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Sampling-based Approximation Schemes for Capacitated Stochastic

Inventory Control Models

Wang Chi Cheung∗, David Simchi-Levi†

Abstract

We study the classical multi-period capacitated stochastic inventory control problems in a
data-driven setting. Instead of assuming full knowledge of the demand distributions, we assume
that the demand distributions can only be accessed through drawing random samples. Such
data-driven models are ubiquitous in practice, where the cumulative distribution functions of
the underlying random demand are either unavailable or too complicated to work with.

We apply the Sample Average Approximation (SAA) method to the capacitated inventory
control problem and establish an upper bound on the number of samples needed for the SAA
method to achieve a near- optimal expected cost, under any level of required accuracy and
pre-specified confidence probability. The sample bound is polynomial in the number of time
periods as well as the confidence and accuracy parameters. Moreover, the bound is independent
of the underlying demand distributions. However, the SAA requires solving the SAA problem,
which is #P -hard. Thus, motivated by the SAA analysis, we propose a randomized polynomial
time approximation scheme which also uses polynomially many samples. Finally, we establish a
lower bound on the number of samples required to solve this data-driven newsvendor problem
to near-optimality.

1 Introduction

In this paper, we consider the multi-period Capacitated Stochastic Inventory Control problem in
a data-driven setting. This problem encapsulates the dilemma of matching supply with volatile
demand for a commodity, in the presence of supply constraints. The multi-period problem can be
described as follows. At the start of each period, the decision maker reviews the amount of on-hand
inventory or backorders, and decides the amount of additional commodity to order, in anticipation
of the random demand in the period. Due to supply constraints, there is an upper limit on the
amount she can order. After placing the order, the additional inventory arrives instantaneously,
and her on-hand inventory increases accordingly. Then, the random demand for the commodity is
realized, and the decision maker satisfies the demand to the fullest extent by her on-hand inventory.
In the case of excess inventory, i.e. more on-hand inventory than demand, a holding cost is incurred
per unit of unused commodity. Otherwise, in the case of insufficient inventory, a backlog cost is
incurred per unit of unsatisfied demand. In addition, the unused commodity or backlogged demand
is carried over to the next period, which means that the decision made in a period affects the
inventory levels in the future periods. The objective is to minimize the sum of expected holding
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and backlog costs incurred in all the periods. The demands across the periods are independent,
though not necessarily identically distributed.

In the previous work on inventory models, it is typically assumed that the decision maker knows
the cumulative distribution functions (cdfs) of the demand distributions. Under such assumption,
the problem is well studied, and can be solved to optimality in polynomial time. In contrast, under
the data-driven setting, we assume that the decision maker does not have direct access to the
underlying demand distributions. The only information available to the decision maker is a set of
random samples from the demand distribution in each period. Such a data-driven setting arises in
many real life scenarios, since the decision maker’s knowledge on the demand distributions is often
gained through historical data or market forecast on the trend of future demands. Moreover, even
when the decision maker has access to the true demand distributions, sometimes they could be too
complicated to work with.

The Sample Average Approximation (SAA) method is an intuitive and popular heuristic for
solving stochastic optimization problems in the data-driven setting. The idea is to consider the
SAA problem, which is formulated by replacing the latent random distributions by their empirical
counterparts constructed using the drawn samples. Then, under the SAA method, the decision
maker solves the SAA problem to optimality. The rationale behind the heuristic is that, with
sufficiently many samples, the SAA problem could serve as a reasonably accurate proxy for the
original problem. Thus, the optimal solution for the SAA problem may be nearly optimal for
the original problem. In fact, when the number of samples drawn tends to infinity, the set of
optimal solutions for the SAA problem converges to the set of optimal solution for the original
problem, under certain regularity conditions. A catalogue of such asymptotic results is presented
in Shapiro et al. [SDR09]. However, the non-asymptotic performance of the SAA method in multi-
stage stochastic optimization problems seems very hard to analyze, as remarked by Shapiro and
Nemirovski [SN05].

In this paper, we provide a non-asymptotic analysis on the performance of the SAA method
for the data-driven capacitated inventory control problem. We establish an explicit upper bound
on the number of samples needed for the SAA method to achieve a near-optimal expected cost
with high probability. The sample bound for the SAA method is polynomial in the number of
periods T as well as the accuracy and confidence parameters, and the bound is independent of the
underlying demand distributions. However, the SAA problem is in general #P−hard to solve (See
Appendix I for the precise definition of #P−hardness). By harnessing our analysis for the SAA
method, we propose a polynomial time approximation scheme to the problem, by introducing a
sparsification procedure to the SAA method. One caveat in our polynomial bounds is that these
bounds have a pseudo-polynomial dependence on the unit holding and backlog costs. We argue that
such dependence is inherent to the data-driven model, by proving a lower bound on the number of
samples used any algorithm that solves the data-driven problem to near optimality. In particular,
by the results in Levi et al. [LPU15], our sample lower bound is tight for the special case of the
newsvendor problem, which is the special case when there is only one period, but there is no supply
constraint.

1.1 Literature Review

Data-driven multi-stage stochastic optimization problems are actively studied in the realms of
Computer Science and Operations Research. Kleywegt et al. [KSHdM02] study the performance
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of SAA method on two-stage stochastic discrete optimization problems. They prove that the set
of empirically optimal solutions converges to the set of optimal solutions in the original problem as
the number of samples tend to infinity. In addition, they provide an upper bound on the number of
samples needed for achieving near optimality within an additive error. However, the sample bound
provided in [KSHdM02] depends on the variances of the underlying random variables. Shapiro
and Nemirovski [SN05] study the computational complexity of solving 2-stage and multi-stage
stochastic optimization problems by the SAA methods. On one hand, they show that 2-stage
stochastic optimization problems are tractable under regularity assumptions. On the other hand,
for multi-stage stochastic optimization problems, they show evidence that the analysis is likely
to be hard, and the SAA problems are apparently computationally intractable. The asymptotic
analyses of the SAA methods under various stochastic optimization models are presented in the
book [SDR09].

Data-driven two-stage stochastic combinatorial optimization problems are well studied in the
literature. Gupta et al. [GPRS04] consider such two-stage problems on a variety of NP−hard com-
binatorial optimization problems, and approximation algorithms with constant ratios are provided.
Shmoys and Swamy [SS06] consider the two-stage linear optimization problems under covering con-
straints, and they propose a fully polynomial randomized approximation scheme (FPRAS). Using
the FPRAS, Shmoys and Swamy [SS06] provide approximation algorithms with constant ratios for
classical covering problems, such as the minimum vertex cover problems and the facility location
problems. Charikar et al. [CCP05] consider a more general version of two-stage stochastic op-
timization than [SS06], and they show that the SAA method achieves near optimality with high
probability. Finally, under the full knowledge of the underlying randomness, various two-stage
problems are also studied, for example see the results in [IKMM04, RS06, GRS07, BQ11].

Data-driven multi-stage stochastic optimization problems are significantly more difficult when
the number of stages is greater than two. Swamy and Shmoys [SS12] generalizes [SS06] by studying
the class of multi-stage stochastic linear optimization problems with covering constraints. Swamy
and Shmoys [SS12] shows that the SAA method gives rise to an FPRAS for the problem. Moreover,
they provide O(T )-approximation algorithms for the T -stage stochastic combinatorial problems
considered in [SS06]. However, the number of samples needed grows exponentially in the number
of stages T . Gupta et al. [GPRS05] extends the framework in [GPRS04] to the case of multiple
stages. Both the number of samples needed and the approximation ratios deteriorates exponentially
with the number of stages. Shapiro [Sha06] provide bounds on the sample size required in the SAA
method for data-driven multi-stage stochastic optimization problems in a general setting. However,
the bounds depend on the identities of the underlying random variables in the problem, and these
bounds tend to infinity as the support of the random variables become large. In fact, as stated
in [SN05], the analysis of the SAA method in multi-stage stochastic optimization problems seems
very hard in geneal.

The works of Levi et al. [LRS07] and Halman [Hal15] are the most relevant to ours. Levi et al.
[LRS07] consider the data-driven uncapacitated inventory control problems, which is the special
case of our problem when there is no supply constraints. They provide a near optimal ordering
policy that has running time polynomial in the number of periods (stages) T as well as the accuracy
parameters. This is in contrast with most previous works on multi-stage stochastic optimization
problems, where the number of necessary samples and performance guarantee grow rapidly with
the number of stages. [Hal15] considers a general class of dynamic programs in a more restricted
data-driven setting, where the underlying demand distributions are assumed to satisfy a certain
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lower bound property. FPTASs are provided for solving the class of DPs. A detailed comparison
of our approach with [LRS07], [Hal15] is provided in the next subsection.

Dynamic programs in a different data-driven model has been considered in Halman et al.
[HKM+09], Halman et al. [HKL+14]. In these works, the decision maker has oracle access to
the exact value of the cdf of a random variable at the queried point. This is a stronger assump-
tion than ours, in which the cdfs cannot be exactly ascertained (cf. Theorem 2.5). Halman et
al. [HKM+09] consider single commodity inventory control problems with more general holding
and backlog costs, and Halman et al. [HKL+14] consider an even more general class of dynamic
programming problems. Halman et al. [HKM+09, HKL+14] show that under their oracle access
models, the problems are #P-hard, and additionally they propose FPTASs for these problems. In
particular, the number of queries to the cdf oracles is polynomial in the number of stages.

The capacitated stochastic inventory control models are well studied in the realm of Operations
Research. The research of [AF97, KT98] show that the optimal expected cost can be achieved by
a modified base stock policy, when the demands are independent but not necessarily identically
distributed. Aviv and Federgruen [AF97] proposes a value iteration algorithm to compute the base
stocks, while Kapuscinski and Tayur [KT98] proposes a simulation base method for the computa-
tion. Subsequently, Levi et al. [LRST08] propose a 2-approximation algorithm to the problem in
the case when the demand distributions across the periods are correlated. In all these works, the
underlying demand distributions are fully specified.

1.2 Our Approach

We analyze the performance of the SAA method by comparing the empirical DP, i.e. the dynamic
program for the SAA problem, and the original DP, i.e. the dynamic program for the original
problem. A natural approach to prove the convergence of the SAA method is to compare the
values of the cost-to-go functions in the empirical DP with those in the original DP. However, for
such a zero-order approach, the number of samples required for near-optimality grows with the
support sizes of the underlying demand distributions.

We avoid such a dependence on the support size by a first order analysis on the cost-to-go
functions. In particular, we establish a sample bound independent of the underlying demand
distributions. Our analysis is based on the following approach. First, we demonstrate that, in
order to prove the convergence of the SAA method, it suffices to prove that the right derivatives
of the cost-to-go functions for the empirical DP converge to their original counterparts, when the
number of samples is sufficiently large. The aforementioned reduction is performed using a Lemma
by Levi et al [LRS07] and our analysis on the sample path of the inventory control problem. Next,
we demonstrate that the number of samples required for the convergence in the right derivatives is
finite for any given level of required accuracy and pre-specified confidence probability. In particular,
the required number of samples is independent of the underlying demand distributions, since the
supports of the right derivatives for the cost-to-go functions only depend on the holding and backlog
cost coefficients, as well as the number of periods.

In fact, a first order approach is also proposed by [LRS07]. However, our approach is significantly
different from [LRS07] in the following aspects. Levi et al. [LRS07] does not compare the original
DP with the SAA DP. Instead, they compare the original DP with the shadow dynamic program,
which is a dynamic program tailored for their inventory model and analysis. In a nutshell, the
shadow dynamic program is constructed by suitably perturbing the original DP in a sequential
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manner from t = T to t = 1. Thus, the shadow dynamic program does not correspond to the
SAA problem. The purpose of such an approach is to maintain the convexity of certain cost-to-go
functions (namely Ũj , Ṽj in [LRS07]) in their analysis. Such perturbation crucially uses the fact
that the function Ṽj(xj) (in [LRS07]) takes a constant value when xj is smaller than a certain
threshold R̃j , which is not true in the presence of supply constraints (cf. §2.2). Thus, we take an
alternative approach by directly analyzing the SAA method.

Our proof framework is also different from [LRS07], in the sense that we directly investigate
the impact of perturbing the base stock levels to the expected cost. We demonstrate (cf. Lemma
3.4) that the optimal modified base stock policy is robust to perturbation, which paves our way
to establishing the required near-optimality by bounding the estimation error in each period. We
believe that such robustness result in inventory control models could be of interest in other settings.

In addition, the analysis of the SAA method in their inventory models is raised as an open
question in Levi et al. [LRS06]. In this paper, we establish that with polynomially many samples,
the SAA method does yield a near optimal ordering policy in the case of capacitated inventory
control models (which include their models). However, the SAA method does not immediately lead
to a polynomial time algorithm, since the underlying SAA problem is #P−complete. Thus, we
provide a polynomial time approximation scheme Sample by introducing a sparsification procedure
to the SAA method.

