

Kip A. Stahlecker

Finite Element Methods in

Mechanical Engineering

MIT Mechanical Engineering, Course 2.S976

May 16, 2019

1

Abstract

 In order to explore finite element methods in a mechanical engineering context,

this document will explore three different scenarios. Each of these scenarios are

designed to be highly physically relevant in order to build and allow for intuitive

understanding in order to check the results of the finite element analysis. In the first

scenario, finite element analysis is used to calculate the heat transfer through a

hamburger throughout the preparation process. The second scenario explores the

tuning of a xylophone bar through the use of finite element analysis. Finally, the third

scenario explores the optimization of the profile of a tower in order to create the tallest

possible tower that will not buckle under its own weight

References

 Course notes and materials for MIT Course 2.S976 created by Prof. A. Patera

are referenced extensively throughout this document and are available on

stellar.mit.edu

 The website at URL: https://www.americastestkitchen.com/recipes/9182-cast-

iron-ultimate-indoor-burgers burger recipe was referenced to obtain a hamburger

recipe for analysis in chapter 3

https://www.americastestkitchen.com/recipes/9182-cast-iron-ultimate-indoor-burgers%20burger%20recipe
https://www.americastestkitchen.com/recipes/9182-cast-iron-ultimate-indoor-burgers%20burger%20recipe

2

Chapter 3

Throughout the process of exploring finite element analysis over time, two

primary models were used in the analysis: semiinf_plus and burger. Detailed

descriptions of each of the models can be found in the lecture notes named “Heat

Equation: Study Cases”. In order to properly analyze the cooking hamburger, we

applied Newmann/Robin boundary conditions on both of the ends of the hamburger.

This allowed for application of the theoretical equations in a way that most closely

resembled the physical setup of the experiment. Newmann/Robin boundary conditions

allow for us to supply the code with a designated heat flux due to the skillet as well as

the heat transfer coefficients between the burger and the oil layer as well as between

the burger of the air.

Throughout the course of the analysis, the final product is a term 𝑢ℎ,Δ𝑡
𝑘 (𝑥),

evaluated over 1 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠. This term stores all of the temperature values at all of

the finite element nodes within the burger at each individual timestep. For each change

in time (Δ𝑡), the values of temperature (u) at each different node location (h) are

calculated and stored in the index k.

The model semiinf_plus was analyzed in order to confirm that the 𝑢ℎ,Δ𝑡
𝑘 (𝑥) term

exhibits a proper convergence in error as the number or timesteps and nodes

increases. Various analysis schemes were tested for error convergence using different

combinations of p and θ values and the results can be seen in Figures 3.1-3.3. In the

first case, where p = 1, the error in the L2 norm should converge to a slope of -2. For the

other two cases, where p = 2, the error in the L2 norm should converge to a slope of -3.

These slopes were calculated using the relationship that error in the L2 norm is

3

proportional to 2−𝑟𝑙 (𝑐1 (
2𝑟

𝜎𝑞
)
𝑙

+ 𝑐2). (Within this error proportionality, the 2𝑟 term

represents the refinement of equation in space and the σq term represents the

refinement in time. In order to ensure that both parameters are optimized at the same

rate, r and q are chosen such that the
2𝑟

𝜎𝑞
 term cancels out.) In each case, the error

estimate in the L2 norm tracked very closely to the actual error, and they exhibited the

expected error convergence slope based on the particular scheme.

Figure 3.1: Error convergence for p=1, θ=1

4

Figure 3.2: Error convergence for p=2, θ=2

Figure 3.3: Error convergence for p=2, θ=0.5

5

In order to allow for visual confirmation of proper hamburger analysis, the code

produces a graph displaying the temperature of each side of the hamburger as well as

the center, overlaid with several reference lines representing specific target values

when prepared to the specifications of professional chef Bobby Flay (see Figure 3.4).

