
MIT Open Access Articles

Omnipush: accurate, diverse, real-world 
dataset of pushing dynamics with RGB-D video

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bauza, Maria et al. "Omnipush: accurate, diverse, real-world dataset of pushing 
dynamics with RGB-D video" IEEE International Conference on Intelligent Robots and Systems, 
November 2019, Macau, China, Institute of Electrical and Electronics Engineering © 2019 IEEE.

As Published: 10.1109/IROS40897.2019.8967920

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/129775

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129775
http://creativecommons.org/licenses/by-nc-sa/4.0/


Omnipush: accurate, diverse, real-world dataset
of pushing dynamics with RGB-D video

Maria Bauza1, Ferran Alet2, Yen-Chen Lin2,
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Abstract— Pushing is a fundamental robotic skill. Existing
work has shown how to exploit models of pushing to achieve a
variety of tasks, including grasping under uncertainty, in-hand
manipulation and clearing clutter. Such models, however, are
approximate, which limits their applicability.

Learning-based methods can reason directly from raw sen-
sory data with accuracy, and have the potential to generalize to
a wider diversity of scenarios. However, developing and testing
such methods requires rich-enough datasets. In this paper we
introduce Omnipush, a dataset with high variety of planar
pushing behavior.

In particular, we provide 250 pushes for each of 250 objects,
all recorded with RGB-D and a high precision tracking system.
The objects are constructed so as to systematically explore key
factors that affect pushing –the shape of the object and its mass
distribution– which have not been broadly explored in previous
datasets, and allow to study generalization in model learning.

Omnipush includes a benchmark for meta-learning dynamic
models, which requires algorithms that make good predictions
and estimate their own uncertainty. We also provide an RGB
video prediction benchmark and propose other relevant tasks
that can be suited with this dataset. Data and code are available
at https://web.mit.edu/mcube/omnipush-dataset/.

I. INTRODUCTION

Object manipulation is central to robotics, but remains one
of its most significant challenges. Among the possible ways
to manipulate an object, pushing stands out as one of the

We want to thank Elliott Donlon for his help with the design and building
the Omnipush objects; Angels Villalonga Riudavets for her assistance at
generating the CAD model files, and Nick Walsh for helping to make this
dataset publicly available.

most fundamental. On the one hand, pushing enables com-
plex manipulation: reorienting objects, uncluttering scenes,
and deforming objects. On the other hand, its simplicity
makes pushing a good setting in which to explore technical
advancements in robotic manipulation.

In earlier work, to improve our understanding of pushing
and facilitate technical exploration, we developed a high-
fidelity dataset of planar pushing experiments [1]. Since its
release, the earlier dataset has facilitated research in multiple
research problems, which we review in Section II. More
importantly, feedback from users of the dataset has indicated
that it could be improved by (a) providing realistic raw
RGB-D sensor data in addition to tracking data, (b) adding
increased diversity, and (c) creating a benchmark to evaluate
generalization.

To address these limitations, we introduce the Omnipush1

dataset, with:
• Increased diversity, with 250 pushes for each of 250

objects. The previous dataset had thousands of pushes
for each of 11 objects which was not well suited to
study generalization across objects.

• Controlled variation of the object’s mass distribution.
In the previous dataset, all objects had uniform mass
distribution, leading to more homogenous dynamics.

• State recorded both with RGB-D video as well as
ground truth state tracking. The previous dataset only
had ground truth state tracking.

1The name is inspired by the Omniglot dataset [2]. The Omniglot dataset
diversified the popular MNIST dataset, going from thousands of images for
each of 10 characters to 20 images for each of 1623 characters.
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Fig. 1. Data capturing setup. The design of the system makes it possible
to autonomously collect large amounts of data for each object. Human
intervention is only required to assemble and replace objects.

Omnipush enables new research studies not supported
by earlier datasets. The larger variety of shapes and mass
distributions enables studying generalization; the difficulty
of observing mass distribution enables tests of adaptive
control, and RGB-D data enables studies on image and
video prediction. Finally, the combination of intrinsic noise
in robotic data with the epistemic uncertainty of small data
domains enables research into meta-learning algorithms that
model their own uncertainty.

