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ABSTRACT
Title: STUDIES IN THE THEORY OF ECONOMIC GROWTH AND INCOME DISTRIBUTION
Author: Joseph E. Stiglitz

Sutmitted to the Department of Economics and Social Science on August 16, 1966,
in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Economics.

The first chapter treats of the problem of the allocation of hetero-
geneous capital goods among the sectors of the economy. The central
theorem proved is the following: if technological change is Harrod neutral
and one sector is more labor intensive than any of the others, all the
newest machines go to the most labor intensive sector. Existence and
uniqueness of short run equilibrium as well as steady state growth paths
are proved, and the comparative dynamics of this economy are investigated.

The second chapter discusses the problems raised by the possibility
that one technology is used at two different interest rates, with another
technology used at intervening interest rates. Part I. presents a
number of conditions under which such "double switching" is impossible. In
Part II. explicit expressions for the value of capital per man in terms
of the rate of growth, the savings propensities, of workers and capitalists,
and the rate of interest, are derived, and it is shown that the value of
capital increases with increasing interest rates. Part III. relates the
"double switching phenomenon to another phenomenon which has recently re-
ceived much attention: steady state consumption increasing with in-
creasing interest rates. In Part IV. it is shown that paths of capital
accumulation which involve double switches may be efficient, and for some
utility functions, optimal. It is also shown that at a switch point the
rate of interest is equal to the rate of return.

The third chapter examines the properties of a growth model with a
consumption goods sector and a capital goods sector, in which there are
two classes, one whose income is derived entirely from capital (the
capitalists) and a second which derives its income from both wages and
return on savings (the workers). It is shown that there exists at most
one balanced growth path with both capitalists and workers present, and
conditions for existence of such a path are derived. It is shown that
if the consumption goods sector is not more labor intensive than the
capital goods sector, or if the sum of the elasticities of substitution
of the two sectors is greater than 1, then momentary equilibrium is
uniquely determined. The stability properties of the model are analyzed,
and it is shown that even if the two class balanced growth path is
locally stable, there may exist paths which oscillate around it rather
than converge to it.



The fourth chapter investigates the implications of the process of
capital accumulation for the distribution of income and wealth among
individuals. Both long run and short run changes in the distribution
of wealth are described in a series of related models which differ with
respect to savings functions, to reproduction behavior, to inheritance
policies, and to the homogeneity of the labor force.
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ALLOCATION OF HETEROGENOUS CAPLITAL GOODS

IN A TWO-SECTOR ECONOMY

One of the most important contributions of the modern theory of
economic growth is the demonstration of how important technological
progress is in the development of the economy. Solow's classic
"Contribution to the Theory of Economic Growth," [5]1 showed that the
qualitative facts of growth could not be explained with a very general
model that did not include technological change. Then, in 1957 [6],
under the assumptions of Hicks neutral technological change and the
marginal productivity theory of factor distribution, Solow showed that
approximately 87 per cent of the growth in income per capita in the
United States since 1890 is due to technological progress, and only
13 per cent to capital accumulation.

It is important then, if we are to understand and ;erhaps
influence the economic growth of a country, that we have a theory of
technological progress: how it is produced, introduced, and char-
acterized.

The discussions on the introduction of technological change
have centered in recent years primarily around the question of
"embodiment''--whether technological change needs new machines to be

introduced into the economy, and if so, what implications does this

lHere as elsewhere numbers in brackets refer to references at
end of chapter.



have for the growth path of the economy. Obviously, if some machines
are better than others, we cannot simply add them together to form an
aggregate capital stock, as in the simpler analysis with no techno-
logical change; rather, one must now form a "jelly," i.e. a weighted
sum, in which the weights are in proportion to the degree, in some
sense, of technological progress "embodied'" in the machines. Fisher,
Samuelson, and Gorman, have shown that the only conditioms in which
this aggregate jell can be formcd are very restrictive conditions. It
is thus important for us to formulate our model in such a way as not
to require an aggregate capital stock or jelly.

Moreover, the one sector growth models, in which there is a
homogeneous commodity, which may either be used for investment or,
alternatively, consumed, suffer from the difficulty that, with embod-
ied technological progress, this homogeneous commodity when used for
consumption purposes remains unchanged over time, but when used for
investment purposes, becomes better and better. This does not make too
much sense, and it is therefore important, for the purpose at hand, to
have a two sectoral model, one sector producing capital goods, the
other consumption goods.

Finally, in the two sectoral growth models advanced thus far,
with all capital goods alike, the important and interesting problem of

allocating machines between sectors is ignored.l

lThe only exception to this is M. Kurz's doctoral dissertation,
"Patterns of Growth and Valuations in a Two-Sector Model,'" published
in Yale Economic Essays, Volume 2, Number 2, Fall 1962. He makes the
assumption of non-transferable capital (what he calls non-shiftable
capital); that is, capital in the consumption goods sector cannot be
transferred to the capital goods sector, and vice versa. He also makes
the assumption--and this does severely restrict the validity of his
model--of a Cobb-Douglass production function for both sectors. This



In short then, the kind of model which we are about to set up is
important for at least three reasons: (1) it does not require an
aggregate capital "jelly;" (2) "embodied" technological change makes
most sense in a two sectoral model where consumption and investment
goods are not homogeneous; and (3) it is important to know how capital
goods of different qualities are allocated between the production of

consumption goods and the production of investment goods.

allows him to form an aggregate capital jelly, as in the Solow one
sector Cobb-Douglas model. Unfortunately, as Fisher and Gorman have
recently demonstrated, (Review of Economic Studies, [1] and [2])

if technical change is not purely capital augmenting an aggregate
capital jelly cannot be formed, and for the Cobb-Douglas case, labor
augmenting and capital augmenting change are equivalent. Hence, the
assumption of Cobb-Douglas production functions is not only crucial
for his results, but also for his methods of arriving at them. We
seek to develop techniques here which do not involve the formation
of aggregate capital stocks.




1. Production

We shall make the usual neoclassical assumptions of production:
constant returns to scale for the two factors of production, capital
and labor; i.e. doubling capital and doubling labor doubles the output;
diminishing returns to one factor alone; zero output per machine when
the labor per machine is zero. In addition, we shall make the assump-
tion of Harrod neutral technological change, (or pure labor augmenting
technological progress). This assumption can be modified, and the
static analysis can be appropriately modified, but of course there
will not then exist a long run steady state path for the economy.

Mathematically, we may express these production conditions as

=
<
i

2. Y, = F2(K2(a),aL2)

where Y1 is the output of consumption goods, K1 the capital (of
type a) used in the production of consumption goods, and Ll the labor
used in the production of consumption goods. YZ’ similarly, is the
output of capital goods, a represents the measure of technological
progress (labor augmenting) embodied in the machine of type a.
To see that there are no problems in defining units let us first

consider the purely "static" production functions involving only

machines of ''type 1."

1'. ¥, = F (K (D),L)

'
2°, Y2

F, (Kz(l),Lz)
Now we assume that at times greater than zero, machines of a different

"type" are produced, but the number of machines produced by a given
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amount of our "old" capital and labor remains unchanged (similarly
for times less than zero) (2'' may be considered to define the units
of machine goods); we thus have
2". Y,(a) = F,(K,(a),L,)

Finally, we observe that these new types of machines differ from
machines built at time zero in a pure labor augmenting way: to produce
a given number of consumption goods or machines (as defined above)
with a given number of machines of a certain type, we require 1l/a
the labor on the new machines as on the old (where a is independent
of the number of machines or the given output; hence we may speak of a
machine as type a). It is clear that it makes no difference for the
analysis which type of machine we choose for our 'reference" machine
(i.e. for which machine we let a = 1.)

A sample distribution of machines is given in figure 1. Note

that homogeneity of degree 1 implies that

1'''. Yl = fl(xl(a))K1

2"'. Y

2 = £,(x,(a))K,
where
xl = aLlKl x2 = aL2K2

Thus far, we have imposed the following restrictions on our

production functions:

3. fl(O) = Q0 f2(0) =0
and

1 1 n "
4.f1>0 f2>0 5.f1<0 f2<0

In this paper, we shall also impose for analytical convenience the

so-called Inada conditions

6. £,'(0) = = £,'(0) = =



the marginal product of labor when the capital labor ratio is zero
is infinity. This enables us to ignore the question of whether all
machines are used or not, but the analysis is only slightly modified
if we drop this restriction.

Total output of consumption goods then is the output on all
machines used in the consumption goods sector, and similarly for

investment goods:

=)}
<
]

1 i fl(xl(a))K(a)da

8. Y, = i' fz(xz(a))K(a)da

where A is the set of machines used in the consumption goods sector, and
A' all other machines. (Because of assumption 6, all machines will be
used, since the marginal product of labor gets larger and larger as
fewer and fewer laborers are assigned to these machines.)

Our problem then is to determine which machines are used in
which sector. It turns out that the answer to this problem is rela-
tively simple: if one sector is always more labor intensive than the
other (at least in the relevant range) then all of the newer, and
therefore better, machines are used in the labor intensive sector.
(One sector is always more labor intensive than the other, if, at
any specified wage/rental ratio, the labor capital ratio in one sector
is greater than that in the other.) The intuitive reason for this is
roughly that the new machines save labor in a multiplicative manner,
and it therefore makes some sense to assign newer machines to that
sector where it is more important to save labor, the labor intensive

sector.



Let us consider an entrepreneur owning a machine of type a.

He faces a wage w (in terms of consumption goods numeraire) and a
price of new investment goods of p (again in consumption goods
numeraire). He is trying to decide whether to allocate the machine
to the consumption or the investment sector.

In either case, he will clearly hire labor to the point where
the "money" wage is equal to the value of the marginal product. In
consumption goods, our numeraire, this is simply
9. w = af;'(x1(a))

while for the investment sector, this is
10. w = paf,'(x5(a))

The quasi-rents (per machine) are equal to the output per unit

of capital less the wage payments per unit of capital; in the consump-

tion goods industry we have
wx](a)
11. ry(a) = £1(x1(a)) - a—
while for investment goods we have
wxy (a)

12. rp(a) = pfa(xz(a) - 2

which, by 9 and 10, yield

13. rj(a) = £f1(x1(a)) - x1(a) £;'(x;a))

14. 1p(a) = pfa(xz(a)) - pxy(a) £5'(x3(a))

A machine will be used in the consumption goods sector if the
return to it (the quasi-rent) is greater than in the investment sector.
The problem then is to determine the relation between the returns to
different kinds of machines in the different sectors, for given w
and p. We shall show that if one sector is always more labor intensive

than the other, there exists a (unique) 4 such that all machines
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Figure 2

Quasi-rents on Machine of Type a for Fixed w and p
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"newer' than a (i.e. with a > ;) go into the labor intensive sector,
while all older machines go into the other sector.

To do this, we first observe that 13 and 14, with 9 and 10,
define a relation between r

1 and a, and r, and a (for given w and p).

We shall show that d 1ln ry >0 and 4 1n r,

d 1n a d 1n a

> 0 and for given r

d 1In rl d Inr

dlna dlina

2 , and hence there is at most one a for which rl(a) =

r, (a). From 13 and 14, we have

15, 1 _ 0% xer
da dx1 da da

16. 3rp _ 5y &y -px,£," i
da dx2 da da

For fixed w and p, 9 and 10 define implicit relations between a and x,

and a and Xys from which we easily calculate

1

7. o6
da aflﬂ

]

18, & - 5
da af2"

Substituting in 15 and 16, and multiplying by a/r, we have

d 1In r x,f£.! wL

19. 1_ 505 M o
d ln a r Klrl(a)
L
20. d 1ln r, _ 22?2 } sz 0
d 1n a r Kzrz(a)

But for given r (or since w is fixed, for given r/w), if one
sector is more labor intensive, the labor-capital ratic will be

greater in that sector, and hence wL will be greater. Thus
rK



21. Either vLhy S WLZ or wEg 5 WLl
R K Ry 5K

and hence our theorem is proved.

We shall denote this crucial at at which rl(;) = r2(;) as m(w,p);
it can easily be shown that the elasticity of m to changes in w is 1,
since w and a appear symmetrically on both sides of the wage-marginal

product equations.

23, p_dm < O
m

We have yet to show that there necessarily will exist an inter-
section, i.e. it is possible for the more labor intensive curve to begin
at a high r, i.e. rj (max) < r, (min). But using results 22 and 23,
we can show that there is some set of wages and prices at which m > min
a, or in other words, for which, at a feasible a, rj (max) > r (min).

Now that we have established that all new machines will go into
the labor intensive sector, and assuming that the investment sector is
more labor intensive than the consumption sector, we can rewrite our
original production equations 7 and 8:

&(w,p)
24. Y1 S fl(xl(a))K(a)da

- 0

a(t)
] fz(xz(a))K(a)da
m(w,p)

25. Y

where a(t) is the best machine in existence at time 6,

11
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It should be observed that if the elasticity of substitution is
greater than 1, as r increases the slope of the logarithm of r as a
function of the logarithm of a increases, and hence the r curve is
convex, while if the elasticity of substitution is less than 1,
as r increases, the slope decreases and hence the r curve is concave.
It should also be clear that if one of the sectors has, at every
value of r, a higher elasticity of substitution than the other
sector has at that r, there can be at most two values of a for which
rl(a) = rz(a): the very old machines and the very new machines are

used in the sector with the greater elasticity of substitution.
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2. Employment, Consumption, and Technological Change
Since we know the set of machines which are used in the consump-
tion sector, and the set of machines which are used in the investment

sector, we may now also determine the employment in the two sectors:

m(w,p) le(a)

26. L = J da
1 . =
and
a(t)
27. L. = [ x,K@@) 4,
2 N P
m(w,p) a

Employment in the two sectors cannot exceed the labor force,

and in fact cannot fall short of full employment, by assumption,

28. Ll + 12 = L(t)

The labor force is assumed to be growing exponentially:

29. L(t) =L, ot

where n is the growth rate of labor.
Consumption is assumed to be a constant proportion of income,

where income is defined as

30. Y=Y 4+ pY

1 2

Thus

31. pY, = sY = sY, + spY

2 2 2

Solving for Y2, the output of investment goods, we obtain,

32. v. = 54

(1L -5s)p



14

For the moment, we assume technological change exogenously
determined, (with no labor or capital required), at a constant expo-

nential rate u:

33. a(t) = aoeut

3. Analytics of the Model.

Our complete model then consists of 2 marginal productivity wage
relations, two output equations, two labor demand equations, one labor
supply condition, and a consumption function, plus the requirement that
if the rate of return in one sector exceeds that in the other, then
the machines are used in the sector with the higher return. Using
this requirement, and the marginal productivity equation, we have
shown that all new machines are used in the labor intensive sector.
The critical machine, i.e. the machine with the property that more
efficient machines are used in one sector, less efficient machines are
used in another, is a function of the wage and price.

Knowing this, we still must solve for x;, x;, W, p, Y;, Y5,

L; and Ly, i.e. the amount of consumption goods produced, the amount
of investment goods produced, the employment in the investment goods
sector, the employment in the consumption goods sector, the wage, the
relative price of investment goods to consumption goods, and the
effective labor units/capital intensities (for machine of type a used
in the sector) in each sector. We can show that there exists one and
only one solution, but before we turn to the formal proof, let us
briefly suggest the underlying motivation.

For a specified production of investment commodities, there is

a maximum amount of consumption goods that can be produced. At that



consumption-investment combination, there is a trade off relation
between additional consumption, and less investment, and vice versa,
which is equal to the relative price ratio, p. As in the usual
production possibilities schedule, as investment increases, p
increases. But the demand for investment goods is a decreasing
function of price. Hence the supply schedule of investment goods as
a function of price is upward sloping, while the demand schedule is

downward sloping, and a unique equilibrium is thus determined.

4. Proof of Existence of Equilibrium.

More rigorously, we have Theorem II. There will always exist
one and only one equilibrium to the set of equations presented above.

We set up the problem as a maximization problem:

s.t. K;(a) + Ky(a) = K(a) all a

L; + L2 =L For convenience,

we assume that, except possibly for a set of a's of measure zero
(e.g. a finite number of a's), if machines of type a are used in
sector i, there exist e; and ey, eje;”> 0, such that all a

a+ e >a>a-ep; are used in sector i. (If the capital intensity
hypothesis is satisfied, this condition will clearly be met) . This

enables us to write

Bo1 + 2

35. Yy =2 [ f1(x;(a))K(a)da
imyi 41
23 4+ 1

36. Yo =2 [ fo(x2(a))K(a)da

im,.,
2i

15
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Moi + 2
37. Li=% [ x;/a K(a)da
1 my 41
Mai + 1
Ly=% [ x5/a K(a)da
i m,. ’
21

Taking the partial derivatives of the Lagrangian

38. ¥=2=: f £1(x1(a))K(a)da + p L S f2x3(a))K(a)da
+ w(L - £ f x3(a)/a K(a)da + £ [ xy(a)/a K(a)da +
f r(a) {K(a) - Kj(a) - K,(a) }da

with respect to m,, we obtain

39. 3x = -f; (x(t-m)) + pf '(x(t-m)) + wx)(t-m) _ pwxp(t-m)
ami : 2 a a

= ry(x(t-m)) - r(x,(t-m)) =0

i.e. at the "switch points" the quasi rents must be the same in the two

sectors. Moreover, if ¥ 1is to be at a saddle point, it is clear that

40, fi -w=20

[

and

[

40 and 41 are the same as the marginal productivity wage-price relations.
The Lagrangean multiplier is to be interpreted as the real wage rate,
not unexpectedly.