Initially, the hamburger will start at a temperature below room temperature as it is

recommended that raw hamburger is refrigerated prior to preparation of a burger. Next,

the side of the burger closest to the skillet can be observed to greatly increase in

temperature until it surpasses the Maillard temperature temperature for ideal flavor as

the side exposed to air gradually climbs. When the burger is flipped, the side previously

exposed to the air rapidly begins to increase in temperature while the already hot side

now exposed to air initially rapidly loses heat. Throughout this process, the internal

temperature in the center of the burger steadily rises until the burger is removed and

placed to cool. During the cooling period, all of the different temperatures gradually and

steadily decrease, converging toward the ideal serving temperature.

6

Figure 3.4: Burger temperature over time following Bobby Flay’s Recipe

As finite element meshes and the accompanying timesteps over which they are

evaluated become more refined, the computational load required in order to solve the

problem increases. This is due to the increase in the total number of operations required

to solve the problem brought about by each iteration of refinement on the mesh and

timestep. Ultimately, the goal of refining the timestep and mesh that a problem is

evaluated at is to achieve some desired error tolerance with the final answer. Different

computational schemes and parameters produce different amounts of error at different

computational cost due to their differing total number of operations.

In a small problem like the one demonstrated here with a relatively small number of

total operations and a generous tolerance (when compared to typical engineering

applications like those in nuclear reactors or jet engines), even computing to tolerances

well beyond what is required, the total computational time is quite short. Using a

7

reasonably powerful modern laptop, computing the analysis with both analysis schemes

[p=1, θ=1 and p=2, θ=0.5] took on the order of 1-3 minutes. However, in the

aforementioned engineering applications, as well as most other real-world

implementations of finite element analysis, the total number of operations, and thus the

total computational time, becomes significant. Choosing an analysis scheme carefully

has the potential to save large amounts of time and computational resources on an

analysis while still meeting the same pre-determined error tolerances. Table 3.1 shows

the process for calculating the computational cost for two different analysis schemes.

Figure 3.5: Error convergence for p=1, θ=1 highlighting the point where the error

dips below the desired threshold

8

Figure 3.6: Error convergence for p=2, θ=0.5 highlighting the point where the error dips

below the desired threshold

[P = 1, θ = 1] [P = 2, θ = 1/2]

6 initial elements, 20 initial timesteps 6 initial elements, 20 initial timesteps

5 refinements required 2 refinements required

Final elements: 6 x 25 = 192 Final elements: 6 x 22 = 24

Final timestep: 20 x 45 = 20480 Final timestep: 20 x (2√2)2 = 362039

Overall operations:

192 x 20480 = 3.93 x 106 operations

Overall operations:

24 x 3620.39 = 8.69 x 104 (multiply total

operations by 2 to account for the

pentadiagonal structure of the calculation

matrix)

2 x 8.69 x 104 = 1.74 x 105 operations

Table 3.1: Computational cost calculation examples

9

In order to further explore and understand the finite element code, I tested the

analysis on a hamburger recipe found on the internet. The results are shown in Figures

3.7 and 3.8. Much like the recipe from professional chef Bobby Flay used in the

previous hamburger analysis, this recipe manages to achieve many of the targets for

hamburger preparation. In particular, each side is brought comfortably above the

Maillard temperature, and the five minute repose time is sufficient to allow the

hamburger to come very close to the recommended serving temperature. However,

much like the Bobby Flay recipe, the center temperature also does not reach the USDA

recommended temperature at any time throughout the cooking process, although the

recipe that I found from searching on the internet does bring the hamburger’s center to

a temperature closer to the recommended temperature more consistently and for a

longer time.

Figure 3.7: Burger recipe temperature profile over time

10

Figure 3.8: Burger recipe cross-section temperature distribution

11

Chapter 4

Beam eigenproblems are constructed and solved similarly to other finite element

problems that discussed in previous chapters. These problems are separated into a

finite element mesh and described by a combination of phi functions as before,

however, in the case of beam eigenproblems, each node relates to two different phi

functions relating to two different degrees of freedom: displacement and slope. At each

node, all phi functions have a value of zero except one which is normalized to a value of

one. Similarly, all phi functions have a derivative of zero except for one which has a

normalized value of one (see Figure 4.1)

Figure 4.1: Example showing the phi functions for a bar divided into two elements.

