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Overview 

 
This is the project report for 2.S976, Finite Element Methods for Mechanical Engineers, a 

course taught at the Massachusetts Institute of Technology (MIT) in spring 2019. The project used 
open-source finite element software developed in MATLAB to analyze various user-defined 
models. While some coding was performed, this report focuses on the formulation, 
implementation, and verification of the software. The report is motivated by the following 
questions [1]: 

 
• What mathematical equations can be used to describe the behavior of a system? 
• How can partial differential equations be strategically formulated?  
• Does a design optimization satisfy problem constraints? 
• How can the accuracy of the finite element solution be assessed? 

 
In answering these questions, the finite element method (FEM) is shown to be a powerful 

tool for the design and analysis of mechanical systems common to engineering. This report is 
organized in five chapters. Chapter 1 explores the Rayleigh-Ritz method, which lays the 
foundation for FEM. Chapter 2 introduces the finite element method for one-dimensional (1D), 
second-order boundary value problems (BVPs). Chapter 3 adds time-dependency. Chapter 4 
applies FEM to 1D, fourth-order BVPs. Chapter 5 was a design competition at the end of the 
course, and it is presented as a series of slides in the addendum. 

While there exist very robust third-party finite element software packages capable of 
solving complex 3D problems, there is much to gain from using more simplistic software. Third-
party software is often a black box with inflexible inputs and outputs that limit the types of 
problems able to be solved. Furthermore, the level of understanding required to implement FEM 
from the ground up gives an engineer an appreciation for the capabilities and limitations of the 
finite element method. 

This project uses FEM to model the behavior of various thermal and structural systems. 
Problems include: analyzing heat transfer through frustums, fins, and walls; optimizing parameters 
for cooking a burger and tuning a xylophone bar; and designing the tallest column to withstand its 
own weight. 
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Chapter 1: The Rayleigh-Ritz Method 
 

ABSTRACT 
The Rayleigh-Ritz method is a powerful computational tool for modeling complex 

boundary value problems. This chapter implements the algorithm through two illustrative 
problems: the temperature profile of a conical frustum and the heat flux into a right-cylinder fin. 
The results provide confidence for the correct implementation of the method. The influence of key 
problem parameters on the accuracy of the approximation is also investigated. 

INTRODUCTION 
The first problem, Model I, describes quasi-1D conduction through a conical frustum 

with adiabatic lateral surfaces and heat fluxes through its end surfaces (Figure 1.1). 

 
Figure 1.1: Frustum geometry of Model I. 

 
The differential equation and boundary conditions for Model I are given by [2]: 

−𝑘
𝑑
𝑑𝑥 (𝜋𝑅+

, -1 + 𝛽
𝑥
𝐿1

, 𝑑𝑢
𝑑𝑥3 = 0		in	𝛺 (1) 

𝑘
𝑑𝑢
𝑑𝑥 = −𝑞:		on	𝛤: (2) 

−𝑘
𝑑𝑢
𝑑𝑥 = 𝜂,(𝑢 − 𝑢?)		on	𝛤, (3) 

where: 
𝛺 = (0, 𝐿) is the domain in 𝑥 
𝛤: and 𝛤, are the left and right axial surfaces, respectively 
𝐿 is the length of the body [m] 
𝑅+ is the radius at 𝑥 = 0 [m] 
𝛽 is central angle [radians] 
𝑘 is the thermal conductivity of the body [W/m °C] 
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𝜂, is the heat transfer coefficient between the right surface and the air [W/m2 °C] 
𝑞: is the heat flux through the left surface the body [W/m2] 
𝑢? is the ambient temperature [°C] 
𝑢(𝑥) is the temperature profile of the body [°C] 
 

The exact solution to the frustum problem is: 

𝑢 = 𝑢? +
𝑞:𝐿
𝑘 B

1 + 𝛽 + - 𝑘𝜂,𝐿
1

(1 + 𝛽), −
-𝑥𝐿1

1 + 𝛽 -𝑥𝐿1
C (4) 

Note that for 𝛽 = 0, 𝑢 depends linearly on 𝑥: 

𝑢 = 𝑢? +
𝑞:𝐿
𝑘 (1 + (

𝑘
𝜂,𝐿

3 −
𝑥
𝐿3 (5) 

The temperature at the left end of the frustum is the output of interest: 
𝑠 ≡ 𝑢(𝑥 = 0) 

𝑠FF ≡ 𝑢FF(𝑥 = 0) 
(6) 

where the superscript denotates functions derived from the Rayleigh-Ritz approximation. 
 
 The second problem, Model II, describes the heat transfer of a right-cylinder fin with 
constant temperature on its left surface and zero heat flux through its right surface (Figure 1.2). 
 

 
Figure 1.2: Fin geometry of Model II. 

 
The differential equation and boundary conditions for Model II are given by [2]: 

−𝑘AHI
𝑑2𝑢

𝑑𝑥2
+ 𝜂K𝑃HI(𝑢 − 𝑢?) = 0		in	𝛺 (7) 

𝑢 = 𝑢MN		on	𝛤: (8) 

−𝑘
𝑑𝑢
𝑑𝑥 = 0		on	𝛤, (9) 
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where the variables have the same assignments as Model I, except for: 
𝐴HI is the cross sectional area of the body [m2] 
𝑃HI is the cross sectional perimeter of the body [m] 
𝜂K is the heat transfer coefficient between the right surface and the air [W/m2 °C] 
𝑢MN is the temperature of the left surface of the body [°C] 

A quantity of interest in Model II is the non-dimensionalized fin parameter, which describes the 
right surface (tip) condition. It is defined as: 

𝜇+ =
𝜂K𝑃HI𝐿,

𝑘𝐴HI
 (10) 

The exact solution to the fin problem is given by: 

𝑢 = 𝑢? + P𝑢MN − 𝑢?Q
cosh (U𝜇+ -1 −

𝑥
𝐿13

coshPU𝜇+Q
 (11) 

The heat flux into the left surface of the fin is the output of interest: 

𝑠 ≡ −𝑘
𝑑𝑢
𝑑𝑥 (𝑥 = 0) 

𝑠FF ≡ −𝑘
𝑑𝑢FF

𝑑𝑥 (𝑥 = 0) 
(12) 

 

BACKGROUND 
The Rayleigh-Ritz method is a powerful, numerical approximation tool that can be applied 

to the frustum and fin problems. In these cases, knowing the exact solutions provides a means to 
verify the results of the Rayleigh-Ritz method. In other cases, when an analytical solution is 
unknown or unsolvable, the Rayleigh-Ritz method may be the best approach for finding a solution. 

The method requires a candidate function, 𝑤, as a best guess for the unknown solution, 𝑢. 
The problem’s boundary conditions and 𝑤 are used to generate an energy functional, Π(𝑤), the 
total energy of the system. The Minimization Proposition says that the actual solution satisfies [3]: 

Π(𝑢) < Π(𝑤)		∀𝑤 ∈ 𝑋,𝑤 ≠ 𝑢 (13) 

This implies that given two approximations of 𝑢, 𝑤: and 𝑤,, if Π(𝑤:) < Π(𝑤,), then 𝑤: is a better 
approximation of 𝑢. This means that a candidate function that minimizes the energy functional can 
be sought after without knowing the actual solution. The Rayleigh-Ritz method finds the best 
candidate function through the linear combination of a selection of functions with real coefficients. 
In other words, given 𝑛FF basis functions ^𝜓:, 𝜓,, … ,𝜓abbc, the objective is to find the 
coefficients ^𝛼:FF, 𝛼,FF, … , 𝛼abb

FF c that minimize the energy functional: 

minΠfg𝛼hFF
abb

hi:

𝜓hj 	→ 	𝐴	𝛼FF = 𝐹 (14) 

The protocol for evaluating the Rayleigh-Ritz coefficients depends on the problem’s 
boundary conditions. The formulation is examined in Chapter 2, where several types of boundary 
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conditions are defined. For now, the results are given. For Model I, the Rayleigh-Ritz 
approximation is: 

𝑢FF(𝑥) = g𝛼hFF
abb

hi:

𝜓h(𝑥) (15) 

The energy functional is:  

Π(𝑤) =
1
2
m𝑘𝜋𝑅+, -1 + 𝛽

𝑥
𝐿1

,
(
𝑑𝑤
𝑑𝑥3

,

𝑑𝑥
n

+

+
1
2
P𝜂,𝜋𝑅+,(1 + 𝛽),𝑤,(𝐿)Q

− 𝑞:𝜋𝑅+,𝑤(0) − 𝜂,𝜋𝑅+,(1 + 𝛽),𝑢?𝑤(𝐿) 

(16) 

And the elemental matrices of Eq. (14) are: 

𝐴ho = m𝑘𝜋𝑅+, -1 + 𝛽
𝑥
𝐿1

, 𝜕𝜓h
𝜕𝑥

𝜕𝜓o
𝜕𝑥

n

+

𝑑𝑥 + 𝜂,𝜋𝑅+,(1 + 𝛽),𝜓h(𝐿)𝜓o(𝐿)			1 ≤ 𝑖, 𝑗 ≤ 𝑛FF (17) 

𝐹h = 𝑞:𝜋𝑅+,𝜓h(0) + 𝜂,𝜋𝑅+,(1 + 𝛽),𝑢?𝜓h(𝐿)			1 ≤ 𝑖 ≤ 𝑛FF (18) 

For Model II, the Rayleigh-Ritz approximation is: 

𝑢FF(𝑥) = 𝑢MN𝜓+(𝑥) +g𝛼hFF
abb

hi:

𝜓h(𝑥) (19) 

The energy functional is: 

Π(𝑤) =
1
2
m t𝑘𝐴HI (

𝑑𝑤
𝑑𝑥3

,

+ 𝜂K𝑃HI𝑤,u 𝑑𝑥
n

+

− m𝜂K𝑃HI𝑢?𝑤𝑑𝑥
n

+

 (20) 

And the elemental matrices are: 

𝐴ho = m
𝜕𝜓h
𝜕𝑥

𝜕𝜓o
𝜕𝑥 +

𝜂K𝑃HI
𝑘𝐴HI

𝜓h(𝑥)𝜓o(𝑥)
n

+

𝑑𝑥			1 ≤ 𝑖, 𝑗 ≤ 𝑛FF (21) 

𝐹h = m
𝜂K𝑃HI𝑢?
𝑘𝐴HI

𝜓h(𝑥)𝑑𝑥
n

+

			1 ≤ 𝑖 ≤ 𝑛FF (22) 

 

RESULTS 
Implementation of exactinclude 

Two sets of basis functions are considered in Models I and II. The first one, 
exactinclude, is a set of basis functions that includes the exact solution. In Model I, 
exactinclude contains: 𝜓:(𝑥) = 𝑢(𝑥) of Eq. (4) and 𝜓,(𝑥) = 𝑥. The candidate function is 𝑤 =
𝛼:FF𝑢(𝑥) + 𝛼,FF𝑥. The Minimization Proposition states that the energy functional is absolutely 
minimized when 𝑢(𝑥) is used as the candidate function. Therefore, the Rayleigh-Ritz method, 
seeking to minimize Π(𝑤), returns 𝛼:FF = 1 and 𝛼,FF = 0, which can be seen in the left plot of 
Figure 3 by the zero value of 𝛼,FF𝜓, and the nonzero value of 𝛼:FF𝜓:. The right plot shows that 
𝑢FF  perfectly matches 𝑢 with zero error in the relative output temperature, which is defined as 
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|𝑠 − 𝑠FF| |𝑠|⁄  with 𝑠 from Eq. (6). (Note: the relative output error is displayed in Figure 1.3 as 
9.5x10-16 instead of 0. This is simply an artifact of MATLAB’s floating-point accuracy.) 
 

 
Figure 1.3: Results of exactinclude for Model I with 𝛽 = 0. The left plot shows 
the contributions of 𝛼:FF𝜓: and 𝛼,FF𝜓, to construct the Rayleigh-Ritz 
approximation 𝑢FF . The right plot compares 𝑢FF  to the exact solution 𝑢. 

