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Abstract 

 In order to explore finite element methods in a mechanical engineering context, 

this document will explore three different scenarios. Each of these scenarios are 

designed to be highly physically relevant in order to build and allow for intuitive 

understanding in order to check the results of the finite element analysis. In the first 

scenario, finite element analysis is used to calculate the heat transfer through a 

hamburger throughout the preparation process. The second scenario explores the 

tuning of a xylophone bar through the use of finite element analysis. Finally, the third 

scenario explores the optimization of the profile of a tower in order to create the tallest 

possible tower that will not buckle under its own weight 

 

References 

 Course notes and materials for MIT Course 2.S976 created by Prof. A. Patera 

are referenced extensively throughout this document and are available on 

stellar.mit.edu 

 The website at URL: https://www.americastestkitchen.com/recipes/9182-cast-

iron-ultimate-indoor-burgers burger recipe was referenced to obtain a hamburger 

recipe for analysis in chapter 3 
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Chapter 3 

Throughout the process of exploring finite element analysis over time, two 

primary models were used in the analysis: semiinf_plus and burger. Detailed 

descriptions of each of the models can be found in the lecture notes named “Heat 

Equation: Study Cases”. In order to properly analyze the cooking hamburger, we 

applied Newmann/Robin boundary conditions on both of the ends of the hamburger. 

This allowed for application of the theoretical equations in a way that most closely 

resembled the physical setup of the experiment. Newmann/Robin boundary conditions 

allow for us to supply the code with a designated heat flux due to the skillet as well as 

the heat transfer coefficients between the burger and the oil layer as well as between 

the burger of the air.  

Throughout the course of the analysis, the final product is a term 𝑢ℎ,Δ𝑡
𝑘 (𝑥), 

evaluated over 1 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠. This term stores all of the temperature values at all of 

the finite element nodes within the burger at each individual timestep. For each change 

in time (Δ𝑡), the values of temperature (u) at each different node location (h) are 

calculated and stored in the index k. 

The model semiinf_plus was analyzed in order to confirm that the 𝑢ℎ,Δ𝑡
𝑘 (𝑥) term 

exhibits a proper convergence in error as the number or timesteps and nodes 

increases. Various analysis schemes were tested for error convergence using different 

combinations of p and θ values and the results can be seen in Figures 3.1-3.3. In the 

first case, where p = 1, the error in the L2 norm should converge to a slope of -2. For the 

other two cases, where p = 2, the error in the L2 norm should converge to a slope of -3. 

These slopes were calculated using the relationship that error in the L2 norm is 
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proportional to 2−𝑟𝑙 (𝑐1 (
2𝑟

𝜎𝑞
)
𝑙

+ 𝑐2). (Within this error proportionality, the 2𝑟 term 

represents the refinement of equation in space and the σq term represents the 

refinement in time. In order to ensure that both parameters are optimized at the same 

rate, r and q are chosen such that the 
2𝑟

𝜎𝑞
 term cancels out.) In each case, the error 

estimate in the L2 norm tracked very closely to the actual error, and they exhibited the 

expected error convergence slope based on the particular scheme. 

 

 

Figure 3.1: Error convergence for p=1, θ=1 
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Figure 3.2: Error convergence for p=2, θ=2 

 

Figure 3.3: Error convergence for p=2, θ=0.5 
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In order to allow for visual confirmation of proper hamburger analysis, the code 

produces a graph displaying the temperature of each side of the hamburger as well as 

the center, overlaid with several reference lines representing specific target values 

when prepared to the specifications of professional chef Bobby Flay (see Figure 3.4). 

