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ABSTRACT

One measure of the adequacy of the theory of grammar as
developed by transformational grammarians is the weak
generative power of the transformational grammars allowed by
the theory. Previous work, mainly that of Peters and -
Ritchie, has shown that the generative power: of J
transformational grammars is equal to that of Turing machines,
even if we impose the requirement that all transformational {
grammars must have the same base component (the "universal
base hypothesis”™). These results are a consequence of the
tremendous power of cyclically applied transformations.

Emonds has proposed a linguistically (as opposed to
mathematically) motivated constraint on transformations,
namely that they be either structure-preserving or root

~ transformations, or minor movement rules (the "structure-

preserving constraint"). ézﬁ this paper, we examine)the |
rmational grammars obeying both

the unlversal base h% pothesis and the structure-preserving |
that imposing both these restrictions !

simultaneously does not restrict the generative power of f
transformational grammars., e

Formally, our theorem is that there exists a phrase -

- structure grammar“f’such that given an r.e., language L over

the alphabet {a,,...a 3 , there exists a set of transformations

all of whose membePs obey the structure-preserving
constraint, such that ifX = (72,7 ) and the terminal
alphabet of & is %a seecald, then L) = L.

An outline of t%e proof is as follows: By a result of
Peters and Ritchie, L is an r.e. language over seeedp
if and only if L is generated by a transformation%l grammar

= (P,T), where P is a given universal base and T is a set

of ten given transformations. So it is sufficient to
construct a grammarjﬁ as specified above and to show that
L(JJ) = L(G). We present such a grammar and prove that L(G)
€L(X) by mimicking Peters and Ritchie's derivation of a
sentence of L(G) inJ. We prove the inclusion in the other
direction by showing that if any phrase marker other than the
one we start from in the derivation in the first half of the
proof yields a sentence in L(Jd), that sentence is also in L(G).

Thesis Supervisor: G.H.Matthews Title: Professor of Modern
Languages
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Section 0: While generative grammafs of particular
languages express how natural languages differ\from each
other, the theory of grammar specifies how natural languages
differ from all other languages. One measure of the
adequacyyof the theory of grammar in performing this taSk

is the scope of the class of languages generated by .
transformational grammars the theory allows. The work of
Peters and Ritchie (196%a) and Kimball (1967) showed that
any recursively enumerable language can be generated by a
context sensitive- or context free-based transformational
grammar, i.e. that the generative power of transfo#mational
grammars is at least (and in faci at most) edual to that of
Turingwmachineé. The theory of grammar developed up to
1967, when these ;esults were made known, was inadequate to
differentiate the natural languaces from other recursively
enumerable languages, at least along the dimension of
generati&e power, Clearly, the theory of grammar had to
impose‘more restrictions on transformational grammars before
conéiderations of generative poﬁer could constitute evidence
for or against any particular theory.

The universal base hypothés;s states that all natural
languaées utilize the same base component in their
transformational grammars. ‘Peters and Ritchie (1969b)
investigated the universal base hypothesis and showed that

there exists a base such that every recursively enumerable

Alanguage is generated by a transformational grammar ﬁith

this base. And Peters (1970338) writes, "The reason for

s
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this state of affairs is not hard to find., It is the
enormous power and flexibility that exists in grammatical
transformations when they are iterated by cyclic application.,
... [This powe{} can be used to remove all differences in the
base components of grammars for every naturai language.” So
independent of tﬁe correctness of the universal base
hypothesis, new constraints were needed on transformations.
In 1969, Emonds proposed that transformations be
gonstrained to meet certain requirements. His structure-
preserving‘constraint was empirically motivated, but it was
clear that'he intended it to have ;‘bearing on this issue,
for instance when he wrote (1970;33) in the introduction to
his thesis, "The narrowing of the notion 'possible
transfsrmational rule* that emerges from this study is
considerable." However, building on the wérk of Ppeters,
Ritchie, Kimball, and Emonds, I showed first that any
recursively enumerable language cén be generated by a
context sensitive-based transformational grammar all of
whose transformations obey the structure-preserving
constraint, and next that any r.e. language can be
generated by a context free-based transformational grammar
all of whose transformations obey the structure-preserving
constraint (Kravif 1970, 1971).

Since the universal base hypothesis does not restrict

the weak generative power of transformational grammars
because transformations are too powerful, and since Emonds®

independently proposed constraint is not strong enough by

g




itself to do the job; it is a natural step to see if
combining.tﬁe constraint and the universal base hypothesis
has any effect on the generative power of t:ansformational
grammars., In fact, this is the question we investigate in
this paper. The answer,.unfortunately, is in thé tradition
of those discussed above, The theorem we prove is that
there exists a base such that every recursively enumerable
language is generatéd by a transformational grammar with
that base, all of whose transformations obey the structure—
éreserving constraint, - |

In section 1 we present the structuré-preserving_

¢onst:aint and define the new concepts Emonds introduced in

‘connection with it, Empirical motivation for the constraint

is notwdiscussed here,_and we refer the interested reader
to Emonds (1970). In section 2 we récapitulate the theorem

of peters and Ritchie (1969b) mentioned above. Section 3

‘contains a proof of the existence of a universal base such

-that every r.e. language is generated by a transformatiohal

grammar with that base which obeys the structure-preserving
cdnstréint. A comparison'of thg grammar of section'3 with
Peters and Ritchiet's grammar in séction 2 will show that the
proof of our theorem is heavily dependent on the work of

Peters and Ritchie.