The paper is organized as follows: in Section III we
describe the main aspects of the dataset and in Section IV
we illustrate the effect of shape and mass distribution on
the dynamics of pushed objects. We also provide baselines
on two possible applications: dynamic modeling in Sec-
tion V and video prediction in Section VI; and conclude
in Section VII by discussing further potential applications
and future extensions of the dataset.

II. RELATED WORK

Robotics work on planar pushing goes back to the late 80s
and early 90s [3, 4, 5] where model-based developments such
as the voting theorem [3] and the limit surface [4] established
the foundation of its mechanics. Since then, several model-
based methods have been proposed to describe the dynamics
of pushed objects [6, 7, 8, 9]. At the same time, recent work
has shown that the assumptions used in these models fail to
hold in a variety of real scenarios [1, 10].

On the other hand, there has been extensive work on
learning pushing models from data [11, 12, 13, 14, 15],
including characterizing the stochasticity of planar push-
ing [10], improving physics-based models with data [16, 17]

and learning dynamics from raw inputs [18, 19, 16]. Others
have demonstrated the potential use of learned dynamic
models for planning and control [20, 18, 21, 22].

Two of these projects [18, 19] provide RGB datasets of
pushing. However, they do not provide depth information and
lack accurate pusher and object pose tracking. They provide
data for a wider variety of objects, but the variability is not
systematic, making it difficult to study.

Since we presented our earlier dataset on planar push-
ing [1], it has been directly used for:

1) Stochastic modeling: [23, 10, 17]
2) Modeling from rendered images: [16]
3) Model identification: [24]
4) Learning models for control: [25, 26]
5) Filtering: [27]
6) Meta-learning: [28]
With this new dataset we hope to further facilitate research

in learning models and control.

III. THE OMNIPUSH DATASET

In this section we describe the main properties of the
Omnipush dataset. First, we detail the data-collection setup,
including the robot, the pusher, the planar surface, the high-
fidelity tracking system, the RGB-D camera and the software
used to record the data. Next, we introduce the set of pushed
objects and their main properties. We also provide notation to
uniquely refer to each object and explain the criteria used to
decide their shape and mass distribution. Finally, we describe
the process of collecting pushes and extensions to the dataset.

A. Data collection system

The pushing system used for the data collection, shown
in Figure 1, is based on an industrial robot arm that pushes
a given object over a flat surface. We introduce variations
on the pushed objects to study how the dynamics of pushing
change depending on the object and keep the rest of the
setup constant during the experiments. The main parts of the
system are:

Robot and pusher. The system uses an ABB IRB 120
industrial robotic arm with 6 DOF to precisely control the
position and velocity of the pusher. The pusher is a stiff
steel rod moved perpendicular to the surface. The pusher
has a length of 156 mm and a diameter of 9.5 mm, which
minimizes occlusions while providing enough rigidity. The
pose of the pusher is directly given by the robot, with an
estimated accuracy of 0.1 mm.

Surface. The surface where the frictional interaction occurs
is made of ABS, a hard plastic with coefficient of friction
of around 0.15. We selected this surface as it provides
consistent friction both spatially and over time, due to its
resistance to wear.

Motion tracker. We track the pose of the object with a Vicon
motion tracking system, composed of 4 Bonita cameras.
Each object carries 4 reflective markers that cameras detect
to estimate the object pose. This system is very accurate



Fig. 2. Modular object. Object made of the four possible sides and named
’1a3a4a2b’ following the dataset convention. Weights can be added to the
holes. There is an extra hole in the triangular side, covered by the wafers.

and provides object pose estimations with an accuracy that
can reach 0.5 mm for translation and 0.5◦ for rotation.

RGB-D camera. RGB-D images are recorded using an
Intel Realsense Camera D415 rigidly mounted and looking
towards the workspace of the robot. RGB and depth are
aligned and recorded at a frequency of 30Hz and at a
resolution of 640x480.

Software. We integrate the components of the system, such
as robot control, motion tracking and RGB-D recording,
using the Robot Operating System (ROS). The data streams
of robot pose and object pose from the Vicon system are
published as ROS topics and recorded at 250 Hz while
RGB-D images are published at 30 Hz. The experiments are
logged to ROS bag files, and we also provide them in HDF5
and JSON formats. Refer to https://web.mit.edu/
mcube/omnipush-dataset/ for more details and code.