In Halman [Hal15], the author consider a general class of dynamic programs in a data-driven
setting, but with the following assumption on the demand distribution. For all demand distributions
Dt and d ∈ R+, it is assumed that either P[Dt = d] = 0, or P[Dt = d] ≥ γ, where γ > 0 is
a parameter known to the decision maker. FPTASs are proposed in this particular data-driven
setting, and the bounds on running time is proportional to 1/γ2. Note that the results in [Hal15]
is incomparable to ours, since we have a more general data-drvien setting (we do not assume such
a γ to be existent and known to the decision maker in our setting) than [Hal15], but the latter
considers a more general class of DPs than ours. The running time of the algorithm by [Hal15] and
the running time of Sample in this paper are also incomparable. One one hand, [Hal15] algorithm’s
running time has a much better dependence on T than ours. On the other hand, the running time
of [Hal15] depends on γ and (mildly) on the support of the underlying probability distribution, but
the running time of our algorithm does not depend on these quantities. Finally, we analyze the
SAA method by a first order analysis, while the FPTASs proposed in [Hal15] are not SAA methods,
and are analyzed through zero-order analyses. (A comparison of our work, [Hal15] and [LRS07] is
provided in [Hal15]).

Finally, we note that in inventory control models, the presence of order lead time and linear
ordering costs are commonly assumed. Nevertheless, the order lead time can be easily incorporated
into our analysis by a suitable time shift in the dynamic program. Linear ordering costs can also
be incorporated into our analysis by adding suitable constants in the computations of the left and
right derivatives. In the spirit of [LRS07], we assume zero lead time and zero ordering cost for the
sake of clarity.

The rest of the paper is organized as follows. In §2.1, we formulate the data driven capacitated
inventory control problem. In §2.2, we review the notion of modified base stock policies. In §2.3, we
state the main results in the paper. In §3, we outline our first order analysis on the sample average
approximation (SAA) method for the data-driven problem. In §4, we provide a polynomial time
approximation scheme Sample to the problem, by introducing a sparsification procedure to the
SAA method. In §5, we provide insights into the proofs for the hardness results. In §6, we compare
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the performance of Algorithm Sample in simulations with the performance guarantee predicted by
our analysis. Finally, in §7, we conclude the paper. The proofs of the Theorems and Lemmas are
deferred to the Appendix sections.

2 Problem Model and Our Contributions

2.1 The Data-driven Capacitated Inventory Control Model

We consider the periodic review capacitated inventory control problem in a data-driven setting.
The decision maker faces a finite time horizon with T discrete time periods, labeled as 1, · · · , T .
From period 1 to period T , the decision maker performs the following actions:

1. Observe the starting inventory level xt.

2. Order up to yt, where 0 ≤ yt − xt ≤ Bt. The parameter Bt is the capacity on the inventory
that can be ordered in the tth period.

3. Observe the tth period demand Dt.

4. If yt > Dt, it incurs a linear holding cost of ht × (yt −Dt); else if yt ≤ Dt, it incurs a linear
backlog cost bt × (Dt − yt). In the latter case, the unsatisfied demand is backlogged.

5. Proceed to period t+ 1, with starting inventory level being xt+1 = yt −Dt.

The latent demand distributions D1, · · · , DT are assumed to be independent, though not necessarily
identically distributed. The decision maker’s objective is to design an ordering policy that minimizes
her expected total operational cost

E

[
T∑
t=1

ht(yt −Dt)
+ + bt(Dt − yt)+

]
(2.1)

across the planning horizon, subject to the capacity constraint in each period. The function (x)+

denotes max{x, 0}. For each t = 1, · · · , T , we assume that ht, bt > 0.
The decision maker does not know the explicit demand distributions. Rather, the only infor-

mation available is a set of independent samples drawn from the true distributions; the decision
maker can draw any number Nt of independent samples d1

t , · · · , dNt
t of Dt from its sample gener-

ating oracle. This data-driven setting, analogous to the settings in [LRS07, SS06, SS12], is strictly
weaker than the model considered by [HKL+14], where the decision maker has an oracle access to
the cdfs of the underlying demand distributions.

We assume that the expectation E |Dt| is finite for all t, which is necessary for the problem
to be well-defined. This is the only assumption we make on the underlying demand distributions
D1, · · · , DT . In particular, we neither assume that the demand distributions are parametrized, nor
assume that they have bounded supports.

To consider the problem in a data-driven setting, we use SAA(T ;N1, · · · , NT ) to denote the
sample average approximation counterpart of the original capacitated inventory control problem.
The empirical problem SAA(T ;N1, · · · , NT ) is constructed by using Nt samples from Dt for each
period t. More precisely, conditional on the Nt samples d1

t , · · · , d
Nt
t drawn from Dt for each period
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t, the capacitated inventory control problem SAA(T ;N1, · · · , NT ) is the T -period problem where
the tth period demand distribution D̂t is the empirical distribution for Dt:

P[D̂s = d] =

∑Ns
i=1 1[d = dis]

Ns
. (2.2)

Note that the optimal cost of SAA(T ;N1, · · · , NT ) is a random variable that depends on the random
samples drawn.

2.2 Modified Base Stock Policies

Throughout the paper, we consider a certain class of policies called modified base stock policies:

Definition 2.1. Under a modified base stock policy (R1, · · · , RT ), at period t the decision maker
determines the order-up-to level yt (in step 2 in §2.1) in the following manner:

yt =


xt +Bt if xt ∈ (−∞, Rt −Bt]
Rt if xt ∈ (Rt −Bt, Rt]
xt if xt ∈ (Rt,∞)

.

In other words, for each period t, the decision maker makes the inventory level yt as close to
Rt as possible, under the supply constraints. Under a modified base stock policy (R1, · · · , RT ),
the decision made in period t is only dependent on the amount of inventory xt at hand and the
base stock Rt, but it does not depend on other base stocks and observations made in the previous
periods.

By the work of [KT98], [Tay93], there exists an optimal modified base stock policy (R∗1, · · · , R∗T )
under which the expected cost (2.1) for the original problem is minimized. The derivation of the
optimality of modified base stock policy is useful for our analysis on the SAA algorithm. Thus,
we review the derivation below. An optimal policy can be found by solving the following Bellman
equations from t = T to t = 1:

Vt(xt) = min
xt≤yt≤xt+Bt

Ct(yt) + E [Vt+1(yt −Dt)] , VT+1(xT+1) = 0,

the function Ct(yt) = E[ht(yt−Dt)
+ + bt(Dt− yt)+] is the tth period expected operational cost. To

facilitate our subsequent analysis on the SAA algorithm, we introduce the function Ut:

Ut(yt) = Ct(yt) + E [Vt+1(yt −Dt)] . (2.3)

Thus, we have
Vt(xt) = min

xt≤yt≤xt+Bt

Ut(yt). (2.4)

The function Vt(xt) represents the expected cost over t, · · · , T when the starting inventory level in
period t is xt, and the decision maker orders optimally in the periods t, · · · , T . The function Ut(yt)
represents the expected cost over t, · · · , T when the inventory level after ordering is yt in period t,
and the decision maker orders optimally in the periods t+ 1, · · · , T .

By a backward induction from t = T to t = 1, [AF97, KT98] further show that
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1. The functions Ut, Vt are convex for all t,

2. The modified base stock policy (R∗1, · · · , R∗T ), where R∗t ∈ argminyt∈RUt(yt), is optimal.

The induction is shown as follows. Suppose Vt+1(xt+1) is a convex function. Then the function
Ut(yt) is also convex, by virtue of (2.3). Now we wish to show that the convexity of Ut implies the
convexity of Vt. First, note that lim|yt|→∞ Ut(yt) =∞, thus Ut(yt) has a global minimum R∗t in R,
which can be computed when the CDFs of the demand distributions are known. Considering (2.4)
for the following ranges of xt, we have

argminxt≤yt≤xt+Bt
Ut(yt) 3


xt +Bt if xt ∈ (−∞, R∗t −Bt]
R∗t if xt ∈ (R∗t −Bt, R∗t ]
xt if xt ∈ (R∗t ,∞)

by the convexity of Ut. In particular, this shows that it is optimal to follow a modified base stock
policy with threshold R∗t in period t. Finally, applying this in (2.4) yields

Vt(xt) =


Ut(xt +Bt) if xt ∈ (−∞, R∗t −Bt)
Ut(R

∗
t ) if xt ∈ [R∗t −Bt, R∗t )

Ut(xt) if xt ∈ [R∗t ,∞)

(2.5)

for all xt ∈ R. It is easy to verify that Vt(xt) is also a convex function, which establishes the
backward induction. Altogether, the optimality of the modified base stock policy (R∗1, · · · , R∗T ) is
established.

In the above (zero-order) analysis, we can choose the threshold R∗t to be any minimizer of Ut.
However, in order to facilitate the forthcoming first order analysis for the SAA algorithm in §3 (cf.
Theorem 3.8), we will choose R∗t to be the smallest minimizer of Ut for all t.

Similarly, we choose R̂t to be the smallest minimizer of in the empirical cost-to-go function Ût
for all t in the sample average problem SAA(T ;N1, · · · , NT ), where Ût is defined in an analogous
way to Ut:

Ût(yt) = Ĉt(yt) + EV̂t+1(yt − D̂t), (2.6)

V̂t(xt) = min
xt≤yt≤xt+Bt

Ût(yt) =


Ût(xt +Bt) if xt ∈ (−∞, R̂t −Bt)
Ût(R̂t) if xt ∈ [R̂t −Bt, R̂t)
Ût(xt) if xt ∈ [R̂t,∞)

, (2.7)

where D̂t is the empirical distribution constructed using Nt samples from Dt (as defined in (2.2)),
and Ĉt(yt) = E[ht(yt − D̂t)

+ + bt(D̂t − yt)+] is the empirical operational cost in the tth period.
We say that a set of base stocks (R1, · · · , RT ) is (1 + ε)-optimal if the expected cost under the

modified base stock policy defined by (R1, · · · , RT ) is at most (1 + ε) times the optimal expected
cost. For example, by definition, (R∗1, · · · , R∗T ) is 1-optimal.

2.3 Main Results

Firstly, we show that for the SAA method to output a near optimal modified base stock policy, it
is sufficient to use only polynomially many samples:
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Theorem 2.2. Consider the Sample Average Approximation problem SAA(T ;N1, · · · , NT ), where
Nt is defined as follows

Nt = max

(ht + bt)
2,

(
T∑

s=t+1

hs + bs

)2
 144T 4

ε2mins∈{1,··· ,T} {min {hs, bs}}2
log

4T

δ
. (2.8)

For t = T, · · · , 1, let R̂t be the smallest minimizer of the empirical cost-to-go function Ût(yt), i.e.
R̂t = miny∈R{y : y ∈ argmin Ût(y)}, where Ût is defined in (2.6). With probability at least 1 − δ,

the modified base stock policy (R̂1, · · · , R̂T ) is (1 + ε)-optimal to the original problem.

Note that the base stock policy (R̂1, · · · , R̂T ) in the Theorem is a set of random variables that
depend on the samples drawn. The base stock policy (R̂1, · · · , R̂T ) achieves near-optimality in the
original problem, in addition to achieving optimality in the empirical problem SAA(T ;N1, · · · , NT ).

While Theorem 2.2 shows that the SAA method is informationally efficient, i.e. only requires a
bounded number of samples, the Theorem and its analysis do not imply the computational efficiency
of the SAA method. In fact, solving the empirical problem exactly is computationally hard, in the
sense that even SAA(T ; 2, · · · , 2) can be intractable:

Lemma 2.3. Consider the stochastic capacitated inventory control problem, where the demand
distributions D1, · · · , DT are explicitly given, and each of Dt has a discrete support {0, at}. If there
is an algorithm that runs in time polynomial in T and returns an optimal modified base stock policy,
then P = #P.

Lemma 2.3 is proven by reducing the problem to the Kth largest subset problem, which is
a #P−hard problem ([HKM+09], also see SP20 on page 225 in [GJ79]). We provide the formal
definition of #P−hardness in Appendix I, and the proof for the Lemma in Appendix J. Thus, the
SAA method, which solves the SAA problem exactly, is not computationally efficient. This hard-
ness result is in contrast with [BLQ12, CCP05, SS12], in which the corresponding SAA problems
(constructed with polynomially many samples) can be solved in polynomial time.

Thus, we propose a polynomial time randomized approximation scheme that returns a modified
base stock (R̃1, · · · , R̃T ) for the origin problem, by considering a suitable sparsification procedure
on the subgradients of the cost-to-go functions. This sparsification procedure is described and
analyzed in §4.

Theorem 2.4. For every ε > 0, 0 < δ < 1, there is a randomized algorithm that produces a set
of (1 + ε)−optimal base stocks (R̃1, · · · , R̃T ) with probability 1− δ. The number of samples needed

is polynomial in
(

maxt∈{1,··· ,T}

{
ht+bt

min{ht,bt}

}
, T, 1

ε , log
(

1
δ

))
. In addition, the algorithm has running

time polynomial in
(

maxt∈{1,··· ,T}

{
ht+bt

min{ht,bt}

}
, T, 1

ε , log
(

1
δ

)
, log(dmaxc

∗)
)

, where dmax denotes the

maximum value of the samples drawn, and c∗ = maxt=1,··· ,T max{ht, bt}.