Section 1: Emonds proposed his structure-preserving

constraint in his thesis (1970); an eatlier version appeared

in his 1969 paper. Before we state the constraint, we wili

E@l -




review the three ma jor notions Emonds developed in his
discussions, namely the notions of structure-preserving
transformation, root transformation, and minor movement.
rule,

Structure-preserving rules essentially move or insert a
constituent X into a position in.thawphraseﬂmarker "where a
node X is already proVided'for”by’fhe‘ﬁhrase sﬁructure rules.,"
(1970;37) A structure-preserving deletion rule "specifies
the location of a non-empty node in trees and removes the
material it dominates, leaving an empty node" (1970;38).

In short, every.deletion is structureépreéerving.1 To make
‘precise the notipn of insertion, Emonds allows a node to
remain empty dﬁring a transformational darivation, as long
as it dominates a terminal element at soﬁe point in the |
derivation. An insertion transformation inserts material
into an empty space which already bears the proper label,.

To formalize this notion, we introduce a new symbol Qk,
a member of the terminal vocabulary of the phrase structure
base but not of the terminal wvocabulary of the transformational
language, to act as a place holder. Since & is notbin the
terminal vocabulary of the transformational language, its
presence in a surface string z is sufficient to filter out
‘the pigase marker from which z was derived as a possible
"deep structure for the language, :eflecting the fact that we
do not allow empty nodes tb occur in surface structures,

As formalized by Peters and Ritchie (1969a), a

;ransformation consists of four types of elementary




transformations, namely deletions, substitutions, and left
and right adjunctions. 1In this framework it is impossible
to insert material not already located in the phrase
marker into the phrase marker, although such insertion has
traditionally been allowed, and has,béen exploited in such
transformations as Complementizer Insertion and There-
Insé:tion. However, recent work (e.g. Bresnan 1970 and
Bowefle?O) sugéests that such insertions may not be
necessary‘td describe natural languages, and we will not
use them here.

We now define structure-preserving elementary
substitutions in the obvious way, and we allow such aﬁ
elementary ﬁransfo:mation to substitute a & that is an X
for other material that is an X in case we want to fill ah
vempty" X node later in the derivation. A structure-

- preserving elementary deletion is just a-deletion.2 We do
.not need to‘define structure-preserving élementary

gdjunctions since we thihk of a structure-preserving.

movement rule of a string z which is an X to annther node X

as a substitution of z for A4 dominated by X and a deletior of
the original z. Although we do not allpwvinsertions of new
matérial into the phrase marker, if necessary Emonds *
structure-preserving insertions can be handled as structure; .
preserving substitutions of new material for a A,

Emonds (1970;8) defines the root of a tree3 as ﬁhe
highest S in the tree, an S immediately dominated by the

highest S, or "the reported S in direct discourse.” A root




transformation, then, is "one in which any constituents
moved, inserted, or copied are immediately dominated by a
root in the derived structure.”" (1970;10) We will not be
concerned with root transformatlons in this paper, as it
turns out, so we will say no more about them here.

A minor movement rule is a transformation which moves a
constituent B over a single adjacent constituent C, where
the two nodes afe "mutually in construction”. Furthermore,
"B is neither a "lexical category node" nor a "phrase node"

(i. e., as we will see below, B is a "function category node")
and C is not a function category node.or S.

B and C are mutually in constrdction whenever either the
node immediately dominating B, but not B itself, dominates
Cc, or vice versa. This definition is due to Emonds, who
based it on Klima's notion of "in construction with”,

The nodes occurring in the phraee structure rules which
never appear to the left of an —> are the'preterminal nodes;
the others are non-preterminal. (The preterminal nodes are
then subject to lexical insertion). Emonds partitions the
set of nodes occurring in the phrase structure rules into
three parts, the phrase nodes, the lexical category nodes, /
and the function category nodes. The phrase nodes are |
vthose non-preterminal nodes under which unlimited recursion
can occur. The theory of grammar specifies that S is a
phrase node, but whether there are any other phrase'nodes
is eufrently in dispute, with NP the leading candidate. We

will only need one phfase_node, S, in the phrase structure




grammar outlined in section 3 (see, howeQer, footnote 5),
The lexical category nodes are the heads of phrase nodes.
The only restriction on the choice of lexical category nodes
is that a phrase node can immediately dominate at most one
lexical category node, Finally, the function category nodes
are all the remaining nodes.

In formalizing the notion-éf;hihcr'moveﬁent rule, we
define only the elehentary minor movement substitution,
since we regard a minor movement rule as two simultaneous
elementary substitutions, one of B for C and one of C for B.4'

We can now state the structure-preserving constraint:

(1) The only non-structure-preserving transformations are
root transformations and minor movement rules. (1970;207)

Séction 2: Peters and Ritchie (1969 ) showed that thefe
exists a base such that every recursively enﬁmerable
laﬁguage is generated by a tranéfbrmétional grammar with
this base and a set of transformations. ~In fact, the
transférmations vary vefy little from language to language;
one depends on the particular instructions of a Turing
machine that generates the r.e. language and most of them
refer to the number of states of the machine. Peters and
Ritchie'svuniversal base is simple, consisting only of the

rules in (2).

