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ABSTRACT  

 Chapter 1 provides a discussion of the Rayleigh-Ritz Method. Two examples were 

explored: Model I, which demonstrates Neumann/Robin conditions, and Model II, which 

demonstrates Dirichlet-Neumann/Robin conditions. For both models, the energy functionals 

were determined and the MATLAB program RR_2S_sver was modified to run the Rayleigh-

Ritz approximation. Two basis functions were encoded, one with the exact function and one 

with constant, linear, and quadratic functions encoded. Four different tests were performed to 

confirm the proper implementation of the codes.  

 Chapter 2 provides a discussion of the Finite Element Method for 1D 2nd-Order SPD 

Boundary Value Problems. Three examples were explored: Ch1_Model_I, which 

corresponds to Model I from Chapter I, Ch1_Model_II, which corresponds to Model II from 

Chapter II, and Ch2_Model_mine, which was developed for the chapter to demonstrate 

Neumann/Robin conditions on both sides of a wall. Two pieces of code had to be modified to 

impose the boundary conditions of the models and create the matrices needed to find the 

matrix of FE coefficients. The accuracy and verification of numerical specification was 

investigated using nine FE meshes on Ch1_Model_II.  

 Chapter 3 provides a discussion on the Finite Difference-Finite Element (FD-FE) Method 

for the 1D Heat Equation. Two examples were explored: a semi-infinite fin and a burger. The 

FD-FE Method utilizes the FE method discussed in previous chapters to capture changes in 

space in conjunction with the FD method which captures changes in time. The semi-infinite 

fin model, called semiinf_plus, was used to verify the proper implementation of the FD-FE 

Method. The burger model was more involved than the semiinf_plus model, because it 

involves three stages to model the flipping of a burger: the pre-flip, the post-flip, and the 

repose stages.  

 Chapter 4 provides a discussion on the Finite Element Method for 1D 4th-Order SPD 

BVPs for beam bending. Three examples were explored: the design of a xylophone bar, a 

Caresta Test, and a bar with a Hookean spring attached. The FE Method finds the vibration 

modes of a beam. In the case of the xylophone problem, the FE Method is used to design the 

profile of a xylophone bar to achieve a specified note, the fundamental mode, and tuning, 

indicated by the ratio of the harmonic to the fundamental. The program used for the 
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xylophone design, xylo_bar_design3 was amended to specify the placement of the support 

holes to not interfere with the fundamental mode of vibration. To verify that 

xylo_bar_design3 was able to find the correct frequencies and bar length, its driver, 

xyloDesignDriver, was modified to run the Caresta Test. The calculated error estimates, 

modeling error, mesh coarseness, and relative error size were discussed for the xylophone bar 

tuning. Lastly, a potential modification was discussed to enable the study of a free beam with 

a Hookean spring on one end.  

 Chapter 5 provides a discussion of the Finite Element Method for 1D 4th-Order BVPs for 

Self-Buckling. Chapter 5 is presented in a slide deck format. The FE Method is used to find 

the critical loading parameter for a given structure. A design challenge was presented: to 

design the tallest structure, subject to fixed volume, minimum radius, and gradual variation 

constraints, that would not self-buckle. Candidate G functions were devised and tested with 

the MATLAB program driver_selfbuckling_sver to determine the best design based on the 

highest Figure of Merit (FOM), a length ratio of our optimized length compared to that of the 

base cylinder. The design selected yielded an FOM of 1.6749. Error convergence rates were 

discussed to verify trust in the design. 

REFERENCES AND NOTES 

 The following work makes several references to course notes and project guidelines from 

the 2.S976 course offered in the Spring 2019 by Professor Anthony Patera at MIT. Those 

materials are available on the 2.S976 Stellar page. In Chapter 4 a Caresta Test is referenced. 

That test is derived from the document “Vibrations of a Free-Free Beam” by Mauro Caresta, 

which is also available on the 2.S976 Stellar page. Additionally, figure numbers as 

referenced in the text are local to the chapter in which they reside.  
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CHAPTER 1 THE RAYLEIGH-RITZ METHOD 

1) Chapter Summary 

 In Chapter 1, I discuss the Rayleigh-Ritz Method through two examples, Model I and II. 

Model I demonstrates Neumann/Robin conditions. Model II demonstrates Dirichlet-

Neumann/Robin conditions. The first step was determining the energy functionals for both 

models. This was done by comparing the specific equations for Model I and Model II with 

the generalized Neumann/Robin and Dirichlet-Neumann/Robin equations, respectively. The 

next step was to determine the contents of the matrices that would determine 𝛼𝑅𝑅 and 𝛼𝑅𝑅̃ 

for Model I and Model II, respectively.  

 The final step was modifying the RR_2S_sver() program to make the 

RR_2S_sver_Model_1() and RR_2S_sver_Model_2() programs to calculate the Rayleigh-

Ritz Approximation for Model I and Model II, respectively. In these programs I implemented 

two basis functions: ‘exactinclude’ and ‘constlinquad’. For both models, the constlinquad 

basis comprised of constant, linear, and quadratic ψ functions. For both models, exactinclude 

was made of two ψ functions. For Model I first ψ encodes the exact solution, and the second 

ψ encodes a linear function. For Model II first ψ encodes the exact solution normalized by 

uГ1, the imposed temperature at x=0, and the second ψ encodes a linear function. For both 

models, I discuss how four different tests, combined with my understanding of the Rayleigh-

Ritz Method, give me confidence that I have properly implemented my codes. 

2) Method I 

a) Energy Functional 

Upon inspecting the equations and boundary conditions of Model I, I determined that 

Model I had Neumann/Robin conditions. By comparing side-by-side the generalized 

Neumann/Robin equations and the Model I equations, I was able to replace the 

generalized terms in the energy functional formula with those specific to Model I. This 

resulted in the following energy functional: 

𝜋(𝑤) =
1

2
∫ 𝑘𝜋𝑅0

2 (1 +
𝛽𝑥

𝐿
)

2

(
𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥 +
1

2
𝜋𝑅0

2(1 + 𝛽)2𝜂2𝑤2(𝐿)
𝐿

0

− 𝑤(0)𝑞1𝜋𝑅0
2

− 𝑤(𝐿)𝜋𝑅0
2(1 + 𝛽)2𝜂2𝑢∞ 
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The energy functional 𝜋(𝑤) must be minimized over the space X which is characterized 

by the following: 

∫ 𝑤2𝑑𝑥 < ∞
𝐿

0
 and ∫ (

𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥 < ∞
𝐿

0
. 

b) System of Equations 𝑩𝜶𝑹𝑹 = 𝑮 

𝐵𝑖𝑗 = ∫ 𝑘𝜋𝑅0
2 (1 +

𝛽𝑥

𝐿
)

2 𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
𝑑𝑥 +  𝜋𝑅0

2(1 + 𝛽)2𝜂2𝜓𝑖(𝐿)𝜓𝑗

𝐿

0

(𝐿) 

𝐺𝑖 = 𝑞𝑖𝜋𝑅0
2𝜓𝑖(0) + 𝜋𝑅0

2(1 + 𝛽)2𝜂2𝑢∞𝜓𝑖(𝐿) 

c) Discussion 

i) Exactinclude 

For a given set of ψ functions, the Rayleigh-Ritz formula finds a linear combination 

of those functions where the value of the energy functional π is lower than that of any 

other linear combination of those functions. This ensures that the selected 

combination has the smallest error in the EIII norm. Exactinclude has two basis 

functions:  ψ1 and ψ2 .  ψ1 is equal to the exact solution to the equations and boundary 

conditions that govern Model I. ψ2 is a linear function of x. If the code has been 

implemented properly, RR_2S_sver_Model_1(‘exactinclude’,beta) should produce a 

linear combination of 1* ψ1+0* ψ2, because any contribution from ψ2 would increase 

the error between the Rayleigh-Ritz approximation and the exact solution. Figures 1 

and 2 show the results of the Rayleigh-Ritz Approximation using the exactinclude 

basis functions and two different values of β. Both indicate that there is no 

contribution from ψ2. The only contribution is from ψ1 which corresponds to the exact 

solution. 
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Figure 1: Model I Rayleigh-Ritz Approximation using exactinclude basis functions 

and β=0 

 

Figure 2: Model I Rayleigh-Ritz Approximation using exactinclude basis functions 

and β=1 
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ii) Constlinquad for different nRR values 

To confirm that my codes were working for the constlinquad basis functions, I tested 

RR_2S_sver_Model_1() using β=0 with two different values for nRR. Based on the 

exact solution to Model I given β=0, I knew that the exact solution u would be a 

linear function with a non-zero y-intercept. Therefore, with the constlinquad basis, I 

knew I should be able to approximate the exact solution with good accuracy with only 

nRR=2. Even if the number of ψs was increased beyond two, the Rayleigh-Ritz recipe 

should churn out the same linear combination as when nRR=2 because no additional 

curvature is needed to capture the exact solution. This is demonstrated in Figures 3 

and 4. For β=0, the solutions with nRR=2 and nRR=3 have the same value of the energy 

functional, meaning that they have the same amount of error in the EIII norm. Figure 4 

also shows that ψ3 has no contribution to the Rayleigh-Ritz Approximation. This 

confirms my belief that the code is properly functioning to find the best linear 

combination of basis functions. 