Another important consideration in this finite element implementation of beam

eigenproblems is the nondimensionalization of both the bar as a whole as well as an

individual finite element. This allows for not only easier calculation within the code, but

more importantly it allows for any analysis and calculation to be universally applicable

12

for given input parameters, regardless of scaling. Once a particular analysis is

performed, the relations between different parameters can be observed and modified

without requiring the analysis to be performed again. Once all desired analysis has

been performed, the nondimensionalization can be applied again in reverse in order to

undue those operations and scale the result back to the desired dimensional scale.

In this chapter, the task is designed around optimizing the design parameters of

a xylophone bar in order to tune it for its desired use case given particular parameters.

The first and most immediately noticeable of the design objectives of a xylophone bar is

the fundamental frequency with which the bar will vibrate when struck. This frequency

determines what musical note the xylophone bar will most closely resemble. While other

factors can impact the fundamental frequency of a bar, most factors outside of the

length of the bar are held constant across all of the different bars in a particular

xylophone. In particular, considerations such as the cross-sectional profile of the bar as

well as the material the bar is constructed from are held constant throughout all of the

bars on a xylophone, leaving only the length of a bar to determine its fundamental

frequency. This is the case for the problem explored in this chapter. The non-

dimensionalized length of the bar is optimized to produce the desired fundamental

frequency.

Along with the fundamental frequency of the xylophone bar, the harmonic

frequencies that a bar vibrates at will also have a great impact on the musical quality of

the instrument and how it is perceived by listeners. For example, a frequency ratio of 4

(“double-octave”) is very typical of other orchestral instruments whereas a frequency

ratio of 3 (“quint”) has a different auditory quality, allowing the xylophone to sound

13

p2 Interval

p2

L_d

Hmax_d

distinct and noticeable even when combined with an orchestra. This parameter is tuned

by removing material from the underside of a bar. Since the overall length of the bar

does not change through the process of removing material from the underside of the

bar, the fundamental frequency remains the same but the first harmonic frequency will

be impacted as mentioned before.

A final consideration for xylophone bar design is that of physically holding the bar

in place so that it may be played. Holding a xylophone bar at an arbitrary location will

cause damping effects on the vibration of the bar, impacting sound quality. In order to

avoid these negative impacts, the nodes of the bar must be identified. These nodes are

the locations along the bar where, due to the characteristics of the bar’s vibration, there

is no displacement of the bar when vibrating. If holes are drilled through the bar at these

nodes, it can be mounted without impacting the vibration due to the fundamental

frequency (and thus the sound quality) of the bar.

Figure 4.2: Xylophone Bar Dimensions. Width of the bar (not used in calculations) is

measured into the page

Finding the nodes in a xylophone bar due to its fundamental frequency is one of

the primary functions of this finite element code. In the case of this problem, the nodes

on a xylophone bar are physically represented as the points on the bar where the

displacement of the bar due to vibration at its fundamental frequency is zero.

Computationally, this was accomplished by solving the beam eigenproblem:

14

𝑑2

𝑑𝑥2
(
𝐻3(𝑥)

12

𝑑2𝑢(𝑘)

𝑑𝑥2
) = 𝜆(𝑘)𝐻(𝑥)𝑢(𝑘). The values of 𝜆 are the nodes of xylophone bar and can

also be represented graphically through observing the plot of displacement of the bar in

the y axis along the length of the x axis when it is vibrating at its fundamental frequency.