(2) s—>s#

s—aal...anb#

where {a1"°°a5€ is the terminal vocabulary of the




transformational grammar and {b,#%,are additional terminal
symbols of the phrase structure grammar. Throughout this
paper the symbol # is notvto be understood as the usual
sentence boundary, but as a special marker whose use will
become apparen£ as we look at some transformational
derivations. The sentence boundary normally appears in‘the
axicm of the phrase structure graﬁﬁar,'ﬁlanking“the symbol S;
to avoid confusion with the # used’here, we will omit it.
Given an r.e.nlanguége generated by a Turing machine 2,

Peters and Ritchies's ten transformations are as follows:

Tl aluotan-e---o-e"‘b"#
1 2 ces T+l T42 r43 =
Bt r+3 ... r+3 r+2 r+3
-~ where e is the empty symbol (not in the vocabularies of
the phrase structure grammar, but in the metalanguage)
and r is the number of states of Z.

: r
T2 al'ooan"'# "b-#

1 2 3 4 =
2+1 0 3 4+3
r-1 e #
1 2 3 4 5 6 7 8 =
1 2 3 4 4+5 6 = 3+7 O

Condition: 1 is not an S.

_ar-1 e _ #
T, [gh-# al’"ai-l-ai-ai+l"'anb'i# - ei#b]s-e— X - #

1 2 o3 4 5 6 7 8 9 =
1 2 3 4 5 5+6 5 3+8 0

Condition: 1 is not an S.




.
7, [o#fay...a bHi - # - (##)p]g - b# - ¥ - #

1 2 3 4 5 e63p
142 2 3 4 5 6‘#?
. [#5a,...a b - # - (#)b). - Y -

6 s 1°°°n S _

l 2 3 4
142 2 3 4
T7 See next pagé.
co.r. 6 ' a j. a '
1y [#ay.. .2, pit=s-blo-x-|T1] - 40 - (T1) - v - b
. é .
n a
b P
l 2 3 4 5 6 7 8 9 =
0 2 0 244 5 0 7 8 0

where 1%jér
b e

Tq [s#]s-x-#—ie-al%-a{—#
o %é

i 2 3 4 5 66 1=
1 2 0 0 5+

Condition: 6 # e

' b e ' :
Tyo [s#js -X-# - Ze '{al{S - #
1 2 3 4 5 6 =
0 2 0 0] 5 6 ‘

It is helpful to think of eaéh phrase marker (3)
(3) L., Llgag e ool . i

generated by the base as containing a copy of the alphabet
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{al,...a b #3 (in the innermost subsentence) followed by a
copy of the tape of Turing machine Z. Essentxally, we start
with just the alphabet. T3 and T, construct the copy of the
ta?e; after they have applied, we have a tape containing
bu#ybv, where y is the input to 2 and u and v are
respectively the number of blank squarés to the left and
rigﬁt of y used in 2's compﬁtation of an output, given y
as input. The # marks the position of the reading head,
reading the leftmost stbol of y, when the machine is in its
initial state qy . In general, throughout the simulated
computation the number of #'s.in this part of the phrase
marker is the index of the state Z is in; the #'s in the
innermost subsentence and before each] trigger and inhibit
the transformations at the proper time, T7 contains codings
of the instructions of Z Applied on successive cyclcs, it
simulates the action of Z on the tape, whlle TS and T6 mark
-whether the leftmost and rightmost ends of the tape have
been reached. When T7 can no longer apply, i.e. when Z has
haltéd, Tg deletes the copy of the alphabet, Tqy € limlnates
blanks within the output string, énd T10 deletes all
extraneous material, leaving only the consolidated output
string appearing on Z's tape, a member of the ianguage
generated by Z. | |

In detail, the transformational derivation on a phrase

marker of form, (3) runs as follows:

First cycle: Tl inserts r copies of the symbol # in the

innermost subsentence, Tz‘moves them to the beginning of the




alphabet and writes a b after the original # symbol.

Neﬁt v-1 cyclesx. T writes a b on the COPX of the
Turing machine tape, using the first analysis in its
structural description. |

v+lst cycle: T, writes the final b to the right of the
future input on the tape and signals it is done by insérting
another # between the b's in the innermost S, uéing the
second analysis in its strﬁctural description. Ty writes
one of the a's on the tape immediately to the left of the
leftmost b, using the first analysis of its structural
description, »

Next f(y)-2 cycles, where.f(y) is the number of symbols

in the input y: T, writes one of the a's on the tape

4
immediately to the left of the leftmost symbol, using the
first énalysis in its structural description.

vtl(y)th cycle: T4 writes one of the a's:on the tape
immediatély to the left of the leftmost symbol, a # to the

left of this, and signals it is done by inserting another #

between the b's in the innermost S, using'the second analysis

of its structural description.

Next u-l cycles: T, writes a b on the tape immediately

3
to the left of the leftmost symbol, using the first analysis
of its structural description, |
v+{(y)+uth cycle: T, writes a b on the tape immediately
to the left of the leftmost symbol and signals it is done by

inserting another # between the b's in the innermost's,

using the second analysis in its structural description,

i

12



T., simulates the first action of Z on input y.