B. Omnipush shapes

The Omnipush objects are built modularly from a set of
aluminum pieces as shown in Figure 2. All objects share
a square central piece (100.5g, made of PLA) that carries
the Vicon markers. Since they are placed on the shared
piece, all puzzle-built objects are tracked with the same
accuracy. To this central piece, we magnetically attach 4
different sides. These sides are locked in the horizontal
plane and have freedom to move in the vertical direction
so that they lay flat on the support surface and contribute
to the frictional interactions. Each side is selected from a
set of four different types, leading to 70 different shapes
with nearly uniform mass distribution (Vicon markers and
magnets have almost negligible weight). The four possible
sides are concave (74.1g), triangular (94.1g), circular (67.5g)
and rectangular (31.2g); which we denote with numbers 1-4
respectively. Figure 2 shows an example object made with
each possible side.

To add more diversity, we change the center of friction
of some objects by altering their mass distribution. All sides
except the rectangular one allow the addition of extra weight
at 35 mm from the center of the square piece. We considered
two different extra weights: small (b, 60g) and large (c,
150g). No extra weight is denoted as a. The triangular side
allows the extra weight to be placed in two different positions

(interior, denoted as b or c, and exterior weight, at 50 mm,
denoted as B or C). The biggest weight is around 5 times
heavier than the smallest side.

The set of 250 objects consists of three groups, depending
on the extra weights added:
• 70 objects without an extra weight. We included all

objects, up to rotational symmetries, that can be assem-
bled using four different sides and no extra weights.

• 90 objects with one extra weight. We collected 45
objects with a small weight and the same 45 shapes with
a large weight. For example, if we randomly selected
the object 1a3a4a2b shown in Figure 2, then we also
included the object 1a3a4a2c.

• 90 objects with two small extra weights. We randomly
select objects that contain two small weights. We get
objects of the form: 1b1b3a2a and 1a2B2a3b.

The CAD models of all 250 objects are available online.

C. Data collection process

The data collection is autonomous and independent of the
object. Given an object to explore, we collect data of its
pushing dynamics by following this scheme:

1) Move the pusher at a random position between 9 and
10 cm from the center of the object’s central piece.
This prevents the pusher from starting in a position that
collides with the object, regardless of its shape.

2) Select a random direction and make a 5cm straight push
for 1s. The velocity is constant and chosen so that the in-
teraction is close to quasistatic, meaning that the object
stops moving as soon as the robot stops pushing it [10].
Repeat 5 times without changing the pusher position
between the end of one push and the start of the next.

3) Go back to step 1.
This scheme applies to all pushes unless, during step 2,

the object ends outside a predefined region of the workspace.
In that case, we stop pushing the object and the robot pulls
it back to the center of the workspace and data collection
restarts at step 1.

To ensure a random distribution of pushes, the data col-
lection setup is not aware of the shape of the object, which
leads to a sizable portion of pushes resulting in no contact. To
increase the frequency of pushes with contact, we modify the
strategy for randomly selecting the direction of each push. If
there was contact in the previous push and the pusher starts
from where the previous push ended, then with probability
0.8 we select an angle that deviates at most ±90◦ from
the previous pushing direction. Otherwise, the direction of
pushing is uniformly sampled across all angles, filtering out
those that end more than 15 cm from the center of the object.

In total, we collected 250 pushes for each of the 250
objects, making more than 60k accurately recorded pushes.
We believe this dataset contains a diverse and complex set
of examples that are sufficient to capture some of the most
fundamental characteristics of pushing, such as the effect of
different pressure distributions and object shapes. Each push
recorded contains the following:

https://web.mit.edu/mcube/omnipush-dataset/
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Fig. 3. Out-of-distribution objects. 10 objects from the previous
dataset [1], made of a different material (stainless steel), are much heavier
and have different shapes compared to the 250 modular objects.

Poses: for every push we track x, y, θ of the object, and
x, y position of the pusher at a rate of 250 Hz.

