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Adiabatic and post-adiabatic approaches to extreme mass ratio inspiral

Scott A. Hughes∗

Department of Physics and MIT Kavli Institute, MIT, Cambridge, MA 02139, USA
∗E-mail: sahughes@mit.edu

Extreme mass ratio inspirals (EMRIs) show a strong separation of timescales, with the
time characterizing inspiral, Ti, much longer than any time To characterizing orbital
motions. The ratio of these timescales (which is essentially an EMRI’s mass ratio) can
be regarded as a parameter that controls a perturbative expansion. Here we describe
the value and limitations of an “adiabatic” description of these binaries, which uses only
the leading terms arising from such a two-timescale expansion. An adiabatic approach
breaks down when orbits evolve through resonances, with important dynamical and
observational consequences. We describe the shortfalls of an approach that only includes
the adiabatic contributions to EMRI evolution, and outline what must be done to evolve
these systems through resonance and to improve our ability to model EMRI systems

more generally.

Keywords: Black holes; black hole perturbation theory; gravitational waves.

1. Motivation: The large-mass ratio limit of the two-body problem

and extreme mass ratio inspirals

Binary systems in which one body is much more massive than the other can be

analyzed perturbatively. We can describe such a binary as an exact black hole

solution of general relativity (corresponding to the larger member of the binary)

plus a correction due to the smaller body. Because the perturbation equations are

much simpler to solve than the complete equations of general relativity, this turns

out to be a limit that can be modeled very accurately and precisely.

At least two major science goals drive studies of large mass ratio systems. First,

these binaries represent a limit of the two-body problem that can be solved with high

precision. As such, the study of these binaries provides important input to programs

to solve the two-body problem of general relativity more generally, such as numerical

relativity and the effective one-body approach
1–3

. Second, astrophysical extreme

mass ratio inspirals (EMRIs) are expected to be important sources for space-based

GW detectors such as eLISA
4
and DECIGO

5
.

In this article, we will focus on the role of EMRIs as sources of gravitational

waves (GWs). Such binaries are created when multibody interactions scatter stellar

mass compact objects onto a strong-field, relativistic orbit of the black hole in a

galaxy’s center. Further evolution is then driven by GW emission. If the black hole

has a mass of around 10
5−10

7M
�
, then these are targets for a detector like eLISA.

The GWs that they generate can be heard out to z ∼ 0.5 − 1; we expect dozens

to hundreds of events over a space-based detector’s mission lifetime
6
. Measuring

the GWs from these events will provide precision data on the characteristics of the

large black hole, on the small body’s orbit, and on the mass of the small body —

in short, a precision probe of the astrophysical population of galactic center black
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holes, and information about the population of stars in the centers of galaxies. It is

expected that EMRI waves will even be precise enough to test the Kerr solution by

mapping the multipolar structure of the dense, dark objects in galactic cores that

we presume to be general relativity’s black holes.

2. Modeling EMRIs

To achieve these science goals, we must accurately model EMRI waves. How accu-

rate must our models be? The answer depends on the purpose to which we put the

model
7
. The instantaneous EMRI wave amplitude will typically be about a factor

of 10 smaller than detector noise. By fitting to a model template that is coherent in

phase with the data for N cycles, we (roughly speaking) boost the signal-to-noise

ratio (SNR) by N1/2
. For detection purposes (determining that a signal is in your

data) your model should hold phase with the signal to within Δφ � 1 radian over

the signal’s duration
a
. The best fit is likely to have large systematic errors, but that

is acceptable if our goal is just to establish that a signal is present. For measure-

ment purposes (e.g., using the detected wave to determine source parameters), our

model must be accurate enough that systematic errors (due to inadequate model-

ing) are smaller than statistic errors (due to noise). A crude rule of thumb is that

the template’s phase must match the signal to within Δφ � 1/SNR.

