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A B S T R A C T

MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the
etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell
specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of na-
noparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative
disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of
nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main
challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are
highlighted to underline their therapeutic potential for effective and personalized medicine.

1. Introduction

MicroRNAs (miRNAs) are non-coding endogenous RNAs composed of short
nucleotide sequences, 20–24 nucleotides, that act in the post-transcriptional reg-
ulation of gene expression [1]. As soon as miRNA activity was confirmed in humans
[2,3], significant attention was generated on their clinical application, because of
their impact on critical cellular activities, such as metabolism [4], differentiation/
proliferation [5,6] and programmed cell death [6]. Several studies have described
the influence of miRNAs on the onset and progression of diseases, including cancer
[7–9], neurodegenerative disorders [10,11], cardiovascular diseases [12–14], and
other pathologies [15–17]. Such studies have led to research that focused on
identifying changes in miRNA expression between normal and diseased states, re-
sulting in miRNAs being proposed as diagnostic markers or therapeutic targets
[18–20]. However, despite the excitement generated by miRNAs, their efficacy is
limited by poor targeting ability, short circulation time and off-target effects of
naked miRNA-based agents. To overcome these barriers, miRNA-loaded nano-
particles (NPs) have been proposed [21–23], by virtue of NPs ability to shield the
loaded agent from the external environment, thereby reducing inactivation or de-
gradation, and enhancing circulation time and targeted accumulation [24]. Ad-
ditionally, the use of miRNAs for therapeutic purpose carries distinctive advantages

over traditional gene therapy that involves the delivery of larger molecules, such as
mRNAs, or DNA. Firstly, miRNAs have a broader range of therapeutic targets, since
a single miRNA can simultaneously regulate a multitude of mRNAs. Furthermore,
miRNAs in the form of miRNA inhibitor and miRNA mimic can regulate both the
expression and the repression of multiple genes, while the activity of siRNAs and
mRNAs is limited to repression or upregulation of one specific gene, respectively.
miRNAs also have a small size, which may facilitate their encapsulation into NPs
with high efficiency, their delivery into cells and their ability to act at the cyto-
plasmic level [25,26].

Herein, we discuss the preparation, characterization and application of NPs
for delivering miRNA-based agents, which include miRNA mimics (miR mimics)
or miRNA inhibitors/anti-miRNAs (miR inhibitors/anti-miRs) and focus on the
advantages of NP-mediated methods as compared to naked miRNA delivery. Key
examples of miRNA-loaded NPs for specific disease settings are presented, in-
cluding their applications in tissue engineering (TE), cancer treatment, cancer
immunotherapy and neurodegenerative disorders.

2. Physiological relevance of microRNAs (miRNAs)

MiRNAs are proposed to act primarily by binding to the 3’ untranslated
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regions (UTRs) of messenger RNA (mRNA) without requiring perfect base
pairing [27–29]. As such, one miRNA can simultaneously regulate several genes,
while a single mRNA can be repressed by several miRNAs [25,26]. As shown in
Fig. 1, miRNA formation begins in the nucleus with the DNA transcription of
primary miRNA precursor (pri-miRNA) [30]. The transcribed pri-miRNAs are
further processed to form ∼70 nucleotide hairpin structures (pre-miRNAs), that
are exported to the cytoplasm to be condensed into 20–24 nt double-stranded
miRNA duplexes [31]. These duplexes then enter the miRNA-induced silencing
complex (miRISC) where they unwind to form a mature strand and a passenger
strand. The miRISC retains the mature strand and releases the passenger strand
which is degraded [32]. miRISC binds target mRNAs, thereby inducing either
interference with protein synthesis [33,34], or degradation of the target mRNA
[35,36].

Depending on the target miRNA expression, miRNA therapy can take the
form of: miRNA inhibition therapy [37,38], or miRNA replacement or re-
inforcement therapy (Fig. 2) [39,40]. In the former approach, an anti-miR or
miRNA inhibitor is used, consisting of a single-stranded oligonucleotide with a
complementary sequence to mature miRNA. In the latter approach, miR mimics
that have an identical sequence as the endogenous mature miRNA are introduced
into cells to provide an exogenous source of additional miRNAs.

3. Design criteria of nanoparticles (NPs) as efficient delivery
vectors for miRNAs

Despite the progressively increasing knowledge of miRNA ability to mediate
biological processes both in vitro and in vivo, critical hurdles related to miRNA
delivery should be overcome to promote their clinical application [41,42].
Naked miRNAs are poorly taken up by cells due to their negative charge [43],
undesired off-target [44] or on-target [45] effects, short half-life in systemic
circulation [46,47], and limited stability in blood due to their rapid degradation
or inactivation by nucleases that are abundantly present in the blood stream
[48,49]. Herein, the main advantages and disadvantages of the different stra-
tegies to overcome the challenges of efficient miRNA delivery are discussed.

Both miR mimics and anti-miRs have been delivered in vitro using commercially
available transfection agents, such as DharmaFECT™ and Lipofectamine™ [50–52],
or by electroporation [53,54]. Alternatively, chemical modifications can be in-
troduced to miRNAs to augment stability and allow carrier-free in vivo delivery of
modified anti-miRs and miR mimics which are also known as antagomiRs [55] and
agomiRs [56], respectively. For example, in the case of anti-miRs, in vivo silencing of
endogenous miRNAs has been enhanced by integrating locked nucleic acids (LNA)
or peptide nucleic acids (PNA), as reviewed elsewhere [57]. As an alternative to
chemical modification, anti-miRs and miR mimics have been encapsulated into NPs.
Due to their favorable transport properties, NPs have been reported to improve the
in vivo delivery of miRNA agents; NPs protect their payload and enhance target
specificity, [58] thus limiting adverse effects and improving therapeutic outcomes,
as illustrated in Fig. 3 [59].

The main challenges in miRNA delivery with nanocarriers are related to their
low encapsulation efficiency [60], and the need for cell targeting, as shown
schematically in Table 1 [61,62]. Because of their high affinity with water,
miRNAs quickly diffuse into the water phase when nanoprecipitation or emul-
sion-based preparation methods are used, resulting in low encapsulation effi-
ciency [60]. NPs improve the tissue distribution and site-specific localization of
miRNA. However, the degree of enhancement is generally poor. As such, nu-
merous studies have focused on modifying the NP surface with ligands for spe-
cific receptors on target cells, thus facilitating NP uptake by receptor-mediated
endocytosis and reducing the required dosage and side effects of treatment
[21,63,64].