Initially, the hamburger will start at a temperature below room temperature as it is 

recommended that raw hamburger is refrigerated prior to preparation of a burger. Next, 

the side of the burger closest to the skillet can be observed to greatly increase in 

temperature until it surpasses the Maillard temperature temperature for ideal flavor as 

the side exposed to air gradually climbs. When the burger is flipped, the side previously 

exposed to the air rapidly begins to increase in temperature while the already hot side 

now exposed to air initially rapidly loses heat. Throughout this process, the internal 

temperature in the center of the burger steadily rises until the burger is removed and 

placed to cool. During the cooling period, all of the different temperatures gradually and 

steadily decrease, converging toward the ideal serving temperature. 
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Figure 3.4: Burger temperature over time following Bobby Flay’s Recipe 

 

As finite element meshes and the accompanying timesteps over which they are 

evaluated become more refined, the computational load required in order to solve the 

problem increases. This is due to the increase in the total number of operations required 

to solve the problem brought about by each iteration of refinement on the mesh and 

timestep. Ultimately, the goal of refining the timestep and mesh that a problem is 

evaluated at is to achieve some desired error tolerance with the final answer. Different 

computational schemes and parameters produce different amounts of error at different 

computational cost due to their differing total number of operations.  

In a small problem like the one demonstrated here with a relatively small number of 

total operations and a generous tolerance (when compared to typical engineering 

applications like those in nuclear reactors or jet engines), even computing to tolerances 

well beyond what is required, the total computational time is quite short. Using a 
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reasonably powerful modern laptop, computing the analysis with both analysis schemes 

[p=1, θ=1 and p=2, θ=0.5] took on the order of 1-3 minutes. However, in the 

aforementioned engineering applications, as well as most other real-world 

implementations of finite element analysis, the total number of operations, and thus the 

total computational time, becomes significant. Choosing an analysis scheme carefully 

has the potential to save large amounts of time and computational resources on an 

analysis while still meeting the same pre-determined error tolerances. Table 3.1 shows 

the process for calculating the computational cost for two different analysis schemes. 

 

Figure 3.5: Error convergence for p=1, θ=1 highlighting the point where the error 

dips below the desired threshold 
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Figure 3.6: Error convergence for p=2, θ=0.5 highlighting the point where the error dips 

below the desired threshold 

[P = 1, θ = 1] [P = 2, θ = 1/2] 

6 initial elements, 20 initial timesteps 6 initial elements, 20 initial timesteps 

5 refinements required 2 refinements required 

Final elements: 6 x 25 = 192 Final elements: 6 x 22 = 24 

Final timestep: 20 x 45 = 20480 Final timestep: 20 x (2√2)2 = 362039 

Overall operations: 

192 x 20480 = 3.93 x 106 operations 

Overall operations: 

24 x 3620.39 = 8.69 x 104 (multiply total 

operations by 2 to account for the 

pentadiagonal structure of the calculation 

matrix) 

2 x 8.69 x 104 = 1.74 x 105 operations 

Table 3.1: Computational cost calculation examples 
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In order to further explore and understand the finite element code, I tested the 

analysis on a hamburger recipe found on the internet. The results are shown in Figures 

3.7 and 3.8. Much like the recipe from professional chef Bobby Flay used in the 

previous hamburger analysis, this recipe manages to achieve many of the targets for 

hamburger preparation. In particular, each side is brought comfortably above the 

Maillard temperature, and the five minute repose time is sufficient to allow the 

hamburger to come very close to the recommended serving temperature. However, 

much like the Bobby Flay recipe, the center temperature also does not reach the USDA 

recommended temperature at any time throughout the cooking process, although the 

recipe that I found from searching on the internet does bring the hamburger’s center to 

a temperature closer to the recommended temperature more consistently and for a 

longer time. 

 

Figure 3.7: Burger recipe temperature profile over time 
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Figure 3.8: Burger recipe cross-section temperature distribution 
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Chapter 4 

Beam eigenproblems are constructed and solved similarly to other finite element 

problems that discussed in previous chapters. These problems are separated into a 

finite element mesh and described by a combination of phi functions as before, 

however, in the case of beam eigenproblems, each node relates to two different phi 

functions relating to two different degrees of freedom: displacement and slope. At each 

node, all phi functions have a value of zero except one which is normalized to a value of 

one. Similarly, all phi functions have a derivative of zero except for one which has a 

normalized value of one (see Figure 4.1) 

 

Figure 4.1: Example showing the phi functions for a bar divided into two elements. 