Finally, we note that in all the polynomial bounds mentioned above, there is a pseudo-polynomial

dependence on the cost parameter maxt∈{1,··· ,T}

{
ht+bt

min{ht,bt}

}
, which is the same as the case in

[LRS07]. Rather than an artifact of the first order analyses, we show that such pseudo-polynomial
dependence is necessary in an information theoretic sense. More precisely, we provide a lower bound
on the number of samples needed to solve the data-driven newsvendor problem to near optimality.
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The data-driven newsvendor problem is the special case of the data-driven capacitated inventory
control problem when T = 1 and B1 = ∞, i.e. it is the one period problem without any supply
constraint. In the Theorem below, we drop the subscript for the period for clarity sake.

Theorem 2.5. Let A be an algorithm that returns an (1 + ε) optimal base stock to the data-driven
newsvendor problem with probability at least 1 − δ, under any latent demand distribution, where
0 < ε < 1/20, 0 < δ < 1/4. Then A draws at least (1−4δ)(h+b)

2000 min{h,b}ε2 samples.

The proof of Theorem 2.5 is given in Appendix K. Finally, we remark the lower bound in
Theorem 2.5 matches the upper bound provided in [LPU15] for the data-driven newsvendor prob-
lem. Thus, combined with [LPU15], it is shown that when the level of confidence probability is
high, the number of samples needed for computing a (1 + ε) optimal base stock for the data-driven

newsvendor problem is precisely Θ
(

h+b
min{h,b}ε2

)
.

3 A First Order Analysis on the Sample Average Approximation
Problem

In this Section, we lay out the roadmap for the proof of Theorem 2.2. The proof is based on
comparing the dynamic program for the SAA problem SAA(T ;N1, · · · , NT ), i.e. the empirical DP,
and the dynamic program for the original problem (with latent demand distributions), i.e. the
original DP.

We present the proof in three parts, namely §3.1, §3.2 and §3.3. In §3.1, we demonstrate that
the closeness between the right derivatives for the cost-to-go functions for the original and empirical
DPs implies Theorem 2.2. Thus, the proof of Theorem 2.2 is reduced to a first order analysis. We
establish the reduction using a lemma by [LRS07], as well as a lemma on the robustness of an
optimal modified base stock policy (cf. Lemma 3.4). In §3.2, we set up the tools for the first
order analysis by providing the expressions for the right derivatives for the cost-to-go functions for
the original and empirical DPs. Finally, in §3.3, we argue that our choice of N1, · · · , NT ensures
the uniform closeness between the right derivatives required in §3.1. The proof involves a careful
analysis on the dynamics of the capacitated inventory control problem. In particular, the choice
of (N1, · · · , NT ) leads to a (1 + ε)-approximation to the problem with high probability, hence
completing the proof.

We define the following notations. The functions U r
t , V

r
t , Û

r
t , V̂

r
t denote the right derivatives of

Ut, Vt, Ût, V̂t, which are defined in (2.3), (2.4), (2.6) and (2.7) respectively.

3.1 Closeness in right derivatives implies near-optimality

In this subsection, we relates the near optimality of modified base stock policy (R̂1, · · · , R̂T ) to the
closeness of the right derivatives U r

t , Û
r
t :

Lemma 3.1. Suppose that for all yt, we have
∣∣∣Û r

t (yt)− U r
t (yt)

∣∣∣ ≤ ηt, where ηt > 0. Then the modi-

fied base stock (R̂1, · · · , R̂T ), where R̂t is the minimal minimizer of Ût, is
(

1 +
∑T

t=1
6ηt

min{ht,bt}

)
−optimal.

The Lemma implies that, to prove Theorem 2.2, it suffices to bound maxy∈R

∣∣∣Û r
t (y)− U r

t (y)
∣∣∣.

In other words, we have reduced the proof of Theorem 2.2 to a first order analysis. Equipped with
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Lemma 3.1, we avoid the need to estimate the value Ût(y) for any given y. In fact, estimating
the function value within a fixed additive error is impossible with a finite number of samples in
our setting, where we do not have any assumption on the concentration property of the demand
distributions.

Lemma 3.1 follows from Claim 3.2 and Lemma 3.4. Claim 3.2 transforms the first order ap-
proximation guarantee on Ut to a certain zero-order approximation guarantee on Ut:

Claim 3.2. Suppose that for all yt, we have
∣∣∣Û r

t (yt)− U r
t (yt)

∣∣∣ ≤ ηt, where ηt > 0 is a given

constant. Then the following inequality holds:

Ut(R̂t) ≤
(

1 +
3ηt

min{ht, bt}

)
min
x∈R

Ut(x) =

(
1 +

3ηt
min{ht, bt}

)
Ut(R

∗
t ). (3.1)

The proof of Claim 3.2 is provided in Appendix A. The Claim is a straightforward consequence
of a Lemma by [LRS07].

Lemma 3.3 (Lemma 3.3 in [LRS07]). Let f : R→ R be a convex function such that for all x ∈ R
the inequality f(x) ≥ f̄(x) := h(x− d)+ + b(d− x)+ holds, where d is a constant. Suppose that for
the real number y there exists a subgradient sy ∈ ∂f(y) with the property that |sy| ≤ (ε/3) min{b, h}.
Then we have

f(y) ≤ (1 + ε)minx∈Rf(x).�

Equation (3.1) in Claim 3.2 has the following interpretation. Recalling the definition of Ut in
(2.3), equation (3.1) is equivalent to

Costt(xt; R̂t, R
∗
t+1, · · · , R∗T ) ≤

(
1 +

3
∑T

s=t αs
min{bt, ht}

)
Costt(xt;R

∗
t , R

∗
t+1, · · · , R∗T ).

The function Costt(xt;Rt, · · · , RT ) is defined as the expected cost from period t to period T , when
the starting inventory level in period t is xt, and then the decision maker follows the modified base
stock policy defined by (Rt, · · · , RT ). In particular, note that Vt(xt) = Costt(xt;R

∗
t , · · · , R∗T ). The

inequality above shows that when the optimal base stock R∗t is replaced by the suboptimal base
stock R̂t, the deterioration in the expected cost from period t to T can be bounded. This suggests
that the empirical base stock policy (R̂1, · · · , R̂T ) is a candidate for a near optimal policy. In the
following Lemma, we quantify the robustness of an optimal modified base stock policy, when the
optimal base stock levels are subjected to perturbation.

Lemma 3.4. Let (R1, · · · , RT ) be a set of base stocks. Suppose that for all t = 1, · · · , T , we have

Ut(Rt) ≤
(

1 +
εt
2

)
Ut(R

∗
t ),

where ε1, · · · , εT are non-negative real numbers such that
∑T

t=1 εt ≤ 1. Then for any starting
inventory level x1 in period 1, we have

Cost1(x1;R1, · · · , RT ) ≤

(
1 +

T∑
t=1

εt

)
Cost1(x1;R∗1, · · · , R∗T ) =

(
1 +

T∑
t=1

εt

)
V1(x1).

11



The Lemma is proven by sequentially replacing R∗t with Rt from t = T to t = 1, and by
comparing Costt(Rt, · · · , RT ) with the optimal cost Costt(R

∗
t , · · · , R∗T ). Its proof is provided in

Appendix B.
By combining Claim 3.2 and Lemma 3.4, we have established Lemma 3.1. Altogether, we show

that, in order to prove Theorem 2.2, it suffices to bound the distance between Û r
t and U r

t for all t.
In the next two subsections, we set up the tools and perform a first order analysis on the cost-to-go
functions for the original and empirical DPs.

3.2 The Expressions for the Right Derivatives

By §3.1, our proof of Theorem 2.2 requires a first order analysis on the original and empirical
DPs. To set up the tools for the analysis, we provide the expressions for U r

t , V
r
t , Û

r
t , V̂

r
t , the right

derivatives of Ut, Vt, Ût, V̂t defined in (2.3), (2.4), (2.6) and (2.7). By the assumption that E[|Dt|] <
∞ for all t, we can apply the dominated convergence theorem to express the right derivatives as
follows:

U r
t (yt) = Cr

t (yt) + EV r
t+1(yt −Dt), Û r

t (yt) = Ĉr
t (yt) + EV̂ r

t+1(yt − D̂t).

The right derivatives V r
t , V̂

r
t have the following expressions:

V r
t (xt) =


U r
t (xt +Bt) if xt ∈ (−∞, R∗t −Bt)

0 if xt ∈ [R∗t −Bt, R∗t )
U r
t (xt) if xt ∈ [R∗t ,∞)

, (3.2)

V̂ r
t (xt) =


Û r
t (xt +Bt) if xt ∈ (−∞, R̂t −Bt)

0 if xt ∈ [R̂t −Bt, R̂t)
Û r
t (xt) if xt ∈ [R̂t,∞)

. (3.3)

Finally, we have the expressions for the right derivatives of the single period costs:

Cr
t (yt) = −bt + (ht + bt)P[Dt ≤ yt], Ĉr

t (yt) = −bt + (ht + bt)
1

Nt

Nt∑
i=1

1[dit ≤ yt]. (3.4)

The thresholds R∗t , R̂t are the smallest minimizers of Ut, Ût respectively, which satisfy the
following:

R∗t = min{y : U r
t (y) ≥ 0}, R̂t = min{y : Û r

t (y) ≥ 0}.

For every xt, yt, the empirical right derivatives Û r
t (xt), V̂

r
t (yt) are random variables that depends

on the empirical distributions D̂t, · · · , D̂T ; and D̂t, · · · , D̂T are constructed using samples from
Dt, · · · , DT . In addition, observe that Û r

t , V̂
r
t are right continuous (random) step functions with

finitely many break points, while U r
t , V

r
t could be continuous functions. It is important to note that

in general EÛ r
t (yt) 6= U r

t (yt) (except when t = T ), since for t < T , Ût, Ut are cost-to-go functions
for the capacitated inventory control problem with different underlying distributions; the former
being the empirical distribution and the latter being the original distribution. Similarly, in general
EV̂ r

t (yt) 6= V r
t (yt), except when t = T + 1. Thus, it requires extra work to show that Û r

t , V̂
r
t

uniformly approximate U r
t , V

r
t .

Another important property is that Û r
t , V̂

r
t are bounded, unlike their value functions Ût, V̂t.
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We have Û r
t (yt), V̂

r
t (xt) ∈ [−

∑T
s=t bs,

∑T
s=t hs] for all xt, yt with probability 1. These bounds are

independent of the underlying demand distributions Dt, · · · , DT . Thus, we are able to establish
sample upper bounds for estimating the right derivatives, and these bounds do not depend on the
underlying distributions. This is in contrast to the case for estimating the function values.

3.3 Bounding the Estimation Error
∣∣∣U r

t − Û r
t

∣∣∣
In this subsection, we show that, with our choice of N1, · · · , NT , the empirical right derivatives Û r

t

uniformly approximate the original right derivatives U r
t (yt) for all t with probability at least 1− δ.

Here, we say that a function f̂ : R → R uniformly approximates another function f : R → R if

there exists a constant η such that
∣∣∣f̂(x)− f(x)

∣∣∣ ≤ η for all x ∈ R. More precisely, we show the

following:

Lemma 3.5. Consider the empirical problem SAA(1;N1, · · · , NT ), where

Nt = max

(ht + bt)
2,

(
T∑

s=t+1

hs + bs

)2
 4

α2
t

log
4T

δ
. (3.5)

We have the following bound on the estimation errors of the empirical right derivatives Û r
1 , · · · Û r

T :

P

[
For all t and y,

∣∣∣U r
t (y)− Û r

t (y)
∣∣∣ ≤ T∑

s=t

αs

]
≥ 1− δ.

That is, the empirical right derivatives Û r
T , · · · , Û r

1 uniformly approximate the original right deriva-
tives U r

T , · · · , U r
1 with high probability.

The Lemma is proven by a backward induction argument, which involves applying appropriate
concentration bounds, as well as a careful analysis on the dynamics of the capacitated inventory
control problem. To establish the backward induction, we first provide the following Theorem,
which states that if V̂ r

t+1 uniformly approximates V r
t+1, then Û r

t uniformly approximates U r
t with

high probability, by a suitable choice Nt of number of samples drawn from Dt.

Theorem 3.6. Suppose we are given an empirical right derivative V̂ r
t+1 : R → R which uniformly

approximates V r
t+1. That is, for all xt+1 ∈ R, it holds that

∣∣∣V̂ r
t+1(xt+1)− V r

t+1(xt+1)
∣∣∣ ≤ γt, where γt

is a constant. Let d1
t , · · · , d

Nt
t be independent samples of Dt, where

Nt = max

(ht + bt)
2,

(
T∑

s=t+1

hs + bs

)2
 4

α2
t

log
4

δt
.

Then the empirical right derivative Û r
t (yt) = Ĉr

t (yt) + EV̂ r
t+1(yt − D̂t) uniformly approximates the

original right derivative U r
t with high probability. In particular, the following inequality holds:

P
[
For all yt,

∣∣∣Û r
t (yt)− U r

t (yt)
∣∣∣ ≤ γt + αt

]
≥ 1− δt.
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The proof of Theorem is provided in Appendix C. The proof involves the decomposition of Ut, Ût
according to (2.3), and crucially uses a Theorem of [Mas90], which provides us with a concentration
bound on U r

t (yt) that holds uniformly across all yt ∈ R.