Moreover, colloidal stability of NPs in complex physiological media is de-
manded for cell-targeted delivery of miRNAs [65]. After administration, NPs should
ideally circulate until they reach the desired site, and should be designed to undergo
endosomal escape in order to guarantee the proper interaction between the miRNA
and its intra-cellular target (for example by exploiting the proton sponge effect)
[66,67]. However, circulation time depends on NP interactions with the biological
microenvironment that could lead to their fast clearance. Specifically, once NPs are
exposed to body fluids, their surface is covered by plasma proteins [68,69], resulting
in masked surface ligands, non-specific uptake and reduced stability. There are

Fig. 1. Endogenous production of miRNA and their mechanism of regulation of gene expression: (A) genes encoding for miRNA are transcribed and (B) miRNA precursor
(pri-miRNA) form double-stranded structures. Pri-miRNAs are further transformed into (C) pre-miRNAs that are exported by Exportin into the cytoplasm to be (D)
condensed into miRNA duplexes. (E) miRNA duplexes unwind to form the passenger and guide strands. The mature strand stays in the miRNA-induced silencing complex
(miRISC), forming a (F) temporary asymmetric RISC assembly. Finally, miRNAs bind target mRNAs, thereby inducing (G) translational repression or (H) degradation of
target mRNAs. This figure is adapted from https://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/mirna/learning-center/mirna-introduction.html.
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different factors affecting NP circulation half-life, sequestration by the mononuclear
phagocyte system (MPS) and biodistribution, including surface charge and hydro-
phobicity, size and shape [24]. Previous studies showed that neutral particles are
less subjected to opsonization than highly charged particles especially if positively
charged (cationic) [70,71]. Similarly, high hydrophobicity is related to a higher
likelihood of clearance, which can be reduced by modifying the surface with
polyethylene glycol (PEG), or by surface-camouflaging strategies, resulting in en-
hanced circulation half-life [72–74].

Importantly, the disease setting crucially determines the physical and bio-
logical barriers that the NP must overcome in addition to the basic hurdles that
already impede miRNA delivery [41]. Based on these considerations, different
strategies can be developed to prepare NPs that can effectively deliver miRNA to
the target cells.

4. Methods to prepare miRNA-loaded NPs

Various preparation techniques, such as single or double emulsions, nanopre-
cipitation, and interfacial polymerization, have been employed for the preparation
miRNA-loaded NPs. The selection of the most appropriate method is influenced by
the constituent material and the desired surface characteristics [81]. Emulsion-
based methods are the most commonly used to prepare miRNA-loaded NPs. These
methods utilize high-speed homogenization or ultrasonication [82]. In the single-
emulsion version, an oil-in-water (o/w) emulsion is formed by homogenizing or
sonicating a polymer solution into an external, surfactant-containing, water phase.
The double-emulsion technique, typically used to encapsulate hydrophilic payloads,
utilizes two emulsification steps to obtain water-in-oil-in-water (w/o/w) or oil-in-
water-in-oil (o/w/o) emulsions [81,83].

Emulsion methods have been used to prepare monomethoxy(polyethylene
glycol)-poly(D,L-lactide-co-glycolide)-poly(L-lysine)-lactobionic acid (mPEG-
PLGA-PLL-LA) [77], PLGA and poly(glycerol adipate-co-ω-pentadecalactone)
(PGA-co-PDL) NPs for miRNA delivery [84]. For instance, miR-99a-loaded
mPEG-PLGA-PLL-LA NPs have been obtained via the double emulsion method.
For this purpose, miRNA is dissolved in water and subsequently dropped into a
PLL-LA solution in dichloromethane, followed by sonication. The w/o/w emul-
sion was then dropped in water containing Pluronic-F68 and sonicated to obtain
a w/o/w double emulsion. A reduction in the surface charge from 25 mV for
blank NPs to 3 mV for miRNA-loaded NPs was taken as evidence of successful
miRNA loading. The authors also demonstrate 80% of sustained payload release

at 132 h, suggesting extended duration for the interactions between miR-99a and
target genes.

Polymer NPs can be formed via nanoprecipitation, by dropwise addition to
water of a polymer solution in a water-miscible solvent, causing its rapid dis-
placement [81,85,86]. For instance, miRNA-loaded PLGA/chitosan (PLGA/CS)
NPs with 150–180 nm size have been prepared via the nanoprecipitation method
by dropwise addition of PLGA solution into a water solution of CS and miR-34 s,
in the presence of Poloxamer surfactant [75]. This method could achieve miR-34
entrapment efficiency (EE) between 50% and 95%, depending on the amount of
miR-34 in the formulation, and controlled release up to 48 h.

Unconventional techniques, such as combination of click chemistry (CC) and
controlled radical polymerization (CRP), electrospinning, and particle replica-
tion in non-wetting template (PRINT), can potentially be used to prepare
miRNA-loaded NPs because of their versatility, ease of implementation and low
cost. Although these techniques have not been used to prepare miRNA-loaded
NPs, we advocate that they are advantageous methods, since harsh temperatures,
extreme pH conditions or potentially-toxic solvents are not required.
Combination of CC and CRP can allow the preparation of NPs with controlled
size and improved stability, as shown with DNA-conjugated NPs [87–89], as well
as in vivo active cell recognition, as demonstrated by Koo et al. with di-
benzylcyclooctyne (DBCO)-modified liposomes that were able to bind the azide
groups expressed on cancer cells [90]. PRINT is known to generate particles with
precise structure through the use of elastomeric molds of predefined shape and
size, into which a polymer solution containing the drug is poured. NPs obtained
by PRINT have been used in mice studies to investigate specific tumour cell
uptake [91], and to test the treatment of brain metastasis when loaded with
docetaxel [92].

Finally, recent advances in microfluidics have enabled the synthesis of li-
braries of NPs by rapid mixing of droplet streams controlled by micro pumps into
silicon or glass microchannels [93]. These micro-reactors provide homogeneous
conditions for NP nucleation and growth, resulting in higher reproducibility
[94]. The microfluidic technology has been used to engineer small interfering
RNA-loaded NPs (siRNA-loaded NPs) [95], but to the best of our knowledge, no
evidence of their use to prepare miRNA-loaded NPs has been reported.