Finally, if we take the partial derivatives with respect to p
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and w, we get back our initial resource constraints.l

By changing p, we can generate a production possibilities
schedule. It can be shown that the schedule is (strictly) concave.
The reasoning is clear: consider, for example, all the machines and
all the labor used in the production of consumption goods, and they
produce Chax’ and similarly for investment, producing a maximum of
i . Simply transferring any portion of the machines, with the

max

accompanying labor, we can produce any linear combination of Chax
and imax’ without changing any of the labor intensities. But this
is not efficient, since if that is done, the value of the marginal
product of labor in the two uses will not be the same (except in the
case where the two production functions are identical, the famous

Solow~Ramsey case). Hence, by changing the intensities, we can obtain

a strictly concave production possibilities schedule Yl = H(Yz).

Now, we construct a 'utility" function,

This is not a real utility function, since the utility accrues
not from the future stream of income, as it logically should, but is
immediately consequent to investing. This utility function should be
construed solely as a formal mathematical device, the use of which

will be clear in a moment.

lSince ¥ =z s {fl(xl(a)) -"1 lda+z s {pfz(xz(a)) - "2 }da .....
a a
if, for all a except possibly a set of measure zero, f (xl(a)) - wx,/a
is not at its maximum, then ¥ will not be at its saddle
point; and similarly for fz(xz(a)) - wxz/a.



Figure 3
Determination of Short Run Equilibrium

18
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Now, let us
43. Max U = ¥,°v; 1S

s.t. Y, = H(Y3)

Since the production possibilities set is concave, and the
utility function is strictly convex, there will be one, and only omne
solution to the maximization problem. Moreover, the slope of the
tangent to the two curves at that point, i.e.

S
44.1/p = (1-s)(Y2/Y1) =1-s Yo

s s Yy

s(¥2/Y)" ~

or
44'. Y = sY1/(1l-s)p

Hence, we have shown that there exists a solution to the system.
Moreover, that this solution is unique can easily be shown: consider
the solution to the system Y' and assumed that there existed another
solution Y*, with ¥*, > Y,'. then Y*) would have to be less than Y';
and clearly, Yp/Y; * 3 Y/Y;'. But p* must also be greater than p'
since more investment goods are being produced. Hence from the demand
equation, Y,/Y1* < Y,/Y;', a contradiction. Hence it is impossible

for there to be more than one equilibrium.

5. Steady States.

We shall now show that this economy has a unique steady state,
and we shall investigate the comparative dynamics of the steady state.
Throughout we shall assume that the investment goods industry is more
labor intensive than the capital goods industry.

Labour is growing exponentially at the rate n and labour aug-

menting technical progress is proceeding at the rate u. In a steady
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state, it is easy to see that Y; and Y; must be growing at the same rate,
equal to n + u. We shall now show that this entails w growing at the
rate u, and hence m being constant. If w increases at a rate faster than
u, m will be falling and x; will be falling, and hence Y; will be
increasing at a rate less than n + u, and conversely if w increases

at a slower rate than u. (Recall that since Y;/Y; = p(1-s)/s, if Y; and Y,

are growing at the same rate, p must be constant; and for fixed p,

dii = 1 where @i is the value of a for the machine which has equal quasi-
dw

rents in the two sectors.) Accordingly, if w increases at the rate of
technical progress, u, m will be constant.

We shall now show that there is a unique steady state. Since
K(a(t)) = K@@(0)e™WE = v,(0)
we have at time 0O

(nt+u) t

o
45. 1= S £ (x (a))e dt
2 2

-m
Because of the real wage-marginal product equations, if we are given

x,(a*) for any a*, when know x,(a) for all other a; moreover, if any

X, (a*) increases, they all increase. Hence, if 45 is to be satisfied,
m must be a decreasing function of, say, x,(a(0)), since the right hand
side increases with m and with x;(Figure 4).

From the savings-investment equation, we have

Y, =1=-s p Y,

s
and substituting in 1, we obtain
-m

46. p (d=s) = [ £(xi(a()))e® TV ac
S

-0

For a given m, this means that p is an increasing function of
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xl(a(O)) (for instance) (Figure 5). But for a given m, xz(a(O)) is

fixed, and hence w/p is fixed, since

47. w/p = a(0)£,(x(a(0)))

As xl(a(O)) increases, w decreases, since

48. w = a(0)f; (x;(a(0))) and £, < O
and hence p must decrease. Thus, for a fixed m, there is clearly a

unique value of xfa(O)) and of p. (See Figure 6)

m

x,(a(0))

Figure 4
Now let us consider what happens when m is increased. xz(a(o)) is
reduced, and hence w/p is increased. For given xl(a(O)) this means that
p is decreased. On the other hand, from 46, if m is increased p is
decreased for given xl(a(O)). Hence it is unambiguously clear that as m
increases, p decreases in equations 45-48.(Figure 9). On the other hand,
equation 45 and the allocation of machines equations ensure that as m
increases p must increase; assume that dp/dm < 0; then as m increases,
w/p must increase, and hence for any given a, rz(a) must decrease. There
are two cases to consider: w increasing and w decreasing (or remaining
the same). The latter must result in m decreasing, and hence is inad-
missible. (Figure 7). If w increases, and p remains constant m
decreases. Since we have already observed that dm/dp (for fixed w) is
positive, it is clear that if p is to decrease, m must decrease, and we
again obtain a contradiction. (Figure 8). It is clear then that there

is a unique balance growth path (Figure 9).



Yl(a(O))

Figure 5

x,(a(0))
Figure 6
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Figure 7 a

r,(a; w,p)

r,(a; w*,p)
r,(a; wk,p*)

rl(a;w)

Figure 8



Figure 9

Figure 10

x,(a(0))
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Figure 11

xl(a(O))

Figure 12
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It may be worthwhile to investigate what happens as s increases.
Equation 45 remains unchanged, but in equation 46, for any given m and
xl(a(O)) p increases (See Figure 10) Hence, the value of p corres-
ponding to any m increases. (11) And from this (see Figure 12)

it follows that the value of m increases with increasing s.

The Rate of Return

The private rate of return can be defined in a straightforward
manner as that rate of discount which equates the (discounted) sum of

quasi-rents to the price of the machine, i.e.

- TE'"{ £ (x,(a,t)) - (a,t)/aldt + 7 if y/ate Ftat
p = T P 2 x2 a, sz a,t a . l(xl(a,t)) - le(a,t are

for given a(1),
where xi(a,t) is the effective labor-capital ratio in the ith sector
at time t for a machine of type a.

It is easy to see that in a competitive economy the social rate of
return is equal to the private rate of return; somewhat heuristically, we
observe that the amount of consumption foregone in the present period
for a unit of capital goods is given by p (at the margin), while the
value of the extra output at the time of this unit of capital good is
given by

p{f2 (x(a,t)) - xz(a,t)f;(xz(a,t))} while it produces good 2
£, (xl(a,t) - xl(a,t)fi(xl(a,t)) while it produces good 1

but in a competitive economy, we have observed that

] L
fz(xz(a,t)) = w/a and fl(xl(a,t)) = w/pa
Substituting, discounting, and integrating, we obtain identical expres-—

sion as we obtained for the private rate of return.

It should be observed that in the steady state the rate of return

is constant. We have already noticed that in the steady state, the wage



rate increases at the rate of labor augmenting technical progress.
Hence w/a is constant. Moreover, since p is constant, it also implies
that the value of xl(a(r),t) is simply a function of t - T, and

consequently, so is fl(x(a(r),t). Hence we have

T-+m
i) {pfz(xz(az(t),t) -
T

wxz(a(r),t) } oTt
a(T1)

P dt

U@,y - FEm.0 e g,
T+m a(t)

m - ©
[pEy(xy (@ (@), ) - MX(al0) T g 4 p (e (x (a0),00)
o a(o) m

-wxl(a(Olt) } Tt
a(o)

dt
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Finally, we wish to show that as s increases, the rate of return decreases;

i.e. along the so-called pseudo-production function of steady states
there is always diminishing returns in the Samuelsonian sense.

To see this, we recall that
dm/ds > O

Since dxz/dm is negative, and dxldm is negative, as s increases,
both Xy and X, decrease. But since dp/ds is positive, it follows that

r, the rate of return must decrease.

Since T+m -rt © —rt
p= [ rz(a(T),t)e at + [ rl(a(r),t)e dt
T T+m

and since at fixed r, the right hand side is unambiguously decreased,
while the left hand side is increased, and since the right hand side

is a declining function of r, r must decrease as s increases.
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VI. Machines not freely transferable between sectors.

So far, we have examined a very general model in which
(1) capital and labor are freely substitutable; (2) machines are
freely transferable between sectors; and (3) the production functions
for machines is different from that for consumption goods.

Because the first two assumptions are open to serious question,
it would be worth our while to briefly discuss how the analysis changes
when they are dropped. And since much of the literature in this area
uses the Ramsey-Solow assumption of the same production function
in both sectors, for comparative purposes, we present that case too.

In the case where machines are not freely transferable between
sectors (although, within each sector, capital and labor are freely
substitutable) there is no problem of the allocation of machines.
Output on machines in a given sector is a function only of the labor
input into that sector, as we shall shortly show.

Allocating the labor over the machines efficiently, we have the
usual condition that the marginal product of labour on all machines

must be the same and equal to the real wage:

49, af;'(x(a))

af;'(x(@)) = w

50. af,'(x(a)) af,"£(x (a)) w/p
For given a, it can easily be shown that x is a strictly decreas-

ing function of the real wage:
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51. dx;(a)/dw

1/af;" < 0

52, dxy(a)/dw = 1/af," < 0

Thus we may write x(a) as a function of the real wage

53. x;(a)

¥y (w)

54, x,(a) ¥o(w/p)

Knowing all x(a), we can immediately find L(a), given K(a):

55, Lj(a) = ML ¢1 (w; a, K;(a))
a

56 Lp(a) = X2(@Ka(@) _ o /. 4 Ka(a))
a

We can then aggregate immediately to find the total labor

demanded as a function of w and p.
t

52 Ly =/ ¢1(wia,K;(a))da = L;(w)
t
58 Lz =/ ¢2(w;a,Ki(a))da = Ly(w)
- 00 p

Similarly, we can now write the output of consumption goods

and capital goods, respectively, as a simple function of w and p.

t
59. Yl_ = f fl(xl(a))Kl (a)da

t
= [ f(1(w))K;(a)da = Y (W)

t
60. Y2 = [ fz(x?_(a))Kz(a)da

t
= f°° f2(V2(w/psa)Ky(a)da = Yo (w/p)

and it is clear that output of a commodity is a monotonically decreas-

ing function of the real wage.



The full employment constraint,

61. L2 + Ll

provides an implicit equation between w and p

=L

62. p = w(w)
As w increases, L1 decreases, and to maintain full employment, L2
must increase, which implies that w/p must decrease, which in turn
implies that p must increase (more than w) i.e. w' > 0.
And consequently, we also have our production possibilities schedule
Y, (w) = P(Y,(w/p)) P' <0
And because of the always present possibilities of substitution
between capital and labor, P" < 0.
The rest of the analysis follows exactly as above, section 4.
There remains the important question, which makes no difference
to the static analysis presented thus far, but which is crucial for the
dynamic analysis to which we now turn: the allocation of new investment.
In a competitive equilibrium, capital goods must be allocated
to the two sectors in such a way that the discounted sum of the stream
of quasi-rents must be equal for new capital goods going into each
sector (and equal to the price of the capital good.) The rate of
interest at which the stream of quasi-rents is to be discounted is a
simultaneously determined variable of our system. We shall confine our
analysis to steady state paths.l Along such paths we have then
(and in particular for Tt = 0)

e <]

63. p =17/ {sz(xz(a(f),t) - wx,(a(1),t)/a(n)} e Tt 4
T

1By steady state path we mean outputs of consumption and capital
goods growing exponentially, price ratio, interest rate, constant, wage
rate growing exponentially, etc.
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64. p = f {£1(x1(a(t),t) - wx)(a(o),t)/a(t}e ™" dt
T

In addition to these two ''capital goods' allocation equaiions, we have
two labour allocation equations (real wage equal marginal production
equations).

65. w/p = a £'(x5(a))

66, w = a £'(x;(a))

If b of the capital goods go into the capital goods sector, and 1-b
into the consumption goods sector, then we have, in analogy to equation
45, the following relation

[o]
67. 1 =b [ £5(xy(a(t))e @I 4¢

We also have the savings-investment equation

68. Yl/Y2= gl—SZB

a

and an equation for the output of consumption goods, which we can write

most simply if we divide by the output of capital goods:

° (atu)
69. Y,/Y, = (1-b) S f1(x;(a(t))e ™™™E 4¢

To show that there exists at least one set of variables satisfying

equations 63-69is fairly straightforward. We consider a mapping from

(w , _p ) onto itself defined as follows:
wip wip

Equation 68 defines a one-to-one continuous mapping from (w/w+p,

p/w+p) to x(a) for all a, and67 defines a continuous one-to-one mapping
from the set xp(a) to b. 66,68 and 69define a continuous mapping from
b, x5(a), and w/p to w and x)(a) for all a. (To see this, observe that,

as we noted in our earlier analysis, given ome x;(a*), by 66 we know
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xl(a) for all a, and moreover if xl(a*) increases, xl(a) increases.
Consequently, if xl(a) increases (for any a) for our given b, Yl/Y2
increases in 69 and hence p increases (from 68). But from 66 as

xl(a) increases, w decreases, and hence for our given w/p, p decreases.)
Since for given xl(a) and w the left hand side of 64 is a monotonically
decreasing function of r, 64 defines a continuous mapping from p,
xl(a), and w to r. Since, for our given w/p, we have already defined

a mapping from w/p to w, we immediately have a mapping from w/p to p
(defined by p = w/ (w/p)). Then 63 defines a continuous mapping from
xz(a), p, W, and r to p'. Finally, we have a continuous mapping from
w and p' to {(w/wtp)', (p/wtp)'}.

Since w > O, p 2 0, we have a continuous mapping from a compact
space onto itself, and hence we know by the Brouwer fixed point theorem
that there exists a fixed point; and the existence of the fixed point
ensures that there exists a set of values w¥, p¥%, Y1/Y2*,

xl(a)* xz(a)* (for all a), r* and p* satisfying equations 63 to 69.
Unfortunately, there may exist more than one solution, as detailed
investigation of the properties of the model will readily reveal, or

as the Cobb-Douglass case investigated by Kurz serves to illustrate [3].
The kind of general restrictions required in order to ensure this
remains an open question. In order to obtain a better understanding of
what is involved, we shall now turn to a special case of this model,

the fixed coefficients technology.

7. Fixed Coefficients and Number Substitution

This is the most extreme case--and perhaps the most realistic--
in which neither substitution between capital and labor nor switching

of machines from one sector to another is permitted. In a sense, this



case involves the fewest economic decisions. We first investigate the
static model. The important point to observe about the fixed coeffi-
cients model is that machines actually become economically obsolete.
In the previous models, although they are used much less intensively
as they grow older, they are never thrown away.

The production functions can now be written as

70. Q(a) = min X1, a1l
[ -ut
1 e

71. Q,(a) = min (52, 3Ll

c2 e-ut

If we fix the real wage'; in the consumption goods industry, and
;ﬂ;.in the investment goods industry, we immediately determine the

return per unit of machine, if a machine is used to capacity:
_ = ut
72. rl(t) = l/cl[l we /al]
= ut
73. rz(t) = l/cz[p - we /az]
so that if

74. w < eut/al

75. ¢ > In w + 1n a;

Kl(t) is used,
and if

76. w/p < eu':/a2
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or

77. ¢ > In w/p + 1n a

2 = t_ (w/p)
u ©2

then Kz(t) is used.

Following this, output of consumption goods and investment goods

may be calculated:

t
78. Yl(t) = [ 1/c1 K(t)dt
t-to (w)
1
t
79. Yz(t) = f 1/c2 K(t)dt
t-t (w/p)
2
t -ut
80. L,(t) =/ e Yt x(t)dt
t—tol(w) a;¢y
t -ut
81. Lz(t) = [ gL__JKZ(t)dt

toz(w/p) a,c,
and, as in the previous case, since

82. dt / dw > 0
°1

dt°2 / d(w/p} > 0

and the integrand in 78-81 is nonnegative.
L1 and L2 are both decreasing functions of the real wage,
w and w/p, respectively.

