
MIT Open Access Articles

A canonical framework for modeling 
elasto-viscoplasticity in complex fluids

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dimitriou, Christopher J. and Gareth H. McKinley. "A canonical framework for modeling 
elasto-viscoplasticity in complex fluids" Journal of Non-Newtonian Fluid Mechanics 265 (March 
2019): 116-132. © 2018 Elsevier B.V.

As Published: 10.1016/J.JNNFM.2018.10.004

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/129784

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129784
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Complex Fluids

Christopher J. Dimitriou, Gareth H. McKinley
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Abstract

A comprehensive framework for modeling elasto-viscoplasticity in complex fluids is dis-

cussed. It is based on the plasticity mechanism of kinematic hardening, which is widely

accepted in solid mechanics and accounts for transient yielding processes. We discuss a

simple one dimensional variant of the model, as well as a fully three-dimensional, frame-

invariant and thermodynamically admissible version of the model. Predictions for several

canonical rheometric test protocols are provided. We also discuss possible extensions to

account for additional rheological complexities exhibited by real fluids, such as thixotropy,

nonlinear elasticity and normal stress differences. We find that this framework has several

advantages over the more commonly used elastic Bingham-like or elastic Herschel Bulkley

models for describing elasto-viscoplasticity. First, the model can account for behavior over a

much wider range of viscometric test conditions. Second, it eliminates the flow/no flow cri-

terion inherent in Bingham-like constitutive laws, which frequently requires regularization.

Third, it is a flexible framework and allows for implementation of additional complexities,

including thixotropic behavior and other nonlinear rheological features.

Keywords: Yield-Stress Fluids, Viscoplasticity, Constitutive modeling

1. Introduction

Elasto-Viscoplastic (or EVP) behavior is frequently exhibited by a range of complex

fluids, including many foods, consumer products and industrial materials [1]. EVP behavior

is generally characterized by a yield-like transition that occurs when the stress imposed on

a soft solid exceeds a critical value. Below this stress, the material behaves primarily as
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an elastic solid, whereas above the critical stress the material flows like a liquid. Complex

fluids that exhibit EVP behavior are often called “yield stress fluids”, and a wide range of

fluids are known to exhibit this behavior [2, 1].

Most constitutive models that are used to describe viscoplastic behavior are based on the

well-known Bingham or Herschel-Bulkley models. These two models assume the following

relation between the magnitude of the stress |σ| and the magnitude of the strain rate |γ̇|,

|σ| = σy + k|γ̇|m , (1)

where σy is the critical yield stress, k is a viscosity coefficient (with units Pa.sm), and m is

a power law exponent. For the case of m = 1, the constitutive model above reduces to the

simplest model for yield stress fluids, the Bingham model, with k → µp being the plastic

viscosity.

Oldroyd [3] was the first to propose a frame-invariant, three-dimensional generalization

of the Bingham model. This Oldroyd-Bingham model (we borrow this term from Goddard

[4]) for EVP materials specifies the following relationship between the Cauchy stress T and

the rate of deformation tensor D

T0 = 2GE If |T0| <
√

2σy (2)

T0 = 2kD +
√

2σy
D

|D|
If |T0| ≥

√
2σy (3)

In the above equations, T0 is the deviatoric Cauchy stress defined as T0 ≡ T − 1
3
tr(T).

The tensor E is the infinitesimal strain tensor defined as E ≡ 1
2
(H + Hᵀ), where H is the

displacement gradient, defined as H ≡ ∇u. The vector u is the displacement of material

points from an undeformed reference configuration X, and is given by u = x − X. The

vector x describes the spatial location of the material points X after a deformation. With

the notation adopted herein,1 the components of the displacement gradient H are given by

1Throughout this manuscript we adopt the notation employed in [5] to describe various tensorial con-

stitutive models. However we include footnotes in certain instances where it is necessary to clarify the

differences between the continuum mechanics notation employed in [5], and the notation typically employed

in the rheology literature, such as in [6] and [7].

2



Hij = ∂ui
∂Xj

, where ui are the cartesian components of the displacement vector u, and Xj are

the cartesian components of the material reference points X.

The rate of deformation tensor is defined as D ≡ 1
2
(L + Lᵀ), where L is the velocity

gradient defined as L ≡ grad v. The components of L are given by Lij = ∂vi
∂xj

,2 where vi

are the cartesian components of the velocity vector v, and xj are the cartesian components

of the spatial points x.3 In many applications, the elastic shear modulus of the material is

assumed to be infinite, so that for T0 ≤
√

2σy the material is perfectly rigid and there is no

deformation, with E = 0 and D = 0.

The above Oldroyd-Bingham model is analogous to other frame-invariant, tensorial con-

stitutive models used for viscoelastic fluids (e.g. the Upper-Convected Maxwell model or

Oldroyd-B model). It can be used for numerical simulations of more complex flow scenarios,

which necessarily require a model of tensorial form. There are therefore a large number

of contributions to the literature in which versions of this model have served as a basis

for understanding complex flows of viscoplastic liquids [8, 9, 10, 11, 12, 13, 14, 15]. From

that perspective, it serves as the current canonical framework for modeling viscoplasticity

in complex fluids.

Despite its widespread use, the Oldroyd-Bingham model is extremely simplified, and has

several known deficiencies that prevent it from fully describing the response of real materials.

One drawback of the model form given in Eqs 2-3 is that it gives unphysical predictions for

transient viscometric responses during startup of steady flow or oscillatory flow [16, 17].

For example, when a constant deformation rate D is applied on the material, there is an

initial elastic deformation with the stress T0 increasing linearly with the imposed strain.

2The tensor L used here (and in [5]) is the same as the tensor (∇v)† in [6]
3Based on the approach followed in [5], we make a distinction between the grad and ∇ operator for

taking gradients of vectors. The different operators are utilized to distinguish between “spatial gradients”

and “material gradients”. Hence∇ ≡ ∂
∂X is a gradient with respect to some “material” undeformed reference

configuration, and grad ≡ ∂
∂x is a gradient with respect to some “spatial” deformed configuration of the

body. From Eq. 9.2 in [5] and Eq. 9.2-9 in [6], ∇v = (gradv)F, where F is the deformation gradient tensor.

Note that the original Oldroyd model described in [3] appears to use the grad operator to define both E

and D (or εij and eij respectively, using the notation in [3])
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When the material reaches the yield point, the stress then exhibits a jump discontinuity

due to the presence of the rate-dependent term 2kD in Eq. 3. These discontinuities can be

avoided by decomposing the material deformation into separate elastic and plastic parts,

which is a commonly taken approach to model plasticity. More recent models, such as those

used Marmottant and Graner [18], Benito et al. [19] and Saramito [20, 21] have taken this

approach.

Another drawback of the Oldroyd-Bingham framework is that it only predicts linear

elastic behavior when the stress in the material is below the critical stress or yield stress σy.

Many real yield stress fluids such as soft gels do not behave in this manner. Their behavior is

usually elastically-dominated pre-yield, but some important aspects of viscous or dissipative

behavior are still present. For example, most yield stress fluids will exhibit a finite (albeit

small) value of the loss modulus G′′(ω) over a wide range of oscillatory frequencies, indicating

that the material experiences dissipative losses and some irreversible deformation below the

yield stress. For example, Carbopol microgels, which are a commonly-studied ideal yield

stress fluid [22], exhibit transient elastoplastic creeping flow below their yield stress [23, 24].

This type of behavior is ubiquitous among yield stress fluids [2], and the Oldroyd-Bingham

framework cannot account for it.

An important issue pertaining to numerical simulations of the Oldroyd-Bingham model

is the determination of the correct regularization protocol of the equations given in Eq. 3-

2 [25, 15, 26]. The discontinuous nature of the equations for Bingham-like models require

solving for the a priori unknown spatial location of a yield surface, across which the material

changes from its yielded to its unyielded state [25, 15, 26, 27]; this can be computationally

expensive. To avoid these numerical issues, the form of the equations given in Eqs. 3-2 can

be regularized by specifying a very large but finite zero shear rate viscosity at low values of

|D|. The Papanastasiou model is one frequently used regularization scheme [28]. With the

specification of a large zero shear rate viscosity, the model then predicts a very slow, but

non-zero, creeping flow which will occur at all stresses below the yield stress σy. However,

this is only a first order approximation of the behavior of real materials. Measurements in

real yield stress fluids show a time-varying apparent viscosity at low stresses below the yield
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stress [24]. Creeping flow below the yield stress is therefore a transient phenomenon, and

not a steady state one which can be characterized by a single viscosity parameter [29] .

In a recent publication, Dimitriou et al. introduced a model based on the plasticity

mechanism of kinematic hardening (KH) to capture the response of an “ideal” yield stress

fluid to a wide variety of rheological deformation histories [30]. Among the test protocols

considered were large amplitude oscillatory shear (LAOS) tests, which have proven difficult

to predict accurately with a simple constitutive law, due to their inherently nonlinear and

time-varying nature as the stress amplitude periodically varies across the yield envelope of

the material. The “KH model” that was introduced in [30] and [31] showed several quanti-

tative improvements over a simpler elastic-Herschel-Bulkley model for describing Carbopol

gels undergoing transient deformation histories. The goal of the present work is to provide

a thorough discussion of the rheological predictions of this KH model and its extensions,

thereby elucidating the benefits that it can provide as a future canonical framework for use

in numerical simulations or theoretical applications.

We first discuss a simple, one-dimensional version of the model and derive analytical

expressions for the model predictions in steady shear, creep and small amplitude oscillatory

shear. Then we formulate a fully frame-invariant, thermodynamically admissible, three-

dimensional version of the model. We will discuss how to convert the model from its natural

Lagrangian framework to an Eulerian framework, which is more appropriate for numerical

simulations of steady flow scenarios. Model predictions for several different common rheo-

metric flow histories (shear, extension) are provided, and we identify the similarities between

this model and other tensorial constitutive models for complex fluids.

As a canonical framework, this KH model possesses several improvements over the

Oldroyd-Bingham framework. It is able to predict the slow irreversible transient creeping

deformation that many yield-stress fluids exhibit. It has also been successful at predict-

ing experimental data of EVP materials under large amplitude oscillatory shear [30, 31].

Furthermore, it eliminates the stress discontinuity and conditional statement required for

identifying if/when yielding behavior is present in a material. Finally, it is a flexible frame-

work, and allows for other features of a real material’s response to be implemented (e.g.
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nonlinear elasticity, or even thixotropy [4, 32]).

2. Results and Discussion

We discuss two different formulations of the KH model. This model was introduced in

previous work [30], and was successful at predicting the response of a Carbopol microgel to

a number of different steady and oscillatory shearing protocols. We reproduce the model

formulation here in two parts: First, a simplified one-dimensional version of the model is

introduced. We then show how it can be extended to a generalized three-dimensional, frame-

invariant, thermodynamically admissible version of the KH model, which is also provided in

the appendix of Dimitriou et al. [30].