 
In Model II, exactinclude contains: 𝜓+(𝑥) = 𝑢(𝑥)/𝑢MNfor 𝑢(𝑥) of Eq. (11) and 

𝜓:(𝑥) = 𝑥. As with Model I, the results of Model II show that the Rayleigh-Ritz method chooses 
coefficients for the combination of 𝜓+ and 𝜓: that best approximates 𝑢 (left plot of Figure 1.4). 
Since 𝑢 is a basis function, there is a perfect match between 𝑢FF  and 𝑢 (right plot) with zero error 
in the relative output heat flux, which is defined as |𝑠 − 𝑠FF| |𝑠|⁄  with 𝑠 from Eq. (12). 

 

 
Figure 1.4: Results of exactinclude for Model II with 𝜂K = 80. The left plot 
shows the contributions of 𝛼+FF𝜓+ and 𝛼:FF𝜓: to construct the Rayleigh-Ritz 
approximation 𝑢FF . The right plot compares 𝑢FF  to the exact solution 𝑢. 
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The results of exactinclude from Models I and II provide evidence that the code implements 
the Rayleigh-Ritz method correctly for the exactinclude basis functions. 
 
Implementation of constlinquad 

The second set of basis functions considered by Models I and II is constlinquad, which 
contains monomials of the indeterminate 𝑥. Now, the exact solution is not included in the set, and 
the goodness of the Rayleigh-Ritz approximation depends on the type and number of basis 
functions. Results for 𝛽 = 0 in Model I are shown in Figure 1.5 on the next page. For 𝑛FF = 1 
(top row of plots), the relative error output is 44.4%, which is not a great approximation. For 𝑛FF =
2 (middle row of plots), the error is 0%, which indicates that 𝛼:FF𝜓: + 𝛼,FF𝜓, captures the exact 
solution. This finding agrees with Eq. (5), which states that 𝑢 depends linearly on 𝑥 for 𝛽 = 0, and 
provides confidence that the model is working. Furthermore, for 𝑛FF = 3 (bottom row of plots), 
it is evident that 𝜓K is not necessary for the model because 𝛼KFF = 0 and the error is still zero. 

Results for 𝜂K = 80 in Model II are shown in Figure 1.6 on the next page. For 𝑛FF = 0 
(top row of plots), relative output error is 100%, which is a very bad approximation. Remarkably, 
the approximation improves with 𝑛FF = 1 to 51.6% error and becomes quite good with 𝑛FF = 2 
at 7.1% error. The observation that increasing the number of basis functions improves the 
approximation is another piece of evidence that Rayleigh-Ritz method is implemented correctly. 
 

DISCUSSION 
Overall Assessment of Code 
 Considering the implementation of exactinclude and constlinquad together 
provides a unified means of assessing the accuracy of the code. According to the Minimization 
Proposition, Eq. (13), the energy functional is absolutely minimized when its argument, the 
candidate function, is the actual solution. In exactinclude, where the candidate function 
contains the exact solution, the absolute minimum of the energy functional is found: Π(𝑢). On the 
other hand, in constlinquad, where the candidate function does not contain the exact solution, 
the local minimum of the energy functional is found: Π(𝑢FF).	A comparison of Π(𝑢FF) and Π(𝑢) 
provides a metric by which to gauge the goodness of the Rayleigh-Ritz approximation: 

• In Model I, Π(𝑢) = -10.13, while Π(𝑢FF) = -9.82, -10.31, and -10.31 for 𝑛FF = 1, 2, and 
3, respectively. It is apparent that for 𝑛FF ≥ 2, the Rayleigh-Ritz approximation achieves 
the actual solution because Π(𝑢FF) = Π(𝑢). Thus, two shape functions are sufficient to 
exactly represent Model I. 

• In Model II, Π(𝑢) = -1927.19, while Π(𝑢FF) = 1600, -1221.57, and -1921.75 for 𝑛FF = 0, 
1, and 2, respectively. As 𝑛FF increases, the Rayleigh-Ritz method better approximates the 
actual solution because Π(𝑢FF) approaches Π(𝑢). This agrees with the theory that as more 
shape functions are used, the energy functional decreases and the approximation improves. 

This assessment presents evidence of the successful implementation of the Rayleigh-Ritz method 
to model heat transfer through a conical frustum and right cylinder fin. These examples are among 
a large set of problems in engineering that have particular geometries and boundary conditions that 
make deriving analytical solutions difficult. The Rayleigh-Ritz method is the foundation of a 
toolset of computational methods. 
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Figure 1.5: Results of constlinquad for Model I with 𝛽 = 0.	

In the top row, 𝑛FF = 1 and 𝜓:(𝑥) = 1.	
In the middle row, 𝑛FF = 2, 𝜓:(𝑥) = 1 and 𝜓,(𝑥) = 𝑥. 
In the bottom row, 𝑛FF = 3, 𝜓:(𝑥) = 1, 𝜓,(𝑥) = 𝑥, and 𝜓K(𝑥) = 𝑥,. 
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Figure 1.6: Results of constlinquad for Model II with 𝜂K = 80. 

In the top row, 𝑛FF = 0 and 𝜓+(𝑥) = 1. 
In the middle row, 𝑛FF = 1, 𝜓+(𝑥) = 1 and 𝜓:(𝑥) = 𝑥. 
In the bottom row, 𝑛FF = 2, 𝜓+(𝑥) = 1, 𝜓:(𝑥) = 𝑥, and 𝜓,(𝑥) = 𝑥,. 
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Model I 𝛽 Parameter 
The parameter 𝛽 is the central angle (measured in radians) of the frustum in Model I. When 

𝛽 = 0 the frustum is simply a right cylinder. The temperature profile is linear for 𝛽 = 0 (Eq. (5)), 
and constlinquad has zero relative output error when 𝑛FF ≥ 2. When 𝛽 ≠ 0, the exact solution 
(Eq. (4)) takes a shape that cannot be captured with 𝜓(𝑥) = 1, 𝑥, and 𝑥, (Figure 1.7). Therefore, 
the error of the Rayleigh-Ritz approximation increases as β increases and the temperature profile 
deviates from being linear (Table 1.1). Model I uses the Neumann/Robin boundary condition for 
one-dimensional problems. When 𝛽 is small, the approximation does well because heat transfer 
occurs primarily in the 𝑥-direction (quasi-1D); however, as 𝛽 increases, heat transfer in the other 
directions increases and the 1D model becomes less accurate. 

 

 
Figure 1.7: Model I constlinquad for 𝛽 = 2. 
The relative output error is larger at larger angles. 
 

Model II 𝜇+ Parameter 
As defined by Eq. (10), 𝜇+ is the non-dimensionalized fin parameter of Model II. 𝜇+ 

describes a length factor over which the temperature changes in the fin, which is an important 
consideration when designing fins. For example, when 𝜇+ is on the order of 1 or smaller, the 
temperature changes across the entire length of the fin, as shown in the left plot of Figure 1.8. 
Albeit in case shown, 𝜇+ is too small for the fin to be an effective transferrer of heat, since ∆𝑢 <
0.3	°C. When 𝜇+ is much larger than 1, the temperature change occurs across only a portion of the 
fin, as shown in the right plot of Figure 1.8. In this case, the entire length of the fin is not being 
utilizing, which may be a poor design choice.  

The effect of 𝜇+ on the accuracy of the Rayleigh-Ritz approximation can be investigated 
by holding the geometry and thermal conductivity of the fin constant and varying the heat transfer 
coefficient: thus 𝜇+ is directly proportional to 𝜂K. As shown in Table 1.2, the relative output error 
increases as 𝜇+ increases. When 𝜇+ is small, the exact solution has a parabola-like shape (note: it 
is actually a catenary) that the basis functions of constlinquad can approximate. The error in 
the approximation is small. As 𝜇+ increases, however, the catenary shape of the exact solution 
becomes more distinct, and the basis functions give a poor approximation. The error is large. 
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Table 1.1: 	𝛽 effect on output error  
𝛽	[rad] Relative output error [%] 
0 0 
0.5 0.045896 
1 0.301 
2 1.1869 
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Figure 1.8: Model II constlinquad. In the left plot, 𝜇+ = 0.02 and the Rayleigh-
Ritz approximation has a small relative output error. In the right plot, 𝜇+ = 200 and 
the approximation is inaccurate. 

 
Table 1.2: 𝜂K effect on output error 
𝜂K [W/m2 °C] 𝜇+	[/] Relative output error [%] 
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10000 200 73.529 

  

0 0.01 0.02 0.03 0.04 0.05
x

49.7

49.75

49.8

49.85

49.9

49.95

50
u,

 u
R

R
Rayleigh-Ritz Accuracy ( 3 = 1)

u
uRR

Relative Output Error: 0.00099856

0 0.01 0.02 0.03 0.04 0.05
x

15

20

25

30

35

40

45

50

u,
 u

R
R

Rayleigh-Ritz Accuracy ( 3 = 10000)

u
uRR

Relative Output Error: 0.73529



2.S976 Project 14 

Chapter 2: The Finite Element Method for 1D 2nd-Order BVPs 
 

ABSTRACT 
In Chapter 2, finite element analysis is performed on Models I and II from Chapter 1 as 

well as a new Model Mine. The method is compared to the Rayleigh-Ritz method, with attention 
to the structure and advantage a new set of basis functions. Convergence of the approximate 
solution to the actual solution is tested and error estimators are considered. Finally, two theoretical 
models are discussed to further verify the finite element method. 

INTRODUCTION 
Chapter 2 builds upon Models I and II from the last chapter (see Chapter 1 for model 

descriptions). A new model, Model Mine, is also used, which describes 1D condition through a 
wall exposed to air temperatures and heat fluxes through the left and right surfaces (Figure 2.1). 

 
Figure 2.1: Wall of Model Mine 

 
The differential equation and boundary conditions for Model Mine are given by [4]: 

𝑑
𝑑𝑥 (𝑘

𝑑𝑢
𝑑𝑥3 = 0		in	𝛺 (23) 

−𝑘
𝑑𝑢
𝑑𝑥 = 𝜂:(𝑢 − 𝑢:) − 𝑞:		on	𝛤: (24) 

−𝑘
𝑑𝑢
𝑑𝑥 = 𝜂,(𝑢 − 𝑢,) − 𝑞,		on	𝛤, (25) 

where the variables have the same assignments as Models I and II, with the exception of: 
𝜂: is the heat transfer coefficient between the left surface and the air [W/m2 °C] 
𝜂, is the heat transfer coefficient between the right surface and the air [W/m2 °C] 
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𝑞: is the heat flux through the left surface of the wall [W/m2] 
𝑞, is the heat flux through the right surface of the wall [W/m2] 
𝑢: is the ambient temperature on the left side of the wall [°C] 
𝑢, is the ambient temperature on the left side of the wall [°C] 
 

The exact solution to the wall problem is given by: 

𝑢 = �
𝜂:𝑞, − 𝜂,𝑞: − 𝜂:𝜂,𝑢: + 𝜂:𝜂,𝑢,

𝜂:𝑘 + 𝜂,𝑘 + 𝐿𝜂:𝜂,
� 𝑥

+ t
𝑞: + 𝑞, + 𝜂,(𝑢, + 𝐿(𝑞: + 𝜂:𝑢:) 𝑘⁄ ) + 𝜂:𝑢:

𝜂: + 𝜂,(1 + 𝐿𝜂: 𝑘⁄ ) u 
(26) 

Thus, the temperature within the wall follows a linear profile. The output of interest is 

𝑠 ≡ 𝑢(𝑥 = 0), (27) 

the temperature of the left surface of the wall. 
 