Theorem 3.7 ([Mas90]). Let X1, · · · , XN be independent samples of the random variable X, where
N = 1

ε2
log 2

δ . Then we have

P

[
For all x,

∣∣∣∣∣ 1

N

N∑
i=1

1[x ≤ Xi]− P[x ≤ X]

∣∣∣∣∣ ≤ ε
]
≥ 1− δ.

�

Next, we demonstrate that if the empirical right derivative Û r
t uniformly approximates the

original right derivative U r
t , then V̂ r

t also uniformly approximates V r
t with the same additive error.

Theorem 3.8. Suppose for all yt, the inequality
∣∣∣Û r

t (yt)− U r
t (yt)

∣∣∣ ≤ ηt holds. Then we have∣∣∣V̂ r
t (xt)− V r

t (xt)
∣∣∣ ≤ ηt

for all xt ∈ R.

Theorem 3.8 is proven by considering different cases on R∗t and R̂t, and a careful analysis on the
dynamics of the capacitated inventory control problem in each case. In the analysis, we crucially
use the fact that R∗t , R̂t are the smallest minimizers of Ut, Ût respectively. The proof is provided in
Appendix D.

Altogether, Lemma 3.5 is proved by combining Theorem 3.6 and 3.8, and a suitable backward
induction argument. The proof is rather routine, and we defer the details to Appendix E. Finally,
Theorem 2.2 is proven by putting together Lemma 3.1 and Lemma 3.5, and applying the value

αt =
εmint∈{1,··· ,T} {min {ht, bt}}

6T 2
. (3.6)

Applying (3.6) to (3.5) in Lemma 3.5 recovers our choice of N1, · · · , NT (2.8) stated in Theorem
2.2. The choice of {αt}Tt=1 ensures that the numbers of samples N1, N2, · · · , NT stated in (2.8) are
sufficient for achieving (1 + ε)−optimality. The full proof of Theorem 2.2 based on the Lemmas are
found in Appendix F.

4 A Polynomial Time Approximation Scheme via Sparsification

The analysis in §3 shows that the data-driven capacitated inventory control problem is inforam-
tionally tractable, in the sense that a a set of near optimal base stocks (R̂1, · · · , R̂T ) for the original
problem can be constructed with a bounded number of samples. However, it does not show that
the problem is computationally tractable, i.e. can be solved in polynomial time. Indeed, by Lemma
2.3, there exists instances for which the SAA problem SAA(T ;N1, · · · , NT ) is computationally in-
tractable. Thus, in this Section, we propose a polynomial time algorithm approximation scheme,
Sample, which also returns a set of near optimal modified base stocks (R̃1, · · · , R̃T ) for the original
problem.
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Our polynomial time approximation scheme Sample(η,N1, · · · , NT ) is based a sparsification
procedure to the SAA Method. The parameter η > 0 is the accuracy parameter for the sparsification
procedure, which is crucial for ensuring Sample to terminate in polynomial time.

The algorithm Sample(η,N1, · · · , NT ) can be interpreted as follows. From line 1 to 2, the
empirical demand distributions are constructed. From line 4 to line 9, the algorithm constructs the
functions Ũ r

t and Ṽ r
t , which turn out to uniformly approximate the original right derivatives U r

t and
V r
t . This impliest the near-optimality of (R̃1, · · · , R̃T ) to the original problem. The sparsification

step in line 8 makes the algorithm different from the SAA method. In general we have Ṽ r
t 6= V̂ r

t ,
and Ũ r

t 6= Û r
t .

Algorithm 1 Algorithm Sample(η,N1, · · · , NT )

1: For each t ∈ {1, · · · , T}, draw Nt independent samples d1
t , · · · , d

Nt
t from Dt.

2: Construct the empirical distribution D̂t:

P[D̂t = d] =

∑Nt
i=1 1[d = dit]

Nt
.

3: Define Ṽ r
T+1(x) = 0 for all x.

4: for t = T, · · · , 1 do
5: Construct the right derivative function Ũ r

t (yt) = Ĉr
t (yt) + EṼ r

t+1(yt − D̂t).

6: By a binary search on the break points of Ũ r
t , compute the smallest R̃t ∈ R such that

Ũ r
t (R̃t) ≥ 0.

7: Construct the following right derivative function ˆ̃V r
t : R→ [−

∑T
s=t bs,

∑T
s=t hs]

ˆ̃V r
t (xt) =


Ũ r
t (xt +Bt) if xt ∈ (−∞, R̃t −Bt)

0 if xt ∈ [R̃t −Bt, R̃t)
Ũ r
t (xt) if xt ∈ [R̃t,∞)

.

8: (Sparsification) Now, for each xt, define

Ṽ r
t (xt) = ηb1

η
ˆ̃V r
t (xt)c.

9: end for
10: Return the base stocks (R̃1, · · · , R̃T ).

In line 5, the algorithm construct the functions Ũ r
t based on the empirical right derivative Ĉr

t as
well as the function Ṽ r

t+1, which serves as a tractable uniform approximation to the original right

derivative V r
t+1. In line 6, we compute the smallest minimizer R̃t of Ũ r

t . As demonstrated proof of

Lemma 4.1 (Appendix G), R̃t is one of the break points of Ũ r
t , and R̃t can be found in polynomial

time.
In line 7, the algorithm computes the function ˆ̃V r

t . While the function ˆ̃V r
t is a candidate for

an approximation to the original right derivative V r
t , we cannot use ˆ̃V r

t to construct Ũ r
t−1 in the

next iteration, since in doing so the number of breakpoints in the subsequent step functions will
grow exponentially in T − t. This is further discussed in the proof of Lemma 4.1. Thus, in line 8,
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we introduce a sparsification procedure to prevent the number of breakpoints in the step functions
from increasing too rapidly. The sparsification step for period t can be interpreted as follows. First,

we overlay the grid {ηz : z ∈ Z} onto the range [−
∑T

s=t bs,
∑T

s=t hs] of ˆ̃V r
t . Next, for each xt, we

define the value of Ṽ r
t (xt) to be the closest grid point to ˆ̃V r

t (xt) from below. That is,

Ṽ r
t (xt) ∈ {ηz : z ∈ Z} ∩

[
−

T∑
s=t

bs,
T∑
s=t

hs

]
, 0 ≤ ˆ̃V r

t (xt)− Ṽ r
t (xt) < η for all xt.

This rounding down procedure keeps the number of breakpoints in control while maintaining a

uniform approximation to ˆ̃V r
t (hence also a uniform approximation to V r

t ), as proven in Lemma 4.1
and Theorem 4.2.

We remark that if the sparsification step is removed from Sample(η,N1, · · · , NT ), the algorithm
is equivalent to the SAA method, which solves the empirical problem to optimality. Nevertheless,
by having the sparsification step, we argue that the algorithm Sample(η,N1, · · · , NT ) is efficient,
while the performance guarantee is only slightly worse than the SAA method (with the same number
of samples).

We now proceed to the analysis of Sample(η,N1, · · · , NT ). We first demonstrate in Lemma 4.1
that it has a polynomial running time by proving that the functions Ũ r

t , Ṽ
r
t (hence also the output

(R̃1, · · · , R̃T )) can be constructed efficiently.

Lemma 4.1. The algorithm Sample(η,N1, · · · , NT ) has running time polynomial in the parameters(
N1, · · · , NT , T,

∑T
s=1 hs+bs

η , log dmax, log c∗
)

, where dmax is the maximum value of drawn sample,

and c∗ = maxt=1,··· ,T max{bt, ht}.

The Lemma is proven in Appendix G. The analysis in the proof shows that, by the sparsification

procedure, we have sparsify ˆ̃V r
t , which has O(Nt

∑T
s=t+1 hs+bs

η ) break points, to a simpler function

Ṽ r
t , which has only O(

∑T
s=t hs+bs

η ) break points. This prevents the number of breakpoints in the

step functions Ũ r
t , Ṽ

r
t from growing exponentially in T − t as we proceed from t = T to t = 1, which

was the case when we solve the sample average problem exactly.
Next, we establish in Theorem 4.2 the performance guarantee of the algorithm, by proving

that Ũ r
t , Ṽ

r
t uniformly approximate the original right derivatives U r

t , V
r
t via a backward induction

on t. This justifies the use of Ũ r
t , Ṽ

r
t in place of Û r

t , V̂
r
t , where the former guarantees the uniform

approximations on the origin right derivative while maintaining an efficient run time, unlike the
latter.

Theorem 4.2. For t = 1, · · · , T , let

Nt = max

(ht + bt)
2,

(
T∑

s=t+1

hs + bs

)2
 4

α2
t

log
4T

δ
,

where αt is as defined in (3.6). Let

η = α1 =
εmint∈{1,··· ,T} {min {ht, bt}}

6T 2
. (4.1)
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With probability at least 1−δ, the algorithm Sample(η,N1, · · · , NT ) returns a set of (1+2ε)-optimal
base stock (R̃1, · · · , R̃T ).

The proof of Theorem 4.2 can be found in Appendix H. The proof shares some similarity with
the proof of Lemma 3.5. However, in the proof for the Theorem, we need to take into account the
sparsification step, and the proof essentially argue that the sparsification does not affect the uniform
approximation on the right derivatives of the cost-to-go functions for the original DP. Altogether,
Lemma 4.1 and Theorem 4.2 respectively establish the computational efficiency and performance
guarantee of Sample, hence establishing Theorem 2.4.

5 Insights for the Hardness Results

In this Section, we provide insight into the proofs of Lemma 2.3 and Theorem 2.5. Lemma 2.3 and
Theorem 2.5 respectively assert the computational and information theoretic hardness of the data
driven capacitated inventory control problem. They complement our analysis on the SAA method
in §3, as well as the design and analysis of our algorithm Sample in §4.

Lemma 2.3 asserts that the SAA problem is #P−hard. We first review the notion of #P−hardness
in Appendix I, and then provide the proof for Lemma 2.3 in Appendix J. Lemma 2.3 is proved by
reducing the data-driven capacitated inventory control problem to the Kth largest subset problem,
which is #P-hard. The Kth largest subset problem is stated as follows:

Kth largest subset problem: We are given a list of T positive integers {at}Tt=1, an integer
capacity R, and an integer 1 ≤ K ≤ 2T . The objective is to decide whether the assertion∣∣∣∣∣

{
S ⊂ {1, · · · , T} :

∑
t∈S

at ≤ R

}∣∣∣∣∣ ≥ K (5.1)

is true.

The Kth largest subset problem is demonstrated to be #P−hard in [GJ79] (see SP20 on page
225 in the reference). The problem is also used in [HKM+09] to show that the inventory control
problem under oracle access to the cumulative distribution functions of the random demands is
#P−hard.

Next, we discuss the proof for Theorem 2.5, which is provided in Appendix K. The Theorem
provides a lower bound on the number of samples necessary for solving the data-driven newsvendor
problem to near optimality, for any level of pre-specified confidence probability. The basic idea of
the proof is to reduce the data-driven optimization problem to a statistical classification problem.

More precisely, suppose we have an algorithm A that returns a (1 + ε/20)-optimal base stock
for the data-driven newsvendor problem using m samples, under any demand distribution, with
probability 0.999. Then, A still returns a (1 + ε/20)-optimal base stock when it is provided with m
samples from demand distributions D1 or D2. Here, D1 and D2 are designed such that they have
disjoint sets of (1 + ε/20)−optimal base stocks, but D1, D2 are statistically far apart.

Now, consider the following statistical classification problem. We are given m i.i.d. samples,
and we are told that these samples are either from D1 or D2 (we know the cdfs of D1, D2). The
problem is: can we correctly identify if these samples are from D1 or D2 with probability 0.999?
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On one hand, we can identify the distribution as follows. We first run A on the m samples, which
returns a base stock R. If R belongs to the set of (1+ ε/20)−optimal base stocks for D1, we declare
that the data is from D1; otherwise, we declare that the data is from D2. By the disjointness of the
sets of optimal base stocks, the decision rule is well defined. Importantly, by the near optimality
of A, the decision rule is correct with probabiltiy 0.999. On the other hand, we use the statistical
closeness of D1, D2 to argue that, in order to differentiate between D1, D2 with probability 0.999,
the number of samples m must be bounded from below. This establishes the required lower bound.

6 Simulation Results

In this Section, we compare our theoretical results on the performance of Algorithm Sample with
simulation results. We consider three families of 5 period capacitated inventory control problems.
In all these problems, the starting inventory in period 1 is zero, i.e. x1 = 0; the unit holding cost is
set to be ht = h = 1 while we vary the unit backlog cost bt = b = 1, 5, or 9. Finally, the capacities
are set to be B1 = B2 = B3 = 1.4× 104, and B4 = B5 = 1.6× 104 respectively.

