
MIT Open Access Articles

Long Live TIME: Improving Lifetime for Training-In-
Memory Engines by Structured Gradient Sparsification

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cai, Yi et al. “Long Live TIME: Improving Lifetime for Training-In-Memory Engines
by Structured Gradient Sparsification.” Paper in the Proceedings of the 55th Annual Design
Automation Conference, DAC ’18, San Francisco, CA, June 24-29, 2018, ACM © 2018 The
Author(s)

As Published: 10.1109/DAC.2018.8465850

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/129549

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129549
http://creativecommons.org/licenses/by-nc-sa/4.0/

Long Live TIME: Improving Lifetime for Training-In-Memory
Engines by Structured Gradient Sparsification

Yi Cai*†‡, Yujun Lin*†‡, Lixue Xia†‡, Xiaoming Chen¶, Song Han||, Yu Wang†‡, Huazhong Yang†‡

†Department of Electronic Engineering, Tsinghua University, Beijing, China
‡Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China

¶State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China
||Department of EECS, Massachusetts Institute of Technology, Cambridge, MA, US

yu-wang@tsinghua.edu.cn

ABSTRACT
Deeper and larger Neural Networks (NNs) have made breakthroughs

in many fields. While conventional CMOS-based computing plat-

forms are hard to achieve higher energy efficiency. RRAM-based

systems provide a promising solution to build efficient Training-In-

Memory Engines (TIME). While the endurance of RRAM cells is

limited, it’s a severe issue as the weights of NN always need to be

updated for thousands to millions of times during training. Gradi-

ent sparsification can address this problem by dropping off most

of the smaller gradients but introduce unacceptable computation

cost. We proposed an effective framework, SGS-ARS, including

Structured Gradient Sparsification (SGS) and Aging-aware Row

Swapping (ARS) scheme, to guarantee write balance across whole

RRAM crossbars and prolong the lifetime of TIME. Our experi-

ments demonstrate that 356× lifetime extension is achieved when

TIME is programmed to train ResNet-50 on Imagenet dataset with

our SGS-ARS framework.

1 INTRODUCTION
While deeper and larger neural networks (NNs) achieve better per-

formance in many fields[9, 11], the training of state-of-the-art NNs

usually consumes weeks of time. Meanwhile, as the memory wall
exits in the von Neumann architecture, and the feature size of inte-

grated circuit technology is approaching the physical limit [15], it is

difficult for conventional CMOS-based processors to achieve signifi-

cant improvements in energy efficiency or performance. People are

now seeking for more energy-efficient and faster platforms for NN

training.

Resistive Random-Access Memory (RRAM) provides a promis-

ing solution to build Training-In-Memory Engines (TIME) for accel-

erating NN computing, due to its traits of high density, low power

*: Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, June 24-29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196071

consumption, fast read&write speed, and suitability for implement-

ing the crossbar structure to perform matrix-vector multiplications

efficiently [16]. For instance, the Training-In-MEmory [5] architec-

ture and PipeLayer [13] are both proposed as RRAM-based acceler-

ators for the training and inference of CNNs, achieving over 100×
energy efficiency improvement and 42.45× speedup than GPU-based

implementations, respectively.

However, the endurance of state-of-the-art RRAM devices covers

a wide range from 106 to 1012, while high-endurance devices are

usually bipolar and used for only storage, and devices for multi-

valued computing generally have much lower and disappointing

endurance [2, 4, 8]. Limited endurance challenges almost all the

RRAM-based architectures or systems for NN acceleration. For the

widely-used Stochastic Gradient Descent (SGD) optimizer, updates

of the weight parameters are needed in every iteration, yielding

a write operation on each RRAM cell in each update cycle. For

example, ResNet-50 [6] needs 5×105 iterations to be fully trained on

the Imagenet dataset [12]. With an endurance limit of 5×106, RRAM

crossbars can only be programmed for (5×106)/(5×105) = 10 times.

What’s more, state-of-the-art NNs (such as GoogLeNet [14]) usually

require millions of iterations to train. Such endurance is not sufficient

to support long-term, large-scale NN training.

