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Abstract

This thesis investigates a technique known as “coring” which can be used to reduce
noise in two-dimensional video images. Coring passes the high spatial frequency
components of a noisy image through a non-linear “coring function.” This function
operates on each pixel and is a function of pixel intensity. This thesis provides a the-
oretical justification for the success of coring in noise reduction. Coring functions are
generated using the theoretical results and then tested on a set of images. Finally, this
thesis develops an algorithm for noise reduction given a statistical characterization of
the noise.
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correlated additjve white nojse, There are other types of noise, such ag pink noise
(noise with some spatjal correlation), speckle noise or multiplicative noise, quantiza-
tion errors, anq coding/decoding errors. These types of noise will not be dealt with
in this thesjs,



perform some sort of high frequency elimination, producing blurring.

Coring solves some of the problem inherent in linear filtering techniques. Coring
employs a non-linear mapping to reduce the noise. Coring anticipates that the high-
frequency component of signal power is somewhat larger that the noise power. Given
this assumption, it makes sense that low intensity pixels in a high-passed filtered
image will be noise. Whereas high intensity pixels will most likely be signal. It
then makes sense to severely attenuate low intensity pixels and leave high intensity
pixels unchanged. This is the essence of coring. When coring is performed on high
frequency components of a set of directionally filtered images the benefits increase.
Since uncorrelated noise power spreads evenly in all directions and edges tend to align
themselves directionally, edges need not be attenuated as much in order to achieve the
same overall noise reduction. Quadrature Mirror Filter (QMF) Pyramids prove useful
for this purpose. Since uncorrelated noise power spreads evenly in all directions and
edges tend to align themselves directionally, edges need not be attenuated as much
in order to achieve the same overall noise reduction.

Previously, coring functions were chosen intuitively, realizing that low intensities
must be attenuated and high intensities should be left unchanged. No theoretical
justification for any particular coring function had been developed. This thesis de-
velops a theory for selecting the coring function that generates a cleaned image with
mean square error minimal high frequency subbands. The theory is then tested in a
set of test cases. Possible improvements in the details of the coring process are also
examined. A procedure to clean a noisy image given only a characterization of the

noise is also presented.
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Chapter 2

Related Work

When reviewing introductory material on image restoration, a reader normally comes
across two techniques for noise reduction, image smoothing and Wiener filtering. Im-
age smoothing is a spatial domain technique providing an extremely simple and ef-
ficient algorithm to reduce the noise. Unfortunately, smoothing inherently produces
blurry results. Another algorithm is Wiener filtering. Among linear filtering tech-
niques, Wiener filtering promises the minimal mean square error in the restored image.

Unfortunately, the assumptions necessary for Wiener filtering are rarely satisfied.

2.1 Image Smoothing

Image smoothing was first developed by R.E. Graham in 1962 as a technique to remove
uncorrelated additive noise, also termed “snow” [7]. Smoothing essentially performs
a low-pass filter operation. Because images tend to exhibit local correlations, much
of the signal energy is located in the low frequency spectrum. Thus when white noise
(flat frequency energy spectrum) is added, the low frequency signal to noise ratio
(SNR) is greater than the high frequency signal to noise ratio [10]. Image smoothing
attempts to increase the overall SNR by attenuating the high frequency portion. This
generally improves overall SNR at the expense of high frequency signal information
such as edges and sigrificant blurring results. The amount of blurring can be reduced

depending on the implementation chosen.
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2.2 Wiener Filtering

Another technique frequently discussed in literature on noise reduction is Wiener
filtering. Wiener filtering was applied to image restoration by Helstrom [7). Among
linear transformations, it promises mean square error minimal restoration provided
a number of conditions are satisfied. For a proof of this the reader is referred to [6]
and [7]. These conditions demand that the signal and noise be stationary processes.
The stationarity assumption is questionable in many applications. The Wiener filter

is often expressed as a frequency domain transfer function given by

G(u,v)

F(u,0)= = Sa(u,v)/Ss(u,v)’