As a part of the finite element analysis, the bar is separated into a mesh of distinct finite

elements. Since these elements span the entire length of the bar, there will be two

distinct elements that contain the nodes, represented graphically as the displacement

graph crossing through y=0. In order to identify these elements, I wrote an algorithm to

check each element by evaluating the product of the displacement at its left node with

its right node, accomplished computationally through the formula:

𝑢ℎ
(3)𝑙𝑔2(1,𝑚∗) × 𝑢ℎ

(3)𝑙𝑔2(3,𝑚∗) < 0. This inequality will only be true in the cases where

the displacement graph crosses zero within the element because only then will the

value at the left node (𝑢ℎ
(3)𝑙𝑔2(1,𝑚∗)) have a different sign than the value at the right

node (𝑢ℎ
(3)
𝑙𝑔2(3,𝑚∗)). (While it is true that this code is susceptible to producing

inaccurate results in the case where the displacement graph crosses y=0 twice within a

single element, that is not a concern in this particular problem because the fundamental

frequency is a gradual enough curve and even the initial mesh is sufficiently fine in

order to ensure this inaccuracy is avoided.) Once the elements where the displacement

graph crosses zero are identified, my code then uses the built-in matlab function fzero

over only those two elements in order to identify the x values of the two nodes along the

individual finite element within which they occur. Using this value of distance along the

particular finite element as well as the location of the start of that element, I then

calculated the distance along the non-dimensionalized bar where each node occurred.

This could then be re-dimensionalized in order to find out the locations of the nodes in

15

the final bar. This final placement calculation and re-dimensionalization was

accomplished through the equation: 𝑥𝑑ℎ
ℎ𝑜𝑙𝑒 = (𝑥𝑙𝑔(1,𝑚

∗) + ℎ𝑚
∗
�̂�ℎ𝑜𝑙𝑒)𝐿𝑑 where 𝑥𝑙𝑔(1,𝑚

∗) is

the location of the start of the finite element that contains the node, ℎ𝑚
∗
 is the length of

an individual finite element, �̂�ℎ𝑜𝑙𝑒 is the distance along the particular finite element

where the node occurs, and 𝐿𝑑 is the length of the xylophone bar used to re-

dimensionalize the problem.

Once the nodes are identified, the remaining code is able to continue and

complete the optimization of the xylophone bar and present those results graphically

(see Figures 4.3 and 4.4). Overlaid on top of the cross-sectional profile of the xylophone

bar is the graph of the displacement due to the fundamental frequency (as well as the

first harmonic frequency) and two lines representing the identified node locations. The

identified node locations can be seen on the plot to align with the points where the

displacement graph crosses zero. This is exactly what was intended from the code,

lending credibility to the argument that my algorithm is implemented correctly.

16

Figure 4.3: Optimized node locations using Caresta’s experimental setup

Figure 4.4: Zoomed in views of the left (a) and right (b) nodes identified previously

verifying that the fundamental frequency crosses zero at each node.

In order to verify correct implementation and operation of the analysis algorithm,

experimental data gathered by Mauro Caresta was used. Caresta experimentally and

theoretically determined the fundamental and first four harmonic frequencies of a bar of

steel with a given length, density, cross-section, and Young’s modulus. The finite

(a) (b)

17

element code, if all parts are correctly implemented, will determine the first harmonic

frequency and optimal length in order to achieve a target harmonic frequency (given the

cross-section, density, and Young’s modulus). Caresta calculated that his bar (of length

L = 1.275m, thickness Hmax_d = 0.01m, density rhobar_d = 7800 kg/m3, and p2 = 1

indicating that the bar had no material removed from it) had a theoretical fundamental

frequency of 32.80Hz and a first harmonic frequency of 90.44Hz. Experimentally,

Caresta observed a fundamental frequency of 32.25Hz and a first harmonic frequency

of 88.50. After running the code with the given input values taken directly from Caresta’s

experimental setup (aiming for a fundamental frequency of 32.80Hz), the code

calculated that the optimal length would be 1.2752m with a first harmonic frequency of

90.4145Hz. Both of these values (and the length in particular) are very close to the

theoretically calculated values determined by Caresta lending a large amount of

credibility to the fact that the code is implemented correctly.