2.1. 1D formulation of model

A fundamental mathematical assumption that is used for the KH model is the decompo-

sition of the deformation within the material into two components - an elastic contribution

and a plastic contribution. In the case of the three-dimensional version of the KH model,

the material’s deformation gradient F is multiplicatively decomposed into plastic and elastic

parts using the Kroner decomposition (see Sec. 2.2 for additional details). For the simpler

1D (shear) version of the KH model however, we additively decompose the total shear strain

γ as

γ = γe + γp , (4)

where γe is the elastic, reversible part of the shear strain, and γp is the irreversible plastic

part of the shear strain. The elastic strain is related linearly to the shear stress σ through

a shear modulus G

γe =
σ

G
. (5)

The magnitude of the rate of change of the plastic strain, |γ̇p|, is given by a power law “flow

rule” of the form

|γ̇p| =
(
|σ − σback|

k

)(1/m)

, (6)
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where σback is a quantity known as the back stress in the material (discussed in further detail

below), k is the material consistency, and m is a power law exponent. The stress difference

σ − σback is also termed the effective stress which is responsible for driving the plastic flow

in the material. The direction of plastic strain, np, must also be specified:

np =
σ − σback

|σ − σback|
. (7)

The rate of change of plastic strain is then given as the product of its direction and magni-

tude, i.e. γ̇p = np|γ̇p|. The plastic strain rate is therefore assumed to be co-directional with

the effective stress in the material.

A critical component of the KH framework is its ability to account for evolution in the

value of the back stress, σback, as a function of flow history. The back stress represents the

center of the yield surface of the material in stress space. It can be related to an internal

strain-like variable A, through a back stress modulus C,

σback = CA . (8)

This internal or “hidden” variable A can be related to variations in the defect energy within

the deforming material; this will be discussed further in the following section. For the specific

model discussed in this section, the variable A evolves according to the Armstrong-Frederick

[33] kinematic hardening equation,

Ȧ = γ̇p − qA|γ̇p| , (9)

where q is a dimensionless constitutive parameter which governs the change of the material

structure due to shearing. As we show below, 1/q is also a measure of the yield strain of the

material. In what follows we discuss the predictions of the KH model under several different

types of simple one-dimensional flows.

Steady simple shear. Under steady shearing conditions, i.e. a nonzero constant value of γ̇p,

with Ȧ = 0, the KH model given by Eqs. 6-9 reduces to the canonical Herschel-Bulkley

relationship between the magnitude of the stress and the shear rate,

|σ| = C/q + k|γ̇p|m , (10)

7



where the ratio of the KH model parameters C/q = σy is the steady state yield stress in the

material. For almost all actual yield stress materials we expect m < 1. While the Herschel-

Bulkley model only defines the stress for a nonzero shear rate, in what follows we show

how the KH model can provide predictions for deformations occurring at stresses below the

critical yield stress C/q.

Creep. For applied stresses below the steady state yield stress, σ0 < σy, the KH model

predicts a slow transient creeping flow. Under this creeping deformation, it can be shown

(derivation provided in the appendix) that the instantaneous value of the apparent viscosity

defined as η+(t) ≡ σ0

γ̇p(t)
is given by the following expression

η+ ' ηc

(
t

tc

)1/(1−m)

, (11)

where tc is a characteristic time scale and ηc is a characteristic viscosity scale. These scales

are found to be:

tc ≡
(
k

C

)1/m

, (12)

ηc ≡ σ0

(
k

C

)1/m [(
1− qσ0

C

)(1−m
m

)]1/(1−m)

. (13)

The expression in Eq. 11 holds for all values of m < 1 (and in the singular limit when m = 1,

it can be shown that η+ grows exponentially [34]). The power law growth of the apparent

viscosity over time during creep has been observed previously in EVP materials [23]. For

carbopol microgels, several authors have measured the exponent which characterizes the

growth of viscosity over time. A range of values for this exponent have been experimentally

observed across several different carbopol formulations [30, 23, 24, 35, 29]. One subtle

aspect of the KH model’s predicted creep behavior is that for values of m < 1, the quantity

1/(1 − m) is greater than 1, resulting in the plastic strain in the material increasing for

all times, but approaching an asymptotic upper limit. This behavior follows from Eq. 11.

With γ̇p ∼ t1/(m−1), and m < 1, the integral of the plastic strain rate in the limit of t→∞

converges, so the plastic strain approaches a finite value at long times. Thus, the model

does not predict an unbounded power law growth in the total material strain over time.
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Some recent experimental work indicates that the strain can grow in an unbounded fashion,

at least for one particular carbopol formulation, and within a range of moderate stresses

which are below the yield stress [35]. However this behavior appears to vary from material

to material, and is not a ubiquitous feature observed across all EVP materials. In the work

by Møller et al. [24], some EVP materials exhibited sufficiently fast viscosity growth for the

strain to approach an asymptotic limit.

Small amplitude oscillatory shear (SAOS). For the special case where m = 1, analytical

expressions for G′(ω) and G′′(ω) for the KH model under small amplitude oscillatory stress

(σ = σ0 cosωt) can be found (see appendix for derivation):

G′(ω)

G
=

(1 +G/C) + (kω/C)2

(1 +G/C)2 + (kω/C)2
, (14)

G′′(ω)

G
=

(G/C)(kω/C)

(1 +G/C)2 + (kω/C)2
. (15)

The expressions for G′(ω) and G′′(ω) above are the same as those for a standard 3-parameter

viscoelastic model, with a spring of modulus G in series with a Kelvin element. The Kelvin

element consists of a spring with modulus C and a dashpot with viscosity coefficient k,

corresponding to a retardation time λ2 = k/C.

For the case where m < 1, the intrinsically nonlinear form of the plastic flow rule in

Eq. 6 results in very strict constraints on the limits of linearity in the imposed deformation.

The expressions for the linear viscoelastic moduli reduce to:

G′(ω) = G, (16)

G′′(ω) = 0 . (17)

While the expressions above indicate that in the limit of very small strains the KH model

predicts zero energy dissipation, we will show in the next section that for practical values of

the material coefficients, small but finite values of G′′ are predicted at small strains (order of

1%) because of additional small but non-negligible contributions from the inherently nonlin-

ear nature of the Armstrong-Frederick kinematic hardening expression in Eq. 9. However,

these values asymptotically tend to zero as the strain amplitude approaches zero. It is also
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possible to modify the form of the viscoelastic model below the yielding point, in order to

accurately capture the experimentally observed frequency-dependent variations on the linear

viscoelastic behavior; this has been demonstrated previously in [31]. Although not discussed

in detail here, Section 2.4.1 shows various mechanical analogs for simplified versions of the

KH model.

LAOS and other transient experiments. Predictions of the model for LAOS (large ampli-

tude oscillatory shear) experiments are discussed in detail in our previous articles [30, 31].

For completeness we briefly review the results from these experiments, because they were

the original basis for introducing the mechanism of kinematic hardening to model EVP be-

havior of yield stress fluids. Specifically, the kinematic hardening mechanism captures the

“Bauschinger effect” [36], which is made apparent when data from LAOS experiments are

plotted in cyclic stress-strain (Lissajous) curves. The Bauschinger effect results in a distinc-

tive rhomboidal shape of the stress-strain curves [31]. To predict this behavior, a constitutive

model must predict a reduction of the yield stress in a direction opposite to the direction

the material is being deformed in. For example, when the material is being deformed under

shear in a given direction, reversal of the deformation will cause the material to yield at a

lower stress in the opposite direction. This requires an understanding of the yield stress as

a directional quantity, even in the case where the model is used to predict one-dimensional

deformations. It is for this reason that the back stress can have either positive or negative

values.

The specific form of the kinematic hardening equation which is used here to predict this

behavior (Eq. 9) is taken from Armstrong and Frederick [33]. This form is used widely

in the plasticity literature, however to our knowledge, prior to [30] it had not been previ-

ously utilized to predict yielding behavior in complex fluids. One additional benefit of the

Armstrong-Frederick form is the ability of the model to predict transient plastic deformation

below the steady state yield stress. Other more sophisticated EVP models can also predict

this type of transient plastic deformation, however slow creeping flow will not necessarily

result in the correct shape of the predicted Lissajous curves under LAOS (see for example
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the LAOS predictions of the Saramito model in [20], which differ distinctly from the model

predictions and experimental observations shown in [30] and [31]). Additional extensions to

this framework to incorporate multiple relaxation modes have recently been considered by

Wei et al. [37].

( d )

( b )

( c )

K H  M o d e l

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00

1 0

2 0

3 0

4 0

5 0

6 0

S t r a i n  r a t e s

Str
es

s (
Pa

)

S t r a i n

 . 0 0 5  s - 1

 . 0 1  s - 1

 . 0 2  s - 1

 . 0 5  s - 1

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00

1 0

2 0

3 0

4 0

5 0

6 0

Str
es

s (
Pa

)
S t r a i n

 . 0 0 5  s - 1

 . 0 1  s - 1

 . 0 2  s - 1
 . 0 5

S t r a i n  r a t e s

- 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

Str
es

s (
Pa

)

S t r a i n
- 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

Str
es

s (
Pa

)

S t r a i n

E H B  M o d e l( a )

Figure 1: Simulated predictions for the 1D versions of the EHB model and the KH model for startup of

steady shear flow ((a) and (b)), and large amplitude oscillatory shear ((c) and (d)). Steady shear startup

simulations are carried out at a range of shear rates, while LAOS simulations are carried out at γ0 = 0.1

(inner curves) and γ0 = 0.4 (outer curves). Values of the model parameters used in these simulations are

similar to those used in [30] to model a Carbopol microgel under LAOS: G = 300 Pa, σy = C/q = 45 Pa,

C = 540 Pa, q = 12, k = 23 Pa.sm, m = 0.43.

The changes that arise due to implementation of the KH mechanism in the generic be-

havior predicted by EVP models for transient rheological flows is shown in Fig. 1. Model

predictions are given for startup of steady shear flow, in addition to large amplitude oscil-

latory shear. As can be seen in the comparison of Fig. 1 (c) and (d), the introduction of

kinematic hardening results in a more gradual transition of the material behavior from a

linear elastic solid below yield, to viscoplastic flow above yield. The KH mechanism also
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predicts energy dissipation and a continuous frequency and strain dependent evolution of

the loss modulus G′′(ω, γ0) as the material deformation approaches the yield point. As

discussed by Fraggedakis et al. [38] LAOS can be used as a key test to elucidate this dis-

sipative behavior. In Fig. 1 (d) this is manifested by the nonzero area enclosed within the

Lissajous curves plotted for γ0 = 0.1. This is contrary to the predictions of the EHB model,

where behavior at these strain levels is purely elastic. The comparison of Fig. 1 (a) and (b)

(startup of steady shear) further illustrate how implementation of the KH mechanism results

in a more gradual (and physically more realistic [30, 39]) transition from an un-yielded to

a yielded state in the material. Capturing the correct material response across a range of

strains under reversing flows is a key ingredient to correctly predicting the kinematics in

complex flows (e.g. sedimentation of a sphere) that involve EVP materials [40, 38].