And imposing the full employment constraint

<

83. Ll(t) + L2(t) = L(t)

two cases may be distinguished:
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(1) where for no non negative value of w and w/p, the equality

sign in 83 holds. This implies that the economy is a labor surplus
economy, with wage rate equal to zero. In that case, the production
possibilities schedule takes on the shape depicted in 13, the same
shape that a neoclassical production function with elasticity of
substitution equal to zero with homogeneous capital and surplus labor
would yield.

(2) where for some non negative values of w and w/p, the equality
sign in 83 holds. In that case, if we specify w, to have full employ-
ment w/p is specified, and hence p. And in fact, as w increases,

w/p must decrease, which implies that p must increase. But as w is
increasing, the output of consumption goods is going down, and as

w/p is decreasing, the output of investment goods is rising. Hence.
we obtain the more usual production possibilities schedule: concave,
with decreasing marginal rate of substitution.

It is curious though not surprising that in this, the most
restrictive case examined, we obtain exactly the same shape for the
production possibilities schedule that we do in the least restrictive
case, that examined at the beginning of this paper.

In the dynamic version of this model, we shall again limit
ourselves to examining steady states. It can be shown, although we
shall not take the time here to do so, that in the steady state the
age of obsolescence of the two different kinds of machines remain
constant.l Our allocation of machines equations, corresponding to

63 and 64 which require that the discounted sum of quasi-rents

lAlternatively, we can just assume this as one of the properties
of our dynamic equilibrium paths.



Figure 13

Figure 14
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on each of the two kinds of machines equal that price of machines,

become (for machines built at time O, for instance

" - __um-rm
84. p = 1/c, / [p - w.:,em:/azle-rt dt = 1/c,[p(l-e rmy _ v (1-e )

° r az(r-u)

1 - - __uq-rq
85. p = l/cl s [1- woeut/al]e rt 4t = 1/c1[&_e rdy _ Wo(l e )

(o] r al (r_u)

Our real wage equal marginal product equations now become (for
time 0)

-um
86. wolp e /a,

87. w = euq/a1

In analogy to equation 67, we have

o
88. 1=05>b /S
-m

e(n+u)t e-m(n+u)]

dt = b [1 -

¢y ¢, (n+u)

Our savings-investment equation remains unchanged,

89. Y1/Y2 = (1-s)p/s

Finally, we have the equation for the output of consumption goods,
normalized on the output of investment goods:
o

90. Y /¥, = (1-b) 1 J (ntu)t de=_1-D 1 - -a(ntu)
¢, T4 c; (ntu)

It is easy to show, along the lines of the proof used in the

]

previous section where the Inada conditions were satisfied, that there

37

exists at least one solution to this set of equatioms. But unfortunately,



multiplicity of solutions cannot be ruled out in general.1 (Neither,

I may add, have I been able to show that there necessarily may exist
multiple solutions). In one case, it is possible to show without too
much difficulty that there is a unique steady state: that where p = 1.
In this case, the model becomes very similar, although not identical,
to the Solow, Tobin, Yaari, Von Weizzacker one sector fixed coeffi-
cients model, the difference arising from the non-shiftability

assumption [7].

8. Identical Production Functions in the Two Sectors

The Ramsey-Solow case, where the production functions in the
two sectors are the same, may quickly be disposed of. Again, there

are no allocation problems, and the price ratio is equal to 1.

1 .
The several equations can be reduced to three in the unknowns
m, g, and r:

1l - e-rm - eum _e-rm -1 =0

c,t c2(r-u)

a, (e-um + uq _ e-rq - um + uq) - 1 (e-um _ e-rq -um +uq) _
a,a,(r-u)
a,cqr 172
1l - c, (ntu) - e—m(n+u) -q(n+u) (1-s)a,c (e-uq +um)
2 l-~-e _ 271 - 0
] - omn -mu (nt+u) sa,

Many of the properties of the equations, particularly the first two,
are easily derivable. But the essential difficulty arises in the
third equation, in determining dq/dm.

38
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The production functions in this case may be written

91. Yl

Fl(k,aLl) = F(K, aL)

Yz = FZ(K,aL

Total output Y=Y1 + Y2 can be calculated

2) = F(K9 aL)

t
92. Y = / f£¢x(a))K(a)da

-0

While the labor employment may be simply written as

t
93. L = f x(a)/a K(a)da

.00

We have yet to determine the labor intemsity (a) in 92 and
93. This is provided by marginal productivity theory and the full
employment constraint:
9. w=a f'(x(a))

For any given a,

95. dx = af"(x(a)) <O
dw

and from 125
t
96. dL _ J f'(x(a)) dx(a) K(a) dt < O
dw -0 dw
As the wage increases, employment decreases. But the full employ-

ment constraint

97. L = L(t)
then implies a specified value of the real wage (see Figure 5)
and this real wage, in turn, determines x(a) in 94, and this in

turn (in 92) determines the level of output.



L(t)

Figure 15
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9, Extensions to Three Commodity Markets

The above analysis extends in a straightforward manner to
three or more commodities, each produced by a linear homogenous
production function

Qi = g{K(a), aL) = gégéa))K(a)

We again impose the restriction that there be no factor intensity
reversals. In the case of more than two commodities, this means
that if at any given ¥, x; > xj, then X > xj for all %, And if
X, = xj for any ¥_then x, = xj for all ¥, and hence we may consider
Qi and Qj as the same commodity. We can then construct a complete
hierarchy of factor intensities. Then, by exactly the same reasoning
as in section 2, it is clear that the most labor intensive commodity
has a steeper slope (on the r versus a graph) than any other commodity,
and hence, for a given w and p, all machines of vintage greater than

a‘l

are allocated to the most labor intensive sector. Now eliminate
the most labor intensive sector, with its accompanying machines, from
the analysis. Then over the range of the remaining machines, and

for the remaining commodities, it is clear that the next most labor
intensive commodity will have the steepest slope, and hence all
machines of vintage greater than a'" but less than a' will be allo-
cated to this second most labor intensive sector. And so on.

Thus we have shown that there is a complete hierarchy of the
allccation of machines, the newest to the oldest going from the
most labor intensive to the least labor intensive commodity.

Of course, for any given w and p, a commodity need not be

produced, i.e., if we denote by a: the oldest machine for which

ry > Iy and r; > r,, a, may be '"newer' than the newest machine in

41



existence.

Similarly, if a, is the newest machine for which T > T,
and T > rj’ ay may be below the lowest a in existence. But as
in the previous case, by adjusting w, we increase all the a
proportionally. In the simpler two commodity case, this means, of
course, that we can move a (no subscript needed since there is only
one "separation" point) into the feasible range, and both will be
produced. But, for given Py and pj, we may increase w, and moving,
for instance, ay into the feasible range, but this may move a; out of

the feasible range. But, by adjusting the relative prices, we can

bring all (ai, a., ak) into the feasible range.
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CHAPTER II

ACCUMULATION IN A LEONTIEF-SRAFFA ECONOMY
AND THE SWITCHING OF TECHNIQUES

Introduction

We consider an economy with a finite number of commodities, n.
Each of the commodities can be produced by any one of a set of pro-
cesses.1 Each process is characterized by the inputs of the other
commodities and labor : required to produce one unit of output.2

A given technology of the economy is denoted then by a (1 + n) xn
matrix, where each column is a process for producing one of the n com-
modities.

Corresponding to any technology there is a set of real wages for
any given (feasible) rate of interest, i.e. for the technology (fg),
the price vector is simply derived as .

p=wa(l+r)+pA(L+r)orp=a+n- U+ a1,

provided that r < 1 - i* where A* is the largest characteristic root
of the A matrix. A

The Samuelson non-substitution3[2,8] theorem states that

corresponding to any interest rate, there is a technology which unam-

biguously maximizes real wages, i.e. for some technology

For the most part, we shall only consider cases where there are
a finite number of such processes, but in section 2.e we shall consider
an alternative restriction.

2We assume no joint products and only one primary factor (labour):
obviously, most of the results will not carry through if either of
these assumptions is violated.

Here as elsewhere numbers in brackets refer to references at
end of chapter.
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£ P for any j # A :

In general, one might expect that as the interest rate changed,
once we "discarded" a technology, we would never return to that
technology; i.e. if A is the ''chosen" technology at interest rate rj,
and at some r, > r), B becomes the '"chosen" technology, one might
not expect that at a still higher interest rate, A again becomes the
chosen matrix. Such however is not the case; Mr. Champernowne [1]
as early as 1953 presented a counter example. The possibility of such
"perversities'" was independently discovered by Ruth Cohen [6] (and
hence the popular name "Ruth Cohen curiosum") and Piero Sraffa [10].

More recently Mr. Levhari has attempted to show that in fact
such a perversity is indeed impossible. The single counterexample of
Champernowne was of course enough to disprove his contention. As Dr.
Hahn and Dr. Mirrlees have pointed out, three errors, each of which

vitiates the proof, led Mr. Levhari to the untrue-theorem.2

<€ denotes no p; > Pi and at least one i, ¢ Pz < Pj

2The errors are the following:

1. In the beginning of the proof he multiplies both sides of an
inequality by the matrix AI- A; although the inverse is non-negative,
it is obvious that the matrix AI - A is not.

2. He asserts by analogy to the Von Neumann model that one can
always find a semi-positive vector x, such that (if A and B are non-
negative matrices), Ax-Bx is either semi-positive, semi-negative, or
zero. Although it is true that one can always find a vector x and
a scalar z such that Ax-zBx has the required properties, the statement
that for z = 1 there exists a semi-positive vector (or semi-negative)
does not follow (and in fact, is not true).

3. Even if one can find the required semi-positive vector x,
such that Ax-Bx=0 (identically), one may obtain absolutely no infor-
mation thereby; consider the case where A-B has some zero columns
(i.e. use the same process for some commodities) then letting these
components of the vector which correspond to the zero columns be
positive and all other components equal to zero, one obtains a
vector (A-B)x = 0.
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In these notes, I should like to consider the two questions:

1. What can we say about the conditions under which the perversity
is possible (or impossible)?

2. What implications does the existence of the Champernowne-Cohen-

Sraffa curiousum have for the pattern of capital accumulation and

the valuation of capital?



Part 1

The Possibility of Multiple Switches

a. Introduction. It will be convenient in this sectiomn to
introduce the following definitioms.

A Direct Switch is a case where the technology changes from
some matrix A to some matrix B and back to A (without any other
intervening technologies).

In the case of a (General) Switch, of course, there may be any

number of intervening technologies.

Most of the results we have obtained are about direct switches,
but the theorem presented in the next section and the theorems pre-
sented in section 2.e are general.

b. In this section, we shall show that if there is a switch
from A back to A with technologies B, C.... intervening, then none
of the intervening technologies can have any commodity produced by
an unambiguously less capital intensive process than in A.

One process is unambiguously more capital intensive than
another process if it requires no less of any commodity than the
other process and more of at least one commodity (to be used, the
more capital intensive process must require less labor.)

The simplest proof of this proposition is as follows: we know
from the constructive proof of Levhari of the non-substitution theorem
that if a process reduces the cost of production of one commodity it

reduces the price of all.l

1 L. .
If the matrix is not indecomposable, replace the word ''reduces"

with "does not increase the price of any other commodity and may
reduce the price of some other commodities."
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Consider the "initial" change in price of the first commodity
when a less capital intensive process is used to produce it, leaving

all other activities and prices unchanged,

Apy
1+r

Apiann' + (@ 1-a1") + p1(ajy1-a;1') + p2(ajz-ajn') + ps3ayz-a;z')...

or

sp1= la 1= a1’ + pi(anr-an1') + pa(aiz-aiz’) + palaiz-aiz') ...l

1 ay;

1+r

All the terms in the numerator of the right hand side are strictly in-
creasing functions of r, and the denominator of the right hand side is
a strictly decreasing function of r; hence there will be only one
value of r for which Ap; is zero. Since if, and only if, the
"jnitial" change in price is negative will the less capital intensive
process be used, below this r, the capital intensive process is used
(exclusively), and above this r the labour intensive process is used.
(Note that the proof does not depend on the other coefficients of the
technology, provided, of course, that they yield a viable technology;
the proof depends only on the fact that p is an increasing function of r.)

An immediate corollary of this theorem is that if A switches
back to A with intervening technologies B, C..... then there exists
no activity levels at which any of the commodities can be produced
which lead to any of the intervening technologies unambiguously
requiring more capital than technology A.

The force of this theorem is that if we can look at any commo-
dity, or any group of commodities within the economy, and say that in

one technology that group of commodities is produced with a more
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capital intensive process than in some other technology, then the
entire technology may be said to be more capital intensive in the
sense that it will only appear at lower interest rates. Or, to put
it still another way, switching can only occur if there is no
commodity which uses an unambiguously more capital intensive process
in any one of the intervening matrices. If, as seems realistic,
there are some possibilities of substitution (e.g. a "machine" may
be worked 8, 9, or 10 hours a day, the other input requirements
remaining fixed) then switching cannot occur.

c. Direct switching impossibility theorems.
Theorem c.l. If A-B is non-singular, then direct switching cannot
occur. Proof. At a switch point

(1+r) (pA + ao) =p,=Pp "= (1+r) (pB + bo)
or

1. P, (A-B) = b° - a

If A - B is nonsingular, this means that

2. p, =G, -a) (A-B

There is at most one solution to this equation, since the right
hand side of the equation is a constant, and the left hand side is
monotonic in r (i.e. every element of the vector P, is monotonic in r).1

An immediate corollary of this result is that if A - B is diagon-

ally dominant, or quasi-diagonally dominant, then direct switching is

lIt should be observed that in the usual case, A - B will be
singular, since for at least some commodities the same process will
be used in the two technologies.
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impossi.ble.1

A second set of conditions under which direct switching is
impossible can be derived as a corollary of the theorem presented
above in section 2.b:

Theorem c.2. If A and B are two technologies, such that there exists
a set of activity levels, represented by a semi-positive vector x,
such that (A-B)x > 0 or (A-B)x s O, then there can be no direct
switching.

(A-B)x 3 0 or (A-B) s 0 says that there is a subset of commodi-
ties which can be operated at some activity levels such that the capital
requirements of this subset are unambiguously greater (less) in A than
in B. But if this is true, then we know that there cannot be any
double switching, direct or indirect.2

Further insight into what is entailed in a direct switch can be
gained by viewing equation 2.1. Pa(ArB) = bd' a, as a transformation
from n dimensional Euclidean space into itself. If A and B use the
same processes for producing m commodities (and the remaining n-m

columns of A-B are linearly independent) then the rank of A-B will

luan n x n matrix A has q.d.d. (a quasi-dominant diagonal')

1f (1) there exists d, > 0 such that dj|ajjlazi#j dilaij|(j=l""’p)’

and (2) when aij = 0 (given jeJ and i ¢ J for some set of indices J),

the strict inequality holds for some jeJ." A q.d.d. matrix is non-
singular. L. McKenzie, "Matrices and Economic Theory,'" in Mathematical
Methods in the Social Sciences, 1959, (Stanford Symposium)

2An alternative proof is as follows: Assume that there were two
switches, at r and r'; then p(r)(A.-B)=b° -a and -p(r')(A-B) = ao-bo.

Adding, we have Ap(A-B)=0, Ap strictly positive. But for any matrix
D, either xD=0, x>>0, or Dy 2> O has a solution. Hence, we have a
contradiction.



be n-m, and there will be a m dimensional Euclidean subspace, Vm,
in the space of p satisfying p(A-B) = bo- a. If there is to be
double switching, then there must exist two distinct interest rates,
r and r', such that pa(r) and pa(r')e v,

What does this condition require, and is it likely to be
satisfied? Let us take the: Sraffa example of an n commodity world in
which there is only one technique available for n-1 of the commodities
but two (or more) alternative techniques for the first commodity.
Then p(r), which is a curve in n-dimensional space, must intersect a
particular straight line in the same n-dimensional space at two
distinct points. It is misleading to draw (as Sraffa has done) a two
dimensional projection of these two lines, for they may very well
cross several times, while the actual lines in n-dimensional space
do not intersect more than once.

We shall now state and prove a set of explicit conditions on
the technologies which must be satisfied if there is to be direct
switching between two economies which differ only in the process they

use for one commodity:

Theorem c.3. If the matric A-B is of rank n-1, then product of the
first row of A-B [less its zero (first) element] and the inverse

of the n-1 x n-1 reduced matrix derived from A-B by eliminating its
first row and column must be strictly negative if there is to be
direct switching.

We have, as before

[}
o
1

0

p, () (4-B)

(o]
]
o
)

w

pi(r)é + P



where $' = (p2 .... pn)
é is the first row of A-B less its first element, i.e.

Alz-Blz’ eeeecsescsce o Aln—Bln

?

c¢' is the cofactor matrix of A;;-Bj;
Hence

B¢ = (b-a) - pi(r)e

P o= (a)dt - p (o

The left hand side is a monotonic increasing function of r. Every
component of the right hand side vector is monotonic. Hence, if the
left hand side is to equal the right hand side at more than one r

the right hand side must be a monotonically increasing function of r.