BACKGROUND 
Finite Element Method Formulation 

The finite element method (FEM) is a numerical method used to analyze physical systems 
that can be modeled by partial differential equations subject to boundary conditions. Particularly 
in problems involving irregular geometry or composite materials, an analytical solution, 𝑢, may 
not exist. FEM produces an approximate solution, 𝑢�, by dividing the domain into a mesh of 
elements at nodal positions, 𝑥h. The problem’s governing equations can be applied to these 
elements. Union of the elements reproduces the domain and yields a system of equations, which 
FEM solves through an optimal combination of basis functions, 𝜑h, and coefficients, 𝑢�h 

[5]: 

𝑢�(𝑥) =g𝑢�h	𝜑h(𝑥)
a

hi:

 (28) 

FEM is a special case of the Rayleigh-Ritz method in which the basis functions are 
piecewise linear (𝑝 = 1) or piecewise quadratic (𝑝 = 2) polynomials. In either case the basis 
function 𝜑h(𝑥) for 1 ≤ 𝑖 ≤ 𝑛a���  is defined as: 

𝜑hP𝑥oQ = �1, 𝑗 = 1
0, 𝑗 ≠ 1 (29) 

FEM maps a problem’s governing equations to general formulations. For a 1D 2nd order 
boundary value problem, the general differential equation is: 

−
𝑑
𝑑𝑥 (𝜅

(𝑥)
𝑑𝑢
𝑑𝑥3 + 𝜇

(𝑥)𝑢 = 𝑓�(x)		in	𝛺 (30) 

The generalized boundary conditions are summarized in Table 2.1. The Neumann condition 
imposes a heat flux, the Robin condition describes convection by a heat transfer coefficient, and 
the Dirichlet condition specifies a fixed end temperature. 
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Table 2.1: Generalized boundary conditions for 1D 2nd order BVP 

End of domain Neumann-Robin boundary condition Dirichlet boundary condition 

On 𝛤: 𝜅(𝑥)
𝑑𝑢
𝑑𝑥 = 𝛾:𝑢 − 𝑓�N 𝑢 = 𝑢�N 

On 𝛤, −𝜅(𝑥)
𝑑𝑢
𝑑𝑥 = 𝛾,𝑢 − 𝑓�� 𝑢 = 𝑢�� 

 
An energy functional can be constructed from the general formulation: 

Π(𝑢�) =
1
2
mt𝜅(𝑥) (

𝑑𝑢�
𝑑𝑥 3

,

+ 𝜇(𝑥)𝑢�,u 𝑑𝑥
n

+

+
1
2
P𝛾:𝑢�,(0) + 𝛾,𝑢�,(𝐿)Q

− m𝑓�(𝑥)𝑢�𝑑𝑥
n

+

− 𝑢�(0)𝑓MN − 𝑢�(𝐿)𝑓M�  

(31) 

The coefficients of the approximate solution are found by minimizing the energy functional: 
min𝛱(𝑢�) 	→ 	𝐴	𝑢� = 𝐹 (32) 

where the elements of A and F are defined by: 

𝐴ho = m𝜅(𝑥)
𝜕𝜑h
𝜕𝑥

𝜕𝜑o
𝜕𝑥

n

+

+ 𝜇(𝑥)𝜑h𝜑o𝑑𝑥 + 𝛾:𝜑h(0)𝜑o(0) + 𝛾,𝜑h(𝐿)𝜑o(𝐿)			1 ≤ 𝑖, 𝑗 ≤ 𝑛 (33) 

𝐹h = m𝑓�(𝑥)𝜑h𝑑𝑥
n

+

+ 𝑓MN𝜑h(0) + 𝑓M�𝜑h(𝐿)			1 ≤ 𝑖 ≤ 𝑛 (34) 

 
Implementation of Models 

Solving Models I, II, and Mine with FEM follows a systematic workflow. Table 2.2 
summarizes the types of boundary conditions imposed in the models. Each model’s governing 
equations are mapped to Eq. (30) and the generalized boundary conditions (see Table 2.3) [6]. 
 
Table 2.2: Types of boundary conditions in the models 
End of domain Model I Model II Model Mine 
On 𝛤: Neumann Dirichlet Neumann-Robin 
On 𝛤, Robin Neumann Neumann-Robin 
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Table 2.3: Mapping models to generalized parameters 
Parameter Heat transfer meaning Model I Model II Model Mine 

𝜅(𝑥) Conductivity times area 𝑘𝜋𝑅+, -1 + 𝛽
𝑥
𝐿1

,
 𝑘𝐴HI 𝑘𝐴 

𝜇(𝑥) Heat transfer coefficient 
times perimeter 0 𝜂K𝑃HI 0 

𝑓�(x) Generalized heat source 0 𝜂K𝑃HI𝑢? 0 

𝛾: Generalized heat transfer 
coefficient 0 − − 𝜂:𝐴 

𝛾, Generalized heat transfer 
coefficient 𝜂,𝜋𝑅+,(1 + 𝛽), 0 𝜂,𝐴 

𝑓�N Generalized heat flux 𝑞:𝜋𝑅+, − − (𝜂:𝜇: + 𝑞:)𝐴 
𝑓�� Generalized heat flux 𝜂,𝜋𝑅+,(1 + 𝛽),𝑢? 0 (𝜂,𝜇, + 𝑞,)𝐴 
𝑢�N Body temperature on 𝛤: − − 𝑢�N −− 
𝑢�� Body temperature on 𝛤, − − − − −− 

 
The elemental matrices 𝐴� and 𝐹� are formed from the integral terms of Eq.s (33) and 

(34), where the superscript indicates that no boundary condition has been imposed. Each element 
is constructed through a mapping to a reference element that features the basis functions. Note: in 
implementation, a basis function is called a shape function and denoted 𝑠̂. The reference elements 
for 𝑝 = 1 and 𝑝 = 2 are shown in Figure 2.2. 

 
Figure 2.2: Reference element for 𝑝 = 1 (left) [6] and 𝑝 = 2 (right) [7]. 

 
Numerical quadrature is used to compute the integrals in 𝐴ho and 𝐹h. To impose the 

boundary conditions, the remaining terms in Eq.s (33) and (34) are applied to 𝐴� and 𝐹�: 
𝐴� = 𝐴�, but… 𝐴�:: = 𝐴�:: + 𝛾: 𝐴�a���:	a���: = 𝐴�a���:	a���: + 𝛾, 

(35) 
𝐹� = 𝐹�, but… 𝐹�: = 𝐹�: + 𝑓�N 𝐹�a���: = 𝐹�a���: + 𝑓�� 

Note: a feature of the piecewise basis functions is that the boundary conditions are simply imposed 
on the end elements of the matrices. In Models I and Mine, which impose Neumann/Robin 
conditions, 𝐴 = 𝐴� and 𝐹 = 𝐹�, and Eq. (32) is solved for 𝑢�, the solution’s coefficients. However, 
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in Model II, which imposes a left end Dirichlet condition, 𝐴, 𝐹, and a matrix 𝑏 are extracted from 
𝐴� and 𝐹� as shown in Figure 2.3. Then,  

𝐴𝑢�+ = 𝐹 − 𝑢�N𝑏 (36) 

is solved for 𝑢�+. Finally, 𝑢� is formed from 𝑢�+ and 𝑢�N. 

 
Figure 2.3: Extracting and forming matrices in a Dirichlet left end boundary condition [7]. 

 
The piecewise basis functions that characterize FEM have special features. Firstly, a 

coefficient at node i is physically meaningful: it is exactly the estimate of 𝑢 at that node, since 
𝑢�(𝑥h) = 𝑢�h. In Models I  and Mine, FEM immediately outputs nodal temperatures in computing 
the coefficients. Secondly, the A matrix is sparse. It is tridiagonal for 𝑝 = 1 and pentadiagonal for 
𝑝 = 2, which makes FEM is computationally efficient. 
 

RESULTS 
Model II Results 

The output of Model II is shown in Figure 2.4. Notice that in the top row, the left plot 
shows that the finite element (FE) solution is composed of piecewise continuous linear 
polynomials (𝑝 = 1) and its derivative is disjointed flat lines. After six uniform refinements, the 
FE solution is not visibly distinguishable from the actual solution, suggesting convergence. Similar 
observations can be made for 𝑝 = 2 in the bottom row of plots; note the piecewise quadratic 
polynomials in the FE solution and the linear polynomials in the FE derivative. Another 
verification of successful FEM implementation is that the error converges at the expected rates (to 
be discussed in Model II Error Analysis). The results of Model II provide confidence that 
form_elem_mat_sver[8], the code that constructs the elemental matrices, is working properly 
since Model II has nonzero boundary parameters 𝜇(𝑥) and 𝑓�(x). Furthermore, matrix A has the 
expected sparsity pattern (Figure 2.5). 
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Figure 2.4: Model II Results (𝑝 = 1 in top row and 𝑝 = 2 in bottom row). 

 
 

 
Figure 2.5: Cropped sections of matrix A of Model II to visualize sparsity pattern. 
Note that for 𝑝 = 1 A is tridiagonal and for 𝑝 = 2 A is pentadiagonal, as expected. 
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Model I Results 
The output of Model I is shown in Figure 2.6. The convergence of 𝑢� to 𝑢 is evident by 

the improvement of the FE solution from Mesh 0 to Mesh 6. For Model I, 𝑝 = 2 is particularly 
effective at capturing the derivative solution. The results of Model I provide confidence that 
impose_boundary_cond_sver[9], the code that implements Eq. (35), is working properly since 
Model I has nonzero boundary parameters 𝛾,, 𝑓�N, and 𝑓�� . 
 

  

  
Figure 2.6: Model I results (𝑝 = 1 in top row and 𝑝 = 2 in bottom row). 

 
Model Mine Results 

The output of Model Mine is shown in Figure 2.7. Since the exact solution of Model Mine 
is linear, the FE solution with 𝑝 = 1	captures the exact solution on Mesh 0. An interesting 
phenomenon occurs with further refinement. Because the finite precision of computer computation 
can only represent numbers to a finite precision (14 digits), the error in the approximation appears 
to increase with further refinement because the finite precision is compounded (Figure 2.8). This 
artifact is also evident from the strange-looking plots of the FE derivative in Figure 2.7; note the 
scale of the vertical axis. 

Model Mine provides greater confidence of correct FEM implementation than Model I 
because Model Mine has complete boundary conditions (heat flux and convection) at both ends of 
the domain; i.e. 𝛾:, 𝛾,, 𝑓�N , and 𝑓�� are nonzero. In contrast, 𝛾: = 0 in Model I, and an 
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implementation error in impose_boundary_cond_sver involving 𝛾: could go unnoticed when 
analyzing Model I. Such a bug would be detected when running Model Mine. 
 

  

  
Figure 2.7: Model Mine Results (𝑝 = 1 in top row and 𝑝 = 2 in bottom row). 

 

  
Figure 2.8: Model Mine error estimators (𝑝 = 1 in left plot; 𝑝 = 2 in right plot). 
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Model II Error Analysis 

The more accurate the FE approximation, the more time the algorithm takes to run. This 
tradeoff is balanced when FEM refines just until numerical specifications are met. Error in the 
approximation can be found by comparing the FE solution to the actual solution, which is known 
as a priori error estimation. However, how can the error be found when the exact solution is not 
known? A posteriori error estimators derive estimates of the error using just the FE solution by 
comparing 𝑢� to 𝑢�/,, the estimate after a refinement. Common error estimators are summarized 
in Table 2.4. The exponent of the bound, the convergence rate, is the absolute value of the slope 
on a log(error) vs. log(L/h) plot. Checking that the error converges at the expected rate is a good 
verification technique. 
 
Table 2.4: FE error estimators [10] 
Description Definition A priori error 

estimator 
Bound A posteriori error 

estimator 
A norm 
reflecting 
temperature 
and its 
gradient 

‖𝑣‖�N(�) = m(
𝑑𝑣
𝑑𝑥3

,

+
𝑣,

𝐿 𝑑𝑥
n

+

 �𝑢 − 𝑢�/,��N(�) ~𝐶¡ -
�
,
1
¢
  ≤

�𝑢�/, − 𝑢���N(�)
2¢ − 1

 

A norm 
reflecting 
temperature 

‖𝑣‖n�(�) = m𝑣,𝑑𝑥
n

+

 �𝑢 − 𝑢�/,�n�(�) ~𝐶¡ -
�
,
1
¢�:

  ≤
�𝑢�/, − 𝑢��n�(�)

2(¢�:) − 1
 

A norm 
reflecting 
maximum 
temperature 
over domain 

‖𝑣‖n£(�) = max|𝑣| �𝑢 − 𝑢�/,�n£(�) ~𝐶¡ -
�
,
1
¢�:/,

  ≤
�𝑢�/, − 𝑢��n£(�)
2(¢�:/,) − 1

 

The 
problem’s 
output 

𝑠 ¥𝑠 − 𝑠�/,¥ ~𝐶¡ -
�
,
1
,¢

  ≤
¥𝑠�/, − 𝑠�¥
2,¢ − 1

 

 
To realistically assess the accuracy of the FE solution, Model II was studied on a sequence 

of 9 meshes (8 refinements) for 𝑝 = 1 without reference to the exact solution. Error plots are 
shown in Figure 2.9. What do these plots convey about the minimum necessary refinements to 
achieve a numerical specification? Two criteria must be met to achieve a desired accuracy most 
efficiently. The first criterion says that convergence is uncertain until error in the 𝐻:(Ω) norm 
decreases with further refinement. The second criterion says that the error in the output or a chosen 
norm must be less than a numerical specification. 
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Figure 2.9: Estimated error in Model II (𝑝 = 1) without reference to the exact error. 