Summary. The KH framework provides considerable versatility, and offers numerous im-

provements over the simpler Herschel-Bulkley model. Among these are the ability of the

KH model to predict the slow viscoplastic creeping flow (with a power law growth in appar-

ent viscosity) for stresses below the yield stress, σ < σy. Real EVP materials are typically

observed to exhibit this power-law creeping behavior [23, 24, 30]. The KH model can also

accurately predict the response of EVP materials under large amplitude oscillatory shear

(LAOS) [30]. The simpler elastic-Bingham model cannot capture these rheological features

of EVP materials.

2.1.1. Fitting of KH model to experimental data for a real yield stress fluid

Rheological measurements were carried out on a Carbopol microgel (a minimally thixotropic,

“ideal” yield stress fluid [23]) to fit the KH model parameters, as well as to demonstrate the

model’s versatility in predicting rheological behavior. The two tests that are selected are

(1) measurement of the material’s steady shearing flowcurve, and (2) measurement of the

viscoelastic moduli G′ and G′′ as a function of strain amplitude γ0.

The particular Carbopol microgel that is used is a 0.5% wt. 901 variant (manufactured by

Lubrizol). Measurements are made with a TA instruments AR-G2 stress-controlled rheome-

ter, with a roughened cone-plate geometry fixture in order to suppress wall slip. The mea-
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surement of the steady shearing flowcurve is carried out by imposing a constant shear rate on

the material γ̇0, and waiting for 3 minutes for the stress to equilibrate. After equilibration,

the imposed rate is then increased. For the oscillatory shear measurements of the storage

and loss moduli G′(ω, γ0) and G′′(ω, γ0), tests are carried out at a constant frequency of

ω = 2 rad/s and the strain amplitude was steadily increased.

The experimental data, together with a best fit for each data set to the KH model, are

given in Fig. 2. The best fit curves are given by solid lines in each of the graphs. As we

have shown in Eq 10, The KH model predicts a steady flowcurve identical to the Herschel-

Bulkley relation, which has been shown by a number of previous workers to agree well

with the measured flowcurves for Carbopol microgels [41]. The measurements of G′(γ0) and

G′′(γ0) in Fig. 2 (b) show a general trend that is ubiquitous among yield stress fluids. For

small values of γ0, the material exhibits a linear viscoelastic behavior that is dominated by

elasticity, with G′ � G′′. As the imposed strain amplitude is steadily increased towards the

point of yielding, the material response will no longer be linearly viscoelastic. This coincides

with a sharp monotonic decrease in the elastic modulus G′ as well as an increase in the loss

modulus G′′. These changes are indicative of a yielding transition in the material, where

the behavior changes from solid-like to liquid-like. The loss modulus G′′ eventually reaches

a maximum, roughly at the point where G′ and G′′ cross over. The two moduli both then

decrease monotonically with γ0 and G′′ continues to exceed G′ as the strain amplitude is

continuously increased.

The simulated best fit response of the KH model, given by the solid lines in Fig. 2

(b), correctly predicts the changes in G′(γ0) and G′′(γ0) of the Carbopol microgel as the

strain amplitude is increased. A similar level of “goodness of fit” was also demonstrated

by Fraggedakis et al. [40, 38] using the mechanism of kinematic hardening. As has been

reported previously [42], the local maximum in G′′ at intermediate strains coincides with the

crossover point of G′ and G′′, which the KH model is also able to capture. Furthermore, the

KH model predicts a non-zero value of the loss modulus G′′ for small but non-zero strain

amplitudes, and this value is significantly less than G′ (with tan δ ∼ 0.2). Finite values of G′′

are present at strain amplitudes on the order of 1%, even though the loss modulus G′′ can
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Figure 2: Fit of the KH model discussed in Sec. 2.1 to rheological data for a Carbopol microgel. The

flowcurve (i.e. a plot of |σ| vs. |γ̇|) is given in (a), and in (b) the dependency of the storage and loss moduli

G′ and G′′ on strain amplitude γ0 is plotted. Solid lines are best fits, while dashed lines are fits using model

parameters determined from the other data set.

be shown to rigorously approach zero if the abscissa was extended to much smaller values

of γ0. This is in contrast to the elastic-Bingham model, which predicts a constant value of

G′ = G, and an identically zero value of the loss modulus for all strain amplitudes below

the yielding point. The only disagreement between the KH model and the experimental

data occurs at low strain amplitudes, where the KH model overpredicts the experimentally

measured values of G′′. However, it still predicts values of G′′ which are a factor of four to

five lower than G′, indicative of a material response that is primarily elastic at small strains.

In addition to the best fit provided by the solid line in Figs. 2 (a) and (b), we also

illustrate sensitivity of the fit to slight variations in fitting coefficients, as well as sensitivity

to experimental variability between data sets, by showing additional fits to the experimental

data using dashed lines. For each data set (flowcurve or oscillatory shear data), the dashed

line corresponds to parameters obtained by fitting the model to the other data set. The

values of the fitting parameters are thus: flowcurve, solid line: C/q = σy = 43 Pa, k = 19

Pa.sm, m = 0.43; flowcurve, dashed line: C/q = σy = 43 Pa, k = 23 Pa.s m, m = 0.43;

oscillatory shear, solid line: C/q = σy = 43 Pa, k = 23 Pa.sm, m = 0.43, G = 200 Pa, q = 4;

oscillatory shear, dashed line: C/q = σy = 43 Pa, k = 19 Pa.sm, m = 0.43, G = 200 Pa,

q = 12. In general, we observe that the lower value of k used to fit the flowcurve data, results

in a slight underprediction of the values of G′′ and G′ at large strains. This slight discrepancy
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in this fitting coefficient is likely a result of experimental variability. The increase in q from

a value of 4 to 12 (which appears to fit the Lissajous curves for this system best [30], and is

hence used in Fig. 1) does not have any impact to the oscillatory shear data at large strains.

However the increase from q = 4 to q = 12 does result in some changes to G′ at moderate

strains and to G′′ at moderate to low strains. Despite these small differences, we see that

in general, both sets of fitting coefficients capture the key trends observed in the Carbopol

microgel

2.2. 3D version

The one-dimensional version of the KH model is useful for predicting material behavior

under simple shearing conditions. For more complex flow scenarios, a more general constitu-

tive framework is required. This framework must provide a constitutive law that is tensorial

in nature, frame-invariant, and thermodynamically admissible. The relationship between

the 3D version and 1D version of the KH model will therefore be analogous to that between

the Upper Convected Maxwell (UCM) model and the simple scalar form of the Maxwell

model (or that between the Oldroyd-B model and the Jeffreys model) [6].

A 3D version of the KH model has already been discussed in the appendix of [30], but

we reproduce the formulation here because it forms the basis of the results which will follow.

Throughout this section we will adopt the tensor notation of Gurtin et al. [5]. Because the

KH model used here is a simplified version of the general elastoplastic formulations utilized

by Anand et al. [43, 44, 45], it is fully frame invariant and thermodynamically admissible.

For simplicity, we will omit some of the details presented in these earlier works that pertain

to the issues of frame invariance and thermodynamic admissibility, and only discuss the key

features of the KH model.

Kinematics. The 3D version of the KH model begins with the definition of the deformation

gradient F. The components of the deformation gradient are given by:

Fij =
∂xi
∂Xj

, (18)
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where (as discussed in Sec. 1) Xj are the cartesian components of the vector X, which

describes the position of material points in a body before a given deformation, and xi are the

cartesian components of the vector x, which describes the position of the material points X

after a given deformation.4 Following the definition of the deformation gradient, the Kroner

decomposition [46] can be used to decompose F into elastic and plastic contributions,

F = FeFp . (19)

The elastic part of the deformation gradient is further decomposed into the form

Fe = ReUe , (20)

where Re is a rotation and Ue is a stretch. The elastic stretch Ue has a spectral represen-

tation

Ue =
3∑
i=1

λeir
e
i ⊗ rei . (21)

In the spectral representation of the elastic stretch Ue, λei are the principal values and rei are

the principal directions of the elastic stretch tensor. The operator ⊗ indicates the dyadic

product. Using Ue, it is possible to define an elastic strain tensor which will be of use in

specifying the elastic behavior of the material

Ee ≡ 1

2
(Fe(Fe)ᵀ − 1) =

1

2

(
Ue2 − 1

)
. (22)

Following [5], we name the above tensor Ee the Green-Saint Venant strain tensor.5

From a kinematical point of view, the time-differentiation of the Kroner decomposition

in Eq. 19 allows for the velocity gradient, L, to be written in terms of an elastic velocity

gradient Le and a plastic velocity gradient Lp,

L = Le + FeLpFe−1

, (23)

4The deformation gradient F used here is identical to the “displacement gradient tensor” denoted as E

in [6]. Here we reserve the use of the symbol E to describe the infinitesimal strain tensor defined in Sec. 1.

Furthermore, in [6] the notation r is used in place of x and r′ is used in place of X
5According to [6], the tensor Ee would be called the “relative finite strain tensor” for the elastic part of

the deformation gradient Fe, and would be denoted as − 1
2γ[0] (see Eq. 8.1-9 in [6]). The tensor Fe(Fe)ᵀ is

also the Finger tensor of Fe (denoted as B in Eq. 8.1-7 in [6]).
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where Le and Lp are defined as follows:

Lp ≡ ḞpFp−1

, (24)

Le ≡ ḞeFe−1

. (25)

The plastic velocity gradient Lp can be split into its symmetric and skew components such

that Lp = Dp + Wp. We call Dp the plastic stretching tensor (it is also sometimes referred

to as the plastic deformation rate tensor) and Wp the plastic spin tensor. One of the

assumptions in this model is that of plastic irrotationality, which takes Wp = 0. This

assumption is general and is justified in [5]. The plastic stretching Dp can also be written

as a product of its magnitude, dp = |Dp|, and its direction Np = Dp/|Dp|.

Dp = dpNp . (26)

Free energy. An important component of the KH model is the form of the free energy Ψ.

We assume that the free energy consists of two separate terms: an elastic free energy Ψe,

and a defect energy Ψp.