5. Selection of the biomaterial for miRNA encapsulation

The choice of the biomaterial that constitutes the NP is of paramount

Fig. 2. (A) In a normal tissue state, expression of endogenous microRNAs (miRNAs) allows for gene regulation. In the treatment of certain diseases, (B) inhibition of
specific endogenous miRNAs is achieved through miRNA inhibition therapy with anti-miRNAs (anti-miRs). (C) Alternatively, miRNA replacement therapy utilizes
miR mimics to provide an exogenous source of additional miRNAs.
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Fig. 3. Key challenges of miRNA delivery in vivo. The challenges of delivering naked miRNAs include hindered miRNA uptake by cells due to negatively charged
groups of miRNAs, undesirable off-target or on-target effects, short miRNA half-life under physiological conditions and unfavorable immune response. NPs en-
capsulate miRNAs, thus shielding charge groups and allowing their uptake by cells. Functionalizing NPs with cell-specific ligands allows NPs to deliver miRNAs to
specific cells, thus reducing off-target effects. NPs allow for controlled miRNA release, avoiding excessive activation of multiple gene targets. NPs also increase the
half-life of miRNA in vivo, by protecting the payload from degradation. Finally, addition of a stealth coating around NPs prevents their clearance by the re-
ticuloendothelial system (RES) and avoids unfavorable immune cell stimulation.
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importance, as it dictates the choice of the preparation technique as well as the final
properties and structure of the NP [96,97]. With the exciting advent of stimuli-
responsive biomaterials, that change their properties upon modification of external
conditions (including temperature or pH), multi-functional NPs have been devel-
oped for an expanding range of therapeutic applications (Table 2) [98,99].

5.1. Synthetic polymers

The use of synthetic polymer NPs for nucleic acid delivery has been ex-
tensively investigated, because of their efficient cargo release within the cell
cytoplasm and their ease of manufacturing and functionalization with targeting
molecules [41]. Among synthetic polymers, poly(ethylene imine)s (PEIs)
[100,101], PLGA [75,76], poly(ε-caprolactone) (PCL) [102], and polyurethanes
(PUs) [103,104] have been used for miRNA delivery.

PEI, both in linear and branched form, is a polycationic polymer. The PEI re-
peating unit consists of a secondary amine group and one ethylene spacer and is
commercially available in different molecular weights, having different release ef-
ficiency and biocompatibility [105,106]. PEI chains are positively charged, de-
pending on the protonation degree of secondary amines as a function of the pH. The
positive charge allows electrostatic complexation with nucleic acids [107]. Due to
its proton acceptor behavior, PEI exhibits weak-base buffering properties, reducing
nuclease activity [108], and protecting nucleic acids from degradation within en-
dosomal vesicles. As a proton acceptor, PEI also causes the “proton sponge effect”,
leading to endosomal lysis and consequent release of nucleic acids into the cyto-
plasm [66,67,109].

PEI has been shown to deliver miR-145 and miR-33a, and allow the assessment
of the in vivo anti-tumour activity of these miRNAs in a mouse model of colon
carcinoma [101]. Local or systemic administration of PEI-miRNA complexes could
result in reduced tumour growth compared to controls, indicating that such NPs
represent a promising strategy for miRNA replacement therapy in cancer treatments
[101]. PEI has also successfully delivered miR-145 in vitro to metastatic breast
cancer cells [100], and in vivo in a xenograft colon cancer models [63].

However, while PEI NPs show efficient miRNA encapsulation and delivery,
their high positive charge density and non-biodegradability can affect cell via-
bility, thus limiting their use [108]. In this context, NPs that are surface-modified
or based on blends of PEI and PEG have been proposed to reduce toxicity and
improve biodistribution [110]. For instance, Zhang et al. have used branched
PEI-PEG NPs to deliver miR-145 to prostate cancer [79]. The PEG chains were
surface-modified with poly-arginine showing enhanced uptake in prostate cancer
in vivo, reduction of tumour growth and increased survival.

Biocompatible and biodegradable synthetic polyesters, such as PLGA and
PCL have also been investigated for nucleic acids delivery, because of their lower
toxicity and biodegradability as compared to PEIs [111–113]. PLGA is a bio-
compatible and non-cytotoxic polymer, known to degrade by hydrolysis, gen-
erating lactic and glycolic acid monomers, which are metabolized through the
Krebs cycle [111]. By varying the ratio between the constituent monomers, lactic
and glycolic acid, the degradation rate of PLGA NPs can be tuned in the range
from several months to years [111,114]. Low molecular weight polymers with
higher glycolide content are more hydrophilic with a shorter degradation time.
In contrast, PLGA NPs with higher lactic acid content have a hydrophobic nature
and degrade more gradually.

MiRNA encapsulation is made difficult by the negative surface charge of
PLGA NPs [115,116], which reduces complexation efficiency with the phosphate
groups of miRNAs. This limitation can be overcome by using cationic compounds
combined with PLGA. For instance, CS, a cationic polymer, has been shown to

promote the retention of miRNAs inside PLGA NPs [75]. Protamine sulfate (PS)
coating of PLGA NPs has also been used to enhance complexation of miRNAs on
the NP surface [76]. In another study, Wang et al. have generated PLGA-PEI NPs
to co-deliver miR-542-3p and doxorubicin (DOX) in triple negative breast cancer
cells [117]. PLGA-PEI NPs could be covalently grafted with hyaluronic acid (HA)
to be specifically internalized by cancer cells, thus enhancing their cytotoxicity
as assessed in vitro on breast cancer cells.

PCL has attracted high attention for the preparation of biocompatible NPs for
nucleic acid delivery. NPs composed of PCL are promising for their high colloidal
stability, quick cellular uptake, low toxicity in vitro and in vivo, and controlled
release of their drug cargo. The degradation product of PCL is 6-hydro-
xyhexanoic acid, which is a natural metabolite in the human body [118]. Liu
et al. have prepared PEG-peptide-PCL NPs by the double emulsion method to co-
deliver miR-200c and docetaxel [102]. A gelatinases-cleavable peptide was se-
lected to facilitate delivery after NPs internalization by tumour cells. In addition,
spermidine has been used to complex with miR-200c during NP preparation,
achieving about 85% transfection efficiency in vitro.

