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Learning Quickly to Plan Quickly Using Modular Meta-Learning

Rohan Chitnis Leslie Pack Kaelbling Tomás Lozano-Pérez

MIT Computer Science and Artificial Intelligence Laboratory
{ronuchit, lpk, tlp}@mit.edu

Abstract— Multi-object manipulation problems in continuous
state and action spaces can be solved by planners that search
over sampled values for the continuous parameters of operators.
The efficiency of these planners depends critically on the
effectiveness of the samplers used, but effective sampling in
turn depends on details of the robot, environment, and task.
Our strategy is to learn functions called specializers that
generate values for continuous operator parameters, given a
state description and values for the discrete parameters. Rather
than trying to learn a single specializer for each operator
from large amounts of data on a single task, we take a
modular meta-learning approach. We train on multiple tasks
and learn a variety of specializers that, on a new task, can
be quickly adapted using relatively little data – thus, our
system learns quickly to plan quickly using these specializers.
We validate our approach experimentally in simulated 3D
pick-and-place tasks with continuous state and action spaces.
Visit http://tinyurl.com/chitnis-icra-19 for a sup-
plementary video.

I. INTRODUCTION

Imagine a company that is developing software for robots
to be deployed in households or flexible manufacturing situa-
tions. Each of these settings might be fairly different in terms
of the types of objects to be manipulated, the distribution
over object arrangements, or the typical goals. However, they
all have the same basic underlying kinematic and physical
constraints, and could in principle be solved by the same
general-purpose task and motion planning (TAMP) system.
Unfortunately, TAMP is highly computationally intractable in
the worst case, involving a combination of search in symbolic
space, search for motion plans, and search for good values for
continuous parameters such as object placements and robot
configurations that satisfy task requirements.

A robot faced with a distribution over concrete tasks can
learn to perform TAMP more efficiently by adapting its search
strategy to suit these tasks. It can learn a small set of typical
grasps for the objects it handles frequently, or good joint
configurations for taking objects out of a milling machine in
its workspace. This distribution cannot be anticipated by the
company for each robot, so the best the company can do is
to ship robots that are equipped to learn very quickly once
they begin operating in their respective new workplaces.

The problem faced by this hypothetical company can
be framed as one of meta-learning: given a set of tasks
drawn from some meta-level task distribution, learn some
structure or parameters that can be used as a prior so that
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Fig. 1: We address the problem of learning values for continuous
action parameters in task and motion planning. We take a modular
meta-learning approach, where we train functions across multiple
tasks to generate these values, by interleaving planning and op-
timization. Pictured are three of our tabletop manipulation tasks
used for training and one used for evaluation (bottom right). Object
shapes and sizes vary across tasks, affecting how the robot should
choose grasp and place poses. On an evaluation task, the robot is
given a small amount of data – it must learn quickly to plan quickly,
adapting its learned functions to generate good target poses.

the robot, when faced with a new task drawn from that same
distribution, can learn very quickly to behave effectively.

Concretely, in this work we focus on improving the
interface between symbolic aspects of task planning and
continuous aspects of motion planning. At this interface,
given a symbolic plan structure, it is necessary to select
values for continuous parameters that will make lower-level
motion planning queries feasible, or to determine that the
symbolic structure itself is infeasible. Typical strategies are
to search over randomly sampled values for these parameters,
or to use hand-coded “generators” to produce them [1], [2].

Our strategy is to learn deterministic functions, which
we call specializers, that map a symbolic operator (such as
place(objA)) and a detailed world state description (including
object shapes, sizes, poses, etc.) into continuous parameter
values for the operator (such as a grasp pose). Importantly,
rather than focusing on learning a single set of specializers
from a large amount of data at deployment time, we will
focus on meta-learning approaches that allow specializers to
be quickly adapted online. We will use deep neural networks
to represent specializers and backpropagation to train them.