Recent researches have demonstrated the feasibility of optimizing

NN models with gradient sparsification (GS) [1]. GS reserves smaller

gradients, and only uses larger ones to update the weights. Deep

Gradient Compression proposed in [10] can drop off 99.9% of the

gradients, and only use the top-0.1% gradients with the largest mag-

nitude, without any accuracy loss. This enlightens us that through

gradient sparsification, the number of write operations to RRAM

devices can be reduced by three orders of magnitudes. Ideally, the

lifetime of RRAM devices can be extended to 1000× longer.

However, in our experiments with conventional GS, we observe

a severe unbalanced update distribution among different positions

of the weight matrix. The possible reasons include that frequently-
updated weights have more significant effects on feature extraction.

Since an update on a weight value corresponds to a write operation

on an RRAM cell, the frequently-written RRAM cells will, undesir-

ably, wear out much quicker than the rest. Xia et al. [17] has proved

that only with 10% broken RRAM cells, it will lead to substantial

degradation on the NN performance. Therefore, the write-balance

across RRAM crossbars is of paramount importance.

Inference

Outputs

Loss FunctionLabels

Loss

Backward
Propagation

Gradients
w.r.t weights

Gradient
Sparsification

Update weights

Local Gradient
Accumulation

Sparse
Gradient

Top-k
Selection

Figure 1: The flow of training neural networks with gradient
sparsification.

Moreover, GS introduces additional computation overhead, mainly

introduced by top-k selection. To find the gradients with the top-k
largest magnitude out of n elements, it usually has the time complex-

ity ofO(n log2 k). While in large neural networks, if all gradients are

involved, such time consumption will greatly slow down the pace

of training. This drives us to find a faster and low-overhead way to

select the important gradients for weight updates.

This paper aims to improve the lifetime of TIME. Specifically,

the main contributions of this paper are listed as follows,

• We propose Structured Gradient Sparsification (SGS) by se-

lecting structured gradients to update weights. Row-wise and

element-wise sparsification are introduced for gradient matri-

ces with different number of rows.

• We propose an Aging-aware Row Swapping (ARS) method

to balance the write count across all rows in crossbars, by

which the write unbalance can be efficiently mitigated.

• We propose an effective training system framework based

on SGS and ARS, referred as the SGS-ARS framework. our

experiment demonstrate that the lifetime of TIME can be

extended to 356× the original if programmed to process the

training of ResNet-50 on Imagenet.

2 PRELIMINARIES
2.1 RRAM-based Neural Computing
An RRAM cell is a passive two-port element which has multiple

resistance states, and multiple cells can construct crossbars to per-

form efficient analog matrix-vector multiplications. If we map a

matrix on the conductances of RRAM cells in the crossbar, and

transform a vector as the input voltage signals, the RRAM crossbar

can perform analog matrix-vector multiplications efficiently. The

relationship between the input voltages and output voltages can be

represented as: iout(z) = ∑M
j=1 д(z, j) · vin(j), where vin is the input

voltage vector (denoted by j = 1, 2, ...,M), iout is the output current

vector (denoted by z = 1, 2, ...,N), д(z, j) represents the conduc-

tance of RRAM which in zth row and jth column of the crossbar

(N × M). By mapping the weights on RRAM crossbars, and the

feature on the input voltages, RRAM crossbars can implement fast

and energy-efficient neural computing.

2.2 Gradient Sparsification
To resolve the communication bottleneck in neural network dis-

tributed training, researchers have proposed gradient sparsification

(GS) to reduce the communication data size by sending only the im-

portant gradients for the weight update [1, 7, 10], as shown in Fig.1.

Two simple heuristics for importance are the gradient magnitude

[1, 10] and the ratio of gradient magnitude to the weight magnitude

Figure 2: The overall write distribution of RRAM crossbars.
Left: the second CONV layer of ResNet-20. Right: the last FC
layer of VGG-11. Total training iteration counts are both 64000.

