 16.93

420 148.7 148.7 48.27 48.27 50.79 50.79

960 57.67 57.67 46.87 46.87 57.37 57.37

Skillet Side Temp (⁰C) Air Side Temp (⁰C) Mid-Burger Temp (⁰C)



17 
 

 

For the specifications of case 1, the coarsest FE mesh we need to have an error less than 0.001⁰C 

is 6 (5 refinements to the initial mesh). On the other hand, with case 2 specifications, the coarsest 

FE mesh we need is 3 (2 refinements to the initial mesh) suggesting that case 2 is a more 

efficient approach computationally. We can use a coarser mesh and come closer to the accepted 

value quicker than with case 1 parameters. 

To be more exact about how much more efficient case 2 is, we can calculate the ratio of 

computational time between the two cases. To calculate the computational time, we can use the 

following: 

Δ𝑄
(𝑙+1)

=  
∥𝑢(𝑙+1)−𝑢(𝑙)∥

2𝑟−1
=  

∥𝑛𝑠𝑡𝑒𝑝𝑠−𝑛𝑡𝑠𝑡𝑒𝑝𝑠∥

2𝑟−1
   (3.19) 

We can obtain r from tables like Table 3.1 and 3.2. For Q = output, the table is shown below. 

Note that case 2 is sub-optimal in space while case 1 is optimally balanced. 

Table 3.5.  (
2𝑟

𝜎𝑞) for Q = output. 

# Of 

Refinements Temp. (⁰C)

Temp. Diff 

(⁰C)

# Of 

Refinements Temp. (⁰C)

Temp. Diff 

(⁰C)

1 141.5101 0.0918 1 141.6030 0.0011

2 141.5788 0.0231 2 141.6020 0.0001

3 141.5961 0.0058 3 -- --

4 141.6004 0.0015 4 -- --

5 141.6015 0.0004 5 -- --

[p = 1, θ = 1] [p = 2, θ = 0.5]



18 
 

 

Calculating the computational times of both cases gives the follow: 

Table 3.6. Computational times of Case 1 and 2. 

 

From this, we find that the ratio of computational time of case 1 relative to case 2 is 107.6 

meaning case 1 is much less efficient than case 2. 

This makes sense because we expect that at higher orders (higher p), our analysis should give us 

a better approximation faster because of the φ functions we are using. Additionally, we expect 

the Crank-Nicholson approximation (θ = 0.5) to give us a better approximation than Euler 

Backward. Based on our observations, this seems to be the case which means our numerical 

specifications seem to be implemented correctly. 

Physical Model Verification 

The final part of our model that we want to verify is our physical model. Our numerical 

specifications and implementation could be correct, but if we have a bad heat transfer model to 

begin with, our analysis will not reflect what we would see in the real world. 

r = 2

p = 1

r = 4

p = 2

q = 1

θ = 1

σ = 4

1

σ = 8

2

q = 2

θ = 2

σ = 2

1 2

𝜎 = 2 2

n_el n_tsteps r

Comp. 
Time n_el n_tsteps r

Comp. 
Time

192 20 2 57.33 24 20.0000 4 0.53333

[p = 1, θ = 1], 5 refinements [p = 2, θ = 0.5], 2 refinements



19 
 

Our model parameters, specifically the flip and cook times, were taken from Bobby Flay while 

the repose time was determined by averaging multiple suggested times. The burger geometry 

was based off a typical burger size. 

I like sliders more than burgers because they are smaller which means I can try different types of 

sliders without getting too full too quickly. 

We will use a new diameter of 0.065 meters while maintaining the same thickness of 0.019 

meters for our slider parameters. Looking at a recipe online, rather than cooking the burgers at 

medium-high, the recipe cooks at medium, so we will lower the skillet temperature from 180⁰C 

to 155⁰C while keeping the other temperatures the same. For cook times, the recipe recommends 

2-3 minutes for stage 1 (pre-flip), 2-3 minutes for medium rare stage 2 (post-flip) or 3-4 minutes 

for medium stage 2. We will keep the repose time the same as before. In general, it seems the 

recipe has lower times for stage 1 and 2. We will use 150 seconds for stage 1 and 180 seconds 

for stage 2. 