AN

- p1 (®ec™™ >0

]
But p1 (r) >0

A~-1
Hence cec < 0

(By assumption A-B is of rank n-1. Hence ;-1 must exist).

These conditions provide us with what would seem to be fairly severe
restrictions on the A-B coefficients, especially for larger matrices.

For o two by two matrix (an economy with two commodities),

c = ajp -b12 =)

and o 1= 1 =1

azp-bz2 c2

1Analogous conditions can be derived in a straightforward manner

for cases where more than one industry uses the same process.
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Hence, a necessary condition for a two commodity technology is that
one of the matrices be more own-commodity using, while the other
matrix be more other-commodity using.

One more condition may be derived for the two commodity case:
it can easily be shown that for technology A, the price of one

commodity will be rising more rapidly (at all times) than the price

of the other commodity.l
We require at a switch point
p(A-B) = b -a,
and if there exists two switch points, then
p (A-B) = 0
Let us choose our units so that at the switch point, with the

lower rate of interest, p; = p>. Then, except for the singular case

1
-1
p=a, (In-A)7" = (a01’ aoz) A-ass -ay; AT - A
-ay2 A-ajz
pp = 2t 7822 Y 35,3, -y
AT - A D

p, =N -N D

D D D

- ' = I '
131 P, NI N}
P P N, N,

Since D > 0, for A < A* (where A* = min [A;*, Ao*], where A;* and
A2* are the Frobenius roots of the technologies), for P; to be positive,
Ni must be positive. Hence

aol - a02

-3, o+ -

891 assy aozalz aozk a11+a01321
2 2

az) + ajpazz- a,

2 s - +
z 0 a allaol

2
ao1 al12¢ 0
independent of A.
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where the two commodities have essentially the same production
function, either commodity one or commodity two will have its price
rise at a faster rate with increasing r. For convenience, we will
call the commodity with the faster rate of increase of price commodity

one. Then, it is clear that Ap; > Ap. But from what we have

already shown, if there are to be two switching points

apy (a1; -by1) + apa(aiz - bi2) = 0
and
Apy (azy - ba1) + paCazz = bz2) = 0
so that
' lay1 -bual . e,
lai2 =b1a| fp2

lazy -b21| = le > 3
EVPIE-PPY fp2
In other words, if commodity 1's price rises faster than

commodity 2's in, say, the A technology (a property which depends
only on the A technology), then the difference in the production of
commodity 1, between the A technology's use of commodity 1 and B's use
of it, must be greater, in absolute value terms, than the difference
between A technology's use of commodity 2 and B's use of it in abso-

lute value and conversely for the production of commodity 2.

d. The construction of examples
In spite of all the restrictions which we have seen have to be
satisfied, it is not difficult to construct examples. Let A be an

arbitrary Leontief-Sraffa matrix. Then our problem is to find a
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matrix B, which uses the same processes for the (first) m
commodities, which satisfies

pa(r1)(C) =c

pa(rz)(C) =c,
C=B - A

We have 2 (n-m) equations in our (n-m)2 unknown Cij and n-m unknown
labour requirement differences, and hence it should not be hard to
find a solution in general.l (Since (n—m)2 + n-m > 2n-m if n-m > 1)

Let our technology A be characterized by

Then AI-A = A -.2 -.4

p=(1,2) 3xr.2 / (-2 -4 - .12

At A=.9 A= .8
p = (1,2) iy .4 p = (1,2) .3 b
‘3 .7 /.16. .3 .6 / .06
= (1 , 1.8) .9 , 1.6
.16 .1 .06 .06
Then
1 c; + 1.8 _ = .9  +1.6
.16 .16 ©2 .06 1 06 °©2
-8 = 37
ey 21
1 .05 b
.2 .67 = (o)
.3 .29 B

1The proviso in general must be inserted because it is possible
that pa(rl) = zpa(rz), i.e. corresponding to two interest rates, the

commodity price ratios are the same; and in that case, there will be
no solution.
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Hence, we have constructed an example of a switch point at
A=.9 (R=1/9) and X = .8 (r = .25)
Thus, we have provided a methodology for constructing perverse

examples.

e. Differentiable Production Functions

Thus far, we have restricted ourselves to cases where each
industry chooses the process with which it produces from a finite set.
Now we wish to consider a case where there is an infinity of processes
for producing each commodity, and the alternative techniques may be

"related" to each other by the following type of functional relationship

l-= Fi(aoi’ @345 e ani)

where Fi is a well behaved differentiable function.l

A switch implies that corresponding to a given state of the
technology A there are at least two distinct interest rates. Hence,
if we can show that, under the above conditions, there is a unique r
corresponding to a given technology, then we will have shown that

switching (direct or indirect) is impossible.

Theorem e.l. If the (diagonal of the) matrix A is non-hollow, there
is a unique r corresponding to the technology A.

This follows immediately from the fact that the marginal product
of good i1 in producing itself must be equal to 1 + r, if good i is
used in producing itself.

This theorem states that if any commodity is used in producing

itself, there cannot be switching.

lAs should be clear as the amalysis proceeds, it is not necessary
that every industry be able to choose from such a set of processes for
many of our results to go through.



We shall now prove a stronger theorem:
Theorem e.2. If the production functions of the economy are well-
behaved, differentiable functions, then there is only one r corres-
ponding to a given technology.

If the technology has an indecomposable matrix, then we can,
for any two commodities, i and j, find a set of k's such that

aikl’ aklkz, cecee akzj are all greater than zero, and conversely,

we can find a set of m's such that aj , @ cee. @ 4 are all greater

m, mlmZ v

than zero.

If a; # 0, we know that

i
Pi/Pj(1+r) = marginal product of gocd i in producing good j=M§

Hence, the existence of such chains implies that for any two commodities,

we can find

k k.
z _ i 1 z

Pi/Pj(l"'r) -Mk Mk s o0 00 Mj

1 2
and

m m
v _ ] 1 v

Pj/Pi(l+r) - Mml Mmz s e ee s Mi

The right hand side of each of these equations is independent of r.
Assume that the matrix were used at two different interest rates,

r and r'. Then

Pi(r)/Pj(r) a+n? = Pj(r)/Pi(r) )’ = 1
Pi(r')/Pj(r') (i+r")2 Pj(r')/Pi(r') (14 ")V

But this implies that

z2+v z+v

(1+r) = (1+7)

which in turn, implies that
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1f the matrix is decomposable, we can partition it so that

AllBlz ee s oo

0 App ceccee A.. indecomposable.

ii

0 O
If A;; has more than one element, it follows that there will be only
one r consistent with it (by the same reasoning by which we showed
that if the whole matrix is indecomposable, there is only one r
consistent with it). If Ajjhas only one member, and it is non zero,
theorem e.l applies. If A1 has only one member, and it is zero,
then (since "nothing will come of nothing"),1 a y is positive from which
it follows that the wage is equal to the marginal product of labour in
producing commodity 1 (which is independent of r, for the given
technology) times the price:

1 = a number x aol(l + r)

Hence there can only be one r, and our theorem is complete.

Accordingly, we have shown that if there are "enough' different

processes switching camnot occur.

lLear, I, ii.



Part II

Value of Capital

For a long time, the possibility of capital per unit of labor
moving in the same direction to the rate of interest has been well
known, (by, e.g. Wicksell). This meant that when an economist in
attempting for instance to explain the higher wage in one economy in
comparison to the other, made a statement like, ''the higher wage economy
has more capital per unit @f labor" he did not mean it in a value
sense, but in a real sense. And accordingly, the K in the neoclassical
production function referred to the real capital stock.

The force of the switching possibility is, of course, that it is
impossible in a real sense to say that one technology has a higher wage
rate because it has a more capital intensive technique.

But note that switching can only occur in those cases where by
looking at the technologies, one cannot say that one technology is
more capital intensive than another--or any set of commodities is
produced by a more capital intensive process.

If such switching possibilities were of any importance in the
real world, one would lose a very neat way of talking about the world,
a very convenient shorthand--although in a wide class of cases omne
could, with caution, still use the old "mode of thinking." 1In
general, however, one would have to enumerate, for instance, the
various kinds of "capital goods'" used in the production of commodities.

But Mr. Pasinetti has taken this opportunity to discuss the

general problem of capital valuation. He asserts that
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" ., . . we could easily construct cases with as many

techniques as we please, in which . . . an increase in the
rate of profit entails sometimes a switch to a lower total
value of capital per man and sometimes a switch to a
higher total value of capital per man."
In the remainder of this section, we shall attempt to ascertain more
precisely how the value of capital (per man) changes with different
interest rates.
For convenience, we express everything in per capita terms;
then full employment ensures that
aox(t) = 1
The value of output at time tx may now be simply written as (letting
the money wage equal 1)
p(t)x(t) = (1+r) (p(v)Ax(t) + 1)
"The value of net profits is
r(1 + pAx)
and the value of net output is
1 + r(1 + pAx)
Net savings must equal net investment,
s(t) = g(p(t)Ax(t) + 1)
We assume that a certain fraction of workers' income is saved, S’

and a certain fraction of capitalists' income is saved, S.» so that

Sy + S I (1 + pAx) g(pAx + 1)

or

(1 + pAx) (g - scr) s

w
since 1 + pAx > 0, this means that if s, = 0, g = scr, but otherwise,
g > S T If g = scr, to find the value of capital we shall have recourse

to an alternative method of solving for the value of capital per man



which will be described below, in the discussion of a model with wages
paid at the end of the period. (See page ). If g # s.r» we can easily

solve for the value of capital per man

PAXx = s_-g + s T = swW -1

w
— g - s r
g = s.r c

and the value of output per man
pX = (1+r)sw
g - 8T

It is easy to see that, for fixed s, and r, the value of capital

per man increases with increasing Su (as one might expect) since

3 pAX = 1
] S g-s r

while for fixed Sy and r, the value of capital per man increases with

increasing s, (also as one might expect), since

O pAX = swr
F) s, (g-Scr)2

But what is somewhat unexpected is that for fixed Sy and Se» the value
of capital per man increases with increasing r, since

S S

J pAx = w_C
F) s, (g-scr)2

We shall now investigate the case where wages are paid at the end
of the period of production.
The value of gross output is now (in balanced growth) in per

capita terms
px = (1+r)(pAx) + 1

The value of net Qutput is now

1 + rpAx
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Setting savings equal to investment, we now have

scrpr + S, = gpAx
or

pAx (g - scr) = s,

Since pAx > 0, this means that if Sy = 0, g = S T» but otherwise
g > scr. In the latter case,

pAX = Sw

g-s T

which is exactly one greater than the value of capital per man derived
in the previous case. Accordingly, all the partial derivatives remain
unchanged and all the qualitative properties are identical.

The value of output per man can easily be derived by substituting
the derived value of capital per man expression into the value of

output per man equation:

A4Sy + 1

-sS r
& c

We now turn to the problems which arise when S, = 0.
One method of solving for the value of capital per man in this case
is to introduce explicit demand conditions.

Since we are interested in balanced growth paths, we can confine
ourselves to straight line Engels curves (logarithmic utility functionms.)

For workers, this means that
P; ()1, (p(v)) = mi(p(t))

where li is the consumption of good i at time t, given prices p(t)

(Income for workers being fixed at 1.) mi(p(t)) is then the proportion
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of income spent by workers on the ith commodity, given prices p(t).
m(p) is homogenous of degree 0. Moreover, since we assume that all
wages are consumed, we have

p1(p) = 1= ZImi(p)
(1(p) is the column vector whose ith element is li(p))

Similarly, we have for capitalists

py(O)n, (p(t)) = q;(p(t)) x profits

where n, is the consumption of the ith good given prices p(t) and
9 is the proportion of profits (as a function of the prices) spent on
commodity i. We observe that

pa=1-s_

where q is the column vector whose ith element is qi(p)
If we define the following matrix
z=a+2®3% 4 @)
l+g l1+g

it is easy to show thatl

p=(4r)pA + a = (1+g)pZ

x = (1+g)Ax + 1(p) + q(p)rpAx = (l+g)Zx

have a solution x*, p*, g%, r*=g*/sc, and a value of capital

p*Ax* = E*x* -1
l+r

As we move from one technology to another, what happens to the

value of capital depends on what happens to p*x*, and there is no

lCf. M. Morishima, "Economic Expansion and the Interest Rate in
Generalized Von Neumann Models,'" Econometrica, 1960, pp. 352-363.



a priori basis on which to believe that p*x* of higher interest rate

technologies is greater or less than p*x* of lower interest rate

technologies, as we shall see more explicitly in the following section.1

This discussion also serves to illustrate two basic difficulties
in comparing values of capital at different interest rates:
1. For any given technology, and given consumption functions, r is
uniquely determined. Moreover, if we admit several technologies,
keeping S, and our consumption functions fixed, there are only a dis-
crete number of interest rates for which the value of capital can be

compared.

2. The commodity bundle of outputs is different in equilibrium for dif-
ferent r. (This is also true in general even if there exist differen-
tiable production functions.)

It may be of interest to note what happens to the value of
capital per unit of output of a given industry, as the interest rate
changes. We shall now show that the value of capital per unit of
output (measured in wage units) increases (decreases) at a switch point
for good i as the labor requirement for good i is greater (less) in
the first technology than in the second.

The value of capital per unit of output measured in wage units
in the different industries is given by the vector

PA

1We could work out similar results for the Leontief model pre-
sented above, in which wages are paid at the beginning of the period.
Note that if we are given demand functions, r will be uniquely deter-
mined, and our comparative equilibrium dynamics statements, about, for
instance, the change in the value of capital with a change in the
interest rate, for fixed s, and S will no longer be meaningful.
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and the change in the value when the technology changes to B is
pB-pA
But from section w, we know that

Hence the ith component of p(B-A), which is the change in the value
of capital per unit of output in the ith industry as the economy
switches from B to A, is equal to boi-aoi, the difference in labor

requirements.
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Part III.

Double Switching and the Steady State Consumption Per-Man Perversity

In the recent discussions on the "switching of techniques" two
different, but related, problems have been raised:

A. Double Switching Perversity: the use of a given technology
at two distinct interest rates with at least one other technology
used as some interest rate in between.

B. The Steady State Consumption Per Man Perversity: a higher
consumption per man in a steady state with a higher interest rate.

Much disputation has arisen over the confusion of these two
problems. Professor Robinson, for instance, in her note "The Badly
Behaved Production Function" [7] asserts that it is the second perver-
sity "that there has been all the fuss about.'" Yet Levhari's paper [2]
over which the recent controversy has arisen, is solely about the first
problem.

The perversities are, of course, related. The existence of the
first perversity is, except in a singular case,1 a sufficient condition
for the existence of the second perversity. In this section I investi-
gate the conditions under which the first perversity is a necessary
condition for the second; for unless it is a necessary condition,
theorems showing conditions under which double switching is impossible
have no direct bearing on the consumption per man perversity.

1. I shall first show that in an economy in which there are only two

technologies, e.g. that examined by Sraffa in Part III of Production

1It is possible that output per man be the same in the different

technologies; see below for a detailed discussion.
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of Commodities by Means of Commodities, the two perversities in a
stationary state are exactly equivalent, i.e. the double switching
perversity is a necessary and sufficient condition for the consumption
per man perversity.

For simplicity, we will initially assume that there is only one
consumption good (denoted by subscript 1), and no growth, so that if we
let x be a column vector representing the gross outputs of the various
commodities, A be the Leontief Matrix for the economy, a the vector of
labor requirements per unit of output, c the level of the one consumption
good and e be the column vector (1)

(0)
(0)
)
)
)

we can immediately write the output equals consumption plus investment

equation as

X = AX + ce
or

c(I-A)-le

"
]

i.e. x is equal to a constant times the elements of the first column of
the inverse of I-A.

But denoting the labor force by 1,

or

-1
ao(I—A) e

Recall that the pricing equation is

p(r) = (l"'lf)ao(]:-(l+1:)A)-1 where
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we follow the convention that the money wage rate is equal to 1.
Hence
-1
p(0) = a_(I-A)
and in particular

p, (0) = a_(1-0) e

Thus we have shown that

c = 1/p1(0) = real wage
the level of consumption for any given technology is equal to the reci-
procal of the price of the consumption good at zero interest rate (for a

stationary state); i.e. the real wage.

We know from the nonsubstitution theorem that at any interest
rate, the technolegy which is used is that which minimizes (all) prices,
so that in particular, at the zero interest rate, of the two technolo-
gies, we use the one with the lower Pps
i.e. a higher c. At the first switch point, then, the economy must go
to a lower consumption per head; if and only if there exists another
switch, from the second technology back to the first, can consumption
per head rise.

More generally, let the growth rate be g, and let b denote the
market basket of consumption goods in which we are interested, and c¢
denote the number of such market baskets.