Each problem family has a fixed set of discrete underlying random demand distributions. The
set of demand distributions associated with each family is listed below:

1. The first family (U): D1, D2, D3 are distributed as U[0, 3 × 104], D4, D5 are distributed as
U[2.5× 104, 5× 104].

2. The second family (P): D1, D2, D3 are distributed as Poisson(1.5×104), D4, D5 are distributed
as Poisson(3.75× 104).

3. The third family (B): D1, D2 are distributed as U[0, 3×104], D3 is distributed as Poisson(1.5×
104), D4, D5 are distributed as Poisson(3.75× 104).

The number of samples drawn from the demand in each period is 5× 104, namely Nt = 5× 104 for
t = 1, · · · , 5.

For each family and each choice of unit backlog cost b, we compute the theoretical relative ratio,
which is the performance ratio predicted by our analysis, as well as the simulated relative ratio,
which is the performance ratio associated with the simulation.

The theoretical relative ratio is an upper bound on the ratio

ECost1(0, R̂1, · · · , R̂5)

Cost1(0, R∗1, · · · , R∗5)
(6.1)

predicted by our analysis. Recall that the notation Cost1(0, R1, · · · , R5), which is defined in Section
5.3, denotes the expected cost under policy (R1, · · · , R5) when the starting inventory level x1 in
period 1 is zero. The numerator is the expected cost under the empirical policy (R̂1, · · · , R̂5)
returned by the SAA method using Nt = 5 × 104 samples for all t. The denominator is the
expected cost under the optimal policy (R∗1, · · · , R∗5).

While Theorem 2.2 implies an upper bound on the relative error (1 + ε) for any given choice of
{Nt}Tt=1, our analysis in fact implies a stronger bound. (The Theorem states a weaker bound for
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b Simulated Rel Ratio Theoretical Relative Ratio

U P B -

1 1.0060 1.0009 1.0081 2.1019

5 1.0147 1.0007 1.0312 6.3634

9 1.0165 1.0008 1.0268 14.7103

Table 1: Simulated and Theoretical Relative Ratios.

the sake of clarity.) By a more careful analysis, we have the following stronger bound

ECost1(0, R̂1, · · · , R̂5)

Cost1(0, R∗1, · · · , R∗5)
≤

5∏
t=1

(
1 +

3(b+ 1)(5− t+ 1) max{1, 5− t}√
50000

√
log 2000

)
. (6.2)

We use the bound at the right hand side of (6.2) as the theoretical relative ratio, for each choice of
unit backlog cost b. Note that the bound is independent of the choice of the underlying distribution.

The simulated relative ratio is defined as:

Ĉost1(0, R̂Sam1 , · · · , R̂Sam5 )

Cost1(0, R∗1, · · · , R∗5)
.

The empirical policy (R̂Sam1 , · · · , R̂Sam5 ) is computed using Algorithm Sample defined in §4, with
accuracy parameter η = 0.001. For each period t, Nt = 5 × 104 samples are drawn from Dt.
The numerator Ĉost1(0, R̂1, · · · , R̂5) is the cost under the empirical policy, averaged over 104 ran-
dom realizations of (D1, · · · , D5). The denominator is the expected cost under the optimal policy
(R∗1, · · · , R∗5), which is the same as the denominator in (6.1).

Table 1 shows the simulated and theoretical relative ratios of the families U, P and B under
different choices of unit backlog cost b. The table suggests that Algorithm Sample has good perfor-
mance in simulation. In general, the relative ratios in simulations are lower than their counterparts
predicted by our analysis, implying that the theoretical bounds are quite conservative. This is
primarily due to the looseness in our analysis, especially in Claim 3.2 and Lemma 3.4.

Levi et al. [LPU15] also report that the performance of the SAA method on the data-driven
newsvendor problem is significantly better in simulation than predicted by the analysis in [LRS07].
[LPU15] provides the following explanation for the difference between theoretical and empirical
performance. While [LRS07] draw sufficiently many samples to ensure an accurate estimation
on the subgradient of the newsvendor cost function (which implies the near optimality of the
empirical base stock), [LPU15] argue that such an accurate estimation may not be always necessary.
Instead, [LPU15] correct this conservatism by directly approximating the set of (1 + ε)−optimal
base stocks through the second-order Taylor series expansion on the newsvendor cost function. This
results in a sample bound that depends on a distribution parameter. Through extensive simulation
experiments, it is demonstrated in [LPU15] that the performance predicted by the second-order
approach by [LPU15] is often much closer to the performance in simulation than the performance
predicted by [LRS07]. It is interesting to see if the approach by [LPU15] can be extended to our
setting.

Another possible reason for the discrepancy is that our analysis of the SAA method needs to
be valid for any demand distribution with finite mean. In particular, we do not assume that the
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demand distributions belong to any parametric family or even have bounded support. This leads
to a more conservative bound, which could have been tighter using additional properties about the
underlying demand distributions, on the theoretical performance ratio.

7 Conclusion

In this paper, we considered the capacitated inventory control problem in a data-driven setting. It is
shown that with polynomially many samples, the Sample Average Approximation method outputs
a near optimal policy with high probability. Nevertheless, solving the underlying SAA problem is
computationally intractable, which motivates us to design a polynomial time approximation scheme
by modifying the SAA method.

Altogether, our work and the paper [LRS07] demonstrate the tractability of certain class of
multi-stage data driven stochastic optimization problems. This is in contrast to [SN05] which
argues that in full generality these problems are intractable. We hope that our approach can be
generalized to a broader class of dynamic programming problem. However, the major obstacles
are the transformation from first order approximation to zero order approximation (cf. Claim 3.2),
which seems to only hold in inventory related problems, as well as the validity of Lemma 3.4,
Theorem 3.8 in other dynamic programming models. Another interesting direction is to investigate
if the machinery in [LPU15] can be used to improve the sample bound in Theorem 2.2, since the
sample bounds in Theorem 2.2, 2.4 are found to be too conservative in our simulation.
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A Proof of Claim 3.2

We apply Lemma 3.3 to prove the claim. First, recall that Ut is a convex function. Now, we claim
that there exists s ∈ ∂Ut(R̂t) such that |s| ≤ η, where ∂Ut(R̂t) is the set of subgradients of Ut at
R̂t. By the assumption in the theorem, we know that∣∣∣Û r

t (R̂t)− U r
t (R̂t)

∣∣∣ ≤ η.
Now, by the convexity of Ut, we know that for all y ∈ R, we have limy↑x U

r
t (y) = U l

t(x). By applying

the assumption of the Theorem on an increasing sequence that converges to R̂t, we also have∣∣∣Û l
t(R̂t)− U l

t(R̂t)
∣∣∣ ≤ η.

Now, by the definition of R̂, we know that 0 ∈ [Û l
t(R̂t), Û

r
t (R̂t)]. But this implies that there exists

a number s such that |s| ≤ η and s ∈ [U l
t(R̂t), U

r
t (R̂t)] = ∂Ut(R̂t), which proves the the existence

of such a subgradient.
Finally, note that Ut(yt) ≥ ht(yt − E[Dt])

+ + bt(E[Dt]− yt)+, thus applying by Lemma 3.3 we
have

Ut(R̂t) ≤
(

1 +
3η

min{bt, ht}

)
Ut(R

∗
t ),

which proves the claim. �

B Proof of Lemma 3.4

First, by the definition of a modified base stock policy, the following equation holds:

Costt(xt;Rt, · · · , RT ) =
E [Ct(xt +Bt −Dt) + Costt+1(xt +Bt −Dt;Rt+1, · · · , RT )] if xt ∈ (−∞, Rt −Bt]
E
[
Ct(R̂t −Dt) + Costt+1(Rt −Dt;Rt+1, · · · , RT )

]
if xt ∈ (Rt −Bt, Rt]

E [Ct(xt −Dt) + Costt+1(xt −Dt;Rt+1, · · · , RT )] if xt ∈ (Rt,∞)

. (B.1)

Next, we will prove by a backward induction from t = T to t = 1 that, for all starting inventory
level xt in period t the following inequality holds:

Costt(xt;Rt, · · · , RT ) ≤

(
1 +

T∑
s=t

εs

)
Costt(xt;R

∗
t , · · · , R∗T ) =

(
1 +

T∑
s=t

εs

)
Vt(xt). (B.2)
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Now, suppose (B.2) holds for period t + 1, and we will prove that (B.2) is also true for period t.
First, we know that for all yt ∈ R,

ECt(yt −Dt) + ECostt+1(yt −Dt;Rt+1, · · · , RT )

≤ECt(yt −Dt) +

(
1 +

T∑
s=t+1

εs

)
ECostt+1(yt −Dt;R

∗
t+1, · · · , R∗T )

≤

(
1 +

T∑
s=t+1

εs

)(
ECt(yt −Dt) + ECostt+1(yt −Dt;R

∗
t+1, · · · , R∗T )

)
=

(
1 +

T∑
s=t+1

εs

)
Ut(yt).

Thus, by (B.1), the following inequality holds:

Costt(xt;Rt, · · · , RT ) ≤


(

1 +
∑T

s=t+1 εs

)
Ut(xt +Bt) if xt ∈ (−∞, Rt −Bt](

1 +
∑T

s=t+1 εs

)
Ut(Rt) if xt ∈ (Rt −Bt, Rt](

1 +
∑T

s=t+1 εs

)
Ut(xt) if xt ∈ (Rt,∞)

. (B.3)

To prove the induction claim (B.2), we first note that by our assumption on ε1, · · · , εT , the
following holds for all t ∈ {1, · · · , T − 1}:(

1 +
T∑

s=t+1

εs

)
Ut(Rt) ≤

(
1 +

T∑
s=t+1

εs

)(
1 +

εt
2

)
Ut(R

∗
t ) ≤

(
1 +

T∑
s=t

εs

)
Ut(R

∗
t )

Now, consider the following two cases:

1. Case 1: We have Rt < R∗t . We further consider the following 4 subcases:

(a) We have xt ≤ Rt −Bt. Then we also have xt ≤ R∗t −Bt. Therefore,

Costt(xt;Rt, · · · , RT ) ≤

(
1 +

T∑
s=t+1

εs

)
Ut(xt+Bt) =

(
1 +

T∑
s=t+1

εs

)
Vt(xt) ≤

(
1 +

T∑
s=t

εs

)
Vt(xt).

(b) We have Rt −Bt < xt ≤ Rt. Then we have

Costt(xt;Rt, · · · , RT ) ≤

(
1 +

T∑
s=t+1

εs

)
Ut(Rt) ≤

(
1 +

T∑
s=t

εs

)
Ut(R

∗
t ) ≤

(
1 +

T∑
s=t

εs

)
Vt(xt).

24



(c) We have Rt < xt ≤ R∗t . Then we have

Costt(xt;Rt, · · · , RT ) ≤

(
1 +

T∑
s=t+1

εs

)
Ut(xt)

(†)
≤

(
1 +

T∑
s=t+1

εs

)
Ut(Rt) ≤

(
1 +

T∑
s=t

εs

)
Ut(R

∗
t ) ≤

(
1 +

T∑
s=t

εs

)
Vt(xt),

where (†) holds since we know that Ut(Rt) ≤ Ut(xt) ≤ Ut(R∗t ) by the convexity of Ut.

(d) We have R∗t < xt. Then we also have Rt < xt. Thus,

Costt(xt;Rt, · · · , RT ) ≤

(
1 +

T∑
s=t+1

εs

)
Ut(xt) =

(
1 +

T∑
s=t+1

εs

)
Vt(xt) ≤

(
1 +

T∑
s=t

εs

)
Vt(xt).

2. Case 2: We have Rt > R∗t . We further consider the following 4 subcases:

(a) We have xt ≤ R∗t −Bt. Then we also have xt ≤ Rt − Bt, and the induction claim (B.2)
holds true by the same reasoning as in Subcase (a) in Case 1.

(b) We have R∗t −Bt < xt ≤ Rt −Bt. Then we have,

Costt(xt;Rt, · · · , RT ) ≤

(
1 +

T∑
s=t+1

εs

)
Ut(xt +Bt)

(‡)
≤

(
1 +

T∑
s=t+1

εs

)
Ut(Rt) ≤

(
1 +

T∑
s=t

εs

)
Ut(R

∗
t ) ≤

(
1 +

T∑
s=t

εs

)
Vt(xt),

where in (‡) we know that Ut(xt + Bt) ≤ Ut(Rt), since the subcase assumption clearly
implies that R∗t < xt +Bt ≤ Rt, and Ut is convex.

(c) We have Rt −Bt < xt ≤ Rt. This is identical to Subcase (b) in Case 1, therefore the
induction claim (B.2) is still true.

(d) We have Rt < xt. Then we also have R∗t < xt, and the induction claim (B.2) holds true
by the same reasoning as in Subcase (d) in Case 1.

