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Abstract: The manipulation of high-dimensional degrees of freedom provides new opportunities
for more efficient quantum information processing. It has recently been shown that high-
dimensional encoded states can provide significant advantages over binary quantum states
in applications of quantum computation and quantum communication. In particular, high-
dimensional quantum key distribution enables higher secret-key generation rates under practical
limitations of detectors or light sources, as well as greater error tolerance. Here, we demonstrate
high-dimensional quantum key distribution capabilities both in the laboratory and over a deployed
fiber, using photons encoded in a high-dimensional alphabet to increase the secure information
yield per detected photon. By adjusting the alphabet size, it is possible to mitigate the effects of
receiver bottlenecks and optimize the secret-key rates for different channel losses. This work
presents a strategy for achieving higher secret-key rates in receiver-limited scenarios and marks
an important step toward high-dimensional quantum communication in deployed fiber networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum key distribution (QKD) allows two parties, Alice and Bob, to establish provably secure
encryption keys at a distance. The keys can be used with symmetric encryption schemes, like the
one-time pad, which requires no assumptions about the computational abilities of an adversary.
QKD commonly relies on the transmission and detection of single photons to distribute the secret
keys, where the secret-key generation rates are often limited by the receiver hardware, which caps
the achievable photon detection rate [1]. Under this constraint, for a given maximum detection
rate, the secret-key rate can still be increased by optimizing the photonic encoding. The first
QKD schemes used photons encoded in two states, such as two different polarization states [2].
Recently, much effort has turned to large-alphabet QKD schemes, which encode photons in a
larger set of high-dimensional basis states [3].

Compared to binary-encoded QKD, such large-alphabet schemes can boost secure communi-
cation rates by encoding more secure information per detected photon and also exhibit increased
resilience to noise and loss [4]. High-dimensional encoding can also provide practical advantages
in resource usage or task efficiency for various quantum information processing goals, such as
Bell tests [5], quantum gates [6], and quantum error correction [7]. Here, we demonstrate the ad-
vantages of high-dimensional encoding using the example of a prepare-and-measure, high-speed,
large-alphabet QKD protocol under three different channel losses, including measurements over a
deployed telecom fiber. Our proof-of-principle experiments show the feasibility of large-alphabet
QKD as a path to achieve higher secret-key rates in certain loss regimes.

High-dimensional encoding is possible in a variety of degrees of freedom, and large-alphabet
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Fig. 1. (a) In high-dimensional temporal encoding (pulse position modulation), information
is encoded in the position of an optical pulse within M slots, depicted here for alphabet
size M ∈ {2, 4, 8, 16}. For a fixed slot duration, the alphabet size and the transmitted pulse
rate are inversely proportional. (b) Representative plot of secret-key rate versus channel
length for a traditional two-dimensional QKD protocol, assuming a 5 Gbps modulation
rate, a 0.2 dB/km channel loss, a 1 kcps background count rate, a 93% detector efficiency,
and a 100 ns detector reset time after each detection event. These detector performance
characteristics were chosen to correspond with the high efficiency telecom band single
photon detection system reported in [22], and the effects of detector reset time on observed
count rate were modeled following [37]. Three regions are denoted: I. At short distances,
0-90 km (or correspondingly, low losses, 0-18 dB), the secret-key rate is limited by detector
saturation. II. For higher losses (normal operation), the secret-key rate decays exponentially
with distance. III. At even higher losses (> 300 km), a cutoff is reached when Bob’s received
photon rate becomes comparable to his detectors’ background count rate. At this point, the
error rate grows and the secret-key rate drops abruptly.

QKD has been demonstrated using position-momentum [8], spatial modes in multicore fibers
[9, 10], time-energy [11–16], and orbital angular momentum (OAM) modes [17–19], as well as
combinations of polarization and OAM modes [20]. Of these, time-energy encoding is appealing
for its compatibility with a large portion of existing telecommunications infrastructure — which
lowers the barriers to widespread adoption of QKD. Indeed, the time-energy correlations are
robust over transmission in both fiber and free-space channels and are preserved when passing
through wavelength-division multiplexing.