Then

cC =

1
a_(I-(1+g)a)-1,
But since

p(g) = a (I-(1+g)a) "t

p(g)b = ao(I-(1+g)A)'lb
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so that

c = 1/p(g)b

the level of output per man (in number of market baskets) is equal to
the reciprocal of the cost of one basket at an interest rate equal to
the rate of growth. But at g, every price in one technology exceeds

the corresponding price in the other, so that

p.b > pyb (or <)

A° 7 P
independent of the particular composition of the market basket.1

But now, the first switch point at an r higher than g must entail
a lower consumption per head, and it is only on the '"double switch”
that we obtain an output per man perversity at an r greater than g.

But at the first switch at an r less than g, consumption per head must
be lowered, i.e., we have the consumption per man perversity. This
of course is not unexpected: it is just the Golden Rule.

Hence, although the double switching perversity is independent of
the rate of growth and the market basket, the presence of the consumption
per man perversity depends on the rate of growth, although it too is
independent of the particular market basket chosen. The following
diagrams will help illustrate what is meant. In figure 1, we have the
"usual" technology: one switch only, which occurs at an interest rate
of r*., Then, if g < r*, there is no consumption per man perversity,
since consumption per man falls as we go from the low interest rate
technology to the high interest rate technology; if g > r*, consumption

per man changes perversely at the switch point; and if g = r*, at the

lNote what all this implies for the singular case referred to on
page 1l; the two technologies have the same consumption per man if and
only if there is a switching point at the rate of interest equal to the
rate of growth.
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switch point output per man remains unchanged.

In figure 2, we have a technology with a double switch, at r*
and r**, If g < r*, the switch at r* is normal, that at r** perverse.
If r*<g<x** the switch at r* is perverse, that at r** normal. If
g>r** the switch at r** is perverse, that at r* is normal; if

g = r** or g = r*, consumption per man remains constant.

2. Unfortunately, many of these results do not carry over to economies
with more than two technologies. It is still true that the consumption
per man is equal to the cost of the particular market basket of goods
at prices corresponding to an r equal to the rate of growth. Moreover,
it is also still true that the technique actually in use at that r
unambiguously minimizes the cost of any market basket of goods, and
hence of all technologies has the highest consumption per man (The
"Golden Rule'") and hence it is still true that the first switch at a
higher i interest rate must be normal, and the first switch at a lower
interest rate must be "perverse."1
But, except for these two '"particular' switches (the immediate

adjoining ones) whether or not a given switch is perverse depends on
the particular market basket of goods in question, i.e. on demand
functions. This is because for any two technologies (except the one

actually used) it is not true in general that at r = gz.

Pp(8) > pg(8)  or pg(g) < p,(g) Hence,

because the non-substitution theorem only tells us that the prices for

llf such switches exist.

2If the switch between A and B occurs at r = g, then pA(g) = pB(g)
and if A is used at r = g, pA(g) < pB(g)
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the technology actually used are unambiguously lower than for all
other technologies, it is in general possible to find two market
baskets of goods, b* and b**, such that the cost of b* in A prices is

greater than in B prices, and conversely for b**, ij.e.
p,(8)b* > py(g)b* and p,(g)b** < py(g)b**

and accordingly, for b* a switch from A to B entails a reduction in
consumption per man, while for b** a switch from A to B entails an in-
crease in consumption per man. Thus, in this more general case, double
switching is not necessary for the consumption per man perversity; and
moreover, for economies with the same set of technologies the per man
perversity may or may not occur depending on the market basket of goods
(i.e. on "demand").

Assuming that there is only one consumption good assumes away, of
course, this fundamental difficulty; it is as if we have already speci-
fied the demand function since we are explicitly specifying the market
basket. In this case, we can order the technologies in order of consump-
tion per man, which will be the inverse order of the price of the one
consumption good at an interest rate equal to the rate of growth.
Consider two technologies. A and B which switch at an interest rate
of r'; let us assume that the switch in the consumption per man sense
is "perverse." Then, if r' is greater than g, at some interest rate
between r' and g, the price of the consumption good given by the two
technologies must be the same. This, of course, is a much weaker

requirement than that of a double switch.
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3. At a switch point, what happens to the value of capital per man?
Values in terms of our market basket of goods, b, capital per man is
simply
PAx
pb
Writing the national income identity in two ways, as the sum of invest-

ment plus consumption, and as the sum of factor payments, we have

px = (14g)pAx + cpb
px = (l+r) (1+pAx)

so that
pAx = pbc - (1+r)

r-g

so that at a switch point

pAx - pBy _ ca " S8
pb r-g

Hence, in the usual case of r > g the value of capital per man
(at constant prices) increases or decreases when switching from a tech-
nology which dominates at a lower interest rate to one which dominates
at the higher interest rate as the output per man increases or decreases,

and either is possible. This may be termed the Real-Wicksell effect.

Part IV

Patterns of Capital Accumulation

The exBtence of the two types of perversity raises serious
questions for the "optimality" of competitive equilibrium. If we have
an economy with a double switch denoted by ABA, do we, for instance,
skip the intervening technology if we wish eventually to be in A?

And if so, how can the competitive market perform this feat? Mr.
Champernowne, in his 1953 [1] article where he originally showed the

possibility of double switching, suggested that in fact the intervening
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technology would be skipped and that in the transition two price
systems would exist side by side. If this is correct, can compet-
itive behavior be reconciled to it? If not, what does happen?

1. An Example
Let us begin with an example, by which we can illustrate
all the basic propositions in which we are interested:
a. There exist efficient paths which go through B.
b. There exist optimal paths which go through B.
c. There exist efficient paths which do not go through B.
d. There exist optimal paths which do not go through B.
e. There exist efficient and optimal paths which continually
oscillate between A and B.
f. A competitive economy can skip technologies.

g. In general, only one of the balanced growth paths is

efficient.

To illustrate these propositions, we consider the following elem-
entary example proposed by Champernowne. We consider an economy in
which there exists two processes for producing drink, one of which
requires chemicals and no labor and the other of which requires drink
and labor. The Leontief matrices for these two prucesses may be

represented as follows:

0 1 1/98
A 0 0 B  40/98
1/60 0 0

where the first row are the labor requirements per unit of output,
the second row the drink requirements, and the third row the chemical

requirements. The first column of A represents the production of
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drink, the second column in the A technology represents the reduction
of chemicals.

In other words, the first (A) technology, with a unit of labor
in one period, makes 1 unit of chemical, and then with that unit of
chemical makes 60 units of drink in the following period. B takes
40 units of drink with 1 unit of labor to produce 98 units of drink.

We consider an - economy which initially has 1 unit of chemical
and 9 units of labor available in every period. Neither drink nor
chemicals can be stored. In Table 1 we set forth three alternative
"histories" of this economy. We wish to show that all three paths are
efficient. By definition, an efficient path (along which consumption
at time t is given by ct,) is one such that there does not exist
another path, starting with the same initial conditiomns (along which
consumption at time t is given by c't,) such that

c < ¢ for any t < T
and for which c© = c'* ts T
In other words, if consumption is increased in any period, it must be
decreased in some other period. Consider the first path, denoted CA’
Increase consumption in any period to 61 (say), to do this, we must use
not only the chemical-process (A), since its maximum production is 60,
but also the drink-process (B). But to produce with the drink process,
we must use drink from the previous period as an input, i.e. consumption
of drink in the previous period must be less than 60. Hence CA is
efficient.

To show that C is efficient, we observe that if we increase

ABA

the consumption the first period, to say 21, we will only have 39 units
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of drink available the next period to use in the drink-process
production, and hence the maximum output of drink (and the maximum
consumption) in the following period is less than 156. There is no
way in which production (and consumption) of drink can exceed 158.
If consumption is to exceed the O level of the third period, either
some chemical must be produced the preceding period or some drink must
not be consumed. In the former case, some labor will not be available
for use in the drink process, so consumption will have to be less than
in the previous period (158), while in the latter case, although output
is not reduced, consumption clearly will be.

The path ABABA, since it consists simply of repetitions oi the
first part of the ABA path can similarly be shown to be efficient.

To prove that these paths may be optimal, all we need to do is
show that there exist utility functicns for which the three paths are,

respectively, optimal. For path CA take U(C,t) = e-llst

U(c) where
U" < o. Then C, with r equal to 1/3 is the unique path satisfying the

necessary conditions for the optimal path: - u'"t = r - 1/3. It is

u't
not difficult to show that CA is in fact optimal.
For path CABA let U(ec,t) be U(c)lsin(n T/2)It £ 4
-1/3t

U(c)e t > 4 and for path C 5 let U(c,t) be e-atU(c)lsin(ﬁ t/2|

ABAB.
Hence, propositions b, d, and e are confirmed.
The following example demonstrates that these paths can also
be optimal for utility functions with positive time preference. Con-

sider the following utility function
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U(c,1) = C

U(c,2) = .99C

U(c,3) = ol C

Ue,t) = .0001e” /3¢ 5 4

Since almost all the weight is on the first two periods, we attempt to
maximize the sum of consumption over those two periods (approximately)
and this clearly is given by ABA.

A utility function of the following form can similarly be
shown to be optimal for a path of the type ABABA

U(c,3n+1) = .0001™ C

U(e,3n+2) = (.0001 - e)”c

U(c,3n+3) = .01 x .0001"C

To see how a competitive market can "skip" the intervening tech-
nology we must introduce Walrasian markets, in which contracts for
production and consumption are made for all periods in the future. (Since
no change, either with respect to the technology or to utility functions
will occur, all decisions may as well be made at one time as sequentially.)
The "Auctioneer" calls out the price of drink in successive periods;
since we are not interested at present in the stability of the market,
let us simply have the auctioneer call off all Py, Where p is the
price of the ith commodity at time t, Pi¢ > C. As usual, producers
and consumers then announce their production and consumption plans.

-1/6t

Let us assume that U(c,t) = U(c) e , and, as before, the economy

at t=0 is in a balanced growth path using the chemical process to



produce drink, at an interest rate of 30%.l

Then it is easy to see that when the Auctioneer calls off the
prices corresponding to an interest rate of 1/6 the consumers and
producers are in equilibrium; we have skipped technology B.

The phenomenon of efficient paths skipping technglogies is not
confined merely to economies with only two technologies, as we can
illustrate by the following example.

In our economy for producing drink, let us introduce a new,
third technique, which we will call technique Z. It takes 44 4/9
units of drink, and one unit of labor, to produce 103 4/9 units of
drink. The Leontief matrix for this technology Z can be written as

(keeping the same row designations as earlier)

I S—
103 4/9

44 479

0

Hence in steady state it produces 59 units of drink. The price equation

for this technology is
p(r) = 1+r)
59 - 442 o
9
If we call this technology 3%, the chemical process for producing drink
A, and the "old" drink process B, then we obtain the following interest

rates where the pairs of technologies have the same real wage.

lThe reader may think of the following situation. Until time O,

the utility function had been U(c)e‘°3t. Then for some reason the
rate of pure time preference changes. We must now plan for the future.
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EFFICIENT PATHS IN A THREE-PROCESS ECONOMY

BZA
Period 0 1 2 3 4

0

BA
1 2 3 4

Lp 1 1
Lz

[

Dp 60

Period 0 1

98

58

ABA

98 98

58 98 0 60

Period 0 1 2 3 4

60
98

158 0

60

60

1 1 1
60 60 60

98
Sum
1132 1034

60 20 9 5

[

60

60



A - B at r=.20 and r=.25 (A preferred to B r <.20 and r > .25)
A - 2 at r=.229 and r=.10 (A preferred to 2 r < .229 and r > .10)
B - 2 at r=.225 (B preferred to 2z r > .225 )

so that'we can construct the frontier as follows:

w

p

Z A

R N

r
where A is the "chosen" technology for r 2 .25, B for .25 2r2.225

2z for .225 2rz.10 and A for r <.10.

To show that these paths are efficient, we reason exactly as
we did above for the two process economy. Consider, for example, the
path BCA. To increase consumption in period 1, we must decrease it
in period O and/or decrease it in period 2. 1In the former case we
increase our output in the first period by using process Z, which re-
quires a larger input of drink; and in the latter case we decrease our
"savings" of drink by using process Z in period 2 less intensively
or by using process B in period 2. To increase our consumption in
period 2, we must use both the A process and the Z process in that

period, (or the A process and the B process). Either case requires us

to reduce the output and consumption produced by the B process in period

1. (To view this another way, let us keep consumption in period 1
fixed, increase output and consumption in period 2 by 1 unit using A
process; this requires us to reduce output by B process in period 1
by 1/60, and hence output produced by the Z process in period 2 is

reduced by 103 4/9 x 98 which is clearly greater than 1.)
44 4/9 60

Finally, if we increase consumption in the third period, we must either
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have "saved" some drink for the previous period, and thus reduced its
consumption directly, or we must have some chemical from the previous
period, and thus reduced the output of drink the previous period, and

hence the level of consumption.

2. Generalizations

Let us now generalize these results: the questions which we are
interested in are the following:

1. Does there exist at least one efficient path of the type ABA?1

2. Can a competitive2 economy generate a path of type ABA?

3. Is the rate of return equal to the market rate of interest
along an efficient path?

4. 1If we have a pure time discount utility function, is a path
of type ABA ever optimal?

To answer these four questions, we must first notice that the
linear technology (with or without double switching) satisfies the
Malinvaud technological assumptions. [3]

It is trivial to show that the addivitivity, divisibility, and
convexity assumptions are satisfied (Malinvaud assumptions 1, 2, 3.)
Moreover, assumption 4, that if it is possible to obtain an output of
y from an input vector (including labor) of x, then it is also possible

to obtain it from any vector x', such that x' > x, is satisfied.

1Here as elsewhere, a path of type ABA is a path which begins
in A technology, passes into the B technology, and then passes back
into the A technology.

2Throughout this section, we shall consider only a competitive
economy with complete futures markets (and complete certainty), so
that all contracts for future production and consumption are made today.
(In particular, it should be noted that the savings rate is not
predetermined.)
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Thus all of Malinvaud's technological assumptions are fulfilled.
In the analysis we shall also need the fact that there is some decen-
tralization of production that is efficient, since all firms have the
same production function.1
Under these assumptions, Malinvaud has shown that associated

with any efficient path there is at least one sequence of non-negative
vectors (interpretable as discounted prices and wages) such that,
for all T

CET(-ptEt + wt)

c=o0
is minimal for all paths for which

c =c t > T
Moreover, provided the discounted value of capital tends to zero when
T tends to infinity, these prices are those that would be generated
by a competitive system.
Since we are only interested at present in paths which, after
sufficiently long time, are in equilibrium in technology A, we can
2,3

assume that xT+1 =X

1We are primarily concerned with efficient paths, rather than
optimal paths. To use Mlinvaud's results on optimal paths, we need
to make his two assumptions about the preference ordering: if X is
the set of all consumption paths that are preferred to a particular
consumption path c*, then X is convex, and if it contains a path c¢',
it contains all paths c such that ¢ 2 ¢'. Moreover, if ¢ is contained
in X, then there is an e > O such that if |"1c' - cit|<e for all i and
t, then c¢' is contained in X.

Malinvaud's assumption 7 is satisfied since the labor supply
is fixed in every period.

We consider only ABA paths such that, when B processes are no
longer used ¢y = c, steady state consumption in Aj such paths are
clearly feasible, as Professor Solow has shown in [9]. Since we are
only interested in showing that there exists an efficient path of type
ABA, it is sufficient to consider only this case. The more general
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2a. Efficiency

We shall now make use of these results. First, we must convert
competitive prices, under a convenient normalisation rule, into dis-
counted prices. Let the wage in each period be one. Then using
primed p's for discounted prices, unprimed for undiscounted (competi-
tive) prices, and superscripts for time, we have

t-1

pt = (14r ) (pt-lAt + ag)

(where At and aot denote the technologies used at time t.)

and
p| = p't-lAt + W'taot

Consider any path generated by a competitive economy, with its

associated prices.l We have

c, = _ptHL e+ ot

41 _ _,t t+l t ,t
P =p A + aow

case can be handled in a similar manner.

c Malinvaud's theorem requires of an efficient path that for all
t',Zp ct - wt from t = 0 to t = T be minimal at the efficient path
for all paths which are identical to it for t > t'.

In the subsequent analysis we shall only compare the discounted
value of two programs, one of which remains in A, the other of which
begins in A, goes to B, and finmally returns to A. For convenience, we
refer to any path of the latter type as a path of type ABA. Moreover,
we shall only compare their discounted values at the time T. The reason
for this is that when we compare a particular path of type ABA with any
other path which is identical to it after some time t < T (note that
t # T), we are comparing it with another path of the same type ABA.