 
For example, say that ‖𝑢 − 𝑢�‖n£(�) must be less than 1.00. On a log scale, the error is 

then less than 0. From the 𝐻:(Ω) plot in Figure 2.9, it is evident that first criterion is not satisfied 
until Mesh 5 (the fourth point). Then, from the 𝐿?(Ω) plot, the coarsest mesh that satisfies 
log‖𝑢 − 𝑢�‖n£(�) < 0 can be identified as Mesh 7 (the sixth point). Mesh 7 is finer than Mesh 5, 
so both criteria are met. On Mesh 7, log‖𝑢 − 𝑢�‖n£(�) = −0.1967. Then the error in the 𝐿?(Ω) 
norm is 10«+.:¬­® = 0.6358. In practice the higher order contributions to the error bound should 
be accounted for by including a safety factor. If SF=2, the upper bound for error in the 𝐿?(Ω) 
norm is 1.2715, which does not meet specification. Thus, one further refinement is necessary for 
the prediction to be sufficiently accurate. On Mesh 8, log‖𝑢 − 𝑢�‖n£(�) = −0.7126. Then the 
upper bound for the error in the 𝐿?(Ω) norm is 2 ∗ 10«+.®:,­ = 0.3876, which is within 
specification. 

As another example, consider the upper bound for the error in the output on Mesh 5. 
log|𝑠 − 𝑠�| = 1.443 on Mesh 5, so |𝑠 − 𝑠�| = 10:.´´K = 27.73. If SF=2, then the error in the 
output on Mesh 5 has an upper bound of 55.47. 

Since the exact solution to Model II is known, the actual errors can be found. As shown in 
Figure 2.10, the a posteriori error estimators are quite good, and a safety factor of 2 is not 
necessary. This is also evident in Table 2.5. However, when the actual error is unknown, a finer 
mesh that may be required by including a safety factor is worth the higher confidence in accuracy. 
 

Table 2.5: Error comparison 
 ‖𝑢 − 𝑢�‖n£(�) on Mesh 8 |𝑠 − 𝑠�| on Mesh 5 
Error estimate 0.3876 55.47 
Actual error 0.0979 31.84 
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Figure 2.10: Estimated and exact errors in Model II (𝑝 = 1). 

 

DISCUSSION 
Method of Manufactured Solutions 

Convergence of 𝑢�  to 𝑢 at the correct rate does not necessarily prove that the code 
form_elem_mat_sver is bug-free for all possible instantiations of 𝜇(𝑥). For example, 𝜇(𝑥) may 
not be a constant, such as when the perimeter of a fin depends on 𝑥. Let’s define a new model that 
describes a conical frustum-shaped fin with constant temperature on its left surface and zero heat 

flux through its right surface, such that 𝜇(𝑥) = 2𝜋𝑅+ -1 +
µ
n
1 𝜂,, 𝜅(𝑥) = 𝑘𝜋𝑅+, -1 +

µ
n
1
,
, and 

𝛾, = 0. Using the method of manufactured solutions [10], say 𝑢 = 𝛼𝑥,. From Eq. (32), then: 

𝑓�(𝑥) = −
𝑑
𝑑𝑥 (𝜅

𝑑𝑢
𝑑𝑥3 + 𝜇

(𝑢 − 𝑢?)

= −2𝛼𝑘𝜋𝑅+, ¶1 +
4𝑥
𝐿 +

3𝑥,

𝐿, · + 2𝜋𝑅+(1 +
𝑥
𝐿)𝜂,

(𝛼𝑥, − 𝑢?) 
(37) 

Then the model’s differential equation and boundary conditions are: 

−
𝑑
𝑑𝑥 (𝑘𝜋𝑅+

, -1 +
𝑥
𝐿1

, 𝑑𝑢
𝑑𝑥3 + 2𝜋𝑅+(1 +

𝑥
𝐿)𝜂,𝑢

= −2𝛼𝑘𝜋𝑅+, ¶1 +
4𝑥
𝐿 +

3𝑥,

𝐿, · + 2𝜋𝑅+(1 +
𝑥
𝐿)𝜂,

(𝛼𝑥, − 𝑢?)		in	𝛺 
(38) 

𝑢 = 𝑢MN		on	𝛤: (39) 

−4𝑘𝜋𝑅+,
𝑑𝑢
𝑑𝑥 = 𝑓��	on	𝛤, (40) 
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Since 𝑢 is known, the FE solution to this model can be validated, providing additional confidence 
that form_elem_mat_sver is correctly implemented. 
 
Model X 
 In a theoretical Model X the exact solution is not known. Running the FE code, it is 
observed that for sufficiently small ℎ the extrapolation error estimators converge at the anticipated 
rates in all norms. Can it be concluded that 𝑢� converges to the exact solution 𝑢 of Model X? No, 
it cannot, due to the possibility of implementation error. 

There are three potential sources of error when running FEM. One type of error comes 
from the model itself. Is the mathematical model sufficiently detailed to capture the physics of the 
system? Another type of error comes from numerical specification. Are the FEM parameters, such 
as mesh size and basis polynomial order, tuned to meet the required specification? Numerical 
specification was explored in Model II Error Analysis. Lastly, there may be implementation error. 
Model Mine Results demonstrated that there is inherent implementation error due to the finite 
precision of computer computation. However, implementation error can be more consequential 
when the code is not implemented correctly. There could be typos in imputing the model’s, such 
as omitting a negative sign or mistaking a decimal place, or the code could run the wrong model. 
For example, run_uniform_refinement[11] features four models. It could be easy to confuse 
the results of one model for another without attention what section the code is running or an 
intuition of the model’s solution. Model X could be prone to these human implementation errors. 
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Chapter 3: Time Dependent Finite Element Method for 1D 2nd-Order BVPs 
 

ABSTRACT 
In Chapter 3, the finite difference tool is added the finite element method to study time-

dependent problems. A simple model of a semi-infinite fin is first analyzed to provide confidence 
that the method is implemented correctly. Then a more complicated model describing cooking a 
burger is analyzed. A recipe for “Tender, Juicy Grilled Burgers” from Cook’s Illustrated is 
implemented to assess the predictability of the model. 

 

INTRODUCTION 
Model Semiinf_plus describes the transfer of heat through a right-cylinder fin at an initial 

uniform temperature and experiencing convection on its left surface and zero heat transfer 
through its right surface (Figure 3.1). 

 
Figure 3.1: Fin geometry of Model Semiinf_plus. 

 
The differential equation, boundary conditions, and initial condition are given by [12]: 

𝜌𝑐𝐴
𝜕𝑇

𝜕𝑡
= 𝑘A

𝜕2𝑇

𝜕𝑥2
+ 𝜂½¾¿𝑃(𝑇 − 𝑇?) 0 ≤ 𝑥 ≤ 𝐿, 0 < 𝑡 ≤ 𝑡À (41) 

𝑘𝐴
𝜕𝑇
𝜕𝑥 = 𝜂Á�¿A(𝑇 − 𝑇?) 𝑥 = 0, 0 < 𝑡 ≤ 𝑡À (42) 

−𝑘𝐴
𝜕𝑇
𝜕𝑥 = 0 𝑥 = 𝐿, 0 < 𝑡 ≤ 𝑡À (43) 

𝑇 = 𝑇hH 0 ≤ 𝑥 ≤ 𝐿, 𝑡 = 0 (44) 

where: 
𝐿 is the length of the body [m] 
𝐴 is the cross sectional area of the body [m2] 
𝑃 is the cross sectional perimeter of the body [m] 
𝜌𝑐 is the volumetric specific heat [J/m3 °C] 
𝑘 is the thermal conductivity of the body [W/m °C] 
𝜂½¾¿ is the heat transfer coefficient between the lateral surface and the air [W/m2 °C] 
𝜂Á�¿ is the heat transfer coefficient between the left surface and the air [W/m2 °C] 
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𝑇? is the ambient temperature [°C] 
𝑇(𝑥, 𝑡) is the spatial and temporal temperature profile of the body [°C] 

 
 Model Burger describes cooking a burger on a skillet (Figure 3.2). Cooking the burger 
involves three stages: Stage I (pre-flip) from 0 ≤ 𝑡 ≤ 𝑡Â, during which side 𝛼 cooks; Stage II (post-
flip) from 𝑡Â ≤ 𝑡 ≤ 𝑡ÂÂ, during which side 𝛽 cooks; and Stage III (repose) from 𝑡ÂÂ ≤ 𝑡 ≤ 𝑡ÂÂÂ, 
during which the burger cools on a rack. 

 
Figure 3.2: Geometry of Model Burger 

 
The differential equation, boundary conditions, and initial condition of the burger problem for 
the three stages are summarized in Table 3.1. 
 
Table 3.1: Model Burger governing equations 

Stage I (0 ≤ 𝑡 ≤ 𝑡Â) Stage II (𝑡Â ≤ 𝑡 ≤ 𝑡ÂÂ) Stage III (𝑡ÂÂ ≤ 𝑡 ≤ 𝑡ÂÂÂ) On domain 

𝜌𝑐𝐴
𝜕𝑇Â

𝜕𝑡 = 

𝑘A
𝜕,𝑇Â

𝜕𝑥, + 𝜂½¾¿
Â 𝑃(𝑇Â − 𝑇?)	 

𝜌𝑐𝐴
𝜕𝑇ÂÂ

𝜕𝑡 = 

𝑘A
𝜕,𝑇ÂÂ

𝜕𝑥, + 𝜂½¾¿ÂÂ 𝑃(𝑇ÂÂ − 𝑇?) 

𝜌𝑐𝐴
𝜕𝑇ÂÂÂ

𝜕𝑡 = 

𝑘A
𝜕,𝑇ÂÂÂ

𝜕𝑥, + 𝜂½¾¿ÂÂÂ 𝑃(𝑇ÂÂÂ − 𝑇?) 

0 < 𝑥 < 𝐿 

𝑘𝐴
𝜕𝑇Â

𝜕𝑥 = 

𝜂Á�¿Â 𝐴(𝑇Â − 𝑇IÃh½½�¿) 

𝑘𝐴
𝜕𝑇ÂÂ

𝜕𝑥 = 

𝜂Á�¿ÂÂ 𝐴(𝑇ÂÂ − 𝑇IÃh½½�¿) 

𝑘𝐴
𝜕𝑇ÂÂÂ

𝜕𝑥 = 

𝜂Á�¿ÂÂÂ 𝐴(𝑇ÂÂÂ − 𝑇?) 

𝑥 = 0 

−𝑘𝐴
𝜕𝑇Â

𝜕𝑥 = 

𝜂¿�¢Â 𝐴(𝑇Â − 𝑇?) 

−𝑘𝐴
𝜕𝑇ÂÂ

𝜕𝑥 = 

𝜂¿�¢ÂÂ 𝐴(𝑇ÂÂ − 𝑇?) 

−𝑘𝐴
𝜕𝑇ÂÂÂ

𝜕𝑥 = 

𝜂¿�¢ÂÂÂ 𝐴(𝑇ÂÂÂ − 𝑇?) 