7
Next g-l cycles, where q = the number of steps Z takes

before halting, given input y: T7 simulates tge next
action of Z, on the altered tape and possibly in a new state,
puring cycles v+f(y)+u through v+AL(y)+urqg-1, Ty and T, also
apply, inserting their # markers between the two b's of the
innermost subsentence to indicate the 1eftmost and rightmost
squares of tape needed in the computaﬁion have been reached.
v+jky)+u+qth cycle: Tg erases the copy of the alphabet
in the innermost subsentence, leaving only one #,., It also
writes a # at the leftmost end of the tape and erasés the #
markers representing the index of the state Z halted in.
Negt u+vﬁ£(y)-l_cycles: T9 passes the inserted # over
each symbol in turn, erasing b's and leaving‘ai's unchanged,
2(u+Vf£(Y))+qth cyclet Tlo’ with the inserted #
contemplatingrthe rightmost symbol on the tape} deletes
this symbol if it is a blank, and deletes éverything but the
consolidated string of ai‘s which is the output of Z..

Peters and Ritchie (1969b) has a proof that this

grammar generates exactly the language computed by Z.

Section 3: Let‘f>be the context free phrase structure

grammar with the following rules:

(4) s—>s#
S ~SS
S AM+CH# where M+ = M* - ié§

M—A

13
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M-S

C-7D+ where D+ = D* - zéz | .

The preterminal symbols of this grammar are i_#,d,Dz. Lexical
insertions are all of the form D= ags l1€i%n, and D—>b, We
leave it to the reader to verify that it is consistent with
the criteria of section 1 to partition the set of nodes of
this phrase structure grammar into the following three part.s:5
(5) Phrase nodes = ‘{S“S

Lexical ca’tegory nodes = {C,DK

Function category nodes = i#,A,Mhi

The third S-expansion rule and the C-expansion rule collapse
the ruies S—=A Mn'c# and (:-—7'1)1'1 for all n=1 into schemata, just
like the purported rule of English S= agg Ss+. Notice,
finally, that“’ohas only one recursive symbol, S (subject to
ﬁhe femark in footnote 5). We can now state our theorem.

Theorem For every recursively enumerable language L over

the alphabet ial,...an-s s there exists a set of transformations

/
/

7Jall of whose members obey the structure-preserving
constraint such that if«g = (f,7~) and the terminal
alphabet of Y is ial,...an%, then L(jJ/) = L, )

Proof By a result of Peters and Ritchie (1969b), L is an
r.e, language over Zal,...an-i if and only if L is generated
by a transformational grammar G = (P,T) wheré P (a universal
base) has the rules given in (2) and T = iTl”"Tloi of
section 2. So it is sufficient tc show that there exists a

set of transformations 5 ok2ying the structure-—preserving



constraint such that if 2 = (ﬁ0,7r3 then L(ﬂﬂ) = L(G).

Suppose L(G) is generated by Turing machine 2Z, in the sense

that L(G) = {z|

zeial, ...a 3% and there exists a ye{al. . .arS*

* , such that Z halts given input y and yields z as outputg.

Suppose further

that Z has r states and s instructions, of

which s, are print instructieﬁs,’§2fare.move left

A . T
instructions, and S5 are moveprightummstruttlons.

Let 7 be the set of the following sl+(r+2)(sz+53)+9

’ transformations:
K T r+4
7; LSA# al. L
1
1

Condition:

v r+3 , .
7, I e

1l 2
1 0

Condition:
r+2(#
La# {e -
1
1

9

Condition:

anmb-%IS[gAX-[éY]D—é]S-#

2 3 4 5 6 =»
2 3 2 5 0

DEX, Y # b, no substring of X or Z is an S,

vova =beit=] [ ax-T vl -z] -#

3 4 5 6 7 8 9=
3 4 0 6 4 8 0

No substring of X or Z2 is an S,

e
2 3 4 5 678 9=
0 3 4 5 478 0

bE€Y, a, €2 for all 1£1i%n, no substring of

X or Z is an S,

4
1 2
1 0
Condition:

LT+l
ZTJ [éA# ~H~a,

cee anb]s“‘_ ESA - [MA 1;} QiAjM-b-—x] o

3 4 B 6 7 8=
3 4 s 7 2 8

4 is not an M, no substring of X is an S.




o

(/7; [SA#Hl’#"al"'anb]s‘[sA“[p‘%]ﬁ‘&{gM“{?l ]
_ ‘:‘n |

1 2 3 4 5 6 7 8=>
7 8

1 o 3 4 5 2

Condition: 4 is not an M, rio substring of X is an S.

p—
f6 [SA#I+1a1 .o anb]S-[SA -X-[MA.]M—}J.“Y]S-#

1 2 3 4 5 6 1=
1. 2 3 5 4 6 O

Condition: 2 is not an M, no substring of X or Y is an S.

Let iim\lélné s% be t‘ne‘set of instructions of Z. For
each‘print instruction Ij = (qp,c,d,qq) add 7:_1' For each
move left (i.e. move reading head left) ;'Lnstruction Ik =
(qp,c,L,qq) add 7;k1""78kr+2' For each move right
instruction Iﬂ.: (qp,c;R,qq) add 7;11""7;@"'2' (s.ee next
page. ) '

l6
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T e e v ST



ifékz (cont inued)
where 5 = ¢

condition: M#&X, no substring of X or W is an S.

%/ké fsa#r+lal. . 'anb]SwXMz-E)Y]D-EVIZ]M-Mr-z_ ?1 ...w] S# .

1 ' 2 3 a 5 6 =
1 | 3 2 4 5 es—7

where 5 = ¢

Condition: M€ X, no substring of X or W is an S.

etc.
 Tor+l [SA#W'lal .. .anb]S[SAxmr-— [DY:[D-[MZ]M- ?1 -w]s—‘#
. ' i" |
1 2 3 4 5 6D
1 3 2 4 5 0

where 4 = ¢

Condition: M#X, no substring of X or W is an S.