In high-dimensional temporal encoding, the time-slot position of a pulse within a multi-time-
slot symbol-frame determines its coded symbol. Classically, this encoding is known as pulse
position modulation (PPM), and combined with single-photon detection, it achieves near-optimal
performance in terms of bits per detected photon [21]. A pulse coded into a symbol comprising
M time slots can convey up to log2 M bits of information, as illustrated in Fig. 1(a). The rate of
transmitted symbols, RT , is ideally RT = Rc/M, where Rc is the system clock rate. Assuming
constant Rc , PPM exhibits a trade-off between the alphabet size M and RT : an increase in the
former directly corresponds to a decrease in the latter. We take advantage of this trade-off to
maximize the secret-key rate in the presence of receiver saturation.

Figure 1(b) is a representative plot of secret-key rate versus channel length for binary encoding
with realizable parameters. Three regimes of distance/loss are indicated. In normal operation
(Region II), the secret-key rate decreases exponentially with distance until the received photon flux
is comparable to the background counts of the detector(s). In this regime, binary encoding works
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well and high-dimensional encoding does not offer any performance benefit. At distances/losses
beyond the exponential rate-loss cutoff point (Region III), the correlations between sender and
receiver are masked by the background and no secure keys can be generated. However, at short
distances, i.e., low losses (Region I), the secret-key rate is limited when some component of
the receiver hardware — such as the single-photon detectors or the readout electronics — is
saturated by the incoming photon flux, as illustrated in Fig. 1(b). In this regime, which extends to
approximately 90 km for these parameters, high-dimensional encoding can be used to increase
the secret-key rate above the maximum binary-encoded rate.
Here we focus on using high-dimensional encoding to maximize secret-key rates over

metropolitan-area distances of tens of kilometers. This work is complementary to previous
research which has tended to focus on extending the range of QKD links well beyond tens of
kilometers to inter-city lengths of hundreds of kilometers [23–26]: deployed QKD networks will
include a variety of links, including long distance inter-city links, as well as shorter, metropolitan-
area-scale links. Each link type will potentially have different optimal operating points and
technologies.

2. High-dimensional prepare-and-measure QKD experiment

To demonstrate high-rate, large-alphabet QKD, we focus on dispersive-optics QKD (DO-
QKD) [27], a high-dimensional QKD protocol based on time-energy encoding, with basis
transformations produced by group velocity dispersion (GVD). We previously proved the security
of this scheme against arbitrary collective attacks [27] and implemented the scheme using
entangled photon pairs in the laboratory [14]. Recent theoretical work has extended the security
to hold against general attacks [28]. The present work is a prepare-and-measure (P&M),
decoy-state version of DO-QKD.

In P&M DO-QKD, Alice and Bob derive shared information from timing correlations between
the prepared pulse time and the measured pulse time. This information can be derived when
Alice and Bob prepare and measure using the same basis. When they use different bases, the
correlations are degraded and provide no shared information. Decoy states provide protection
against photon number splitting (PNS) attacks [29–31].
The general protocol architecture is pictured in Fig. 2. Alice’s transmitter generates a

sequence of PPM-encoded pulses that will become the raw key. The transmitter prepares signal-
intensity states, with probability Pµ, by attenuating the optical pulses to an average intensity
of µ photons/pulse, and the transmitter also prepares decoy-intensity states, with probability
Pν = 1 − Pµ, by attenuating the optical pulses to an average intensity of ν photons/pulse.
The transmitter prepares these pulses either in the time basis, with probability PT , by sending

them directly across the communication channel, or in the energy basis, with probability
PE = 1− PT , by applying sufficiently strong GVD to the pulse in order to stretch the pulse across
many time-slots within the PPM symbol-frame, before sending the stretched pulse across the
communication channel.
At the other end of the communication channel, Bob’s receiver measures either in the time

basis — by sending the photons directly to a time-resolving single-photon detection system — or
in the energy basis — by applying GVD of equal magnitude but opposite strength as used by
Alice before sending the photons to a time-resolving single-photon detection system. We assume
that Bob’s basis choice probabilities are the same as Alice’s.