Among synthetic polymers, PU-based NPs have shown high biocompatibility
combined with versatile physical and chemical properties [119]. Cationic PU-
short branch PEI nanocomplexes have been developed by Chiou et al. as vehicles
for miR-145 delivery to inhibit the stem cell niche in the brain tumour [103].
The authors demonstrate successful miR-145 transfection (nearly 90%) and ef-
ficient knockdown of miRNA targets, Sox2 and Oct4, in vitro. Intracranial in-
jection of PU-PEI-miR-145 nanocomplexes could reduce tumour growth by sy-
nergizing with chemoradiotherapy. Furthermore, such nanocomplexes show a
therapeutic effect on lung adenocarcinoma model [104], with decreased me-
tastases, inhibited epithelial-to-mesenchymal transition (EMT) in vitro, increased
survival and delayed tumour growth in mice [104].

5.2. Natural polymers

Among natural polymers, materials that can be obtained from animal or vegetal
sources, CS and HA are promising carriers for nucleic acids [120–122]. CS is ob-
tained from chitin and is non-cytotoxic, non-immunogenic, and highly biocompa-
tible [123,124]. At acidic pH, the protonated amino groups of CS rapidly interact
with opposite-charged molecules, such as siRNA or miRNA with high loading effi-
ciency [22,125]. In spite of these advantages, CS NPs offer limited control over the
delivery of nucleic acids because of their strong interaction with the loaded agent
[126–128], which results in inefficient unpacking of the complex in the cytoplasm
[127]. To overcome these drawbacks, hydrophobic moieties have been conjugated
to CS to weaken the polymer/nucleic acid interaction and enhance cytoplasmic drug
delivery. Lipid chains, bile acids or negatively charged polymers, such as PLGA,
have also been combined with CS to facilitate miRNA release [129–131].

HA is a highly hydrophilic anionic natural polysaccharide, that can be re-
cognized by HA receptors on cells [132,133]. By virtue of its chemical versatility,
HA has been extensively used to prepare NPs for the delivery of cytostatic drugs,
proteins, polynucleotides, immunomodulators and imaging agents. HA covalently
grafted to cationic polymers or lipid molecules has been proposed to deliver poly-
nucleotides. For example, HA chemically linked to PEI and PEG has been used to
release miRNA and DOX [117,134]. HA has also been successfully used to modify
the surface of cationic polynucleotide-loaded NPs [135]. However, although ca-
tionic polymers efficiently form complexes with nucleic acids due to charge inter-
actions [129], their positive charge contributes to their uptake by the MPS with
subsequent rapid elimination and toxicity [136]. For this purpose, several authors
have proposed surface-modifications with HA to mask the positive charge of

Table 1
Main general design criteria for miRNA-loaded nanoparticles (NPs).

NP requirements for in vivo delivery Delivery challenges Suggested improvements Reference(s)

High encapsulation efficiency miRNA water solubility and
negative charge.

miRNA complexation with positively charged molecules prior to nanoprecipitation or
emulsification.

[71,75,76,77]

Colloidal stability Protein corona formation and
possible aggregation.

Decoration of NP surface with anti-fouling molecules. [72,73,74]

Cell targeting miRNA off-target effects. Surface functionalization of NPs with specific ligands for cell targeting. [41,78,79]
Cargo release in cytoplasm miRNA degradation in low pH

of endosome.
Use of materials with proton-accepting groups, which enable miRNA complexation
and protection from degradation (i.e. proton sponge effect).

[66,67]

Controlled and sustained release, and
increased half-life

Fast NP degradation rate and
burst-release.

Control degradation and/or trigger miRNA release with stimuli-responsive materials
(e.g. containing pH-sensitive histidine-, tertiary amine-, and sulphonamide groups; or
nitroimidazole or azobenzene groups for hypoxia-driven disassembly).

[80]
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cationic NPs, lipid complexes or liposomes [135]. For instance, HA has been elec-
trostatically attached to the surface of positively charged liposomes [137,138] and
calcium phosphate NPs [139], as well as chemically bound to lipids on the NP
surface. Liang et al. have used HA-NPs loaded with miR-145 to target colon cancer
cells through their overexpressed CD44 receptors. Real-time qPCR and western blot
analyses revealed enhanced accumulation and reduced tumour growth [63], sug-
gesting the potential therapeutic success of utilizing such NPs in the clinic.

5.3. Inorganic NPs

Due to their biocompatibility, controllable size and morphology, several in-
organic materials have been proposed in nanomedicine, including gold, calcium
phosphate, silica and iron oxides [140,141]. Firstly, iron oxide-based NPs have been
proposed for imaging purposes, as contrast agents for magnetic resonance imaging
(MRI), in thermal therapy, as well as in drug and gene delivery. The combination of
magnetic NPs with cationic compounds is needed to achieve high miRNA en-
capsulation [142]. Streptavidin-coated magnetite (Fe3O4)-based NPs have been
modified with biotin-bound miR-335/PEI complexes to deliver the miRNA cargo to
human mesenchymal stem cells (hMSCs), achieving enhanced target gene knock-
down as compared to a PEI-miR strategy [143]. Yin et al. have used zinc-doped
Fe3O4 NPs to deliver let-7a miRNA to glioblastoma cells by magnetofection [144].
Loading of let-7a miRNA into NPs has been achieved via a layer-by-layer approach,
using branched PEI as polycation. These complexes showed high cellular uptake (at
nearly 98%) and downregulation of the let-7a targets, PI3K and RAS.

Silica NPs and mesoporous silica NPs (MSPs) are silica-based nanostructures
which possess high biocompatibility and stability [145]. For these reasons, MSPs
have received great attention in clinical applications. MSPs have been used to co-
deliver anti-miR-221 and Temozolomide (TMZ) to treat drug-resistant glioma cells
[146]. Silica NPs carrying a tumour suppressor miRNA miR-34a have been devel-
oped by Tivnan et al. to specifically inhibit neuroblastoma growth [147]. GD2-
antibody could further be conjugated on the NP surface to enhance specific tar-
geting, delaying tumour growth, enhancing apoptosis and reducing vascularization
in vivo.

Calcium phosphate (CaP) NPs are inexpensive, nontoxic, bioresorbable and
easily synthesized nanocarriers. They have been widely used as gene carriers for 40
years, using DNA-CaP co-precipitation as an efficient method to introduce nucleic
acids into cells; they remain stable in the endosomal compartment and are rapidly
degraded in the mildly acidic lysosome environment, causing the vesicle to burst,
releasing their content in the cytoplasm [148]. Banik et al. have shown that large
molecular weight gene therapeutics, such as plasmid DNA can successfully interact
with CaP-NPs in a spontaneous and cooperative manner, without NP intercalation
with DNA base pairs [148]. However, miRNAs might have poor interaction because
of low spatial charge density. Accordingly, long-chain miRNAs (lc-miRNAs) have
been developed to enhance encapsulation efficiencies into PEI-CaPNPs [149]. Lc-
miRNAs have been prepared by adding thiol groups on both the 3’ and the 5’
miRNA end, thus obtaining longer chains with higher encapsulation efficiency.