We compare two different modular meta-learning strate-
gies: one, based on MAML [3], focuses on learning neural
network weights that can be quickly adapted via gradient
descent in a new task; the other, based on BOUNCEGRAD [4],
focuses on learning a fixed set of neural network “modules”
from which we can quickly choose a subset for a new task.

We demonstrate the effectiveness of these approaches in



an object manipulation domain, illustrated in Figure 1, in
which the robot must move all of the objects from one table
to another. This general goal is constant across tasks, but
different tasks will vary the object shapes and sizes, requiring
the robot to learn to manipulate these different types of
objects. We conjecture that the meta-learning approach will
allow the robot, at meta-training time, to discover generally
useful, task-independent strategies, such as placing objects
near the back of the available space; and, at deployment
time, to quickly learn to adapt to unseen object geometries.
Our methods are agnostic to exactly which aspects of the
environments are common to all tasks and which vary –
these concepts are naturally discovered by the meta-learning
algorithm. We show that the meta-learning strategies perform
better than both a random sampler and a reasonable set of
hand-built, task-agnostic, uninformed specializers.

II. RELATED WORK

Our work is focused on choosing continuous action pa-
rameters within the context of a symbolic plan. We are
not learning control policies for tasks [5], [6], [7], nor are
we learning planning models of tasks [8]. We assume any
necessary policies and planning models exist; our goal is to
make planning with such models more efficient by learning
specializers via modular meta-learning. There is existing
work on learning samplers for continuous action parameters
in task and motion planning [9], [10], [11], [12], but these
methods do not explicitly consider the problem of learning
samplers that can be quickly adapted to new tasks.

Meta-Learning: Meta-learning is a particularly important
paradigm for learning in robotics, where training data can
be very expensive to acquire, because it dramatically lowers
the data requirements for learning new tasks. Although it
has a long history in the transfer learning literature [13],
meta-learning was recently applied with great effectiveness
to problems in robotics by Finn et al. [3].

Learning Modular Structure: Our approach is a modular
learning approach, in the sense of Andreas et al. [14]: the
specializers we learn are associated with planning operators,
allowing them to be recombined in new ways to solve novel
problems. Andreas et al. [15] use reinforcement learning to
train subtask modules in domains with decomposable goals.
Unlike in our work, they assume a policy sketch is given.

Modular Meta-Learning: Modular meta-learning was de-
veloped by Alet et al. [4] and forms the inspiration for this
work. Their work includes an EM-like training procedure that
alternates between composing and optimizing neural network
modules, and also includes a mechanism for choosing the
best compositional structure of the modules to fit a small
amount of training data on a new task.

III. PROBLEM SETTING

A. Task and Motion Planning

Robot task and motion (TAMP) problems are typically
formulated as discrete-time planning problems in a hybrid
discrete-continuous state transition system [16], [17], with

discrete variables modeling which objects are being ma-
nipulated and other task-level aspects of the domain, and
continuous variables modeling the robot configuration, object
poses, and other continuous properties of the world.

A world state s ∈ S is a complete description of the state
of the world, consisting of (c, o1, . . . , on, x1, . . . , xm), where
c is the robot configuration, the oi are the states of each
object in the domain, and the xi are other discrete or con-
tinuous state variables. Each object’s state is d-dimensional
and describes its properties, such as mass or color.

We now define a TAMP problem, using some definitions
from Garrett et al. [16]. A predicate is a Boolean function. A
fluent is an evaluation of a predicate on a tuple (ō, θ̄), where
ō is a set of discrete objects and θ̄ is a set of continuous
values. A set of basis predicates B can be used to completely
describe a world state. Given a world state s, the set of basis
fluents ΦB(s) is the maximal set of atoms that are true in
s and can be constructed from the basis predicate set B. A
set of derived predicates can be defined in terms of basis
predicates. A planning state I is a set of fluents, including
a complete set of basis fluents and any number of derived
fluents; it is assumed that any fluent not in I is false.