Altogether, we have established the induction claim (B.2), which proves the Lemma. �

C Proof of Theorem 3.6
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By applying triangle inequality twice, we know that∣∣∣Û r
t (yt)− U r

t (yt)
∣∣∣

≤
∣∣∣Ĉr

t (yt)− Cr
t (yt)

∣∣∣+
∣∣∣EV̂ r

t+1(yt − D̂t)− EV r
t+1(yt −Dt)

∣∣∣
≤
∣∣∣Ĉr

t (yt)− Cr
t (yt)

∣∣∣︸ ︷︷ ︸
(a)

+
∣∣∣EV̂ r

t+1(yt − D̂t)− EV̂ r
t+1(yt −Dt)

∣∣∣︸ ︷︷ ︸
(b)

+
∣∣∣EV̂ r

t+1(yt −Dt)− EV r
t+1(yt −Dt)

∣∣∣︸ ︷︷ ︸
(c)

.

First, we analyze the first term (a). By the definitions of Ĉr
t (yt), C

r
t (yt) in (3.4), we assert the

following equality:∣∣∣Ĉr
t (yt)− Cr

t (yt)
∣∣∣

=

∣∣∣∣∣
{
−bt + (ht + bt)

1

Nt

Nt∑
i=1

1(dit ≤ yt)

}
− {−bt + (ht + bt) Pr[Dt ≤ yt]}

∣∣∣∣∣
=(ht + bt)

∣∣∣∣∣ 1

Nt

Nt∑
i=1

1(dit ≤ yt)− Pr[Dt ≤ yt]

∣∣∣∣∣ .
Thus, by invoking Massart’s Theorem and our choice of Nt, we have

P
[∣∣∣Ĉrt (yt)− Crt (yt)

∣∣∣ ≤ αt
2

]
≥ 1− 2 exp

[
− α2

t

4(ht + bt)2
Nt

]
≥ 1− δt

4
.

Next, we analyze the second term (b). As remarked previously, the empirical right derivative
V̂ r
t+1 is a step function with range [−

∑T
s=t+1 bs,

∑T
s=t+1 hs], and it has finitely many break points.

Let’s denote

V̂ r
t+1(y) =

M−1∑
j=0

`j1(βj ≤ y < βj+1),

where β1 < · · · < βM−1 are the breakpoints of V̂ r
t+1(y), and for notational convenience we define

β0 = −∞, βM = ∞. Note that `0 = −
∑T

s=t+1 bs, and `M−1 =
∑T

s=t+1 hs. Thus, the second term
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can be bounded as follows:

(b) =

∣∣∣∣∣∣
M−1∑
j=0

`j

(
1

Nt

Nt∑
i=1

1(βj ≤ y − dit < βj+1)− P[βj ≤ y −Dt < βj+1]

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
M−1∑
j=0

`j

(
1

Nt

Nt∑
i=1

(
1(dti ≤ y − βj)− 1(dit ≤ y − βj+1)

)
− (P[Dt ≤ y − βj ]− P[Dt ≤ y − βj+1])

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
M−2∑
j=0

(`j+1 − `j)

(
1

Nt

Nt∑
i=1

1(dit ≤ y − βj+1)− P[Dt ≤ y − βj+1]

)∣∣∣∣∣∣
≤

M−2∑
j=0

`j+1 − `j

 sup
y∈R

∣∣∣∣∣ 1

Nt

Nt∑
i=1

1(dit ≤ y)− P[Dt ≤ y]

∣∣∣∣∣
=

(
T∑

s=t+1

hs + bs

)
sup
y∈R

∣∣∣∣∣ 1

Nt

Nt∑
i=1

1(dit ≤ y)− P[Dt ≤ y]

∣∣∣∣∣ .
By applying Massart’s Theorem, the second term satisfies the following probability bound:

P
[
(b) ≤ αt

2

]
≥ P

sup
y∈R

∣∣∣∣∣ 1

Nt

Nt∑
i=1

1(dit ≤ y)− P[Dt ≤ y]

∣∣∣∣∣ ≤ αt

2
(∑T

s=t+1 hs + bs

)


≥ 1− exp

− α2
t

4
(∑T

s=t+1 hs + bs

)2Nt

 ≥ 1− δt
4
,

where the last inequality holds by our choice of Nt.
Lastly, for the analysis of the third term (c), by the Theorem’s assumption we know that∣∣∣EV̂ r
t+1(yt −Dt)− EV r

t+1(yt −Dt)
∣∣∣ ≤ γt with probability 1.

Altogether, we have the following guarantee for the right derivatives, which prove the Theorem:

P
[
For all yt,

∣∣∣Û r
t (yt)− U r

t (yt)
∣∣∣ ≤ γt + αt

]
≥ P

[
For all yt, (a) ≤ αt

2
, (b) ≤ αt

2
, (c) ≤ γt

]
≥ 1−δt/2.

�

D Proof of Theorem 3.8

First, recall the definitions that R∗t , R̂t are the smallest minimizers of Ut(yt), Ût(yt) respectively.
This implies that U r

t (yt) < 0 for all yt < R∗t , and U r
t (yt) ≥ 0 for all yt ≥ R∗t . Similar inequalities

hold for the empirical counterpart. In the following, we will repeatedly recall the right derivatives
V r
t , V̂

r
t in terms of U r

t , Û
r
t in (3.2), (3.3). Consider the following 4 cases on R∗t , R̂t:

1. Case 1: We have R̂t ≤ R∗t −Bt. We further consider the subcases (a) to (e) as depicted here.
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(e) (d) (c) (b) (a)

R̂t −Bt R∗t −BtR̂t R∗t

(a) We have R∗t ≤ xt. Then we have V r
t (xt) = U r

t (xt) and V̂ r
t (xt) = Û r

t (xt). Therefore∣∣∣V̂ r
t (xt)− V r

t (xt)
∣∣∣ =

∣∣∣Û r
t (xt)− U r

t (xt)
∣∣∣ .

(b) We have R∗t −Bt ≤ xt < R∗t . Then we have V r
t (xt) = 0 > U r

t (xt), and V̂ r
t (xt) = Û r

t (xt) ≥
0. Thus∣∣∣V̂ r

t (xt)− V r
t (xt)

∣∣∣ = V̂ r
t (xt)− V r

t (xt) ≤ Û r
t (xt)− U r

t (xt) =
∣∣∣Û r

t (xt)− U r
t (xt)

∣∣∣ .
(c) We have R̂t ≤ xt < R∗t − Bt. On one hand, we know that V r

t (xt) = U r
t (xt + Bt). Since

xt ≤ xt + Bt < R∗t , by the convexity of Ut, we have U r
t (xt) ≤ U r

t (xt + Bt) < 0. On the
other hand, we know that V̂ r

t (xt) = Û r
t (xt) ≥ 0. Therefore,∣∣∣V̂ r

t (xt)− V r
t (xt)

∣∣∣ = V̂ r
t (xt)−V r

t (xt) = Û r
t (xt)−U r

t (xt+Bt) ≤ Û r
t (xt)−U r

t (xt) =
∣∣∣Û r

t (xt)− U r
t (xt)

∣∣∣ .
(d) We have R̂t − Bt ≤ xt < R̂t. Then V r

t (xt) = U r
t (xt + Bt) ≤ U r

t (Rt) ≤ 0, and V̂ r
t (xt) =

0 ≤ Û r
t (xt +Bt). Therefore∣∣∣V̂ r

t (xt)− V r
t (xt)

∣∣∣ = V̂ r
t (xt)−V r

t (xt) ≤ Û r
t (xt+Bt)−U r

t (xt+Bt) ≤
∣∣∣Û r

t (xt +Bt)− U r
t (xt +Bt)

∣∣∣ ≤ ηt.
(e) We have xt ≤ R̂t−Bt. Then V r

t (xt) = U r
t (xt +Bt) and V̂ r

t (xt) = Û r
t (xt +Bt). Therefore∣∣∣V̂ r

t (xt)− V r
t (xt)

∣∣∣ =
∣∣∣Û r

t (xt +Bt)− U r
t (xt +Bt)

∣∣∣ ≤ ηt.
2. Case 2: We have R∗t −Bt < R̂t ≤ R∗t . We further consider the subcases (a) to (e) as depicted

(e) (d) (c) (b) (a)

R̂t −Bt R
∗
t −Bt R̂t R∗t

in here. Note that the proofs for subcases (a) and (e) are identical to those in case 1, thus
we focus on proving the bound for subcases (b), (c) and (d):

(a) Same as (a) in case 1.

(b) We have R̂t ≤ xt < R∗t . Then V r
t (xt) = 0 ≥ U r

t (xt), and V̂ r
t (xt) = Û r

t (xt) ≥ 0. Therefore∣∣∣V̂ r
t (xt)− V r

t (xt)
∣∣∣ = V̂ r

t (xt)− V r
t (xt) ≤ Û r

t (xt)− U r
t (xt) =

∣∣∣Û r
t (xt)− U r

t (xt)
∣∣∣ .

(c) We have R∗t −Bt ≤ xt < R̂t. Then V r
t (xt) = 0 = V̂ r

t (xt).
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(d) We have R̂t − Bt ≤ xt < R∗t − Bt. Then V r
t (xt) = U r

t (xt + Bt) < 0, and V̂ r
t (xt) = 0 ≤

Û r
t (xt +Bt). Therefore∣∣∣V̂ r
t (xt)− V r

t (xt)
∣∣∣ = V̂ r

t (xt)−V r
t (xt) ≤ Û r

t (xt+Bt)−U r
t (xt+Bt) ≤

∣∣∣Û r
t (xt +Bt)− U r

t (xt +Bt)
∣∣∣ ≤ ηt.

(e) Same as (e) in case 1.

3. Case 3: We have R̂t −Bt ≤ Rt ≤ R̂t. Then we can prove this case by interchanging Rt and
R̂t in Case 2.

4. Case 4: We have Rt < R̂t −Bt. Then we can prove this case by interchanging Rt and R̂t in
Case 1.

Finally, we note that the same approximation guarantees can be shown for the left derivatives.
Altogether we have considered all the cases on Rt, R̂t, and the Theorem is proven. �

E Proof of Lemma 3.5

For a period t, we say that
{
Û r
s , V̂

r
s

}T
s=t

is {αs}Ts=t-good if for all s ∈ {t, · · · , T}, the followings

hold simultaneously:

∣∣∣U r
s(ys)− Û r

s(ys)
∣∣∣ ≤ T∑

r=s

αr ∀ys ∈ R,
∣∣∣V r
s (xs)− V̂ r

s (xs)
∣∣∣ ≤ T∑

r=s

αr ∀xs ∈ R.

Now, we have

P

[
For all t and y,

∣∣∣U r
t (y)− Û r

t (y)
∣∣∣ ≤ T∑

s=t

αs

]

≥P
[{
Û r
s , V̂

r
s

}T
s=1

is {αs}Ts=1-good

]
=

T∏
t=1

P
[{
Û r
s , V̂

r
s

}T
s=t

is {αs}Ts=t-good

∣∣∣∣{Û r
s , V̂

r
s

}T
s=t+1

is {αs}Ts=t+1-good

]
.

By Theorem 3.6, conditioned on the event that
{
Û r
s , V̂

r
s

}T
s=t+1

is {αs}Ts=t+1-good, we have

P

[
For all yt,

∣∣∣Û r
t (yt)− U r

t (yt)
∣∣∣ ≤ αt +

T∑
s=t+1

αs |
{
Û r
s , V̂

r
s

}T
s=t+1

is {αs}Ts=t+1 − good

]
≥ 1− δ

T
.

Next, by Theorem 3.8, we know that if
∣∣∣Û r

t (yt)− U r
t (yt)

∣∣∣ ≤ ∑T
s=t αs holds for all yt ∈ R, then∣∣∣V̂ r

t (xt)− V r
t (xt)

∣∣∣ ≤ ∑T
s=t αs holds for all xt ∈ R with probability 1. Altogether, this shows that
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for all t

P
[{
Û r
s , V̂

r
s

}T
s=t

is {αs}Ts=t-good

∣∣∣∣{Û r
s , V̂

r
s

}T
s=t+1

is {αs}Ts=t+1-good

]
≥ 1− δ

T

and thus P
[
For all t and y,

∣∣∣U r
t (y)− Û r

t (y)
∣∣∣ ≤∑T

s=t αs

]
≥ 1− δ. �

F Proof of Theorem 2.2

For each t = 1, · · · , T , recall our choice

αt =
εmint∈{1,··· ,T} {min {ht, bt}}

6T 2

in (3.6). The following holds:

P
[
(R̂1, · · · , R̂T ) is a (1 + ε)-optimal modified base stock policy

]
≥P
[
For all t and y,

∣∣∣U r
t (y)− Û r

t (y)
∣∣∣ ≤ εmint∈{1,·,T}{min{ht, bt}}

6T

]
(F.1)

≥P

[
For all t and y,

∣∣∣U r
t (y)− Û r

t (y)
∣∣∣ ≤ T∑

s=t

αs

]
≥1− δ. (F.2)

Step (F.1) is by Lemma 3.1, with ηt =
εmint∈{1,·,T}{min{ht,bt}}

6T . Step (F.2) is by our choice of Nt, cf.
(2.8, 3.5). Altogether, Theorem 2.2 is established. �

G Proof of Lemma 4.1

We first note that Ũ r
t , Ṽ

r
t are non-decreasing step functions. Next, we will prove the following

additional properties:

• Ũ r
t has at most O

(
Nt

∑T
s=t+1 hs+bs

η

)
break points,

• Given an explicit expression for Ṽ r
t+1, Ũ r

t can be constructed in time

O

(
N2
t

∑T
s=t+1 hs + bs

η

(
log

Nt
∑T

s=t+1 hs + bs

η

)
log dmaxc

∗

)
,

• Given an explicit expression for Ũ r
t , Ṽ

r
t can be constructed in timeO

(
Nt

∑T
s=t+1 hs+bs

η log dmaxc
∗
)

,

• Ṽ r
t has at most O

(∑T
s=t hs+bs

η

)
break points,
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by a backward induction on t. Recall that dmax is the maximum value of the samples drawn, and
c∗ = maxt=1,··· ,T max{ht, bt}.