Gold NPs (Au-NPs) have been used in drug delivery by virtue of their bio-
compatibility, ease of functionalization, and tunable size and shape [150–152].
The surface of Au-NPs is typically functionalized with thiol or amino groups to
enable miRNA entrapment. Ghosh et al. have developed a non-toxic gold-based
formulation to obtain excellent miRNA cellular uptake through endocytosis and
intracellular delivery [153]. This formulation was based on miRNA/ Au-NPs-S-
PEG, with a ratio of 1-10-0.5, respectively. Cystamine functionalization of Au
NPs can also be used for miRNA complexation, whereas PEG can prevent NP
aggregation and miRNA degradation. Ekin et al. have used Au-NPs to deliver and
recover the expression of miR-145 (a tumour suppressor gene) into prostate and
breast cancer cells, where miR-145 is usually downregulated [78].

5.4. Lipid-based NPs

Lipids are the main components of the cell membrane, thus making lipid-based
NPs (LNPs) capable of interacting with the membrane, promoting cellular uptake of
their contents. LNPs are composed of a lipid bilayer that contains the miRNA in the
aqueous core or, in the case of multi-lamellar liposomes, between lipid bilayers
[154]. Typically, miRNA-loaded LNPs are made with a mixture of cationic lipids,
neutral lipids and PEG [155]. Spontaneous electrostatic interaction between ca-
tionic lipids and negatively charged miRNA results in an efficient condensation of
miRNAs and in their protection from enzymatic degradation. Also, the positive
charge facilitates the interaction with the opposite-charged cellular membrane
[155]. However, the use of cationic lipids is commonly associated with cell toxicity,
as they can disrupt cell membrane integrity, induce cytoplasm vacuolization andTa
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Fig. 4. microRNA (miRNA) therapeutic approaches in tissue engineering (TE). (A) Different miRNA-based therapeutic strategies for cardiac repair and regeneration
after injury. miRNAs can (a) augment the regenerative capacity of adult cardiac progenitor cells, (b) reprogram human fibroblasts into iPSCs (c) directly reprogram
human fibroblasts into cardiomyocytes in vivo, and (d) guide gene expression associated with cardiac repair. This figure was created with BioRender. (B) miRNA-
based therapy to regenerate bone defects, using a cell-free 3D scaffold loaded with miR-26a-containing PLGA microspheres. Image reproduced with permission from
Zhang, X. et al., Nature communications, 7 p.10376 (2016) http://creativecommons.org/licenses/by/4.0/.
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reduce cell activity [156]. Furthermore, the presence of cationic lipids can result in
the interaction with negatively charged serum proteins, thus inducing aggregate
formation, which are subsequently eliminated by the liver and the spleen. For these
reasons, several strategies to reduce the cationic charge have been attempted. For
instance, combination with neutral lipids, such as cholesterol (Chol), dioleoylpho-
sphatidyl ethanolamine (DOPE) and phosphatidylcholine (PC), known as “helper
lipids”, has been proposed to enhance stability and reduce toxicity of LNPs [157].
PEG modifications on the LNP surface have also been implemented to increase their
half-life. PEGylated cationic/neutral LNPs have been used for the systemic delivery
of liver-specific tumour suppressor miR-122 in hepatocellular carcinoma (HCC),
achieving ∼ 50% decreased growth after 30 days [158].

6. Therapeutic application of miRNA-based nanomedicine

6.1. miRNA-based nanomedicine in tissue engineering (TE)

MiRNAs are potent therapeutics for TE applications. In this context, miRNA-
activated scaffolds can be prepared for tissue-specific miRNA replacement, or
modulation (Fig. 4). Here, we report the recent results with miRNA in TE, fo-
cusing mostly on cardiac and bone regeneration.

Myocardial infarction (MI), a leading cause of death, consists in the irreversible
loss of cardiomyocytes, cardiac ECM degradation and the formation of a fibrotic
scar. [166] The discovery that miRNA treatment can induce cardiomyocyte pro-
liferation and the direct reprogramming of fibroblasts into cardiomyocytes have
raised the interest in using miRNAs as potential therapeutics in MI, as illustrated in
Fig. 4A [167,168]. In spite of the excitement raised by these findings, the lack of
suitable delivery vehicles for miRNAs have limited their practical application. Re-
cently, Di Mauro et al. have generated CaP-NPs which successfully encapsulated and
delivered miR-133 or miR-39-3p into murine cardiac cells without altering their
biological function [169]. When administered in vivo, via retro-orbital injection,
miRNA-encapsulated CaP-NPs accumulated in the left cardiac ventricle and in the
liver, spleen and kidney. This non-specific uptake suggests that surface-modification
of NPs for specific tissue targeting can improve the efficacy of miRNA-loaded NPs.
Yang et al. have generated polyketal (PK3) NPs loaded with a combination of three
miRNAs (miR-106b, miR-148b and miR-204), targeting Nox2, a ROS intermediate,
with increased expression after MI [162]. Potentially, the inhibition of Nox2 ex-
pression by local treatment with NPs improved cardiac function and reduced infarct
size in mouse models. Bejerano et al. also showed tissue remodeling post-MI
through the delivery of miR-21 assembled into hyaluronan-sulfate (HAS) NPs [159].
After MI, prolonged macrophage recruitment to the infarct area could result in
persistent inflammation and delayed tissue repair, thus inducing further cardiac
damage. Also, miR-21 upregulation in peritoneal macrophages has been previously
shown to promote inflammation resolution [170]. HAS-mediated delivery of miR-
21 in vivo could elicit the natural reparative ability of macrophages, thus reducing
cardiac fibrosis and cell apoptosis.