[7]. To avoid losing information, the rest of the gradients are accu-

mulated locally and eventually become large enough to transmit. GS

for distributed training is also practical for neural network training

with a single node. Stochastic Gradient Descent (SGD) performs the

following update:

F (w) = 1

|χ |
∑
x ∈χ

f (x ,w), wt+1 = wt − η
1

b

∑
x ∈Bt

�f (x ,wt) (1)

where χ is the training dataset, w are the weights of a network,

f (x ,w) is the loss computed from samples x ∈ χ , η is the learning

rate, and Bt is a mini-batch of size b sampled from χ at iteration t .

Consider the weight value w(i) of i-th position in flattened weights

w . After T iterations, we have

w
(i)
t+T
= w

(i)
t − ηT · 1

bT

���
T−1∑
τ=0

∑
x ∈Bt+τ

�(i) f (x ,wt+τ)��	 (2)

Equation (2) shows that local gradient accumulation can be consid-

ered as increasing the batch size from b to bT (the first summation

over the iteration τ), where T is the length of the sparse update inter-

val between two iterations at which the gradient of w(i) is adopted.

Local gradient accumulation ensures the convergence of training

with sparse gradients. The sparsity of gradients is able to achieve

99.9% without any loss of accuracy [10].

2.3 Fault-tolerant Training on RRAM
Previous work has also explored methods to prolong the lifetime

of RRAM-based training systems. Xia et al. [17] proposed a fault-

tolerant training method to reduce the impact of faults in RRAM

cells, so that the system availability can still be guaranteed even if

errors occur during training, thereby extending the lifetime. They

achieved 10× lifetime extension, which is, however, not satisfactory

enough for long-term stability.

3 MOTIVATIONAL EXAMPLE
Theoretically, the conventional gradient sparsification seems very

likely to reduce the total number of write operations. However, it

indeed occurs two undesired phenomena in our simulation of training

ResNet-20 and VGG-11 on the CIFAR-10 dataset, which are highly

unfriendly to the RRAM crossbar and make the improvement on

RRAM lifetime far less appealing than expected.

3.1 Unbalanced Writes
Different positions of fully-connected (FC) weight matrices or con-

volutional (CONV) kernels usually do not share the equal chance to

be updated in the conventional gradient sparsification. After mapping

2

#Iter

mod(Iter,SI)=0?

Inference

Outputs

Loss FunctionLabels

Loss

Backward
Propagation

CE

CE

CE

...

No

Yes

Gradients
w.r.t weights

ARS

Comparing
Elements

Row-wise

Element-wise

k*k*C<128

k*k*C>128

#Iter=#Iter+1

SGS

Figure 3: Proposed the SGS-ARS framework for improving
lifetime of TIME with (1) Structured Gradient Sparsification
(SGS); (2) Aging-aware Row Swapping (ARS).

weights to RRAM crossbars, it leads to the unbalanced writes on

RRAM cells. Fig.2 shows the overall write distributions of two sam-

ple RRAM crossbars, each one corresponding to a weight matrix of

a layer. Both of the two models are trained for 64000 iterations. The

left one demonstrates the write distribution of second convolutional

layer of ResNet-20 (3 × 3 × 16 × 16, reshaped as 144 × 16), and the

right shows the last fully-connected layer of VGG-11 (1024 × 10).

The distribution maps show a severe unbalance in the total write

times throughout the whole matrix. With 99.9% gradient sparsity,

the expected write times shall be 64000 × 0.1% = 64. Though, in

ResNet-20, some cells are written for up to 376 times, and some are

written even less than 10 times. It gets even worse in the FC layer

of VGG-11 as the maximum of write times surges to 5595. In this

occasion, frequently-written RRAM cells will wear out much more

quickly than expected, following by soft faults or stuck-at-faults

(SAFs). Therefore, a write-balanced solution is required.

3.2 Overhead of Gradient Top-k Selection
Taking the largest convolution layer of VGG-11 as an example, the

convolutional kernel is shaped as 3×3×512×512. If all n = 2359296

gradients are involved for searching the top 0.1% gradients (k = n ×
0.1% = 2359) with the largest magnitude, both the time complexity

and computation amount increase by O
(
n log2 k

)
= O

(
107

)
. Such

large extra cost drives us to design a better sparsification method.