 

Figure 3: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=0, and nRR=2 



8 
 

 

Figure 4: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=0, and nRR=3 

 

iii) Comparison of Exactinclude and Constlinquad  

By the Minimization Proposition the Rayleigh-Ritz Approximation should find the 

linear combination of Ψs with the lowest value of the energy functional π. Based on 

the exact solution to Model I given β=0, I knew that the exact solution u would be a 

linear function with a non-zero y-intercept. From Figure 1, I knew that exactinclude 

would be able to find the exact solution, and as shown in Figure 3, I knew that 

constlinquad with nRR=2 would also be able to find the exact solution. If the code is 

working correctly, the π value from the exactinclude solution should be equivalent to 

the value from the constlinquad with nRR=2 solution given that they find the same 

solution. As shown in Figure 1 and Figure 5, both solutions have a π value of                         

-10.1316. As an additional check, I compared this π value with that of a known worse 

solution: constlinquad with nRR=1. I knew this would return a less accurate solution 

because constlinquad with nRR=1 only contains ψ1 which only has a constant term and 

does not capture the linearity of the exact solution. If the code is working correctly, 

then the π value for the solution of constlinquad with nRR=1 would be higher than that 
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of exactinclude because it is less accurate. Figure 6 shows that the π value for the 

solution of constlinquad with nRR=1 is -9.8175 which is greater than that of the 

solution for the exactinclude basis functions. These observations taken together give 

me confidence that the code is working properly for both basis functions. 

 

 

Figure 5: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=0, and nRR=2 
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Figure 6: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=0, and nRR=1 

iv) Constlinquad for different values of β 

The constlinquad basis functions are constructed to allow one to capture more 

curvature with the more Ψs used. Therefore, the trend in relative output error with 

changing values of β depends on the nRR value. When nRR =2, we can capture linear 

behavior and non-zero intercepts. That describes the behavior of the exact solution 

when β=0 as shown in Figure 7 where the relative error is on the order of 10-15. As β 

is increased, the exact solution becomes more quadratic. Therefore, if you hold 

nRR=2, as you increase β the Rayleigh-Ritz Approximation cannot capture that 

curvature, so the error increases as shown in Figures 8 and 9. However when nRR =1 

and β is increased, the relative error decreases as shown in Figures 10 and 11.  

 

Figure 7: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=0, and nRR=2 



11 
 

 

Figure 8: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=1, and nRR=2 

 

Figure 9: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=2, and nRR=2 
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Figure 10: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=0, and nRR=1 

 

Figure 11: Model I Rayleigh-Ritz Approximation using constlinquad basis functions, 

β=1, and nRR=1 

3) Method II 
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a) Energy Functional 

Upon inspecting the equations and boundary conditions of Model II, I determined that 

Model II had Dirichlet-Neumann/Robin conditions. By comparing side-by-side the 

generalized Dirichlet-Neumann/Robin equations and the Model II equations, I was able 

to replace the generalized terms in the energy functional formula with those specific to 

Model II. This resulted in the following energy functional: 

𝜋(𝑤) =
1

2
∫ [𝑘𝐴𝑐𝑠 (

𝑑𝑤

𝑑𝑥
)

2

+ 𝜂3𝑃𝑐𝑠𝑤2] 𝑑𝑥 − ∫ 𝜂3𝑃𝑐𝑠𝑢∞𝑤𝑑𝑥
𝐿

0

𝐿

0

 

The energy functional 𝜋(𝑤) must be minimized over the space X which is characterized 

by the following: 

 𝑤(0) = 𝑢Γ1
, ∫ 𝑤2𝑑𝑥 < ∞

𝐿

0
 , and ∫ (

𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥 < ∞
𝐿

0
. 

 

b) System of Equations 𝑩̃𝜶𝑹𝑹̃ = 𝑮̃ 

𝐵̃𝑖𝑗 = ∫ [𝑘𝐴𝑐𝑠

𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
+ 𝜂3𝑃𝑐𝑠𝜓𝑖𝜓𝑗]

𝐿

0

𝑑𝑥 

𝐺̃𝑖 = ∫ 𝜂3𝑃𝑐𝑠𝑢∞𝜓𝑖𝑑𝑥
𝐿

0

 

c) Discussion 

i) Exactinclude 

For a given set of ψ functions, the Rayleigh-Ritz formula finds a linear combination 

of those functions where the value of the energy functional π is lower than that of any 

other linear combination of those functions. This ensures that the selected 

combination has the smallest error in the EIII norm. Exactinclude has two basis 

functions:  ψ1 and ψ2 .  ψ1 is equal to the exact solution to the equations governing 

Model II divided by uГ1, the temperature at x=00. ψ2 is a linear function of x. If the 

code has been implemented properly, RR_2S_sver_Model_2(‘exactinclude’, η3) 

should produce a linear combination of uГ1* ψ1+0* ψ2, because any contribution from 

ψ2 would increase the error between the Rayleigh-Ritz approximation and the exact 

solution. Figures 12 and 13 show the results of the Rayleigh-Ritz Approximation 

using the exactinclude basis functions and two different values of η3. Both indicate 

that there is no contribution from ψ2. The only non-zero element of the 𝛼̃𝑅𝑅 matrix is 
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the one corresponding to the ψ1 function with a value of 50, which is the given value 

for uГ1. This gives me confidence that the Model II code has been properly 

implemented for the exactinclude basis functions.  

 

 

Figure 12: Model II Rayleigh-Ritz Approximation using exactinclude basis functions 

and η3=1 
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Figure 13: Model II Rayleigh-Ritz Approximation using exactinclude basis functions 

and η3=80 

ii) Constlinquad for different nRR values 

To test if the code for the constlinquad basis was working, I tested 

RR_2S_sver_Model_2() with η3=80 and two different values for nRR. As shown in 

Figure 14, when η3=80, the exact solution u involves the cosh function which has 

somewhat quadratic behavior on the interval of interest. The constlinquad basis 

functions are constructed so that when nRR=2, the basis functions can capture linear 

behavior with non-zero y-intercepts. When nRR=3, the basis functions can capture 

quadratic behavior. Therefore, if the code is working, the constlinquad basis function 

with nRR=3 should produce a more accurate approximation than the constlinquad 

basis function with nRR=2. Figure 14 shows that when nRR=2 the relative output error 

is 0.51611 and Figure 15 shows that when nRR=3 the relative output error is 0.071117, 

confirming my expectation. 
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Figure 14: Model II Rayleigh-Ritz Accuracy using constlinquad basis functions, 

η3=80 and nRR=2 

 

Figure 15: Model II Rayleigh-Ritz Accuracy using constlinquad basis functions, 

η3=80 and nRR=3 

iii) Comparison of Exactinclude and Constlinquad 

By the Minimization Proposition the Rayleigh-Ritz Approximation should find the 

linear combination of Ψs with the lowest value of the energy functional π. The exact 
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solution to Model II involves cosh which as shown in Figure 15 has somewhat, but 

not exactly, quadratic behavior on our interval of interest. Based on this behavior, if 

the code is working, I expect that the exactinclude Rayleigh-Ritz approximation 

should be better than the constlinquad Rayleigh-Ritz approximation. Figure 13 shows 

that the π value for the exactinclude approximation is -9.636. Figure 16 shows that the 

that the π value for the constlinquad approximation with nRR=3 is -9.6087. The π 

values are close, with that of exactinclude being slightly lower meaning that it has 

less error in the EIII norm; this is consistent with my expectation. 