𝑥 = 𝐿 

𝑇Â(𝑥, 0) = 𝑇hH  𝑇ÂÂ(𝑥, 𝑡Â) = 𝑇Â(𝐿 − 𝑥, 𝑡Â) 𝑇ÂÂÂ(𝑥, 𝑡ÂÂ) = 𝑇ÂÂ(𝑥, 𝑡ÂÂ) 0 < 𝑥 < 𝐿 
where: 

𝐿 is the burger thickness [m] 
𝐴 is the burger cross sectional area [m2] 
𝑃 is the burger cross sectional perimeter [m] 
𝜌𝑐 is the burger volumetric specific heat [J/m3 °C] 
𝑘 is the burger thermal conductivity [W/m °C] 
𝜂½¾¿ is the heat transfer coefficient on the lateral surface [W/m2 °C] 
𝜂¿�¢ is the heat transfer coefficient on the top surface [W/m2 °C] 
𝜂Á�¿ is the heat transfer coefficient on the bottom surface [W/m2 °C] 
𝑇? is the ambient temperature [°C] 
𝑇IÃh½½�¿ is the skillet temperature [°C] 
𝑇(𝑥, 𝑡) is the spatial and temporal temperature profile of the burger [°C] 
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BACKGROUND 
Formulation of the Heat Equation 

The solution to the heat equation is a temperature profile, 𝑢, that depends on time and 
space. The spatial component is approximated by the finite element (FE) method, which divides 
the domain into a mesh of 𝑛�½ elements of length ℎ. The temporal component is approximated by 
the finite difference (FD) method, which discretizes time into 𝑛¿I¿�¢I steps of duration ∆𝑡. Just as 
the FE method can implement different basis functions, most notably piecewise linear (𝑝 = 1) and 
piecewise quadratic (𝑝 = 2), the FD method invokes different schemes (𝜃) to approximate time-
dependent derivatives. Three common schemes are summarized in Table 3.2. This analysis utilizes 
the Euler backward and Crank-Nicolson schemes because they are convergent and stable. They 
are also less numerically costly than Euler forward, which requires much smaller time steps to 
reach a desired accuracy. 

 
Table 3.2: Finite difference schemes 
𝜃 Name Rule implemented Characteristics in time 
0 Euler forward Rectangle right 1st order, explicit, unstable 
1/2 Crank-Nicolson Trapezoidal 2nd order, implicit, stable 
1 Euler backward Rectangle left 1st order, implicit, stable 

 
The FD-FE method approximates the solution to the heat equation in both time and space. 

The heat equation and N/R-N/R boundary conditions, applicable to Models Semiinf_Plus and 
Burger, take the form [13]: 

−
𝜕

𝜕𝑥
(𝜅(𝑥)

𝜕𝑢

𝜕𝑥
3 + 𝜇(𝑥)𝑢 = 𝑓� − 𝜌(𝑥)𝑢̇		in	𝛺, 0 < 𝑡 ≤ 𝑡À (45) 

𝜅
𝜕𝑢

𝜕𝑥
= 𝛾:𝑢 − 𝑓MN		on	𝛤:, 0 < 𝑡 ≤ 𝑡À  (46) 

−𝜅
𝜕𝑢

𝜕𝑥
= 𝛾,𝑢 − 𝑓M�		on	𝛤,, 0 < 𝑡 ≤ 𝑡À (47) 

𝑢 = 𝑢hH(𝑥)	in	𝛺, 𝑡 = 0 (48) 

The FD-FE solution to the heat equation is: 

𝑢�,∆¿Ã (𝑥), 1 ≤ 𝑘 ≤ 𝑛¿I¿�¢I  (49) 

𝑢�,∆¿Ã (𝑥), a numerical approximation to the true solution 𝑢(𝑥, 𝑡), is found by solving: 

𝑀ha�Ç¿h¾ 𝑢�,∆¿
Ã − 𝑢�,∆¿Ã«:

∆𝑡 + 𝐴P𝜃𝑢�,∆¿Ã − (1 − 𝜃)𝑢�,∆¿Ã«:Q = 𝐹	, 2 ≤ 𝑘 ≤ 𝑛¿I¿�¢I  

𝑢�,∆¿Ã = 𝐼�𝑢hH	, 𝑘 = 1 
(50) 

where the elemental matrices are defined by the parameters of the boundary value problem: 

𝑀ho
ha�Ç¿h¾ = m𝜌(𝑥)𝜑h𝜑o𝑑𝑥

n

+

			1 ≤ 𝑖, 𝑗 ≤ 𝑛 (51) 

𝐴ho = m𝜅(𝑥)
𝜕𝜑h
𝜕𝑥

𝜕𝜑o
𝜕𝑥

n

+

+ 𝜇(𝑥)𝜑h𝜑o𝑑𝑥 + 𝛾:𝜑h(0)𝜑o(0) + 𝛾,𝜑h(𝐿)𝜑o(𝐿)			1 ≤ 𝑖, 𝑗 ≤ 𝑛 (52) 
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𝐹h = m𝑓�(𝑥)𝜑h𝑑𝑥
n

+

+ 𝑓MN𝜑h(0) + 𝑓M�𝜑h(𝐿)			1 ≤ 𝑖 ≤ 𝑛 (53) 

 
Implementation of Models 
 To solve the Semiinf_plus and Burger problems, the models’ boundary value equations are 
mapped to Eq.s (45)-(47), which is summarized in Table 3.3. The code 
run_uniform_refinement solves Eq. (50) for 𝑢�,∆¿Ã (𝑥). 
 
Table 3.3: Mapping models to generalized parameters 
Parameter Heat transfer meaning Value in Model 

Semiinf_plus 
Value in Model Burger 
pre-flip (I), post-flip (II), repose (III) 

𝜌(𝑥) Density times specific 
heat times area 1 𝜌𝑐𝐴 

𝜅(𝑥) Conductivity times 
area 1 𝑘𝐴 

𝜇(𝑥) 
Heat transfer 

coefficient times 
perimeter 

1 
𝜂½¾¿Â 𝑃 
𝜂½¾¿ÂÂ 𝑃 
𝜂½¾¿ÂÂÂ 𝑃 

𝑓�(x) 
Generalized heat 

source 0 
𝜂½¾¿Â 𝑃𝑇? 
𝜂½¾¿ÂÂ 𝑃𝑇? 
𝜂½¾¿ÂÂÂ 𝑃𝑇? 

𝛾: Generalized heat 
transfer coefficient 1 

𝜂Á�¿Â 𝐴 
𝜂Á�¿ÂÂ 𝐴 
𝜂Á�¿ÂÂÂ 𝐴 

𝛾, Generalized heat 
transfer coefficient 0 

𝜂¿�¢Â 𝐴 
𝜂¿�¢ÂÂ 𝐴 
𝜂¿�¢ÂÂÂ 𝐴 

𝑓�N Generalized heat flux 0 
𝜂Á�¿Â 𝐴𝑇IÃh½½�¿ 
𝜂Á�¿ÂÂ 𝐴𝑇IÃh½½�¿ 
𝜂Á�¿ÂÂÂ 𝐴𝑇? 

𝑓�� Generalized heat flux 0 
𝜂¿�¢Â 𝐴𝑇? 
𝜂¿�¢ÂÂ 𝐴𝑇? 
𝜂¿�¢ÂÂÂ 𝐴𝑇? 
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RESULTS 
Verification of Model Semiinf_plus Implementation 
 The output of Model Semiinf_plus is shown in Figure 3.3. The convergence of the FE 
solution, 𝑢�,∆¿Ã (𝑥), to the exact solution, 𝑢(𝑥, 𝑡Ã), is evident by the improvement of fit from Mesh 
0 to Mesh 3. Observe that the 𝑝 = 2 scheme does a better job capturing the solution at fewer 
refinements than the 𝑝 = 1 scheme, and it is much more effective at capturing the derivative 
solution. 

  

  
Figure 3.3: Model Semiinf_plus results (Top row: 𝑝 = 1 and 𝜃 = 1; Bottom row: 
𝑝 = 2 and 𝜃 = 1/2). 

 
With each refinement, the FD-FE method divides ℎ by a factor of 2 and ∆𝑡 by a factor of 

𝜎, which is chosen such that FD and FE approximations converge at the same rate [14]. The 
convergence rate for 𝐿,(Ω) is ~𝐶¡,Ê2«Ç½, where 𝐶¡,Ê is the sum of the spatial and temporal 
convergence constants, 𝑙 is the refinement level, and 𝑟 is the convergence rate. For the 𝐿,(Ω) norm, 
𝑟 = 𝑝 + 1. As seen by the negative slope in the error estimators plotted in Figure 3.4, the solution 
converges at the expected rates, giving confidence that the code solve_fld_output_t_sver[15] 
is implemented correctly. 
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Figure 3.4: Model Semiinf_plus 𝐿,(Ω) norm error estimators (Left: 𝑝 = 1 and 
𝜃 = 1; Right 𝑝 = 2 and 𝜃 = 1/2). 

 
Verification of Model Burger Implementation 
 Key results of Model Burger are shown in Figure 3.5. The content of these plots is explored 
in the Discussion. For now, the interest is verification of correct implementation, which is done by 
direct comparison. The top row of Figure 3.5 shows results obtained from the code 
run_uniform_refinement_burger_sver[16], where the function make_probdef_burger 
was modified with the burger parameters shown in Table 3.3. In comparison, the bottom row of 
Figure 3.5 shows results reported by AT Patera [17]. Using MATLAB’s interactive data cursor, 
precise comparisons can be made on selected points. This test is a basic demonstration of the 
common technique of verifying the implementation of a code, such as that used for this project, by 
comparing its results to the results of rigorously developed commercial software. 
 
Verification of Model Burger Numerical Specifications 
 Error estimators of the output—the burger temperature 𝑇Â at the skillet side at time 𝑡Â just 
before the flip—are shown in Figure 3.6. For the output error, 𝑟 = 2𝑝. As an exercise, say the 
error is specified to be less than 0.001 °C (less than -3 on a logarithmic scale). A safety factor of 
1 is sufficient for a burger. Then, for 𝑝 = 1 and 𝜃 = 1, the coarsest mesh that meets the prescribed 
tolerance is Mesh 6 (fifth refinement) with coordinates (2.283, -3.443). The tolerance is thus 
10«K.´´K = 0.00036 °C. Mesh 6 is circled in red on the left plot of Figure 3.6. For 𝑝 = 2 and 𝜃 =
1/2, the coarsest mesh that meets the prescribed tolerance appears to be Mesh 2 (first refinement) 
with coordinates (1.079, -3.273). However, there is a special caveat for this particular scheme. 
Note, the slope of the data in the right plot is -3 instead of -4. The output error of a FD-FE second 
order scheme convergences at a rate of ~𝐶¡,Ê2«(Ç«:)½. Thus, it is good practice to create an upper 
bound on the error by scaling by a factor of 2, which shifts the data points up by log(2) = 0.301. 
Then, −3.273 + 0.301 = −2.972 > −3, and Mesh 2 does not achieve specification. Conversely, 
Mesh 3 (second refinement) with coordinates (1.38, -4.175) does meet specification because 
−4.175 + 0.301 = −3.874 < −3. The tolerance is 10«K.Î®´ = 0.00013 °C. Mesh 3 is circled in 
red on the right plot of Figure 3.6. 
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Figure 3.5: Verification of Model Burger implementation using the data cursor. 
Top row: Results obtained from FEM. Bottom row: Results reported by AT Patera. 

 

  
Figure 3.6: Model Burger output error estimators (Left: 𝑝 = 1 and 𝜃 = 1; Right 
𝑝 = 2 and 𝜃 = 1/2). 
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In truth, the Burger mathematical model are input parameters are not remotely accurate to 
the prescribed tolerance, nor does cooking a burger require such high precision. However, the 
(unreasonable) tolerance of 0.001 °C illustrates the advantage of a higher order methods; five 
refinements are required for 𝑝 = 1, while only two are required for 𝑝 = 2. The computational time 
to implement the FD-FE method at refinement level 𝑙 is: 

𝑇H�Ï¢ ∝ 𝑛�½
(½) ∗ 𝑛¿I¿�¢I

(½)  (54) 

𝑛�½
(½) = 𝑛�½

(+) ∗ 2½ (55) 

𝑛¿I¿�¢I
(½) = 𝑛¿I¿�¢I

(+) ∗ 𝜎½ (56) 

where 𝑛�½
(+) and 𝑛¿I¿�¢I

(+)  are the initial number of elements and timesteps before refinement, 
respectively. Eq. (55) applies to uniform refinement that divides the elements in half. The factor 𝜎 
in Eq. (56) is chosen based on 𝑝 and 𝜃 (see Table 3.4). 
 