(2.1)

where F'(u, v) is the two-dimensional Fourier transform of the cleaned image, G(u, v) is
the 2-D Fourier transform of the original noisy image, S,(u, v) is the Fourier transform
of the noise correlation image (noise energy spectrum), and Sy(u,v) is the Fourier
transform of the original image correlation image (signal energy spectrum). The
drawback of Wiener filtering is that it requires a knowledge of the signal and noise
energies at each frequency. This is a weighty amount of information, most of which

is generally not available.
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Chapter 3
Pyramid Filtering

Recent years have seen the development of multi-scale linear image transforms for
use in image data compression, motion analysis, texture segmentation and edge de-
tection. These transforms are represented as recursive structures known as pyramids.
Pyramids are formed by taking the original image, filtering the high frequency infor-
mation out and storing it, subsampling the low frequency information by a factor of
two and repeating the process. Filtering the high frequency information and storing
it, generates an image that has a low entropy. Subsampling the low frequency portion
reduces the amount of information to store. Thus, pyramid structures efficiently use
storage space and are useful for image compression. Furthermore, multi-scale struc-
tures maintain some uniformity of representation over the range of scales, hence the

statistics of the images are similar from scale to scale.

3.1 Laplacian Pyramids

Much early work in multi-scale transforms revolved around the Laplacian pyramid |1,
5]. The Laplacian pyramid is generated by first low-pass filtering the original image
using a Gaussian filter. The difference between the original and the low-pass image
are taken. This creates the first level high frequency portion of the pyramid. The
process is repeated recursively on each successive low-pass image (each time having a

lower cut-off frequency on the low-pass filter), thereby generating a pyramid structure.
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The Laplacian pyramid has a number of benefits. It is a complete description of the
original image, that is, there are no losses of information in the storage of the pyramid
(excepting quantization errors). The sub-levels of the pyramid are upsampled, filtered
and summed back to the original image. The Laplacian pyramid is computationally
efficient, requiring few multiplications and additicns. The failures of the Laplacian
pyramid are its lack of orientation selectivity and its over-completeness (storing of
redundant information).

The Laplacian pyramid works fine for application such as image compression.
However, it lacks any orientation selectivity in the high-pass portions of the pyramid.
This is a drawback for applications such as motion analysis, texture segmentation,
edge detection, and coring. As a result, Quadrature Mirror Filter pyramids are be-

coming favored for image processing applications.

3.2 Quadrature Mirror Filter Pyramids

Quadrature Mirror Filter (QMF) pyramids [2, 3, 12, 13, 14] achieve spatial localization
while trading off some advantages with the Laplacian pyramid. QMF pyramids for
two-dimensional images can be formed using separable low-pass and high-pass kernels.
A two-level QMF pyramid of the Lenna image is shown in Figures 3-2 through 3-9.
The original Lenna image is shown in Figure 3-1. Note the transformed subbands were
not subsampled. On each level of the pyramid, four filtered subbands are generated:
the low-pass, the horizontal, the vertical and the diagonal. Each band is named by
the orientation of edges within the subband. The low-pass band can be recursively
filtered to generate a pyramid structure.

The second level of the pyramid shows similar spatial information to the first.
The second level of the pyramid (again not subsampled) is shown in Figures 3-6-3-9.
This similarity from scale to scale is a property of the QMF transform. This has
repercussions on this thesis’ work on coring. Because of this property, all levels of
the pyramid exhibit similar intensity distributions (more commonly referred to as

“histograms”). Thus it becomes possible to reliably generate a two parameter model

15



Figure 3-1: The original Lenna image.

of the subband histograms (See Chapter 7).

The orie. ation selectivity of the QMF pyramids proves beneficial in many appli-
cations as mentioned above. This improvement comes with the tradeoff of increased
information storage and decreased computational efficieny. Relative to coring, the ori-
entation selectivity accentuates image features relative to noise {11, 4]. This enhances

the effectiveness of coring.
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Figure 3-3: The diagonal subbaad of Lenna.
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Figure 3-6: The second level low-pass subband of Lenna.