 

Figure 16: Model II Rayleigh-Ritz Approximation using constlinquad basis 

functions, η3=80 and nRR=3 

iv) Constlinquad for different values of μ0 

When nRR does not equal 1, as μ0 is increased, achieved by increasing η3, the relative 

error increases as shown in Figures 15 and 17. This occurs because as μ0 increases, 

the exact solution becomes harder to approximate using only quadratic terms. When 

nRR=1, the constlinquad basis can only approximate constant functions. This 

approximation is poor, and in this case as μ0 is increased, the relative error stays 

constant as 1 as shown in Figures 18 and 19.  



18 
 

 

Figure 17: Model II Rayleigh-Ritz Accuracy using constlinquad basis functions, 

η3=1 and nRR=3 

 

  

Figure 18: Model II Rayleigh-Ritz Accuracy using constlinquad basis functions, 

η3=1 and nRR=1 
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Figure 19: Model II Rayleigh-Ritz Accuracy using constlinquad basis functions, 

η3=80 and nRR=1 
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CHAPTER 2 THE FE METHOD FOR 1D 2ND-ORDER SPD BVPS 

1) Chapter Summary 

 In Chapter 2, I discuss the Finite Element method for 1D 2nd-Order SPD Boundary Value 

Problems through three examples, Ch1_Model_I, Ch1_Model_II, and Ch2_Model_Mine 

Ch1_Model_I corresponds to the Model I discussed in Chapter I and demonstrates 

Neumann/Robin conditions. Ch1_Model_II corresponds to the Model II discussed in Chapter 

1 and demonstrates Dirichlet-Neumann/Robin conditions. Ch2_Model_Mine was developed 

for this chapter. It demonstrates Neumann/Robin conditions on both sides of a wall.  

 The first step was developing Ch2_Model_Mine and adding it to library_of_models. 

Run_uniform_refinement also had to be modified in order to run the FE method on this new 

case. Then, I had to modify the code for form_elem_mat_sver and 

impose_boundary_cond_sver in order to replace the instructor’s code to impose the boundary 

conditions of the models and create the matrices needed to find the matrix of FE coefficients.  

 Next, I verified that my modifications were successful. I did this by checking the 

convergence of u, the exact solution, and uh, the finite element method solution through 

convergence plots and visual inspection of the solution plots. I also inspected the matrix of 

finite element coefficients to insure that it was tri-diagonal as expected. Finally, I 

investigated accuracy and verification of numerical specification using nine meshes on 

Ch1_Model_II.  

2) Model Summaries 

a) Ch1_Model_I 

 Ch1_Model_I is a model of quasi-1D heat conduction in a conical frustum insulated on 

 the lateral surfaces. This model demonstrates Neumann/Robin conditions. The model is 

 governed by the following equation: −𝑘
𝑑

𝑑𝑥
(𝜋𝑅0

2 (1 + 𝛽
𝑥

𝐿
)

2 𝑑𝑢

𝑑𝑥
) = 0 𝑖𝑛 Ω, and boundary  

 conditions: 𝑘
𝑑𝑢

𝑑𝑥
= −𝑞1 𝑜𝑛 Γ1 and −𝑘

𝑑𝑢

𝑑𝑥
= 𝜂2(𝑢 − 𝑢∞) 𝑜𝑛 Γ2. The output is: 𝑠 ≡ 𝑢(0), 

 the temperature on Γ1.  

b) Ch1_Model_II 

Ch1_Model_II is a model of a right-cylinder thermal fin with Dirichlet-Neumann/Robin 

conditions imposed. The model is governed by the following equation: 
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 −𝑘𝐴𝑐𝑠
𝑑2𝑢

𝑑𝑥2
+ 𝜂3𝑃𝑐𝑠(𝑢 − 𝑢∞) = 0 𝑖𝑛 Ω, and boundary conditions: 𝑢 = 𝑢Γ1

𝑜𝑛 Γ1 and 

−𝑘
𝑑𝑢

𝑑𝑥
= 0 𝑜𝑛 Γ2. The output is: 𝑠 ≡ −𝑘

𝑑𝑢

𝑑𝑥
(𝑥 = 0), the flux into the fin at the base of the 

fin. 

c) Ch2_Model_Mine 

 Ch2_Model_Mine is a model of a wall with a constant cross-section and Neumann/Robin 

 conditions on both sides. It is visualized in Figure 1. The model is governed by the 

 following equation: −
𝑑

𝑑𝑥
(𝑘𝐴𝑐𝑠

𝑑𝑢

𝑑𝑥
) = 0 𝑖𝑛 Ω, and boundary conditions:  

 𝑘𝐴𝑐𝑠
𝑑𝑢

𝑑𝑥
= 𝛾1(𝑢 − 𝑢𝑜𝑢𝑡) 𝑜𝑛 Γ1 and −𝑘𝐴𝑐𝑠

𝑑𝑢

𝑑𝑥
= 𝛾2(𝑢 − 𝑢𝑖𝑛) 𝑜𝑛 Γ2. The output is: 

  𝑠 ≡ 𝑢(0), the temperature on Γ1.  

 

Figure 1 Diagram of Ch2_Model_Mine 

3) Summary of the FE Method 

a) Ch1_Model_I 

For Ch1_Model_I the finite element solution is formulated as: 𝑢ℎ(𝑥) = ∑ 𝑢ℎ𝑖𝜑𝑖(𝑥)𝑛
𝑖=1 . 

The finite element coefficients, represented by matrix 𝑢ℎ, is found with the following 

linear system: 𝐴𝑢ℎ = 𝐹. Where 

 𝐴𝑖𝑗 = ∫ 𝑘𝜋𝑅0
2 (1 +

𝛽𝑥

𝐿
)

2 𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥 + 𝜋𝑅0

2(1 + 𝛽)2𝜂2
𝐿

0
𝜑𝑖(𝐿)𝜑𝑗(𝐿), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 

𝐹𝑖 = 𝑞1𝜋𝑅0
2𝜑𝑖(0) +  𝜋𝑅0

2(1 + 𝛽)2𝜂2𝑢∞𝜑𝑖(𝐿), 1 ≤ 𝑖 ≤ 𝑛. 

b) Ch1_Model_II 
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For Ch1_Model_II the finite element solution is formulated as: 𝑢ℎ(𝑥) = 𝑢Γ1
𝜑1(𝑥) +

∑ 𝑢ℎ𝑖𝜑𝑖(𝑥)𝑛𝑛𝑜𝑑𝑒
𝑖=2 . The finite element coefficients, represented by matrix 𝑢ℎ, is found with 

the following linear system: 𝐴𝑢0
ℎ

= 𝐹 − 𝑢Γ1
𝑏. Where 

 𝐴 = 𝐴̃(2: 𝑒𝑛𝑑, 2: 𝑒𝑛𝑑), 𝑏 = 𝐴̃(2: 𝑒𝑛𝑑, 1) and 𝑢ℎ = [𝑢Γ1
; 𝑢0

ℎ
]. The matrices are defined 

by  𝐴𝑖𝑗̃ = ∫ 𝑘𝐴𝑐𝑠
𝐿

0

𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
+ 𝜂3𝑃𝑐𝑠𝜑𝑖𝜑𝑗𝑑𝑥, 1 ≤ 𝑖, 𝑗 ≤ 𝑛  and 

 𝐹𝑖̃ = ∫ 𝜂3𝑃𝑐𝑠𝑢∞𝜑𝑖𝑑𝑥, 1 ≤ 𝑖 ≤ 𝑛
𝐿

0
. 

c) Ch2_Model_Mine 

 For Ch2_Model_Mine the finite element solution is formulated as: 

 𝑢ℎ(𝑥) = ∑ 𝑢ℎ𝑖𝜑𝑖(𝑥)𝑛
𝑖=1 . The finite element coefficients, represented by matrix 𝑢ℎ, is 

found with the following linear system: 𝐴𝑢ℎ = 𝐹. Where  

𝐴𝑖𝑗 = ∫ 𝑘𝐴𝑐𝑠
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥 + 𝛾1𝜑𝑖(0)𝜑𝑗(0) +

𝐿

0
𝛾2𝜑𝑖(𝐿)𝜑𝑗(𝐿), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 

 𝐹𝑖 = 𝛾1𝑢𝑜𝑢𝑡𝜑𝑖(0) +  𝛾2𝑢𝑖𝑛𝜑𝑖(𝐿), 1 ≤ 𝑖 ≤ 𝑛. 