Ψ = G|Ee|2 +
1

2
Λ|trEe|2︸ ︷︷ ︸

elastic energy Ψe

+ Ψp(A)︸ ︷︷ ︸
defect energy

. (27)

In Eq. 27 above, the parameter G is a shear modulus, and the parameter Λ is related to the

bulk modulus K through K = Λ + 2G/3. The form of the elastic free energy results in the

following relationship between the second Piola elastic stress Te and the Green-St. Venant

tensor Ee:

Te = 2GEe + Λ (trEe) 1 , (28)

where 1 is the identity tensor. The second Piola elastic stress Te is defined (and related to

the Cauchy stress T) as follows [5]:

Te ≡ J(Fe)−1T(Fe)−ᵀ , (29)

where J is the determinant of the deformation gradient F.
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To define the defect energy Ψp(A), we must first introduce the concept of the Mandel

stress, which is defined as

Me ≡ J(Fe)ᵀFeTe = J(Fe)ᵀT(Fe)−ᵀ . (30)

The Mandel stress is typically associated with an intermediate structural space in the ma-

terial [5], and its deviatoric part is Me
0 = Me − 1

3
(trMe) 1. Figure 3 (adapted from [5])

illustrates how the decomposition of the deformation gradient F results in three distinct

“spaces” in which various tensor fields (e.g. stresses, deformation gradients) reside. These

three spaces are the reference space, which is where the undeformed reference body resides,

the observed space, which is where the deformed body resides, and an intermediate struc-

tural space. From the definition in Eq 30, it follows that the Mandel stress is a “structural

tensor field” (according to the nomenclature of [5]) and therefore maps vectors in the struc-

tural space to other vectors in the structural space. It is used to define the defect energy

in what follows, because it is dependent on changes to the material structure. The Mandel

stress is related to, but distinct from the Cauchy stress (or true stress), which resides in the

observed space of the deformed body.

The elastic energy Ψe is used to model purely reversible, elastic deformations within the

material. The defect energy Ψp on the other hand, is introduced to model the structural

rearrangement of the material’s microconstituents. In the three dimensional KH formula-

tion, Ψp depends on a strain-like tensor A, which is analogous to the one-dimensional scalar

internal variable A that was discussed in Sec. 2.1. The structural rearrangement that oc-

curs when the material undergoes plastic flow can result from different underlying physical

processes. In the case of metals, movement of dislocations cause a change in the defect

energy. For foams and dense suspensions, topological rearrangement of bubbles or particles

will cause the defect energy to change. Different elastoplastic materials will have different

dependencies of the defect energy on the strain-like tensor A. However, the basic form of

Ψ given in Eq. 27, in which free energy is additively decomposed into a defect contribution

and an elastic part, is general enough to describe a wide range of EVP materials.

For our purposes, we specify a very simple form of the defect energy Ψp. We first consider
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Figure 3: Diagram adapted from Gurtin et. al. [5] illustrating how the decomposition of the deformation

gradient F results in three distinct spaces.

the spectral representation of the tensor A:

A =
3∑
i=1

aili ⊗ li . (31)

In the above equation, li are the principal directions of A, and ai are the principal values.

The following form is employed for Ψp in the KH model [44, 45]:

Ψp =
1

4
C
[
(log a1)2 + (log a2)2 + (log a3)2

]
. (32)

In Eq. 32 above the back stress modulus C has been introduced. Eq 32 above results in an

expression for the back stress, which can be obtained by taking the derivative of Ψp with

respect to A [44],

Mback = C log A . (33)

The tensor A is defined through an evolution equation [45]

Ȧ = DpA + ADp − qA(log A) ˙̄γp , (34)

which is a generalized version of the Armstrong-Frederick kinematic hardening rule. Eq. 34

is typically evaluated with an initial condition of A equal to 1, the identity matrix, which
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corresponds to a “virgin state” in the material [44, 45]. In Eq. 34 we have introduced the

new material constant q (equivalent to the dimensionless q parameter discussed for the 1D

model in Sec. 2.1). The parameter q governs the dynamic evolution of A.

As was the case for the 1D KH model, we can write an effective stress

Me
eff = Me

0 −Mback , (35)

and constrain the plastic stretching to be codirectional to the effective stress

Np =
Me

eff

|Me
eff|

. (36)

What now remains is to determine the magnitude of the equivalent plastic strain rate,

dp. We define an equivalent plastic strain rate and equivalent shear stress:

˙̄γp ≡
√

2dp Equivalent plastic strain rate (37)

σ̄ ≡ 1√
2
|Me

eff| Equivalent shear stress (38)

The
√

2 factors arise in the definitions of the equivalent quantities above so that under simple

shearing flows, these quantities agree with the plastic shear rate γ̇p and the stress σ used

for the 1D (shear) version of the model introduced in Sec. 2.1. This will be made apparent

in Sec. 2.3.1, where we obtain analytical expressions for the tensorial quantities of the 3D

model under simple shearing flow, and relate them to predictions from the 1D version of the

model.

After defining the equivalent shear stress and plastic strain rate, the power-law rate-

dependent flow rule, which relates σ̄ and ˙̄γp, is specified:

˙̄γp =
( σ̄
k

)1/m

. (39)

This above flow rule has eliminated the conditionality that appears in many 3D generaliza-

tions of the Bingham or Herschel-Bulkley models [3, 13, 14]. The discontinuity in the plastic

flow behavior has therefore been “regularized” through the introduction of the evolving

tensor A. Regularization of the yield criterion plays an important role in the numerical sim-

ulations of these types of constitutive laws [27, 25] - here it has been accomplished without

explicitly specifying a finite, large constant viscosity below the yield stress.
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2.3. 3D KH Model under steady flows

A viscometric flow commonly employed by rheologists is a steady simple shearing defor-

mation, where the velocity gradient L is given as follows:

L =


0 γ̇ 0

0 0 0

0 0 0

 (40)

Rheologists will typically use such flows to determine the shear and normal stress components

of the Cauchy stress tensor T for a complex fluid or soft solid, and then compare these

measurements to predictions from constitutive laws. The 1-dimensional version of the KH

model described and simulated in Sec. 2.1 only accounts for a single scalar shear stress.

With the 3-dimensional form of the KH model outlined in the previous section, it is now

possible to predict the full 3-dimensional form of the Cauchy stress tensor T for a number

of different rheological flows including steady simple shear flow.

A rheologist will usually measure components of the Cauchy stress T, in terms of the

imposed stretching (or rate of deformation), D. It is therefore necessary to obtain an

analytical relationship of the form T = f(D) rather than of the form T = f(Dp). To

assist in obtaining such an expression, an assumption of small elastic deformations can be

utilized. This assumption holds for a wide range of materials, and is valid when the yield

stress σy = C/q is much smaller than the elastic shear modulus G, i.e. the yield strain in

shear is γy ≡ C/(qG) � 1. For a real EVP material, one can experimentally verify this

criterion of small elastic strains by checking that the ratio J ′M/σy � 1. J ′M is a nonlinear

LAOStress measure, called the tangent compliance, and is defined as

J ′M ≡
dγ

dσ

∣∣∣∣
σ=0

, (41)

for an oscillatory shearing deformation where σ = σ0 cosωt [30]. J ′M is generally represen-

tative of the elastic modulus of EVP materials, so if the constraint J ′M/σy � 1 is valid,

then considerable plastic flow will be occurring at stresses which only cause small elastic

deformations. From such an assumption, it follows that the elastic stretch tensor is very
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close to the identity tensor, i.e. Ue ' 1, and therefore from Eq. 20 Fe ' Re. The elastic

part of the deformation gradient Fe is now simply a rotation, for which its inverse is its

transpose, (Re)−1 = (Re)ᵀ

Following this assumption, one can then obtain a simplified relation between the stretch-

ing tensor D = 1
2
(L + Lᵀ) and the plastic stretching tensor Dp. The derivation is detailed

in Appendix B.1, but we summarize it here:

D = ReDpRe−1

. (42)

The above equation can be used to obtain the following expression providing the rate of

deformation tensor D in terms of the deviatoric Cauchy stress T0 ≡ T − 1
3

(trT) 1 and a

new internal parameter Ā (the derivation for this step is also provided in Appendix B.1).

D =

(
1√
2

(
|T0 − C log Ā|√

2k

)1/m
T0 − C log Ā

|T0 − C log Ā|

)
. (43)

The tensor Ā ≡ Re−1
ARe in the equation above is an evolving internal parameter which

lies in the space of the deformed body (illustrated in Fig. 3). A, on the other hand, lies in

the structural space of the body. The evolution equation for Ā is now different from that

of A.
◦
Ā = DĀ + ĀD− q

√
2Ā log Ā|D| . (44)

Where
◦
Ā = ˙̄A + ĀW −WĀ is the corotational derivative of Ā [5] (and W = ṘeRe−1

is

the spin tensor). Alternatively Eq. 44 can be expressed in terms of the upper convected

derivative of Ā which is
�
Ā = ˙̄A− ĀLᵀ − LĀ 6:

�
Ā = −q

√
2Ā log Ā|D| (45)

6According to [6] the notation that would be used for the upper-convected (or contravariant convected)

derivative would be A(1), while the notation used for the corotational (or Jaumann) derivative would be

D
DtA. Note that the definition of the velocity gradient tensor L used here (in accordance with [5]) is the

same tensor as that denoted by (∇v)† in [6]. See pg. 81 in [5] and pg. 296 in [6] for the definitions of the

two tensors.
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This evolution equation now involves a frame-invariant, corotational (or alternatively upper

convected) derivative which accounts for the fact that Ā lies in the deformed space of the

body.

The two simple expressions, Eq. 45 and 43, analytically describe how the Cauchy stress

T evolves in the material given a particular imposed deformation rate D. These types of

expressions can be used to understand the response of the material in an Eulerian reference

frame, which is the basis for most rheological experiments. The only simplification that was

made to arrive at these two equations was that of small elastic strains, i.e. C/(qG)� 1 (a

reasonable assumption for many yielding materials), resulting in Ue ' 1.