Making the assumption that the result of the push does not
depend on the absolute pose of the object, we can remove
3 dimensions by changing to the frame of the object (which
sets x = y = θ = 0 for the object). We can further remove
another dimension by using the fact that the pusher moves at
constant speed and represent the velocity (difference between
final and initial pose of the pusher) with only its angle.
Therefore, we can have either 3, 5 or 7 input dimensions
depending on the assumptions, and the target is always 3
dimensional: (∆x,∆y,∆θ), the change in object pose.

RGB-D video: We include RGB-D recordings of the
pushes at 30 Hz with resolution 640x480. This results in
a complete dataset that can be studied directly from a vision
perspective or by using the accurate positions recovered by
the tracking system. Given the nature of the data collection,
some pushes are related because the final state of the first
one corresponds to the initial state of the following push. As
a result, it is possible to stitch sequences of up to 5 pushes
and get longer motions of up to 5s, where the direction of
the pusher changes after each second.

D. Extensions to Omnipush

We have included several extensions to Omnipush that
can be used as extra datasets to further test generalization
along different dimensions. We collected 250 pushes with
the proposed protocol for the 10 objects used in [1] and
shown in Figure 3 (which are made of steel and are much
heavier). Similarly, we collected 2.5k pushes on the same
surface (abs) for 5 of the 250 new objects. For a different
surface made of plywood, we recorded 250 pushes for 10 of
the 250 new objects and the 10 objects from [1]. These out-
of-distribution datasets are intended to be used in estimating
how much a given algorithm can generalize to related tasks
that are outside the original distribution of tasks, checking
for dataset distribution bias.

IV. SHAPE AND WEIGHT INFLUENCE OVER DYNAMICS

There are two key factors that affect the dynamics of quasi-
static pushing:

1) The pressure-friction distribution, which determines the
location of the center of friction.

2) The local geometry at the contact point, which deter-
mines the Jacobian from the contact point to the center
of friction (how the contact force is transferred to the

center of friction) and the orientation of the friction
cone w.r.t. the pushing direction (the angle between the
normal of the surface and the direction of the push).

The Omnipush shapes were designed to explore these factors.

A. Mass Distribution

Mass distribution has a direct effect on the pressure
distribution of an object and the potential to affect its dy-
namics. To the best of our knowledge there is little available
experimental data that captures this effect. In this section, we
show the effect of changing the mass distribution by adding
extra weight or removing a part of the object.

The first studies of the mechanics of pushing [3] already
show that pressure distribution directly affects friction. This
in turn affects the motion of the pushed object. Dogar and
Srinivasa [29] explored the case where all the mass of
an object is at its periphery, which theoretically produces
maximal rotation. With these assumptions, the authors bound
possible deviations from a desired motion.

Figure 4 illustrates the effect of changing pressure distri-
bution on the trajectory of a pushed object. We compare
the motion of a circle-shaped object for three different
pushes (straight, up and down) and for five different mass
distributions. To reduce the effect of stochasticity, we average
the resulting trajectories over 10 pushes. As expected, the
closer the added weight to the pusher, the more likely it is
to rotate and deviate from a straight line.

The results from this section show that the effect of mass
distribution, which is difficult to detect just from vision,
has an important effect on the dynamics of equally shaped
objects. The dataset provides a useful tool to explore this
effect.

B. Geometry of contact edge

The tangent to the surface at the point of pusher-object
contact determines the orientation of the friction cone. This,
along with the location of the center of friction, determines
the direction of the motion cone [6, 30], which ultimately
determines the directions along which the pusher will stick
or slide on the surface of the object. Figure 5 illustrates the
effect of two parallel pushes that contact differently shaped
edges on an object. Note that the flat and concave surfaces
(middle two shapes) have less variation in the normal at
contact and result in more similar behavior than for the
circular and angled surfaces (the outer two shapes). This
effect is more subtle than the ones due to adding the weight
but nevertheless important in making accurate predictions.

V. BENCHMARK: META-LEARNING

This dataset makes it possible to build predictive pushing
models that generalize over object geometries and mass
distributions. We present a new meta-learning benchmark
for algorithms that learn to learn dynamic models for unseen
objects.