4 THE SGS-ARS FRAMEWORK FOR TIME
To extend the lifetime of TIME, we propose a simple but effective

framework, referred as the SGS-ARS framework, as shown in Fig.3.

Structured Gradient Sparsification (SGS) and Aging-aware Row

Swapping (ARS) are carefully designed to reduce the write times

and mitigate the unbalanced-writes, which will be introduced in

Sec.4.1 and Sec.4.2 respectively in detail.

The whole process goes as follows. At the beginning of each

iteration, the decision to perform ARS is made based on whether the

current iteration number is a multiple of ARS intervals (SI), follow-

ing by the inference and backpropagation pass. The gradients with

respect to the weights are then calculated and sent to Comparing Ele-

ments (CEs) to select one with the largest magnitude. Subsequently,

SGS is applied to update the weights. A row count threshold (RCT)

is used to partition the neural network layers into two types, which

is set to 128 in our implementation. If the row count of the weight

matrix of a layer is less than RCT , the element-wise sparficiation will

be applied; otherwise, the row-wise sparsification will be adopted to

update weights. These steps will be repeated until the iteration num-

ber reaches the configured maximum number of training iterations.

4.1 Structured Gradient Sparsification
As observed in Fig.2, write unbalance introduced by concentration

of sparse updates on weight matrices can be considered as a dual

character, since it exhibits a structured pattern. This structured con-

centration of updated locations facilitates the re-mapping of weights.

In the meantime, structured write operations on RRAM crossbar

can be fully parallelized. Inspired by these nature characteristics of

gradient sparsification and RRAM crossbar structure, we propose

the Structured Gradient Sparsification (SGS) to overcome the draw-

backs of directly applying conventional GS in RRAM-based training

systems. SGS not only adapts well to RRAM by sparsifying the

gradients in a RRAM-friendly structured pattern, but also signifi-

cantly reduces the complexity of top-k selection by changing the

way to select the gradients in need for the weights update. Fig.4(a)

illustrates the channel-wise, row-wise and element-wise SGS. To

ensure sufficient sparsity, two parts are introduced in this paper: the

row-wise sparsification and the element-wise sparsification.

Row-wise Sparsification. Fig.4(b) illustrates the row-wise struc-

tured sparsification process. When mapping on RRAM crossbars,

both FC and CONV layer are treated as matrix-matrix multiplication,

since the kernels of CONV layer are reshaped from 4-dimension

tensors (k × k ×C × N) to matrices (k2C × N), where k is the kernel

size, C is the number of input channels and N is the number of

output channels.

Row-wise SGS only selects one row of weight matrix where the

max gradient magnitude lies. Due to backpropagation computation

trait of RRAM-based training systems, only one row of gradients is

obtained each cycle [5], and these gradients are calculated in parallel.

Then the maximum gradient magnitude in the row will be popped

out. After the last row of gradients is finished, we immediately get

the index of the row which contains the maximum magnitude of

whole gradient matrix, and update the corresponding row of weights.

Accordingly, the sparsity of row-wise SGS will be 1 − 1/(k2C).
Row-wise sparsification is naturally favorable for RRAM struc-

ture, since RRAM supports writing cells in one row in parallel [3].

It helps significantly reduce the writing cycles for the weight update

and enforces the write distribution to be uniform in rows.

Element-wise Sparsification. In small weight matrices with

very few rows, the sparsity of row-wise sparsification will be much

lower than desired. For example, the first CONV layer of most CNNs

has kernel tensors shaped as k × k × 3 × N , where k usually ranges

from 3 to 7, as the input images commonly have 3 channels (RGB).

In this scenario, the gradient sparsity of row-wise sparsification will

be 1 − 1/(3k2). When k = 3, only 96.3% sparsity is achieved.

To increase the sparsity, a finer-grained sparsification scheme

should be exploited. As shown in Fig.4(c), the element-wise sparsifi-

cation follows the similar process to the row-wise. The difference

is that the index of the column where the maximum gradient mag-

nitude lies is also calculated along with the index of the row, and

3

...