After building confidence that the finite element code has been implemented

properly, I used the code to optimize the parameters for a xylophone bar tuned to C5

(frequency3target_d = 523.25Hz) with “quint” tuning (R_target = 3). Given these inputs,

my code has determined the following optimized values (displayed in table 4.1): (also

see Figure 4.5)

18

Quantity Variable Name Value

Fundamental Frequency frequency3_d 8.7756x10-6Hz

First Harmonic Frequency frequency4_d 1.4854x10-4Hz

Optimized Bar Length L_d 0.2667m

Optimal p2 Length p2opt 0.6438

Frequency Ratio ratio_calculated 2.9913

Table 4.1: Optimized xylophone bar parameters

Figure 4.5: Computed xylophone bar optimization for desired parameters

In terms of accuracy, both the fundamental frequency and first harmonic

frequency experience very little estimated error as shown above. These values are

19

calculated directly in the code along with the rest of the finite element analysis that is

performed. A secondary step was required in order to calculate the error estimate for

the frequency ratio. With no direct way to estimate the frequency ratio error, the

estimate listed above was derived from the previously calculated error estimates for the

fundamental and first harmonic frequencies. Using the highest possible value for the

fundamental frequency allowed by the error estimate and the lowest possible value for

the first harmonic frequency allowed by the error estimate, the largest possible value for

the frequency ratio (with the given error bounds) can be calculated. A similar strategy

was used to calculate the smallest possible value for the frequency ratio by using the

smallest allowed fundamental frequency and largest allowed first harmonic frequency.

Comparing these two values to the calculated frequency ratio, the largest difference

between the calculated value and the maximum and minimum values was used in order

to determine the final error estimation for the frequency ratio.

In cases where the exact solution is not known, it is impossible to determine with

certainty if the FE error estimators are reliable. However, a number of factors can lend

credibility to the accuracy of these estimators, the primary of which is the plot of error

estimations produced by the code. Observing the error estimation plots (see Figures 4.6

and 4.7) reveals that the error is consistently decreasing with the increase in refinement

of the finite element mesh, and this decrease in estimated error follows the expected

slope. This, combined with the fact that the code performed admirably in the test against

the Caresta experimental data and the lack of any other obvious red flags, lends great

credibility to the accuracy of the FE error estimators.

20

Figure 4.6: Error estimation plots for the fundamental frequency

Figure 4.7: Error estimation plots for the first harmonic frequency

Given the same mesh for this xylophone bar optimization problem, the FE error

for the fundamental frequency (denoted in the code as frequency3_d) is expected to be

smaller than FE error for the first harmonic frequency (denoted in the code as

21

frequency4_d). My primary reasoning supporting this claim is the fact that, by definition,

the fundamental frequency will be physically represented in the bar (through the

displacement of different parts of the bar) by a curve that is “less complex” than the

curve representing the physical displacements due to the first harmonic frequency. In

this case, the term “less complex” refers to the fact that the curve for the fundamental

frequency over the length of the bar is an overall smoother curve (primarily seen

through the presence of fewer inflection points) than that of the first harmonic frequency.

(Figures 4.3 and 4.5 show these curves overlaid on top of a xylophone bar profile.) The

type of finite element analysis that has been implemented can be thought of as

analogous to linear interpolation in this particular case with regards to error estimation.

Given the two different functions, a linear interpolation will be better able to much more

accurately approximate the simpler function when evaluated at any different precision of

mesh. Analogously, the first harmonic frequency (represented by the more complex

curve) will experience a larger FE error than the fundamental frequency.

Despite these small differences in accuracy, both the fundamental and first

harmonic frequencies are determined with incredible precision. The error for both of the

frequencies is on the order of 10-7Hz. Untrained human ears, however, are only able to

perceive differences in frequency that are around 10Hz or greater. Essentially, this

physical human limitation renders the calculated frequencies 7-8 orders of magnitude

more precise than is strictly necessary in order to ensure that the xylophone sounds like

it is designed to.