3 (from preceding page)

We are only considering the case where steady state consumption
is higher in A than in B, which, provided that there are only two
technologies, in our economy, will always be true.

lEquality will hold for any goods which are produced, and since
these are the only ones we are interested in, we ignore inequalities.
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Multiplying the first equation by p t and the second equation

by xt+1, and adding them together we have

't £t t

Jt+1 e+l Jtot
P X -p x =w'" -p'ec

Summing over 0 < t £ T, we have
t

t

p,T+1xT+1 _ p'°x° (w't _ p'tct)

o

(o]

In particular, let us consider an economy with x°

the balanced
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growth proportions for technology A (for some specified demand functions.)

Let us take as our vector (p't, w't) = (pt, wt), t
the equilibrium prices generated by a rate of interest r*, where r*

is the rate of interest at which A and B "switch" along the factor
price frontier, and let us consider the competitive discounted and un-
discounted prices generated if r, = r* (where as before we have used as
our '"normalisation" rule w, = 1). For the switch point equilibrium
prices,1 pP*A + a = p*B + bo’ and accordingly, if pg = p* and r,

if we use B techniques instead of A, P, remains unchanged. Consider

any path which enters B along which

e+l
Ce = TAT Tapyy tox

Since there is no joint production (and no durable capital) this can

clearly be satisfied.

Then, for such a path

t=T
z (w
t=0

and we now wish to show that this is less than (or equal to)

t=T *
5 't - p'tc ty
t=o0

lThose satisfying the equation

p* = (1l4r*) (p*A + ao)

& prtety o i THLTHL

-



where c* is any other consumption program such that for t > T+l,

ct*= c, the steady state consumption in A. But for any other program,

it is true that

%
t tHL e+l |kt

x* > A%

p.t+1 < p.t *t+1 +

A t ,t

a *w
o

so that for any other program c*

T
*
o
But since x*° = x° and-x*T+1 = xT+1
*
gw't - prEFE 5 g gt prtct

Thus we have shown that there does in fact exist at least one

efficient path of the type ABA.

2.b. Rates of Return

Professor Solow in his Dobb festschrift [9] paper has shown that
along any efficient path from B, along which interest and prices are
constant, the rate of interest is equal to the rate of return. We shall
now provide an alternative proof, making use of the results we have
already obtained. The rate of return is defined as that rate of interest
which, for two given efficient consumption paths, makes the present
value of their consumption stream the same. At a switch point, as we
have already noticed, we make take

p°* = p(r=r*) = p*, all t.

and it is clear that
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The rate of return is that value of R for which

p*c°+m}-—+'°"°+}&c‘tt "“'=P*E°+E*El ee oo E*- t es e e
(1+R) (1+R) (1+R) (1+R)

In particular, we are interested in two paths, one of which has
ct = steady state consumption per head in technology A.
The other path has after some T s Et = steady state consumption

per head in technology B.
The value of the consumption program c until time T is

-p'T+1xT+1 + p.oxo + 5 w.t

While the value of the consumption program c until time T is

_;,T+1§T+l + 5,0;{0 + 3 a,t
w'= ;Q

Hence

Zp'tct _ i;'tEt - p'°x° _';.oio _ p'T+1xT+1 +-;3T+1§T+1
But since

p't =p'c. and x° = X , and

tim p' T - 1im 5 T s 0

T > =

and x is bounded above, for T sufficiently large
=T t¢ £t
| = (" ¢ -p'e)| <e, e arbitrarily small.
t=o0
But recalling the definition of p't = pt/ (1+r*)t it is immediately

clear that R = r* is at least one solution to the rate of return

equation.



2.c. Optimality

We have one final question to answer: if the utility function

is of the form
Ue,t) = ule) (1+6)-T S>r**% or S<r*

where U(c) is concave
(where r** and r* are the upper and lower switch point rates of inter-
ests, respectively,) is it optimal to go through B? In other words,
if we are at a point on the factor price frontier below given by X
and we wish to go (eventually) to a point Y (or vice versa) do we
use B techniques in the transition? (The reason for wanting to go
from X. to Y may, for instance, be an unexpected change in the pure
rate of time preference.)

The answer is clearly no, as may be shown as follows.1

4

olg

Figure 4

lAs an aside, it may be worth observing that if it did pay to
go through B once, it would pay to go through again, (and again. . .)
since the time pattern of consumption would be the same from the
beginning of the first passage through B to the end as it would be
at successive passages.
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If c* is the A.A.A path, and c is any ABA path Zu(c*,t) - Zu(c,t)

2 Zu'(c)(1+6)‘t(ct* - ¢

But we already know that

Hence

Tu' (e) (1+5) ¢ (c,* -c) > 0

if r < r*

or r > rk*

1After this chapter had been written, unpublished papers
duplicating some of the results of this chapter by M. Bruno,
E. Burmeister, and E. Sheshinsky, "The Nature and Implications
of the Reswitching of Techniques," and M. Bruno, "Optimal
Accumulation in Discrete Capital Models," were drawn to my

attention.
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CHAPTER III

A TWO-SECTOR TWO CLASS MODEL OF ECONOMIC GROWTH

Introduction

This note examines the properties of a growth model with a consump-
tion goods sector and a capital goods sector, in which there are two
classes, one whose income is derived entirely from capital (the capital-
ists) and a second which derives its income from both wages and return on
savings (the workers).

In a one sector version of this model, Meade (4) and Samuelson and
Modigliani (6) have recently shown that Pasinetti's proposition (5) that
in such an economy the rate of profit is equal to the rate of growth
divided by the savings propensity of capitalists is true only under

certain restrictive conditions.1

1. This is not to say that these conditions may (or may not) be

satisfied in some actual economies.
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I. The Model

The differential equations of capital accumulation are derived

as in (6):

1. k/k =sr-n
c' e c
2. kw/kw =sr-n + sw(y - rk)
k
W

where S. is the propensity to save of capitalists, Sy that of workers,
r the rate of profit, n the rate of growth of the labor force, k the
aggregate capital per worker ratio, kc the ratio of capital owned by
the capitalists to the size of the labor force, kW the ratio of capital
owned by the workers to the size of the labor force, and y the output
per man measured in machine goods numeraire. If we let A be the
proportion of the labor force in the capital goods industry (which we

denote by a subscript 1), it is clear that
y = Ayt a1- 2aA) Py, =w+rk

where zf is the output of machines per worker in the iEB-industry, ]

the price ratio and w the wage rate.
We may write the savings equal investment equilibrium condition

as

3. Ay, = 8y + (sc - sw) rkc.
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Finally, we have the usual production relations of a two sector
neoclassical model: factor payments equal marginal products and
full employment of labor and capital. Letting v; = fi(ki)’ i=1,2,
where ki is the capital per worker in the ith industry, and w be
the wage rentals ratio, we have

fl

4o w= £/ -k, £15>0, f{< 0 1i=1,2

i!

5. A kl + (1 - ) k2 =k



II. Uniqueness of Momentary Equilibrium

Given kc and kw (and hence k), at any point of time, we wish
to know whether the path (i.e. ﬁ; and iw) is determinatej or in
other words, does specifying kc and kw uniquely specify kl and k2'

If we define

S. = s, + (sc - sw)kc/k > S

W
our equations 3-5 become identical in form to the corresponding
equations in the usual two sector growth models, with the savings-invest-

ment equilibrium condition
x =(s,_w +3 Kr
AN w = se)

for which it is known that the following are sufficient conditionms
for uniqueness of momentary equilibrium: 1. The sum of the elasticity
of substitutions be greater than or equal to 1l; and 2. the capital
intensity of the capital goods sector be less than or equal to that

of the consumption goods sector.
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III. Existence of Balanced Growth Paths

If there is no capitalist class, the model presented above
becomes simply the usual neo-classical model with a constant fraction
of income (sw) saved. Hence any balanced growth path of the Uzawa
constant savings proportion model is a balanced growth path of our
two class model.

But the question we are really interestéd in is the existence (and
uniqueness) of balanced growth paths for which kc # 0. It is easy to
see that if there exists a balanced growth path with both classes
present, it is unique. A balanced growth path is one in which

k = £ = 0. Hence
c W

6. r = n/sc

7. sy
7' sy

s r(k - k) +nk =nk-nk + s rk , or
w W W c w ¢

nk + kc(swr - n)

From 6, r is uniquely determined; hence from the marginal productiv-

ity equal factor price relations kl and k2

hence ¥y and y, are fixed. Substituting 7' into the savings-investment

are uniquely determined, and

equation, we have

8. A Yy = nk + kc(swr-n) + sckcr - swkcr = nk + kc(scr - n) = nk
Substituting into the full employment condition, we have

9. 3\ = —k2/(k1-k2 - yl/n)
from which it is clear that A is fixed, and since k =2 yl/n, k is

uniquely determined. Thus we have shown that there is at most one

balanced growth path with both classes present.



There will exist such a balanced growth path if and only if the
values of Ax, yl*,yz*, kl*’ 2*, kg, and r* (where the * variables

are the solutions to equations 3-9) are consistent with a positive value <

of kc; i.e. from 9',

%* % = *k*k
10. Sy < nk s r*k
or

*ek [k
sw/Sc < T*k*/y

or using 8 we have

> s, (where I is investment)
Y*/L

Condition 10 states that the ratio of the savings propensity of
workers to that of capitalists must be less than the share of capital
(in balanced growth) while condition 11 states that the investment
output ratio must be greater than the savings propensity of workers.

What these restrictions imply may be seen in the following way.

From 7, letting kc = 0, we have
12, ¥ (kl, k) = nk - sw(w + rk)

but since, for this model with kc = 0, it is knownlthat k = h(kl),

and that

l. Provided, for instance, k1 < kz or the sum of the elasticities is
greater than 1.



13. ﬂ(kl) = v (kl, h(kl))= 0

at only one point (and ¢'(k1) 0). The question then is whether
P=0
the solution to 13 gives k1 greater or less than the solution to

' - =
14. scf1 (kl) n 0

If the situation is as depicted below, then there exists an equi-
librium with two classes, because at A, s,y < nk. (See below for a

detailed discussion of stability). (See Figure 1).

On the other hand, if the situation is as depicted below,then
there can bot be a balanced growth path with both classes, because at

Ap sy > nk. (See Figure 2).

The important point to observe is that one cannot look at merely
the values of, say, the savings propensity of workers and the invest-
ment-output ratio today to tell whether there exists a balanced
growth path with both classes; note that this would be true even if
the capital output ratio of each sector were fixed (but different

between the two sectors.)
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IV, Stability

If the only balanced growth path is the one-class balanced
growth path (hereafter referred to as the OCBGP) then, of course,
the stability properties of the model are exactly as Uzawa and Inada

have analyzed them.

The interesting questions arise when there exists both a two
class and a one class balanced growth path. In that case, we can

ask two questions concerning the stability of the OCBGP:

(a) ({f kc is constrained to be zero, is the OCBGP stable?

(b) 1In general, is the OCBGP stable?

The answer to the first question again is the same as provided by
Uzawa and Inada. What we shall now show is that the answer to the
second question is no: if kc is ever position, then there exists a bal-
anced growth path with kc > 0, then kc will always be positive. But
on the other hand, it cannot be shown that the eg¢onomy will converge
to the two-class balanced growth path (TCBGP) it may oscillate around
it.

First, it should be observed that under the capital intensity

hypothesis the system is always locally stable.

hO _ ' v _
1. Since kw = sw(f1 klf1 ) + swkwfl nkw
and k= s k _f7 - nk
c ccl c
to show local stability we must showithat the characteristic roots of

the Jacobian a(kw,kc) evaluated at kc = kw = 0 be negative.
8(kw-kc)
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The Jacobian, when evaluated at kc = kw = 0 is found to be
s £/ - n+s £ dk, (k -k,) s £ dk
wl wl 1 w 1 wl 1 (kw - kl)
dk dk
w c
11}
scf1 9 s £ dk .
dk ¢ ¢ 1 c
dkc
The characteristic equation of the Jacobian is
2+ {-s £ dk, k- s £ dk .
n c'1l 1 "¢ wl 1 (k—kc—kl) -s fi+nfn
dk dk
c W
s s 1%k (k) 9 3 en? 3 I k)
w e ctw *® Ik c Ik dk
c W c W
dk
+ s fY 1 k (s f!-mn) =20
c'l Ix c “wl
c
Since g, > s, s f1 - n <0, and since k; . ko, k, < ke Weaneed to

show that dkl/dkw > 0 and dkl/dkc > 0.

investment equality may be considered a function of kc, kw and

H= AY = r[stg-+ k) +(sc-sw)kc] = 0; then dk1
dkw
dk = -aw/ sk
dk <
c

3H/ ok,

Observing that the savings-

k-,we write

1

- 3K/ akw

= —— and
9 H/ zak1
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e kol = -y, [k, / dk.)( A-1) - Al
Since x = k-k, , Ay 1 2 1 +ap> 0 if ko< k.
K, -k pk k) -k, 15 %2
17%2 1
2 H ) - . dlnr .
akl ATt yl 5 k]_ ( A Sw)yl d kl > 0 if k1< k2
- L
while am ="Sf1 *t <O0if Kk K
3 k k, -k,
and d H _ v +
> s £ 1 < 0if k) < Kk,
c kl-k2

Hence all coefficients of the characteristic equation are positive;

a necessary and sufficient condition for the modulus of the character-
istic roots to be negative is that all coefficients of the characteristic
equation be positive, and our theorem is thus proved.



Observe,however, that since we are presently only interested in local
stability, all we require is that, near the TCBGP, the consumption
goods sector be more capital intensive than the capital goods sector.
This is, of course, a much weaker condition than the restriction

that this hold for all wage-rentals ratios. What happens at interest
rates other than those arbitrarily close to r=n/sc is completely irre-

levant for local stability.

But the fact that the system is locally stable does not guarantee
that there are not cyclical paths oscillating around the fixed point}
this can only be deduced from a complete analysis of the phase
diagram, and it appears that such cyclical paths are a distinct possi-
bility. But what it does exclude is the possibility of there being
cyclical paths near the fixed point, i.e. there exists a region
around the fixed point in which all paths converge to the fixed
point. This is what is meant by local stability; and how big this
region is cannot be said without detailed information on the functioms.

Secondly, it should be observed that if the OCBGP is unique and
stable if kc is constrained to equal zero, it is globally unstable if
kc is not so constrained (provided there exists a TCBGP). This
follows from the fact that under the conditions stated, r must be
greater than n/scl, and hence kc must be positive near the TCBGP. More-
over, since the minimum value of £c=—nkc, if kc is over positive,

it will never become negative; hence’if kc is ever positive, kc will

1. See diagram 1
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always be positive when the economy enters a small neighborhood of

the OCBGP (if it enters it). And.clearly, once in the neighborhood,

kc increases until (kw’kc) is no longer arbitrarily close to the OCBGP.
We shall now prove a theorem about the global stability of the

system when there exists a two class balanced growth path.1

1. If the capital intensity of the consumption goods sector is not.less
than that of the capital goods sector, then the set of limit points
(ast * % ) in (kc,kw) phase space for a path is either the TCBGP
point or a limit cycle around it, or the capital labor ratio of the
path is unbounded. The Inada derivative conditions are sufficient to

rule out the possibility of divergence.

2. If the capital intensity of the capital goods sector is greater

than that of the consumptions good sector, all of the above results
obtain provided that there exists a unique OCBGP which, in the absence
of capitalists, is stable. Moreover, if the Inada derivative conditions

are satisfied, the TCBGP point cannot be a saddle-point.

3. If, in addition to the conditions of 2, the TCBGP is unstable, then
all paths oscillate around the TCBGP and at least one of the paths

is perfectly periodic.

-l. We ignore the case where k is ever zero, since our model is then
identical to that investigated by Uzawa and Inada.
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Proof. By a theorem of Poincare and Bendi#son, we know that the
limiting set can only be a stable limit-cycle, a stable node, a stable
focus, or a saddle point (for a non-diverging path.) Since we have
only two fixed points, the OCBGP and the TCBGP points, all we need

to establish for the first part of 1 and 2 is that the OCBGP is not a
limit set and all limit-cycles must be around the TCBGP. The latter is
easy to show, making use of Poincare index numbers. Consider a path
which has a closed curve as its limit set. Take as a closed Jordan
curve any path which, starting from (kc(t),kw(t)) for t arbitrarily
large,goes around a full orbit to (kc(t+z), kw(t+z)) where kc(t+z) =
kc(t) and the short segment of the kc = constant line required to join
kw(t+z) to kw(t). For t sufficiently large, the initial and final
points must be arbitrarily close to a point on the closed curve which
constitutes the limit of the trajectory, and accordingly they~must be
arbitrarily close to each other. Since all our functions are differentiable,
the vector (%,iw) defined at all points along the line joining the
initial and final points must be approximately the same, and according-
ly the index number of the Jordan curve so defined must be 1, which
implies that it contains a fixed point. Moreover, it cannot contain
the OCBGP, since negative values of kc are inadmissable.

The OCBGP point is not a limiting set, since, from what we have
already observed, the OCBGP point is a saddle point, with the kw axis
as separatrix; and since we have ruled out kc = 0, the OCBGP cannot be
a limit set.