An action or operator a is given by an argument tuple
Ō = (O1, . . . , Ov), a parameter tuple Θ̄ = (Θ1, . . . ,Θw),
a set of fluent preconditions pre(a) on (Ō, Θ̄), and a set
of positive and negative fluent effects eff (a) on (Ō, Θ̄).
An action instance a(ō, θ̄) is an action a with arguments
and parameters (Ō, Θ̄) replaced with discrete objects ō and
continuous values θ̄. An action instance a(ō, θ̄) is applicable
in planning state I if pre(a(ō, θ̄)) ⊆ I. The result of
applying an action instance a(ō, θ̄) to a planning state I is a
new state I ∪ eff +(a(ō, θ̄)) \ eff −(a(ō, θ̄)), where eff + and
eff − are the positive and negative fluents in eff , respectively.
For a to be a well-formed action, eff +(a) and eff −(a) must
be structured so that the planning state I ′ resulting from
applying a is valid (contains a complete set of basis fluents).
Then, I ′ determines a world state s ∈ S, and the action a
can be viewed as a deterministic transition on world states.

A TAMP problem (A, I,G) is given by a set of actions A,
an initial planning state I, and a goal set of fluents G. A se-
quence of action instances, π = 〈a1(ō1, θ̄1), . . . ak(ōk, θ̄k)〉,
is called a plan. A plan π is a task-level solution for problem
(A, I,G) if a1(ō1, θ̄1) is applicable in I, each ai(ōi, θ̄i) is
applicable in the (i − 1)th state resulting from application
of the previous actions, and G is a subset of the final state.
A plan skeleton π̂ is a sequence of actions whose discrete
arguments are instantiated but continuous parameters are not:
π̂ = 〈a1(ō1, Θ̄1), . . . ak(ōk, Θ̄k)〉.

A world-state trajectory τ(π, I) is the sequence of world
states s1, . . . , sk ∈ S induced by the sequence of planning
states I1, ..., Ik resulting from applying plan π starting from
I. A task-level solution π is a complete solution for the
TAMP problem (A, I,G) if, letting τ(π, I) = 〈s1, . . . sk〉,
there exist robot trajectories τ̃1, . . . , τ̃k−1 such that τ̃i is a
collision-free path (a motion plan) from ci to ci+1, the robot
configurations in world states si and si+1 respectively.



B. Solving Task and Motion Planning Problems

Finding good search strategies for solving TAMP problems
is an active area of research, partly owing to the difficulty
of finding good continuous parameter values that produce
a complete solution π. Our meta-learning method could be
adapted for use in many TAMP systems, but for clarity we
focus on the simple one sketched below.1 See Section V for
discussion of the TAMP system we use in our implementation.

Algorithm PLANSKETCH(A, I,G)
1 for π̂ in some enumeration of plan skeletons do
2 for θ̄ s.t. π = π̂(θ̄) is a task-level solution do
3 if motion plans exist for π then

return the complete solution π
The problems of symbolic task planning to yield plausible

plan skeletons (Line 1) and collision-free motion planning
(Line 3) are both well-studied, and effective solutions exist.
We focus on the problem of searching over continuous values
θ̄ for the skeleton parameters (Line 2).

We first outline two simple strategies for finding θ̄. In ran-
dom sampling, we perform a simple depth-first backtracking
search: sample values for θi uniformly at random from some
space, check whether there is a motion plan from si−1 to si,
continue on to sample θi+1 if so, and either sample θi again
or backtrack to a higher node in the search tree if not. In
the hand-crafted strategy, we rely on a human programmer
to write one or more specializers σia for each action a. A
specializer is a function σ(I, ō, j), where I is a planning
state, ō are the discrete object arguments with which a will
be applied, and j is the step of the skeleton where a particular
instance of a occurs. The specializer σ returns a vector of
continuous parameter values θ̄ for a. So, in this hand-crafted
strategy, for each plan skeleton π̂ we need only consider the
following discrete set of plans π:

π = 〈a1(ō1, σ
i1
a1(I1, ō1, 1)), . . . ak(ōk, σ

ik
ak

(Ik, ōk, k))〉 ,

where the i values select which specializer to use for each
step. Each setting of the i values yields a different plan π.