 Faxerz ¥ 2y eap] {4 EEPIP L (3D) ]
| i
1 2 3 4 5 =
0 2 0 o o

where 4 = ¢

Condition: 2 is not an M, no substring of Y is an s,

18
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*S ue ST Z IO X JO BUTIISNS OU ‘Z BFW ‘X BW UOTITPUOD O = ¢ exeym

v z € . T
v € Z , T
ud |
#mmwmz - (g -,zmwzu - NuuzxqmumMWcm...Hma+u¢<wu mmmxv

*S ue ST Z I0 X 3O HburIysqns ou ‘ZBW ‘X FW UOTITPUOD

O = £ °2I9ym

4
&=y

e 3 Q M N

#w MNZ - Hm - zmwzu - H'.Hsiunﬁmum.ﬁgﬂﬂo o e Hm.ﬁ.‘-aﬂ#ﬂm\u N@\‘mb

*S ue ST 2 IO X JO butaisqns ou ‘X FW IUOTITPUOD

O = p+a+b pue ncm.. - Te H+w....n# = .nb a2I3Yym

9+I+b G+I+Db : .
7+I+Db T+b cee Z ¢+b*g+b  *** p4b g4b Z+b T+b*** z T
&= 9+a+b H+I+D .
S+I+b €+I+D CtC P+ €43 **+  p+b g+b Z+b T+b**r z T .
al 2

L s Ry el bt

- -

R U i R e it
. %o
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etc,
:7;}r+1[SA#r+lal"'ang]s[éﬂx - [MY L= (3D - Wzl -
4
1 2 3 4 5=
1 3 2 4 0

where 3 = C

condition: M£€X, M&Z, no substring of X or z is an S.

7;ir+2[§#r+la1°°'§n533$§-ArXAf_p+l#p~ 21 )4
n

5=
0

on U O e

where 4 = ¢

condition: M&X, no substring of X is an S.

7{0 fsA#r - # - al"'anb]s - [éx - Ar+j+l#j - Yjs

1 2 3 4 5 6=
o 2 0 4 0 6

where 1&£ j&4»r

Condition: Mg£X, MZY, no substring of X or Y is an S.

Tt {223 - o

e
ZZ
L
.
.
n

12 3 4 5 6=
1 0 0 4+2 5 0_7

Condition: 5 ¥ e, no substring of X or Y is an S.

e

Tarla-xoo- To gl

(@]

NN

o w
O

Ut Y.
(0]
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7;2 (continued)

condition: no substring of X is an S.

Now let H be the grammar with the terminal alphabet
i?l”"é;% consisting of (47,6?3. We must show that LGKL) =
L(G). | J

(2) Frirst, we will show the L(G)S L(jl), verifying as
we go that all the transformations of€7idbey the structure-
bresérying consfraint; So let z¢ L(G). Then there is some
transformationél derivatioﬁ of é with respect to G such that

the line in the derivation after Tl thréugh T4 and only those

transformations have applied is (6).

(6 )fs[S_.. .. [S[S#r aj... anb#4b] Sb"#yb":]s#]s .. .#]S

- Then the following transformational derivation with respect

to X from the phrase marker (7) generated by‘fgaiso yieids 2.

m...([)

~— l I ——— ‘ [
r+4 a r+l b b
1 n o
: u+v+{(y)

where total number of S's = 21}y)+u(r%2)+v+w+3

- First cycle: Vacuous, since no transformations apply to
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Second cycle:‘ Vacuous, since no transformations apply
to SZ'
Third cycles Normally, '7Zonuld apply to S3,

substituting b for any a; already on the copy of the tape
contained in S,. 1In this case, since the‘tape contains only
bts, 5q‘is not applicable., Notice, however, that 7;'consists
of one structure-preserving éleméntary”deletioﬁ: (cf 6) and

a structure-preserving elementary: substltutlon of 2 (Whlch is
| a D) for 4 (which is a D), sc»ff‘obeys the structure-

preserv1ng constraint.

However, 6r1app11es, filllng in the last b on the tape in

52 and changlng (7) to the derived structure (8)
(8) s
5
/ \
S3 #
////// \\\\\\
- S1 52
' AN
Aﬁ}{x\c\\ AK?/C
1
# # ﬁ{i.D D a a D.:}b
r+3 | | ] +1 :
a; ab r b b
S~vr"

utv+l (y)

6g/cohsists of structure-preserving deletions of 2, 5,
and 9 and a structure-preserving substitution of 4 for 7, so
it obeys the structure~preserving'constraint.

Notice also thatlét every cYcle after this one, the final
# is deiéted, leaving a structuré like (9) which reduces by

the A-over-a principle6 to (10).




o™

.a

(11)

(9)

s
//’ \\\
S’// S # (deleted)
(10) .
s
§/ N,

Next f(y) cycles: 7;4applies, filling in one letter of
the input string each time, On all but the last of these
cycles, we chobse the first analysis of constituents 1 and 2;
as soon as we use the second analysis,‘?? cannot apply any
more and we must go on. Suppose the'input string is

11025 Then at the end of the_f(y)+3rd cycle, the

"derived structure looks like (11).