2.3.1. Steady shear

With Eqs. 45 and 43 derived, it is possible to obtain analytical expressions for the

components of the Cauchy stress tensor T under steady shearing conditions as given in

Eq. 40. For ease of representation, we rewrite Eq. 43 as follows

T0 =
√

2
m+1

k|D|mN + C log Ā, (46)

where N is the direction of stretching, defined as N = D/|D|. To arrive at an analytical

solution for the steady state values of the components of T under steady shear, we set

˙̄A = 0 in Eq. 45, and then solve for the steady state value of the tensor Ā from the following

equation:

ĀLᵀ + LĀ− q
√

2Ā log Ā|D| = 0 . (47)

Due to the presence of the Ā log Ā term in this equation, the individual components of Ā

are related through a set of nonlinear coupled equations. The equations can be linearized

and simplified considerably for the case where q � 1. The initial conditions for imposition

of steady shear are Ā(t = 0) = 1. For large values of q, the recovery or destruction term

−q
√

2Ā log Ā|D| grows quickly, resulting in Ā being very close to 1 for all times. We can

therefore use the substitution Ā = 1+B, with |B| � 1. The Mercator series for the natural

logarithm of Ā is as follows:

log Ā = log (1 + B) = B− B2

2
+

B3

3
− . . . (48)
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Eq. 48 above can then be combined with Eq. 47. This results in the following expression:

2D + BLᵀ + LB− q
√

2|D|B = 0 +O(B2) . (49)

Inserting a steady shear velocity gradient into the equation above (from Eq. 40), and keeping

only terms that are linear in B, gives the following relationship between the components of

B: 
0 γ̇ 0

γ̇ 0 0

0 0 0

+


2γ̇B12 γ̇B22 0

γ̇B22 0 0

0 0 0

− qγ̇

B11 B12 0

B12 B22 0

0 0 0

 ' 0 . (50)

Solving this linear set of equations for the components of B, gives the following values:

B '


2/q2 1/q 0

1/q 0 0

0 0 0

 . (51)

Next, using the fact that for q � 1, log Ā ' B, we can obtain the components of the

deviatoric Cauchy stress tensor:

T0 '


2σy/q σy + kγ̇m 0

σy + kγ̇m 0 0

0 0 0

 . (52)

We therefore find that the 1-2 shear component of the deviatoric Cauchy stress is given by

T12 ' σy + kγ̇m, which is the expected result for a Herschel-Bulkley type material with a

shear yield stress σy = C/q. Note, however, that the expression for T0 in Eq. 52 is not

strictly deviatoric, except in the limit where q → ∞. This is due to the fact that the

approximate solution above does not account for order 1/q2 terms in the 2-2 entry of log Ā.

This can be amended by taking higher order terms in the expansion of log Ā. The resulting

expressions obtained for the terms in log Ā are rather complex (and not included here).

However, these expressions can be simplified by expansion through a Taylor series, resulting

in terms up to order 1/q in the 1-2 component, and terms up to order 1/q2 for the 1-1 and
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2-2 components. This yields the following expression for log Ā:

log Ā '


1/q2 1/q 0

1/q −1/q2 0

0 0 0

 . (53)

From which follows a better approximation for the now truly deviatoric Cauchy stress T0:

T0 '


σy/q σy + kγ̇m 0

σy + kγ̇m −σy/q 0

0 0 0

 . (54)

This KH model therefore predicts a first normal stress difference given by N1 ' 2C/q2 =

2σy/q, which is independent of the applied shear rate γ̇. These normal stress differences

arise in the absence of elastic stretches, because we have set C/(qG)� 1 to arrive at these

expressions.

To confirm the validity of the expression in Eq. 54, and also investigate the range of q

values over which it holds, we carried out numerical simulations in which Eqs. 45 and 43 were

evolved under startup of a very small steady shear rate. The purpose of the small steady

shear rate was to verify that the Cauchy stress evolves towards a point where T12 ' C/q

and where N1 ' 2C/q2 (as is given in Eq. 54). The shear rate γ̇ is therefore chosen such

that (C/q) � kγ̇m. Constitutive parameters identical to those used for the fitting of the

Carbopol microgel in Sec. 2.1 were used (i.e. C/q = σy = 45 Pa, m = 0.43, k = 23

Pa.sm) with the exception that G was set to infinity. The particular shear rate used was

γ̇ = 1 × 10−3 s−1, or in non-dimensional form, Γ̇ ≡ γ̇
(
C
qk

)1/m

= 4.8 × 10−3 � 1. These

simulations were carried out for a large range of q parameters, and the steady state values

of both the dimensionless normal stress and shear stress (N1/σy and T12/σy respectively)

are plotted below as a function of the dimensionless parameter q. As the results in Fig. 4

show, the approximate solution given by Eq. 54 predicts the values of T12 and N1 for values

of q & 4. To improve the agreement at smaller values of q, higher order terms could be

included in each component of T0.
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Figure 4: Plot of the simulated values (circles) of T12/σy and N1/σy for the 3D version of the KH model for

a range of values for the q parameter. The solid lines show the prediction of these stresses obtained using

the approximate solution in Eq. 54.

The relative magnitude of the normal stress difference observed in an elastoplastic yield

stress fluid thus varies with the magnitude of the parameter q in the KH formulation.

Increasing the q parameter, while keeping the shear yield stress σy constant, causes a decrease

in the magnitude of the first normal stress differenceN1. However, q also affects the dynamics

of the evolution equation of Ā. Specifically, larger values of q result in a quicker increase in

the recovery term in the evolution equation for Ā. As a result, one would expect that the

shear and normal stresses saturate to their steady values more quickly for large values of q.

To illustrate this, we plot below the evolution in N1/σy and T12/σy vs. accumulated strain

γ for the simplified 3D KH model (as given in Eq. 43 and 45) simulated under startup of

steady shear at a shear rate of Γ̇ = 4.8× 10−3. The same model parameters are used as in

Fig. 4, and curves are plotted for seven different q values logarithmically spaced from 5 to

100. From Fig. 5 it is evident that larger values of q result in smaller strains accumulating

before the stresses saturate. The factor 1/q therefore represents a critical strain required

for the KH model to fully yield and evolve towards its steady state. Thus, this factor is

effectively the yield strain of the KH framework. Since many yielding materials show yield

at strains much smaller than unity, these derivations for the case when q � 1 are the most
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practically relevant. The small values of the normal stress difference predicted in the limit

q � 1 also help rationalize why robust experimental measurements of N1 in yield stress

fluids are difficult to make [47].
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Figure 5: Plots of N1/σy and T12/σy vs. time for the 3D KH model simulated under startup of a steady

shear rate of γ̇ = 1× 10−3 s−1. The same model parameters as in Fig. 4 are utilized, and curves are plotted

for q values logarithmically spaced from q = 5 to q = 100 (q = 5, 8, 14, 37, 61, 100).

In the limiting case where q →∞, the first normal stress difference approaches zero and

the shear stress T12 responds immediately to the imposition of a steady shear rate. In this

limiting case, the behavior predicted by the KH model is identical to that of a Herschel-

Bulkley (m < 1) or Bingham like (m = 1) model, with a von Mises yielding criterion to

determine if plastic flow will occur. The case for m = 1 is identical to the inelastic version

of the model introduced by Oldroyd [3], while the case of m < 1 and q →∞ is identical to

the model used by Ovarlez et al. [13]).

The kinematic-hardening behavior therefore regularizes the flow/no flow condition in

the Herschel-Bulkley model through the introduction of transient viscoplastic flow which

can occur at all levels of stress. This is in contrast to regularization schemes which involve

specifying Newtonian viscous flow with a very large viscosity for stresses below the yield

stress σy [27]. This is an unrealistic assumption, because for many materials the apparent

viscosity η+(t, σ0) of the fluid varies in time when a stress is applied below σy, i.e. the

material creeps before arresting. The limiting zero shear-rate viscosity of such materials is

therefore not constant in time (or with increasing strain). The kinematic-hardening behavior
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can also allow for partial elastic recoil to occur when the stress is stepped to zero after the

material has undergone a creep test. This type of behavior cannot be accounted for in the

3 dimensional Herschel Bulkley type models used by Ovarlez et al. [13] or Martinie et al.

[14].

2.3.2. Shear free flows

Uniaxial elongational flow. For elongational flow [6], the velocity gradient L takes the fol-

lowing form:

L =


ε̇ 0 0

0 −ε̇/2 0

0 0 −ε̇/2

 . (55)

Following the same procedure outlined in Sec. 2.3.1 (i.e. neglecting order B2 terms and

higher), a linear relationship between the components of B can be obtained:
2ε̇ 0 0

0 −ε̇ 0

0 0 −ε̇

+


2B11ε̇ 0 0

0 −B22ε̇ 0

0 0 −B33ε̇

−

√

3qε̇B11 0 0

0
√

3qε̇B22 0

0 0
√

3qε̇B33

 ' 0 . (56)

These components are solved and inserted into Eq. 46 (recall that log Ā ' B) to obtain an

expression for the deviatoric Cauchy stress, T0.

T0 '


2(
√

3)m−1kε̇m + 2C√
3q−2

0 0

0 −(
√

3)m−1kε̇m − C
1+
√

3q
0

0 0 −(
√

3)m−1kε̇m − C
1+
√

3q

 . (57)

As was also the case in Eq. 52, the expression for T0 above is only deviatoric in the limit

of large values of q. The diagonal terms in the equation for T0 above have power law terms

proportional to ε̇m, in addition to constant “yield terms” which contain the coefficients C

and q. Using the expressions for the 1-1 and 2-2 components of T0, we write an approximate

analytical expression for the extensional viscosity:

ηE ≡
T11 − T22

ε̇
'
√

3
m+1

kε̇m−1 +
3
√

3σy

ε̇(3− 2/q2 −
√

3/q)
, (58)
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where we have substituted σy = C/q to result in the order 1/q2 terms in the denominator.

Considering the limit where ε̇ → 0, and q � 1, then the T11 stress component approaches

a value of 2C/
√

3q, while the T22 and T33 stress components approach values of −C/
√

3q.

Under these conditions, the material will have just yielded. We insert the components of

the stress tensor in this case into the von Mises yield criterion in order to determine an

equivalent stress required for yielding

σe =

√
(T11 − T22)2 + (T22 − T33)2 + (T11 − T33)2 + 6(T12

2 + T13
2 + T23

2)

2
, (59)

and obtain a value of σe =
√

3C/q =
√

3σy. This agrees with the equivalent stress σe

determined for the simple shear case when q � 1. The material therefore yields under

both shear and extensional deformations when the equivalent stress reaches the same value.

This verifies that the KH model satisfies the von Mises yield criterion for large values of q.

The von Mises yielding criterion has been experimentally verified for a wide range of EVP

materials, including emulsions, physical gels and colloidal gels, among others [15, 13, 14].