Several studies have elucidated the role of miRNAs in bone remodeling, by
controlling osteoblast differentiation and inhibition through the regulation of dif-
ferent signaling pathways [171]. Zhao et al. have used CS-based NPs to deliver anti-
miR-138 to bone marrow mesenchymal stem cells (BMSCs) to promote osteogenic
differentiation [172]. Anti-miR-138 could regulate the ERK1/2 pathway, inducing
osteoblast differentiation. Wang et al. have engineered miR-21-loaded HA/CS NPs
(miR-21-HA/CS NPs) that could coat cell culture plates to induce osteogenic dif-
ferentiation of BMSCs [173]. miR-21 has been selected because it downregulates
SOX2 expression, thereby inducing the differentiation of hMSCs towards osteogenic
lineages. After BMSC transfection with miR-21-HA/CS NPs, osteogenic-related
genes could be upregulated compared to controls, including Collagen type I alpha1
(COL1), osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), and os-
teocalcin (OCN). Moreover, after 14 days of culture with miR-21-HA/CS NPs,
BMSCs that were subsequently cultured in an osteogenic differentiation medium
could display significantly higher ability for ECM mineralization, as suggested by a
higher calcium accumulation compared to controls.

As TE often requires the presence of three-dimensional (3D) constructs to favour
and support new tissue ingrowth, recent approaches combining NPs with injectable
hydrogels or scaffolds have also been exploited. For instance, Zhang et al. have
proposed a two-stage miRNA delivery strategy to improve controlled release and
transfection efficiency of miR-26a for calvarial bone regeneration (Fig. 4B) [161].
This strategy relies on the encapsulation of polyplexes carrying miRNAs into PLGA
microspheres and their subsequent immobilization onto poly(L-lactic acid) (PLLA)
scaffolds. This two-stage miRNA delivery could regenerate bone defects in mice by
activating the osteoblastic activity of endogenous stem cells.

CS hydrochloride NPs loaded with agomiR-199-5p have been used to induce

hMSC osteogenic differentiation in vitro through the regulation of the HIF pathway
[56]. NPs could allow sustained agomiR-199-5p delivery in vitro for at least 21 days.
Here, agomiR-loaded NPs were encapsulated into a fibrin gel and the scaffolds were
implanted within a tibia bone defect in rats, allowing successful in situ bone tissue
regeneration. In another study, Zhou et al. demonstrate a local sustained gene de-
livery system by using PEI-modified PLGA-NPs embedded into HA hydrogel, to
deliver an engineered miRNA plasmid which targets cyclooxigenase COX-1 and
COX-2 to reduce flexor tendon adhesions [160]. Administration of miRNA by PLGA
NPs in hydrogel could prevent tendon adhesions by decreasing inflammatory re-
sponse by directly downregulating COX-1 and COX-2.

6.2. miRNA-based nanomedicine in cancer

In cancer treatment, miRNA-based therapy can follow two strategies: (i) miRNA
inhibition and (ii) miRNA replacement (Fig. 5) [174]. The first approach provides
specific anti-miR oligonucleotides (AMOs) that inhibit tumour-promoting miRNAs
(oncomiRs), such as miR-519a and miR-32 [175,176]. The latter strategy aims at
introducing exogenous miRNAs (miR mimics) known to promote tumour suppres-
sion, such as miR-34a and let-7b [177,178]. However, in spite of the evidence of
potentiated anti-cancer toxicity of combinational treatments based on anti-cancer
drugs and miRNAs, clinical application is limited by practical hurdles. Preclinical
trials have highlighted the difficulty of delivering naked miRNAs to tumours and the
need for more efficient delivery systems [179,180].

Numerous authors have shown that chemotherapeutics and miRNAs can be
encapsulated within NPs, representing an effective strategy to achieve potentiated
cytotoxicity both in vitro and in vivo. For instance, miRNA-mediated regulation of
the p53 network or the extracellular signal-regulated kinase (ERK) pathway has
been used in synergy with cytotoxic drugs, such as DOX and Paclitaxel (PTX)
[165,181]. Deng et al. have designed CS/HA NPs, exploiting the positive charges of
CS to form complexes with miR-34, a regulator of the p53 pathway. DOX was co-
encapsulated with miR-34 into CS/HA NPs, showing enhanced efficacy against
triple negative breast cancer cells in vitro, as miR-34 restored the normal p53
pathway, sensitizing the cells to DOX chemotherapy [181]. Recently, nano-sized
liposomes have also been prepared encapsulating DOX in combination with miR-
101, a tumour-suppressive miRNA that is downregulated in HCC [182]. The effect
of co-delivery could inhibit the growth of malignant HCC cells, both in vitro and in
vivo, due to the synergistic effect of both agents [23].

Cui et al. demonstrate that the co-encapsulation of PTX and miR-7 into
mPEG-PLGA-PLL-LA NPs [165]. miRNA-7 suppresses the EGFR/ERK pathway,
which is known to drive cell proliferation and resistance to PTX [122,183]. Their
developed NPs could enhance PTX release and improve miRNA efficiency, re-
sulting in increased apoptosis of ovarian cancer cells and reduced resistance to
PTX [165]. Costa and colleagues demonstrate the preferential accumulation
within brain tissue of liposomal NPs that were conjugated with chlorotoxin
(CTX), a glioma-specific peptide marker. CTX-NPs could efficiently deliver anti-
miR-21 oligonucleotides, with no signs of systemic immunogenicity [164].

Studies on lung adenocarcinoma (LAC) have shown the presence of a small
subset of cancer stem cells (CSCs) with altered miRNA expression [184]. miR-145
loaded into PU-PEI NPs showed beneficial effect on LAC metastases through the
inhibition of EMT processes and improved sensitization to chemoradiotherapies,
prolonging survival of mice. Abnormal expression of miRNAs has also been found in
malignant brain tumours. For instance, inhibition of miRNA-21 has been used in
GBM treatment to rescue tumour suppressor genes, such as PTEN and PDCD4, while
miRNA-182 has been associated with favorable prognosis because of its role as a
regulator of apoptosis, growth, and differentiation [185–187]. Anti-miR-21 NPs co-
encapsulating DOX have demonstrated enhanced cell apoptosis and reduced tumour
growth in brain tumour models [64]. Kouri et al. demonstrate gold NPs covalently
functionalized with miR-182 that can selectively deliver miR-182 to brain tumours,
reducing tumour size and increasing survival [163]. These studies demonstrate the
extensive potential of miRNA-loaded NPs in cancer treatments.