 

Another important consideration in this finite element implementation of beam 

eigenproblems is the nondimensionalization of both the bar as a whole as well as an 

individual finite element. This allows for not only easier calculation within the code, but 

more importantly it allows for any analysis and calculation to be universally applicable 
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for given input parameters, regardless of scaling. Once a particular analysis is 

performed, the relations between different parameters can be observed and modified 

without requiring the analysis to be performed again. Once all desired analysis has 

been performed, the nondimensionalization can be applied again in reverse in order to 

undue those operations and scale the result back to the desired dimensional scale. 

In this chapter, the task is designed around optimizing the design parameters of 

a xylophone bar in order to tune it for its desired use case given particular parameters. 

The first and most immediately noticeable of the design objectives of a xylophone bar is 

the fundamental frequency with which the bar will vibrate when struck. This frequency 

determines what musical note the xylophone bar will most closely resemble. While other 

factors can impact the fundamental frequency of a bar, most factors outside of the 

length of the bar are held constant across all of the different bars in a particular 

xylophone. In particular, considerations such as the cross-sectional profile of the bar as 

well as the material the bar is constructed from are held constant throughout all of the 

bars on a xylophone, leaving only the length of a bar to determine its fundamental 

frequency. This is the case for the problem explored in this chapter. The non-

dimensionalized length of the bar is optimized to produce the desired fundamental 

frequency. 

Along with the fundamental frequency of the xylophone bar, the harmonic 

frequencies that a bar vibrates at will also have a great impact on the musical quality of 

the instrument and how it is perceived by listeners. For example, a frequency ratio of 4 

(“double-octave”) is very typical of other orchestral instruments whereas a frequency 

ratio of 3 (“quint”) has a different auditory quality, allowing the xylophone to sound 
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p2 Interval 

p2 

L_d 

Hmax_d 

distinct and noticeable even when combined with an orchestra. This parameter is tuned 

by removing material from the underside of a bar. Since the overall length of the bar 

does not change through the process of removing material from the underside of the 

bar, the fundamental frequency remains the same but the first harmonic frequency will 

be impacted as mentioned before. 

A final consideration for xylophone bar design is that of physically holding the bar 

in place so that it may be played. Holding a xylophone bar at an arbitrary location will 

cause damping effects on the vibration of the bar, impacting sound quality. In order to 

avoid these negative impacts, the nodes of the bar must be identified. These nodes are 

the locations along the bar where, due to the characteristics of the bar’s vibration, there 

is no displacement of the bar when vibrating. If holes are drilled through the bar at these 

nodes, it can be mounted without impacting the vibration due to the fundamental 

frequency (and thus the sound quality) of the bar. 

 

 

 

 

Figure 4.2: Xylophone Bar Dimensions. Width of the bar (not used in calculations) is 

measured into the page 

 

Finding the nodes in a xylophone bar due to its fundamental frequency is one of 

the primary functions of this finite element code. In the case of this problem, the nodes 

on a xylophone bar are physically represented as the points on the bar where the 

displacement of the bar due to vibration at its fundamental frequency is zero. 

Computationally, this was accomplished by solving the beam eigenproblem:  
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𝑑2

𝑑𝑥2
(
𝐻3(𝑥)

12

𝑑2𝑢(𝑘)

𝑑𝑥2
) = 𝜆(𝑘)𝐻(𝑥)𝑢(𝑘). The values of 𝜆 are the nodes of xylophone bar and can 

also be represented graphically through observing the plot of displacement of the bar in 

the y axis along the length of the x axis when it is vibrating at its fundamental frequency. 