The results from our FD-FE are shown below: 



20 
 

 

Figure 3.13. Temperature from FD-FE (p = 2, θ = 0.5) graphed as a function of time. At t = 150s, the 

burger is flipped. The burger is removed from the skillet at t = 330s and reposes for the remainder 

of the time. Skillet temperature is 155⁰C 

If our approximation is correct, it seems like these sliders would never reach the Maillard 

temperature which would affect the taste. Additionally, the sliders do not appear to actually reach 

a safe amount of cooked. We expect that at some point during stage 2, the temperature inside the 

burger should reach above Tdone. 

Let us modify this slider recipe by increasing the skillet temperature back to what we had before 

(180⁰C). 



21 
 

 

Figure 3.13. Temperature from FD-FE (p = 2, θ = 0.5) graphed as a function of time. Skillet temperature 

is 180⁰C. 

Now our sliders are able to reach the Maillard temperature which is good because we want our 

sliders to taste good. 

To bring our internal burger temperature (mid-burger) closer to Tdone, we can try increasing the 

cook times and decreasing the thickness of our sliders. I’ve increased the cook times to what 

Bobby Flay recommends for regular burgers and decreased the thickness of the sliders from 

0.019m to 0.016m. 



22 
 

 

Figure 3.14. Temperature from FD-FE (p = 2, θ = 0.5) graphed as a function of time. Skillet temperature 

is 180⁰C. Cook times increased and slider thickness decreased. 

Now our sliders satisfy our safety constraint as the mid-burger temperature is able to reach the 

done temperature. 

In practice, there may be other factors contributing the how the burgers cook. One thing the 

recipe never specified was the starting temperature of the burgers. We assumed we would be 

taking the burgers out of the fridge, meaning the starting temperature was low. However, if the 

starting temperature was closer to room temperature, the cooking parameters may be different. 

3.5 - Final Thoughts 



23 
 

By adding the FD Method, we are able to handle much more complex and interesting problems 

with our FE-FD code. 

Once we verify that the code is implemented correctly and that we are using optimized numerical 

specifications, FE-FD is able to provide accurate approximations with a small computational 

cost. However, when our numerical specifications are not optimal, we see how the analysis is 

affected. As we saw, when our analysis is run on lower-order φ functions and Euler Backward 

approximations, we require a finer mesh to yield an accurate solution. If we use higher-order FE 

and Crank-Nicholson approximations in our FD, we do not need to refine the mesh as much, 

cutting down on computation time. 

We do need to be careful about our numerical specifications. While it may be tempting to simply 

decrease the mesh size or time step size, maintaining a balance between the two specifications is 

important to optimize the analysis. Increasing one specification faster than the other may lead to 

a longer computation time but a less accurate solution. Additionally, we must be careful about 

applying FE-FD when we can. If we use it on a situation that it is not designed to handle, our 

solution will not reflect what could happen in the real world. In other words, our physical model 

is just as important as the implementation of the FE-FD. 

3.6 - References 

1. Anthony T Patera, 2019, “The Heat Equation: Formulation and Implementation.” 

2. Anthony T Patera, 2019, “The Heat Equation: Error Estimation.” 

3. Anthony T Patera, 2019, “The Heat Equation Study Cases.” 

4. Izzy Moon, “How to Cook Sliders on a Skillet,” Live Strong. 

5. Maegan, 2017, “Skillet Sliders,” The Baker Mama. 
  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: The FE Method for 1D 4th-Order BVPs: Xylophone

 



1 
 

4.1 - Abstract 

In previous chapters, we focused on solving heat transfer problems using FE methods. In this 

chapter, we will modify our FE method such that we can solve beam bending problems. 

We will use the Euler-Bernoulli beam model as our general model which we can derive using 

equilibrium equations and constitutive stress-strain relationships. Once we have our general 

differential equation, we can set up matrices similar to previous chapters and solve for a set of 

eigenvalues that we can use to create our solution which includes both displacement as well as 

velocity (space and time). For the chapter’s xylophone problem, we will be assuming the ends of 

our bars are free. However, in the case that we do want to constrain the beam, we can go in the 

FE method after solving for our matrices and add in our boundary conditions. Aside from our FE 

method, we also added a segment of code to determine the zeros of the 3rd mode of the frequency 

response of the beam. This corresponds to nodes where displacement is zero which will be where 

we pick our xylophone’s hole locations. 