\tm.-..m
b

T~

/17/51\\\ ;;:5:;77\3\

A M.'.M \ A LN J ¥
|
D. D\D A A D...D..\.\D
w——’z I l ——
r+ r+l
21 %n w_,an aix

Y

u Ly)

52 obeys the structure-preserving constraint, since it

.23
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cénsists of strucﬁure-preserQing deletions of 2 and 9 and a
structure-preserving substitution of'4 for 6. ’
_i(y)+4th cycle: Either €Z~br'7;’applies, in general.
Both put the simulated machine in its initial state and
start the process of putting it into reading position. 37;
handles the case where there are no blanks on the tape to
the left of the }eftmosé*ai (in which case the head is
already in reading position); sz'handles the case where there
are intervening blanks., Both 3Z—and‘7glcontain structure-
preserving deletions of 2 and structure—presefving
substitutions of 2 for 6; szlalso has a minor movement of 6
(which is an M and thefefore a function category node) over
7 (a D, which is a lexical category node) Moreover, 6 and 7
are mutually in constructlon since SZ’ the node immediately

o
dominating ,M' dominates D. So and7 obey the structure-

4
'preserv1ng constraint.
After 7” applies to phrase marker (ll1) but before the end

of the cycle, the derived structure is (12).

(12) s
S
s — \#

| s1/ \82
AT

# #D...\DD A AbMD...D/..\}...D

r+l l ’ f r l L [ [ l

1 anb - # \_,_,—-Ja\,l,v

u-1 f(y)
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Now, and on thé next u(r+l)-1 cycles, 52Japplies,
bringing the reading head into position adjacent to the input.
ﬁg'consists of a structure-preserving deletion of 7 and a
minor movement of 4 over 5. At the end of the _{(y)+u(r+l)+3rd
cycle, the derived phrase marker is (13), assuming r+l>u
(there can be at most u constituents to the left of a,,
under C -- cf. footnste 4), *Thiﬁ'aséumption causes no loss

of generality.

(13)

Nee o N

’//,,/f ‘\\\\\

S

] ’////’ \\\\\\ .
AD% \c |
» b4 A4AM...MMD...Deu.D

u r+u-1 A A .
# a a b
| il ix
u-1 L(y) v

#

Suppose Z computes an output, given input y, in exactly
w steps.,. Thenvon the next w cycles, either 7;5 applies or
78kl through 7E:kr+l apply or 6;“ through 7;]r+1 apply.
ﬁg} simulates a print instruction by overprinting the old
symbol with the new and changing the state of the machine.
To accomplish this it makes r+l structure-preserving

elementary substitutions and one structure-preserving

deletion. ﬁg;l through'fjekr+l simulate a move left

instruction by movihg the reading head left one symbkol and
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changing the state of the machlne. In detail, irgkl changes
the state with r structure-preserving elementary subsitutions
and moves the leftmost M over the D immediately to its left.
3@&2 through 7g;r+l each make one minor movement of an M over
that same D, until at the end of the cycle the whole reading
head has moved over the D. Each of these transformaﬁions
consists of one minor movement, and 37# has a structure-~

8kr+

preserving elementary deletion as well, / covers the

8kr+2
case when an instruction says to move left but there is no
tape to the left of the reading head (this situation cannot
arise with the phrase marker we have been examining, since
we have provided u b's to the left of the input). In this
case, 7;;r+2 deletes everything but the 4 in Sz, so the
phrase marker no longer meets the structural descriptions of
any transformations. All further cycles are vacuous, so the
resultlng string contains a symbol not in the terminal
vocabulary of the transformational language, and the phrase
"marker is filtered out., All the deletions of ?gkr+2 are
structure-preserving, of course. The move right
transformations 77. through 5 and 7#' work‘
of1 9fr+l 9fr+2

analogously. All these transformations, as we have seen,
obey the structure-preserving constraint,

Let us work through a specific example. Suppose Z has

two states, q; énd dgy» and the following instructions:

7(14) I (ql’al:L’ql)

I = (ag.Ps23;,9)

-t
W
"

(qZ’al’R’qZ)'
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14 = (qzvb’aziql)

We will compute the output of 2, given the input a;. (we
can check by hand simulation that u = 1 and v = 1) So the

transformations apply first to a phrase marker (15).

(15) S
~ s
///// \\\\
s #
/\
3 %\fz\
PN A DMM ©
[ P AN
bAAplxDD
L
First, 7211 applies:
(le) '§
/é
,///’S\\\\ \\\\#
Sy Sg

Then 7

812 aoplies:




-t

(17)

Neee

N 7N
| shi el

# alb '

Finally, 52;3 applies,

(18) s
s 5.
////’ \\\\##

S/ \S

1 2

A

[ IR AN
AA¥#¥DDD
bk

On the next cycle, 72 applies:

(19)

S,
\

\

‘bl“f/c |
# 4 Q\b

[ ]
12;P

Az»‘:.
A

p—u

on the next two cycles, 7;51,,9932, and 57;33 apply,

leaving (20) at the end of the first and (21) at the end of

28
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the second cycle,

(20)
(21) .

On the next cycle, 774 applies and the machine halts,
giving us the derived phrase marker (22) and eventually the

output string ajaja,.

(22) :
éz
74BN
DDM C
L VLI
alalA MMD

[ 1
A# a,

4

Let us return to phrase marker (13). At the end of the
A(y)+u(r+l)+w+3rd cycle, after all the computations of Z on y
have been simulated; we are left with a phrase marker like

(23), assuming that the output of Z is ajl"'aju+vt£(y)

(where b can be in this string as well as the a

's).

i



(23) ¢
S .
s — \#

| 51/ \s
A l*iil‘vl \c\\ A D...D/M{.i%v‘i \//

s #D{.D_D :!11 ellkﬂ zllM...M E.\..D

e rull B I T Ll

T AL Seaurvnly)

f, where de is the state
Z halted in.