Now, it is sensible to combine the search over both
skeletons and specializers into a single discrete search. Let
Σ(W ) be a set of specializers (the reason for this notation
will become clear in the next section) and A(Σ(W )) be a
discrete set of “actions” obtained by combining each action
a ∈ A with each specializer σia ∈ Σ(W ), indexed by
i. We obtain our algorithm for planning with specializers:

Algorithm PLAN(A, I,G,Σ(W ))
1 for π in SYMBOLICPLAN(A(Σ(W )), I,G) do
2 if motion plans exist for π then

return the complete solution π

C. Learning Specializers

We begin by defining our learning problem for just a single
task. A single-task specializer learning problem is a tuple
(A,D,Σ(W )), where A is a set of actions specifying the

1Generally, not all of the elements of θ̄ are actually free parameters given
a skeleton. Some elements of θ̄ may be uniquely determined by the discrete
arguments or other parameters, or by the world state. We will not complicate
our notation by explicitly handling these cases.

dynamics of the domain, D = {(I1,G1), . . . , (In,Gn)} is a
dataset of (initial state, goal) problem instances, Σ is a set
of functional forms for specializers (such as neural network
architectures), and W is a set of initial weights such that
Σ(W ) is a set of fully instantiated specializers that can be
used for planning with the PLAN algorithm.

The objective of our learning problem is to find W such
that planning with Σ(W ) will, in expectation over new (I,G)
problem instances drawn from the same distribution as D, be
likely to generate complete solutions. The functional forms
Σ of the specializers are given (just like in the hand-crafted
strategy), but the weights W are learned.

Although our ultimate objective is to improve the effi-
ciency of the overall planner, that is done by replacing the
search over continuous parameter values θ̄ with a determin-
istic choice or search over a finite set of parameter values
provided by the specializers; so, our objective is really that
these specializers be able to solve problems from D.

Most directly, we could try to minimize 0− 1 single-task
loss on D, so that W ∗ = argminW LS(W ;D) where:

LS(W ;D) =
∑

(I,G)∈D

{
0 PLAN(A, I,G,Σ(W )) succeeds
1 otherwise

Unfortunately, this loss is much too difficult to optimize
in practice; in Section IV-A we will outline strategies for
smoothing and approximating the objective.

D. Meta-Learning Specializers

In meta-learning, we wish to learn, from several training
tasks, some form of a prior that will enable us to learn to per-
form well quickly on a new task. A specializer meta-learning
problem, given by a tuple (A, (D1, . . . ,Dm),Σ(W )), differs
from a single-task specializer learning problem both in that
it has multiple datasets Dj , and in that it has a different
objective. We make the implicit assumption, standard in
meta-learning settings, that there is a hierarchical distribution
over (I,G) problems that the robot will encounter: we define
a task to be a single distribution over (I,G), and we assume
we have a distribution over tasks.

Let LEARN(A,D,Σ(W )) be a specializer learning algo-
rithm that returns W ∗, tailored to work well on problems
drawn from D. Our meta-learning objective will then be to
find a value of W that serves as a good prior for LEARN on
new tasks, defined by new (I,G) distributions. Formally, the
meta-learning objective is to find W ∗M = argminW LM (W ),
where the meta-learning loss is, letting j index over tasks:

LM (W ) =
1

m

m∑
j=1

LS(LEARN(A,Dtrain
j ,Σ(W ));Dtest

j ) .

The idea is that a new set of weights obtained by starting
with W and applying LEARN on a training set from task j
should perform well on a held-out test set from task j.

After learning W ∗M , the robot is deployed. When it
is given a small amount of training data Dnew drawn
from a new task, it will call LEARN(A,Dnew,Σ(W ∗M ))
to get a new set of weights W ∗new, then use the planner



PLAN(A, I,G,Σ(W ∗new)) to solve future problem instances
(A, I,G) from this new task. If the meta-learning algorithm
is effective, it will have learned to
• learn quickly (from a small dataset Dnew) to
• plan quickly (using the specializers Σ(W ∗new) in place

of a full search over continuous parameter values θ̄),
motivating our title.