To design our xylophone bars, we first determine an optimal height function (based off a desired 

fundamental frequency or pitch and a frequency ratio) which will correspond to a cutout in the 

bar. Once we have determined the optimal height function, we can determine the optimal bar 

length as well as hole locations. For this chapter, we looked at the notes F4, C5, and F5. 

We analyzed our results as well as error estimates to determine if the designs were reasonable. 

While the error convergence plots did not reveal any computational errors, looking at the error 

estimates revealed that there may have been numerical errors for C5 and F5 designs. We may 

have been reaching the limits of what the model is valid for, proving that creating a good model 

is just as important as correctly implementing the FE method. 



2 
 

4.2 - Finite Element Method 

In this chapter, we modify our Finite Element Method to solve beam bending eigenproblems in 

space and time. We will derive the general method from the following beam bending problem.  

 

Figure 4.1. Axial loading beam bending diagram. 

From Figure 4.1, we can write out our forces in the y-direction as well as our moments in 

equilibrium such that: 

𝜕𝑉

𝜕𝑥
+ 𝑞(𝑥, 𝑡) = 𝜌𝐴𝑐𝑠(𝑥)𝑢̈,   (4.1) 

𝜕𝑀

𝜕𝑥
+ 𝑉 − 𝑁0

𝜕𝑢

𝜕𝑥
= 0,   (4.2) 

Combining the two into one equation gives us: 

𝜕2𝑀

𝜕𝑥2 − 𝑁0
𝜕2𝑢

𝜕𝑥2 = 𝑞(𝑥, 𝑡) −  𝜌𝐴𝑐𝑠(𝑥)𝑢̈,   (4.3) 

From here, we can apply stress-strain relations to obtain an equation for our moment, M. 

𝜎𝑥𝑥 =  −𝐸𝑦
𝜕2𝑢

𝜕𝑥2,   (4.4) 

𝑀 = (𝐸𝐼)𝑒𝑓𝑓
𝜕2𝑢

𝜕𝑥2 =  𝛽(𝑥)
𝜕2𝑢

𝜕𝑥2,  (4.5) 



3 
 

Finally, we can combine Equations 4.3 and 4.5 to give us the following differential equation 

which we will use as the general form for our FE method. 

𝜕2

𝜕𝑥2 (𝛽(𝑥)
𝜕2𝑢

𝜕𝑥2) − 𝑁0
𝜕2𝑢

𝜕𝑥2 = 𝑞(𝑥, 𝑡) −  𝜌𝐴𝑐𝑠(𝑥)
𝜕2𝑢

𝜕𝑡2    0 < x < L, 0 < t ≤ tf,  (4.6) 

In this implementation of the finite element method, we will solve for eigenvalues which we will 

use to give us the approximation of the solution. For the space and time response (frequency 

response) of our beam, we can estimate the solution by summing sinusoids of a given mode 

shape. 

𝑢(𝑥, 𝑡) =  ∑ (𝑐1
(𝑘)

cos(𝜔𝑛
(𝑘)

𝑡) + 𝑐2
(𝑘)

sin(𝜔𝑛
(𝑘)

𝑡) 𝑢(𝑘)(𝑥) ∞
𝑘=1 ,  (4.7) 

We can set up our eigenproblem such that our eigenvalue, λ, is the square of the frequency of our 

sinusoids, ω, giving us the following. 

𝜕2

𝜕𝑥2 (𝛽(𝑥)
𝜕2𝑢(𝑘)

𝜕𝑥2 ) − 𝑁0
𝜕2𝑢(𝑘)

𝜕𝑥2 = 𝜆(𝑘)𝜌𝐴𝑐𝑠(𝑥)𝑢(𝑘)  0 < x < L,   (4.8) 

Similar to previous chapters, we can use our basis functions to approximate u and define 

matrices based off the terms of Equation 4.8 and use Matlab to solve for an array of eigenvalues. 

We define the following matrices A (left side of Equation 4.8) and F (right side of Equation 4.8) 

as follows. 