We consider the task of predicting the final pose of a
pushed object given its initial pose and a description of the



Fig. 4. Dynamics comparison for different mass distribution. We compare the motion of five different objects under three different pushes (doted
lines). We observe that adding a mass into the horizontal axis affects the pushes that are not straight by increasing (second case) or decreasing (third case)
the tendency of the object to rotate w.r.t to the first case. Adding a mass below the horizontal axis (fourth case) displaces the center of mass downward,
which makes the object rotate clock-wise for all three pushes. Instead, subtracting mass in the bottom side, as done in the last case, has the opposite effect
where the center of mass is displaced upward, which makes the object rotate anti-clockwise. These results show the clear effect of mass distribution over
the dynamics of pushed objects.

Fig. 5. Dynamics comparison for different contact location. We compare
the motion of four objects that differ only on the pushed side under two
different pushes (doted lines).

push. In particular, for this benchmark we make the assump-
tion that dynamics are independent of the absolute pose of
the object and that the magnitude of the velocity of the push
is constant, which results in a 3 dimensional input: initial
x, y position of the pusher with respect to the object, and the
angle φ of the relative velocity of the pusher to the object.
From this we predict ∆x,∆y,∆θ, the change in object pose.
We normalize inputs and outputs across each dimension
separately to mean 0 and standard deviation 1 to make them
comparable. To provide an idea of the scale of the variables
we are trying to predict, we define a zero baseline which al-
ways predict that the output will follow a Normal distribution
of mean 0 and standard deviation 1, regardless of the input.

We evaluate model performance using both the root mean
squared error (RMSE) and the negative log-probability den-
sity error (NLPD). To make the results more intuitive, we
convert the RMSE to millimeters by multiplying it by the
standard deviation of the change in position: 21.92mm (see
table I). Note that the NLPD error measures the ability
of a model at predicting the probability distribution over
outcomes. For instance, our baselines predict mean and
standard deviation, defining a Gaussian probability density
for each input over all possible outcomes. By optimizing
a NLPD loss during training, we force models to both
make accurate predictions and assess their own uncertainty
correctly. We compute the NLPD metric for a model M and

dataset D as:

NLPD (M,D) = −E(x,y)∈D [ln pM,x(y)] ,

where pM,x is the probability distribution defined by model
M when given input x. Note that the NLPD can be negative
and is lower-bounded by the differential entropy of the true
(unknown) distribution.

Since pushing is experimentally stochastic, we estimate
an upper-bound of the Bayes error rate for the RMSE
and NLPD. This gives an approximation of the system’s
irreducible noise and thus a lower-bound for the models error.
To compute the Bayes error, we pushed 5 random shapes
2.5k times each, and train a separate neural network (NN) per
object with 2k pushes. Bauza and Rodriguez [10] determined
that when modeling the pushing dynamics, extra data helped
little beyond 2k pushes for Gaussian process regression.

To learn the dynamics, we consider two baseline algo-
rithms: an object-independent NN that pools the data from
all objects into a single dataset, and a meta-learning approach
(Attentive Neural Processes [31]) that builds object-specific
models. The details of the models, training and evaluation
are in the project website.

Real-world few-shot regression. The Omnipush dataset
provides a new supervised-learning benchmark for few-
shot regression. Until now, meta-learning benchmarks have
mostly focused on few-shot classification [32, 33] or meta
model-free reinforcement learning (RL) [34, 35], while to
our knowledge few-shot regression problems have only been
studied for model-based meta RL [36, 37] and toy 1-D
function datasets [38, 28].

By doing few-shot learning with 50 pushes for each new
object, our baselines for this task achieve the results in
Table I. We observe that pooling the data into a single dataset
captures a sizable amount of the signal (see rows marked
with “no” meta-learning), but the meta-learning algorithm
performs significantly better in terms of RMSE, halving the
distance to the Bayes error rate bound for the Omnipush



dataset. This is expected in meta-learning settings where
tasks share a lot of structure, but are still fundamentally
different problems.

Given the results, we believe algorithms will need between
10 and 50 samples to generalize. This is because the dynam-
ics of each push depends on the local shape of the object and
thus accurate learning might require a few pushes distributed
across the object’s boundary. As a consequence, we propose
two benchmarks at 10 and 50 samples per new object (more
details in the website), and encourage the exploration of
active learning methods from meta-learned priors, to further
reduce data requirements.