As a part of the finite element analysis, the bar is separated into a mesh of distinct finite 

elements. Since these elements span the entire length of the bar, there will be two 

distinct elements that contain the nodes, represented graphically as the displacement 

graph crossing through y=0. In order to identify these elements, I wrote an algorithm to 

check each element by evaluating the product of the displacement at its left node with 

its right node, accomplished computationally through the formula:  

𝑢ℎ
(3)𝑙𝑔2(1,𝑚∗) × 𝑢ℎ

(3)𝑙𝑔2(3,𝑚∗) < 0. This inequality will only be true in the cases where 

the displacement graph crosses zero within the element because only then will the 

value at the left node (𝑢ℎ
(3)𝑙𝑔2(1,𝑚∗)) have a different sign than the value at the right 

node (𝑢ℎ
(3)
𝑙𝑔2(3,𝑚∗)). (While it is true that this code is susceptible to producing 

inaccurate results in the case where the displacement graph crosses y=0 twice within a 

single element, that is not a concern in this particular problem because the fundamental 

frequency is a gradual enough curve and even the initial mesh is sufficiently fine in 

order to ensure this inaccuracy is avoided.) Once the elements where the displacement 

graph crosses zero are identified, my code then uses the built-in matlab function fzero 

over only those two elements in order to identify the x values of the two nodes along the 

individual finite element within which they occur. Using this value of distance along the 

particular finite element as well as the location of the start of that element, I then 

calculated the distance along the non-dimensionalized bar where each node occurred. 

This could then be re-dimensionalized in order to find out the locations of the nodes in 
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the final bar. This final placement calculation and re-dimensionalization was 

accomplished through the equation: 𝑥𝑑ℎ
ℎ𝑜𝑙𝑒 = (𝑥𝑙𝑔(1,𝑚

∗) + ℎ𝑚
∗
�̂�ℎ𝑜𝑙𝑒)𝐿𝑑 where 𝑥𝑙𝑔(1,𝑚

∗) is 

the location of the start of the finite element that contains the node, ℎ𝑚
∗
 is the length of 

an individual finite element, �̂�ℎ𝑜𝑙𝑒 is the distance along the particular finite element 

where the node occurs, and 𝐿𝑑 is the length of the xylophone bar used to re-

dimensionalize the problem.  

Once the nodes are identified, the remaining code is able to continue and 

complete the optimization of the xylophone bar and present those results graphically 

(see Figures 4.3 and 4.4). Overlaid on top of the cross-sectional profile of the xylophone 

bar is the graph of the displacement due to the fundamental frequency (as well as the 

first harmonic frequency) and two lines representing the identified node locations. The 

identified node locations can be seen on the plot to align with the points where the 

displacement graph crosses zero. This is exactly what was intended from the code, 

lending credibility to the argument that my algorithm is implemented correctly. 
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Figure 4.3: Optimized node locations using Caresta’s experimental setup 

 

 

Figure 4.4: Zoomed in views of the left (a) and right (b) nodes identified previously 

verifying that the fundamental frequency crosses zero at each node. 

 

In order to verify correct implementation and operation of the analysis algorithm, 

experimental data gathered by Mauro Caresta was used. Caresta experimentally and 

theoretically determined the fundamental and first four harmonic frequencies of a bar of 

steel with a given length, density, cross-section, and Young’s modulus. The finite 

(a) (b) 
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element code, if all parts are correctly implemented, will determine the first harmonic 

frequency and optimal length in order to achieve a target harmonic frequency (given the 

cross-section, density, and Young’s modulus). Caresta calculated that his bar (of length 

L = 1.275m, thickness Hmax_d = 0.01m, density rhobar_d = 7800 kg/m3, and p2 = 1 

indicating that the bar had no material removed from it) had a theoretical fundamental 

frequency of 32.80Hz and a first harmonic frequency of 90.44Hz. Experimentally, 

Caresta observed a fundamental frequency of 32.25Hz and a first harmonic frequency 

of 88.50. After running the code with the given input values taken directly from Caresta’s 

experimental setup (aiming for a fundamental frequency of 32.80Hz), the code 

calculated that the optimal length would be 1.2752m with a first harmonic frequency of 

90.4145Hz. Both of these values (and the length in particular) are very close to the 

theoretically calculated values determined by Caresta lending a large amount of 

credibility to the fact that the code is implemented correctly. 