IV. ALGORITHMS

In this section, we begin by describing two single-task
specializer learning algorithms, and then we discuss a spe-
cializer meta-learning algorithm that can be used with any
specializer learning algorithm.

A. Single-Task Specializer Learning Algorithms

Recall that an algorithm for learning specializers takes
as input (A,D,Σ(W )), and its job is to return W ∗ =
argminW LS(W ;D). We consider two algorithms: alternat-
ing descent (AD) and subset selection (SS).

a) Alternating Descent: AD adjusts the weights W to tune
them to dataset D.

If we knew, for each (I,G) ∈ D, the optimal plan skeleton
and choices of specializers that lead to a complete solution
π for the TAMP problem (A, I,G), then we could adjust the
elements of W corresponding to the chosen specializers in
order to improve the quality of π. However, this optimal
set of actions and specializers is not known, so we instead
perform an EM-like alternating optimization. In particular,
we use the PLANT algorithm (described in detail later), an
approximation of PLAN that can return illegal plans, to find
a skeleton π̂ and sequence of specializers σj to be optimized.
Then, we adjust the elements of W corresponding to the σj
to make the plan “less illegal.”

Formally, we assume the existence of a predicate loss
function Lp for each predicate p in the domain, which takes
in the arguments of predicate p (ō and θ̄) and a world state
s ∈ S, and returns a positive-valued loss measuring the
degree to which the fluent p(ō, θ̄) is violated in s. If p(ō, θ̄) is
true in s, then Lp(ō, θ̄, s) must be zero. For example, if fluent
φ = pose(o, v) asserts that the pose of object o should be
the value v, then we might use the squared distance (v−v′)2

as the predicate loss, where v′ is the actual pose of o in s.
Now consider the situation in which we run PLANT, and

it returns a plan π created from a plan skeleton π̂ and the
chosen specializers σ1, . . . , σk. From this, we can compute
both the induced trajectory of planning states I1, . . . , Ik, and
the induced trajectory of world states τ = 〈s1, . . . sk〉. We
can now define a trajectory loss function Lτ on W for π:

Lτ (W ; I,G, π) =

k∑
j=1

∑
φ∈eff +(aj(ōj ,θ̄j))

Lp(φ)(ōj , θ̄j , sj) .

This is a sum over steps j in the plan, and for each step, a
sum over positive fluents φ in its effects, of the degree to
which that fluent is violated in the resulting world state sj .
Here, p(φ) is the predicate associated with fluent φ. Recall

that θ̄j = σj(Ij , ōj , j;W ), where we have included W to
expose the specializers’ parametric forms. Thus, we have:

Lτ (W ; I,G, π) =

k∑
j=1

∑
φ

Lp(φ)(ōj , σj(Ij , ōj , j;W ), sj) .

If the Lp are differentiable with respect to the θ̄, and
the functional forms Σ generating the θ̄ are differentiable
with respect to W and their continuous inputs, then W can
be adjusted via a gradient step to reduce Lτ . This method
will adjust only the values of W that were used in the
specializers chosen by PLANT. The overall algorithm is:

Algorithm AD-LEARN(A,D,Σ(W ), niters, nplans)
1 for t = 1 to niters do
2 Sample (I,G) from D.
3 π ← PLANT(A, I,G,Σ(W ), t, nplans)
4 W ←W − α∇WLτ (W ; I,G, π)

Subroutine PLANT(A, I,G,Σ(W ), t, nplans)
5 for i = 1 to nplans do
6 πi ← next SYMBOLICPLAN(A(Σ(W )), I,G)
7 if motion plans exist for πi then
8 score(πi)← −Lτ (W ; I,G, πi)
9 if no scores were computed then