A(y)+u(r+l)+w+4th cycle: SI; applies, deleting
everything but one # in S, and deleting the reading head
(i.e. all the M ncdes) in Sy All the deletions are

structﬁre-preserving. This gives us phrase marker (24).

(24)

Neeeln

/ \
. S
N
//\2\
A D...D C
Lo /N
iﬂ- a,D.,..D

0

’ q,_]k'i'laj u+v+,4_(y)r

#

Then 5 applies for the first time, passing the 4 of s, over
the D immediately to its right by a minor movement, and
‘ deletlng the D if it dominates B.

Next u+v+1&y)-2 cycles: ?ll applleu, passing.ﬂ;over the

D immediately to its right as above. At the end of the




2f(y)+u(r+2)+v+w+2nd cycle, we have (25), assuming that

with internal blanks

ayq e+ eay, is the string 3410 vl (y)
deleted.
(25) s
s
N\,
u _— \\\\\S
\ 2
//’/77\\\
D...D ﬁ>\\
[ |t 7
ayq qiﬁ...A ?
| ﬁd&l qxm

ziky)+u(r+2)+v+w+3rd cycle: 7;; applies, deleting

leaving (26):

everything but the string of a's in Sy
(26) S
/////\\
Dd..D C
| | ﬁ/’\B
% L B
hl |
Y Zkm
But the debracketization of (26) is just akl"'akm = z, the

string computed by 2 given.input y. So zG;L(éﬁ), and this
coﬁpletes the proof that L(G)&L(Zl). |

| (=) For the other half of the proof of the theo}em,
that L(} )SL(G), we will show that phrase markers other than
(7) either lead to a sentence of L(G) or céuse the
derivation to bléck. |

if S3, the s immediately dominating the lowest S in the

31
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>

phrase marker, is expandéd except as in (27),

(27)

Neeseln

PN

| :Sl 52
A M+CH# gM‘)-C#

e.g. as S# or a$¢AM+C#, the phrase marker does not meet the
structural description of any of‘the transformations. Hence
all the cycles of the derivation are vacuous aﬁd the
debracketization of the last line contains several A;s {and
#'s). Since these symbéls are not membefs df the terminal
vocabulary of the transformationalAlanguage, their presence
in a string filters out the original phrase marker.as a
possible deep structuré for the language. So the lowest
éXpanded S must be expanded as in (27). |

“If sl looks like anything but (28),

(28)

The phrase marker does not meet the structural description
of 7;: and its final # is not deleted. Hence no later

transformations, and in particular SZB, can apply. So the

A in S, is never deleted and the debracketization of the

final phrase marker will contain this A. so any phrase marker
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whose leftmost inner S is unlike (28) will be filtered out as
a possible deep structure. In fact, we can assume from now
on that the leftmost inner S of any phrase marker we discuss
is expanded as in (28). |

If the M+ in S, does not contain exactly r+l M's
dominating 0\, the structural! description of 92’(and
therefore of allllater transformations) is not met. all
further‘cycles are vacuous, and the A in s, filters out the
phrase marker as a possible deep'structure. So M+ must
contain r+l M's dominatingid. )

Since 3§-and 7;inll up the copy of the tape in 32 with
b's, the initial content of the D nodes in S, is irrelevant,
Let us consider, however, the number of D's in C; suppose

there are exactly t of themn,

If t<:JQy), only a truncated portion of y can fit on the

tape. But in applying 7:5 through 7gkr+2 the derivation will
simulate the action of Z on this truncated input as if it were

an input itself., So if there are enough b's to the right and

left of the truncated input for Z to complete its calculation,

we will get a sentence in L(G) (although probably not the

sentence Z calculates given input‘y). If not, either Skr+2
o : '

or Jofr+2 will apply, depending on whether we run off the

left or right end of the tape. In either case, no further

transformations can apply and the final string will be A\,

~ which is not in L(L).

1t Uy)e t<Ly)+usv and 7g'writes the whole input

string y on the tape, then either jskr+2 orjz£r+2 will apply,

33



with the same results as above. If L(y)<€ t<,[(y)+u+v and 5

3
does not write the whole input string on the tape, the same

reasoning holds as for the t<_{(y) case above.

If téﬁ(y)+u+v‘and zwrites the whole ihput string y
on the tape, the derivation will go through as in the first
half of the proof because there will be enough room on the
tape for Z to perform its computa*éion;an‘d'Tl and ?;2 wipe
out any extra blanks. If t= f(y)+u+v and 7;does not write
the whole input string y on the tape, the same reasoning
holds as for »the' t</((y) case above.

So if kwe get any string in L(JL) at all, this string is
also in L(G).

So._far the only phrase marker that can possibly yieid a
sentence of L(ﬂi) looks like (29):

(29)

U)oo.m

//\\ /7\\

AD{I...I\{I /c\\ # Ab,x...M \
/
L B A s o @
#r+4# ? ‘D ? r+lAl‘3 ?
al anb —n——

>4 (y)+utv

Now suppose we have extra expanded s's above S3, as in (30)

or (31). Let S4 be the highest and rightmost such S and let-

S5 be the highest and leftmost such S.