𝐴̃𝑖𝑗 =  ∫ 𝛽(𝑥)
𝑑2𝜑𝑖

𝑑𝑥2

𝑑2𝜑𝑗

𝑑𝑥2
+ 𝑁0

𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥

𝐿

0
,   (4.9) 

𝐹̃𝑖 =  ∫ 𝜆ℎ
(𝑘)

𝜌𝐴𝑐𝑠(𝑥) ∑ 𝑢ℎ𝑗
(𝑘)

𝜑𝑖𝜑𝑗𝑑𝑥
2𝑛𝑛𝑜𝑑𝑒
𝑗=1

𝐿

0
=  𝜆ℎ

(𝑘) ∑ ∫ 𝜌𝐴𝑐𝑠(𝑥)𝜑𝑖𝜑𝑗𝑑𝑥 𝑢ℎ𝑗
(𝑘)𝐿

0

2𝑛𝑛𝑜𝑑𝑒
𝑗=1 ,   (4.10) 

Expressing Equation 4.8 using Equations 4.9 and 4.10 gives us the following eigenproblem: 

𝐴 𝑢ℎ
(𝑘)0 =  𝐹 =  𝜆ℎ

(𝑘)
𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑢ℎ

(𝑘)0
,   (4.11) 



4 
 

Solving for the eigenvalues, 𝜆ℎ
(𝑘)

, from Equation 4.11 will not only give us the deflection and 

velocity of a given point in the beam but will also give us the various modes of the beam’s 

response. We will see how this can be useful in design in this chapter as we design and optimize 

a xylophone bar. 

Imposing Boundary Conditions 

In the case above, we have assumed a free-standing beam. However, in the case that we do wish 

to incorporate boundary conditions, we can do so by modifying our stiffness matrix A after 

solving for the matrix without boundary conditions (similar to how we implemented a Dirichlet 

condition). 

Say we have a beam which we wish to constrain with a lumped Hookean spring attached to the 

right end (x = L). Our boundary conditions can then be expressed as follows: 

𝑢𝑥𝑥 = 𝑢𝑥𝑥𝑥 = 0 at x = 0,  (4.12) 

𝑢𝑥𝑥 = 0, −(𝐸𝐼𝑢𝑥𝑥)𝑥 =  −𝑘𝑠𝑢 at x = L,  (4.13) 

When we write out the stiffness matrix terms, we have an integral term similar to Equation 4.9, 

but we also add in the boundary condition such that we have the following: 

𝐴𝑖𝑗 =  ∫ 𝐸𝐼
𝑑2𝜑𝑖

𝑑𝑥2

𝑑2𝜑𝑗

𝑑𝑥2  𝑑𝑥 + 𝑘𝑠𝜑𝑖(𝐿)𝜑𝑗(𝐿)
𝐿

0
, 1 ≤ i, j ≤ 2∙nnode,  (4.14) 

In the implementation, the addition of the boundary condition occurs in the function 

impose_boundary_cond. The function will add the spring term into the matrix A by executing the 

following line of code in the else-statement of the if(Dir(1, 2) == true) loop. 

A(n_el0 + 1, n_el0 + 1) = A(n_el0 + 1, n_el0 + 1) + u_Gamma2; 



5 
 

We can define u_Gamma2 as [ks; 0] and set probdef.Dir as [[false; false], [true; false]] in 

xylo_bar_design3 where we define our problem. 

Recall that we wish to change the right boundary condition which corresponds to index nel_0 + 1 

in our matrix rather than the last index number. As we refine, we continue number additional 

nodes and elements from where we left off rather than re-numbering all nodes and elements. 

 

Figure 4.2. Visualization of node and element numbering while refining. Blue circles denote initial mesh 

nodes; red dashes denote refinement nodes. 

As we see in Figure 4.2, the right most node where we wish to implement the boundary 

condition is node 𝑥𝑛𝑒𝑙_0+1 and not 𝑥𝑛𝑛𝑜𝑑𝑒. 

4.3 - Xylophone Bar Model 

Xylophone bars are designed such that when struck, the bar’s first mode corresponds to the 

frequency of a pitch while subsequent mode frequencies are a multiple of the first. Common 

frequency ratios are quint (a factor of 3) and double-octave (a factor of 4). While on the top 

surface, the bar is rectangular, the bottom is usually carved out to achieve the desired frequency 

response. To secure the xylophone bar, a string is run through two holes drilled in the bar; these 

hole locations are determined by the first mode’s (fundamental mode) zeros. When the 

xylophone bar is struck, the bar will deflect, but at the hole locations, the deflection will be zero, 



6 
 

and the string will not interfere with the vibration of the bar. We can model and define our 

xylophone bar as follows. 