Figure 3-7: The second level vertical subband of Lenna.
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Figure 3-8: The second level horizontal subband of Lenna.

Figure 3-9: The second level diagonal subband of Lenna.
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Chapter 4

An Overview of Coring

The foundations of coring originate with a paper by Bryce E. Bayer and Philip G.
Powell [11]. In that paper, the idea of attenuating low intensities values of high-pass
images is developed. Indeed, Bayer and Powell indicate the path followed in this
thesis, which they had considered intractable. Bayer and Powell’s research was fol-
lowed by a number of unpublished papers on the subject. A paper by Adelson and
Ogden [4] extended coring research by implementing the coring algorithm on oriented
pyramids. Adelson and Ogden also introduced a continuous coring function, as op-
posed to Bayer and Powell’s discontinuous function. W. Anthony Lee [9] furthered
the work of Adelson and Ogden by implementing coring on QMF pyramids. Before

delving into previcus work, a brief glimpse of the coring procedure is given.

4.1 The Coring Procedure

The coring procedure starts with a noisy image (see Figure 4-1) as its input, and
follows the procedure detailed below and shown in Figure 4-2. First the noisy image
is broken down into subbands: low-pass (Figure 4-3), horizontal (Figure 4-4), vertical
(Figure 4-5), and diagonal {Figure 4-6). At this point a decision is made whether or
aot to core to two levels. If the decision is made to go a second level, the low-pass
subband is then broken down into subbands. This process can be repeated recursively.

Typically when using QMF pyramid structures, the subbands are subsampled. This

21



maintains the orthogonality of the QMF transform. For this research, the subband
images were not subsampled (the filters were padded with zeros though, to maintain
the octave dividing characteristic of the QMF transform). By not subsampling, the
subband is over-complete, meaning it contains redundant information.

After the subband images are generated, the high-pass subbands are operated on
by the coring function, pixel by pixel. The coring function maps pixels intensities of
the subband to new intensities. A set of coring functions are shown in Figures 4-7
through 4-9 along with their respective cored images in Figures 4-10 through 4-12.

After coring, the images are convolved with the inverting QMF transforms and
added back together, leaving the resulting image shown in Figure 4-13. This can be

compared with the original noise-free image shown in Figure 4-14.

4.2 Bayer and Powell’s Work

Bayer and Powell [11] propose a discontinuous coring function that operates on the

high frequency portions of a Laplacian-type pyramid. Their coring function is defined

0 ifLn<T
Tout = { ‘ (4.1)

I, otherwise

as

where I, is the cored output intensity, I;, is the input intensity and T is the threshold
which varies with the standard deviation of the noise. Bayer and Powell do not give
any algorithm for selecting the threshold level, T'. Their work suggests the approach,
taken in this thesis, of making an estimate of the most probable decomposition of
noisy image into noise and signal. They also suggest the use of histogram models for
the noise and signal to perform calcualations. These two suggestions are the driving
force behind this thesis’ work on coring.

Bayer and Powell also suggest the use of oriented filtered images. They propose
that an oriented pyramid struct.ire would emphasize image features relative to noise,
thereby making coring of low intensity noise more effective. When Bayer and Powell

wrote their paper, QMF pyramids had not yet been developed. What they proposed
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correspends reasonably well with what is now known as QMF pyramids.

4.3 Adelson and Ogden’s Work

Adeison and Ogden [4] extend Bayer and Powell’s work to pyramid structures, in
particular oriented pyramid structures. Their paper starts with an analysis of coring
on a non-oriented Laplacian pyramid. Later in the paper they discuss results with
an oriented version of the Burt pyramid. They find that oriented coring does much
better than non-oriented coring.