After building confidence that the finite element code has been implemented 

properly, I used the code to optimize the parameters for a xylophone bar tuned to C5 

(frequency3target_d = 523.25Hz) with “quint” tuning (R_target = 3). Given these inputs, 

my code has determined the following optimized values (displayed in table 4.1): (also 

see Figure 4.5) 
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Quantity Variable Name Value 

Fundamental Frequency frequency3_d 8.7756x10-6Hz 

First Harmonic Frequency frequency4_d 1.4854x10-4Hz 

Optimized Bar Length L_d 0.2667m 

Optimal p2 Length p2opt 0.6438 

Frequency Ratio ratio_calculated 2.9913 

Table 4.1: Optimized xylophone bar parameters 

 

 

Figure 4.5: Computed xylophone bar optimization for desired parameters 

 

In terms of accuracy, both the fundamental frequency and first harmonic 

frequency experience very little estimated error as shown above. These values are 
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calculated directly in the code along with the rest of the finite element analysis that is 

performed. A secondary step was required in order to calculate the error estimate for 

the frequency ratio. With no direct way to estimate the frequency ratio error, the 

estimate listed above was derived from the previously calculated error estimates for the 

fundamental and first harmonic frequencies. Using the highest possible value for the 

fundamental frequency allowed by the error estimate and the lowest possible value for 

the first harmonic frequency allowed by the error estimate, the largest possible value for 

the frequency ratio (with the given error bounds) can be calculated. A similar strategy 

was used to calculate the smallest possible value for the frequency ratio by using the 

smallest allowed fundamental frequency and largest allowed first harmonic frequency. 

Comparing these two values to the calculated frequency ratio, the largest difference 

between the calculated value and the maximum and minimum values was used in order 

to determine the final error estimation for the frequency ratio. 

In cases where the exact solution is not known, it is impossible to determine with 

certainty if the FE error estimators are reliable. However, a number of factors can lend 

credibility to the accuracy of these estimators, the primary of which is the plot of error 

estimations produced by the code. Observing the error estimation plots (see Figures 4.6 

and 4.7) reveals that the error is consistently decreasing with the increase in refinement 

of the finite element mesh, and this decrease in estimated error follows the expected 

slope. This, combined with the fact that the code performed admirably in the test against 

the Caresta experimental data and the lack of any other obvious red flags, lends great 

credibility to the accuracy of the FE error estimators. 
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Figure 4.6: Error estimation plots for the fundamental frequency 

 

Figure 4.7: Error estimation plots for the first harmonic frequency 

 

Given the same mesh for this xylophone bar optimization problem, the FE error 

for the fundamental frequency (denoted in the code as frequency3_d) is expected to be 

smaller than FE error for the first harmonic frequency (denoted in the code as 
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frequency4_d). My primary reasoning supporting this claim is the fact that, by definition, 

the fundamental frequency will be physically represented in the bar (through the 

displacement of different parts of the bar) by a curve that is “less complex” than the 

curve representing the physical displacements due to the first harmonic frequency. In 

this case, the term “less complex” refers to the fact that the curve for the fundamental 

frequency over the length of the bar is an overall smoother curve (primarily seen 

through the presence of fewer inflection points) than that of the first harmonic frequency. 

(Figures 4.3 and 4.5 show these curves overlaid on top of a xylophone bar profile.) The 

type of finite element analysis that has been implemented can be thought of as 

analogous to linear interpolation in this particular case with regards to error estimation. 

Given the two different functions, a linear interpolation will be better able to much more 

accurately approximate the simpler function when evaluated at any different precision of 

mesh. Analogously, the first harmonic frequency (represented by the more complex 

curve) will experience a larger FE error than the fundamental frequency. 

Despite these small differences in accuracy, both the fundamental and first 

harmonic frequencies are determined with incredible precision. The error for both of the 

frequencies is on the order of 10-7Hz. Untrained human ears, however, are only able to 

perceive differences in frequency that are around 10Hz or greater. Essentially, this 

physical human limitation renders the calculated frequencies 7-8 orders of magnitude 

more precise than is strictly necessary in order to ensure that the xylophone sounds like 

it is designed to. 