Table 3.4: Choice of 𝜎 

 𝑝 = 1 𝑝 = 2 
𝜃 = 1 𝜎 = 4 𝜎 = 8 

𝜃 = 1/2 𝜎 = 2 𝜎 = 2√2 
 

In Model Burger, 𝑛�½
(+) = 6 and 𝑛¿I¿�¢I

(+) = 20. For 𝑝 = 1 and 𝜃 = 1, specification is reached 
in five refinements, so 𝑇H�Ï¢ ∝ 6 ∗ 2Ò ∗ 20 ∗ 4Ò = 3,932,160. For 𝑝 = 2 and 𝜃 = 1/2, 
specification is reached in two refinements, so 𝑇H�Ï¢ ∝ 6 ∗ 2, ∗ 20 ∗ P2√2Q

,
∗ 2 = 7,680, where 

the final factor of 2 accounts for the fact that the operation count to solve a penta-diagonal system 
(𝑝 = 2) is twice that of a tri-diagonal system (𝑝 = 1). The ratio of computational times is 
K,¬K,,:­+
®,­Î+

= 512. Thus, the second order scheme is 512 times more efficient than the first order 
scheme under the specification that the output error is less than 0.001 °C. 
 

DISCUSSION 
To assess whether Model Burger is sufficiently accurate to provide design guidance, a 

recipe from Cook’s Illustrated, a magazine noted for its detailed instructions and extensively-tested 
recipes, was implemented. “Tender, Juicy Grilled Burgers” [18] calls for freezing (𝑇hH = –18°C) a 
1.9 cm thick, 11.42 cm diameter, patty. Cook the patty on a gas grill on high (𝑇ÓÇh½½ = 205 °C) for 
4 to 7 minutes (240 sec ≤ 𝑡¢Ç�«À½h¢  ≤ 420 sec). Flip and grill for another 4 to 7 minutes (240 sec ≤ 
𝑡¢�I¿«À½h¢  ≤ 420 sec) until the meat reads 130 °F (𝑇��a� = 54 °C). Let rest on a plate for 5 minutes 
(𝑡Ç�¢�I�  = 300 sec) before serving. The FDA recommends serving hot foods at 140 °F (𝑇I�ÇÔ� = 60 
°C). The meat’s flavor is greatly enhanced when the Maillard reaction temperature (𝑇Õ¾h½½¾Ç�  = 
140 °C) is reached on the surfaces of the patty. Room temperature is taken to be 𝑇? = 23°C. 
Thermal properties are [5]: 𝜂�h½	½¾Ö�Ç  = 220 W/m °C, 𝑘Á��À = 0.38 W/m °C, 𝜌Á��À  = 1030 kg/m3, 
and cp = 3684 J/kg °C. These parameters are entered in the FD-FE code 
run_uniform_refinement_burger_recipe. Results are shown in Figure 3.7 and Figure 3.8 
for the minimum and maximum cooking times recommended by recipe, respectively. 
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Figure 3.7: Burger temperatures for 𝑡¢Ç�«À½h¢  = 330 sec and 𝑡¢�I¿«À½h¢  = 330 sec 
(minimum cooking time recommended by recipe). 𝑝 = 1 and 𝜃 = 1. 

 

 
Figure 3.8: Burger temperatures for 𝑡¢Ç�«À½h¢  = 420 sec and 𝑡¢�I¿«À½h¢  = 420 sec 
(maximum cooking time recommended by recipe). 𝑝 = 1 and 𝜃 = 1. 
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 Using the data cursor, no meaningful difference in the temperature profile is found between 
the results of first order and second order schemes. In both the maximum cooking and minimum 
cooking versions of the recipe, the FD-FE method predicts that the sides of the burger surpass the 
Maillard onset temperature, which is good for taste, and the final mid-burger temperature is above 
the serving temperature, which is good for health. However, the cooked burger is too hot. The final 
mid-burger temperature is 81 °C with minimum recommended cooking, while the final mid-burger 
temperature is 91 °C with maximum recommended cooking. In comparison, hot beverages are 
generally served between 70 °C to 85 °C, but need time to cool to avoid burning the consumer. 
According to the model, there are several ways the recipe could be improved to reach 𝑇I�ÇÔ� = 60 
°C. Keeping the pre-flip and post-flip cooking times at the minimum recommended by the recipe, 
the repose time could be increased until the mid-burger temperature cools to 60 °C. This is shown 
in Figure 3.9. The repose time is about 1,280 seconds! No one wants to wait 20 minutes for a 
burger to cool. 

 
Figure 3.9: Cooling the burger to serving temperature by increasing the repose time. 

 
 Another way to make the burger more consumption-friendly is to lower the grill 
temperature (Figure 3.10) or decrease the cooking time (Figure 3.11). 
 

 
Figure 3.10: A better modeled burger by cooking at a lower temperature (𝑇ÓÇh½½ = 
172 °C). 
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Figure 3.11: A better modeled burger by decreasing the cooking times (𝑡¢Ç�«À½h¢  
= 250 sec, 𝑡¢�I¿«À½h¢  = 250 sec, 𝑡Ç�¢�I�  = 300 sec). 

 
Of course, the original recipe should not be discarded without following it first. While the 

FD-FE numerical specification many introduce small errors, most of the inaccuracies in the burger 
problem come from the mathematical model. Some of the limiting assumptions are [2]: (i) the oil 
layer specification is not well justified; (ii) the effects of moisture are neglected, (iii) the 
temperature of the grill is assumed to be constant; (iv) the thermal properties from literature are 
not well characterized; (v) natural convection and radiation are linearized; and (vi) the lateral Biot 
number may not be small enough to justify quasi one-dimensional heat transfer. 
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Chapter 4: The Finite Element Method for 1D 4th-Order BVPs 
 

ABSTRACT 
This chapter implements the finite element method for fourth order beam bending. A new 

set of basis functions is introduced to model such systems. To assess the accuracy of the FEM 
code, data from a laboratory experiment studying beam bending are implemented, and FEM results 
are compared to the study’s findings. As another illustrative example, the eigenproblem of a 
vibrating xylophone bar is solved to optimize the bar’s geometry when its first two natural 
frequencies are specified. Finally, a more realistic physical model of the xylophone bar is 
discussed. 

 

INTRODUCTION 
A xylophone consists of wooden bars suspended from strings (Figure 4.1). Each bar is a 

different length to produce a unique pitch; the shorter the bar, the higher the pitch. Material is 
removed from the underside of the bars for fine tuning. When a bar is struck by a mallet, it vibrates 
according to its natural modes. The bar is tuned to the mode with the lowest frequency, called the 
fundamental frequency. All other natural frequencies are the called the harmonic frequencies. 
While there are an infinite number of harmonic modes, their amplitudes become negligibly small 
as their frequencies increase due to damping. The strings are loosely tensioned to isolate each bar’s 
vibration. To hold the bar freely, the strings are placed where the fundamental mode causes zero 
displacement of the bar. 

 

 
Figure 4.1: Xylophone bars and strings. 

 
This chapter optimizes the geometry of a xylophone bar subject to a desired acoustic performance. 
As shown in Figure 4.2, the modeled bar is rotated 180°, and its height as a function of the 
coordinate 𝑥� is described by a fourth order polynomial [19]: 
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𝐻�(𝑥�) = ×𝐻Ï¾µ 𝑑 Ø
(1 − 𝑝,) ¶

𝐿𝐷/2 − 𝑥�
𝐿𝐷/2 − 𝑥�∗

·
´

+ 𝑝,Ú 						for	𝑥�∗ ≤ 𝑥� ≤ 𝐿� − 𝑥�∗

𝐻Ï¾µ 𝑑																																			for	0 ≤ 𝑥� < 𝑥�∗ ,			𝐿� − 𝑥�∗ < 𝑥� ≤ 𝐿�

 (57) 

where the subscript d indicates the dimensional form of quantities, and 
𝑥�∗  is the location of the start of the modified section of the bar [m] 
𝐿� is the length of the bar [m] 
𝐻Ï¾µ � is the unmodified height of the bar [m] 
𝑝,	is a design variable that describes the degree of modification of the bar [/] 

Note: when 𝑝, = 1,	no material is removed and the height of the bar is constant spanning its length; 
if 𝑝, = 0, all material would be removed at 𝐿Ý/2. It is recommended that 𝑝,	ϵ	[0.05, 1.00]. 

 
Figure 4.2: Xylophone bar model. 

 
Modeling the vibrations of the xylophone bar is an eigenproblem. The governing 

differential equation and boundary conditions are: 

−
𝑑,

𝑑𝑥�,
ß
𝐸�𝑊�𝐻�K(𝑥�)

12
𝑑,𝑢�

(Ã)

𝑑𝑥�,
â = 𝜆�

(Ã)𝜌�𝑊�𝐻�(𝑥�)𝑢�
(Ã)			0 < 𝑥� ≤ 𝐿� (58) 

𝑢�	µµ
(Ã) (0) = 𝑢�	µµµ

(Ã) (0) = 0 = 𝑢�	µµ
(Ã) (𝐿�) = 𝑢�	µµµ

(Ã) (𝐿�) (59) 

𝑀�(0) = 𝑉�(0) = 0 = 𝑀�(𝐿�) = 𝑉�(𝐿�) (60) 

where the superscript k = 1, 2,…, n indicates the kth-frequency modeled, and: 
𝑊�  is the width of the bar [m] 
𝐸� is the modulus of elasticity [Pa] 
𝜌� is the density of the bar [kg/m3] 
𝜆�
(Ã) is the kth eigenvalue [rad2/s2] 
𝑢�
(Ã)(𝑥�) is the deflection of the bar at 𝑥� [m] 
𝑀�(𝑥�) is the moment about the bar at 𝑥� [Nm] 
𝑉�(𝑥�) is the shear force on the bar at 𝑥� [N] 

Note: an x-subscript indicates the xth-derivative. The eigenvalues are related to the natural 
frequencies [Hz] of the bar by: 

𝑓�
(Ã) = å𝜆�

(Ã) 2𝜋æ  (61) 

In solving the eigenproblem, it is convenient to nondimensionalize Eq.s (57)-(61) using the 
following definitions: 

𝑥 ≡ 𝑥�/𝐿� 𝑢(Ã) ≡ 𝑢�
(Ã)/𝐻Ï¾µ � 𝜆(Ã) ≡ 𝜆�

(Ã) 𝜌�𝐿�´

𝐸�𝐻Ï¾µ �,  
𝑥∗ ≡ 𝑥�∗/𝐿� 𝐻 ≡ 𝐻�/𝐻Ï¾µ � 
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Eq.s (57)-(61) become: 

𝐻(𝑥) = çt(1 − 𝑝,) (
1/2 − 𝑥
1/2 − 𝑥∗3

´

+ 𝑝,u 						for	𝑥∗ ≤ 𝑥 ≤ 1 − 𝑥∗

1																																		for	0 ≤ 𝑥 < 𝑥∗,			1 − 𝑥∗ < 𝑥 ≤ 1
 (62) 

−
𝑑,

𝑑𝑥, ¶
𝐻K(𝑥)
12

𝑑,𝑢(Ã)

𝑑𝑥, · = 𝜆(Ã)𝐻(𝑥)𝑢(Ã)			0 < 𝑥 ≤ 1 (63) 

𝑢µµ
(Ã)(0) = 𝑢µµµ

(Ã) (0) = 0 = 𝑢µµ
(Ã)(1) = 𝑢µµµ

(Ã) (1) (64) 

𝑀(0) = 𝑉(0) = 0 = 𝑀(1) = 𝑉(1) (65) 