Adelson and Ogden also experimented with filter shapes. In an attempt to avoid
edge distortion caused by the threshold coring of Bayer and Powell, they developed

a parameterized coring function
T = (1 — e~(mlEal)?) 1k (4.2)

where I, is the coring output intensity, I;, is the input intensity, and m, k and p are
parameters. The parameter m controls the amount of coring (the coring width), p
controls the attenuation in the coring region, and k controls the amplification outside
the coring region. Adelsor and Ogden find that this coring function reduced edge
distortions created by coring. They state that the shape of the coring function defines
the restoration quality as much as the coring width does, yet offer no solutions to
the optimal coring shape. This thesis presents a formulation for the optimal coring

shape.

4.4 Lee’s Work

W. Anthony Lee further advanced the development of coring when he implemented
coring on QMF pyramids [9]. He detailed the implementation of the filtering process
described in Section 4.1.
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Figure 4-1: A noisy version of the Lenna image.
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Figure 4-2: Information flow in coring (one level).

Figure 4-3: The low-pass band of the noisy Lenna image.
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Figure 4-4: The horizontal subband of the noisy Lenna image.

Figure 4-5: The vertical subband of the noisy Lenna image.
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Figure 4-8: The diagonal subband of the noisy Lenna image.
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Figure 4-7: The coring function for the horizontal subband.
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Figure 4-9: The coring function for the diagonal subband.
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Figure 4-10: The cored horizontal subband of the noisy Lenna image.

Figure 4-11: The cored vertical subband of the noisy Lenna image.
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Figure 4-12: The cored diagonal subband of the noisy Lenna image.
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Chapter 5

Coring Theory

Typically, image information is low frequency information and white noise is flat band
information. Thus in high pass filtered images, the Signal to Noise Ratio (SNR) is
lower than in the original image. It makes sense then to attenuate the high frequency
information. This can be done in several ways. Image smoothing low paes filters
noisy information. Wiener filtering is a frequency domain technique which makes a
linear estimate of the signal image given the noisy image.

Coring is a non-linear techniqu~ that has developed in response to many techriques
that indizcriminantly eliminate high frequency information in order to remove additive
noise. It is possible to throw out only the portion of the noisy information that is
believed to be noise. This is the principle behind coring. While coring has been
in use for about five years now, a theoretical justification for its success has never
been proferred. The following material develops a formulization for generating coring
functions. These coring functions produce mean square error minimal images in each
high-pass subband, provided the assumptions of this formulation are satisfied. When
the restored subband images are reconstructed, the resulting image is significantly

cleaned of noise.
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5.1 Assumptions

Few assumptions are placed on the the theory to be developed in this chapter. The
first is that the noise process is assumed to be an additive process. The noise is
composed of an array of random variables, which represent pixel intensities. The
random variables are given by a zero mean process and are independent from the
signal. The second assumption is that the transform be lossless (or nearly lossless).
There are other considerations while choosing & specific transform though. While the
reason for coring’s success depends on the reduced SNR in the high-pass band relative
to the low-pass band, coring does better as the SNR in the high-pass band increases.
Hence, the transform which maximizes the high-pass SNR should be selected for
coring. This is also the reason why oriented transforms, such as the QMF, do better

than non-oriented transforms.

5.2 Derivation of the Coring Function

Using the suggestion of Bayer and Powell [11], « Bayesian estimate of the optimal
coring function in each subband is developed. Assume that in a subband, the noisy
image Y is composed of the sum of the noise N and the original image signal X.
Mathematically,

Y=X+N

where Y, X and N are arrays of random variables. Since Y, X and N are random
variables at each pixel, they can be described by probability distribution functions
(pdf’s) Py(y), Pz(z) and P,(n). Becanse the noise process is additive,

Py(y) = P:(y) * Pa(y)

where the * represents convolution. Writing out the convolution,

oo

Py)= [ Pa)Puly ) do.
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Assuming an additive noise process, the equation

Pyl:(zay) = Pn(n) = Pn(y - z)

relates the pdf of the conditional probability of y given z to the pdf for the noise.
Bayer and Powell’s idea is to develop a Bayesian estimate for = given y. Bayesian
analysis attempts to estimate the original intensity of a pixel given its noisy value.