First, this is clearly true for t = T + 1, since Ṽ r
T+1 = 0. Now, suppose that it is true for Ṽ r

t+1,

we will show that the induction claim is also true for Ũ r
t .

To prove the induction claims for Ũ r
t , we will describe in details how Ũ r

t is constructed, given
the samples d1

t , · · · , d
Nt
t from Dt as well as an explicit expression for the step function Ṽ r

t+1. By
the induction hypothesis for t+ 1, we are given the explicit expression

Ṽ r
t+1(x) =

M−1∑
j=0

`j1(βj ≤ x < βj+1),

where β1 < · · · < βM−1 are the breakpoints of Ṽ r
t+1(x). For notational convenience we define

β0 = −∞, βM = ∞. In addition, by the hypothesis we know that M = O

(∑T
s=t+1 hs+bs

η

)
, and

`0 < `1 < · · · , < `M−1.
Recall from line 5 of Sample(η,N1, · · · , NT ) that Ũ r

t is defined as follows:

Ũ r
t (yt) = −bt + (ht + bt)

(
1

Nt

Nt∑
i=1

1(yt ≤ dti)

)
+

1

Nt

Nt∑
i=1

Ṽ r
t+1(yt − dti).

This implies that Ũ r
t (yt) has breakpoints

{
dti
}Nt

i=1
∪
{
dti + βj

}Nt,M−1

i=1,j=1
. Hence, this demonstrates the

upper bound O

(
Nt

∑T
s=t+1 hs+bs

η

)
on the number of breakpoints of Ũ r

t .

Now, we also argue that an explicit expression of the step function Ũ r
t (yt) can be constructed

with the stated running time. First, sort the breakpoints of Ũ r
t in the increasing order p1, · · · , pN ,

where we denote N as the number of breakpoints of Ũ r
t . Next, we take a sequence of N + 1 points

q1, · · · , qN+1 that sandwiches the breakpoints of Ũ r
t , i.e. q1 < p1 < q2 < · · · < pN < qN+1. We

know that Ũ r
t can be explicitly expressed as follows:

Ũ r
t (y) =

N+1∑
j=0

Ũ r
t (qj)1(pj ≤ y < pj+1),

where p0 = −∞ and pN+1 =∞. Thus, to attain an explicit expression of Ũ r
t , it suffices to evaluate

the function Ũt(yt) at the N + 1 points q1, · · · , qN+1. These N + 1 evaluations require the com-
putations of {Cr

t (qj)}
N+1
j=1 , as well as the computations of Ṽ r

t+1(qj − d1
t ), · · · , Ṽ r

t+1(qj − dNt
t ). The

computations for Cr
t can be done by fist sorting d1

t , · · · , d
Nt
t , which takes time O(Nt logNt log dmax)

(there are O(Nt logNt) comparisons, and each takes O(log dmax)), follows by the (N + 1) evalua-
tions of Cr

t , which takes time O(N logNt(log dmax + log c∗)). Thus, for Cr
t it takes time O((N +

Nt) logNt log dmaxc
∗) to compute. Next, for Ṽ r

t+1, it involves computing the function at (N + 1)Nt

points, and each evaluation of Ṽ r
t+1 (when its explicit form is given) takes timeO

(
log

∑T
s=t+1 hs+bs

η log dmaxc
∗
)

,

by binary search on the sorted break points of Ṽ r
t+1. Thus, the total time needed for Ṽ r

t+1 is
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O

(
NNt log

∑T
s=t+1 hs+bs

η log dmaxc
∗
)

.

It is clear that the running time of the constructing Ũ r
t is dominated by the running time for

the N + 1 evaluations on Ũt(qi)s. Thus, given the explicit expression for Ṽ r
t+1, the run time for

providing an explicit expression for Ũ r
t is at most

O

((
(N +Nt) logNt +NtN log

∑T
s=t+1 hs + bs

η

)
log dmaxc

∗

)

=O

((
N2
t

∑T
s=t+1 hs + bs

η

(
log

Nt
∑T

s=t+1 hs + bs

η

))
log dmaxc

∗

)
.

Next, given the induction hypothesis for Ũ r
t , we prove the induction claims relevant to Ṽ r

t .
First, observe that R̃t is the smallest break point pj of Ũ r

t such that Ũ r
t (pj) ≥ 0, which can be

found efficiently by binary search (which takes time O

(
log

(
Nt

∑T
s=t+1 hs+bs

η

)
log dmax

)
), since Ũ r

t

is non-decreasing. Now, given R̃t and the explicit expression of Ũ r
t , by step 7 we can construct ˆ̃V r

t

in O

(
Nt

∑T
s=t+1 hs+bs

η log(dmaxc
∗)

)
time. Note that the number of break points of ˆ̃V r

t is equal to the

number of break points of Ũ r
t . Finally, to provide an explicit expression to Ṽ r

t based on ˆ̃V rt, it also

requires only O

(
Nt

∑T
s=t+1 hs+bs

η log(dmaxc
∗)

)
time, since to perform the sparsification procedure,

it suffices to perform it on the break points of Ũ r
t .

Finally, since V̂ r
t is non decreasing, and has range {ηz : z ∈ Z} ∩

[
−
∑T

s=t bs,
∑T

s=t hs

]
, it has

at most O
(∑T

s=t hs+bs
η

)
many break points. This completes the induction argument. �

H Proof of Theorem 4.2

First, we recall the following definition from the proof in Lemma 3.5 in Appendix E. For any

1 ≤ t ≤ T , we say that
{
Ũ r
s , Ṽ

r
s

}T
s=t

is {αs + η}Ts=t-good if

∣∣∣U r
s(ys)− Û r

s(ys)
∣∣∣ ≤ T∑

r=s

(αr + η) ∀ys ∈ R,
∣∣∣V r
s (xs)− V̂ r

s (xs)
∣∣∣ ≤ T∑

r=s

(αr + η) ∀xs ∈ R.

We first prove that

Pr

[
For all 1 ≤ t ≤ T and y ∈ R,

∣∣∣U r
t (y)− Ũ r

t (y)
∣∣∣ ≤ T∑

s=t

(αs + η)

]
≥ 1− δ, (H.1)
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which explains our choice of Nt. Indeed, we have

Pr

[
For all 1 ≤ t ≤ T and y ∈ R,

∣∣∣U r
t (y)− Ũ r

t (y)
∣∣∣ ≤ T∑

s=t

(αs + η)

]

≥Pr

[{
Ũ r
s , Ṽ

r
s

}T
s=1

is {αs + η}Ts=1 − good

]
=

T∏
t=1

Pr

[{
Ũ r
s , Ṽ

r
s

}T
s=t

is {αs + η}Ts=t − good |
{
Ũ r
s , Ṽ

r
s

}T
s=t+1

is {αs + η}Ts=t+1 − good

]
We argue that, for any 1 ≤ t ≤ T , we have

Pr

[{
Ũ r
s , Ṽ

r
s

}T
s=t

is {αs + η}Ts=t − good |
{
Ũ r
s , Ṽ

r
s

}T
s=t+1

is {αs + η}Ts=t+1 − good

]
≥ 1− δ/T.

The argument is demonstrated as follows. First, by Theorem 3.6, we have

Pr

[
For all yt

∣∣∣Ũ r
t (yt)− U r

t (yt)
∣∣∣ ≤ αt +

T∑
s=t+1

(αs + η) |
{
Ũ r
s , Ṽ

r
s

}T
s=t+1

is {αs + η}Ts=t+1 − good

]
≥ 1− δ

T
,

by the choice of Nt.

By Theorem 3.8, conditional on
∣∣∣Ũ r

t (yt)− U r
t (yt)

∣∣∣ ≤ αt +
∑T

s=t+1(αs + η) for all yt, we have

| ˆ̃V r
t (xt) − V r

t (xt)| ≤ αt +
∑T

s=t+1(αs + η) for all xT ∈ R always. This implies that for all xt ∈ R,
we have∣∣∣Ṽ r

t (xt)− V r
t (xt)

∣∣∣ ≤ ∣∣∣Ṽ r
t (xt)− ˆ̃V r

t (xt)
∣∣∣+
∣∣∣ ˆ̃V r
t (xt)− V r

t (xt)
∣∣∣ ≤ η + αt +

T∑
s=t+1

(αs + η).

Altogether, we show that

Pr

[{
Ũ r
s , Ṽ

r
s

}T
s=t

is {(αs + η)}Ts=t − good |
{
Ũ r
s , Ṽ

r
s

}T
s=t+1

is {(αs + η)}Ts=t+1 − good

]
≥Pr

[
|Ũ r
t (yt)− U r

t (yt)| ≤ αt +
T∑

s=t+1

(αs + η) |
{
Ũ r
s , Ṽ

r
s

}T
s=t+1

is {(αs + η)}Ts=t+1 − good

]
≥1− δ/T,

which establishes (H.1). Finally, we can conclude the (1+2ε) optimality of (R̃1, · · · , R̃T ) by Lemma
3.1, with our definitions of {αt}TT=1 and η. �

I A Discussion on #P−Hardness

To provide the definition for #P−hardness, we first provide the defintion of the class #P (for
example, see Chapter 7 in [GJ79]):
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Definition I.1. A function f : {0, 1}∗ → N belongs to the complexity class #P, if there exists a
polynomial p : N → N and a polynomial-time computable function M : {0, 1}∗ × {0, 1}∗ → {0, 1}
such that for every x ∈ {0, 1}∗,

f(x) =
∣∣∣y ∈ {0, 1}p(|x|) : M(x, y) = 1

∣∣∣ .
That is, f belongs to the class if it counts the number of satisfying assignments for certain

polynomial time Turing machine M . Here is a list of common examples in the literature:

1. Let the binary string x be an encoding of a bipartite graph G = ((L,R), E), where L,R
(|L| = |R|) are the bipartition and E ⊂ L × R is the edge set. Let y encodes a subset of
E, and let M(x, y) = 1 iff y encodes a perfect matching in G. Then f is the function that
counts the number of perfect matching in G. Note that M , which checks if an edge subset is
a perfect matching, is polynomial time computable.

2. Let the binary string x be an encoding of an undirected graph G = (V,E), and let y encodes
a subset of E. Let M(x, y) = 1 iff y encodes a hamiltonian cycle in G. Then f is the function
that counts the number of hamiltonian cycles in G. Again, M is evidently polynomial time
computable.

3. Let the binary string x be an encoding of the tuple ({at}Tt=1, R), where {at}Tt=1, R are non-
negative real numbers. Let y encodes a subset S of {1, · · · , T}. Let M(x, y) = 1 if and only
if
∑

t∈S at ≤ R, where S is the subset encoded by y. Then f is the function that counts the
number of subsets S such that the corresponding knapsack constraint is satisfied. Evidently,
M is polynomial time computable.

Next, a function g : {0, 1}∗ → N is #P−hard to compute, if for every function f in #P, there
exists a algorithm f̃ that computes f(n) with time polynomial in n and makes poly(n) many oracle
calls to g. For example, it is stated in [HKM+09] that Problem 3 is #P−hard. A function f is
#P−complete if it is both #P−hard and in #P. It is known that Problems 1, 2 are #P−complete.
[GJ79].

We remark that a #P problem, which requires us to count the number of y ∈ {0, 1}p(|x|)
satisfying M(x, y) = 1, is at least as hard as its corresponding NP problem, which requires us to
ascertain an existence of y ∈ {0, 1}p(|x|) satisfying M(x, y) = 1. While the #P problem requires
us to output f(x), the corresponding NP problem only requires us to decide if f(x) > 0. In
example 1, the #P problem, which counts the number of perfect matching, is NP-hard, while
the corresponding NP problem, which asks if there exists a perfect matching, is polynomial time
solvable.

Finally, suppose that g is #P−hard to compute. Then, the corresponding decision problem,
which is to ascertain whether g(x) ≥ K for any given K ∈ {1, 2, · · · , 2p(|x|)}, is also #P−hard.
(Though, as remarked above, it could be easier for the special case when K = 1. However, we are
working with general K here.) Indeed, given an algorithm A for the decision problem for any K, we
can compute g(x) by a binary search on {1, 2, · · · , 2p(|x|)}, which requires applying the algorithm
A at most O(p(|x|)) times. Therefore, the Kth-largest subset problem stated in §5, which is the
corresponding decision problem to the knapsack counting problem in example 3, is #P−hard.
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J Proof of Lemma 2.3

Consider the following T period instance:

• Holding and backlog costs: h1, · · · , hT−1 = 0, b1, · · · bT−1 = 0, and hT , bT are positive real
numbers.