 

Figure 4.3. Xylophone bar with dimensions. We denote xd
* as the starting x-distance of our cut defined by 

the height function Hd(xd). 

We will use our FE method for beam bending eigenproblems to optimize the shape of the bar for 

a given target frequency and target frequency ratio. The differential equation we will be solving 

in dimensional form is: 

𝑑2

𝑑𝑥𝑑
2  (

𝐸𝑑𝑊𝑑𝐻𝑑
3(𝑥𝑑)

12

𝑑2𝑢𝑑
(𝑘)

𝑑𝑥𝑑
2 ) =  𝜆𝑑

(𝑘)
𝜌𝑑𝑊𝑑𝐻𝑑(𝑥𝑑)𝑢𝑑

(𝑘)
  0 < xd < Ld ,  (4.15) 

In nondimensional form, we can write Equation 4.15 as: 

𝑑2

𝑑𝑥2
(

𝐻3(𝑥)

12

𝑑2𝑢(𝑘)

𝑑𝑥2
) =  𝜆(𝑘)𝐻(𝑥)𝑢(𝑘)  0 < xd < 1 , (4.16) 

For a given target frequency and target frequency ratio, we can calculate the optimal height 

function, 𝐻𝑑(𝑥𝑑). From there, we can also calculate the optimal xylophone bar length, Ld. 

To calculate the optimal hole locations in the bar, we first find which element of our reference 

mesh that contains a zero by looking for a sign change in our solution, uh
(3)(x). Once we have 



7 
 

established which element contains the zero, we find the exact location of the hole in the 

reference domain by solving for an 𝑥̂ℎ𝑜𝑙𝑒 that satisfies the following equation: 

∑ 𝑢ℎ
(3)

𝑙𝑔2(𝑙, 𝑚∗)𝑆̂𝑙𝑚∗(𝑥̂ℎ𝑜𝑙𝑒) = 04
𝑙=1 ,  (4.17) 

Finally, we can scale  𝑥̂ℎ𝑜𝑙𝑒 back to the dimensional domain by taking into account the element 

size and length of the xylophone bar: 

𝑥𝑑ℎ
ℎ𝑜𝑙𝑒 = (𝑥lg(1,𝑚∗) + ℎ𝑚∗

𝑥̂ℎ𝑜𝑙𝑒) ∗ 𝐿𝑑,  (4.18) 

We can easily check and see if our hole location algorithm is working properly by plotting the 

fundamental mode along with the bar and checking to see where our code finds the zeros. 

 

Figure 4.4. Bar design to respond with a frequency of 32.8Hz. The zeros are shown as dark blue dotted 

lines which cross both the bar and the fundamental mode (in black) at the same spot. 

With our optimized height function, bar length, and hole locations, we can design and fabricate 

our xylophone bar. 



8 
 

4.4 - Verification 

To verify that our FE method can find the optimal bar length, we can compare our FE results 

with another FE result as well as experimental data. In this case, we will be using data collected 

by Mauro Caresta on vibrations of a beam with no supported ends. 

Physical Verification – Caresta Study 

In Caresta’s experiment, a steel beam was excited and produced a frequency response. The 

results of that response are shown below in Table 4.1. 

Table 4.1. Caresta study theoretical and experimental frequency response of a steel beam with 

unsupported ends. 

 

To test our experiment, we used the first mode frequency as our target frequency (32.8Hz) and a 

frequency ratio of 90.44 Hz and 32.8 Hz. We then had the code find the optimal bar length. In 

calling our FE method, we must specify that we want a constant height throughout the bar (a 

constant rectangular cross section), so our model matches the model used by Caresta. 

The FE Matlab function we call requires specific inputs. For our desired fundamental frequency, 

we input 32.8 Hz with a desired frequency ratio of 90.44 Hz / 32.8 Hz or 2.76. We will use the 

height of the steel beam in Caresta’s study of 0.01 m. For the material properties Young’s 

Modulus and density, we use the same values as those reported in the study: 2.1x1011 Nm-2 and 

7800 kgm-3, respectively. 