4) Form_elem_mat_sver 

To confirm that I correctly modified the function form_elem_mat_sver, I replaced the lines 

calling form_elem_mat.p in the FE1d_uniform_refinement code with the lines calling my 

form_elem_mat_sver. Then I ran run_uniform_refinement on Ch1_Model_II. Figures 2 and 3 

show that over the course of eight refinements, nine meshes total, the error converges at the 

expected rate in all three norms and in the output. This is confirmed visually in Figure 4 by 

the plots showing both the Finite Element and exact solution for the first and last mesh. A 

final check is performed by inspected Figure 5, the visualization of the uh matrix. This 

confirms that the matrix is tri-diagonal as expected if the code was properly working. With 

these checks, I am confident that the function form_elem_mat_sver is functioning properly 

with Ch1_Model_II. 



23 
 

 

Figure 2 Ch1_Model_II Log-Log Convergence Plots for H1(Ω) and L2(Ω) Norm Error 

 

Figure 3 Ch1_Model_II Log-Log Convergence Plots for Linf(Ω) and Output Error  
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Figure 4 Plot of the Finite Element Method and Exact Solution for Ch1_Model_II for 

Mesh 0 and Mesh 8 

 

Figure 5 Visualization of the uh matrix for Ch1_Model_II 

 

5) Additional Model 

For the three models previously discussed, each had variables which were zero. For 

Ch1_Model_1 𝜇(𝑥), 𝑓Ω 𝑎𝑛𝑑 𝛾1 = 0. For Ch1_Model_2   𝑓Γ2
 𝑎𝑛𝑑 𝛾2 = 0. For 

Ch2_Model_Mine 𝜇(𝑥) 𝑎𝑛𝑑 𝑓Ω = 0. Therefore, I would want to test an additional model 

with all non-zero terms to ensure that form_element_mat_sver is fully-functioning. This 
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model would be defined by N/R-N/R conditions. It would be governed by the equation: 

−
𝑑

𝑑𝑥
(𝜅(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝜇(𝑥)𝑢 = 𝑓Ω(𝑥)𝑖𝑛 Ω 𝑤𝑖𝑡ℎ 𝜅(𝑥), 𝜇(𝑥) > 0, and the boundary conditions: 

𝜅(𝑥)
𝑑𝑢

𝑑𝑥
= 𝛾1𝑢 − 𝑓Γ1

 𝑜𝑛 Γ1 and −𝜅(𝑥)
𝑑𝑢

𝑑𝑥
= 𝛾2𝑢 − 𝑓Γ2

 𝑜𝑛 Γ1 𝑤𝑖𝑡ℎ 𝛾1, 𝛾2 ≥ 0. 

6) Impose_boundary_cond_sver 

To confirm that I correctly modified the function impose_boundary_cond_sver, I replaced 

the lines calling impose_boundary_cond.p in the FE1d_uniform_refinement code with the 

lines calling my impose_boundary_cond_sver. Then I ran run_uniform_refinement on 

Ch1_Model_I and Ch2_Model_Mine. Figures 6 and 7 show that for Ch1_Model_I the error 

on all norms and the output converges at the expected rate. Figure 8 shows the plots of the 

Finite Element and exact solutions for the first and last mesh. By visual inspection I can see 

that there are no erroneous offsets from the exact solution, which leads me to believe that 

impose_boundary_cond_sver functions properly on Ch1_Model_I. Figures 9 and 10 show 

that for Ch2_Model_Mine, the error does not converge as expected on any of the norms or 

the output. This may be caused by error stack up as the mesh is refined. Figure 11 shows that 

with no refinements the finite element method can find the exact solution, because the exact 

solution to Ch2_Model_Mine is a linear profile. Despite the lack of convergence, 

Ch2_Model_Mine provides greater confidence in my implementation of 

impose_boundary_cond_sver than Ch1_Model_I, because Ch2_Model_Mine has two non-

zero gammas, whereas Ch1_Model_I has only on non-zero gamma. With Ch2_Model_Mine 

I confirm that the code for incorporating both gammas is working.  
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Figure 6 Ch1_Model_I Log-Log Convergence Plots for H1(Ω) and L2(Ω) Norm Error 

 

Figure 7 Ch1_Model_I Log-Log Convergence Plots for Linf(Ω) and Output Error 
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Figure 8 Plot of the Finite Element Method and Exact Solution for Ch1_Model_I for 

Mesh 0 and Mesh 6 

 

Figure 9 Ch2_Model_Mine Log-Log Convergence Plots for H1(Ω) and L2(Ω) Norm 

Error 
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Figure 10 Ch2_Model_Mine Log-Log Convergence Plots for Linf(Ω) and Output Error 

 

Figure 11 Plot of the Finite Element Method and Exact Solution for Ch2_Model_Mine 

for Mesh 0 and Mesh 6 

 

7) Model_X 

Now I consider a model, Model_X for which the exact solution is unknown. I observe that 

for sufficiently small h, the extrapolation error estimators converge at the anticipated rates in 



29 
 

all norms. However, you can not conclude that uh is converging to the exact solution u. If I 

entered in the governing equation of Model_X correctly, but incorrectly entered the boundary 

conditions, uh would converge to something but not the exact solution u that I was looking 

for. 

8) Task 4 

For Task 4 I looked at Ch1_Model_II on a sequence of nine meshes for p=1. Initially, I 

modified the Ch1_Model_II in library_of_models to simulate not knowing the exact answer. 

Then I found the coarsest mesh such that ‖𝑢 − 𝑢ℎ‖𝐿∞(Ω) was less than 1. I determined it to 

be Mesh 7 with Δℎ
𝐿∞(Ω)

= 0.636. I propose an upper bound of ‖𝑢 − 𝑢ℎ‖𝐿∞(Ω) as 0.636 given 

that ‖𝑢 − 𝑢ℎ‖𝐿∞(Ω) ≤ Δℎ
𝐿∞(Ω)

 if ‖𝑢 − 𝑢ℎ̅‖𝐿∞(Ω) = 𝐶𝑢ℎ̅1.5. Next, I propose that the upper 

bound for the error in the output on Mesh 5 is 27.73 given that |𝑠 − 𝑠ℎ| ≤ Δℎ
𝑠  if  

|𝑠 − 𝑠ℎ̅| = 𝐶𝑢ℎ̅2. Then I reverted the library_of_models code to include the exact solution. I 

compared the exact results to my predicted results. For Mesh 7 in the 𝐿∞(Ω) norm, the error 

was 0.3497, which was within my predicted bounds. For Mesh 5 in the output, the error was 

31.84, which is about 14.8% higher than my predicted bound. Figure 12, which shows the 

log-log convergence of the error, provides some insight. The magenta crosses show the 

calculated Δ’s and the circles show the actual error. For the Linf norm on Mesh 7, the circle is 

below the cross, meaning the error is less than the predicted bound of Δ. For the output on 

Mesh 5, the circle is close to the cross, but slightly above, meaning the error is greater than 

the predicted bound of Δ.  
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Figure 12 Ch1_Model_II Log-Log Convergence Plots for Linf(Ω) and Output Error 
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CHAPTER 3 THE FD-FE METHOD FOR THE 1D HEAT EQUATION: FLIPPING 

BURGERS 

1) Chapter Summary 

 In this chapter I discuss the Finite Difference-Finite Element (FD-FE) Method for the 

Heat Equation. Two models were explored: a semi-infinite fin and a burger. Both models 

have Neumann-Robin conditions on both ends, denoted as N/R-N/R. The FD-FE Method 

utilizes the FE method discussed in previous chapters to capture changes in space in 

conjunction with the FD method which captures changes in time. The semi-infinite fin 

model, called semiinf_plus, was used to verify the proper implementation of the FD-FE 

Method. Based on the convergence rates of the L2 norm, I was able to determine that the FD-

FE Method was properly implemented. 