7. Frontiers in miRNA-based therapies

7.1. Cancer immunotherapy

MiRNAs play a significant role in immune system modulation [188]. As a
result, inhibiting or upregulating specific miRNAs can potentially modulate the
immune response to tumours, for example by controlling macrophage polar-
ization or by regulating their activities in the tumour micro-environment (TME)
[189,190]. For instance, upregulation of specific miRNAs, such as let-7c
[191,192], and miR-146a [193,194] has been shown to drive
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Fig. 5. (A) Roles of microRNAs (miRNAs) in cancer. Depending on the target gene, miRNAs suppress or stimulate cancer-related genes. Image modified from Oliveto,
S. et al., World journal of biological chemistry, 8 (1), p.45 (2017). (B) Therapeutic approach using miRNA-loaded polymer NPs circulating in the tumour micro-
environment. Images (A) and (B) were created with BioRender.

Fig. 6. NPs can be applied in cancer immunotherapy to i) enhance the activity of T cells, ii) induce macrophage reprogramming towards the tumoricidal M1 phenotype,
iii) target immune cells and exploit their tumour infiltration ability to penetrate inside the tumour mass, where release can be triggered by either internal or external
stimuli. Image modified with permission from Gun, S. Y. et al., Redox biology, p.101174 (2019) (published under Creative Commons attribution Licence CC-BY).
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immunosuppressive and pro-tumour activity of (pro-tumour) “M2”-type tumour-
associated macrophages (TAMs). In contrast, (anti-tumour) “M1”-type macro-
phages, characterized by tumoricidal activity, can be induced by increased ex-
pression of a.o. miR-125b [192,195], and miR-155 [196–198]. As im-
munomodulation is often constrained by poor specificity, NP-based specific
delivery of immunomodulatory agents has the potential to improve on-target
delivery while minimizing off-target effects (Fig. 6) [199]. Although numerous
studies have demonstrated the anti-tumour efficacy of NP-based im-
munomodulation, targeting macrophages, T cells, and dendritic cells (DCs)
[200,201], there is a startling lack of studies on immunomodulation through
miRNA-loaded NPs. Importantly, the design of miRNA-based NP platforms for
immunomodulation may build upon existing RNA-based NP technologies or
immune system targeting strategies, briefly summarized below [8,202–204].

Researchers have used monocytes/macrophages as enablers of NP-based
anti-cancer therapy, by virtue of their ability to naturally home to tumours. Choi
et al. show that macrophages that phagocytized gold nanoshells (Au-NS) can
accumulate into breast tumour spheroids, resulting in cancer cell death through
photo-induced ablation [205,206]. Anselmo et al. and Doshi et al. have attached
a therapeutic cargo to monocytes in the form of a “cellular backpack” and de-
monstrate that monocyte-associated “backpacks” could accumulate to greater
degree in inflamed organs, as compared to a “free backpacks” [207,208]. Al-
ternatively, Song et al. demonstrate the TAM-specific delivery of siRNA targeted
against vascular endothelial growth factor (VEGF) and placental growth factor
(PIGF), that support the pro-tumour activity of TAMs [209]. Mice being ad-
ministered with siRNA-loaded NPs showed decreased TAM accumulation in the
tumour microenvironment and striking reductions in tumour growth compared
to control mice.

Similarly, T cells, which display cytotoxic activity against tumour cells, can
be exploited to facilitate intratumoral delivery of NPs [210,211]. For example,
Siriwon et al. show that CAR T cells can effectively deliver and release an an-
tagonist against T cell activity deep within the tumour microenvironment, thus
supporting effector T cell cytotoxicity [212]. NPs can also be used to deliver
cytotoxic T lymphocyte molecule-4 (CTLA-4) siRNA into tumour-infiltrating T

cells (TILs), to increase the proliferation and the anti-tumour activity of effector
T cells [213]. Smith et al. have utilized NPs to deliver leukemia-specific CAR
genes into T cells, achieving long term disease remission [214]. This strategy
could potentially be used to achieve a sufficient pool of therapeutic T cells to
elicit “on-demand” cancer immunity [214].

NPs-based immunotherapy can also be achieved by targeting dendritic cells
(DCs). DCs present epitopes of tumour-associated antigens (TAAs) to T cells,
activating T cells for their attack of TAA-presenting tumour cells [215]. Self-
assembled DNA–RNA nanocapsules have been develoded to that deliver tumour
neoantigens to DCs, increasing the CD8+ T cells and reducing the growth of
colorectal tumours [8]. Warashina et al. have developed a lipid NP for DC-spe-
cific delivery of siRNA against a suppressor of cytokine signaling 1 (SOCS1).
Treated DCs displayed a marked increase in cytokine production with con-
sequent reduction of tumour growth in vivo [216]. Kranz et al. have further
exploited the antiviral defence mechanisms of DCs, using DC-targeting RNA-li-
poplexes to trigger the release of pro-inflammatory interferon-α [217].

7.2. Neurodegenerative disorders

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s
disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and
Huntington’s disease (HD), are characterized by, among other features, the
progressive loss of neuronal synapses, leading to neuronal death. Recent studies
have reported that abnormal miRNA expression contributes to the degradation of
neurons [218], suggesting that neurodegenerative diseases can be classified as
an RNA disorder [219]. miRNA-loaded NPs that regulate RNA transcripts may
thus represent a form of novel therapeutics for treating neurodegenerative dis-
eases (Fig. 7) [220].

Comparative studies of miRNA profiles in post-mortem brain tissue from PD
patients and healthy controls have shown altered miRNA levels in PD patients.
For instance, miR-7, miR-153, and miR-433 drive the over expression of α-sy-
nuclein, which has been associated with aberrant soluble oligomeric conforma-
tions in in vitro experiments [221,222]. Dysregulation of miR-34 has been

Fig. 7. (A) Representative potential microRNA-therapies for treating neurodegenerative diseases. Targeted NPs release miRNA to neurons by: (B) surface charge
(reproduced with permission from Dante, S. et al., ACS Nano 11, 6630–6640 (2017), or (C) surface functionalization with specific neuronal binding ligand such as (i)
RVG-derived 29-amino-acid and (ii) Tet1, 12-amino-acid (reproduced with permission Kumar, P. et al. ACS Nano 2016, 10, 8 7926–7933 and Kwon, E. J. et al.,
Biomaterials 31, 2417–2424 (2010), respectively).
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associated with the pathogenesis of PD along with altered mitochondria activity
and oxidative stress [223]. In addition, several studies show reduced expression
of miR-133 in PD patients, which regulates dopaminergic neuron development,
differentiation and maturation [224]. miR-133 also further regulates Pitx3, a
transcription factor involved in dopaminergic neuron differentiation [225].