The aforementioned error is only due to the computational methods used. 

Another source of error is the theoretical model used to describe the xylophone bars 
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themselves. In the code, the xylophone bars are modeled as Euler-Bernouli beams. 

Principle among the requirements for a bar to be accurately modeled as an Euler-

Bernouli beam is that the bar is long and slender. How long and slender a bar is can be 

determined quantitatively by examining the ratio between the width or height of the bar 

compared to its length. The Euler-Bernouli beam theorem requires that the width and 

height be much less than the length. The larger the difference between these values, 

the more accurately the tenants of the Euler-Bernouli beam theorem describe a 

particular beam. The height and width of all of the bars on a particular xylophone are 

consistent; only the length changes from one bar to another. Thus, those bars that are 

the longest will be the most accurately represented by the Euler-Bernouli beam 

theorem. All other factors held constant, longer xylophone bars will exhibit a lower 

fundamental frequency than shorter bars, meaning that bars tuned to lower frequencies 

will most closely mimic Euler-Bernouli beams and will lead to the most accurate 

predictions. 

In order to model the impact that support strings have on each of the xylophone 

bars, a small section of a bar terminating at the point where the first string connects is 

analyzed (see Figure 4.8). The impact of the string on the vibration of the xylophone bar 

can be simplified and represented simply as a spring. At all other points, the xylophone 

bar portion is modeled as being free, analogous to earlier portions of this chapter. Under 

this model, the support string only imparts a force on the bar portion at the point where it 

connects. Thus, when evaluating the stiffness matrix (A) including the effects of the 

support string, the only entries that will be changed are those that correspond to the 

displacement of the node at the end of the bar segment. Within the finite element 
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matlab code, calling the function ttomap_fcn(n_el0+1,1) will return the index of where 

the displacement data for the node n_ele0+1. The node at the end of the bar segment 

(which is connected to the spring) will always be numbered n_ele0+1 due to the pre-

determined naming scheme established throughout the rest of the code. When the initial 

finite element mesh is established, the nodes are numbered sequentially, leaving the 

last node to be numbered one greater than the number of elements. This label stays 

consistent because as the mesh is refined and new nodes are added between existing 

nodes, all previous nodes retain their previously defined names and the new nodes are 

numbered sequentially starting after the last assigned label. Furthermore, at each node, 

there are two different pieces of information stored: the displacement of the bar at that 

node and the slope of the bar at that node. The second input of the aforementioned 

function indicates to the function that the displacement (as opposed to the slope) is 

requested.  

 

 

 

 

 

 

Figure 4.8: Analysis problem setup 

 

 Once the index of where the value of displacement at the end of the bar is stored 

is determined, that will allow the code to index correctly into the stiffness matrix in order 

node locations 

Remaining bar segment (not analyzed) 

Spring representing 

retaining string 

Free portion 

of bar 
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to modify only that particular value. Within the code, a potential location of where to 

make this modification to account for the support string is within the file 

impose_boundary_cond.m after line 67 when the A matrix is defined. At this point in the 

code, it is a simple matter to add the spring constant (ks) to the entry in the A matrix at 

the index i and j, which are both equal to the index determined above. This has the 

desired effect because at this point in the code, the stiffness matrix is normalized, 

meaning that at the desired node, there is only one phi function representing the 

displacement and one phi function representing the slope of the bar that are not zero for 

their respective values (see Figure 4.1 above). Furthermore, the phi function 

representing the displacement is at a value of 1, as is the derivative of the phi function 

representing the slope. When the spring constant is added to the stiffness matrix at this 

point in the code, it will eventually fully represent the force imparted on the bar by the 

spring when the stiffness matrix is fully unpacked and realized. Also, due to the fact that 

of all of the phi functions representing the bar at the desired node have zero 

displacement except for one, this term is the only term in the entire matrix that needs to 

be modified by the spring constant in order to capture all of the effects of the support 

string. 
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Chapter 5 
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