𝑓(Ã) = U𝜆(Ã) 2𝜋æ  (66) 

The physical meanings of the natural frequencies are: 
𝑓�
(:) = 0 𝑢�

(:) ∝ const	(translation) 

𝑓�
(,) = 0 𝑢�

(,) ∝ const ∗ 𝑥		(rotation) 

𝑓�
(K) > 0 Fundamental:	playing	note	(pitch) 

𝑓�
(Ã) > 0 

   for	𝑘 ≥ 4 

𝑘 = 4: first	harmonic					
𝑘 = 5: second	harmonic
𝑘 = 6: third	harmonic				
⋮																																		

ñ timbre 

 

BACKGROUND 
Formulation of the Eigenproblem 

The modal deflection of a vibrating bar is represented by a sum of sinusoids [20]: 

𝑢(𝑥, 𝑡) = g-𝑐:
(Ã) cos 𝜔𝑛(𝑘)𝑡 + 𝑐,

(Ã) sin 𝜔𝑛(𝑘)𝑡1
∞

Ãi:

𝑢(Ã)(𝑥) (67) 

where 𝑐:
(Ã) and 𝑐,

(Ã) are determined from the initial conditions, 𝜔a
(Ã) is the natural frequency [rad/s], 

and 𝑢(Ã) is the mode shape. Eq. (67) is the solution to the eigenproblem: 
𝑑,

𝑑𝑥, -
cos𝜔𝑡
sin 𝜔𝑡1 = −𝜔, -cos𝜔𝑡sin 𝜔𝑡1 (68) 

where 𝜔, = 𝜆, the eigenvalue. Eq. (67) can be applied to generalized problem statement of a beam 
with free boundary conditions. For 𝑘 = 1, 2,… 

𝑑,

𝑑𝑥, ¶𝛽
(𝑥)

𝑑,𝑢(Ã)

𝑑𝑥, · − 𝑁+
𝑑,𝑢(Ã)

𝑑𝑥, = λ(Ã)𝜌𝑢(Ã)			0 < 𝑥 < 𝐿 (69) 

(𝛽𝑢µµ)µ(0)
−𝛽(0)𝑢µµ(0)

= 𝑓MN			𝑥 = 0	 (70) 

−(𝛽𝑢µµ)µ(𝐿)
𝛽(𝐿)𝑢µµ(𝐿)

= 𝑓M�			𝑥 = 𝐿 (71) 
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The finite element (FE) method approximates the solution by dividing the domain 
𝑥	ϵ	[0, 𝐿Ý]	into a mesh with of 𝑛�½ elements, 𝑇Ï, separated by nodes, 𝑥h. At each node there are 
two degrees of freedom: the deflection of the beam (𝑙 = 1) and the slope (𝑙 = 2). The FE solution 
is a linear combination of coefficients 𝑢�÷,� and basis functions 𝛷h,½: 

𝑢�(𝑥) = g g𝑢�÷,�𝛷h,½(𝑥)
,

½i:

aùúû�

hi:

 (72) 

Solving the fourth order boundary value problem requires cubic basis functions, which are 
generated from a Hermite spline, as shown in Figure 4.3. Observe that: 

• Blue curve:  𝛷:,:(𝑥ü:) = 1 and 𝛷:,:(𝑥ü,) = 𝛷:,:ý (𝑥ü:) = 𝛷:,:ý (𝑥ü,) = 0 
• Red curve:  𝛷:,,ý (𝑥ü:) = 1 and 𝛷:,,(𝑥ü:) = 𝛷:,,(𝑥ü,) = 𝛷:,,ý (𝑥ü,) = 0 
• Yellow curve:  𝛷,,:(𝑥ü,) = 1 and 𝛷,,:(𝑥ü:) = 𝛷,,:ý (𝑥ü:) = 𝛷,,:ý (𝑥ü,) = 0 
• Purple curve: 𝛷,,,ý (𝑥ü,) = 1 and 𝛷,,,(𝑥ü:) = 𝛷,,,ý (𝑥ü:) = 𝛷,,,(𝑥ü,) = 0 

 
Figure 4.3: Hermitian Basis Functions. 

 
For constructing 𝑢�÷,� and 𝛷h,½, it is necessary to map from double indexing to single 

indexing. The general formulation is [21]: 
𝜑[h,½]�→N = 𝛷h,½ 
𝑢�	[h,½]�→N = 𝑢�	h,½ 

[𝑖, 𝑙],→: = 2(𝑖 − 1) + 𝑙 
(73) 

[𝜑:	𝜑,	𝜑K	𝜑´] = [𝛷:,:	𝛷:,,	𝛷,,:	𝛷,,,] and [𝑢�	:	𝑢�	,	𝑢�	K	𝑢�	´] = [𝑢�	:,:	𝑢�	:,,	𝑢�	,,:	𝑢�	,,,], for 
instance. Then Eq. (72) is recast as a single sum: 
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𝑢�(𝑥) = g 𝑢�þ𝜑o(𝑥)
,aùúû�

oi:

 (74) 

The coefficients of the FE solution are found by minimizing the energy functional:  

min𝛱(𝑢�) 	→ 	𝐴	𝑢�
(Ã)+ = 𝐹 (75) 

For the eigenproblem, F is recast as the inertia matrix and the eigenvalue: 

𝐴	𝑢�
(Ã)+ = 𝜆�

(Ã)𝑀ha�Ç¿h¾𝑢�
(Ã)+ (76) 

where the elemental matrices are defined by the parameters of the boundary value problem: 

𝐴ho = m t𝛽(𝑥)
𝑑,𝜑h
𝑑𝑥,

𝑑,𝜑o
𝑑𝑥, + 𝑁+

𝑑𝜑h
𝑑𝑥

𝑑𝜑o
𝑑𝑥

u
n

+

𝑑𝑥			1 ≤ 𝑖, 𝑗 ≤ 2𝑛a��� (77) 

𝑀ho
ha�Ç¿h¾ = m𝜌𝐴HI(𝑥)𝜑h𝜑o𝑑𝑥

n

+

			1 ≤ 𝑖 ≤ 2𝑛a���  (78) 

 
Implementation of Xylophone Model 

To implement the vibrating bar problem using the FE method, Eq.s (58)-(60) of the 
xylophone model are mapped to Eq.s (69)-(71) of the general formulation, as shown in Table 4.1. 

 
Table 4.1: Mapping xylophone model to generalized parameters 
Parameter Eigenproblem meaning Value in Xylophone model (per unit width) 

𝛽(𝑥) 
(𝐸𝐼)ÿ!!(𝑥) 

Effective Young's modulus 
times area moment of inertia 

𝐻K(𝑥)
12  

𝑁+ Axial tension 0 
𝐴HI Cross-sectional area 𝐻(𝑥) 

𝑓�N �
−𝑉�N
−𝑀�N

� 

Natural boundary conditions 
"00# 

𝑓�� �
𝑉��
𝑀��

� 

Natural boundary conditions 
"00# 

There are three objectives in designing the xylophone bar [19]. The first concerns timbre, 
the tone quality. The ratio between the first harmonic frequency and the fundamental frequency is 
defined as: 

𝑅 ≡
𝑓�
(´)

𝑓�
(K) (79) 

The natural frequencies depend on 𝑥∗ and 𝑝, only. Thus, given 𝑥∗ and 𝑅¿¾ÇÓ�¿  (the desired ratio), 
the objective is to find 𝑝,

�¢¿(the optimal material removal parameter). This is done in the code 
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xylo_bar_design3 using a binary chop function that refines 𝑅(𝑝,
�¢¿) until it is within a 

prescribed tolerance of 𝑅¿¾ÇÓ�¿ . Common ratio targets that create pleasant timbre are: 
𝑅 = 3 Quint tuning 
𝑅 = 4 Double-octave tuning 

The second objective concerns pitch, the playing note. Given 𝑥∗, 𝑝,
�¢¿ (from timbre 

optimization), 𝐻Ï¾µ �, 𝐸�, 𝜌�, and 𝑓¿¾ÇÓ�¿	�
(K)  (the desired fundamental frequency), the objective is 

to find 𝐿�� (the optimal length of the bar) to meet the desired frequency. Using the FEM 
approximation of the fundamental frequency, 𝑓�

(K) = function(𝑥∗, 𝑝,
�¢¿), the length is: 

𝐿�� = ß
𝑓�
(K)

𝑓¿¾ÇÓ�¿	�
(K) â

:/,

¶
𝐸�𝐻Ï¾µ �,

𝜌�
·
:/´

 (80) 

The third objective concerns the string-hole placement. Given 𝑥∗, 𝑝,
�¢¿ (from timbre 

optimization), 𝐻Ï¾µ �, 𝐸�, 𝜌�, and 𝐿�� (from pitch optimization), the objective is to find 𝑥���½�	: 
and 𝑥���½�	, such that the displacement at these locations is zero: 

𝑢�
(K)(𝑥���½�	:) = 𝑢�

(K)(𝑥���½�	,) = 0 (81) 

For each hole, the protocol is: 
i. Find the element, 𝑚∗ that contains zero bar deflection 

ii. Find the zero 𝑥ü��½�	ϵ	[0,1] within the 𝑚∗ element 
iii. Scale 𝑥ü��½� to the dimensional domain 

Below is the sample of code from xylo_bar_design3 [22] that locates the holes. 
 
%Part (i) find m_stars 
m_star = [];         %create m_star vector 
for m = 1:n_el 

if u3(lg2(1,m))*u3(lg2(3,m)) < 0     %the point before a zero times the  
point after the zero is negative 

        m_star = [m_star,m];             %if true, add element to m_star  
    end 
end 
%Part (ii) find xhatholes 
xhathole = zeros(1,length(m_star));      %create xhathole vector 
for i = 1:length(m_star)                 %for each hole, find the coordinate  

within the m_star element 
    func = @(xhat) u3(lg2(:,m_star(i)))'*(hshape_fcn(xhat,h(m_star(i))));    
    xhathole(i) = fzero(func,[0,1]);     %solve func for 0 ≤ xhathole ≤ 1 
end 
%Part (iii) find dimensional xholes 
xhole = xpts(lg(1,m_star))+h(m_star).*xhathole; 

%locate xhatholes in the entire bar 
xhole_d = xhole.*L_d;                   %scale by length of bar 
xhole_d = sort(xhole_d);                  %sort in ascending order 
 
Correct implementation of this protocol is assessed in the Results section. 
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RESULTS 
Preliminary Test: Caresta Experiment 

To verify the FE method, a test case is created based on a laboratory experiment by Caresta 
that studied the nodes of a vibrating beam [23]. The data of the beam are: 

𝐿 = 1.275	m 𝐴 = ℎ ∗ 𝑏 = (0.01 ∗ 0.075)	m, 
𝐼 =

𝑏ℎK

12  
𝜌 = 7800	kg/mK 𝐸 = 2.1	x	10::	Pa 

Caresta’s results are: 

𝑓a =
𝑤a
2𝜋 Theoretical [Hz] Experimental [Hz] 

𝑛 = 1 32.80 32.25 
𝑛 = 2 90.44 88.50 
𝑛 = 3 177.30 173.50 
𝑛 = 4 293.08 287.50 
𝑛 = 5 437.82 430.00 

Caresta’s geometry and properties of the beam, the fundamental frequency, and target 
frequency ratio are inputs for the FE code xylo_bar_design3. An input logical variable 
justcalc_L_d is set to be true, in which case the code bypasses the optimization of the material 
removal parameter and instead calculates the necessary length of the bar 𝐿Ý to obtain the target 
natural frequency for the shape of the bar given by the first value of 𝑝, (which is set to 1 for an 
unmodified bar). The code then calculates the rest of the outputs with this particular length and 
shape, as summarized in Table 4.2. 