The protocol’s security proof requires that for each transmitted pulse, the choices of preparation
basis and transmission intensity must be random to an eavesdropper, Eve, but known to Alice.
Similarly, the protocol’s security proof also requires that for each received pulse, the choice
of measurement basis must be random to Eve but known to Bob. However, to increase the
probability that Alice and Bob both choose the same basis, we can set PT > 1/2; i.e., Alice and
Bob both preferentially choose the time basis. Under this asymmetric basis selection, the protocol
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remains secure against Eve if the timing correlations are analyzed separately for each basis [32].
After the prepared pulse times and basis choices, as well as the measured pulse times and basis

choices, are recorded, Alice and Bob convert the measurement results into shared secret keys
through a series of classical post-processing steps. First, Alice and Bob demodulate their PPM
streams, giving each a sequence of symbols. They then perform sifting — they publicly announce
their basis choices in order to post-select only the symbols that are encoded and decoded using
the same basis and therefore should be strongly correlated. Alice then announces the transmitted
intensities in order to divide the post-selected symbols into signal-intensity and decoy-intensity
symbols. Some of the symbols — all of the energy basis, signal-intensity symbols; an equal
number of randomly selected time basis, signal-intensity symbols; and all of the decoy-intensity
symbols from both bases — are publicly announced in order to estimate timing correlations and
symbol-error rates (SERs), which are used to calculate the maximum information accessible to
Eve [31,33]. The SER is the high-dimensional analog of the quantum bit error rate (QBER) in
binary-encoded QKD; it is the fraction of symbols that were encoded and decoded using the
same basis but whose values do not match. The remaining signal-intensity symbols are input to
first an error-correction code, and then to a privacy amplification code, both of which sacrifice a
portion of the symbol sequence, resulting in a shorter, error-free sequence of symbols shared
between Alice and Bob and secret from any eavesdropper, up to an agreed upon probability of
failure εs [33–35].

The secret key rate K , in bits/s, is the product of the detected photon rate Rp , in counts/s, and
the secure photon information efficiency r , in bits. The value of Rp is ultimately limited by the
receiver saturation rate. The value of r is a function of the alphabet size M , the SER — which
depends upon the pulse width and real-world system fluctuations and disturbances, the operating
point choices of {Pµ, Pν, PT , PE }, the efficiency of the error correction code, and the agreed-upon
value of εs. The details of how these factors determine r are discussed in the Appendix and
also in [27,31,33]. The value of M is, in turn, limited by the worst timing resolution of either
the transmitter or the receiver system. The operating point that optimizes the secret-key rate
K achieves a complex balance between the conflicting goals of sharing maximum information
between Alice and Bob and sharing minimum information with Eve — while operating within
the constraints of the system hardware and real-world system fluctuations and disturbances.

3. Experimental system and demonstration

The implemented transmitter used a superluminescent diode (InPhenix) with tens of nanometers
of optical bandwidth which was filtered to 25 GHz (0.2 nm), centered at 1559 nm, by a tunable
bandpass filter. This continuous beamwas modulated by a lithium niobate electro-optic modulator
(JDSU) controlled by a PPM sequence produced by a 12.5 GHz pulse pattern generator (PPG;
Anritsu). Preparing in the time-basis was performed by using this output pulse sequence, whereas
preparing in the energy-basis was performed by inserting a dispersion module with 10,000 ps/nm
of GVD (Proximion). Preparing in the signal or decoy intensities consisted of manually adjusting
a variable optical attenuator (VOA; JDSU) to give µ = 0.5 photons/pulse for signal intensities, or
ν = 0.05 photons/pulse for decoy intensities. These intensity values were chosen to maximize Rp

while maintaining security. An optical circulator was included at the output of Alice’s transmitter
for protection against Trojan horse attacks [36].
The receiver used superconducting-nanowire single-photon detectors (SNSPDs), made of