To show that the Inada conditions are sufficient for non-divergence,

we show that at all points along the lines (see figure 3), (0,B) (DyD) and (D,D)
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. [ )
(D,0) D sufficiently large in Ekc,kw) phase space, kc’kw point inward.

First, we consider kl‘gkz. For kw=0, it is as if we had an Inada
model, with S. of capital income saved and Sy of wage income. For
sufficiently large k, r is arbitrarily small. Moreover, we have
already shown that dklldkw > 0. Hence, everywhere along (D,D)(D,0)
Izc/kc =sr-n is negative. On the other hand, l:w/kw=sww/kw +

s, -0 < stw +vswr -n= stfi (fllk1 -1 + s, T - n. For

k

1
1 fl

kc = 0, we have a two sector model with S, = Se» the same fraction of

wage and profit income saved, and again we know that for sufficiently
large k, kl is arbitrarily large, and dklldkc> 0. And by the Inada
conditions, we also know that the marginal product of capital must
equal the average product as kl becomes arbitrarily large. Hence

kw/kw < s, r-n < 0 along (0,D)(D,D).

If k1> kz, (since k1> k), then, for sufficiently large D, Ec < O

- T
along (D,D)(D,0) kw/kw 2sww + s,f-n-= stfl (f2/k2 _ }) +

1
k, £,

s,f-n < 0 for D sufficiently large.

To show that the TCBGP cannot be a saddle point (under the stated
conditions), we take the boundary of the square (0,0)(0,D)(D,D)(D,0) as
a closed Jordan curve. From what we have already said, it is easy
to calculate the Poincare index number, which turns out to be +1, and
hence the (only) enclosed fixed point, the TCBGP, cannot be a saddle

point.
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Finally, we wish to show that if the TCBGP point is locally un-
stable, all paths oscillate around it and at least one path is
periodic, except for the trivial cases of paths which remain forever
at the TCBGP point and paths which have kc = 0 forever. If we take
a sufficiently small neighborhood in (kw,kc) phase space around the
TCBGP point, and define our region of interest as the intersection
of (0,0)(0,D)(D,D)(D,0) and the complement of the neighborhood, it is
cleartthat this new region is compact,1 and all path52 must enter this
region and any path which enters it never leaves it. Thus the condi-
tions of the Poincare-Bendixson theorem are satisfied® all paths have
a closed curve as the set of their limit points (i.e. are limit-cycles)

and at least one path is periodic.3

We shall now investigate the properties of these cycles. First,
any periodic trajectory must have a time-average value of the interest
rate equal to the rate-of growth divided by the savings propensity of

capitalist.4 Moreover, the average return on capitalists' capital is

1. Since any neighborhood of a point is an open set, and the complement
of an open set is closed and the intersection of two closed sets is
closed.

2. With the trivial exceptions already noted.

3. Perhaps the difference between a general limit cycle and a periodic
trajectery (as a special case) should be emphasized. A periodic
orbit has itself as its limit; while a limit cycle has a closed
curve (which in general is not identical to the orbit) as the set
of its limit points.

4, 27 (htz) 2 21 (h+z)/ 2
lim ! dznkc = s, ! rdt - 271 > 0=
h > 2T h/z 2 wh/z z
1 2'"' (h+2)/ z
2im o /2 ; rdt » n/sc

h 4 2 7 h/z



equal to n/sc.1 Secondly, let IC by the closed curve representing the
set of limit points for some path. Then any trajectory starting (or
coming) sufficiently close to IC spirals around IC, in the sense that
it is met an infinite number of times by a line through any point of
I1C, provided that the direction of the line is not the direction

of the vector (kw,kc).

Thirdly, since no two trajectories can intersect (because of
uniqueness of momentary equilibrium) successive limit cycles must be
of unambiguously increasing amplitude.

Fourthly, if Ci+1 is a periodic trajectory, and Ci is the next
smallest in amplitude, then at most one of them can be stable (under
positive time).

Fifthly, there are a finite number of limit cycles.

These cycles do not constitute a business cycle, since full employ-
ment is an emplicit assumption of the model. But the other properties

of the business cycle can be observed: fluctuations in the distribution

1. It should be clear that the first does not automatically imply the
second. For instance, it cannot be shown that the average
return on workers capital is equal to n/sc. To prove that for large

h

2 m (h+1l)/ 27 (ht+l)/=

r Ekc dt ; kc dt -+ n/sc observe that
21 h/ 27 h/ 2

. 2m (h+l)/ z 27 (h+l)/ 2z
2w h+1l) /- o
(h+1) /2 Cra T ) dk: > 0
1 s rk_dt ¢

2 h/zc c 27T h/z 2™ h/z
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of income, fluctuations in output per man, fluctuations in the rate
of growth of output, fluctuations in the investment-output ratio, and
constant average rates of profit for varying amplitudes of the cycle.
In fact, the "story" of this cycle sounds very much like some of the
capital intensity versions found in the business cycle literature
(minus, of course, the fluctuations in employment). But note that
this cycle is generated without any rigidities or lags in the system.

A concluding word: in this paper, we have attempted to analyze
the equilibrium and non-equilibrium dynamics of a two sector neoclassi-
cal model with two classes, and we have found that convergence to one
of the fixed points, even under the restrictive Inada conditions, could
not be guaranteed: oscillatory paths were found to be a definite
possibility. But when we extend the model to more than two classes, al-
though conditions for uniqueness of momentary equilibrium and existence
of multi-class balanced growth paths remain essentially unchanged, the

stability analysis (even for the one sector model) no longer goes through.
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APPENDIX I

To illustrate some of the propositions we have discussed above, we

shall consider an example in which the TCBGP is locally stable even though

the capital intensity hypothesis (k1 < kz) is not satisfied.

Let v1= kl

vy =

2

a >B =

= 1 = A
Then w = kl( oty 1) kz( 2 1)

or kz = Nkl

W

a) Uniqueness of momentary equilibrium:

We must show that for given kc’ kw the following equation can be solved

uniquely for klz

a a=-1 a-1 k- k1N
SW( 1- a )kl + k]. ) + (Sc-SW) kl kc - klm =0
Divide by k, a=1 hd rearrange terms:
- (@ -bs )k + (1-bs )k _
kl wow c’ e b = e - W)

sw(l -a)(1-N) +N

b) Existence of two class balanced growth path:

We must show that for some feasible set of SyrSes @ and

when r = n/sc:

8 s k=k-k_> 0
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= AY :
. 71
n
k, - k; + (v4/n)
kl(N -1+ c) aSc
N ck s w
k - k = 1 - W
w N-1+c¢ T o )
r(sc—sw) > 0 iff
N ¢k s, ( = ) -k, > O iff
N-1+c¢ a (Sc'sw)
i > = S..S .(.1':-0._
-1+ d where d = w;c —
c w

Since ¢ > 1, N -1 + ¢50, and hence the above will be true iff

N > d(N-1) + cd iff

N (1 - d) > d(c-1) iff

N >1—c_la— (e=-1) if d < 1
N < d (c-1) if d > 1
1-4d

But sinced > 0, if d > i, 1 - d < O and

<-4 (c - 1) < O which is impossible.

Hence, we need only consider the case of d < 1.
We must now show that it is possible for

1> N > d l1--c¢
d <1
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All that this requires is that
cd -d <1-4d

or ed <1

w Q-5 < 1 which is surely possible.

In fact, this condition is satisfied iff s /s < a , since

1=l-a Q = Sw l_m B Sw 1_@

- - s -s
a l-q4 Sw/ a Sy o ¢ 5w

(Observe that if sw/sc < share of capital, sw/sc < o » since g < o).

c) Stability: The TCBGP is locally stable.

First, we observe that the constant term in the characteristic equation

is positive, since fg < 0 and (near the TCBGP) s - < 0. Moreover,

dkl/dkc = (l-bsc)/H > 0 where H = sw(l - )@ - N) + N since N <1 and bgc <1.
(This rules out the possibility of the TCBGP being a saddle point.)

To show that the TCBGP is locally stable, we must now show that

dk
(near the TCBGP) - scf; jtl kc - swfg dk1 -kw - kl) - Swfi +n.,
c W

0, i.e.

- v -b a - - :
_(_l_na:I_"m(l_iné 2o -5, + (- )5 bSOk, + 5 (obs )k,

1-bs )k, =+ (1-bs )k _

a sufficient condition for which is

(1 - a)sw(l—bsw) < H(sc - asw)



But from the requirement that k j’kw, it can be shown thit H Sw/ aS,

Hence

H(s, - as,) > s,(s-qs) > 8. (1-a)(l-bs))

s
c

The latter inequality is true iff (rearranging terms)

1-o@-2a) _ @-aa- @)s)

swaz(l-a) s, s = 4 )

which:it surely will be if the right hand expression is greater than 1.

But the right hand expression is equal to

A-o Q- a)) ___ %

swaz(l-a) s a( - o)

1+

which is greater than 1 if the sum of the last two expressions is positivej;

1-a@-0a ) -as/s >1-a (1-2a)- «2.1-0 >0

s < o
since sw/ o .

It is worth observing that the Bendixson criterion1 (which is a

sufficient condition for the non-existence of oscillatory paths) is not
ak 3k
c W

*x T3k
Cc w

satisfied here. We have already shown that 0 near the

TCBGP point. We shall now show that there are other points with kw> o,
gc > O for which the above sum is positive. Take, for instance, a point

where kc, although positive, is arbitrarily small. Then

1. The Bendixson criterion requires that the sum of the diagonal terms of
the Jacobian of the system be one signed. See, for instance, (1).
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8 l.(c al;w a
+ A~ s (L- o) ak
Tk, TS w 1 (k-k) (1-bs ) -
[0} -1 = - a -1
sy o kg tn = oS K (= )(z-1)k  41] + n

where z = (1 - swb)/H.

which, even for fairly small values of k, can clearly be positive.

For instance, if k=5.13, sw?.OS, sc=.95, d -.1, N = .5, then the above
expression is equal to n-.0279, positive for values of n greater than

2.79%. (It is easy to verify that, in this example, there exists a TCBCP).
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II.

We now consider an example where the TCBGP is locally unstable.
We let there be fixed coefficients in both sectors, with the capital
goods sector being more capital intensive than the consumption goods
sector. It will be convenient in much of the following discussion to
use a numerical example. We let kl = 5, vy = 1, s, = 550, n = .1,
k2 = .556 and s, = .366. We can then easily show that in this model

momentary equilibrium is always uniquely determined, since given kc and

kw we can (from the savings-investment equation) uniquely solve for r:

k - k2
k, -k, Y17 %1
r = — —— . r =0, r = yllk1
sk +sk -sk
W W cc wl
if kl > _kw+k ak2 if kw+kzjk1 if kw+kc < k2

we can also easily show that a TCBGP may exist; in our numerical example

we have

kw = sww/ r(sc-sw) = .9937
at r = n/sc = .1818; on the other hand, we have

y.k
12
k = = 1.0000
n(kz—kl + vy

n

Hence,

k =k=k_ = .0073
c w

showing that a TCBGP may in fact exist.



On the other hand, for stability of the TCBGP we require

dr dr
M=w=s k <E£ _g &
c e dkc w dkw (kw - kl) - st +ns O

From the savings-investment equation, we:calculate

-rs_ + y.(k,-k,)
£ e L 1 20 __ o855
c sw(kw - kl) + Sckc
and
-rs._ + y.(k, - k,)
:i = ‘Zk -lk % ¥ 2 K = -.109
W sw w 1 sc c

M= .,126 < O

and the TCBGP is locally unstable. Note that the fact that dr/dkc > 0
is sufficient to rule out the possibility that the TCBGP be a saddle
point (and hence it must either be a center or an unstable focus or
node.)

It is easy to show that for this model there exists a unique OCBGPl
with k identical to its value for the TCBGP (since A.yl = nk along-a

balanced growth path, and ) is simply a function of k and the parameters

kl and kz); but with

. sy~ nk ) s.¥, = nk
sw(kl - k) sw(kl-k) - (sc-sw)kc

1. With ¢ § O3 there exists a (stable) OCBGP with r = 0 at k=swyl/n
and a trivial OCBGP with k = O.
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The OCBGP is a saddle point; to see this, we calculate the Jacobian

a(kc, kw) s.r-n 0 va
—_—= -n+ s (k~k,)dr
s (k. =--k;) dr Swt T ™ woow 19
B(kc, kw) wow 1 ke, dkw
_ -.0000699 0
.160 .126

whose characteristic roots are real but of opposite sign. The phase

diagram for this model is given in figure 4.
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FIGURE &

Schematic Phase Diagram



CHAPTER 1v

THE DISTRIBUTION OF INCOME AND WEALTH AMONG INDIVIDUALS

Introduction

The recent plethora of "alternative theories of distribution" -
all profits saved, some profits saved, no wage income saved, some wage
income saved, one rate of savings for the working class, another rate
of saving for the non-working class, etc. etc. = has been greeted by
most (neoclassical) economists with a great deal of skepticism. This
paper is not intended as still one more "alternative theory of dis-
tribution"; rather, its purpose is to explore in some detail the im-
plications of these growth models for the distribution of income and
wealth among individuals, a question which is perhaps of more direct
social relevance than the distribution among abstract factors, and which
has received little attention in the recent literature. A second pur-
pose of this note is to explore how crucial are the linear (and usual
proportional) assumptions made in the usual growth analysis to the re-

sults that are obtained.

In this paper, we shall present a number of related models which
differ in four important characteristics: (a) Savings behavior; (b)
Reproductive behavior; (c) Homogeneity of the labor force; and (d)
Inheritance policies. The essential question we are interested in is,
given any initial distribution of wealth and income, what is the
asymptotic distribution? We also attempt to ascertain, where it is

possible to do so, the short run movements in the distribution of wealth.
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In section II. of the paper, we consider the Solow one-sector
neo-classical growth model [7], with two modifications: wealth is
divided equally among one's children and the savings function is linear,
but not necessarily proportional. The following two sections consider
the same model with alternative savings assumptions: in section III.
we investigate non-linear savings functions and in section IV. we
consider two cases where there is a wealth term in the savings function.
In section V. we revert to the linear savings hypothesis, but let
reproduction rates vary with income. In the following section, we
investigate what happens if labor is not homogeneous (but the reproduction
rate is constant and savings is a linear function of income.) In section

VII. we return to the Model of Section II. but introduce primogeniture.

In the following three sections, we investigate what happens if
there are different classes who save different proportions of their
income, or if individuals save differently out of different sources of

income.

In Section XI. we discuss the fiscal policy implications of the
analysis and in Section XII. we discuss how the analysis is changed if
technological change is introduced into the model. Finally, in order
to get a rough idea of the order of magnitude of the numbers involved,
we investigate numerically a particularly simple case of the model pre-

sented in Section II.
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II. The Basic Model

In this section (and throughout most of the paper), it will be
convenient to think of society as divided into a number of groups; all
the members of any one group have the same wealth; groups differ in

their per capita wealth holdings.

We assume that labor is homogeneous; in other words all workers
receive the same wage. Thus, all the members of any one group have
the same income as well as the same wealth. If vy is the income per
capita of group i, w the wage rate, r the rate of return on capital,

and ¢y capital per man, 2.1. y; = v +r cy

Savings per capita is assumed to be a linear function of income

per capita; hence if s, is the per capita savings of group i, m the

i
(constant) marginal propensity to save, and b= is the per capita
savings at zero income,
2.2, s; = myy +b

Reproduction occurs at a constant rate n, there is no inter-
marriage between income groups, and wealth is divided equally among
one's offspring. These assumptions ensure that the proportion of the

population in each group a,, remains constant.

i

We can now write down the basic equation of per capita wealth

assumulation for group i:
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+ mr - n

We have yet to say how w and r are determined. We assume a well-
behaved (concave)neo-classical production function. We also assume
that the Inada derivative condition is satisfied, i.e. the marginal
product of capital approaches infinity as the capital labor ratio goes
to zero. Factors are assumed to be paid their marginal products.

(For most of the analysis, all we require is that the interest rate be
a declining function of the capital labor ratio and that the wage rate
be an increasing function of the capital labor ratio.) If we let k
denote the aggregate capital labor ratio, then we have
2.4. w = w(k)

and
2.5. r = r(k)

Moreover, if we let Ki be the total wealth holdings of group i,
and let
2.6. k, = Ki/L = a,c,

it is clear that

We can now write down the differential equation for aggregate
capital accumulation:

2.8. k = Zﬁi =3 = b+ mw + rk = nk

81%
Observe that the aggregate capital accumulation behavior is in-
dependent of the distribution of wealth. This is an essential result

of the linearity assumption.
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In analyzing this model, we shall procede as follows: first we
shall discuss the aggregate balanced growth paths and their stability;
we shall then discuss the conditions under which a given group is in
equilibrium, i.e. has unchanging per capita wealth; next, we shall
discuss short and long run movements in the wealth distribution; finally,
we investigate what these results imply for movements in the distribu-

tion of income.