10 Randomly initialize more specializers; repeat.
11 return sample πi ∼ escore(πi)/T (t)/Z

We now describe in detail the PLANT procedure, which
is an approximation of PLAN. Generally, while we are
learning W , we will not have a complete and correct set
of specializers, but we still need to assemble plans in order
to adjust the W . In addition, to prevent local optima, and
inspired by the use of simulated annealing for structure
search in BOUNCEGRAD [4] and MOMA [4], we do not
always consider the π with least loss early on. PLANT,
rather than trying to find a π that is a complete solution for
the TAMP problem, treats SYMBOLICPLAN as a generator,
generates nplans symbolic plans that are not necessarily valid
solutions, and for each one that is feasible with respect to
motion planning, computes its loss. It then samples a plan
to return using a Boltzmann distribution derived from the
losses, with “temperature” parameter T (t) computed as a
function of the number of optimization steps done so far.
This T (t) should be chosen to go to zero as t increases.

b) Subset Selection: SS assumes that Σ(W ) includes a
large set of specializers, and simply selects a subset of them
to use during planning, without making any adjustments to
the weights W . Let Σa(W ) be the set of specializers for
action a and integer k be a parameter of the algorithm. The
SS algorithm simply finds, for each action a, the size-k subset
ρa of Σa(W ) such that LS(∪aρa;D) is minimized2. There
are many strategies for finding such a set; in our experiments,
we have a small number of actions and set k = 1, and so
we can exhaustively evaluate all possible combinations.

2Technically speaking, the first argument to LS should be all the weights
W ; we can assume that ∪aρa is the following operation: leave the elements
of W that parameterize the ρa unchanged, and set the rest to 0.



B. Specializer Meta-Learning Algorithm

Recall that an algorithm for meta-learning specializers
takes as input (A, (D1, . . . ,Dm),Σ(W )), and its job is to
return W ∗M = argminW LM (W ), which should be a good
starting point for learning in a new task. This ideal objective
is difficult to optimize, so we must make approximations.

We begin by describing the meta-learning algorithm,
which follows a strategy very similar to MAML [3]. We do
stochastic gradient descent in an outer loop: draw a task
Dj from the task distribution, use some learning algorithm
LEARN to compute a new set of weights Wj for Dtrain

j

starting from W , and update W with a gradient step to
reduce the trajectory loss on Dtest

j evaluated using Wj .

Algorithm METALEARN(A,D1, . . . ,Dm,Σ(W ))
1 while not done do
2 j ← sample(1, . . . ,m)
3 Wj ← LEARN(A,Dtrain

j ,Σ(W ))
4 W ←W − β∇WLτ,Dtest

j
(Σ(Wj))

For efficiency, in practice we drop the Hessian term in
the gradient by taking the gradient with respect to Wj (so
∇W → ∇Wj

). This is an approximation that is successfully
made by several MAML implementations. We define:

Lτ,D(Σ(W )) =
∑

I,G∈D

Lτ (W ; I,G, PLANT(A, I,G,Σ(W ),∞,∞)).

This expression gives the smoothed trajectory loss for the
best plan we can find using the given Σ(W ), summed
over all planning problems in D. When we compute the
gradient, we ignore the dependence of the plan structure
on W . Thus, we estimate ∇Wj

Lτ,Dtest
j

(Σ(Wj)) as follows:

1 for t = 1 to ngradEst do
2 Sample (I,G) from Dtest

j .
3 π ← PLANT(A, I,G,Σ(Wj),∞,∞)
4 ∇Wj

← ∇Wj
+∇Wj

Lτ (Wj ; I,G, π)
5 return ∇Wj

When LEARN is the subset selection learner (SS), the
LEARN procedure returns only a subset of the Σ(W ), corre-
sponding to the chosen specializers. Only the weights in that
subset are updated with a gradient step on the test data.