niobium nitride (NbN), capable of detecting hundreds of millions of photons per second with
68% detection efficiency and dark count rates of several thousand per second [37]. The timing
resolution was 50− 100 ps. The receiver timing resolution limits the minimum time-slot duration
that the transmitter can use. The SNSPD system had a single optical fiber coupled to four
interleaved nanowires, which were individually read out by a commercial time-to-digital converter
(Picoquant Hydraharp 400). This interleaved nanowire structure is functionally equivalent to a
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passive 1x4 optical splitter followed by four individual detectors. The time-to-digital converter
had a dead time of 70 − 80 ns per channel, which gave the receiver system a saturated detected
pulse rate of about 50 MHz. Measurements in the time basis were performed by sending
the received pulses directly to the SNSPD system, whereas measurements in the energy basis
were performed by inserting a dispersion compensation module with -10,000 ps/nm of GVD
(Proximion) just before the SNSPD system. The insertion loss of the dispersion compensation
module was 4 dB. There were some additional losses, totaling 6 dB, in the receiver due to lossy
optical connectors and the blocking effects of high photon flux on the SNSPDs.
The system performance was characterized over three channel configurations, referred to as:

the back-to-back configuration, the fiber-spool configuration, and the deployed-fiber configuration.
The back-to-back configuration had the transmitter and the receiver in the same laboratory,
connected by a short patch cable with 0.1 dB loss. The fiber-spool configuration had the
transmitter and the receiver in the same laboratory, connected by a 41-km spool of standard
SMF-28 single-mode fiber with 7.6 dB loss. The deployed-fiber configuration had the transmitter
and the receiver located in physically separate laboratories, connected by a 43-km span of
deployed telecom fiber with 12.7 dB loss.

This deployed fiber channel is one of pair of dark fibers running parallel to each other between
MIT and Lincoln Laboratory, as illustrated in Fig. 2. This channel was subject to significant real-
world temperature fluctuations and acoustic perturbations which introduced relative timing drifts
between the transmitter and the receiver, thereby degrading the DO-QKD protocol performance
by obscuring the timing correlations. This effect was mitigated by including out-of-band, periodic
optical synchronization pulses sent from the transmitter and detected at the receiver with a linear
photodiode to act as a shared timing reference.

In the fiber-spool and deployed-fiber configurations, the long fibers introduce additional GVD,
which degrades the timing correlations between Alice’s prepared pulses and Bob’s measured
pulses. This GVD is precompensated using a spool of dispersion-compensating fiber in the
transmitter.

Four different PPM alphabet sizes were used, M ∈ 4, 8, 16, 32. For all M , the time-slots were
240 ps long, corresponding to a system clock rate of Rc = 4.17 GHz, which was chosen to
be approaching the maximum clock rate supported by the receiver system. The high-speed
capabilities of the transmitter allowed the actual optical pulses contained within the time-slots to
be 50 ps long, which reduced the SER by mitigating the effects of intersymbol interference. Each
symbol-frame comprised the alphabet M time-slots followed by two empty guard time-slots. The
transmitted symbol rate was then Rc/(M + 2), and the detected frame rate was the product of the
transmitted symbol rate, the average transmitted photon number, and the channel transmission.

The DO-QKD secret-key rate capabilities of the three channel configurations were characterized
by taking large data sets for the two preparation bases, the two measurement bases, and the two
pulse intensities, separately. An optimized secret-key rate capability was then determined for a
combined data set, consisting of 109 received pulses, by numerically optimizing the values of Pµ
and PT to maximize the secret-key rate. This analysis used security parameter εs = 10−10 and a
multi-layer low-density parity-check (LDPC) code [38] for error reconciliation.

4. Results

In the back-to-back configuration, the maximum secret-key rate capability was 23 Mbps with
M = 16. In the fiber-spool configuration, the maximum secret-key rate capability was 5.3 Mbps
with M = 8. In the deployed-fiber configuration, the maximum secret-key rate capability was
1.2 Mbps with M = 4. Table 1 summarizes the optimum rate cases for the three channel
configurations.

Figure 3(a) plots these experimental results along with theoretical secret-key rates as functions
of channel loss. In Fig. 3(a), there is a data point and theoretical curve corresponding to the optimal
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Fig. 2. Map showing node locations and approximate path of the installed 43-km deployed-
fiber testbed used in this work. Overlaid are Alice’s transmitter, located in Cambridge, MA,
and Bob’s receiver, located in Lexington, MA. BPF: bandpass filter. EOM: electro-optic
modulator. VOA: variable attenuator. ND: normal GVD. AD: anomalous GVD. DCF:
dispersion-compensating fiber.

alphabet size for each of the three channel configurations. The three channel configurations
each had slightly different measured timing correlation values and each theoretical curve was
computed using the corresponding measured values; thus, we should not directly compare the
curves to determine the universally optimal alphabet size for a given loss. For a given channel
configuration, however, we can determine the optimal alphabet size. To further illustrate this
point, Fig. 3(a) also includes a theoretical curve showing the performance for M = 2 over the
deployed fiber channel. For these channel losses and timing correlation values, choosing M = 4
outperforms M = 2. Figure 3(b) displays the secret-key rate capabilities obtained for each
alphabet size in the three test cases, showing that the optimal alphabet size increases as the loss
decreases.