Additionally, many miRNAs are abnormally regulated in the brains of AD
patients. For instance, decreased expressions of miR-29, miR-189, and miR-9 are
found in the AD brain, as evidenced by genome-sequencing and miRNA profiling.
Decreased expressions of miR-298, miR-328 and miR-195 have been found in AD
mouse models [226,227]. Recent studies have shown the relationship between
miRNA dysregulation and extracellular amyloid β plaque (Aβ) production and
aggregation which gives rise to neuro-degeneration [228]. For example, de-
creased expression of miR-107 may contribute toward faster disease progression
by regulating beta-site amyloid precursor protein (APP) cleaving enzyme 1
(BACE1) [229]. miR-106a and miR-520c have been found to suppress the ex-
pression of APP in vitro [230]. miR-17 and miR-20a, along with miR-147, miR-
153, miR-644, and miR-655 as well as miR-323-3p, have been found to directly
target APP [231]. Additional studies have identified dysregulated miRNAs that
contribute to AD pathogenesis through atypical regulation of numerous proteins,
which is involved in disease progression. Downregulated miR-103 or miR-107
expression can also lead to increased cofilin 1 (CFL1) levels in AD brains, which
may associate with the formation of intracellular Hirano bodies [232]. Other
studies show that decreased expressions of miR-9, miR-137, miR-181c, and miR-
29b-1 in AD brain can upregulate serine palmitoyltransferase (SPT), long chain
subunit 1 (SPTLC1) and 2 (SPTLC2), which are the rate-limiting enzymes in the
synthesis of ceramides [233].

The dysregulation of miRNA also plays an essential role in other neurode-
generative diseases. Many studies have identified ALS-relevant transcripts and
pathways that are targeted by dysregulated miRNAs. For instance, miR-132
regulates acetyl-cholinesterase and polypyrimidine tract binding protein 2
(PTBP2), which influences alternative splicing of tau in ALS [234]. Wang et al.
showed that miR-219 and miRNA-338 downregulation is observed in murine
CNS, regulating oligodendrocyte differentiation and myelination [235]. Several
miRNAs may also play a role in HD, particularly by targeting the Huntingtin
gene (Htt). Sinha et al. show that miR-125b, miR-214, miR-150, miR-146a have
the potential to reduce Htt aggregates [236]. The encapsulation of these miRNA
in NPs may further represent a feasible strategy for more efficient delivery, thus
contributing to improved therapeutic outcomes.

To date, delivery of miRNAs to the brain and to the spinal cord mainly relies
on recombinant adeno-associated virus (rAAV) [237]. Miyazaki et al. showed
that miR-196a delivery using AAV vector could enhance the decay of mRNA
androgen receptor by silencing Elav-like family member 2 (CELF2) in mice
[238]. They found that the early delivery of miR-196a by an AAV vector could
ameliorate the spinal and bulbar muscular atrophy phenotype in mice. Another
study showed that miR-132 delivery using AAV9 vector could recover motor
function, thus regulating muscle locomotion as well as survival rate of HD model
mice [239].

As AAV vectors have a limited capacity for encapsulation (4.5–5 kb) due to
size limitations, non-viral vectors may substantially increase miRNA delivery
efficiency to the brain, improving neurodegenerative disease treatment. Drug
delivery to the brain mediated by NPs can also allow blood-brain barrier (BBB)
crossing and selective targeting of neurons. For example, heat generation from
iron oxide NPs has been shown to enhance BBB bypass of NPs [240]. Dante et al.
showed that negatively charged (eCOOH) NPs could effectively localize at the
membrane of neurons and influence neural excitability [241,242]. Ligand-based
targeting has been also considered for the improved delivery of NPs to brain and
neurons. Kumar et al. reported that a short peptide-derived rabies virus glyco-
protein (RVG) localize on neuronal cells in vitro through specific binding to the
acetylcholine receptor [243]. Kwon et al. proposed a non-viral delivery vehicle
to adult neural stem cells using a 12-amino-acid, Tet1, which could bind speci-
fically to neuronal cells [244]. Therefore, NPs represent potential therapeutic
tools in neurodegenerative disorders by virtue of their ability to deliver miRNA
treatments to deeper regions of the brain.

8. Conclusions

As important regulators of cell behavior in normal and pathological condi-
tions, miRNAs hold immense potential for clinical applications, ranging from
cancer therapy to TE approaches for the treatment of bone and cardiac defects, to
neurological disorders, as described in the above paragraphs [3]. Moreover,
because miRNAs inhibit/promote the expression of a multitude of genes

compared with mRNA and siRNA, miRNA therapy potentially carries distinct
advantages for disease treatment and regenerative medicine [25,26]. Efficient
and safe delivery of miRNAs is of paramount importance for their exploitation in
the clinics, as naked miRNAs are susceptible to rapid degradation and traditional
transfection reagents are not suitable for in-human applications [8].

Encapsulation of miRNAs into NPs can overcome these delivery challenges,
resulting in enhanced targeting efficacy and reduced off-target effects of the
encapsulated payload. Importantly, the design of NPs with genetic cargo has
primarily focused on siRNA, DNA, plasmids or oligonucleotides, and only few
have detailed work with miRNA. In this work, we discussed the advantages of
nanomedicines for miRNA delivery, reviewed the recent applications of NPs and
miRNAs carriers, and highlighted potential new fields of use, which can benefit
from miRNA-based therapies. The development of miRNA-loaded NPs is nascent
and, often, authors describe methods for preparing NPs for miRNA delivery
while referring to previous protocols, which are originally developed for drugs or
other types of RNA or DNA cargo. Few studies present a thorough comparison
between miRNA-loaded NPs and NPs with other RNA (for example siRNA-loaded
NPs) [245]. Even so, these comparative studies only investigated the physico-
chemical properties of the NPs or their uptake by cells in vitro and it remains to
be validated if these findings are also relevant in vivo. Indeed, as crucial bio-
chemical differences exist between miRNAs and other nucleic acids, we should
be cautious to extrapolate or predict outcomes for miRNA-loaded NPs based on
the findings of other DNA/RNA-associated NPs. Nonetheless, our understanding
of miRNA-loaded NPs is only beginning, and the future holds several therapeutic
possibilities for miRNA-loaded NPs.
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