Mode Theoretical [Hz] Experimental [Hz]

n = 1 32.8 32.25

n = 2 90.44 88.5

n = 3 177.30 173.5

n = 4 293.08 287.5

n = 5 437.82 430



9 
 

The FE Matlab function also requires two inputs that are more specific to the xylophone 

optimization problem we are trying to solve: xstar and p2_interval_desired. xstar denotes what 

x-direction value our height function will start from while p2_interval_desired is either a range 

of percentage of material remaining or the optimal percentage of material remaining at the 

middle of the bar. p2_interval_desired’s state is determined by justcalc_L_d; if justcalc_L_d is 

false, the FE code will calculate the optimal height function, and p2-interval_desired will be the 

range of possible percentages. If justcalc_L_d is true, the FE code will calculate the optimal bar 

length given the optimal height function (p2_interval_desired is the optimal percentage left at 

the middle of the bar). For our Caresta test case, because the beam in the study has no varying 

heights, we will set justcalc_L_d to true and input [1, 1] for p2_interval_desired (we wish to 

keep 100% of the material). xstar may be any value (less than 0.5) since we do not make a cut in 

the bar. 

Table 4.2 shows the frequencies our FE method solved for alongside the data collected by 

Caresta. 

Table 4.2. Our FE Method predictions next to Caresta’s theoretical and experimental data. 

 

The length of the steel bar used in Caresta’s experiment had a length of 1.275 m; our FE method 

predicted the length of a steel bar needed to create the frequency response to be 1.2752 m, very 

similar to the expect length. 

FE Method

Mode Theoretical Theoretical [Hz] Experimental [Hz]

n = 1 32.8000 32.8 32.25

n = 2 90.4145 90.44 88.5

Caresta



10 
 

Looking into the error convergence plots, we see that the error as we refine the mesh converge as 

expected. 

 

Figure 4.5. Error convergence plots in 4 norms for a steel bar with target frequency of 32.8 Hz. 

Given that our FE method was able to produce the correct beam length given a target frequency, 

we can assume that that part of our solver is working properly. Additionally, we can assume our 

method works reasonably well since the solution matches experimental data collected by 

Caresta. 

4.5 - Results 

In this chapter, we will design 3 xylophone bars: F4, C5, and F5. To design and optimize the 

bars, we will first run our FE code with justcalc_L_d set to false and find our optimal height 

function. Once we have that, we will re-run the code with justcalc_L_d set to true, so we can get 

our optimal bar length. We will design all three bars to be quint harmonic (frequency ratio of 3). 



11 
 

Each bar will have a maximum height of 0.015 m and height functions that begin at an x-distance 

of 0.05 of the bar length. We will assume each bar is made of rosewood which has a Young’s 

Modulus of 1.4x1010 Nm-2 and a density of 835 kgm-3. The table below shows the numerical 

results of our FE code along with our desired frequency values. 

Table 4.3. Desired and FE results for quint xylophone bars tuned to F4, C5, and F5. 

 

We can also calculate our error estimates of the frequencies from the FE method. To calculate 

the error of the frequency ratio, we can use the following error estimate for quotients: 

𝛿𝑞

|𝑞|
=

𝛿𝑥

|𝑥|
+ ⋯

𝛿𝑧

|𝑧|
,  (4.19) 

The table below shows the error estimates from the final mesh after 3 uniform refinements. 

Table 4.4. Error estimates of fundamental frequency, first harmonic, and frequency ratio. 

 

The following plots show both the bar shape as well as the hole locations for each xylophone 

bar: 

Desired 

Fundamental 

Frequency

Desired 

Frequency 

Ratio

Desired 1st 

Harmonic

Fundamental 

Frequency

1st 

Harmonic

Frequency 

Ratio p2optimal Length

[Hz] [ ] [Hz] [Hz] [Hz] [ ] [ ] [m]

F4 349.23 3 1047.69 349.2300 1044.6 2.9913 0.6438 0.3264

C5 523.25 3 1569.75 523.2500 1859.2 3.5531 0.2667 0.1594

F5 698.46 3 2095.38 698.4600 2549.5 3.6501 0.2308 0.1270

Fundamental 

Frequency 

Error

1st 

Harmonic 

Error

Frequency 

Ratio Error

F4 5.8496E-06 9.9144E-05 3.3400E-07

C5 3.7621E-05 5.4015E-04 1.2878E-06

F5 6.1124E-05 8.7008E-04 1.5651E-06



12 
 

 

Figure 4.6. Visual representation of F4 bar with fundamental frequency, 1st harmonic, and hole locations. 