5. Discussion

High-dimensional encoding can improve the rate or efficiency of quantum information processing,
compared to binary encoding. Here, we have used high-dimensional encoding in quantum key
distribution to mitigate the effects of receiver bottlenecks. For receiver-limited scenarios, such as
relatively low-loss metro-scale fiber links, high-dimensional DO-QKD allows us to increase the
realizable secret-key rate by adjusting the alphabet size.
The optimal M to maximize the secret-key rate depends most strongly on Bob’s received

photon rate, which is in turn a function of channel loss and also of the transmitted symbol rate. If
Bob had an ideal receiver, the highest secret-key rate would be obtained for the fastest transmitted
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Table 1. Summary of the maximum secret-key rates obtained in the three channel configura-
tions.

Back-to-back 41-km fiber spool 43-km deployed fiber

Loss (dB) 0.1 7.6 12.7

Slot duration (ps) 240 240 240

M 16 8 4

K (bps) 23 × 106 5.3 × 106 1.2 × 106

r (bit/pulse) 1.40 0.88 0.50

Time SER (%) 6.5 4.8 4.9

Energy SER (%) 7.1 4.9 5.3

PT 0.99 0.93 0.88

Pµ 0.99 0.94 0.90
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Fig. 3. (a) Experimental (stars) and theoretical (dashed curves) secret-key rates versus channel
loss. Colors correspond to optimal alphabet size M for each of the channel configurations.
Each theoretical curve is based on the experimental parameters (e.g., detector timing jitter)
observed in the corresponding the channel configuration. The theoretical secret-key rate
for M = 2 over the deployed fiber channel is also plotted for reference. (b) Experimental
secret-key rates for all alphabet sizes of each channel configuration. Loss increases from left
to right. The optimal M increases as loss decreases. For experimental convenience, we did
not increase the alphabet size once it became apparent that doing so would not increase the
secret-key rate.

symbol rate, which occurs for M = 2. However, Bob’s receiver hardware is usually rate-limited.
The limit may be due to the single-photon detectors themselves; for instance, SNSPDs exhibit
reset times ranging from a few nanoseconds [37,39–41] to several tens of nanoseconds [22,41,42],
depending on the choice of superconductor. The readout electronics can also limit the receiver
count rate, as is the case for the commercial time-tagger in our system and also for the high-rate
BB84 demonstration of [1]. When Bob’s receivable photon rate is limited, increasing M to values
greater than two allows Alice and Bob to effectively produce secret keys even during the reset
time. Thus, at short distances and correspondingly low losses, we can expect a bottleneck due to
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the maximum count rate of Bob’s receiver. In this receiver-limited regime, it is advantageous to
increase M to encode as much information as possible in each detected photon while keeping the
receiver near saturation. Our receiver saturated at received photon rates around 50 Mcps, but the
transmitted symbol rate for M = 2 was greater than 1 Gcps. For the channel configurations we
examined, the channel losses were insufficient to prevent the receiver from saturating at such high
transmitted symbol rates. To prevent saturation, we also needed to reduce the transmitted symbol
rates by increasing M , and Fig. 3(b) demonstrates that the optimal M increased as channel loss
decreased.
It should be noted that although we did not perform fast basis or intensity switching in our

demonstration, the addition of such steps would not affect the demonstrated rate capabilities of the
system. At the transmitter, basis switching can be done by adding a fast switch; any loss incurred
can be compensated by adjusting the transmitter’s variable attenuator. Intensity switching can
be done by programming the transmitter’s variable attenuator. At the receiver, basis switching
can be done by adding a passive beamsplitter and a second detector unit. Additionally, our
transmitted PPM sequence relied upon a predetermined pseudorandom stream, allowing us to
fully characterize our system. The use of a high-quality random number generator would not
affect the demonstrated rate capabilities of the system. Finally, the magnitude of the applied
GVD should vary with M in order to stretch the pulse across the full temporal duration of the
symbol-frame. For these proof-of-principle experiments, we were limited to a single pair of
normal/anomalous GVD elements whose magnitude, 10,000 ps/nm, is approximately the median
required value for the M considered in our demonstration.