 The burger model is more involved than the semiinf_plus model, because it involves 

three stages to model the flipping of a burger: the pre-flip, the post-flip, and the repose 

stages. The first step in verifying my implementation of the burger model was comparing my 

temperature graphs with those of Professor Patera. Both by visual inspection and by using the 

DataTip tool, I was able to confirm that my implementation achieved the same results as 

Professor Patera’s implementation.  

 After verifying my correct implementation, I did some further verification and validation. 

I wanted to find the coarsest mesh with less than 0.001 °C error in output for the [p=1 and 

θ=1] and [p=2 and θ=1/2] schemes. I determined that 5 refinements were needed for the [p=1 

and θ=1] scheme and 1 refinement for the [p=2 and θ=1/2] scheme, with the later being the 

most operationally efficient. Lastly, I found instructions for making a stovetop burger from 

The Kitchn and compared its predicted results with the results predicted by my 

make_uniform_refinement_burger_sver code. My code appeared to confirm the recipe’s 

prediction of a pink center with charred outsides.  

2) FD-FE Method  

 In this chapter we explore two applications of the Heat Equation. Because the Heat 

Equation is time-dependent, the Finite Element (FE) Method for 1D 2nd-Order SPD BVPs as 

developed in Chapter 2 is insufficient for solving these applications. The FD-FE Method 

builds upon the FE Method to enable approximations of time-dependent solutions. The FD 

formulation allows us to capture the change in 𝑢ℎ,Δ𝑡
𝑘 over time. This is coupled with the FE 
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Method which allows us to capture the change in 𝑢ℎ,Δ𝑡
𝑘  over space. I will briefly describe how 

this is set up in the following paragraph. 

 Both of our applications have Neumann/Robin conditions on both ends. This case has the 

following general form: 

−𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝜇(𝑥)𝑢 = 𝑓Ω − 𝜌(𝑥)𝑢̇ 𝑖𝑛 Ω, 0 < 𝑡 ≤ 𝑡𝑓 

𝑘(𝑥)
𝑑𝑢

𝑑𝑥
= 𝛾1𝑢 − 𝑓Γ1

 𝑜𝑛 Γ1, 0 < 𝑡 ≤ 𝑡𝑓 

−𝑘(𝑥)
𝑑𝑢

𝑑𝑥
= 𝛾2𝑢 − 𝑓Γ2

 𝑜𝑛 Γ2, 0 < 𝑡 ≤ 𝑡𝑓 

𝑢 = 𝑢𝑖𝑐(𝑥) 𝑖𝑛 Ω, 𝑡 = 0 

For the FE formulation, the governing matrix equations are: 

 𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑢̇ℎ + 𝐴 𝑢ℎ = 𝐹, 0 < 𝑡 ≤ 𝑡𝑓  

𝑢ℎ = (𝐼ℎ𝑢𝑖𝑐), 𝑡 = 0  

Where 𝑀𝑖𝑗
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∫ 𝜌(𝑥)𝜑𝑖

𝐿

0
𝜑𝑗𝑑𝑥, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑛𝑜𝑑𝑒, 

 𝐴𝑖𝑗 = ∫ 𝑘(𝑥)
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
+ 𝜇(𝑥)𝜑𝑖

𝐿

0
𝜑𝑗𝑑𝑥 + 𝛾1𝜑𝑖(0)𝜑𝑗(0) + 𝛾2𝜑𝑖(𝐿)𝜑𝑗(𝐿), 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑛𝑜𝑑𝑒, 

𝑎𝑛𝑑 𝐹𝑖𝑗 = ∫ 𝑓Ω
𝐿

0
𝜑𝑖𝑑𝑥 +  𝑓Γ1

𝜑𝑖(0) + 𝑓Γ2
𝜑𝑖(𝐿). To approximate 𝑢̇ℎ and 𝑢ℎ, the FD 

approximation is used. 𝑢̇ℎ =
𝑢ℎ,Δ𝑡

𝑘 −𝑢ℎ,Δ𝑡
𝑘−1

Δ𝑡
, 𝑢ℎ = 𝜃𝑢ℎ,Δ𝑡

𝑘 + (1 − 𝜃)𝑢ℎ,Δ𝑡
𝑘−1, 2 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠 and 

𝑢ℎ = (𝐼ℎ𝑢𝑖𝑐), k=1. Where Δ𝑡 =
𝑡𝑓

𝑛𝑡𝑠𝑡𝑒𝑝𝑠−1
 and 𝜃 indicates which FD scheme is being used. If 

𝜃 = 0 the scheme is Euler Forward. If 𝜃 = 0.5 the scheme is Crank-Nicolson. If 𝜃 = 1 the 

scheme is Euler Backward. When you plug in the FD approximations for 𝑢̇ℎ and 𝑢ℎ, into the 

FE formulation, you get 

 (
𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎

Δ𝑡
+ 𝜃𝐴 ) 𝑢ℎ,Δ𝑡

𝑘 = (
𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎

Δ𝑡
− (1 − 𝜃)𝐴 ) 𝑢ℎ,Δ𝑡

𝑘−1 + 𝐹,  for 𝑘 = 2: 𝑛𝑡𝑠𝑡𝑒𝑝𝑠. To tie it all 

back together, 𝑢ℎ,Δ𝑡
𝑘 (𝑥) ≈ 𝑢(𝑥, 𝑡𝑘), 1 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠 giving us our approximation of the 

temperature distribution in time and space.  

 

3) Verification with semiinf_plus 

 I needed to implement solve_fld_output_t_sver to calculate the temperature field over 

time. I replaced the instructor’s call to solve_fld_output_t with my own 
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solve_fld_output_t_sver in run_uniform_refinement. To verify that I properly coded 

solve_fld_output_t_sver, I ran run_uniform_refinement on the semiinf_plus model. Then I 

checked the plots and convergence rates to confirm they were behaving as theory predicts. 

Figure 1 is a plot of the non-dimensional temperature Θ over non-dimensional time F0. The 

theory for a semi-infinite fin predicts that Θ ~1 − 𝐶𝑜𝑛𝑠𝑡. √𝐹0. From Figure 1, we can 

confirm that Θ=1 when F0=0. As F0 increases, Θ decreases as expected. Then I checked the 

error convergence for both p=1, θ=1 and p=2, θ=1/2. The error for the L2 norm ~𝐶𝑢,𝐿2 (
𝐿

ℎ0
)

𝑟

. 

Therefore, the log error for the L2 norm over the log of 
ℎ0

𝐿
 should have a slope of -r. For [p=1 

and θ=1], r=2, and for [p=2 and θ=1/2], r=3. Figures 2 and 3 show that for [p=1 and θ=1] and 

[p=2 and θ=1/2] the error estimates converge with slopes of -2 and -3 respectively. This 

result makes me confident that I correctly implemented solve_fld_output_t_sver. 

 

 

Figure 1 Non-Dimensional Temperature vs. Non-Dimensional Time for p=1 and θ=1 
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Figure 2 Log Error Plot for L2 norm for p=1 and θ=1 
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Figure 3 Log Error Plot for L2 norm for p=2 and θ=1/2 

4) Verification of make_probdef_burger 

In order to use the FD-FE method to flip burgers with run_uniform_refinement_burger_sver, 

I had to implement make_probdef_burger. To verify that I implemented 

make_probdef_burger correctly, I ran run_uniform_refinement_burer_sver and compared my 

results with that of Professor Patera’s results. Figure 4 and 5 show graphs of the final 

temperature distribution in the burger for Professor Patera’s and my implementation, 

respectively. By visual inspection, the shape of these curves appears similar. I also confirmed 

with the data tip tool that the temperatures at x=0 and x=L are the same for both plots, 

57.67°C and 46.87°C respectively. Using the same methods as described for Figures 4 and 5, 

I confirmed that Figures 6 and 7, the temperature over time graphs for Professor Patera and 

me respectively, produced the same results. These results make me confident that I correctly 

implemented make_probdef_burger. 