0.04
0.35
0.16
0.18
0.06

0.13
0.24

00.04040.04
0.350.35
0 160.160.16
0.180.18
00..0606

0 130.130.13
0.24

...

Max

...

...

...k*k*C

N

0.01 0.030.02 0.01 0.04 0.010.020.02

0.230.350.22 0.27 0.17 0.210.260.18

0.11 0.130.08 0.09 0.09 0.160.090.12

Absolute Gradient Map

0.07 0.140.16 0.13 0.08 0.070.090.18

0.0

00.118

0

0.

000.

18

122212

0000.188888 0000.18888

...

...

0.02 0.040.06 0.05 0.03 0.010.010.01

0.060.130.16 0.13 0.09 0.060.110.08

0.170.240.09 0.16 0.08 0.090.110.17Channel-wise

Row-wise Element-wise

...

0.04
0.35
0.16
0.18
0.06

0.13
0.24

00.04040.04
0.350.35
0 160.160.16
0.180.18
00..0606

0 130.130.13
0.24

...
Max

...

...

...k*k*C

N

0.01 0.030.02 0.01 0.04 0.010.020.02

0.230.350.22 0.27 0.17 0.210.260.18

0.11 0.130.08 0.09 0.090.160.090.12

Absolute Gradient Map

0.07 0.140.16 0.13 0.08 0.070.090.18

0.0

0000.18888 0000.

000.0

1888

1122

000.01188 000.01188

....

...

0.02 0.040.06 0.05 0.03 0.010.010.01

0.060.130.16 0.13 0.09 0.060.110.08

0.170.240.09 0.16 0.08 0.090.110.17

(a) Structured Gradient Sparsity (SGS) (b) Row-wise (c) Element-wise

G(:,c,a,b)

G(:,c,:,:)

G(n,c,a,b)

Figure 4: The proposed Structured Gradient Sparsification (SGS). Gradients can be split into multiple groups. (a) illustrates the
channel-wise, row-wise and element-wise gradient sparsification. (b-c) shows the row-wise and element-wise selection process.

k*k*C

N

Swap
Mapping

Figure 5: Basic process of Aging-aware Row Swapping (ARS).

we only update the corresponding location in the weight matrix.

Consequently, the gradient sparsity will rise to 1 − 1/(k2C × N).
Complexity Analysis. The complexity of row-wise and element-

wise SGS mainly concentrate on maximum value selection. With

a kernel size of k2C × N , selecting the gradients with the largest

magnitude in all rows will be operated for k2C times; and selecting

the largest one from these gradients will be operated for one time.

Thus, the total operation count will be k2C × N + k2C. If operating

serially, the time complexity will be O(k2C × (N + 1)) ≈ O(n) (n =
k2C × N), which is far less than O(nloд2s) as conventional gradient

sparsification. And if operating in parallel, the time complexity will

be reduced to O(loд2n).

4.2 Aging-aware Row Swapping
Although the row-wise SGS ensures the cells in one row to share the

same write times, the write distribution is still extremely unbalanced

among rows. However, the row-wise operation fits the horizontal

stripe pattern of the write distribution shown in Fig.2. It intensifies

the concentration of writes and thus is favorable for row swapping

to balance the write-load. Therefore, we propose the Aging-aware

Row Swapping (ARS) approach when processing the training tasks,

to dynamically adjust the weight mapping at a small extra overhead.

Basic process. In the training with sparse gradients, if some

locations are updated much more often than others, it is reasonable

to assume that they will be updated frequently in the following

training iterations. So if we conduct a re-mapping, swapping the

rows which are mostly written with the rows which are least written,

the write times across whole crossbars will be more balanced.