• Demands distributions: For each t ∈ {1, · · · , T}, we have

P[Dt = at] = P[Dt = 0] =
1

2
.

• Capacities: B1 =∞, B2, · · · , BT = 0.

In this instance, the decision maker cannot place orders in periods 2, · · · , T . His objective is to order
an appropriate amount of goods in period 1 in order to match the cumulative demand

∑T
t=1Dt at

the end of the time horizon. Thus, this instance can be viewed as the single period uncapacitated
inventory control problem (also known as the newsvendor problem), where the decision maker faces
a random demand with distribution

∑T
t=1Dt; the holding cost and backlog cost are hT and bT

respectively. We demonstrate the computational hardness by arguing that it is hard to compute
the cumulative distribution function of the random variable

∑T
t=1Dt.

Let X1, · · · , XT be i.i.d. random variables, each distributed as Bern(0.5). Then we can rewrite
Dt = atXt for each t. The optimal modified base stock policy (R∗1, · · · , R∗T ) has the following form:

R∗1 = min
R∈R

{
R : P

[
T∑
t=1

Dt ≤ R

]
≥ bT
hT + bT

}

= min
R∈R

{
R : P

[
T∑
t=1

atXt ≤ R

]
≥ bT
hT + bT

}

= min
R∈R

{
R : PS∼U(T )

[∑
t∈S

at ≤ R

]
≥ bT
hT + bT

}
(J.1)

= min
R∈R

{
R :

∣∣∣∣∣
{
S ⊂ {1, · · · , T} :

∑
t∈S

at ≤ R

}∣∣∣∣∣ ≥ bT
hT + bT

2T

}
, (J.2)

and R∗2, · · ·R∗T are arbitrary real numbers. The step (J.1) is justified as follows. Since X1, · · · , XT

are i.i.d. random variables with distribution Bern(0.5), the set {t : Xt = 1} is a uniformly random
set in {1, · · · , T} (denoted {t : Xt = 1} ∼ U(T )); That is, for any S ∈ {1, · · · , T}, we have
Pr [{t : Xt = 1} = S] = 1/2T . The line (J.2) follows by multiplying each side in the condition by
2T .

We demonstrate that the SAA problem is #P−hard by reducing an instance of the Kth

largest subset problem to a specific instance of SAA problem. Suppose we are given an instance
({at}Tt=1, R,K} of the Kth largest subset problem. We solve this given problem by the following:
we first solve the the SAA problem, with X1, · · · , XT , B1, · · · , BT , h1, · · · , hT−1, b1, · · · , bT−1 as
specified in the beginning of the proof; we also specify bt = K, ht+bt = 2T . Then, given the output
R∗1 for the SAA problem, we declare that assertion (5.1) is true if R ≥ R∗1, and false otherwise. Our
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declaration is correct, since R∗1 is the smallest optimal base stock for the SAA problem instance;
that is R∗1 is the smallest R such that the assertion (5.1) is true. �

K Proof of Theorem 2.5

Recall h, b respectively denote the holding cost and backlog cost in the newsvendor problem. To
establish the sample lower bound, we first consider the case when h ≤ b. We demonstrate the lower
bound by considering the following two demand distributions D1, D2:

P[D1 = 0] =
b− h
b+ h

, P[D1 = 1] =
h+ hε

b+ h
, P[D1 = A] =

h− hε
b+ h

,

P[D2 = 0] =
b− h
b+ h

, P[D2 = 1] =
h− hε
b+ h

, P[D2 = A] =
h+ hε

b+ h
,

where 0 < ε < 1/20 is a small accuracy parameter, and A = 2000 max
{

1, hbε
}

. These two distribu-
tions are handcrafted so that the following two properties hold:

• Claim 1: D1, D2 have disjoint sets of (1 + ε
20)−optimal base stocks,

• Claim 2: D1, D2 have small statistical distance: KL(D1||D2) ≤ 8hε2

b+h .

Recall that the KL divergence KL(X||Y ) between the integral random variables X,Y is defined as

KL(X||Y ) =
∑
i∈Z

P[X = i] log
P[X = i]

P[Y = i]
.

The proofs for these two claims are by technical calculations, thus postponed to the end.
Suppose that we are given an algorithm A be an algorithm which draws m i.i.d. samples and

returns a (1 + ε
20)−optimal base stock with probability at least 1− δ under any latent distribution

D. Then, the approximation guarantee of A still holds if the m i.i.d. samples are from D1 or D2.
We consider the following reduction from solving the data-driven newsvendor problems on D1, D2

to solving the statistical classification problem on D1, D2.
Consider the following classification problem. We are given m i.i.d. samples dm = (d1, · · · , dm).

We know that these samples are drawn from D1 or D2, and we also know the CDFs of D1 and
D2. However, the identity of the distribution is unknown. The goal of the classification problem
is to correctly identify the latent distribution with high probability. We claim that the following
algorithm B, which calls A as a subroutine, achieves our goal.

Algorithm 2 Algorithm B
1: INPUT: m i.i.d. samples dm from D, where the latent distribution D can be D1 or D2.
2: Run A on the m samples dm.
3: if A returns a

(
1 + ε

20

)
−optimal base stock for D1 then

4: Return 1. . Identify D = D1.
5: else
6: Return 0. . Identify D = D2.
7: end if
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Note that the condition in Line 3 can be checked, since we have the access to the CDFs of
D1, D2.

We first argue that, by Claim 1, the classifier B correctly identifies the true underlying distri-
bution D with probability 1− δ. Now, by an abuse of notation, we use B(dm) to denote the output
of B on the sequence of m samples dm. Note that B(dm) = 1 if B identifies D = D1, and B(dm) = 0
if B identifies D = D2. Therefore, when D = D1, the probability that B correctly identifies the
underlying distribution is equal to

Edm∼Dm
1
B(dm) = Pdm∼Dm

1

[
A outputs a

(
1 +

ε

20

)
base stock for D1

]
≥ 1− δ,

where the first equality is by Claim 1, and the second inequality is by our assumption on the
approximation guarantee by A. Likewise, when D = D2, the probability that B correctly identifies
the underlying distribution is equal to

1− Edm∼Dm
2
B(dm) ≥ Pdm∼Dm

2

[
A outputs a

(
1 +

ε

20

)
base stock for D2

]
≥ 1− δ.

where the first inequality is by Claim 1, and the second inequality is by our assumption on the
approximation guarantee by A.

In particular, the two inequalities result in the following:

1− 2δ ≤ Edm∼Dm
1
B(dm)− Edm∼Dm

2
B(dm). (K.1)

Next, we argue that the number of samples m must be sufficiently large in order for B to succeed
in identifying D with high probability. We demonstrate the argument by bounding the right hand
side of (K.1) from above by information theoretic techniques and Claim 2:

Edm∼Dm
1
B(dm)− Edm∼Dm

2
B(dm) =

∑
dm∈{0,1,A}m

B(dm) (P[Dm
1 = dm]− P[Dm

2 = dm])

≤
∑

dm∈{0,1,A}m
|P[Dm

1 = dm]− P[Dm
2 = dm]| (K.2)

≤
√

(2 log 2)KL (Dm
1 ||Dm

2 ) (K.3)

=
√

(2m log 2)KL (D1||D2) (K.4)

≤
√

(16m log 2)hε2

h+ b
(K.5)

The inequality (K.2) is true because |B(dm)| ≤ 1 for all dm. Note that the quantity in (K.2) is the
total variation distance between Dm

1 and Dm
2 . The inequality (K.3) is an application of Pinsker

Inequality (for example see [CT06]) on Dm
1 and Dm

2 . The equality (K.4) is by applying the Chain
Rule for KL-Divergence (see Theorem 2.5.3 in [CT06]). The inequality (K.5) is by Claim 2.

Altogether, by combining (K.1) and (K.5), we conclude that if there exists an algorithm A that
returns a (1 + ε

20)-optimal base stock with probability at least 1− δ using m samples, the quantity
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m must satisfy the following inequality:√
(16m log 2)hε2

h+ b
≥ 1− 2δ ⇒ m ≥ (1− 4δ)(h+ b)

(16 log 2)hε2
.

Finally, by replacing ε with 20ε, we see that in order to output a (1 + ε)-optimal base stock with

probability at least 1− δ, an algorithm must draw at least (1−4δ)(h+b)
(6400 log 2)hε2

many samples.

Thus, we have proven Theorem 2.5 for the case h ≤ b. The complementary case h > b can be
argued by the following symmetry argument. For any demand distribution D with support [0, A],
denote D̄ = A−D. Then we have, for all x ∈ [0, A]:

C(x) = E[h(x−D)+ + b(D − x)+] = E[h(D̄ − (A− x))+ + b((A− x)− D̄)+]

= E[h̄((A− x)− D̄)+ + b̄(D̄ − (A− x))+] = C̄(A− x),

where h̄ = b, b̄ = h, and C̄ is the newsvendor cost with unit holding and backlog costs h̄, b̄, under
distribution D̄. By applying the reduction argument with h̄, b̄ (note that h̄ < b̄) in place of h, b, we

see that (1−4δ)(h̄+b̄)

(6400 log 2)h̄ε2
= (1−4δ)(h+b)

(6400 log 2)bε2
samples are necessary for obtaining a (1 + ε)-optimal solution

for C̄ with confidence probability 1 − δ. Hence, the same sample bound is also true for C, which
proves Theorem 2.5 for the case when h > b.

Finally, we return to the proof of Claim 1 and 2:
Proof of Claim 1: For any distribution D, it is a classical result (for example, see [LRS07], or

deduce from §2.2) that the newsvendor cost function C(x) = E[h(x−D)+ +b(D−x)+] is minimized
at the b

b+h quantile R:

R = min
x

{
x : P[D ≤ x] ≥ b

b+ h

}
.

Let C1, C2 denote the newsvendor cost functions under D1, D2 respectively, and let R1, R2 denote
the b

b+h quantiles of D1, D2 respectively. By our definitions of D1, D2, we know that R1 = 1,
R2 = A. To show that D1, D2 have disjoints sets of (1 + ε

20)−optimal base stocks, it suffices to
show that

C1

(
A+ 1

2

)
≥
(

1 +
ε

10

)
C1(1), C2

(
A+ 1

2

)
≥
(

1 +
ε

10

)
C2(A),

since C1, C2 are convex functions, which implies that their sets of minima are intervals. To prove
these inequalities, we first provide the expressions for C1(x), C2(x) in the domain x ∈ [1, A]:

C1(x) =
hb− h2

b+ h
x+

h2(1 + ε)

b+ h
(x− 1) +

bh(1− ε)
b+ h

(A− x),

C2(x) =
hb− h2

b+ h
x+

h2(1− ε)
b+ h

(x− 1) +
bh(1 + ε)

b+ h
(A− x).
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This means

C1(1) =
hbA

h+ b

(
1− ε− h

bA
+
ε

A

)
∈
[
hbA

h+ b

(
1− ε− ε

1000

)
,
hbA

h+ b

(
1− ε+

ε

1000

)]
,

C1(A) =
hbA

h+ b

(
1 +

hε

b
− h

bA
− hε

bA

)
≥ hbA

h+ b

(
1 +

hε

b
− ε

1000

)
,

C2(1) =
hbA

h+ b

(
1 + ε− h

bA
− ε

A

)
≥ hbA

h+ b

(
1 + ε− ε

1000

)
,

C2(A) =
hbA

h+ b

(
1− hε

b
− h

bA
+
hε

bA

)
∈
[
hbA

h+ b

(
1− hε

b
− ε

1000

)
,
hbA

h+ b

(
1− hε

b
+

ε

1000

)]
.

The bounds are justified by our choice of A to be sufficiently large (recall A = 2000 max
{

1, hbε
}

),

which implies that h
bA ,

ε
A ,

hε
bA ≤

ε
2000 . Then we have the following bounds on C1(A+1

2 ), C2(A+1
2 ):

C1

(
A+ 1

2

)
=

1

2
(C1(1) + C1(A)) ≥

(
1 +

ε

10

) hbA

h+ b

(
1− ε− ε

1000

)
≥
(

1 +
ε

10

)
C1(1),

C2

(
A+ 1

2

)
=

1

2
(C2(1) + C2(A)) ≥

(
1 +

ε

10

) hbA

h+ b

(
1− hε

b
− ε

1000

)
≥
(

1 +
ε

10

)
C2(A).

This proves Claim 1.
Proof of Claim 2: The KL divergence KL(D1||D2) can be expressed as follows:

KL(D1||D2) =
b− h
b+ h

log
b− h
b− h

+
h+ hε

b+ h
log

h+ hε

h− hε
+
h− hε
b+ h

log
h− hε
h+ hε

=
2hε

b+ h
log

(
1 +

2ε

1− ε

)
≤ 4hε2

(b+ h)(1− ε)
≤ 8hε2

b+ h
.

where the last inequality is by the assumption that ε < 1/2. This proves Claim 2, which concludes
the proof of Theorem 2.5. �
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