Uncertainty estimation. To the best of our knowledge,
Omnipush is the first standarized benchmark for uncertainty
estimation in meta-learning. This is important because
having few data points about a new task leads to an intrinsic
epistemic uncertainty, since we cannot be sure about our
model from a small amount of data. While there has
been a growing interest in meta-learning algorithms that
provide uncertainty estimates [39, 40, 41, 42, 43], there was
no standard benchmark to measure progress on that front.
Moreover, uncertainty in Omnipush is particularly interesting
because there is a non-negligible amount of irreducible
noise, which is also known to be heteroscedastic [10], i.e.,
some pushes are noisier than others.

From our results, we see that there is still a lot of
progress to be made with respect to uncertainty estimation in
meta-learning. Despite good RMSE scores, the meta-learning
baseline has NLPD scores that are similar to those for the
non meta-learning baseline and much worse than those of the
Bayes upper-bound. This suggests that the current method is
unable to accurately asses its own uncertainty.

Generalization beyond meta-training distribution. This
dataset aims at providing a tool to learn general models.
To show that, we test the previous algorithms on the out-
of-distribution datasets from section III-D. For the three
datasets, the meta-learning baseline shows some (limited)
capacity to adapt in terms of RMSE and NLPD. Moreover,
there is a significant gap between the performance on out
and in distribution objects, since meta-training datasets come
from the latter distribution. New algorithms need to be de-
signed for better generalization outside of the meta-training
task distribution, specially in the context of uncertainty
estimation.

VI. BENCHMARK: VIDEO PREDICTION

To characterize the stochastic nature of the planar pushing
system, we evaluate stochastic video prediction methods
based on variational autoencoders (VAEs) in both action-free
and action-conditional settings. In the action-free setting, the
goal is to predict future frames xc+1:T conditioned on the
initial frames x1:c, where c is the number of initial frames
and T is the horizon of the push. In the action-conditional
setting, the model is additionally conditioned on robot arm’s
action sequences a1:T−1 throughout the push. Code and
pretrained models will be released on the project’s website.

TABLE I

Dataset Meta-learning NLPD RMSE Dist. equivalent

Zero: Normal(0, 1) – 4.25 .997 21.9 mm

Bound on Bayes error – <-2.15 <.165 3.6 mm

Omnipush no 0.16 .328 7.2 mm
yes [31] -0.11 .225 4.9 mm

Out-of-distribution no 2.46 .512 11.2 mm
yes [31] 2.33 .469 10.3 mm

Different surface no 1.85 .333 7.3 mm
yes [31] 1.16 .285 6.2 mm

Different objects no 2.80 .601 13.2 mm
yes [31] 3.09 .558 12.2 mm

Diff. obj. & diff. surf. no 2.72 .562 12.3 mm
yes [31] 2.73 .517 11.3 mm

Horizontal lines separate different datasets, and for simplicity, out-
of-distribution agglomerates the three out-of-distribution datasets
into a single benchmark. We will keep up-to-date tables at
https://web.mit.edu/mcube/omnipush-dataset/ and
welcome submissions.

We compare the following methods on our dataset in the
action-free setting.
• SVG-LP. [44] An improved VAE model with a learned

prior that can dedicate its capacity to model stochastic
dynamics. The generator consists of an LSTM [45] and
separate convolutional networks as encoder-decoder.

• SAVP. [46] A VAE-GANs model that is trained with
both variational lower bound and adversarial loss. Dif-
ferent from SVP-LP, the generator is a convolutional
LSTM [47].

We follow the data preprocessing steps from previous
work [46]. First, we center-crop each frame to a 480x480
square and resize it to a spatial resolution of 64x64. In our
experiment, we condition on the first 2 frames and train the
model to predict 12 frames in the future, which corresponds
to length of the push, 1 second. All models are trained with
Adam optimizer [50] for 300k iterations with learning rate
of 0.001 and batch size of 32.

We evaluate the models by sampling 100 videos, then cal-
culate the Peak Signal-to-Noise Ratio (PSNR) and structural
similarity (SSIM) [51] scores between the best generated
video from those samples and the ground truth as in [44, 46].
The qualitative and quantitative results are shown in Figure 6
and Figure 7. We observe that state-of-the-art video predic-
tion models don’t capture the object’s shape as well in later
frames as in earlier frames, and it tends to become circular
in later predicted frames. This motivates future research in
video prediction models that can condition on additional
object information.