Fig.5 shows the basic process of row swapping. Registers are

placed to count the write times of all cells. As the cells in one row

share the same write times, only M registers are needed to record the

ages in a crossbar of size M × N . If the maximum training iteration

number is set to T , the bit-width of a counter register only need to

be log2(T) at most. Thus, the total memory requirement of write

counters will be M log2(T). Moreover, ARS interval (noted as SI)
is set to control the frequency of row swapping, and the variable R
is set to decide the number of swapped rows in each ARS. Every

SI iterations, the most-written R/2 rows and the least-written R/2
rows are picked out respectively; then swap the largest one with the

smallest one, the second largest one with the second smallest one,

and so forth.

Trade-offs. As stated above, the process of ARS is in control

of two hyper-parameters, the ARS Interval SI and the number of

swapped rows R in each ARS operation, and will introduce extra

overhead. Firstly, the swapping of two RRAM crossbar rows needs

to read out the original weights on these rows, and then write them

back to each other’s positions respectively. In other words, a read

operation and a write operation will be performed on each cell in

the selected rows. Secondly, performing the ARS during training

requires not only an interruption, but also the re-scheduling of the

input data addressing, since the weight mapping has been changed.

Intuitively, performing ARS more frequently certainly results

in more balanced writes. Since each row swapping needs to re-

write the weights mapped on corresponding rows, it will stop being

profitable to continue to decrease the interval SI , when the SI reaches

a threshold value. Moreover, the configuration of R also should take

into consideration the trade-off between hardware overhead and

write-load balance. In our implementation, we experimentally find a

optimal pair of (SI ,R), which is presented in Sec.5.3.

5 EXPERIMENTAL RESULTS
5.1 Experiment Setup
We evaluate our SGS-ARS framework on VGG-16 and ResNet-20

neural networks with the CIFAR-10 dataset for framework perfor-

mance exploration, and on ResNet-50 with the ImageNet dataset

for large-scale training analysis. The proposed framework "SGS-

ARS" is compared to three other algorithms. The "Baseline" method

is training without gradient sparsification; the "Conventional GS"

method is the conventional gradient sparsification; the "FT-Train"

method is the Fault-Tolerant Training method proposed in [17].

4

Table 1: Experimental Results

Model Dataset

Classification Accuracy

Sparsity of SGS
#Writes Lifetime ExtensionSGS Baseline

Top-1 Top-5 Top-1 Top-5 SGS-ARS Baseline SGS-ARS FT-Train [17]

VGG-16 Cifar10
91.0%

- 92.5% - 99.7% 489 78200 160× 15×
(-1.5%)

ResNet-20 Cifar10
91.7%

- 91.7% - 99.9% 316 64124 177× -
(+0.0%)

ResNet-50 ImageNet
75.1% 92.4%

76.1% 92.9% 99.8% 1264 450450 356× -
(-1.0%) (-0.5%)

100

200

Lifetime Extension vs. ARS Interval

2

8

16

32

64

128

Number of
Swapped
Rows

102 103 104

ARS Interval (iteration)

0

100

200

L
if
et
im

e
E
xt
en
si
on

ResNet-20

VGG-16

Figure 6: The inverted U-shaped curve of lifetime extension vs.
ARS interval. Under different numbers of ARS swapped row,
the lifetime extensions first rise, then saturate, and eventually
decline, as the ARS interval increases.

5.2 Accuracy
We demonstrate the performance of SGS-ARS methodology by

evaluating the classification accuracy of trained models. Table.1

shows that there is no loss of top-1 accuracy on ResNet-20 and a

small accuracy loss of 1.5% on VGG-16 when applying SGS-ARS

compared to the baseline in experiment on CIFAR-10. Even when

it comes to the large scale dataset and deeper neural network, the

experiment of ResNet-50 only displays 1.0% loss of top-1 accuracy.

Therefore, SGS-ARS is able to acquire very close performance as

the baseline.

5.3 Trade-offs
We explore the trade-offs by performing experiments with different

configuration parameter sets (SI ,R). The search space of ARS inter-

val SI ranges from 102 to 104, and the number of swapped rows R in

each ARS ranges from 2 to 128. Fig.6 and Fig.7 respectively show

the curves of lifetime extension versus ARS interval and normalized

ARS write power under different configurations.