Turn now to an overview of how one makes an EMRI model. We will use the

action-angle approach described by Flanagan and Hinderer
8
to describe the motion

of the small body m in the spacetime of a larger black hole of mass M :

dqα
dλ

= ωα(J) + εgα(qθ, qr,J) +O(ε2) , (1)

dJi
dλ

= εGi(qθ, qr,J) +O(ε2) . (2)

In these equations, λ is a time variable that is well adapted to strong-field Kerr

orbits, and ε = m/M . The angle variables

qα
.
= (qt, qr, qθ, qφ) (3)

each describe the motion of the small body about the black hole in suitable coordi-

nates; the action variables

Ji
.
= (E/m,Lz/m,Q/m2

) (4)

correspond to integrals of the motion that are conserved along a “background” orbit

(i.e., in the limit of purely geodesic motion). We will examine the forcing terms gα
and Gi in more detail momentarily.

aNote that “duration” does not necessary mean the complete span of the signal in your data.
One can break the data into segments, coherently integrate each segment against a template, and
combine each processed segment into a single statistic.
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To understand the small body’s motion in this framework, let us examine Eqs.

(1) and (2) more carefully. At zeroth order in ε, these equations become

dqα
dλ

= ωα(J) ,
dJi
dλ

= 0 . (5)

In other words, when the O(ε) corrections to the equations of motion are not in-

cluded, the angle variables accumulate at a rate set by their associated frequency,

and the integrals of the motion are constant. Equation (5) expresses the fact that

the motion at zeroth order in the small body’s mass is a Kerr geodesic.

When we go to the next order in ε, the forcing terms gα and Gi must be included:

dqα
dλ

= ωα(J) + εgα(qθ, qr,J) ,
dJi
dλ

= εGi(qθ, qr,J) . (6)

These terms push the small body away from the geodesic, and constitute the leading

self force correction to the small body’s motion.

3. The two-timescale expansion

Further insight into EMRI evolution can be found by separating the forcing terms

into their averages and oscillations about the average:

Gi(qθ, qr,J) = 〈Gi(J)〉 + δGi(qθ, qr,J) , (7)

where

〈Gi(J)〉 = 1

(2π)2

∫ 2π

0

dqθ

∫ 2π

0

dqθ Gi(qθ, qr,J) , (8)

δGi(qθ, qr,J) = Gi(qθ, qr,J)− 〈Gi(J)〉 . (9)

We apply a similar split to gα(qθ, qr,J). Rewrite the equations of motion once more:

dqα
dλ

= ωα(J) + ε〈gα(J)〉+ εδgα(qθ, qr,J) , (10)

dJi
dλ

= ε〈Gi(J)〉 + εδGi(qθ, qr,J) . (11)

The averaged forcing term 〈Gi(J)〉 describes the leading evolution of the small

body’s integrals of motion; its components describe the dissipative evolution of E,

Lz, and Q. This term drives the secular evolution of the system’s orbital parameters

on an inspiral time scale Ti ∼ M/ε = M2/m. The averaged forcing term 〈gα(J)〉 is
equivalent to a shift of the frequencies:

ωα(J) −→ ωα(J) + ε〈gα(J)〉. (12)

This shift is the leading conservative contribution of the small body’s self force.

These forcing terms are nearly constant, varying on the long timescale Ti ∼ M2/m

that characterizes the rate of change of the integrals of motion J. By contrast, the

forcing terms δGi(qθ, qr,J) and δgα(qθ, qr,J) vary rapidly on a timescale To ∼ M

that characterizes the small body’s orbital motion. Their impact is (usually) much

less important than the impact of the averaged terms 〈Gi(J) and 〈gα(J)〉.
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As discussed above, the most important detail we need to understand to charac-

terize models for GW measurements is the phase
b
accumulated over some interval:

Φ(t1, t2) =

∫ t2

t1

ω(t) dt = Φdiss−1 +Φcons−1 +Φdiss−2 +Φcons−2 + . . . (13)

The contributions to this phase have the following scalings with masses, and arise

from the following pieces of source physics:

• Φdiss−1 = O(Ti/To) = O(M/m): The slowing evolving geodesic frequency

ω = 1/To ∼ 1/M integrated over the inspiral time Ti ∼ M2/m.