 

Figure 4.7. Visual representation of C5 bar with fundamental frequency, 1st harmonic, and hole locations. 



13 
 

 

Figure 4.8. Visual representation of F5 bar with fundamental frequency, 1st harmonic, and hole locations. 

4.6 Discussion 

Our xylophone bar designs appear to make sense based on Figures 4.6, 4.7, and 4.8. We expect 

lower notes (F4) to require a larger/longer bar while the higher notes (C5 and F5) have 

smaller/shorter bars. This is reflected in our bar designs as F4 has the longest length (0.32m) 

while F5 has the shortest length (0.13m). Additionally, we see that p2optimal or our height 

functions follow a similar trend. The lower the note, the less material that needs to be removed 

(higher p2optimal). 

Regarding error convergence, if we look at the convergence plots shown below, we can see that 

although our error estimates seem small from Table 4.4, they appear to be reliable as in all 

norms. They converge at the correct rates, and there are no computational precision issues. 



14 
 

 

Figure 4.9. Error convergence plots for F4. 

 

Figure 4.10. Error convergence plots for C5. 



15 
 

 

Figure 4.11. Error convergence plots for F5. 

Looking at the error estimates of the 3 xylophone bars, we can see that as the desired 

fundamental frequency increases, the error estimates increase. This suggests that our FE method, 

for the given bar geometry, is more accurate at lower desired frequencies. When we ask for 

higher desired frequencies, we may be moving out of the range of our numerical model. Because 

our FE method is modeled after an Euler-Bernoulli beam (Equation 4.3), the model is only valid 

for infinitesimal strains and small rotations. As we decrease the size of the beam we solve for, 

we could be moving out of the regime for which Euler-Bernoulli beam theory holds. 

For each xylophone bar, we ran 3 uniform refinements and saw that the solutions between each 

mesh converged. Based on what we know about frequency response, we know that the 1st 

harmonic shape, compared to the fundamental frequency, will have a more complex shape. For 

this reason, for the same mesh, we see that the FE error is larger for the 1st harmonic (Table 4.3). 

It will require a finer mesh to capture the 1st harmonic solution since there are more features than 

in the fundamental solution. 



16 
 

When we consider the application of our xylophone bars, because they are used to produce music 

for humans, we can determine whether or not we have refined our mesh enough. An un-trained 

human ear can distinguish pitches about 10 Hz apart. Since pitch is determined by the 

fundamental frequency, it seems our mesh was refined enough as the calculated fundamental 

frequency was very close to the desired frequency. We may have been able to stay within this 

tolerance with fewer mesh refinements which would cut down on the FE’s runtime. However, 

our undertones (determined by the harmonics and frequency ratio) are not as close to the desired 

values as we would have hoped. F4 seems to meet our requirements, but C5 and F5 do not. To 

get within 10 Hz of the desired 1st harmonic, we would likely have to refine the mesh further or 

consider switching models (as mentioned above). 

4.7 - Final Thoughts 

Using a similar form as our previous heat transfer problems, we can easily modify our FE 

method to solve beam bending eigenproblems and get the displacement and velocity of points on 

a beam. 

In this chapter, we designed and optimized xylophone bars to various pitches/notes using our 

modified FE method. We saw that our FE method worked well for the lower frequency (F4). 

However, when we moved up in pitch, our error estimates increased as well. This could be 

attributed to the model we used to set up our FE method. Models can be useful under the correct 

assumptions and conditions; however, in our case, by asking for a higher desired fundamental 

frequency, we may have stepped out of the regime in which we can use the Euler-Bernoulli beam 

model. 



17 
 

While FE method can be done quickly and accurately, it is important to make sure you are using 

a valid model for the problem you are trying to solve. 

4.8 - References 

1. Anthony T Patera, 2019, “Bending Energy Formulation.” 

2. Anthony T Patera, 2019, “Bending FE.” 

3. Anthony T Patera, 2019, “Bending Natural Frequencies.” 

4. Anthony T Patera, 2019, “Bending Study Case Xylophone Bar.” 

  



 
 

 

 

 

 

 

 

 

 

Chapter 5: The FE Method for 1D 4th-Order BVPs: Self-Buckling

 

  



1 
 



2 
 



3 
 



4 
 



5 
 



6 
 



7 
 



8 
 



9 
 

 