As is shown in Fig.7, the curves of lifetime extension versus SI
are inverted U-shaped. To maximize the expected lifetime extension,

the sets of configuration within the flat stage of the curves are pre-

ferred. However, while maintaining the lifetime extension, the larger

SI is and the smaller R is, the less overhead will be introduced by

ARS. Meanwhile, Fig.7 shows S-shaped curves of lifetime exten-

sion versus normalized ARS write energy. The optimal set should

also be within the flat stage of the curves but with less energy con-

sumption. Therefore, we choose a relatively optimal set of (SI ,R) as

(1024,32). This is a near-optimal generic configuration, although the

performance may slightly vary in different models. All the following

experiments utilize this set of configuration.

100

200

Lifetime Extension vs. Normalized ARS Write Energy

2

8

16

32

64

128

Number of
Swapped
Rows

10-3 10-2 10-1

Normalized ARS Write Energy (unit: row/iteration)

0

100

200

L
if
et
im

e
E
xt
en
si
on

ResNet-20

VGG-16

Figure 7: The S-shaped curve of lifetime extension vs. normal-
ized ARS write energy. Normalized ARS write energy is the
average energy consumption over iterations caused by writing
swapped rows, comparing to the energy consumed by writing
one row. Under different numbers of ARS swapped row, the life-
time extensions first rise, and finally saturate, as the normalized
ARS write energy increases.

5.4 Write distribution
The effectiveness of the proposed SGS-ARS approach in mitigat-

ing unbalanced writes is evaluated from two aspects: the statistical

distribution of write times, and the trend of maximum write time of

layers during training, compared to Conventional GS and Baseline.

Statistical Distribution. As shown in Fig.8, The box plot is

adopted here to statistically analyze the distribution of the write

times of all cells in CONV and FC layers of VGG-16 after 78200

iterations training. Common statistical information is illustrated in

the plot: first quartile, median, third quartile, ±2.7 variance, and

outliers. For CONV layers, both the median and variance of the

write times are much smaller with SGS-AGS. For FC layers, the

median of write times is smaller, but third quartile is slightly larger,

which indicates the distribution of write times becomes more left

skewed to fewer writes. The range of outliers of both CONV and FC

layers trained with SGS-AGS dramatically declines from hundreds

and thousands to dozens, and even vanishes in some layers. This

demonstrates that SGS-AGS not only significantly reduces the write

times, but also effectively resolves the unbalanced writes issue.

Maximum write times. Fig.9 shows the maximum cell write

times at each of the 78200 iterations. The sample layers are respec-

tively CONV (conv5.2) layer and FC (fc.0) layer of VGG-16. The

write time of Baseline increases linearly, because without gradient

sparsification, all cells will be written in every iteration. The max-

imum write time of Conventional GS increases much slower than

the baseline, but still much faster than SGS. At the last iteration,

the maximum write time of FC layer by Conventional GS is more

5

Median

75-th
Percentile

25-th
Percentile

−2.97σ

+2.97σ

Outliers

Outliers

Figure 8: The box plot of write times of all layers when training VGG16. The color-filled box indicates the range of the centered
half of statistics, and the whiskers show the 99.3% coverage if normally distributed. The outliers in red describe the degree of the
unbalanced distribution.

0 1 2 3 4 5 6 7
Traingin Iteration ×104

100

101

102

103

104

105

M
ax

im
u
m

#
w
ri
te
s

Maximum #writes when Training VGG-16

Dense Traning
Conventional GS (fc.0)
Conventional GS (conv5.2)
SGS-ARS (fc.0)
SGS-ARS (conv5.2)

Figure 9: Maximum write times of FC (fc.0) and CONV
(conv5.2) layer when training VGG16 on Cifar10 dataset. Con-
ventional Gradient Sparsification (Conventional GS) reduce the
write times by 10-fold, while, Structured Gradient Sparsifica-
tion with Aging-aware Row Swapping (SGS-ARS) achieves a
reduction of writes by more than two orders of magnitude.

than 29 times larger than by SGS. Overall, SGS reduces the max-

imum write time by 160× and 12× compared to the baseline and

Conventional GS, respectively.