An alternate strategy to mitigate the effects of the receiver’s dead time involves using either a
passive splitter or an active switching system [43,44] to distribute the incoming photons between
a larger number of single-photon detectors. However, this approach can be resource-intensive, as
it requires multiple detectors and readout channels and, for the active case, a switching system
that is both fast and low-loss. The switching rate must match the incoming photon rate, and
the loss must be low enough such that the resulting secret-key rate is higher than what could be
obtained using high-dimensional encoding. Switches with both of these characteristics are not
available. Additionally, it is likely that practical, deployed systems will be subject to size, weight,
power, and cost constraints, further making the alternate strategy of adding a bank of detector
systems unfeasible. In contrast, high-dimensional encoding does not significantly increase the
receiver hardware complexity or cost because the high-dimensional decoding is performed by
software.
The high-dimensional time-energy encoding investigated here offers the ability to optimize

the secret-key rate by varying the alphabet size M in response to both receiver capabilities and
channel loss. This is most beneficial when Bob’s receiver is saturated, which often occurs over
metropolitan-area distances of tens of kilometers. We have demonstrated the secret-key rate
capabilities of a high-dimensional, prepare-and-measure QKD protocol over different channel
losses, both in the laboratory and over a 43-km deployed telecom fiber, and shown that as the
channel loss decreases, the optimal alphabet size increases. These proof-of-principle experiments
demonstrate the benefits of a QKD scheme designed to adapt to the constraints of a particular link
implementation, representing a strategy for optimizing high-rate secure quantum communication
in metropolitan areas.

A. Secure photon information efficiency

In this appendix, we briefly describe the secure photon information efficiency r. The secure
photon information efficiency quantifies Alice and Bob’s information advantage over Eve, who
we assume can mount arbitrary collective attacks. In the asymptotic regime of infinitely long
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keys, the secure photon information efficiency for DO-QKD with decoy-state analysis is

r∞,decoy = βI(A; B) − (1 − FLB
µ ) log2 M − FLB

µ χUB(A; E), (1)

where βI(A; B) is Alice and Bob’s reconciled mutual information, FLB
µ is a lower bound on

the fraction of Bob’s detection events that came from a single-photon transmission by Alice,
and χUB(A; E) is an upper bound on Eve’s Holevo information [27,31,45]. By measuring the
covariance matrix associated with the correlation between prepared pulse time andmeasured pulse
time [27, 45] and by monitoring the quantum channel using weak-intensity decoy states [29–31],
Alice and Bob can bound the information accessible to Eve. Any information that Alice and Bob
share in excess of this bound will be secure. The decoy state measurements contribute to the
estimation of both FLB

µ and χUB(A; E).
In the more realistic regime of finite-length keys, Eq. (1) is true except with a finite failure

probability that corresponds to the predetermined security parameter εs [33–35]. Operationally,
εs is the tolerated failure probability of the entire protocol, where failure means that at the
conclusion of the protocol and unbeknownst to Alice and Bob, Eve holds information about the
output key. In practice, the failure probability quantifies the effects of finite sample sizes on
error correction, privacy amplification, and parameter estimation [35]. The parameters related to
decoy states are also affected in the finite-key regime [33]. Table 2 lists numerical values of these
security-related parameters for the three channel configurations.

Table 2. Numerical values of security-related parameters for the three channel configurations.

Back-to-back 41-km fiber spool 43-km deployed fiber

εs 10−10 10−10 10−10

FLB
µ 0.63 0.55 0.54

χUB(A; E) (bit/pulse) 0.24 0.12 0.05

We also note that recent theoretical work has extended the security of DO-QKD to hold against
general attacks [28].
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