The aforementioned error is only due to the computational methods used.

Another source of error is the theoretical model used to describe the xylophone bars

22

themselves. In the code, the xylophone bars are modeled as Euler-Bernouli beams.

Principle among the requirements for a bar to be accurately modeled as an Euler-

Bernouli beam is that the bar is long and slender. How long and slender a bar is can be

determined quantitatively by examining the ratio between the width or height of the bar

compared to its length. The Euler-Bernouli beam theorem requires that the width and

height be much less than the length. The larger the difference between these values,

the more accurately the tenants of the Euler-Bernouli beam theorem describe a

particular beam. The height and width of all of the bars on a particular xylophone are

consistent; only the length changes from one bar to another. Thus, those bars that are

the longest will be the most accurately represented by the Euler-Bernouli beam

theorem. All other factors held constant, longer xylophone bars will exhibit a lower

fundamental frequency than shorter bars, meaning that bars tuned to lower frequencies

will most closely mimic Euler-Bernouli beams and will lead to the most accurate

predictions.

In order to model the impact that support strings have on each of the xylophone

bars, a small section of a bar terminating at the point where the first string connects is

analyzed (see Figure 4.8). The impact of the string on the vibration of the xylophone bar

can be simplified and represented simply as a spring. At all other points, the xylophone

bar portion is modeled as being free, analogous to earlier portions of this chapter. Under

this model, the support string only imparts a force on the bar portion at the point where it

connects. Thus, when evaluating the stiffness matrix (A) including the effects of the

support string, the only entries that will be changed are those that correspond to the

displacement of the node at the end of the bar segment. Within the finite element

23

matlab code, calling the function ttomap_fcn(n_el0+1,1) will return the index of where

the displacement data for the node n_ele0+1. The node at the end of the bar segment

(which is connected to the spring) will always be numbered n_ele0+1 due to the pre-

determined naming scheme established throughout the rest of the code. When the initial

finite element mesh is established, the nodes are numbered sequentially, leaving the

last node to be numbered one greater than the number of elements. This label stays

consistent because as the mesh is refined and new nodes are added between existing

nodes, all previous nodes retain their previously defined names and the new nodes are

numbered sequentially starting after the last assigned label. Furthermore, at each node,

there are two different pieces of information stored: the displacement of the bar at that

node and the slope of the bar at that node. The second input of the aforementioned

function indicates to the function that the displacement (as opposed to the slope) is

requested.

Figure 4.8: Analysis problem setup

 Once the index of where the value of displacement at the end of the bar is stored

is determined, that will allow the code to index correctly into the stiffness matrix in order

node locations

Remaining bar segment (not analyzed)

Spring representing

retaining string

Free portion

of bar

24

to modify only that particular value. Within the code, a potential location of where to

make this modification to account for the support string is within the file

impose_boundary_cond.m after line 67 when the A matrix is defined. At this point in the

code, it is a simple matter to add the spring constant (ks) to the entry in the A matrix at

the index i and j, which are both equal to the index determined above. This has the

desired effect because at this point in the code, the stiffness matrix is normalized,

meaning that at the desired node, there is only one phi function representing the

displacement and one phi function representing the slope of the bar that are not zero for

their respective values (see Figure 4.1 above). Furthermore, the phi function

representing the displacement is at a value of 1, as is the derivative of the phi function

representing the slope. When the spring constant is added to the stiffness matrix at this

point in the code, it will eventually fully represent the force imparted on the bar by the

spring when the stiffness matrix is fully unpacked and realized. Also, due to the fact that

of all of the phi functions representing the bar at the desired node have zero

displacement except for one, this term is the only term in the entire matrix that needs to

be modified by the spring constant in order to capture all of the effects of the support

string.

25

Chapter 5

26

27

28