• Φcons−1 = O(εTi/To) = O(1): The conservative correction to the frequency

δω ∼ εω integrated over the inspiral time Ti.

• Φdiss−2 = O(εTi/To) = O(1): The slowly evolving geodesic frequency ω

integrated against the oscillatory correction to the inspiral time δTi ∼ εTi.

• Φcons−2 = O(ε2Ti/To) = O(m/M): The conservative correction to the fre-

quency δω ∼ εω integrated against the oscillatory correction to the inspiral

time δTi ∼ εTi.

These schematic countings suggest that we must include the leading adiabatic con-

servative piece and perhaps the first oscillatory dissipative piece in order to have

effective detection templates. We certainly will need to go farther for measurement

purposes, or else just accept that a certain level of systematic error may be very

difficult to remove from EMRI waveform models.

4. Adiabaticity and its limitations: Resonant orbits

The fact that the oscillatory contributions to the EMRI model are subleading sug-

gests that a useful approximation may be to ignore them at first pass. Doing so

gives us the adiabatic approximation to EMRI evolution:

dqα
dλ

= ωα(J) + ε〈gα(J)〉 , dJi
dλ

= ε〈Gi(J)〉 . (14)

For most black hole orbits, this approximation works well. This is because the small

body’s motion typically is ergodic: after a small number of orbits (requiring far less

than the inspiral time), the small body has come close to every point it is allowed

to pass through. Its motion thus averages the forcing terms in the equations of

motion more or less automatically. This is illustrated in the left-hand panel of Fig.

1 (adapted from Fig. 1 of Ref. 9), which shows the path in (r, θ) traced out by an

orbit. Roughly nine radial orbits are shown here. Given enough time, this trace

would fill the entire (r, θ) plane over the domain 2M � r � 12M , 70
◦ ≤ θ ≤ 110

◦

.

However, there exist orbits for which this averaging does not occur. If the small

body’s θ and r frequencies are in a low-order resonance, then the motion is not

bBear in mind that the following equation is meant to be schematic. The frequency ω(t) which
appears under this integral is in fact a harmonic of the various frequencies which characterize Kerr
black hole orbits, and as such has more contributions than are indicated in this sketch.
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ergodic, but instead traces out a Lissajous figure in the (r, θ) plane. An example is

shown in the right-hand panel of Fig. 1. Because these orbits do not come close to

all allowed points in the accessible physical space, they do not effectively average the

forcing functions gα(qθ, qr,J) and Gi(qθ, qr,J). Indeed, different initial conditions

trace out different Lissajous figures. This means that the detailed manner in which

averaging fails depends on an orbit’s phase as it enters resonance.

Fig. 1. Three example Kerr black hole orbits. All oscillate between 2M � r � 12M and 70◦ ≤

θ ≤ 110◦; roughly 9 radial cycles are shown for each case. The left-hand panel shows these orbits
for a black hole with spin parameter a = 0.95M . This motion is ergodic — given enough time, the
orbit would come arbirarily close to every accessible point in (r, θ). The right-hand panel shows
two orbits for spin a = 0.9M . The θ and r motions of these orbits are in a 3:1 resonance: the orbit
oscillates three times in θ over each radial cycle. No matter how long we wait, the motion will
be confined to the Lissajous figures shown here. The particular points the orbit passes through
depend on the system’s phase as it enters resonance. Two examples are shown here.

To make this more quantitative, examine the Fourier expansion of Gi:

Gi(qθ, qr,J) =
∑
kn

Gi;kn(J)e
i(kqθ+nqr) . (15)

For a non-resonant orbit, only one term on the right-hand survives averaging: using

Eq. (8), we have

〈Gi(J)〉non−res = Gi;00(J) . (16)

since 〈ei(kqθ+nqr)〉 = 0 except for k = n = 0.