 
Table 4.2: FEM results for Caresta test case 
Based on Caresta’s theoretical data Based on Caresta’s experimental data 
Inputs Outputs Inputs Outputs 
𝑓¿¾ÇÓ�¿	�
(K) = 32.80	Hz 

𝑅¿¾ÇÓ�¿ = 90.44/32.80 
𝐻Ï¾µ � = 0.01	m 
𝑥�∗ = 0.05 
𝑝, = [1.0, 1.0] 
𝐸Á¾Ç	� = 2.1	x	10::	Pa 
𝜌Á¾Ç	� = 7800	kg/mK 

𝑓�
(K) = 32.800	Hz 

𝑓�
(´) = 90.414	Hz 

𝜖𝑓�
(K) = 1.9475	x	10«®	Hz 

𝜖𝑓�
(´) = 4.3736	x	10«­	Hz 

𝐿Ý = 1.2752	m 

𝑓¿¾ÇÓ�¿	�
(K) = 32.25	Hz 
𝑅¿¾ÇÓ�¿
= 88.50/32.25 
𝐻Ï¾µ � = 0.01	m 
𝑥�∗ = 0.05 
𝑝, = [1.0, 1.0] 
𝐸Á¾Ç	�
= 2.1	x	10::	Pa 
𝜌Á¾Ç	� = 7800	kg/mK 

𝑓�
(K) = 32.250	Hz 

𝑓�
(´) = 88.898	Hz 

𝜖𝑓�
(K)

= 1.9148	x	10«®	Hz 

𝜖𝑓�
(´)

= 4.3002	x	10«­	Hz 
𝐿Ý = 1.2860	m 

The FE results are very accurate, providing evident that the code is implemented correctly. 
With the theoretical data, the beam’s predicted length and first harmonic frequency only differ 
from Caresta’s results by 0.016% and -0.0029%, respectively. With the experimental data, the 
beam’s predicated length and harmonic frequency differ by 0.86% and 0.45% respectively. The 
beam’s first two modes are shown in Figure 4.4. 
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Figure 4.4: Beam modes based on Caresta’s theoretical data. 

 
Design Test: Tuning a Xylophone Bar 

The FE code was implemented to tune the xylophone bar. Tune 1 specified a C5 pitch 
target and quint tuning, and Tune 2 specified a F5 pitch target and double-octave tuning. The input 
parameters and results are summarized in Table 4.3. The fundamental and first harmonic 
frequencies and their associated errors are direct outputs of the function	xylo_bar_design3. R 
is then computed from the outputs and compared to the target ratio. The error of R is estimated 
using two methods. The propagation of uncertainty method dictates that for 𝑅 = 𝑓𝑑

(4) 𝑓𝑑
(3)⁄ , the error 

of R is: 

𝜖𝑅¢Ç�¢ = *ß
𝜕𝑅
𝜕𝑓�

(K) 𝜖𝑓�
(K)â

,

+ ß
𝜕𝑅
𝜕𝑓�

(´) 𝜖𝑓�
(´)â

,

= *f
−𝑓�

(´)

𝑓�
(K),

𝜖𝑓�
(K)j

,

+ ß
1
𝑓�
(K) 𝜖𝑓�

(´)â
,

 (82) 

Another, simplifier method uses the errors of 𝑓�
(K) and 𝑓�

(´) to compute the upper and lower bounds 
of R, takes their differences with R, and then defines the maximum difference as the error of R:  

𝑅¡¢¢�Ç =
max𝑓�

(´)

min 𝑓�
(K) =

𝑓�
(´) + 𝜖𝑓�

(´)

𝑓�
(K) − 𝜖𝑓�

(´) 								&						𝑅½�,�Ç =
min	(𝑓 )
max	(𝑓K)

=
𝑓 − 𝜖𝑓
𝑓K + 𝜖𝑓K

 

𝜖𝑅Ï¾µ = maxP¥𝑅¡¢¢�Ç − 𝑅¥, |𝑅½�,�Ç − 𝑅|Q 

(83) 

As shown in Table 4.4, R is quite close to 𝑅¿¾ÇÓ�¿  and the error estimators of R are very 
small. For context, the frequency resolution of the human ear is on the order of 10 Hz; thus, all 
results reported have unreasonably tighter tolerances for designing a xylophone bar (too many 
refinements). Nonetheless, these small errors help verify the FE method. Observe that for both 
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tunings, 𝜖𝑅¢Ç�¢ < 𝜖𝑅Ï¾µ . Since the maximum difference method gives an extreme estimation, the 
error bound is generally tighter. The propagation method is more accurate because it weighs the 
function’s derivatives. However, this method only holds for small errors because it uses a first-
order Taylor series expansion. Finally, observe that 𝜖𝑓�

(´) > 𝜖𝑓�
(K); for the same mesh, the FE 

method does a poorer job capturing higher harmonics because smaller wavelengths are less 
precisely captured with finite element resolution. 
 

Table 4.3: Tuning a xylophone bar 
Tune 1 Tune 2 

Inputs 

𝑓¿¾ÇÓ�¿	�
(K) = 523.35	Hz 
𝑅¿¾ÇÓ�¿ = 3 
𝐻Ï¾µ � = 0.015	m 
𝑥�∗ = 0.05 
𝑝, = [0.05,1.0] 
𝐸Á¾Ç	� = 1.4	x	10:+	Pa 
𝜌Á¾Ç	� = 835	kg/mK 

𝑓¿¾ÇÓ�¿	�
(K) = 698.46	Hz 
𝑅¿¾ÇÓ�¿ = 4 
𝐻Ï¾µ � = 0.015	m 
𝑥�∗ = 0.05 
𝑝, = [0.05,1.0] 
𝐸Á¾Ç	� = 1.4	x	10:+	Pa 
𝜌Á¾Ç	� = 835	kg/mK 

Outputs 
𝑓�
(K) = 523.35	Hz 

𝑓�
(´) = 1565.5	Hz 

𝜖𝑓�
(K) = 8.7772	x	10«­	Hz 

𝜖𝑓�
(´) = 1.4858	x	10«´	Hz 

𝑝,
�¢¿ = 0.64380 
𝐿Ý = 0.26666	m 

𝑓�
(K) = 698.46	Hz 

𝑓�
(´) = 2787.6	Hz 

𝜖𝑓�
(K) = 1.1584	x	10«´	Hz 

𝜖𝑓�
(´) = 1.6375	x	10«K	Hz 

𝑝,
�¢¿ = 0.13906 
𝐿Ý = 0.095486	m 

 
Table 4.4: Target ratio results and error estimators 
Tune 1 Tune 2 
𝑅 = 2.9913 
𝜖𝑅¢Ç�¢ = 2.8830	x	10«® 
𝜖𝑅Ï¾µ = 3.3407	x	10«® 

𝑅 = 3.9911 
𝜖𝑅¢Ç�¢ = 2.4362	x	10«­ 
𝜖𝑅Ï¾µ = 3.0064	x	10«­ 

 
 Error estimators for Tune 1 and Tune 2 are shown in Figure 4.5 and Figure 4.6 
respectively. Focusing on the error in the output, observe that the error bound converges at the 
expected rate—a slope of -4 on a log-log plot. From the outputs of Table 4.3, it can be seen that 
the FE prediction is more accurate for Tune 1 than Tune 2. 
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Figure 4.5: Error estimator for Tune 1. 
 

 
Figure 4.6: Error estimator for Tune 2. 

 
Figure 4.7 and Figure 4.8 show the first and second modes of the xylophone bar for Tune 

1 and Tune 2, respectively. Note that in both cases the hole placements are located where the 
deflection of the fundamental mode is zero. This is the best evidence that hole finder protocol 
discussed in the Background has been implemented correctly. 
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Figure 4.7: Xylophone bar modes for Tune 1. 
 

 
Figure 4.8: Xylophone bar modes for Tune 1. 
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DISCUSSION 
 Since the xylophone bar is modeled as a Euler-Bernoulli beam, which applies to slender 
beams, the model’s accuracy depends on the tuned frequency, independent of the FE treatment. 
For a bar with fixed height 𝐻Ï¾µ �, the higher the tuned frequency, the shorter and less slender the 
bar, and the less accurate the Euler-Bernoulli model. Thus, larger modeling errors are expected for 
bars tuned to higher frequencies. 

As a final note, to make the xylophone problem more physically accurate, the effect of the 
support strings that are threaded through the two holes could be modeled. Consider a beam of 
length L with a lumped (massless) Hookean spring attached to the right end. At the left end, 𝑥 =
0, the beam is free: 𝑢µµ = 𝑢µµµ = 0. At the right end, 𝑥 = 𝐿, the beam has zero moment and shear 
force equivalent to the spring force: 𝑢µµ = 0 and −(𝐸𝐼𝑢µµ)µ = −𝑘I𝑢, where 𝑘I is the positive 
spring constant. The spring introduces a “Robin” boundary condition. The energy functional Π(𝜔) 
only requires slight modification and changes the stiffness matrix to [2]: 

𝐴ho = m 𝐸𝐼
𝑑,𝜑h
𝑑𝑥,

𝑑,𝜑o
𝑑𝑥, 𝑑𝑥

n

+
+ 𝑘I𝜑h(𝐿)𝜑o(𝐿),			1 ≤ 𝑖, 𝑗 ≤ 2𝑛a���  (84) 

The load vector 𝐹	is unchanged.  
The actual implementation of the red term in Eq. (84) is straightforward. Since 𝜑h(𝐿) and 

𝜑o(𝐿) are only non-zero at the rightmost node, where they have values of 1, the red term need only 
be added to 𝐴,aùúû�«:,,aùúû�«:, the displacement degree of freedom at the rightmost node. After 
the stiffness matrix is constructed in the code impose_boundary_cond [24], at say line 58, the 
following lines of code could be added: 
 
if exist ks 

RSD = ttomap_fcn(n_el0+1,1);    %maps to the Rightmost Displacement DOF  
A(RSD,RSD) = A(RSD,RSD) + ks;   %adds ks to the stiffness matrix 

end 
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Addendum – Chapter 5: Self-Buckling 
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Self-Buckling Problem

Background Design Results
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Compression body force due to gravity: 
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Apply moment balance to get ODE 
Nondimensionalize terms
Recast as eigenproblem 

(homogenous ODE)

Height of column: :9 =
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K/%

, where MN = ((K) → No self-buckling for γ < MN

(Patera, p.12) 
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FE methods for self-buckling

3

Background Design Results

Hermitian basis functions

FE solution: !" # = ∑&'(
)*+,-. !"/0&(#)

Minimize energy functional
with eigenvalue treatment

3 !"4 = 5"678!"4

Where: 3 = 93 3: end, 3: end and 93A& = ∫4
( CD # EFGH
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(Patera, p.20) 

Optimization problem 

4

Background Design Results

Design constraints
i. Fixed volume

!" = $ %&"'(" = $ %&"'(" ∫*
+ &' , -,

→ ∫*
+&' , -, = 1

Define & , = 1 + 1(,)

∫*
+ 1 , -, = 0

ii. Minimum radius
& , ≥ &678
1 , ≥ −1 + &678'

iii. Gradual  variation (slender beam model)
1′(,) ≤ <6=>

Objective: Maximize height

("
?@A =

BC
?@AD"!"
4$FG

+/I

→ maximize BC
?@A with FEM 

subject to constraints

Assess with figure of merit:

JKL =
("
?@A

(",CNO
?@A

(Patera, p.16-18) 

Cylinder with 
constant radius %&"
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Resource: The Tallest Column

5

Background Design Results

Looks like a normal distribution

(McCarthy, p.35-36) 

Proposed Function

6

Normal distribution:

!(#) =
1
2(

)*+,/.

Generalize to have two DOF:
/(#, 1) = 2. + 1)*45+

,

Solve for y:

6
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8

/ # 9# = 0 → 1 = −
22. 28
( erf 28

Substitute in y:

@(A) = BC −
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Background Design Results
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Background Design Results

Optimization
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Background Design Results

Verification
Tolerance?

Specified tolerance = 0.01

log$(0.01) = −6.64
Error Estimator (./01 ) plotted with SF=2

Tolerance met at second refinement:

log$(./01) = −9.15
Convergence?

45 − 4~78
ℎ
ℎ:

;

Expected to converge with slope –4

Convergence evident by fourth refinement
Thus, should refine four times*
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-16
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-10

-8
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error estimate
line of slope -4

(Patera, p.21) 
*Results reported on Slides 7 and 8 are from the fourth refinement
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