If the economy is in balanced growth,
2.9. k=20
or

2,10 my = nk - b

In the case of b = 0, a strictly proportional savings function,
this is simply the "Solow" equilibrium. If we impose concavity on our
production function, it is clear that for b > 0, there is a unique value
for which my = nk, i.e. a unique aggregate balanced growth path. If,
on the other hand, b < 0, i.e. at a zero income a negative amount is

saved, then there will in general exist two balanced growth paths.

If there is only one balanced growth path, it is clear that it
is globally stable (See Figure 1), since for capital labor ratios

greater than that of the balanced growth path, savings per capita is

lThe usual qualifications must be made about the possibility of
no equilibrium (in the absence of the Inada condition) and multiplicity
of equilibria (in the absence of concavity), even in the case of b > 0.
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less than that required to maintain the same capital output ratio with
population growing at the rate n, and conversely for capital labor

ratios less than that of the balanced growth path.

On the other hand, if there are two balanced growth paths
(Figure 2) the lower one will be locally unstable, the upper will
be locally stable. This can be seen in two ways; graphically, as
Figure 2 shows, the nk - b line cuts the my curve from below in
the upper equilibrium but from above at the lower equilibrium:
analytically, we differentiate the capital accumulation equation 8
with respect to k and evaluate at k = 0, to obtain

k
- =mr -n

)

.

The balanced growth path is stable or unstable as %E' is less

than or greater than zero. mr is the slope of the my curve, and n
is the slope of the nk - b curve. Since my is concave, it is clear
that the lower intersection must have mr > n and the upper inter-

section must have mr < n.1

lIn the singular case of a tangency between the my curve and the

nk - b curve, where the upper and lower equilibria merge together, we
have a stable - unstable equilibrium: stable with respect to upward
deviations, unstable with respect to downward deviations. 1In this
equilibrium mr = n, the rate of profit is equal to the rate of growth
divided by the marginal propensity to save.
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Having analyzed the aggregate properties of the model, we turn now
to investigate the behavior of the separate wealth-income groups.
First, it should be clear that for any given aggregate capital labor
ratio k, there can exist at most only one group, with per capita wealth
c* which is in equilibrium, i.e. only one group whose per capita wealth
is neither increasing nor decreasing. We require

éi/ci =0

or

* b + mw(k)
c =
n - mr(k)

*
(Observe that ¢ 1is a function of k.)
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Thus, to the left of the lower equilibrium, savings per man
is less than that required to sustain that capital labor ratio, and
hence the capital labor ratio falls (continually)l; above the lower
equilibrium, but below the upper equilibrium (between k* and k** on
Figure 2) the reverse situation holds, so that the economy has an
expanding capital labor ratio. Finally, above the upper equilibrium

(k**) , the economy has a declining capital labor ratio.

This is meaningful only if c* > 0, i.e. only if (b+mw) (n-mr) > O.
Using Figure 3, we can see that b + mw = 0 at ﬁ, where k is the point
of tangency of a straight line beginning at the vertical axis a
-b with the my (k) curve (the output per man function, multiplied by
the marginal propensity to save). At lower values of k, b + mw is
negative, at higher k, b + mw is positive. On the other hand, n = mr
at i, where ; is the point of tangency of the my (k) curve and a line
with slope n. For k > i, n - mr > 0 and conversely for k < i. Because
of concavity of my, if there exists two balanced growth paths, it is
clear that k <Kk. Accordingly if k < ﬁ or k > i (see Figures 4 and
5), then there will exist a unique wealth group which is in equili-
brium; but if k < k < k, (see Figure 6) no wealth group will be in

equil‘brium.

lWhat happens when k = O is a question which we shall postpone
for the moment. k can only become negative if there exists foreign
countries from whom one can borrow. For a long run savings fuanctiom.
it may well be argued on the basis of econometric evidence that b is
zero: we prefer, however, to keep the analysis as general as possible.
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It should be observed, however, that in the first case, with
k < i, groups with per capita wealth less than c* have an increasing
per capita wealth. But if k > ﬁ, groups with per capita wealth less
than c* have an increasing per capita wealth, and conversely for those

with per capita wealth greater than c*. In the intermediate case,

all groups have an increasing per capita wealth.

Secondly, we note how the distribution of wealth changes over
time. Without loss of generality, we consider the case of two income
groups; then we wish to know whether,if €y < €95 Cy is growing faster
or slower than Cos if it is growing faster, then the ownership of
wealth (at least in a relative sense) is becoming more "equalitarian"';

if it is growing slower, it is becoming less "equalitarian'.

But

c1/c1 - c2/c2 = (b + aw) (1/c; - 1/c2)

Hence, if b + mw> O, the ownership of wealth becomes (relatively)
more equalitarian, while if b - mw < O it becomes "worse'; if
b = mw there is no change in the (relative) ownership of property. Hence,

to the left of ﬁ, the ownership of capital is becoming more uneven,

to the right, more even.

The economic reasoning behind this result should be clear:
if b + mw is equal to zero, increasing per capita wealth by a given
percentage, increases savings (mrc) by the same percentage, but in-

creases the savings required to sustain that per capita wealth (nci)
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by the same percentage, so that whatever c, happens to be, there it

i
remains. But if b + mw is positive, increasing per capita wealth
by a given percentage increases (per capita) savings by a smaller
percentage, while the savings required to sustain that per capita

wealth ratio goes up in proportion to Cys and conversely for b + mw

less than zero.

These results may be seen still another way by means of Figures
7-9. In each case we plot éi/ci as a function of Cye The shape of
the curve is, of course, a hyperbola, with asymptote mr-n. Whether it
is upward or downward sloping depends on the sign of b + mw. In
Figure 7, we take the case of k < ﬁ, so that b+ mw < 0 and mr - n >
0. Hence, éi/ci increases with cye In Figure 8 we take the case of
ﬂ < k < i, and hence b + mw > 0 and mr - n > O; hence the curve is
downward sloping; éi/ci is positive for all Cy» but decreases with
increasing cy- Finally, in Figure 9, we take the case of k > i, for
which mr - n < 0, and b + mw > 0. Accordingly, éi/ci decreases with
increasing Cys and becomes even negative for sufficiently large values
of e

It is clear then at the upper equilibrium in the long run there
must be an equalitarian distribution of wealth, since at the upper

equilibrium the wealth per man of the poorer groups grows faster than

that of the richer groups.
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But at the lower equilibrium, those groups with an initial per
capital wealth less than the equilibrium will grow continually poorer,
while those groups with an initial per capita wealth greater than the
equilibrium will grow continually richer; this follows immediately
from the fact that those with a lower than average per capita wealth
must have a continually declining wealth per man - even when their

wealth becomes zero, since

éi =mw + b< 0

while those with a higher than average per capita wealth must have a

continually rising wealth per man

éi = my + m(ci - k)r - nk - n(ci - k) = (ci - k)(mr - n)> 0

(And of course, those with more initial per capita wealth have a

faster rate of growth in per capita wealth.)l

1If there is a lower bound on the amount of capital that one can
hold, (an upper bound on indebtedness) then we must modify our savings
functions. Assume that the lower bound is zero. Then

>
si b + mw + mrci c 0

0 c, =0

S i

We assume that there are two groups, a ''poor" group with zero
wealth and with a of the population, and a "rich" group with l-a of
the population, and all the capital. Then

k = (1-a) (b + mw) + (mr - n)k
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For a balanced growth, we require k = 0, or

k = =a) (bitmw)
n - mr

That there exists a unique solution in the region k > k to this
equation can be shown as follows: the left hand side is clearly an
increasing function of k; the right hand side, however, is a de-
creasing function of k, at k = (l-a)(b+mw)/(n-mr), since

d (b+ms)/(n-mr)_ __ mw' 4 b+ ow mr' _m [(l-a)w' + kr']
d k " m-mr n-mr n-mr (n - mr)(1 - a)
_ _aw'm
" (n-mr)Q1 - Q<0

This Eeans that at a balanced growth path, if n - mr is positive
(k > k)

k - (l-a)w

n-mr
must be increasing, i.e.,
- (1-a)b + nk - (my - amw)

must be increasing. Since nk - (l1-a)b is a straight line, this means
that there can only be one balanced growth path in the region k > k,
where nk - (1-a)b cuts my - amw from above. See Figure 10. -
Stability properties follow as above for the general model. It does
not seem possible to rule out, in general, multiplicity of solutions
in the region k < k.

We can extend these results to the case where the lower limit of
per capita wealth,is not zero, but e. Then, in the balanced growth
path, we can show that

]
®
o
+
7~
H
|
[
N
E;

k

We can show, as above, that there can exist at most one solution to
this equation for k > k.
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Thus it should be clear that although the fact that each of the
individual groups is in equilibrium implies that the aggregate is in
equilibrium, the converse is not true: the aggregate can be in

equilibrium while the distribution of wealth is changing.

We are finally ready to fully describe movements in the dis-
tribution of wealth in our economy:

1. There exist two balanced growth paths, along which the capital
labor ratio, output capital ratio, wage rate, etc. are all constant.

2. The one corresponding to the higher capital labor ratio is stable
both with respect to the aggregate (locally) and with respect to
the component income classes (globally): if the overall capital
labor ratio is increased or decreased, (provided it does not fall
below ﬁ) the economy returns to the balanced growth path, and if
individual income classes are perturbed, the economy eventually
returns to the equalitarian state.

3. The one corresponding to the lower capital labor ratio is unstable,
both with respect to the aggregate and with respect to the component
income classes. If the aggregate k is decreased, it continues to
decrease (forever); if it is increased, it continues to increase
until it arrives at the upper equilibrium. If individual income
classes are perturbed, from the equal distribution position in
such a way that the aggregate capital labor ratio remains constant,
the classes with per capita wealth greater than the overall capital
labor ratio continually increase their per capita wealth, and con-

versely for those with less wealth than the "average'.
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4. If the economy is initially within the region between k* and i,
then the overall capital labor ratio is increasing, the economy
eventually arrives in a state with completely equal distribution
of income and wealth, but until the overall capital labor ratio
becomes equal to i, the relative distribution of wealth becomes
more uneven.

5. For all capital labor ratios greater than k, the distribution
of wealth becomes (relatively) more even, eventually reaching
complete equality.

The adaptation of these results to movements in the distribution
of income is straightforward. 1f the elasticity of substitution of
the production function2 is equal to one, then the analysis carries
over exactly. If the elasticity of substitution is less than 1, for
instance

a. In the region i < k < k**, the decreasing share of capital

and the equalization of its ownership both serve to equalize

the distribution of income.

1Perhaps one should not draw morals about the real world from such
simple models: if the distribution of wealth appears in the short run
to be becoming more uneven, do not lost hope in the capitalist system;
eventually, (which may be a long tine) the economy may lead to
equalitarian state, by its own accord.

21t should be noted that none of the results thus far have
depended on the shape (exact concavity and the Inada condition) of
the production funct ion.



In the region k > k*) the increasing share of capital and the
equalization of its ownership offset each other; eventually,

of course, the equalization tendencies dominate.

In the region k < k < ﬂ, the decreasing share of capital and

the increasing spread in the ownership of capital offset each
other; eventually, the economy moves into the region ﬂ < k < k¥**%,
In the region k < k*, the increasing share of capital and the
increasing spread in its ownership both serve to make the
distribution of income more unequal.

Similarly, for elasticities greater than 1.
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III. Non-linear Savings Functions

In this section, we make all the assumptions as in the previous,
with the exception that the linear savings function is replaced by a non-

linear one.

In this case, of course, there may be any number of values for which
s(yy) = nc,, for given k, as Figure 11 illustrates. Accordingly, there
may be (for any given balanced growth path) any number of distinct

income classes.

But if the savings function is convex, or concave, there can only
be (at most) two values of vy (and hence ci) for which the wealth per
capita is constant; for if the savings function is convex or concave

(as a function of yi) it is convex or concave as a function of eyt

= !
ds/dci s'r

VA
o

2 ,.2 _
d s/dci = s"r < 0 as s

See Figures 12, an& 13.

But the multiplicity of balanced growth paths is a much more diffi-
cult question, for we can no longer simply "add" up the incomes (as we
did earlier) and find the savings: in the linear case, savings is inde-

pendent of the distribution of income, in the non-linear case it is not.
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Putting the question mathematically, for how many k is it true

that
3.1 s(w(k) + r(k)ci) = nc, where k =% aje,

In general, there is an indefinite number, but if the savings
function is concave, and the proportion of the population in each of the
income groups is fixed, then there can be at most three -- two with only

one class present and one with two classes present.

The one class cases require ci = k. Hence, the question becomes,

for how many k 1is
s(w + rk) = nk
But since s(k) is a concave function of k, and nk a linear function

of k, there can be at most two solutions.1 (See Figure 14).

The two class case is somewhat more difficult to analyze. Let a

per cent of the population be in the lower equilibrium, 1-a in the higher.

Let

k = acl(k) + (l-a)cz(k)
where cl(k), cz(k) are the solutions to equations 3.1 for given k.

dci/dk = -s'(w' +r'ci)/(s'r-n)

lds/dk =s'y's dzs/dk2 = s"y' + s'y"; if s", y" < 0, this is
clearly negative; if either the savings function or the production function
is not concave, s(k) will not have any simple shape (in general).
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For the lower class, ey < k, and hence w' + r'ci > 0; if the savings
function is concave, s'r n at the lower equilibrium. And conversely for
the upper equilibrium. Hence

dci/dk <0
Hence
dk/dk < 0

There exists at most one k for which k = k.I (Figure 15).

What about the stability properties of these equilibrium, and the
"history" of the economy? The two one-class-equilibria have exactly the

same stability properties as in the linear case, and nothing more need be

said about it here. The two class equilibrium has, as one might expect,
properties of both the lower and upper equilibrium one class economies:

if a particular subgroup of (or the entire) lower class is disturbed, so
that its wealth per capita is less than that in equilibrium, the members
of that subgroup become increasingly poorer and if they become slightly

richer (in per capita wealth terms) than in equilibrium, they get in-

creasingly rich, until they "merge'" with the upper class.

Of course, we have been assuming throughout this process that as
individuals shift their class membership the aggregate capital labor
ratio changes in the appropriate way; as a larger proportion of the
population join the upper class, the aggregate capital labor ratio must

rise. But as it rises, it leads all the other members of the lower

lAs in the linear case, there is of course one further possibility
existing (provided that at "very large incomes" savings becomes approxi-
mately proportional to income) - the poor reducing their capital to a
lower bound of say zero, the rich becoming increasingly rich.
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class to be out of equilibrium, and since the lower equilibrium is un-
stable, there is no mechanism for them to reach equilibrium. It is un-
likely then that any two class equilibrium situation could ever be main-

tained for long.

Hence, in this model as in the linear model first examined, there
is a tendency (in the long run) for the equalization of wealth and income
-- with the possible exception of a group (in an underdeveloped economy
perhaps almost the entire economy) whose wealth is at some lower bound

(zero, or the upper bound on indebtedness.)

IV. Savings as a Function of Wealth and

Income

Recent investigations into savings function have indicated that
savings may be a function of wealth as well as income, i.e.

4.1 s =Db + my + zc

or
4.2 éilc = {btmw) +mr+2z ~-n
i c
i
If z> n, of course, ¢, increases without bound. In all other cases, the

i

analysis proceeds exactly as in the first section of this paper, with n
replaced by n-z. If z is positive, then it is as if the rate of
population growth is smaller than it actually is, so that the equilibrium
capital labor ratio is higher, r is lower, w is higher, etc. The more
reasonable assumption is to make z negative, indicating that the more

wealth one has, for any given income, the less one saves (as for instance



some of the life cycle stories suggest), then it is as if n 1is higher,
i.e. the equilibrium capital labor ratio will be lower, wages will be

lower, and the profit rate will be higher.

An alternative formulation of savings behavior is the following:
individuals have a desired wealth-income ratio, given by q*,
and if the wealth-income ratio is less than the desired, they accumulate,
if it is greater than the desired, they decumulate. We may write the
adjustment process as follows:
4.3 ¢ = h(c* - )

where
4.4 c* = gty = gq*(wirc)

Substituting, we have
4.5 & =h [q*(w=rc) - c] = hq*w + (g¢*rh - h)c

Since k = ¢ ac;
4.6 Kk = hq*w + (rq*h - h)k = hq*y - hk
There is a unique balanced growth path, with q* = y/k, and it is stable.

Moreover, for any given aggregate capital labor ratio, there is at most

one ¢ for which ¢é = 0:
= d*w
4.7 c T

This is meaningful only if r(k) < 1/q*, i.e. for very low capital labor
ratios there exists no positive ¢ for which & = 0. In all cases,
however, the poor accumulate capital faster than the rich, since

4.8 c1/cl - c2/c2 = hq*w (1/c1 - l/c2)

and eventually all wealth is evenly distributed.l

lIt may be worthwhile to suggest what happens if different groups
have different desired wealth-income ratios. Denoting the desired wealth-
income ratio of the ith group by af »<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>