 

Figure 4 Professor Patera’s Final Temperature Distribution in Burger 
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Figure 5 Margaret’s Final Temperature Distribution in Burger 

 

Figure 6 Professor Patera’s Temperature Over Time Graph 
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Figure 7 Margaret’s Temperature Over Time Graph 

 

5) Verification of Numerical Specifications  

 Next, I wanted to verify a numerical specification on the output error for both the [p=1 

and θ=1] and [p=2 and θ=1/2] schemes. I wanted to find the coarsest mesh with less than 

0.001°C error in the output. Since the error graphs are log plots, I looked for the mesh with a 

log error less than -3. When p=1 and θ=1, Figure 8 shows that the coarsest mesh that fits the 

specification is mesh 6 which corresponds to the fifth refinement. The error is 0.0004°C. 

When p=2 and θ=1/2, Figure 9 shows that the coarsest mesh that fits the specification is 

mesh 2 which corresponds to the first refinement. The error is 0.0005°C. Then I wanted to 

determine whether the [p=1 and θ=1] or [p=2 and θ=1/2] scheme was more operationally 

efficient when the specification was reached. For the FD-FE Method, the total cost is 

𝑂 (
𝑡𝑓

∆𝑡
𝜎𝑙⁄

) × 𝑂 (
𝐿

ℎ
2𝑙⁄

𝑝) for lth refinement. For the p=1 and θ=1 scheme, the fifth refinement 

met the specification and σ=4. For the p=2 and θ=1/2 scheme, the first refinement met the 

specification and σ=2√2. For the p=1 and θ=1 scheme, the operational cost was on the order 

of 3,932,160, and for the p=2 and θ=1/2 scheme, the operational cost was on the order of 

1,357.645. The operational cost for the p=2 and θ=1/2 scheme must be multiplied by two, 

since a pentadiagonal matrix costs two times as much as a tridiagonal matrix. The adjusted 
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cost for the p=2 and θ=1/2 scheme is 2715.3. Therefore, the p=2 and θ=1/2 scheme is the 

most operationally efficient scheme to meet the 0.001°C error specification.  

 

 

 

Figure 8 Log Error in Output for p=1 and θ=1 
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Figure 9 Log Error in Output for p=2 and θ=1/2 

6) Internet Hamburger Instructions 

 Finally, I plugged in the parameters taken from internet instructions for a burger recipe to 

the run_uniform_refinement_burger_sver code to see if it would generate the same results as the 

recipe. I followed recommendations from The Kitchn on “How to Make Burgers on the 

Stovetop” found at the following url: https://www.thekitchn.com/how-to-make-burgers-on-the-

stovetop-cooking-lessons-from-the-kitchn-217722. Some of the parameters were presented 

directly and others I had to approximate. From the recipe I gathered that the burger thickness was 

1 inch and the duration of the preflip and postflip stages were 4 minutes each. I estimated that the 

skillet temperature was 205 °C (medium-high heat), the burger diameter was 4 inches, and the 

repose time was estimated as 30 seconds. The directions indicated that the burger should be 

medium, which corresponds to a pink center. I inspected Figures 10 and 11 to determine if the 

model was in line with the recipe’s predicted outcome. Figure 10 shows that both sides of the 

burger get charred, but the middle of the burger does not reach the “done temperature” which 

could signify a pink center. Figure 11 shows that the outsides of the burger will be hot when 

https://www.thekitchn.com/how-to-make-burgers-on-the-stovetop-cooking-lessons-from-the-kitchn-217722
https://www.thekitchn.com/how-to-make-burgers-on-the-stovetop-cooking-lessons-from-the-kitchn-217722
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served, but the middle of the burger is colder than the serve temperature. This is consistent with a 

burger coming hot off the skillet with a pink center.  

 

Figure 10 Temperature Over Time Graph for The Kitchn Recipe 

 

Figure 11 Final Temperature Distribution in the Burger for the Kitchn Recipe 
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CHAPTER 4 THE FE METHOD FOR 1D 4TH-ORDER BVPS (BENDING):XYLOPHONE 

1) Chapter Summary 

 In this chapter I discuss the Finite Element Method for Beam Eigenproblems. Three 

applications were explored: the design and tuning of a xylophone bar, a Caresta Test, and a bar 

with a Hookean spring attached. The FE Method finds the vibration modes of a beam. In the case 

of the xylophone problem, the FE Method is used to design the profile of a xylophone bar to 

achieve a specified note, the fundamental mode, and tuning, indicated by the ratio of the 

harmonic to the fundamental. The program used for the xylophone design, xylo_bar_design3, 

had to be amended to specify the placement of the support holes. The holes had to be placed to 

not interfere with the fundamental mode’s vibration and maintain the “free” support condition. A 

hole finder algorithm was coded to first find the elements where zeros occurred on the 

fundamental frequency, then find where in the element the zero occurred, and lastly scale that 

location to correspond with a dimensional location on the beam. 

 To verify that xylo_bar_design3 was able to find the correct frequencies and bar length, 

its driver, xyloDesignDriver, was modified to run the Caresta Test. The Caresta Test identifies 

the vibrational modes of a beam with uniform cross-section. The xylo_bar_design3 Caresta Test 

results were compared with that of the Caresta experiment’s theory. The xylo_bar_design3 

results had less than 0.03% error for the first two frequencies and the bar length. With the 

verification that the xylo_bar_design3 program was working properly, a xylophone bar was 

designed for the fundamental note C5=523.25 Hz with quint tuning. Another bar was designed 

for the fundamental note F4=349.23 Hz with quint tuning to discuss the calculated error 

estimates, modeling error, mesh coarseness, and relative error size. Lastly, I discussed a potential 

modification to the UG_FE_1d_bend_sver folder to enable the study of another model: a free 

beam with a Hookean spring on one end. As it is like adding a “Robin” condition, I posited that 

adding in the condition in the program impose_boundary_cond would enable me to add the 

spring condition on the end of the bar.  

 

2) Summary of the FE Method for Beam Eigenproblems 

A beam is defined in space, with respect to its length L, by the following: 

Ω ≡ (0, 𝐿);  Γ̅ = Γ1̅ ∪ Γ2̅, Γ1 = {0}, Γ2 = {𝐿} 

The beam eigenproblem is governed by the following equation: 
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𝑑2

𝑑𝑥2
(𝛽(𝑥)

𝑑2𝑢

𝑑𝑥2
) − 𝑁0

𝑑2𝑢

𝑑𝑥2
= 𝑞(𝑥, 𝑡) − 𝜌𝐴𝑐𝑠(𝑥)

𝑑2𝑢

𝑑𝑡2
, 𝑓𝑜𝑟 0 < 𝑥 < 𝐿, 0 < 𝑡 ≤ 𝑡𝑓 

Where 𝛽(𝑥) is the effective stiffness of the beam, u(x,t) is the beam displacement profile, N0 is 

the constant axial force, and 𝑞(𝑥, 𝑡) is the force per unit length being applied to the beam. 

Depending on the way the beam is supported, different essential boundary conditions will be 

applied to the ends of the beam. Table 1 shows how homogenous boundary conditions are 

determined for  0 < 𝑡 ≤ 𝑡𝑓.  

 

BC Clamped Free Simply Supported 

𝑢(0) = 0 X  X 

𝑢𝑥(0) = 0 X   

𝑢(0) = 𝐿 X  X 

𝑢𝑥(𝐿) = 0 X   

Table 1 Essential Homogenous Boundary Conditions and Support Types for 𝟎 < 𝒕 ≤ 𝒕𝒇 

Initial conditions for displacement and velocity are indicated by: 

𝑢(𝑥, 𝑡 = 0) = 𝑢𝑖𝑐 𝑎𝑛𝑑 𝑢̇(𝑥, 𝑡 = 0) = 𝑢𝑖𝑐̇  𝑓𝑜𝑟 𝑥 𝑖𝑛 Ω 

When represented modally, where q(x,t)=0, the beam eigenproblem becomes: 

𝑑2

𝑑𝑥2
(𝛽(𝑥)

𝑑2𝑢(𝑘)

𝑑𝑥2
) − 𝑁0

𝑑2𝑢(𝑘)

𝑑𝑥2
= 𝜆(𝑘)𝜌𝐴𝑐𝑠𝑢(𝑘), 𝑓𝑜𝑟 0 < 𝑥 < 𝐿 

Where k is the mode number and λ is the square of the natural frequency of the mode. To 

implement the finite element method, the beam is divided into nel elements with ne+1 nodes. 