VII. CONCLUSION

This paper presents Omnipush, a high-fidelity experi-
mental dataset of planar pushing interactions with multiple
sensory inputs and large variety of objects. In total, the
dataset contains 250 pushes for 250 different objects, ground
truth trajectories and RGB-D video of both the robot and the

https://web.mit.edu/mcube/omnipush-dataset/


Ground 
truth

Initial frames Predicted frames
𝑡=1 𝑡=2 𝑡=12 𝑡=18 𝑡=24 𝑡=30 𝑡=36 𝑡=42 𝑡=48 𝑡=54 𝑡=60

SAVP
Lee et al.

SVG
Denton al.

SAVP-AC
Lee et al.

Action
free

Action
conditioned

actions

Fig. 6. Qualitative results for video prediction. (top) Ground truth video sequence. (middle) We show qualitative comparisons between baselines in the
action-free setting. All models are conditioned on the first two frames of unseen test videos. SVG preserves object’s shape better, while models trained
with a GAN loss generate more accurate motion. (bottom) We show qualitative results in the action-conditional setting. The red arrows represent the robot
arm’s pushing direction at each time step. The generated video simulates the future according to randomly sampled actions and is therefore different from
the ground truth video although they share the same first two frames. This demonstrates that the model is sensitive to the actions it is conditioned on,
since it can simulate counterfactual action sequences (what would have happened if the actions had been other than they actually were).

Fig. 7. Quantitative results for video prediction in the action-free set-
ting. We show quantitative results of baselines in the action-free setting. All
models are conditioned on the first two frames of unseen test videos. SVG
performs slightly better than SAVP. However, previous work [46, 48] has
pointed out that PSNR and SSIM correspond poorly to human judgments,
and GANs, despite achieving perceptually realistic results, are expected to
perform poorly on these distortion-based metrics [49]. Mean SSIM and
PSNR over test videos is plotted with 95% confidence interval. Models
were trained to predict up to 12 frames into the future (black line) but at
test time can be used to predict even farther.

pushed object. As a result, this dataset opens the possibility
to study challenging dynamics in the context of frictional
manipulation.

This dataset can be used to study multiple technical prob-
lems. In Sections V and VI we detailed two: meta-learning
dynamic models and video prediction, and highlighted some
of the limitations of state-of-the-art algorithms, such as bad
performance at quantifying uncertainty and generalization to
out-of-distribution tasks. We envision more uses and prob-
lems that can be addressed with this dataset. For instance:

Finding the “right” representation. An important open

problem in robotics is to find task-aware representations.
Ideally, these should be structured enough to facilitate gener-
alization and planning, but also flexible enough to accommo-
date a wide variety of objects and sensory streams. Omnipush
provides the two extremes of such representations (poses
and pixels) and a structured variety of objects that eases
interpretation and comparison of different approaches.

Meta-learning, uncertainty and generalization. Omnipush
provides a different benchmark for the meta-learning com-
munity, which is currently mostly dominated by image clas-
sification benchmarks. In particular, its low dimensionality
enables faster experimentation and easier interpretations of
the models. Moreover, the inclusion of uncertainty and
out-of-distribution datasets provides new challenges for the
community.

Leveraging object models for learning. Omnipush objects
come from a well defined distribution, which facilitates
works that use a model of the object. For instance, in [52]
we use Ominpush to create a dynamic model out of an object
from the top-down view of its CAD model.

Filtering. Real-time accurate filtering is key in real robotic
scenarios with noisy dynamics and observations. Because
this dataset provides multiple sensory streams to describe
the object and pusher poses, it is possible to test filtering
algorithms that use raw images as the sensory information
and compare them with ground truth from tracking.

Action-conditional video-prediction. In the intersection of
robotics and computer vision, we hope Omnipush sparks
research in more structured predictive models that go beyond
predicting textured movements in pixel space. In particular



we are interested in better models for action-conditional
prediction that work reliably even for long horizons.

In future work, we want to explore some of the mentioned
challenges and provide extensions to the dataset. Among
the extensions, it would be interesting to cover interactions
between a robot and multiple objects, objects of different
materials, 3d interactions, and soft or articulated objects.
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