V. EXPERIMENTS

We demonstrate the effectiveness of our approach in a
simulated object manipulation domain where the robot is
tasked with moving all objects from one table to another, as
shown in Figure 1. The object geometries vary across tasks,
while a single task is a distribution over initial configurations
of the objects on the starting table. We consider 6 training
tasks and 3 evaluation tasks, across 3 object types: cylinders,
bowls, and vases. The phrase “final task” henceforth refers
to a random sample of one of the 3 evaluation tasks.

We use a KUKA iiwa robot arm. Grasp legality is
computed using a simple end effector pose test based on
the geometry of the object being grasped. We require that
cylinders are grasped from the side, while bowls and vases
are grasped from above, on their lip. There are four operators:

moveToGrasp and moveToPlace move the robot (and
any held object) to a configuration suitable for grasping or
placing an object, grasp picks an object up, and place
places it onto the table. All operators take in the ID of
the object being manipulated as a discrete argument. The
continuous parameters learned by our specializers are the
target end effector poses for each operator; we use an inverse
kinematics solver to try reaching these poses.

We learn three specializers for each of the first three
operators, and one specializer for place due to its relative
simplicity. The state representation is a vector containing the
end effector pose, each object’s position, object geometry
information, robot base position, and the ID of the currently-
grasped object (if any). Thus, we are assuming a fully
observed closed world with known object poses, in order
to focus on the meta-learning aspect of this setting.

All specializers are fully connected, feedforward neural
networks with hidden layer sizes [100, 50, 20], a capacity
which preliminary experiments found necessary. We use
batch size 32 and the Adam optimizer [18] with initial
learning rate 10−2, decaying by 10% every 1000 iterations.

For motion planning, we use the RRT-Connect algo-
rithm [19]; we check for infeasibility crudely by giving
the algorithm a computation allotment, implemented as a
maximum number of random restarts to perform, upon which
a (infeasible) straight-line trajectory is returned. We use Fast-
Forward [20] as our symbolic planner. For simulation and
visualization, we use the pybullet [21] software.

A major source of difficulty in this domain is that the end
effector poses chosen by the specializers must be consistent
with both each other (place pose depends on grasp pose,
etc.) and the object geometries. Furthermore, placing the first
few objects near the front of the goal table would impede
the robot’s ability to place the remaining objects. We should
expect that the general strategies discovered by our meta-
learning approach would handle these difficulties.

To implement the discrete search over plan skeletons and
specializers, we adopt the TAMP approach of Srivastava et
al. [2], which performs optimistic classical planning using
abstracted fluents, attempts to find a feasible motion plan,
and incorporates any infeasibilities back into the initial state
as logical fluents. For each skeleton, we search exhaustively
over all available specializers for each operator.

Evaluation: We evaluate the METALEARN algorithm with
both the alternating descent (AD) learner and the subset
selection (SS) learner. We test against two baselines, random
sampling and the hand-crafted strategy, both of which are de-
scribed in Section III-B. The random sampler is conditional,
sampling only end effector poses that satisfy the kinematic
constraints of the operators. At final task time with the AD
learner, we optimize the specializers on 10 batches of training
data, then evaluate on a test set of 50 problems from this task.
At final task time with the SS learner, we choose a subset
of k = 1 specializer per operator that performs the best
over one batch of training data, then use only that subset to
evaluate on a test set. Note that we should expect the test set
evaluation to be much faster with the SS learner than with the



Setting System Final Task Solve % Train Iters to 50% Search Effort Train Time (Hours)