To verify the validity of the approximation in Eq. 57, we plot in Fig. 6 the steady

state, dimensionless normal stress difference (N1/σy = (T11 − T22)/σy) against q for a very

small dimensionless extensional strain rates (Ė ≡ ε̇
(
C
qk

)1/m

= 4.8 × 10−3) under uniaxial

elongational flow. In Fig. 6 we include the analytical approximation from Eq. 57 (solid line)

as well as the direct numerical results obtained through numerical simulation of Eqs. 45 and

43 (hollow circles). There is good agreement between the analytical approximation and the

numerical results for q & 8. The numerical results generally predict a value of N1 '
√

3σy

in uniaxial extension for all values of q, so this appears to be a good approximation that

holds even for smaller values of q. The analytical approximation, however, diverges at a

value of q = 2/
√

3, and then becomes unphysical and negative for small values of q. While

higher order terms of B can be used to obtain a more accurate approximation for N1(ε̇), the

results in Fig. 6 and the form of Eq. 58 suggest that the following expression for uniaxial

extensional flow of the KH model holds over a large range of strain rates and q values:

N1(ε̇) = ηE(ε̇)ε̇ '
√

3
m+1

kε̇m +
√

3σy . (60)
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Figure 6: Plot of the simulated values (circles) of N1/σy for the 3D version of the KH model for a range of

values for the q parameter, under elongational flow at low deformation rates Ė � 1 . The solid lines show

the prediction of these stresses obtained using the approximate solution in Eq. 57.

Planar elongational flow. For planar elongational flow [6] the velocity gradient L takes the

following form:

L =


ε̇ 0 0

0 −ε̇ 0

0 0 0

 . (61)

Combining the above equation with Eq. 49 gives the following relationship between the

components of the tensor B
2ε̇ 0 0

0 −2ε̇ 0

0 0 0

+


2B11ε̇ 0 0

0 −2B22ε̇ 0

0 0 0

−


2qε̇B11 0 0

0 2qε̇B22 0

0 0 0

 ' 0 . (62)

These can be solved for, and then inserted into Eq. 54 in order to obtain the components of

the deviatoric Cauchy stress T0:

T0 '


k(2ε̇)m + C

q−1
0 0

0 −k(2ε̇)m − C
q+1

0

0 0 0

 (63)
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The above result allows us to write the following approximation for the planar elongational

viscosity (analogous to Eq. 58 above for the uniaxial elongational case)

ηP ≡
T11 − T22

ε̇
' 2m+1kε̇m−1 +

2σy
ε̇(1− 1/q2)

. (64)

For shear flow, elongational flow and planar elongational flow, the results giving the Cauchy

stress tensor reduce to that of a Newtonian fluid with shear viscosity µ = k for the limits

of m = 1, and C/q = σy = 0. As a result, the Trouton ratio for elongational flow will also

approach ηE/k = 3 in this limit, and for planar elongational flow the Trouton ratio will

approach ηE/k = 4.

2.3.3. Accounting for elastic deformations - large and small

Small elastic deformations. The simplifications so far of the equations in Sec. 2.2 have

resulted in only the plastic part of the deformation gradient, Fp, contributing to the total

stretching deformation D of the material (this has resulted in the elastic modulus G not

playing a role in the analytical results). It is possible to analytically account for small

contributions to the deformation D from the elastic part of the deformation gradient, Fe.

In Eq. B.3, the assumption U̇e = 0 was made. However if we account for a nonzero value of

U̇e, then the elastic part of the deformation gradient Le can be rewritten:

Le = ṘeRe−1︸ ︷︷ ︸
We, a spin

+ ReU̇eUe−1

Re−1︸ ︷︷ ︸
De, a stretching

. (65)

Referring to the term ReU̇eUe−1
Re−1

as a stretching term only applies for small elastic

deformations, when the skew part of U̇eUe−1
is close to zero (see pg. 90 of [5]). The

elastic part of the deformation gradient now also has a stretching De in addition to the spin

We (which was the only part of Le accounted for in our assumptions thus far). Our total

deformation Dt can now be written as a sum of two stretching deformations, D and De

Dt = D + De , (66)

where D = ReDpRe−1
, as given previously in Sec. 2.3, and D follows the same behavior

as given earlier in Eqs. 45 and 43. Small elastic deformations can now be accounted for
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by adding an additional elastic stretching De onto the plastic part of the stretching, D =

ReDpRe−1
. The additional elastic stretching De is related to a time derivative of the Cauchy

stress T. We take the time derivative of Eq. 28 to obtain the following:

Ṫe = 2GĖe + Λ ˙(trEe)1 . (67)

By noting that
◦
T = ReṪeRe−1

(this again only holds for small elastic stretches), and also

using the identity Ėe = FeᵀDeFe ' Re−1
DeRe (see pg. 90 of [5]), we arrive at the following

relation for the Cauchy stress:

◦
T = 2GDe + Λ (trDe) . (68)

The relation above can also be inverted to give the elastic stretching De in terms of the

corotational derivative of the Cauchy stress
◦
T. The equation above allows one to account

for the additional presence of small elastic stretches in the total deformation of the material.

Large elastic deformations. Obtaining an analytical expression for cases of large elastic

stretches (i.e. Ue � 1) is difficult, because the approximate relation D = ReDpRe−1

no longer holds. As a result, converting the tensorial form of the equations in 2.2 to an

Eulerian reference frame involving D (or Dt) is, to the authors’ knowledge, not possible.

However, numerical simulations on the set of equations given in Sec. 2.2 can be carried out.

These are used to examine what the full 3D form of the KH model predicts when elastic

stretches are large.

Startup of steady shear flow simulations were carried out using Matlab with the form of

the equations given in Sec. 2.2 at a number of different imposed shear rates. The evolution

on the components of the stress tensor T were monitored and the simulations were stopped

when the tensor components approached steady state values. Plots of the dimensionless

shear stress T12/σy and the dimensionless first normal stress difference N1/σy against applied

dimensionless shear rate Γ̇ ≡ γ̇
(
C
qk

)1/m

are given below in Fig. 7. The particular fitting

coefficients used for this 3D simulation of the full form of the KH model are consistent with

those used for a previous study of Carbopol microgels [30]. Specifically: C/q = σy = 45 Pa,
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m = 0.43, k = 23 Pa.sm, q = 12, and G = 350 Pa. The full 3D form of the KH model in

Sec. 2.2 also requires specifying the parameter Λ. We set Λ = 5000 Pa, so that C/(qΛ) =

0.01 � 1 and the material’s elastic behavior approaches that of an incompressible solid .

Overlaid on the values corresponding to this simulated flowcurve in Fig. 7 are the analytical

prediction for the shear stress from Eq. 54 (which assumed q � 1 and C/(qG)� 1).
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Figure 7: Prediction of the steady flowcurve for the 3D form of the KH model given in Sec. 2.2. Circles give

the predicted dimensionless shear stress and triangles indicate the computed first normal stress difference.

The solid lines are predictions using the analytical approximations in Eq. 54.

The analytical expression for the shear stress T12 is the same as the 1-D Herschel-Bulkley

equation, and it agrees with the predictions of the simulation. This shows that the 3D form of

the KH model is a more general form of the 1-D version discussed in Sec. 2.1. It also implies

an equivalency between the parameters fitted using the 1-D version of the model, and the

parameters that must be provided to the 3D formulation. This makes fitting experimental

flowcurve data (such as that in Fig. 2 (a)) to the 3D form of the KH model very simple.

At the lowest shear rates Γ̇, one can make an a posteriori estimate of the order of

magnitude of elastic stretches (γe). A rough estimate gives γe ∼ T12/G ∼ C/(qG) = 0.13,

which is still well below unity. At the highest shear rates Γ̇ ≥ 100, the analytical expression

for T12 slightly over-predicts the values obtained from simulations of the full 3D form of the

KH model. At these highest shear rates, we estimate the elastic stretches to be γe ∼ 0.58,
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which are nearing a value of 1. However, there is only a 7.5% disagreement between the

analytical expression for T12 from Eq. 54 and the simulated value of T12 at these high shear

rates.

From Fig. 7, it is clear that the values of N1 are under-predicted by the analytical

rate independent approximation in Eq. 54. The analytical expression in Eq. 54, which was

derived assuming small elastic deformations, offers a lower bound on the value of N1. When

there are large elastic deformations (C/(qG) � 1), a large additional contribution towards

the total first normal stress difference N1 will come from nonlinearities arising in the elastic

stress-strain relation specified in Eq. 28. For shear rates that approach zero, one can estimate

the contribution to N1 from the elastic-stress strain relation (we call this contribution N e
1 ).

This can be done by noting that for the case of simple shear with magnitude γ in the 1-2

entry in the elastic part of the deformation gradient Fe, the form of the elastic free energy

in Eq. 28 predicts a normal stress difference T11 − T22 = Gγ2. Under steady shear where

the material has yielded, the extent of elastic shear strain accumulated γ can be estimated

as σy/G, which is essentially the “yield strain” of the material. This contribution to N1 is

therefore N e
1 = σ2

y/G = C2/(q2G). This estimate also underpredicts the simulated value of

N1 provided in Fig. 7, suggesting that the actual value of N1 consists of contributions from

both the defect energy Ψp and the elastic free energy Ψe. When these contributions are

added as per the following equation:

N1 ' Np
1 +N e

1 =
2σy
q

+
σ2
y

G
, (69)

the prediction approaches the simulated value of N1 at low shear rates. This demonstrates

that the functional form of N1 can be tuned by altering the expression which gives the elastic

free energy, e.g. introducing a linear elastic, neo-Hookean or Mooney-Rivlin solid [7, 5]. This

provides additional flexibility within the framework of the KH model to describe the elastic

response of real elastoviscoplastic (EVP) materials, however, the predictions for N1(γ̇) must

then be obtained numerically.
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2.4. Further discussion

2.4.1. Oldroyd-B model vs. KH model

The form of the KH model discussed in Sec. 2.3 is very similar to the Oldroyd-B constitu-

tive model that is often used to describe polymer melts and solutions. The Oldroyd-B model

is equivalent to an upper convected Jeffreys model [6], in which the total stress in the ma-

terial is additively decomposed into a polymeric contribution Tp and a solvent contribution

Ts, as follows:

T = 2ηsD︸ ︷︷ ︸
Ts

+Gp(Â− 1)︸ ︷︷ ︸
Tp

. (70)

With Gp a modulus and ηs a viscosity coefficient. The tensor variable Â, much like the Ā

tensor used by the KH model in Sec. 2.3, is an internal strain-like microstructural variable

which evolves according to the following differential equation:

˙̂
A = LÂ + ÂLᵀ − Gp

ηp
(Â− 1) . (71)

Eq. 71 above can be derived from considering a dilute suspension of linearly elastic dumbbells

[48]. The tensor Â = 〈QQ〉/Q0
2 represents the second moment tensor of the dumbbell

distribution, and the relaxation time scale for the dumbbells is given by τp = ηp/Gp

Revisiting the form of the KH model discussed in Sec. 2.3, we can decompose the de-

viatoric Cauchy stress for our elastoviscoplastic material in a manner similar to Eq. 70.