The first step is to apply Bayes’ Law,

PS("’)PUIS('T’ y) = Pu(y)Pr-lu(zv Y),
which relates the conditional probabilities of uncorrelated random events. Rewriting
for P,,(z,y), the probability of z happening if y happens,

Poy(z,y) = P’(z},f'(':j( 2y)

Substituting in for P,(y) and P,.(z,y) from above,

_ Pe(z)Pu(y — 2)
Prlu(""» y) - Pz(y) * P,.(y) °

The next step is to find the expected value of z given y using the relation

t(y) = [ oPay(a,y) do

which makes a minimal mean square error estimate for z. Substituting in for Py),(z,y)

one arrives at the coring function,

[ aP(a)Paly - 2) da
#(y) = T P.(2)Pa(y — ) dz ’ (5.1)

where Z(y) is a2 function of y. It yields the expected intensity value of r given a
particular y.

The coring function is computed for each subband of a transformed noisy image
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and is then applied to the each noisy subband image. The cored subbands are then

used in the reconstruction process.
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Chapter 6

Results

Using the theory of Chapter 5, a test experiment was conducted to check the validity
of the theory. A fixed noise image was added to six test images. The images were
tranformed using a nine tap QMF transform, then cored, and a clean image was
reconstructed. Signal to Noise Ratio data is then collected. A comparative study was
also done between Wiener filtering, Bayer-Powell coring, Adelson-Ogden coring and
this research. Next, the dependence of coring performance on signal characterization
was examined. Finally, the effect of filter kernel length on coring performance was

examined.

6.1 Testing the Theory

In order to test the theory, a fixed noise source was added to a set of test images,
which were subsequently cored. The noise was chosen to be Gaussian noise of variance
o? = 64. TLis level of noise was sufficient to test noise removal. It provided enough
graininess to the noisy image to be visually bothersome, while at the same time did
not cobliterate edge information.

The test images were chosen to be “Lenna”, “Einstein”, “Kate”, “Paolina”, “Man-
dril” and “Bench.” They were selected for their variety in textures as well as the
general quality of the image.

The following procedure was developed to test coring. It follows closely a proce-
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dure developed by Adelson and Ogden[4]. The outline is as follows:

1.

(4}

Add fixed noise image to the test image. Compute the Signal to Noise Ratio
(SNR) of the noisy image using the formula

2-
SNR(dB) = 10log (%,'-'"—"'-) ,

noiee
where o3,y and 03, are the variances of the signal and noise respectively.

Transform image, noise, and neisy image into subbands (not subsampled how-

ever). Use a two level pyramid structure.

Compute histograms for the noise image and original image subbands — these

are the effective pdf’s for use in the coring formula.

For each high-pass subband, compute the coring function from Equation 5.1.

. For each high-pass subband, apply the coring function to the noisy image sub-

band.

Reconstruct two images: one that is cored on two levels, one that is cored on

one level.

Measure the mean square error between the cored images and the original image.

Compute the SNR gain.

To assist in visualization of the process, various images are shown in the following

pages. Figure 6-1 shows the Lenna image with the fixed noise added. Figure 6-2

shows the diagonal subband of the noise image and Figure 6-3 shows the diagonal

subband of the noisy image. Figure 6-4, Figure 6-5, and Figure 6-6 show the original

image diagonal subband histogram, the noise image diagonal subband histogram and

the noisy image diagonal subband histogram respectively. Figure 6-7 shows the coring

function calculated from the image and noise histograms of the diagonal subband and

Figure 6-9 shows the cored diagonal subband and Figure 6-8 shows the histogram for

the cored diagonal subband. This histogram can be compared with Figure 6-4 and
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Image SNR Cored Cored SNR SNR
SNR SNR Gain Gain
(pre-core) | (1 level) | (2 levels) | (1 level) | (2 levels)

Lenna 37.508 | 47.895 | 49.767 | 10.387 | 12.259
Einstein | 30085 | 38.722 | 40.149 | 7.137|  9.164
[ Kate 36.247 | 45.377 | 46.248 | 9.130 | 10.001

Paolina 31.871 | 41.379 43.549 9.508 11.678
| Mandril 31.043 | 34.951 35.195 3.908 4.152
Bench 42.429 | 46.954 47.379 4.525 4.950

Table 6.1: Results of coring on image plus fixed noise over a set of six images.
Coring was done to one and two levels.