5.5 Lifetime Extension
Table.1 also shows the experimental results of lifetime extension

under different models. When TIME is programmed for VGG-16

trained on CIFAR-10, at least 160× longer lifetime will be achieved,

and 177× for ResNet-20. Compared to FT-Train, we also get over

10× extension on training of VGG-16. Moreover, on the larger model

ResNet-50, 356× lifetime extension is achieved, which is in accor-

dance with our expectation, since the sparsity of row-wise SGS will

increase remarkably as the row number of weight matrix increases

in the larger neural networks.

6 CONCLUSION
We have presented an effective framework, SGS-ARS, to improve

lifetime of TIME with Structured Gradient Sparsification (SGS) and

Aging-aware Row Swapping (ARS), reducing the overall write times

and ensuring the write balance throughout RRAM crossbars simul-

taneously. Experimental results show the proposed methods extend

the lifetime of TIME for approximately two orders of magnitude

while maintaining almost the same neural network performance.

7 ACKNOWLEDGEMENTS
This work was supported by National Key R&D Program of China

2017YFA0207600, National Natural Science Foundation of China

(No. 61622403, 61621091), Joint fund of Equipment pre-Research

and Ministry of Education (No. 6141A02022608), and Beijing Na-

tional Research Center for Information Science and Technology

(BNRist).

REFERENCES
[1] Aji et al. 2017. Sparse Communication for Distributed Gradient Descent. In

Empirical Methods in Natural Language Processing (EMNLP).
[2] Karsten Beckmann et al. 2016. Nanoscale Hafnium Oxide RRAM Devices Exhibit

Pulse Dependent Behavior and Multi-level Resistance Capability. Mrs Advances 1
(2016), 1–6.

[3] G. W. Burr et al. 2015. Large-scale neural networks implemented with non-
volatile memory as the synaptic weight element: Comparative performance analy-
sis (accuracy, speed, and power). In IEEE International Electron Devices Meeting.
4.4.1–4.4.4.

[4] C. H Cheng et al. 2010. Novel Ultra-low power RRAM with good endurance and
retention. In VLSI Technology. 85–86.

[5] Ming Cheng et al. 2017. TIME: A Training-in-memory Architecture for Memristor-
based Deep Neural Networks. In Proceedings of the 54th Annual Design Automa-
tion Conference 2017. ACM, 26.

[6] Kaiming He et al. 2016. Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.

[7] Kevin Hsieh et al. 2017. Gaia: Geo-Distributed Machine Learning Approaching
LAN Speeds. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 629–647.

[8] Hsu et al. 2013. Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance
over 1012 cycles for 3D high-density storage-class memory. In VLSI Technology.
T166–T167.

[9] Andrej Karpathy et al. 2015. Deep visual-semantic alignments for generating
image descriptions. In Computer Vision and Pattern Recognition.

[10] Yujun Lin et al. 2018. Deep Gradient Compression: Reducing the Communica-
tion Bandwidth for Distributed Training. International Conference on Learning
Representations (2018).

[11] Wei Liu et al. 2016. SSD: Single Shot MultiBox Detector. In European Conference
on Computer Vision. 21–37.

[12] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.

[13] Linghao Song et al. 2017. PipeLayer: A Pipelined ReRAM-Based Accelerator
for Deep Learning. In IEEE International Symposium on High PERFORMANCE
Computer Architecture. 541–552.

[14] Christian Szegedy et al. 2015. Going deeper with convolutions. In Computer
Vision and Pattern Recognition. 1–9.

[15] M. M. Waldrop. 2016. The chips are down for Moore’s law. Nature 530, 7589
(2016), 144.

[16] Yu Wang et al. 2016. Low power Convolutional Neural Networks on a chip. In
IEEE International Symposium on Circuits and Systems. 129–132.

[17] Lixue Xia et al. 2017. Fault-Tolerant Training with On-Line Fault Detection for
RRAM-Based Neural Computing Systems. In Design Automation Conference.
1–6.

6