However for the KH model, the viscous solvent term Ts becomes replaced by an inelastic or

generalized Newtonian fluid term, while the polymeric contribution to stress (which results

from deformation of the material microstructure) becomes the back stress, Tback:

T0 =
√

2
m+1

k|D|m D

|D|︸ ︷︷ ︸
Ts

+C log Ā︸ ︷︷ ︸
Tback

, (72)

where the tensor Ā evolves according to the following differential equation:

˙̄A = LĀ + ĀLᵀ −
√

2q|D|Ā log Ā . (73)

Eqs. 72-73 are similar to the Oldroyd-B model if we set m = 1 and consider large values

of q. When q is large, we can approximate both the log Ā terms and the Ā log Ā terms as
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(Ā − 1). This results in the following expressions for the Cauchy stress, and the evolution

equation for Ā for the KH model in the limit q � 1:

T0 = 2kD︸︷︷︸
Ts

+C(Ā− 1)︸ ︷︷ ︸
Tback

, (74)

˙̄A = LĀ + ĀLᵀ −
√

2q|D|(Ā− 1) . (75)

Eqs. 74 and 75 now appear identical to the equations for the Oldroyd-B constitutive law,

with the one exception that the relaxation rate 1/τp = Gp/ηp in front of the recovery term in

Eq. 71 has been replaced by
√

2q|D|. This is equivalent to a White-Metzner approximation

in which the polymeric relaxation time τp in the Oldroyd-B model is a function of the

magnitude of the strain rate tensor |D|. Due to the specific functional form chosen for this

relaxation time (τKH = 1/(
√

2q|D|)) the relaxation time diverges in the limit of slow flows.

This simple modification causes a yielding behavior to arise.

This comparison of the Oldroyd-B model and the KH model is best illustrated visually

through a diagram of mechanical analog elements as shown in Figs. 8 (a) and (b). The

mechanical analog element for the KH model is drawn for the limiting case of m = 1, q � 1

and C/(qG) → 0. In Fig. 8, the elements for the two models are arranged in a similar

fashion, with two branches resulting in the stress being additively decomposed into two

components. For the case of the KH model, however, the polymer contribution to the stress

Tp is replaced by the back stress, Tback. Table 1 shows the parameter equivalency between

the KH model and the Oldroyd-B model. This equivalency only holds for the KH model

framework when m = 1, q � 1 and C/(qG)� 1.

In order to account for elastic deformations in the KH model, it is necessary to include

another elastic element with modulus G in series with this Jeffreys type element. When

such an element is added, the mechanical analog then becomes identical to that which is

discussed in Sec. 2.1, where predictions of the linear viscoelastic moduli were given for the

one dimensional version of the model when m = 1. This is due to the fact that at small

deformations, |D| approaches zero, which results in an infinite viscosity for the dissipative

element in the back stress branch.
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Figure 8: Mechanical analog element for the Oldroyd-B model (a) and the KH model (b). The mechanical

analog element for the KH model is drawn for the limiting cases of m = 1, q � 1 and C/(qG)� 1.

Table 1: Table showing the parameter equivalency between the KH model framework and the Oldroyd-B

model (here the KH model is simplified for the limiting case where m = 1, q � 1 and C/(qG)� 1).

3DKH Oldroyd-B

(for m = 1, q � 1 and C/(qG)→ 0)

Solvent Viscosity k ηs

Modulus C Gp

Polymer Viscosity C√
2q|D| ηp

Relaxation Time τKH = 1√
2q|D| τp = ηp

Gp

Internal Variable Ā Â

Back/Polymer Stress Tback Tp
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The use of modified Jeffreys-like constitutive laws to describe yielding behaviors is com-

mon in the rheology literature. The models used by Coussot et al. [49], Quemada [50],

Dullaert and Mewis [51] and Souza Mendez [52] are variants of the Jeffreys model (and

most of these are cast into one dimensional forms). The model introduced by Saramito

[20, 21] is not built up using the Jeffreys model as a starting point, but can still be rep-

resented using simple mechanical analog elements, and with the correct modifications, can

be converted into a representation such as the model discussed here. Indeed, recent work

by Fraggedakis [38] implemented the kinematic hardening mechanism discussed here into

the Saramito model. This implementation improved the agreement of the model predictions

to experimental measurements of G′ and G′′ for a carbopol microgel over a wide range of

frequencies and strains.

In summary, the unique aspect of the KH model framework is that with the modification

of one model parameter in the Jeffreys model, ηp, the KH constitutive law can predict a

yield-like behavior, slow viscoplastic creepeing flow, and the correct material behavior as

it transitions from an unyielded to a yielded state under large amplitude oscillatory flows

[30, 31, 38]. This is perhaps simpler and more intuitive than the modifications made in

the other models mentioned here, however these more complex models are also designed

to account for thixotropic effects. Thixotropy is often prevalent in EVP materials, so in

the following section we discuss how to implement thixotropic behavior into the KH model

framework.

2.4.2. Implementing thixotropy

The KH model framework as presently formulated does not account for thixotropic be-

havior. Thixotropic effects are typically manifested as an aging and shear rejuvenation

behavior [53]. Rheological aging behavior is usually associated with Brownian motion and

thermally attracted rearrangement of a material’s microconstituents, even in the absence of

shear. The internal parameter A in the KH model only evolves under the application of a

non-zero shear rate ˙̄γp, so aging behavior will not be predicted by the model.

There are a number of phenomenological approaches to modify the KH model to account
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for the thixotropic behavior which is frequently observed in EVP materials [53, 54]. Most of

these methods involve introducing a positive scalar internal variable, λ, which is a dimen-

sionless, scaled measure of the internal state of the material order. This parameter then

evolves with deformation according to a differential equation. This equation must account

for both aging and shear rejuvenation. The KH model parameters can then be specified as

a function of λ. For example, the viscosity k can be related to λ so that it decreases when

the material shear rejuvenates, and increases when the material ages. This is the approach

taken in the works by Coussot et al. [49] Quemada [50], Dullaert and Mewis [51] and Souza

Mendez [52]. Another approach would modify the scalar flow rule in Eq. 39 in order to

account for the presence of a scalar yield stress. This scalar yield stress is dependent on

the level of structure in the material, which again is captured by the parameter λ. The

appropriate flow rule thus becomes:

˙̄γp =

(
σ̄ − σy
k

)1/m

if σ̄ > σy , ˙̄γp = 0 otherwise (76)

σy = σy(λ) (77)

These equations allow the material to isotropically harden and soften. This is in contrast to

the process of kinematic hardening, in which the material may strengthen along the direction

of deformation, i.e. in a non-isotropic manner. Constitutive laws which account for both

isotropic and kinematic hardening allow for both the size and center of the yield surface (in

stress space) to vary, and may thus be referred to as isotropic-kinematic hardening (IKH)

models [31, 32].

2.4.3. The importance of thermodynamic admissibility

Although the KH model framework offers flexibility in implementing thixotropic behav-

ior, we emphasize that there are thermodynamic restrictions to the types of modifications

that are allowable. Many workers have utilized models which specify a dependency of a

modulus (e.g. G) on the structural parameter (e.g. λ) - see for example, Quemada [50],

Dullaert and Mewis [51], Souza Mendez [52] and Mujumdar et. al. [55]. Without careful

treatment, this type of dependency, combined with rheological aging in the material, may
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violate dissipation inequalities that are derived through the first and second laws of ther-

modynamics. Gurtin et. al. [5] give the following mechanical free energy imbalance for an

isothermal material:

T : D− Ψ̇ = δ ≥ 0 , (78)

where Ψ is the free energy per unit volume in the material, and δ is the overall dissipation

in the material per unit volume, which is always non-negative. Consider a Jeffreys type

viscoelastic model, where the solvent viscosity is set to ηs = 0 and the polymer viscosity

is set to ηp → ∞ , leaving a single elastic element with modulus G(λ). For simple 1-D

deformations, Ψ = G(λ)γ2/2, with G an increasing function of λ. The aging process causes

an increase in λ under a zero shear rate, so it is possible for λ̇ (and Ψ̇) to be positive when

D or γ̇ are zero. Therefore, the left hand side of Eq. 78 will be negative during this aging

process, violating the dissipation inequality.

To illustrate how such models give unphysical predictions, we consider the following

sequence of step deformations (which have been discussed previously in [34, 56]) for this

type of “thixoelastic” element with σ = G(λ)γ : First, a step in strain of amplitude γ0

is imposed at t = t1. At this initial time, the material is not in its fully aged state with

G(λ) = G1, a low value. The stress will increase instantaneously to a value of σ(t1) = G1γ0.

The material is then allowed to age (i.e. the parameter λ increases) while the strain is held

constant, resulting in the modulus increasing to a new, larger value G(λ) = G2. This results

in the stress in the material increasing to preserve the equality σ = G(λ)γ0. At some time

t2, the strain is stepped down to zero, which also results in the stress stepping down to zero.

The sequence of steps in strain and stress are shown graphically in the figure below:

The mechanical work done on the material for each step in strain, W1 and W2 can be

evaluated through the following integrals:

W1 =

∫ t+1

t−1

σ(t)γ̇(t)dt =
G1γ

2
0

2
, (79)

W2 =

∫ t+2

t−2

σ(t)γ̇(t)dt = −G2γ
2
0

2
. (80)

In this thixoelastic element G2 > G1, so the material returns more energy than what was
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Figure 9: Sequence of steps in strain on a purely “thixoelastic” element with σ = G(λ)γ. The aging results

in an increase in stress while the strain is held constant. This allows the material to increase the energy it

has stored, while the extent of its deformation remains constant.

initially input and stored elastically at t = t1. This is unphysical, and a more sophisticated

constitutive formulation is required in order to correctly capture this thixoelastic behavior.

Such a model must begin from specifying a form of the free energy in the material Ψ, so as

to not violate forms of the dissipation inequality such as that given by Eq. 78. This form of

the free energy must correctly account for the effect that aging has on the material, and may

necessarily need to be cast as a thermomechanically coupled model due to the underlying

thermal/Brownian mechanisms which are responsible for the aging process. Representative

formulations which have explicitly ensured the correct free energy imbalance include those

used by Anand et al. [43] from the plasticity literature, and Wei et al. [37], which are more

recent additions from the rheology literature.

3. Conclusions

We have proposed a comprehensive framework for modeling elasto-viscoplastic behavior

in complex fluids. This framework is rooted in the approach taken in plasticity, where

deformations are decomposed systematically into reversible (elastic) and irreversible (plastic)

components.

Two different versions of a “kinematic hardening” model have been discussed here. A

simple one-dimensional version, and a three-dimensional, frame invariant, thermodynami-

cally consistent version. The 3D formulation is analogous to how the UCM or Oldroyd-B

models represent general frame-invariant formulations of the linear Maxwell and Jeffreys
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models respectively [6]. We also demonstrated an equivalency between the model parame-

ters of the 3D frame invariant form of this KH model, and the 1D form.