This is not the case for resonant orbits. When Ωθ/Ωr are in a ratio of small

integers, then qθ/qr are also in a ratio of small integers. We now find that many

terms on the right-hand side of Eq. (15) survive the average:

〈Gi(J)〉res = Gi;00(J) +
∑
(k,n)

Gi;kn . (17)

The final sum is over all pairs (k, n) that satisfy kqθ + nqr = 0.
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Averaging, and thus the adiabatic approximation, fails as we enter a resonance.

The oscillatory terms in the equations of motion combine in phase on a resonance,

“kicking” the system until it evolves away from the resonance. The adiabatic evo-

lution does well at describing the system’s evolution before and after the resonance,

but does a poor job at modeling in the system very near the resonance. Taking res-

onances into account, we find that the system’s phase evolution must be modified:

Φ(t1, t2) =

∫ t2

t1

ω(t) dt

= Φdiss−1 +ΦRES +Φcons−1 +Φdiss−2 +Φcons−2 + . . . . (18)

This form is identical to that given earlier, but there is now a new term: ΦRES =

O(ε1/2Ti/To) = O([M/m]
1/2

). This term dominates over all but the leading dissi-

pative contributions to the system’s phase evolution. Detailed analysis
10,11

indeed

shows that ΦRES contributes dozens to hundreds of radians to the system’s phase

evolution, substantially more than all terms except the leading one.

One might imagine that, since resonant orbits are a set of measure zero in the

complete set of Kerr black hole orbits, these cases are curiosities that are unlikely to

play much role in astrophysics. That is not the case. Consider a set of astrophysical

inspirals with parameters such that they are likely to be important sources for low-

frequency GW detector. We have shown
11

that every inspiral will pass through

at least one dynamically significant low-order resonance as it spirals through the

detector’s sensitive band. Many of these inspirals will pass through two significant

resonances; some will pass through three.

5. Summary and outlook

Although useful for producing a somewhat accurate picture of extreme mass ratio

binaries, the adiabatic approach to inspiral is ultimately inadequate for modeling

these sources, even for the less stringent task of developing detection templates. We

must go beyond this picture and develop post-adiabatic EMRI models in order to

more completely model these sources.

Of particular importance is understanding the magnitude of the “kick” that is

imparted to an EMRI’s evolution by each resonance passage. Properly doing this

requires that we self consistently integrate the equations of motion, including the

oscillatory part of the self interaction. Past work
9–11

has given us some idea how

much kick we can expect and the number of cycles over which the kick operates,

but it remains important to develop a fully self consistent inspiral and waveform

model to assess the reliability of these estimates.

Even with good modeling, it is likely that the impact of resonances will sub-

stantially complicate our ability to measure EMRI GWs. The detailed evolution

of an EMRI on resonance depends on the value of two orbital phases as we enter

resonance. For non-resonant orbits, these phases are ignorable. Resonances thus in-

crease the dimensionality of the EMRI waveform manifold, and potentially greatly

expand the number of parameters that will be needed for measurement templates.
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For detection purposes at least, it may be adequate to break the data into

segments. A simple, adiabatic model suffices to model the system’s phase until

we are within a few dozen or hundred radians of the resonance; a different simple,

adiabatic model suffices to model the phase once we are a few dozen or hundred

radians past resonance. Each EMRI is thus broken into pre- and post-resonance

segments. Similar techniques are used in radio astronomy to model glitching pulsars,

when a pulsar’s spin frequency suddenly changes following a change in a neutron

star’s moment of inertia due to a rearrangement of its internal fluid distribution (see,

e.g., Fig. 1 of Ref. 12 for an example and discussion). This segmented approach is

likely to work well on EMRI events whose fully coherent signal-to-noise ratios are

several tens or larger.

Much work remains to be done on this challenging problem.
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