Hermitian basis functions are used, and each node is given two degrees of freedom to capture the 

displacement and derivative of the displacement. Using a double-mapping, the FE representation 

is: 

𝑢ℎ(𝑥) = ∑ 𝑢ℎ𝑗𝜑𝑗(𝑥)

2∗𝑛𝑛𝑜𝑑𝑒

𝑗=1

 

The eigenproblem is solved with the following: 

𝐴𝑢ℎ
(𝑘)0 = 𝜆ℎ

(𝑘)
𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑢ℎ

(𝑘)0
 

(𝑢ℎ
(𝑘)0)

𝑇

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑢ℎ
(𝑘)0) = 1 

Where A and Minertia are obtained by  
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𝑀̃𝑖𝑗
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∫ 𝜌𝐴𝑐𝑠(𝑥)𝜑𝑖

𝐿

0
𝜑𝑗𝑑𝑥, 1 ≤ 𝑖 ≤ 2 ∗ 𝑛𝑛𝑜𝑑𝑒, 

𝐴̃𝑖𝑗 = ∫ 𝛽(𝑥)
𝑑2𝜑𝑖

𝑑𝑥2

𝑑2𝜑𝑗

𝑑𝑥2
+ 𝑁0

𝐿

0

𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥 , 1 ≤ 𝑖, 𝑗 ≤ 2 ∗ 𝑛𝑛𝑜𝑑𝑒  

And A and Minertia are obtained from 𝐴̃ and 𝑀̃ by imposing the essential boundary conditions. 

 

3) Summary of Xylophone Bar Problem 

I explored the beam eigenproblem application of the design of a xylophone bar. The profile of a 

xylophone bar is optimized so that when hit, the bar’s fundamental frequency is that of the 

desired note and the first harmonic is either quint-tuned, a multiple of three, or double-octave 

tuned, a multiple of four. Diagram 1, taken from the April 23rd 2019 notes from Professor Patera, 

shows the geometry of the xylophone bar. 

 

Diagram 1 Geometry of the Xylophone Bar Taken from the April 23rd 2019 Notes 

The profile of the beam, and thus the tuning, is determined by Hd(x). Hd(x) is defined by: 

𝐻𝑑(𝑥𝑑) = 𝐻𝑚𝑎𝑥𝑑 [(1 − 𝑝2) (
𝐿𝑑

2⁄ − 𝑥𝑑

𝐿𝑑
2⁄ − 𝑥𝑑

𝑠𝑡𝑎𝑟)

𝑝1

+ 𝑝2] , 𝑓𝑜𝑟 𝑥𝑑
𝑠𝑡𝑎𝑟 ≤ 𝑥𝑑 ≤ 𝐿𝑑 − 𝑥𝑑

𝑠𝑡𝑎𝑟 

𝐻𝑑(𝑥𝑑) = 𝐻𝑚𝑎𝑥𝑑 , 𝑓𝑜𝑟 0 ≤ 𝑥𝑑 < 𝑥𝑑
𝑠𝑡𝑎𝑟  𝑎𝑛𝑑 𝐿𝑑 − 𝑥𝑑

𝑠𝑡𝑎𝑟 < 𝑥𝑑 ≤ 𝐿𝑑 

P1 is set to equal four, and P2 is the design variable to achieve the desired tuning. The governing 

eigenproblem for the xylophone bar is: 

𝑑2

𝑑𝑥2
(

𝐸𝑑𝑊𝑑𝐻𝑑
3(𝑥𝑑)

12

𝑑2𝑢𝑑
(𝑘)

𝑑𝑥𝑑
2

) = 𝜆𝑑
(𝑘)

𝜌𝑑𝑊𝑑𝐻𝑑(𝑥𝑑)𝑢𝑑
(𝑘), 𝑓𝑜𝑟 0 < 𝑥𝑑 < 𝐿𝑑 

Because the xylophone bar is supported by two strings in tension, the support of the beam is 

approximately free. 
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4) Algorithm for Hole Placement 

I implemented an algorithm to properly place the support holes for the xylophone bar, indicated 

by xstar
d in Diagram 1. I want to place the holes where the fundamental mode has zero deflection 

to ensure that the hole placement does not affect the vibration, and to maintain the “free” support 

condition. The algorithm is run after the tone and harmonic modes are determined. The algorithm 

has three steps. First, I want to identify which element, mstar, contains a zero for the tone mode. 

This is done by finding a sign change over an element in the tone mode. Then I want to find 

where the zero occurs in that element. This is done by finding the point, xhat, where the sum of all 

the FE coefficients and their corresponding shape functions for the tone mode equal zero. The 

final step is converting from the non-dimensionalized xhat to a dimensionalized coordinate xhole
d. 

For simplicity, I described how to find one zero. However, in the MATLAB code, the algorithm 

is coded to find both zeros. This is done by making mstar, xhat, and xhole
d 2x1 vectors and creating 

loops within the three steps to find both zeros. Figure 1 shows the results of running the 

xylo_bar_design3 program for a quint-tuned C5 bar with the whole finder algorithm 

implemented. In this figure, the dark blue dashed-lines indicate where the holes will be placed. 

Visual inspection confirms that the holes are placed when the modal deflection is zero for the 

fundamental mode.  

 

Figure 1 Xylophone Modes for C5=523.25 Hz with Hole Finding Implemented 

5) Caresta Test Verification 
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The Caresta Test serves as a verification test for two aspects of the xylo_bar_design3 code. It 

confirms the code’s ability to find the fundamental and harmonic frequencies and the ability to 

calculate the required beam length for those frequencies. The Caresta Test looks at the vibrations 

of a free beam with a uniform cross section. It provides both theoretical and experimental mode 

frequencies. I modified the xylo_bar_design3 driver, called xyloDesignDriver, to run the Caresta 

Test. Table 2 shows the inputs that were used in the xyloDesignDriver for the Caresta Test. 

Table 3 compares the results of the xylo_bar_design3 Caresta Test with the actual values from 

the Caresta experiment. The modified xylo_bar_design3 has less than 0.03% error for the three 

outputs of interest. Figure 2 shows the first two modes calculated by the xylo_bar_design3 

Caresta Test. The mode shapes are consistent with those reported by Caresta when the diagram is 

flipped (this is necessary because the xylo_bar_design3 program is designed for an upside-down 

beam). 

Input Description Value 

frequency3target_d Target frequency for the 

fundamental  

32.80 Hz 

R_target Ratio of harmonic to 

target 

90.44/32.80 

Hmax_d Max thickness 0.01 m 

xstar Beginning of profile 0.05 m 

p2_interval Tuning interval [1,1] 

Ebar_d Young’s Modulus 2.1x1011 Pa 

rhobar_d Bar density 7800 kg/m3 

justcalc_L_d Calculate only the length true  

suppress Suppress graphs true 

Table 2 Inputs to xyloDesignDriver for Caresta Test 

 

Output Caresta 

Experiment 

xylo_bar_design3 Percent Error 

frequency3_d 32.80 32. 799999999999997 ~0 

frequency4_d 90.44 90.414466828282841 0.028 



46 
 

L_d 1.275 1.275187035433650 0.015 

Table 3 Comparison of xylo_bar_design3 Caresta Test output and Caresta Experiment 

 

Figure 2 First Two Modes for xylo_bar_design3 Caresta Test 

 

6) Tuning Results 

I tuned a xylophone for the note C5 with a frequency of 523.25 Hz and quint-tuning, R=3.Table 

4 describes the inputs used for the xyloDesignDriver. The xylo_bar_design3 program found that 

the optimal tuning design variable p2opt=0.64375. The length of the xylophone bar was found to 

be 0.26669 m. Figure 1 shows the tone and harmonic modes and the optimal placement of the 

support holes. Table 5 shows the calculated frequencies, frequency ratios, and error estimates. To 

calculate the value bounds for the frequency ratio, the errors from both the fundamental and 

harmonic frequency had to be considered. The lower value bound is where the numerator (the 

harmonic) is minimized and the denominator (the fundamental) is maximized. The upper value 

bound is where the harmonic is maximized and the fundamental is minimized. In symbolic form 

that translates to: 