Predictions of this KH model for several canonical rheological flows (steady shear, uni-

axial and planar extension) were considered, and analytical expressions of the tensor valued

Cauchy stress were derived under certain limiting conditions corresponding to small elastic

deformations. Predictions were also provided for different rheological experiments (steady

flowcurve, creep, SAOS). and the model was fitted to experimental data for a model yield

stress fluid (a Carbopol microgel).

The 3D KH formulation can be simplified to other constitutive laws under certain limits.

Specifically, for the limit σy → 0, the 3D KH model simplifies to a generalized Newtonian

fluid model with either a constant Newtonian viscosity, or power law rheology, depending

on the value of m. In the limit of q → ∞, the 3D KH model simplifies to a 3D Bingham

or Herschel Bulkley like viscoplastic fluid (again depending on the value of m) with a von

Mises yielding criterion which determines whether plastic flow will occur or not. In the limit

q � 1, the expression for the yield stress σy = C/q was shown to represent a material with

a (back stress) modulus C and a yield strain γy ' 1/q.

The similarities between the frame-invariant Oldroyd-B model and the 3D KH model

were also illustrated. The KH framework can be likened to a White-Metzner generalization

of the upper-convected Jeffreys model in which the relaxation time has a specific functional

form τKH = 1/(
√

2q|D|). We ended with a discussion of two important current aspects of

modeling TEVP behavior. First, how to implement thixotropy into this framework, and

secondly, how to keep these models thermodynamically admissible as they are modified to

describe the response of real materials.

We conclude by reiterating the many benefits of this constitutive framework. First, the

framework discussed here is fully 3D, frame invariant, and thermodynamically admissible.

This is useful for conducting simulations of soft materials under complex flow scenarios.

Second, the framework is flexible because it can allow the introduction of more complex

behavior, such as thixotropy, different types of kinematic hardening, and variants of vis-

coelastic behavior below yield to predict normal stresses and other aspects of nonlinear
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elasticity.

Compared to the commonly used generalization of the Bingham or Herschel-Bulkley

model [3] the KH model offers several improvements. First, the flow/no flow criterion is

regularized using the evolution equation for A. This lets the material naturally evolve to-

wards a yielded or unyielded state, depending on the level of the stress that develops in

the material under an imposed deformation. Consequently, there is no need to track yield

surfaces (in physical space) when simulating flow transients of the 3D KH model in more

complex geometries. Secondly, the KH model is able to predict transient creeping flow for

stresses below the yield stress σy. These types of transients are commonly observed in EVP

materials, and a single large zero shear rate viscosity parameter is not sufficient to charac-

terize this behavior. Third, tuning of the elastic material response in the 3D KH model can

be used to capture the range of normal stress difference responses observed in real in EVP

materials. Fourth, and finally, the KH model is generally able to capture material behavior

over a much larger range of rheological experiments (e.g. LAOS, creep behavior). All of this

is accomplished with the introduction of one additional fitting parameter, the coefficient q,

and an evolution equation for the internal variable A.
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Appendix A. Predictions of 1D KH model

Appendix A.1. Derivation of creep behavior of KH model

An expression for the asymptotic, long time dependency of strain on time for the KH

model undergoing creep can be obtained by assuming the following time-varying form for
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the internal structure parameter A

A ' σ0

C
− b

tx
, (A.1)

where b is an unknown prefactor, and x is an unknown exponent. Taking the derivative of

Eq. A.1 results in an expression for Ȧ

Ȧ ' bx

tx+1
. (A.2)

Substituting Eq. A.1 into Eqs. 6 and 9, and then combining these two expressions yields

another expression for Ȧ

Ȧ '
(
Cb

ktx

)1/m (
1− qσ0

C

)
. (A.3)

When inserting Eq. A.1 into Eqn. 9, we approximate γ̇p(1− qA(t)) as γ̇p(1− qσ0/C). Com-

paring the exponents and prefactors in Eq. A.3 with those of Eq. A.2 gives the following

expressions for x and b

x =
m

1−m
, (A.4)

b =

[(
1− qσ0

C

)(1−m
m

)] m
m−1

(
C

k

) 1
m−1

. (A.5)

The expressions above can be inserted into either Eq. A.3 or A.2, which can in turn be

inserted into Eq. 6. This results in an expression for the rate of plastic strain γ̇p. This can

be used to determine the apparent viscosity η+ ≡ σ0/γ̇
p, which is as follows

η+ ' ηc

(
t

tc

)1/(1−m)

, (A.6)

where tc is the characteristic time scale in Eq. 12 and ηc is the characteristic viscosity scale

in Eq. 13.

Appendix A.2. Derivation of SAOS behavior of KH model (m = 1)

For SAOS, an oscillatory shear stress σ = σ0 cosωt is imposed with σ0 � σy = C/q.

The magnitude of the terms on the right hand side of Eq. 9 can be compared, and since

44



qA� 1 the second term can be ignored. As a result, A can be approximated by the following

differential equation:

Ȧ ' γ̇p . (A.7)

For small oscillatory stresses, integration from a fully relaxed equilibrium gives A ' γp.

Inserting this (and the expression σ = σ0 cosωt) into Eq. 6 (while taking account of the

directional integer np) then gives the following first order linear ODE:

γ̇p +
C

k
γp =

σ0

k
cosωt . (A.8)

The above equation can be solved using an integrating factor, resulting in the following

expression for γ(t):

γ = σ0

(
1

G
+

C

C2 + k2ω2

)
cosωt+ σ0

(
kω

C2 + k2ω2

)
sinωt . (A.9)

In Eq. A.9, the total (measurable) strain in the material γ = γe + γp is given, so a term

with the elastic modulus G enters directly into the resulting expression for the strain (and

this term is in phase with the driving sinusoidal stress).

The coefficients in front of the cosine and sine terms in the parentheses in Eq. A.9 above

are the linear viscoelastic compliances J ′(ω) and J ′′(ω) respectively. These can be converted

to the linear viscoelastic moduli G′(ω) and G′′(ω) [57], by using the following expressions

which relate J ′(ω) to G′(ω) and J ′′(ω) to G′′(ω)

J ′(ω) =
1/G′(ω)

1 + tan 2δ
(A.10)

J ′′(ω) =
1/G′′(ω)

1 + (tan 2δ)−1
, (A.11)

where δ is the phase difference between the stress and strain. When the equations above are

combined with the expressions for J ′(ω) and J ′′(ω) from Eq. A.9, we obtain the following

expressions:

G′(ω) =
GC2 +Gk2ω2 +G2C

G2 + C2 + 2GC + k2ω2
= G

(1 +G/C) + (kω/C)2

(1 +G/C)2 + (kω/C)2
, (A.12)

G′′(ω) =
G2kω

C2 + k2ω2 + 2GC +G2
= G

(G/C)(kω/C)

(1 +G/C)2 + (kω/C)2
. (A.13)
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Appendix B. Derivation of the 3D frame-invariant form of KH model

Appendix B.1. Relating the stretching tensor to the plastic stretching tensor

One can obtain a simplified relation between the stretching tensor D = 1
2
(L+Lᵀ) and the

plastic stretching tensor Dp associated with irreversible plastic deformations in the material.

To obtain such an expression, the assumption of small elastic deformations must hold. From

such an assumption, it follows that the elastic stretch tensor is very close to the identity

tensor, i.e. Ue ' 1, and therefore from the right polar decomposition of the elastic part of

the deformation gradient, Fe ' Re.

The first step towards obtaining this relation is to write the overall observed velocity

gradient L in terms of the plastic velocity gradient Lp and the elastic velocity gradient Le

[5]

L = Le + FeLpFe−1

. (B.1)

We then show that the stretching tensor D is equal to the second term on the right hand

side in Eq. B.1. By combining Eq. B.1 with the expression D = 1
2
(L + Lᵀ), the following is

obtained:

D =
1

2
(L + Lᵀ) =

1

2
((Le + FeLpFe−1

) + (Le + FeLpFe−1

)ᵀ) . (B.2)

For Eq. B.2, we first show that Le + Leᵀ = 0. We note that:

Le = ḞeFe−1

= (ṘeUe + ReU̇e)Ue−1

Re−1

= ṘeRe−1

. (B.3)

This follows from Ue ' 1 for all times, so the rate of change of elastic stretch U̇e is

zero. Eq. B.3 implies that Le is skew symmetric [5], so its transpose is its negative. Thus

Le + Leᵀ = 0, so two of the terms in Eq. B.2 cancel out. We now show that the remaining

two terms simplify to the second term in Eq. B.1.

D =
1

2
((FeLpFe−1

) + (FeLpFe−1

)ᵀ) = ReLpRe−1

, (B.4)

where the last equality follows from taking the transpose of the second term, noting that

Fe ' Re, and also noting that Lp = Dp (i.e. there is no plastic spin and Lp is symmetric
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- this assumption is justified in [5]). We are left with the following simple equation, which

relates D to Dp:

D = ReDpRe−1

. (B.5)

The expression in Eq. B.5 can be used to obtain a functional relationship of the form

T = f(D) in the observed space of the material. We combine Eq. 36 and Eq. 39 to obtain

a tensorial expression for D in terms of the deviatoric Mandel stress Me
0 and the parameter

A:

D = Re(dpNp)Re−1

= Re

(
1√
2

(
|Me

0 − C log A|√
2k

)1/m
Me

0 − C log A

|Me
0 − C log A|

)
Re−1

. (B.6)

The expression above provides D in terms of the deviatoric Mandel stress Me
0. Recall from

the discussion around Fig. 3 that the Mandel stress is associated with the intermediate

structural space of the material. We desire to modify Eq. B.6 above so that it is written in

terms of the deviatoric Cauchy stress T0, which is the true or observed stress in the material

that would be measured in a rheological experiment. To do this, we note that:

Me
0 = JRe−1

T0R
e , (B.7)

where J is the determinant of the deformation gradient F. Eq. B.7 above follows from

Eqs. 29 and 30, and the fact that Me is an isotropic function of Ue - see pg. 563 of [5] for a

guided proof of this. We further restrict our material to be incompressible, so that J = 1.

We define a new tensorial variable, Ā, which is an evolving internal tensor field which lies in

the space of the deformed body (illustrated in Fig. 3). This tensor Ā is related to A (which

lies in the structural space of the body) as follows:

A = Re−1

ĀRe . (B.8)

The above equation, together with Eq. B.7, can be substituted into Eq. B.6, in order to cancel

out the Re and Re−1
tensors outside the parentheses on the right hand side of Eq. B.6. These

steps result in the following expression, which provides the rate of deformation tensor D in

terms of the deviatoric Cauchy stress T0 and this new internal tensorial parameter Ā.

D =

(
1√
2

(
|T0 − C log Ā|√

2k

)1/m
T0 − C log Ā

|T0 − C log Ā|

)
. (B.9)
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