34
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(30)

v

If nothing goes wrong before we get there, let us
consider the first cycle which includes both S3 and 34. This
cycle and all further cycles are vacuous, since (30) does not

meet the structural description of any of the transformaticns;

So the A in s, is never deleted and (30) is filtered out as

a possible deep structure for L.

(31)

Again, if nothing gbes wrong before we get there, let us

35
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consider the first cycle whiéh includes both Sg and 5. All
further cycles are vacuous, since (31) with its three
embedded S's does not meet the structural description of any
transformation. So the 4 in s5 is never deleted ahd (31),
like (30), is filtered out.

We have been assuming so far that the phrase marker we
are looking at has enough embedded S's to give us as many
cycles as we need, We must now verify this assumption.
Moreover, since we are working inductively and have already
used this assumption above, we must be careful not to support
it with statements we have used it to prove.

Given the rules of'Fi we know that there is at least one
cycle }n every phrase marker. |

If there are not enough cycles for 7; and?’; to £fill the
whole tape with blanks, the 4 in S, is sufficient to filter
Qut the phrase marker. Similarly, there must be enough cyéles
for 5§-to £fill in the input string, for 7z’through ?z‘to put
the machine into its initial state and in reading position,

for 5:; through‘ﬁg? to apply until the machine halts

r+2
given this input, and for 510 and jll to apply. Finally,

5;; must apply or else A will be left in Sye

Now suppose the phrase marker has more cycles than:are

‘necessary to complete a derivation. Notice tha£ after 9;;

has applied once, no other transformations can apply since

the derived phrase marker does not meet the structural

description of any transformation. So i1f the phrase marker

contains extra #'s above where we want to stop, further

37
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cycles will be vacuous and the final string will contain at
least one #, which is sufficient to filter out the briginalv
phrase marker., If there are only extra expanded S's abovev
this point, again all further cycles are vacuous since 12
has already applied. So the obligatory 4 in any such S will
not be deleted and will filter out the phrase marker.
Finally, notice that if machine Z does not halt on a

particular input, the corresponding phrase marker we would

need to start with for‘7:.ﬁhrough 5?; to apply has an

infinite number of cycles anq hence is not generated by'fa.

In short, we never get.an output where 2z does not halt.
This completes the proof that L(Z)SL(G) and the proof

of the theorem.‘
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FOOTNOTES

1. This is the key fact needed to show that every r.e.
language can be generated by a context -sensitive~based
transformational grammar obeying the structure~preser ving
constraint. ’ »

2. This is a change from the definition in Kravif (1970),
where the formalization of Emonds' constraint was worked out
in detail. There, a structure-preserving deletion was a
substitution of A for non-A material. In that formulation,
however, any deletion leaves behind a A. which later filters
out the phrase marker as a possible deep structure.

3, This is an unfortunate choice of terminology, since the
root of a tree is usually considered to be its highest node-
actually its least node according to the partial ordering on
the tree. .

4. We could equally well define only elementary minor
movement left and right adjunctions and define a minor move-
ment rule of B over C as a left or right adjunction of B to
¢ and a structure-preserving elementary deletion of the
original B. This formulation changes some of the trees in
section 3 but otherwise has no effect on the results of this

paper.

§. It is not clear whether Emonds intends the phrase nodes to
be exactly the non-preterminal ncdes and the lexical and
function category nodes to be exactly the preterminals. We
interpret his remark (1970;4) that the proposed restrictions
do not "exclude lexical (or other) nodes from dominating
phrase nodes™ as implying that he does not so intend, and have
in our phrase structure grammar a lexical category node C

that is not a preterminal. We can regularize C's status by
replacing the rule C-»D+ by C-»CD, but only at the expense of
making C a phrase node. Choosing the second alternative does
not affect the results of this pap=sr,

6. The A-over-A principle reduces trees. In'phrase markers

this reduction is automatic, since a phrase marker is a set
of structural analyses. Two structural analyses S yield only

one S in the phrase marker.




CUREE

VR nRREETS
s L
S

g

153

g

- 40

BIBLIOGRAPHY

Bowers, J. (1970), Rough draft of doctoral dissertation,
unpublished, MIT.

Bresnan, J. (1970), "On Complementizer Toward a Syntactic
Theory of Complement Types', Foundatlons of Language 6:3.

Emonds, J. (1969), "Constraints on Transformations", Indiana
University Linguistics Circle multilith, Bloomlngton,
Indiana. , :

Emonds, J. (1970), Root and Structure-Preserving
Transformations, unpublished doctoral dissertation, MIT,

Kimball, J. (1967), "predicates Definable over
Transformational Derivations by Intersection with
Regular Languages®, Information and Control 11,

Kravif, D. (1970), "On thé Generative Capacity of Constrained
Transformational Grammars" unpublished, MIT,

Kravif, D. (1971), "Weak Generative Capacity and Emonds'
Constraint", Linguistic Inquiry 2:1.

Peters, S. (1970), "Why There are Many 'Unlversal' Bases"
Papers in Linguistics 2:1l.

‘Peters, S. and R.W.Ritchie (1969a), 4On the Genérative

Power of Transformational Grammars', Technical Report
CSci 69-2-3, University of Washington, Seattle,
Washington, :

bPeters, S. and R.,W,Ritchie (1969b), "On Restricting the Base
Component of Transformational Grammars", unpublished,
University of Tetas, Austin, Texas.,