3 obj. Baseline: Random 24 N/A 52.2 N/A

3 obj. Baseline: Hand-crafted 68 N/A 12.1 N/A

3 obj. Meta-learning: AD 100 500 2.5 4.3

3 obj. Meta-learning: SS 100 500 2.0 0.6

5 obj. Baseline: Random 14 N/A 81.3 N/A

5 obj. Baseline: Hand-crafted 44 N/A 34.3 N/A

5 obj. Meta-learning: AD 88 2.1K 8.6 7.4

5 obj. Meta-learning: SS 72 6.8K 4.1 1.5

7 obj. Baseline: Random 0 N/A N/A N/A

7 obj. Baseline: Hand-crafted 18 N/A 64.0 N/A

7 obj. Meta-learning: AD 76 5.1K 18.3 12.3

7 obj. Meta-learning: SS 54 9.2K 7.8 2.1

TABLE I: Summary of experimental results. Percentage of 50 final
task problem instances solved within a 30-second timeout, number
of meta-training iterations needed to reach 50% final task solve rate,
average number of plan skeletons and specializers searched over,
and total training time in hours. Both meta-learning approaches
learn to perform much better at the final task than the baselines do.
Notably, the alternating descent (AD) learner performs better than
the subset selection (SS) learner, likely because in the former, the
specializer weights are optimized for the final task rather than held
fixed. However, this improvement comes at the cost of much longer
training times. Meta-learners were trained for 104 iterations.

AD learner, since we are planning with fewer specializers.
Results & Discussion Table I and Figure 2 show that

both meta-learning approaches perform much better at the
final task than the baselines do. The random sampler fails
because it expends significant effort trying to reach infeasible
end effector poses, such as those behind the objects. The
hand-crafted specializers, though they perform better than
the random sampler, suffer from a lack of context: because
they are task-agnostic, they cannot specialize, and so search
effort is wasted on continuous parameter values that are
inappropriate for the current task, making timeouts frequent.
Furthermore, the hand-crafted strategy does not adapt to the
state (e.g., the locations of objects around one being grasped).

Qualitatively, we found that the general strategies we
outlined earlier for succeeding in this domain were meta-
learned by our approach (see video linked in abstract).

Notably, the alternating descent (AD) learner performs
better than the subset selection (SS) learner, likely because
in the former, the specializer weights are optimized for the
final task rather than held fixed. These findings suggest that
this sort of fine-tuning is an important step to learning spe-
cializers in this domain. However, this improvement comes
at the cost of much longer training times, since the AD
learner performs an inner gradient computation which the
SS learner does not; the AD learner may be impractical in
larger domains without introducing heuristics to guide the
search. Another finding is that the SS learner expends much
less search effort than the AD learner, as expected.

Figure 3 (left) shows the benefit of learning in the final task
when starting from meta-trained specializers. The specializ-
ers meta-learned using the AD learner start off slightly worse
than those meta-learned using the SS learner, likely because
the search space is larger (recall that the AD learner uses all
the specializers), so timeouts are more frequent. After some
adaptation on the final task, the AD learner performs better.
Figure 3 (right) suggests that when the agent has access to

Fig. 2: Learning curves over 104 training iterations (smoothed).

Fig. 3: Left: Final task learning curves (smoothed), showing that
learning to do the evaluation tasks is much more efficient when
starting from meta-trained specializers (blue, orange) versus a
randomly initialized AD learner (brown). Right: To investigate the
importance of having a diversity of training tasks, we ran the AD
learner while withholding some training tasks out of our full suite of
6. We can see that the final task performance (across all 3 evaluation
tasks) improves when the agent is trained across more tasks.

more training tasks, it meta-learns specializers that lead to
better final task performance, given a fixed amount of data
in this final task. This is likely because each new training
task allows the agent to learn more about how to adapt its
specializers to the various object geometries.

VI. CONCLUSION AND FUTURE WORK

We used modular meta-learning to address the problem of
learning continuous action parameters in multi-task TAMP.

One interesting avenue for future work is to allow the
specializers to be functions of the full plan skeleton, which
would provide them with context necessary for picking good
parameter values in more complex domains. Another is to re-
move the assumption of deterministic specializers by having
them either be stochastic neural networks or output a dis-
tribution over the next state, reparameterized using Gumbel-
Softmax [22]. Finally, we hope to explore tasks requiring
planning under uncertainty. These tasks would require more
sophisticated compositional structures; we would need to
search over tree-structured policies, rather than sequential
plans as in this work. This search could be made tractable
using heuristics for solving POMDPs [23], [24], [25].
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[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1470–1477.

[2] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[3] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400,
2017.
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