Figure 6-6, the coring functions for the original and noisy diagonal subbands, to see
the effects of coring. Figure 6-10 and Figure 6-11 show the resultant cored images
after one and two level respectively. The results of this study are shown in Table 6.1.
The results show that the coring functions do a satisfactory job. The results also
demonstrate that multi-level coring does a better job than single-level coring, which

was previously known.

6.2 Comparison with Wiener Filtering

Among linear filters, Wiener filtering is the mean square error minimal linear filter.
In this section, the Bayesian estimated coring function is compared with an approx-
imation of the Wiener filter. An approximation of the Wiener filter is made in each
subband instead of using a tranfer function that is continuous with respect to fre-
quency. The signal and noise energies in each band are measured and the appropriate
linear transformations are calculated using Equation 2.1.

This comparison is done only on the Lenna image to one and two levels. The
results demonstrate that the non-linear coring function does considerably better in

terms SNR gain. The numerical results of this experiment are shown in Table 6.2.
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[ Technique | SNR Cored | Cored SNR SNR
SNR SNR Gain Gain
(pre-core) j (1 level) | (2 levels) | (1 level) | (2 levels)
Bayesian 37.508 47.895 49.767 10.387 12.259
Adelson- 37.508 48.297 50.593 10.789 13.085
Ogden
_ﬁayer- 37.508 45.880 47.632 8.372 10.124
Powell
Wiener 37.508 42.442 42.089 4.934 4.581

Table 6.2: Results of different noise reduction strategies on a noisy Lenna
image.

6.3 Comparison to Bayer and Powell’s Coring

The Bayesian estimated coring functions are also compared with the Bayer-Powell
coring functions given by Equation 4.1. The threshold level T is set to 2605 in
each band. Coring is done to one and two levels. The Bayer-Powell coring functions
generate reasonable results, yet the Bayesian estimated coring functions have approx-
imately 2d B more SNR gain when using the Lenna image. The exact SNR gains are
shown in Table 6.2.

6.4 Comparison with Adelson and Ogden’s Cor-
ing

In order to get a sense of the extent to which the coring formulization developed in
this thesis works, a comparison was made with Adelson and Ogden’s work. Using the

parameterized coring function
L =(1- e-(mlliul)’)[!:"

the same noisy images were cored (to one and two levels). The parameterization for
the function was selected by minimizing the mean square error of the restored image

as compared with the original. The same coring function was used on all subbands of
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Image | Coring SN Cored Cored SNR SNR
Function SNR SNR Gain Gain

(one level) | (two level) | (one-level) | (two-level)

(Lenna | Lenna | 37.508 47.895 49.767 10.387 12.259
Lenna | Einstein | 37.508 47.063 48.850 9.555 11.342
 Einstein | Einstein | 30.985 38.722 40.149 7.737 9.164
Einstein | Lenna | 30.985 38.587 39.385 7.602 8.400

Table 8.3: Results of coring when the coring functions are swapped.

the pyramid. Because of the availability of the original image, the coring done with
the parameterized coring function should yield a somewhat cleaner image than the
Bayesian estimated coring function which only uses histogram information. This was
found to be the case. This study did show that the coring done using the theory,
does almost as well as a system that takes advantage of much more information. The

SNR improvements for each technique are listed in Table 6.2.

6.5 Dependence of Coring on Signal Model

In order to determine the dependence of coring effectiveness on the signal statistics the
following experiment was undertaken. Coring functions were generated separately for
the Lenna and the Einstein images. Instead of applying the Lenna coring functions to
Lenna, they were applied to Einstein, and vice-versa. The purpose of this experiment
was to see how dependent the success of coring is on the model of the signal histograms
(in this case, the actual histograms were taken to be the models). The results showed
a diminished success, yet t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>