[
𝑓4 − 𝑒𝑟𝑟𝑜𝑟𝑓4

𝑓3 + 𝑒𝑟𝑟𝑜𝑟𝑓3
,
𝑓4 + 𝑒𝑟𝑟𝑜𝑟𝑓4

𝑓3 − 𝑒𝑟𝑟𝑜𝑟𝑓3
] 

Input Description Value 
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frequency3target_d Target frequency for the 

fundamental  

523.25 

R_target Ratio of harmonic to 

target 

3 

Hmax_d Max thickness 0.015 m 

xstar Beginning of profile 0.05 m 

p2_interval Tuning interval [0.05,1] 

Ebar_d Young’s Modulus 1.4x1010 Pa 

rhobar_d Bar density 835 kg/m3 

justcalc_L_d Calculate only the length false  

suppress Suppress graphs true 

Table 4 Inputs to xyloDesignDriver for C5 Quint Tuning 

 

Quantity Value Error Estimate or Value 

Interval  

frequency3_d 523.25 Hz 8.764x10-6 

frequency4_d 1565.18 Hz 2.930 x10-6 

frequency4_d/frequency3_d 2.99 [2.9912632,2.9912633] 

Table 5 Results of xylo_bar_design3 C5 Quint Tuning and Error Estimates 

 

7) Discussion of Errors 

 

To explore the errors in FE predictions, a second bar was quint tuned for F4=349.23 Hz. Figures 

3 and 4 show the log error convergence rates over the course of four refinements on the 

fundamental and harmonic mode, respectively. The log errors are converging with the expected 

slope for the four error norms. The calculated error estimates for the fundamental (f3) and 

harmonic (f4) were 5.85x10-6 and 1.96x10-6 respectively. This, combined with the log 10 errors 

on the output reported in Table 6, suggests the calculated error estimate is not accurate. The error 

on the output, λk, for Mesh 3 is on the order of 10-6 and 10-5 for the fundamental and harmonic 

respectively. At first glance, this appears close to the calculated estimates, but the estimates 
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calculate the error on the frequency. To go from the error on the output to the error in frequency 

requires the following adjustment: 

|𝑓(𝑘) − 𝑓ℎ/2
(𝑘)

| ≈<
1

2(2𝜋)2

1

𝑓ℎ/2
(𝑘)

∆ℎ/2
𝑜𝑢𝑡𝑝𝑢𝑡

 

When the adjustment is made, Figures 3 and 4 suggest that the error on the fundamental 

frequency should be approximately less than 1.76x10-11 and the error on the harmonic frequency 

should be approximately less than 2.98x10-10. Because the fundamental frequency is the main 

frequency of interest, as it is the dominant tone, I want the error on the fundamental to be less 

than the error on the harmonic. The results support this hypothesis. Table 6 shows that for a 

given mesh, the log error on the output is larger for the fundamental then the harmonic. This 

means the error on the output of the fundamental is less than that of the harmonic.  

Now I turn to how appropriate the number of meshes is and how appropriate the model is. The 

untrained human ear has a sensitivity of 10 Hz. On Mesh 1, the first refinement, the error on the 

output of the fundamental is 1.26x10-4. Using the adjustment factor, the error on the fundamental 

frequency is approximately less than 4.57x10-9, which is significantly less than 10 Hz. Therefore, 

for the untrained ear, even one refinement is too fine to make a significant difference. The 

xylophone bar is modeled as a Euler-Bernoulli beam. An assumption of the Euler-Bernoulli 

model is that the beam is thin. Therefore, I predict that the modeling error will be greater for 

higher frequencies than lower frequencies, because as the frequency becomes higher, the bar 

becomes shorter. The shorter the bar becomes, the less like a thin beam the xylophone bar 

becomes. 
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Figure 3 Error Convergence on the Fundamental for F4 Quint Tuning 

 

Figure 4 Error Convergence on the Harmonic for F4 Quint Tuning 

 

Mesh Fundamental Log Error in 

Output 

Harmonic Log Error in 

Output 

1 -3.8995 -2.2057 

2 -5.1063 -3.4061 

3 -6.3138 -4.6088 
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Table 6 Log 10 Error on the Fundamental and Harmonic Output for F4 Quint Tuning for 

3 Meshes 

 

8) Spring Modification Code 

The folder UG_FE_1d_bend_sver can be modified to model a free beam on one side with 

Hookean spring on the other side. This is like a “Robin” boundary condition. Due to the 

similarities with a task in Chapter 2 I decided that the modification should occur in the 

impose_boundary_cond program. The modification would occur after A is assigned to A_N (line 

18) and look like the following: 

node_num=2*(n_el0+1)-1; 

A(node_num,node_num)=A(node_num,node_num)+ks; 

The modification is inspired by the following rationale. The spring is only attached at the end of 

the bar. The only shape function that is non-zero at the end of the beam is φ5. Because of the 

double-mapping, the quantity of interest, the displacement at the end of the bar, occurs at the 

second to last node number, where the node number is equal to 2*(n_el0+1) where n_el0+1 is 

equal to the number of nodes in the double-mapping scheme. Therefore, the A entry that 

corresponds to that node should have ks, the spring constant, added to it. 

 

 

 

 

 



CHAPTER 5 SELF-BUCKLING

By Margaret Bertoni



SELF-BUCKLING

Governing Equations (Non-Dimensionalized)

𝑑2

𝑑𝑥2
𝑅4

𝑑2𝑢

𝑑𝑥2
= 𝜆 −

𝑑

𝑑𝑥
𝑃(𝑥)

𝑑𝑢

𝑑𝑥
𝑓𝑜𝑟 0 < 𝑥 < 1

𝑢 = 𝑢𝑥 = 0 𝑎𝑡 𝑥 = 0

𝑢𝑥𝑥 = 𝑅4𝑢𝑥𝑥 𝑥 = 0 𝑎𝑡 𝑥 = 1

R(x) is the radius

P(x) is the axial load due to the weight of the structure above x

u(x) is the deflection

Lambda is the load parameter

x



FE METHODS

𝐴𝑢ℎ
0 = 𝜆ℎ𝐾

𝑎𝑥𝑢ℎ
0

ሚ𝐴𝑖𝑗 = න
0

1

𝑅4(𝑥)
𝑑2𝜑𝑖

𝑑𝑥2
𝑑2𝜑𝑗

𝑑𝑥2
𝑑𝑥, 1 ≤ 𝑖, 𝑗 ≤ 2 ∗ 𝑛𝑛𝑜𝑑𝑒

෩𝐾𝑖𝑗
𝑎𝑥 = න

0

1

𝑃 𝑥
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥 , 1 ≤ 𝑖, 𝑗 ≤ 2 ∗ 𝑛𝑛𝑜𝑑𝑒

𝐴 and 𝐾𝑎𝑥 made by removing rows and columns 1 and 2 from ሚ𝐴 and ෩𝐾ax



OPTIMIZATION

• 𝑅 𝑥 = 1 + 𝐺(𝑥) 𝑓𝑜𝑟 𝐺 𝑥 ≻ 1 𝐶ℎ𝑜𝑜𝑠𝑒 𝐺 𝑥 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

• Fixed Volume Constraint: 0׬
1
𝐺 𝑥 𝑑𝑥 = 0

• Minimum Relative Radius Constraint: 𝐺 𝑥 ≥ −1 + 𝑅𝑚𝑖𝑛
2 ≡ 𝐺𝑚𝑖𝑛 ≻ −1

• GradualVariation Constraint: 𝐺 ,(𝑥) ≤ 𝑆𝑚𝑎𝑥

• Goal: Maximize L by:   Maximizing 𝛾𝑐



APPROACH

• Visual from Wolfram Alpha http://mathworld.wolfram.com/OddFunction.html

• Designed various odd candidate G functions 

http://mathworld.wolfram.com/OddFunction.html


PROPOSED SOLUTION

G=p1*tanh(x-0.5)+p2*(x-0.5)^3    p1=-3.5 and p2=6

FOM=1.6749



ERROR

Convergence Chart Convergence with 2 Refinements



PROFILE 



DESIGN


